WorldWideScience

Sample records for circulating brain-derived neurotrophic

  1. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are...

  2. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  3. DIFFERENT CIRCULATING BRAIN-DERIVED NEUROTROPHIC FACTOR RESPONSES TO ACUTE EXERCISE BETWEEN PHYSICALLY ACTIVE AND SEDENTARY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Yu Nofuji

    2012-03-01

    Full Text Available Although circulating brain-derived neurotrophic factor (BDNF level is affected by both acute and chronic physical activity, the interaction of acute and chronic physical activity was still unclear. In this study, we compared the serum and plasma BDNF responses to maximal and submaximal acute exercises between physically active and sedentary subjects. Eight active and 8 sedentary female subjects participated in the present study. Both groups performed 3 exercise tests with different intensities, i.e. 100% (maximal, 60% (moderate and 40% (low of their peak oxygen uptake. In each exercise test, blood samples were taken at the baseline and immediately, 30 and 60 min after the test. The serum BDNF concentration was found to significantly increase immediately after maximal and moderate exercise tests in both groups. In maximal exercise test, the pattern of change in the serum BDNF concentration was different between the groups. While the serum BDNF level for the sedentary group returned to the baseline level during the recovery phase, the BDNF levels for the active group decreased below the baseline level after the maximal exercise test. No group differences were observed in the pattern of plasma BDNF change for all exercise tests. These findings suggest that regular exercise facilitates the utilization of circulating BDNF during and/or after acute exercise with maximal intensity

  4. Measurements of brain-derived neurotrophic factor

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Klein, Anders Bue; Vinberg, Maj;

    2007-01-01

    Although numerous studies have dealt with changes in blood brain-derived neurotrophic factor (BDNF), methodological issues about BDNF measurements have only been incompletely resolved. We validated BDNF ELISA with respect to accuracy, reproducibility and the effect of storage and repeated freezin...

  5. Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore Longitudinal Study of Aging.

    Directory of Open Access Journals (Sweden)

    Erin Golden

    Full Text Available BACKGROUND: Besides its well-established role in nerve cell survival and adaptive plasticity, brain-derived neurotrophic factor (BDNF is also involved in energy homeostasis and cardiovascular regulation. Although BDNF is present in the systemic circulation, it is unknown whether plasma BDNF correlates with circulating markers of dysregulated metabolism and an adverse cardiovascular profile. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether circulating BDNF correlates with indices of metabolic and cardiovascular health, we measured plasma BDNF levels in 496 middle-age and elderly subjects (mean age approximately 70, in the Baltimore Longitudinal Study of Aging. Linear regression analysis revealed that plasma BDNF is associated with risk factors for cardiovascular disease and metabolic syndrome, regardless of age. In females, BDNF was positively correlated with BMI, fat mass, diastolic blood pressure, total cholesterol, and LDL-cholesterol, and inversely correlated with folate. In males, BDNF was positively correlated with diastolic blood pressure, triglycerides, free thiiodo-thyronine (FT3, and bioavailable testosterone, and inversely correlated with sex-hormone binding globulin, and adiponectin. CONCLUSION/SIGNIFICANCE: Plasma BDNF significantly correlates with multiple risk factors for metabolic syndrome and cardiovascular dysfunction. Whether BDNF contributes to the pathogenesis of these disorders or functions in adaptive responses to cellular stress (as occurs in the brain remains to be determined.

  6. The Brain Derived Neurotrophic Factor and Personality

    Directory of Open Access Journals (Sweden)

    Christian Montag

    2014-01-01

    Full Text Available The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF in the serum/plasma to molecular genetics to (genetic brain imaging. The present review provides the reader with an overview of the current state of affairs in the context of BDNF and personality.

  7. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Science.gov (United States)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  8. Brain-derived neurotrophic factor, food intake regulation, and obesity.

    Science.gov (United States)

    Rosas-Vargas, Haydeé; Martínez-Ezquerro, José Darío; Bienvenu, Thierry

    2011-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control. PMID:21945389

  9. Brain-Derived Neurotrophic Factor in the Airways

    OpenAIRE

    Y S Prakash; Richard J Martin

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseas...

  10. Brain-derived neurotrophic factor and cocaine addiction

    OpenAIRE

    McGinty, Jacqueline F.; Whitfield, Timothy W.; Berglind, William J.

    2009-01-01

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefronta...

  11. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    OpenAIRE

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 ...

  12. Peripheral blood brain-derived neurotrophic factor in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-01-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent...... investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control...... subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974...

  13. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.;

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...... and diabetes or obesity. In Study 2 an output of BDNF from the human brain was detected at basal conditions. This output was inhibited when blood glucose levels were elevated. In contrast, when plasma insulin was increased while maintaining normal blood glucose, the cerebral output of BDNF was not inhibited...

  14. Brain-Derived Neurotrophic Factor in Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Jôice Dias Corrêa

    2014-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family. Outside the nervous system, BDNF has been shown to be expressed in various nonneural tissues, such as periodontal ligament, dental pulp, and odontoblasts. Although a role for BDNF in periodontal regeneration has been suggested, a function for BDNF in periodontal disease has not yet been studied. The aim of this study was to analyze the BDNF levels in periodontal tissues of patients with chronic periodontitis (CP and periodontally healthy controls (HC. All subjects were genotyped for the rs4923463 and rs6265 BDNF polymorphisms. Periodontal tissues were collected for ELISA, myeloperoxidase (MPO, and microscopic analysis from 28 CP patients and 29 HC subjects. BDNF levels were increased in CP patients compared to HC subjects. A negative correlation was observed when analyzing concentration of BDNF and IL-10 in inflamed periodontium. No differences in frequencies of BDNF genotypes between CP and HC subjects were observed. However, BDNF genotype GG was associated with increased levels of BDNF, TNF-α, and CXCL10 in CP patients. In conclusion, BDNF seems to be associated with periodontal disease process, but the specific role of BDNF still needs to be clarified.

  15. Brain-derived neurotrophic factor: role in depression and suicide

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-08-01

    Full Text Available Yogesh DwivediPsychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USAAbstract: Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF, one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB and its splice variant (TrkB.T1 have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, genetics, epigenetics

  16. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    Science.gov (United States)

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  17. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia***

    Institute of Scientific and Technical Information of China (English)

    Xiaoliang Shu; Yongsheng Zhang; Han Xu; Kai Kang; Donglian Cai

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance fol owing ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions fol owing cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the de-crease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpy-ruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor fol owing cerebral ischemia may be involved in the development of glucose intolerance.

  18. Brain-derived neurotrophic factor and cocaine addiction

    Science.gov (United States)

    McGinty, Jacqueline F.; Whitfield, Timothy W.; Berglind, William J.

    2009-01-01

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefrontal cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine seeking after abstinence, as well as cue- and cocaine prime-induced reinstatement of cocaine-seeking following extinction. BDNF-induced alterations in the ERK-MAP kinase cascade and in prefronto-accumbens glutamatergic transmission are implicated in BDNF’s ability to alter cocaine seeking. Within 22 hr after infusion into the prefrontal cortex, BDNF increases BDNF protein in prefrontal cortical targets, including nucleus accumbens, and restores cocaine-mediated decreases in phospho-ERK expression in the nucleus accumbens. Furthermore, three weeks after BDNF infusion in animals with a cocaine self-administration history, suppressed basal levels of glutamate are normalized and a cocaine-prime-induced increase in extracellular glutamate levels in the nucleus accumbens is prevented. Thus, BDNF may have local effects at the site of infusion and distal effects in target areas that are critical to mediating or preventing cocaine-induced dysfunctional neuroadaptations. PMID:19732758

  19. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Brassard, Patrice; Adser, Helle; Pedersen, Martin V; Leick, Lotte; Hart, Emma; Secher, Niels H; Pedersen, Bente K; Pilegaard, Henriette

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4...... h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF...... release from the brain was observed at rest (P < 0.05), and increased two- to threefold during exercise (P < 0.05). Both at rest and during exercise, the brain contributed 70-80% of circulating BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three- to...

  20. Brain derived neurotrophic factor in newly diagnosed diabetes and prediabetes.

    Science.gov (United States)

    Liu, Wei; Han, Xueyao; Zhou, Xianghai; Zhang, Simin; Cai, Xiaoling; Zhang, Lihua; Li, Yufeng; Li, Meng; Gong, Siqian; Ji, Linong

    2016-07-01

    Brain derived neurotrophic factor (BDNF) is thought to play an important role in glucose metabolism, but the exact mechanism has not been elucidated. The aim was to assess differences in serum BDNF levels across individuals with varying levels of glucose tolerance, and the association of serum BDNF levels with genetic variants and DNA methylation. Participants were selected from an ongoing population-based cohort study in rural China. In a randomly selected subsample of healthy participants (n = 33 males, n = 52 female), we assessed serum BDNF and in n = 50 of these, also DNA methylation. In a second subsample (all women; n = 28 with diabetes, n = 104 with prediabetes, and n = 105 age- and body mass index (BMI)-matched controls), we assessed serum BDNF and genetic variants. In a third subsample (all with diabetes; n = 7 normal BMI + low insulin level, n = 9 normal BMI + high insulin level, n = 9 obese + high insulin level), we assessed DNA methylation. Compared to age- and BMI-matched controls (24.71 (IQR, 20.44, 29.80) ng/ml), serum BDNF was higher in participants with prediabetes (27.38 (IQR, 20.64, 34.29) ng/ml), but lower in those with diabetes (23.40 (IQR, 18.12, 30.34) ng/ml) (P < 0.05). Two genetic variants near BDNF (rs4074134 and rs6265) were confirmed to be associated with BMI. BDNF CpG-6 methylation was positively associated with waist-to-hip ratio (P < 0.05). Furthermore, hyper-methylation in this site was found in participants with diabetes and high fasting insulin levels compared to those with diabetes and low fasting insulin levels, regardless of BMI status (P < 0.001 and P = 0.001, respectively). Observed differences in serum BDNF levels, genetic variants, and DNA methylation patterns across different glucose metabolic state suggest that BDNF may be involved in the pathophysiological process of insulin resistance and type 2 diabetes. PMID:27062899

  1. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness

    Directory of Open Access Journals (Sweden)

    Khalin I

    2015-04-01

    Full Text Available Igor Khalin,1 Renad Alyautdin,2 Ganna Kocherga,3 Muhamad Abu Bakar1 1Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia; 2Scientific Centre for Expertise of Medical Application Products, Moscow, Russia; 3Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, UkraineAbstract: Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration. Keywords: brain-derived neurotrophic factor, neurodegeneration, posterior eye segment

  2. Brain-derived neurotrophic factor and substantia nigra dopaminergic neurons in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Haixia Ding; Meijiang Feng; Xinsheng Ding

    2008-01-01

    BACKGROUND:Parkinson's disease (PD) is a chronic, progressive neurodegenerative central nervous system disease which occurs in the substantia nigra-corpus striatum system. The main pathological feature of PD is selective dopaminergic neuronal loss with distinctive Lewy bodies in populations of surviving dopaminergic neurons. In the clinical and neuropathological diagnosis of PD, brain-derived neurotrophic factor mRNA expression in the substantia nigra pars compacta is reduced by 70%, and surviving dopaminergic neurons in the PD substantia nigra pars compacta express less brain-derived neurotrophic factor (BDNF) mRNA (20%) than their normal counterparts. In recent years, knowledge surrounding the relationship between neurotrophic factors and PD has increased, and detailed pathogenesis of the role of neurotrophic factors in PD becomes more important.

  3. Continuous Brain-derived Neurotrophic Factor (BDNF) Infusion After Methylprednisolone Treatment in Severe Spinal Cord Injury

    OpenAIRE

    Kim, Daniel H.; Jahng, Tae-Ahn

    2004-01-01

    Although methylprednisolone (MP) is the standard of care in acute spinal cord injury (SCI), its functional outcome varies in clinical situation. Recent report demonstrated that MP depresses the expression of growth-promoting neurotrophic factors after acute SCI. The present study was designed to investigate whether continuous infusion of brain-derived neurotrophic factor (BDNF) after MP treatment promotes functional recovery in severe SCI. Contusion injury was produced at the T10 vertebral le...

  4. Decreased Cerebrovascular Brain-Derived Neurotrophic Factor–Mediated Neuroprotection in the Diabetic Brain

    OpenAIRE

    Hayakawa, Kazhuhide; Navaratna, Deepti; Guo, Shu-Zhen; WANG, XIAOYING; Gerhardinger, Chiara; Lo, Eng H.

    2011-01-01

    Objective: Diabetes is an independent risk factor for stroke. However, the underlying mechanism of how diabetes confers that this risk is not fully understood. We hypothesize that secretion of neurotrophic factors by the cerebral endothelium, such as brain-derived neurotrophic factor (BDNF), is suppressed in diabetes. Consequently, such accrued neuroprotective deficits make neurons more vulnerable to injury. Research Design and Methods: We examined BDNF protein levels in a streptozotocin-indu...

  5. Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression

    OpenAIRE

    Dwivedi, Yogesh

    2013-01-01

    Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hy...

  6. Decreased levels of brain-derived neurotrophic factor in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob; Knorr, U; Bennike, B;

    2012-01-01

    Decreased levels of peripheral brain-derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness....

  7. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  8. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    Science.gov (United States)

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  9. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  10. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

  11. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    OpenAIRE

    Martinowich Keri; Schloesser Robert J; Jimenez Dennisse V; Weinberger Daniel R; Lu Bai

    2011-01-01

    Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF) in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivat...

  12. Decreased Plasma Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Concentrations during Military Training

    OpenAIRE

    Suzuki, Go; Tokuno, Shinichi; Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to...

  13. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    OpenAIRE

    Greenwood, Benjamin N.; Strong, Paul V; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2006-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against...

  14. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    OpenAIRE

    Kyoung-Sae Na; Eunsoo Won; June Kang; Hun Soo Chang; Ho-Kyoung Yoon; Woo Suk Tae; Yong-Ku Kim; Min-Soo Lee; Sook-Haeng Joe; Hyun Kim; Byung-Joo Ham

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the gr...

  15. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    OpenAIRE

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Y S Prakash

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in hu...

  16. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    OpenAIRE

    Wang, Qiong; Shao, Feng; Wang, Weiwen

    2015-01-01

    Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1–21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats...

  17. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    OpenAIRE

    Xinfeng Liu; Gelin Xu; Zhaoyao Chen; Tingting Lu; Ning Wei; Juehua Zhu; Yongjun Jiang

    2011-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobil...

  18. Endogenous Brain Derived Neurotrophic Factor in the Nucleus Tractus Solitarius Tonically Regulates Synaptic and Autonomic Function

    OpenAIRE

    Clark, Catharine G.; Hasser, Eileen M.; Kunze, Diana L.; Katz, David M.; Kline, David D.

    2011-01-01

    Brain derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial...

  19. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    OpenAIRE

    Rini Rossanti; Dida Akhmad Gurnida; Eddy Fadlyana

    2015-01-01

    Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brain-derived neurotrophic factor (BDNF), a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This com...

  20. Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo.

    OpenAIRE

    Altar, C A; Boylan, C B; Jackson, C; Hershenson, S; Miller, J.; Wiegand, S. J.; Lindsay, R M; Hyman, C.

    1992-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF)-related family of neutrophins, promotes the survival and differentiation of cultured nigral dopamine neurons. Two-week infusions of BDNF were made above the right pars compacta of the substantia nigra in adult rats. Systemic injection of these animals with (+)-amphetamine, a dopamine-releasing drug, induced 3 or 4 body rotations per minute directed away from the nigral infusion site. Neither supranigral NGF no...

  1. The effect of regular aerobic exercise on urinary brain-derived neurotrophic factor in children

    OpenAIRE

    Yunita Fediani; Masayu Rita Dewi; Muhammad Irfannuddin; Masagus Irsan Saleh; Safri Dhaini

    2014-01-01

    Background Nervous system development in early life influences the quality of cognitive ability during adulthood. Neuronal development and neurogenesis are highly influenced by neurotrophins. The most active neurotrophin is brain-derived neurotrophic factor (BDNF). Physical activity has a positive effect on cognitive function. However, few experimental studies have been done on children to assess the effect of aerobic regular exercise on BDNF levels. Objective To assess the effect of regu...

  2. Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan

    OpenAIRE

    Itoh, Kanako; Hashimoto, Kenji; Shimizu, Eiji; Sekine, Yoshimoto; Ozaki, Norio; Inada, Toshiya; Harano, Mutsuo; Iwata, Nakao; Komiyama, Tokutaro; Yamada, Mitsuhiko; Sora,Ichiro; Nakata, Kenji; Ujike, Hiroshi; Iyo, Masaomi

    2005-01-01

    Several lines of evidence suggest that genetic factors might contribute to drug abuse vulnerability. Recent genomic scans for association demonstrated that the brain-derived neurotrophic factor (BDNF) gene was associated with drug abuse vulnerability. In this study, we analyzed association of two BDNF gene single nucleotide polymorphisms (SNPs), 132C>T (C270T named formerly) in the noncoding region of exon V and 196G >A (val66met) in the coding region of exon XIIIA, with methamphetamine (MAP)...

  3. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    OpenAIRE

    Song, Changwei; Fang, Shiqiang; Gang LV; Mei, Xifan

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin t...

  4. Brain-Derived Neurotrophic Factor as a Biomarker in Children with Attention Deficit-Hyperactivity Disorder

    OpenAIRE

    Farshid Saadat; Maryam Kosha; Ali Amiry; Gholamreza Torabi

    2015-01-01

    Background: Evidence suggests that Brain-Derived Neurotrophic Factor (BDNF) is involved in the pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD), although experimental data regarding the contribution of BDNF concentration to this psychiatric disorder are controversial. Aim: To evaluate the plasma levels of BDNF in patients with ADHD. Material and Methods: In this cross sectional study, ADHD and controls were recruited from the outpatient clinic of the ...

  5. Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory

    OpenAIRE

    Naftali Raz; Dahle, Cheryl L.; Rodrigue, Karen M.; Kennedy, Kristen M.; Land, Susan J.; Jacobs, Bradley S.

    2008-01-01

    Age-related declines in episodic memory performance are frequently reported, but their mechanisms remain poorly understood. Although several genetic variants and vascular risk factors have been linked to mnemonic performance in general and age differences therein, it is unknown whether and how they modify age-related memory declines. To address that question, we investigated the effect of Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism that affects secretion of BDNF, and fastin...

  6. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Correia

    2010-01-01

    Full Text Available OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large and elbow (small flexor and extensor muscles were measured on two separate days. Venous blood samples were obtained from 16 healthy subjects before and after exercise. RESULTS: The levels of brain-derived neurotrophic factor in the plasma did not significantly increase after both arm and leg exercise. There was no significant difference in the plasma levels of the brain-derived neurotrophic factor in the arms and legs. CONCLUSION: The present results demonstrate that acute strength exercise does not induce significant alterations in the levels of brain-derived neurotrophic factor plasma concentrations in healthy individuals. Considering that its levels may be affected by various factors, such as exercise, these findings suggest that the type of exercise program may be a decisive factor in altering peripheral brain-derived neurotrophic factor.

  7. Molecular mechanisms underlying the regulation of brain-derived neurotrophic factor (BDNF) translation in dendrites

    OpenAIRE

    Pinheiro, Vera Lúcia Margarido

    2010-01-01

    A especificidade espacial e temporal subjacente à diversidade de processos de plasticidade sináptica que ocorrem no sistema nervoso central está profundamente relacionada com a disponibilidade da proteína brain-derived neurotrophic factor (BDNF) em domínios sub-celulares distintos, especialmente na área pós-sináptica. Contudo, os mecanismos moleculares que regulam a síntese proteica de BDNF nas dendrites estão ainda por desvendar. Assim, o principal objectivo deste trabalho foi...

  8. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine;

    2013-01-01

    Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction in...... hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised that...

  9. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel;

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control desi......Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case......-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3...... were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder...

  10. Brain-Derived Neurotrophic Factor Transgenic Mice Exhibit Passive Avoidance Deficits, Increased Seizure Severity and In Vitro Hyperexcitability in the Hippocampus and Entorhinal Cortex

    OpenAIRE

    Croll, S. D.; Suri, C; Compton, D. L.; Simmons, M. V.; Yancopoulos, G D; Lindsay, R M; Wiegand, S. J.; RUDGE, J. S.; Scharfman, H. E.

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the β-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a si...

  11. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2011-03-01

    Full Text Available Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivation leads to an increase in cortical cortistatin mRNA expression. Disruption of activity-dependent BDNF expression in a genetically modified mouse line impairs both baseline levels of cortistatin mRNA as well as its levels following sleep deprivation. Disruption of activity-dependent BDNF also leads to a decrease in sleep time during the active (dark phase. Conclusion Our studies suggest that regulation of cortistatin-expressing interneurons by activity-dependent BDNF expression may contribute to regulation of sleep behavior.

  12. Serum brain-derived neurotrophic factor (BDNF) is not regulated by testosterone in transmen.

    Science.gov (United States)

    Auer, Matthias K; Hellweg, Rainer; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Fuss, Johannes

    2016-01-01

    Brain morphology significantly differs between the sexes. It has been shown before that some of these differences are attributable to the sex-specific hormonal milieu. Brain-derived neurotrophic factor (BDNF) is involved in myriads of neuroplastic processes and shows a sexual dimorphism. Transsexual persons may serve as a model to study sex steroid-mediated effects on brain plasticity. We have recently demonstrated that serum levels of BDNF are reduced in transwomen following 12 months of cross-sex hormone treatment. We now wanted to look at the effects of testosterone treatment on BDNF in transmen. In contrast to our initial hypothesis, BDNF levels did not significantly change, despite dramatic changes in the sex-hormonal milieu. Our data indicate that testosterone does not seem to play a major role in the regulation of BDNF in females. PMID:26753091

  13. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity

    Directory of Open Access Journals (Sweden)

    Francesca eCalabrese

    2014-12-01

    Full Text Available Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli.In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor, which represents one of the major mediators of neuroplasticity.

  14. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans

    DEFF Research Database (Denmark)

    Huang, T; Larsen, K T; Ried-Larsen, M;

    2014-01-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles...... studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies....... met the inclusion criteria. Evidence from experimental studies suggested that peripheral BDNF concentrations were elevated by acute and chronic aerobic exercise. The majority of the studies suggested that strength training had no influence on peripheral BDNF. The results from most observational...

  15. Brain-derived neurotrophic factor and neural plasticity in a rat model of spinal cord transection

    Institute of Scientific and Technical Information of China (English)

    Ruxin Xing; Jia Liu; Hua Jin; Ping Dai; Tinghua Wang

    2011-01-01

    The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-derived neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection site following injection of replication incompetent herpes simplex virus vector (HSV-BDNF) into the subarachnoid space. In addition, hindlimb locomotor functions were improved. In contrast, BDNF levels decreased following treatment with replication defective herpes simplex virus vector construct small interference BDNF (HSV-siBDNF). Moreover, hindlimb locomotor functions gradually worsened. Compared with the replication incompetent herpes simplex virus vector control group, extracellular signal regulated kinase1/2 expression increased in the HSV-BDNF group on days 14 and 28 after spinal cord transection, but expression was reduced in the HSV-siBDNF group. These results suggested that BDNF plays an important role in neural plasticity via extracellular signal regulated kinase1/2 signaling pathway in a rat model of adult spinal cord transection.

  16. No effect of escitalopram versus placebo on brain-derived neurotrophic factor in healthy individuals

    DEFF Research Database (Denmark)

    Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen;

    2016-01-01

    OBJECTIVE: Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a...... family history of depression. METHODS: We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. RESULTS: We found...... no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF...

  17. Effect of Brain-derived Neurotrophic Factor (BDNF in Organotypic Retinal Cultures

    Directory of Open Access Journals (Sweden)

    N.A. Gavrilova

    2009-02-01

    Full Text Available ABSTRACT Purpose To study the influence of recombinant brain-derived neurotrophic factor (BDNF on organotypic retinal cultures. Material and methods Experiments were performed in human and rat retinal explants cultured in culture dishes, flasks and flasks for roller cultivation. BDNF was added at the concentration of 100 ng⁄ml. Cultures were tested for viability and stained immunohistochemically for neuronal markers. Culture conditions and results of cultivation were controlled using phase contrast and fluorescent microscopes. Conclusions Results of the study showed that cultivation of organotypic cultures of the human and rat retina in the presence of BDNF at the concentration of 100 ng⁄ml increases viability of retinal cells. Active cell migration and outgrowth of β-III-tubulin-positive axon-like processes of neuronal origin outside the borders of explants were observed.

  18. Possible Role of Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder: Current Status

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays a vital role in the growth, development, maintenance, and function of several neuronal systems. The purpose of this review is to document the support for the involvement of this molecule in the maintenance of normal cognitive, emotional functioning, and to outline recent developments in the content of Autism spectrum disorder (ASD). Current and future treatment development can be guided by developing understanding of this molecules actions in the brain and the ways the expression of BDNF can be planned. Over the years, research findings suggested a critical role played by BDNF in the development of autism including increased serum concentrations of BDNF in children with autism and identification of different forms of BDNF in families of autistic individuals. (author)

  19. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training.

    Directory of Open Access Journals (Sweden)

    Go Suzuki

    Full Text Available Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep.

  20. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health

    OpenAIRE

    Rothman, Sarah M.; Kathleen J Griffioen; Wan, Ruiqian; Mattson, Mark P.

    2012-01-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor...

  1. Association analysis of the brain-derived neurotrophic factor gene polymorphisms with early-onset schizophrenia in the Chinese population

    Institute of Scientific and Technical Information of China (English)

    易正辉

    2012-01-01

    Objective To investigate the relationship between the brain-derived neurotrophic factor (BDNF) gene Tag SNPs(rs 11030101 and rs6265) and early-onset schizophrenia in the Chinese Han population. Methods The tag single nucleotide polymorphisms (tag SNPs) rs11030101 and rs6265 in the BDNF gene were genotyped

  2. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  3. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury:a biomechanical evaluation

    Institute of Scientific and Technical Information of China (English)

    Zhong-jun Zhang; Ya-jun Li; Xiao-guang Liu; Feng-xiao Huang; Tie-jun Liu; Dong-mei Jiang; Xue-man Lv; Min Luo

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, max-imum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neu-rotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These ifndings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, im-prove biomechanical properties, and contribute to the recovery after injury.

  4. Brain-Derived Neurotrophic Factor Gene Expression in Pediatric Bipolar Disorder: Effects of Treatment and Clinical Response

    Science.gov (United States)

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.

    2008-01-01

    The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…

  5. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  6. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  7. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men.

    Science.gov (United States)

    Zembron-Lacny, A; Dziubek, W; Rynkiewicz, M; Morawin, B; Woźniewski, M

    2016-06-20

    Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF) and its relationship to oxidative damage and conventional cardiovascular disease (CVD) biomarkers, such as atherogenic index, C-reactive protein (hsCRP) and oxidized LDL (oxLDL), in active and inactive men. Seventeen elderly males (61-80 years) and 17 young males (20-24 years) participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001). In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL), hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men. PMID:27332774

  8. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men

    Directory of Open Access Journals (Sweden)

    A. Zembron-Lacny

    2016-01-01

    Full Text Available Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF and its relationship to oxidative damage and conventional cardiovascular disease (CVD biomarkers, such as atherogenic index, C-reactive protein (hsCRP and oxidized LDL (oxLDL, in active and inactive men. Seventeen elderly males (61-80 years and 17 young males (20-24 years participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001. In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL, hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men.

  9. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  10. Brain derived neurotrophic factor (BDNF contributes to the pain hypersensitivity following surgical incision in the rats

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Yi

    2008-07-01

    Full Text Available Abstract Background The pathogenic role of brain derived neurotrophic factor (BDNF in the incisional pain is poorly understood. The present study explores the role of the BDNF in the incision-induced pain hypersensitivity. Methods A longitudinal incision was made in one plantar hind paw of isoflurane-anesthetized rats. Dorsal root ganglias (DRG and spinal cords were removed at various postoperative times (1–72 h. Expression pattern of BDNF was determined by immunohistochemistry and double-labeling immunofluorescence. Lidocaine-induced blockade of sciatic nerve function was used to determine the importance of afferent nerve activity on BDNF expression in the DRG and spinal cord after incision. BDNF antibody was administered intrathecally (IT or intraperitoneal (IP to modulate the spinal BDNF or peripheral BDNF after incision. Results After hind-paw incision, the BDNF was upregulated in the ipsilateral lumbar DRG and spinal cord whereas thoracic BDNF remained unchanged in response to incision. The upregulated BDNF was mainly expressed in the large-sized neurons in DRG and the neurons and the primary nerve terminals in the spinal cord. Sciatic nerve blockade prevented the increase of BDNF in the DRG and spinal cord. IT injection of BDNF antibody greatly inhibited the mechanical allodynia induced by incision whereas IP administration had only marginal effect. Conclusion The present study showed that incision induced the segmental upregulation of BDNF in the DRG and spinal cord through somatic afferent nerve transmission, and the upregulated BDNF contributed to the pain hypersensitivity induced by surgical incision.

  11. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    Directory of Open Access Journals (Sweden)

    Yongjun Jiang

    2010-01-01

    Full Text Available This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.

  12. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression

    Institute of Scientific and Technical Information of China (English)

    Hao-hao Chen; Ning Zhang; Wei-yun Li; Ma-rong Fang; Hui Zhang; Yuan-shu Fang; Ming-xing Ding; Xiao-yan Fu

    2015-01-01

    Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. ABDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo-campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open ifeld test in these rats as well. These ifndings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  13. An Overview of Brain-Derived Neurotrophic Factor and Implications for Excitotoxic Vulnerability in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Patrick S. Murray

    2011-01-01

    Full Text Available The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function. Such increases in activity may mediate beneficial effects such as enhanced learning and memory. However, the increased activity also comes at a cost: BDNF plasticity renders the hippocampus more vulnerable to hyperexcitability and/or excitotoxic damage. Exercise dramatically increases hippocampal BDNF levels and produces behavioral effects consistent with this phenomenon. In analyzing the literature regarding exercise-induced regulation of BDNF, this paper provides a theoretical model for how the potentially deleterious consequences of BDNF plasticity may be modulated by other endogenous factors. The peptide galanin may play such a role by regulating hippocampal excitability.

  14. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. PMID:26433146

  15. Role of Stress-Related Brain-Derived Neurotrophic Factor (BDNF) in the Rat Submandibular Gland

    International Nuclear Information System (INIS)

    The nerve growth factor (NGF) family comprises NGF, brain-derived neurotrophic factor (BDNF) and neurotrophins (NTs)-3, -4/5, -6 and -7, all of which are collectively referred to as neurotrophins. However, the expression of neurotrophins other than NGF in the salivary gland has not been described in detail. Through interaction with the TrkB receptor, BDNF plays an important role in long-term potentiation. We found that BDNF expression increased within submandibular gland tissue in response to stress, suggesting that the salivary glands are sensitive to stress. In addition, stress caused increases in plasma BDNF derived from the submandibular gland and in TrkB receptor mRNA in the adrenal medulla. Plasma BDNF might activate TrkB receptors in the adrenal medulla during acute stress. The salivary glands are likely to influence not only oral health, but also systemic organs. This review addressed the relationship between hormone-like effects and stress-related BDNF expression in the rat submandibular gland

  16. EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E. Coli AND DETERMINING ITS BIOACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E.Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site of the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5α. The proteins of mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was successfully constructed. By temperature inducing,under the control of the bacteriophage λ PL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size of expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control.Conclusion The mBDNF gene can be expressed bioactively in E. Coli.

  17. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons.

    Science.gov (United States)

    Graves, A R; Moore, S J; Spruston, N; Tryba, A K; Kaczorowski, C C

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampus-dependent learning and memory. Canonically, this has been ascribed to an enhancing effect on neuronal excitability and synaptic plasticity in the CA1 region. However, it is the pyramidal neurons in the subiculum that form the primary efferent pathways conveying hippocampal information to other areas of the brain, and yet the effect of BDNF on these neurons has remained unexplored. We present new data that BDNF regulates neuronal excitability and cellular plasticity in a much more complex manner than previously suggested. Subicular pyramidal neurons can be divided into two major classes, which have different electrophysiological and morphological properties, different requirements for the induction of plasticity, and different extrahippocampal projections. We found that BDNF increases excitability in one class of subicular pyramidal neurons yet decreases excitability in the other class. Furthermore, while endogenous BDNF was necessary for the induction of synaptic plasticity in both cell types, BDNF enhanced intrinsic plasticity in one class of pyramidal neurons yet suppressed intrinsic plasticity in the other. Taken together, these data suggest a novel role for BDNF signaling, as it appears to dynamically and bidirectionally regulate the output of hippocampal information to different regions of the brain. PMID:27146982

  18. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Science.gov (United States)

    Akyol, Esra Soydaş; Albayrak, Yakup; Beyazyüz, Murat; Aksoy, Nurkan; Kuloglu, Murat; Hashimoto, Kenji

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls. Methods After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23) and nondeficit syndrome (N=35) according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels. Results The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls. Conclusion This study suggests that decreased BDNF levels may play a role in the pathophysiology of schizophrenic patients with deficit syndrome. Nonetheless, additional studies using a larger patient sample size are needed to investigate the serum BDNF levels in schizophrenic patients with deficit syndrome. PMID:25848285

  19. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    Directory of Open Access Journals (Sweden)

    Qiong eWang

    2015-09-01

    Full Text Available Early postnatal maternal separation (MS can play an important role in the development of psychopathologies during ontogeny. In the present study, we investigated the effects of repeated MS (4 h per day from postnatal day [PND] 1–21 on the brain-derived neurotrophic factor (BDNF expression in the medial prefrontal cortex (mPFC, the nucleus accumbens (NAc and the hippocampus of male and female juvenile (PND 21, adolescent (PND 35 and young adult (PND 56 Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and socially reared rats. However, in the mPFC, the BDNF expression was increased with age in the socially reared rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male NMS rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The

  20. Association of decreased serum brain-derived neurotrophic factor (BDNF) concentrations in early pregnancy with antepartum depression

    OpenAIRE

    Fung, Jenny; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Barrios, Yasmin V; Hevner, Karin; Qiu, Chunfang; Williams, Michelle A.

    2015-01-01

    Background Antepartum depression is one of the leading causes of maternal morbidity and mortality in the prenatal period. There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. The present study examines the extent to which maternal early pregnancy serum BDNF levels are associated with antepartum depression. Method A total of 968 women were recruited and interviewed in early pregnancy. Antepartum depression prevalence and ...

  1. Association of decreased serum brain-derived neurotrophic factor (BDNF) concentrations in early pregnancy with antepartum depression

    OpenAIRE

    Fung, Jenny; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Barrios, Yasmin V; Hevner, Karin; Qiu, Chunfang; Williams, Michelle A.

    2015-01-01

    Background: Antepartum depression is one of the leading causes of maternal morbidity and mortality in the prenatal period. There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. The present study examines the extent to which maternal early pregnancy serum BDNF levels are associated with antepartum depression. Method A total of 968 women were recruited and interviewed in early pregnancy. Antepartum depression prevalence and...

  2. Brain-Derived Neurotrophic Factor Inhibits Calcium Channel Activation, Exocytosis, and Endocytosis at a Central Nerve Terminal

    OpenAIRE

    Baydyuk, Maryna; Wu, Xin-sheng; He, Liming; Wu, Ling-Gang

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we re...

  3. Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc

    OpenAIRE

    Gruber, Helen E.; Ingram, Jane A; Hoelscher, Gretchen; Zinchenko, Natalia; Norton, H. James; Hanley, Edward N

    2008-01-01

    Introduction Brain-derived neurotrophic factor (BDNF) was first identified in the intervertebral disc (IVD) when its molecular upregulation was observed in sections of nucleus pulposus cultured under conditions of increased osmolarity. BDNF is now known to be involved in a number of biologic functions, including regulation of differentiation/survival of sensory neurons, regulation of nociceptive function and central pain modulation, and modulation of inflammatory pain hypersensitivity. In add...

  4. Effects of the Brain Derived Neurotrophic Growth Factor Val66Met Variation on Hippocampus Morphology in Bipolar Disorder

    OpenAIRE

    Chepenik, Lara G.; Fredericks, Carolyn; Papademetris, Xenophon; Spencer, Linda; Lacadie, Cheryl; Wang, Fei; Pittman, Brian; Duncan, James S.; Staib, Lawrence H.; Duman, Ronald S.; Gelernter, Joel; Blumberg, Hilary P.

    2008-01-01

    Histological and behavioral research in bipolar disorder (BD) implicates structural abnormalities in the hippocampus. Brain-derived neurotrophic growth factor (BDNF) protein is associated with hippocampal development and plasticity, and in mood disorder pathophysiology. We tested the hypotheses both the BDNF val66met polymorphism and BD diagnosis are associated with decreased hippocampus volume, and individuals with BD who carry the met allele have the smallest hippocampus volumes compared to...

  5. The Effect of Exercise Training Modality on Serum Brain Derived Neurotrophic Factor Levels in Individuals with Type 2 Diabetes

    OpenAIRE

    Swift, Damon L.; Johannsen, Neil M.; Myers, Valerie H.; Earnest, Conrad P.; Smits, Jasper A. J.; Blair, Steven N.; Church, Timothy S.

    2012-01-01

    INTRODUCTION: Brain derived neurotrophic factor (BDNF) has been implicated in memory, learning, and neurodegenerative diseases. However, the relationship of BDNF with cardiometabolic risk factors is unclear, and the effect of exercise training on BDNF has not been previously explored in individuals with type 2 diabetes. METHODS: Men and women (N = 150) with type 2 diabetes were randomized to an aerobic exercise (aerobic), resistance exercise (resistance), or a combination of both (combination...

  6. The association between brain-derived neurotrophic factor Val66Met variants and psychotic symptoms in posttraumatic stress disorder

    OpenAIRE

    Pivac, Nela; Kozarić-Kovačić, Dragica; Grubišić-Ilić, Mirjana; Nedić, Gordana; Rakoš, Iva; Nikolac, Matea; Blažev, Martina; Muck-Šeler, Dorotea

    2012-01-01

    Objective: Psychotic symptoms frequently occur in veterans with combat-related posttraumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) plays a major role in neurodevelopment, neuro-regeneration, neurotransmission, learning, regulation of mood and stress responses. The Met allele of the functional polymorphism, BDNF Val66Met, is associated with psychotic disorders. This study intended to assess whether the Met allele is overrepresented in unrelated Caucasian male veteran...

  7. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition

    OpenAIRE

    Gomez-Pinilla, Fernando; Vaynman, Shoshanna; Ying, Zhe

    2008-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to mediate the effects of exercise on synaptic plasticity and cognitive function, in a process in which energy metabolism probably plays an important role. The purpose of the present study was to examine the influence of exercise on rat hippocampal expression of molecules involved in the regulation of energy management and cognitive function, and to determine the role of BDNF in these events. One week of voluntary exercise that enhanced ...

  8. The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Moderates an Effect of Physical Activity on Working Memory Performance

    OpenAIRE

    Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.

    2013-01-01

    Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an associat...

  9. Brain-Derived Neurotrophic Factor Serum Levels and Genotype: Association with Depression during Interferon-α Treatment

    OpenAIRE

    Lotrich, Francis E.; Albusaysi, Salwa; Ferrell, Robert E.

    2013-01-01

    Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Sca...

  10. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    OpenAIRE

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE gr...

  11. The effect of regular Taekwondo exercise on Brain-derived neurotrophic factor and Stroop test in undergraduate student

    OpenAIRE

    Kim, Youngil

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of Taekwondo exercise on Brain-derived neurotrophic factor and the Stroop test in undergraduate students. [Methods] Fourteen male subjects participated in this study. They were separated into a Control group (N = 7) and an Exercise group (N = 7). Subjects participated in Taekwondo exercise training for 8 weeks. They underwent to Taekwondo exercise training for 85 minutes per day, 5 times a week at RPE of 11~15. The taekwondo ex...

  12. Brain-derived neurotrophic factor gene transfection promotes neuronal repair and neurite regeneration after diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Yin Yu; Chao Du; Xingli Zhao; Jiajia Shao; Qiang Shen; Tao Jiang; Wei Wu; Dong Zhu; Yu Tian; Yongchuan Guo

    2011-01-01

    This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological changes. BDNF gene transfection reduced the severity of the pathological changes associated with diffuse axonal injury in cortical neurons of the frontal lobe and increased neurofilament protein expression. These findings demonstrate that BDNF can effectively promote neuronal repair and neurite regeneration after diffuse axonal injury.

  13. An Association Study of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Amphetamine Response

    OpenAIRE

    Brody A Flanagin; Cook, Edwin H.; de Wit, Harriet

    2006-01-01

    Although genetic factors are known to be important in addiction, no candidate genes have yet been consistently linked to drug use or abuse. Brain-derived neurotrophic factor (BDNF), which has been implicated in the behavioral response to psychomotor stimulants and potentiates neurotransmitters that are strongly linked to addiction, is a logical candidate gene to study. Using a drug challenge approach, we tested for association between BDNF G196A (val66met) genotype and subjective responses to...

  14. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease

    OpenAIRE

    Nagahara, Alan H.; Merrill, David A.; Coppola, Giovanni; Tsukada, Shingo; Schroeder, Brock E; Shaked, Gideon M.; Wang, Ling; Blesch, Armin; Kim, Albert; Conner, James M; Rockenstein, Edward; Chao, Moses V.; Koo, Edward H.; Geschwind, Daniel; Masliah, Eliezer

    2009-01-01

    Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer’s disease1–3. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer’s disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes a...

  15. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    Science.gov (United States)

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  16. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  17. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    Directory of Open Access Journals (Sweden)

    Rini Rossanti

    2015-09-01

    Full Text Available Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brain-derived neurotrophic factor (BDNF, a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative, cross-sectional, analytic study was carried out on 40 elementary and high school students in Bandung, West Java, who were recruited by stratified random sampling. Short term memory was assessed by a psychologist using the Wechsler Intelligence Scale for Children-III Digit Span test (WISC-III Digit Span. Physical fitness was assessed by a clinical exercise physiologist using the Asian Committee on the Standardization of Physical Fitness Test (ACSPFT. Serum BDNF levels were measured by ELISA test in a certified laboratory. ANOVA test was used to assess for a correlation between serum BDNF concentration and short term memory, as well as between physical fitness level and short term memory. Pearson’s correlation test was used to analyze for a correlation between serum BDNF and physical fitness levels. Results The majority of subjects were in the physical fitness categories of moderate or poor. Subjects had a mean BDNF level of 44,227.8 (SD 10,359 pg/mL. There was no statistically significant difference in physical fitness with either serum BDNF or with short term memory levels (P=0.139 and P=0.383, respectively. Also, no correlation was determined between serum BDNF and physical fitness levels (r=0.222; P=0.169. Conclusion In obese adolescents, short term memory levels are not significantly different between physical fitness levels nor between serum BDNF levels.

  18. Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study.

    Science.gov (United States)

    Smith, A J; Malan, L; Uys, A S; Malan, N T; Harvey, B H; Ziemssen, T

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been linked to neurological pathologies, but its role in cardiometabolic disturbances is limited. We aimed to assess the association between serum BDNF levels and structural endothelial dysfunction (ED) as determined by cross-sectional wall area (CSWA) and albumin/creatinine ratio (ACR) in black Africans. Ambulatory blood pressure (BP) and ultrasound CSWA values were obtained from 82 males and 90 females. Fasting blood and 8 h overnight urine samples were collected to determine serum BDNF and cardiometabolic risk markers, that is, glycated haemoglobin (HbA1c), lipids, inflammation and ACR. BDNF median split × gender interaction effects for structural ED justified stratification of BDNF into low and high (⩽/>1.37 ng ml(-1)) gender groups. BDNF values (0.86-1.98 ng ml(-1)) were substantially lower than reference ranges (6.97-42.6 ng ml(-1)) in the African gender cohort, independent of age and body mass index. No relationship was revealed between BDNF and renal function and was opposed by an inverse relationship between BDNF and CSWA (r=-0.17; P=0.03) in the African cohort. Linear regression analyses revealed a positive relationship between systolic BP and structural remodelling in the total cohort and low-BDNF gender groups. In the high-BDNF females, HbA1C was associated with structural remodelling. Attenuated or possible downregulated BDNF levels were associated with hypertrophic remodelling, and may be a compensatory mechanism for the higher BP in Africans. In addition, metabolic risk and hypertrophic remodelling in women with high BDNF underpin different underlying mechanisms for impaired neurotrophin homeostasis in men and women. PMID:24898921

  19. Brain-derived neurotrophic factor modulates auditory function in the hearing cochlea.

    Science.gov (United States)

    Sly, David J; Hampson, Amy J; Minter, Ricki L; Heffer, Leon F; Li, Jack; Millard, Rodney E; Winata, Leon; Niasari, Allen; O'Leary, Stephen J

    2012-02-01

    Neurotrophins prevent spiral ganglion neuron (SGN) degeneration in animal models of ototoxin-induced deafness and may be used in the future to improve the hearing of cochlear implant patients. It is increasingly common for patients with residual hearing to undergo cochlear implantation. However, the effect of neurotrophin treatment on acoustic hearing is not known. In this study, brain-derived neurotrophic factor (BDNF) was applied to the round window membrane of adult guinea pigs for 4 weeks using a cannula attached to a mini-osmotic pump. SGN survival was first assessed in ototoxically deafened guinea pigs to establish that the delivery method was effective. Increased survival of SGNs was observed in the basal and middle cochlear turns of deafened guinea pigs treated with BDNF, confirming that delivery to the cochlea was successful. The effects of BDNF treatment in animals with normal hearing were then assessed using distortion product otoacoustic emissions (DPOAEs), pure tone, and click-evoked auditory brainstem responses (ABRs). DPOAE assessment indicated a mild deficit of 5 dB SPL in treated and control groups at 1 and 4 weeks after cannula placement. In contrast, ABR evaluation showed that BDNF lowered thresholds at specific frequencies (8 and 16 kHz) after 1 and 4 weeks posttreatment when compared to the control cohort receiving Ringer's solution. Longer treatment for 4 weeks not only widened the range of frequencies ameliorated from 2 to 32 kHz but also lowered the threshold by at least 28 dB SPL at frequencies ≥16 kHz. BDNF treatment for 4 weeks also increased the amplitude of the ABR response when compared to either the control cohort or prior to treatment. We show that BDNF applied to the round window reduces auditory thresholds and could potentially be used clinically to protect residual hearing following cochlear implantation. PMID:22086147

  20. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  1. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    Science.gov (United States)

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-01

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD. PMID:26987954

  2. Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2004-05-01

    Full Text Available Abstract Background Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. Results Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1 present in 5' exon 1c in a dehancer-like manner. Conclusions The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.

  3. The effect of regular aerobic exercise on urinary brain-derived neurotrophic factor in children

    Directory of Open Access Journals (Sweden)

    Yunita Fediani

    2014-11-01

    Full Text Available Background Nervous system development in early life influences the quality of cognitive ability during adulthood. Neuronal development and neurogenesis are highly influenced by neurotrophins. The most active neurotrophin is brain-derived neurotrophic factor (BDNF. Physical activity has a positive effect on cognitive function. However, few experimental studies have been done on children to assess the effect of aerobic regular exercise on BDNF levels. Objective To assess the effect of regular aerobic exercise on urinary BDNF levels in children. Methods This clinical study was performed in 67 children aged 6-8 years in Palembang. The intervention group (n=34 engaged in aerobic gymnastics three times per week for 8 weeks, while the control group (n=33 engaged in gymnastic only once per week. Measurements of urinary BDNF were performed on both groups before and after intervention. Mann-Whitney and Wilcoxon rank tests were used to analyze the differences between groups. Results There was no difference in urinary BDNF levels between the two groups prior to the intervention. After intervention, the mean urinary BDNF levels were significantly higher in the intervention group than in the control group, 230.2 (SD 264.4 pg/mL vs. 88.0 (SD 35.4 pg/mL, respectively (P=0.027. We also found that engaging in aerobic gymnastics significantly increased urinary BDNF levels from baseline in both groups (P=0.001. Conclusion Regular aerobic exercise can increase urinary BDNF levels and potentially improve cognitive function. Aerobic exercise should be a routine activity in school curriculums in combination with the learning process to improve children’s cognitive ability.[Paediatr Indones. 2014;54:351-7.].

  4. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    Science.gov (United States)

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  5. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes.

    Science.gov (United States)

    Nedic, Gordana; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2013-01-10

    Alcoholism is a chronic psychiatric disorder affecting neural pathways that regulate motivation, stress, reward and arousal. Brain-derived neurotrophic factor (BDNF) regulates mood, response to stress and interacts with neurotransmitters and stress systems involved in reward pathways and addiction. Aim of the study was to evaluate the association between a single nucleotide polymorphism (BDNF Val66Met or rs6265) and alcohol related phenotypes in Caucasian patients. In ethnically homogenous Caucasian subjects of the Croatian origin, the BDNF Val66Met genotype distribution was determined in 549 male and 126 female patients with alcohol dependence and in 655 male and 259 female healthy non-alcoholic control subjects. Based on the structured clinical interview, additional detailed clinical interview, the Brown-Goodwin Scale, the Hamilton Rating Scale for Depression and the Clinical Global Impression scores, alcoholic patients were subdivided into those with or without comorbid depression, aggression, delirium tremens, withdrawal syndrome, early/late onset of alcohol abuse, prior suicidal attempt during lifetime, current suicidal behavior, and severity of alcohol dependence. The results showed no significant association between BDNF Val66Met variants and alcohol dependence and/or any of the alcohol related phenotypes in either Caucasian women, or men, with alcohol dependence. There are few limitations of the study. The overall study sample size was large (N=1589) but not well-powered to detect differences in BDNF Val66Met genotype distribution between studied groups. Healthy control women were older than female alcoholic patients. Only one BDNF polymorphism (rs6265) was studied. In conclusion, these data do not support the view that BDNF Val66Met polymorphism correlates with the specific alcohol related phenotypes in ethnically homogenous medication-free Caucasian subjects with alcohol dependence. PMID:23023098

  6. Gender differences in platelet brain derived neurotrophic factor in patients with cardiovascular disease and depression.

    Science.gov (United States)

    Williams, Marlene S; Ngongang, Chelsea K; Ouyang, Pam; Betoudji, Fabrice; Harrer, Christine; Wang, Nae-Yuh; Ziegelstein, Roy C

    2016-07-01

    Women have a higher prevalence of depression compared to men. Serum levels of Brain-derived neurotrophic factor (BDNF) are decreased in depression. BDNF may also have a protective role in the pathogenesis of coronary artery disease (CAD) or events. We examined whether there are gender differences in BDNF levels in patients with stable CAD and comorbid depression. We enrolled 37 patients (17 women) with stable CAD with and without depression from a single medical center. All patients had depression assessment with the Beck Depression Inventory-II questionnaire. Both plasma and platelet BDNF were measured in all patients using a standard ELISA method. Platelet BDNF levels were higher than plasma BDNF levels in the entire group (5903.9 ± 1915.6 vs 848.5 ± 460.5 pg/ml, p depression (BDI-II depression (n = 8, 7382.8 ± 1633.1 vs 4811.7 ± 1642.3 pg/ml, p = 0.007). Women with no or minimal depression (BDI depression (n = 18, 6900.2 ± 1486.6 vs 4972.9 ± 1568.9 pg/ml, p = 0.001). The plasma BDNF levels were similar between men and women in all categories of depression. In conclusion, women with stable CAD have increased platelet BDNF levels when compared to men with stable CAD regardless of their level of depression. Sex specific differences in BDNF could possibly indicate differences in factors linking platelet activation and depression in men and women. PMID:27082490

  7. Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons.

    Science.gov (United States)

    Balkowiec, A; Kunze, D L; Katz, D M

    2000-03-01

    Brain-derived neurotrophic factor (BDNF) is expressed by many primary sensory neurons that no longer require neurotrophins for survival, indicating that BDNF may be used as a signaling molecule by the afferents themselves. Because many primary afferents also express glutamate, we investigated the possibility that BDNF modulates glutamatergic AMPA responses of newborn second-order sensory relay neurons. Perforated-patch, voltage-clamp recordings were made from dissociated neurons of the brainstem nucleus tractus solitarius (nTS), a region that receives massive primary afferent input from BDNF-containing neurons in the nodose and petrosal cranial sensory ganglia. Electrophysiological analysis was combined in some experiments with anterograde labeling of primary afferent terminals to specifically analyze responses of identified second-order neurons. Our data demonstrate that BDNF strongly inhibits AMPA-mediated currents in a large subset of nTS cells. Specifically, AMPA responses were either completely abolished or markedly inhibited by BDNF in 73% of postnatal day (P0) cells and in 82% of identified P5 second-order sensory relay neurons. This effect of BDNF is mimicked by NT-4, but not NGF, and blocked by the Trk tyrosine kinase inhibitor K252a, consistent with a requirement for TrkB receptor activation. Moreover, analysis of TrkB expression in culture revealed a close correlation between the percentage of nTS neurons in which BDNF inhibits AMPA currents and the percentage of neurons that exhibit TrkB immunoreactivity. These data document a previously undefined mechanism of acute modulation of AMPA responses by BDNF and indicate that BDNF may regulate glutamatergic transmission at primary afferent synapses. PMID:10684891

  8. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Zhang, Gechen; Ka, Ka; Huang, Wenhua

    2014-01-01

    In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone...

  9. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium

    Institute of Scientific and Technical Information of China (English)

    Sanjiang Feng; Minghua Zhuang; Rui Wu

    2012-01-01

    The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7–10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.

  10. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Directory of Open Access Journals (Sweden)

    Akyol ES

    2015-03-01

    Full Text Available Esra Soydas Akyol,1 Yakup Albayrak,2 Murat Beyazyüz,3 Nurkan Aksoy,4 Murat Kuloglu,5 Kenji Hashimoto6 1Deparment of Psychiatry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 2Department of Psychiatry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Department of Psychiatry, Biga State Hospital, Çanakkale, Turkey; 4Department of Biochemistry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 5Department of Psychiatry, Faculty of Medicine, Akdeniz University, Antalya, Turkey; 6Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan Background: Brain-derived neurotrophic factor (BDNF is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls.Methods: After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23 and nondeficit syndrome (N=35 according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels.Results: The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls.Conclusion: This study suggests that decreased BDNF levels may play a role in the pathophysio­logy of schizophrenic

  11. Brain-derived neurotrophic factor inducing angiogenesis through modulation of matrix-degrading proteases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Recent studies have proved that brain-derived neurotrophic factor (BDNF) possesses angiogenic activity in vitro and in vivo. However, the proangiogenic mechanism of BDNF has not yet been provided with enough information. To explore the proangiogenic mechanism of BDNF, we investigated the effects of BDNF on extracellular proteolytic enzymes, including matrix metalloproteinases (MMPs) and serine proteases, particularly the urokinase-type plasminogen activator (uPA)-plasmin system in human umbilical vein endothelial cells (HUVECs) model. Methods Tube formation assay was performed in vitro to evaluate the effects of BDNF on angiogenesis. The HUVECs were treated with various concentrations of BDNF (25-400 ng/ml) for different (6-48 hours), reverse transcriptase-polymerase chain reaction (RT-PCR) was used to assay MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA in HUVECs, and the conditioned medium was analyzed for MMP and uPA activity by gelatin zymography and fibrin zymography, respectively. uPA, plasminogen activator inhibitor (PAI)-1, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-2 were quantified by western blotting analysis. Results BDNF elicited robust and elongated angiogeneis in two-dimensional cultures of HUVECs in comparison with control. The stimulation of serum-starved HUVECs with BDNF caused obvious increase in MMP-2 and MMP-9 mRNA expression and induced the pro-MMP-2 and pro-MMP-9 activation without significant differences in proliferation. However, BDNF had no effect on TIMP-1 and TIMP-2 production. BDNF increased uPA and PAI-1 production in a dose-dependent manner. Maximal activation of uPA and PAI-1 expression in HUVECs was induced by 100 ng/ml BDNF, while effects of 200 ng/ml and 400 ng/ml BDNF were slightly reduced in comparison with with those of 100 ng/ml. Protease activity for uPA was also increased by BDNF in a dose-dependent manner. BDNF also stimulated uPA and PAI-1 production beyond that in control cultures in a time

  12. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  13. Tooth pulp inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons.

    Science.gov (United States)

    Tarsa, L; Bałkowiec-Iskra, E; Kratochvil, F J; Jenkins, V K; McLean, A; Brown, A L; Smith, J A; Baumgartner, J C; Balkowiec, A

    2010-06-01

    Nociceptive pathways with first-order neurons located in the trigeminal ganglion (TG) provide sensory innervation to the head, and are responsible for a number of common chronic pain conditions, including migraines, temporomandibular disorders and trigeminal neuralgias. Many of those conditions are associated with inflammation. Yet, the mechanisms of chronic inflammatory pain remain poorly understood. Our previous studies show that the neurotrophin brain-derived neurotrophic factor (BDNF) is expressed by adult rat TG neurons, and released from cultured newborn rat TG neurons by electrical stimulation and calcitonin gene-related peptide (CGRP), a well-established mediator of trigeminal inflammatory pain. These data suggest that BDNF plays a role in activity-dependent plasticity at first-order trigeminal synapses, including functional changes that take place in trigeminal nociceptive pathways during chronic inflammation. The present study was designed to determine the effects of peripheral inflammation, using tooth pulp inflammation as a model, on regulation of BDNF expression in TG neurons of juvenile rats and mice. Cavities were prepared in right-side maxillary first and second molars of 4-week-old animals, and left open to oral microflora. BDNF expression in right TG was compared with contralateral TG of the same animal, and with right TG of sham-operated controls, 7 and 28 days after cavity preparation. Our ELISA data indicate that exposing the tooth pulp for 28 days, with confirmed inflammation, leads to a significant upregulation of BDNF in the TG ipsilateral to the affected teeth. Double-immunohistochemistry with antibodies against BDNF combined with one of nociceptor markers, CGRP or transient receptor potential vanilloid type 1 (TRPV1), revealed that BDNF is significantly upregulated in TRPV1-immunoreactive (IR) neurons in both rats and mice, and CGRP-IR neurons in mice, but not rats. Overall, the inflammation-induced upregulation of BDNF is stronger in mice

  14. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer

    Directory of Open Access Journals (Sweden)

    Mokbel Kefah

    2011-07-01

    Full Text Available Abstract Introduction Brain-derived neurotrophic factor (BDNF has established physiological roles in the development and function of the vertebrate nervous system. BDNF has also been implicated in several human malignancies, including breast cancer (BC. However, the precise biological role of BDNF and its utility as a novel biomarker have yet to be determined. The objective of this study was to determine the mRNA and protein expression of BDNF in a cohort of women with BC. Expression levels were compared with normal background tissues and evaluated against established pathological parameters and clinical outcome over a 10 year follow-up period. Methods BC tissues (n = 127 and normal tissues (n = 33 underwent RNA extraction and reverse transcription, BDNF transcript levels were determined using real-time quantitative PCR. BDNF protein expression in mammary tissues was assessed with standard immuno-histochemical methodology. Expression levels were analyzed against tumour size, grade, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI and clinical outcome over a 10 year follow-up period. Results Immuno-histochemical staining revealed substantially greater BDNF expression within neoplastic cells, compared to normal mammary epithelial cells. Significantly higher mRNA transcript levels were found in the BC specimens compared to background tissues (p = 0.007. The expression of BDNF mRNA was demonstrated to increase with increasing NPI; NPI-1 vs. NPI-2 (p = 0.009. Increased BDNF transcript levels were found to be significantly associated with nodal positivity (p = 0.047. Compared to patients who remained disease free, higher BDNF expression was significantly associated with local recurrence (LR (p = 0.0014, death from BC (p = 0.018 and poor prognosis overall (p = 0.013. After a median follow up of 10 years, higher BDNF expression levels were significantly associated with reduced overall survival (OS (106 vs. 136 months, p = 0.006. BDNF

  15. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases

    Institute of Scientific and Technical Information of China (English)

    Naoki; Adachi; Tadahiro; Numakawa; Misty; Richards; Shingo; Nakajima; Hiroshi; Kunugi

    2014-01-01

    Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.

  16. Effects of maternal smoking and exposure to methylmercury on brain-derived neurotrophic factor concentrations in umbilical cord serum

    DEFF Research Database (Denmark)

    Spulber, Stefan; Rantamäki, Tomi; Nikkilä, Outi;

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal survival and differentiation. We examined the concentration of BDNF in cord serum from newborns exposed to methylmercury (MeHg) and polychlorinated biphenyls (PCB) in utero by maternal consumption of whale meat. The...... decrease in serum BDNF induced by MeHg exposure. Cord blood BDNF has been reported to increase in association with perinatal brain injuries and has been proposed as a possible predictive marker of neurodevelopmental outcomes. The negative effect that MeHg seems to exert on cord blood BDNF concentration...

  17. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille;

    2015-01-01

    UNLABELLED: The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant...... depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or...

  18. The brain-derived neurotrophic factor Val66Met polymorphism moderates early deprivation effects on attention problems.

    Science.gov (United States)

    Gunnar, Megan R; Wenner, Jennifer A; Thomas, Kathleen M; Glatt, Charles E; McKenna, Morgan C; Clark, Andrew G

    2012-11-01

    Adverse early care is associated with attention regulatory problems, but not all so exposed develop attention problems. In a sample of 612 youth (girls = 432, M = 11.82 years, SD = 1.5) adopted from institutions (e.g., orphanages) in 25 countries, we examined whether the Val66Met polymorphism of the brain-derived neurotrophic factor gene moderates attention problems associated with the duration of institutional care. Parent-reported attention problem symptoms were collected using the MacArthur Health and Behavior Questionnaire. DNA was genotyped for the brain-derived neurotrophic factor Val66Met (rs6265) single nucleotide polymorphism. Among youth from Southeast (SE) Asia, the predominant genotype was valine/methionine (Val/Met), whereas among youth from Russia/Europe and Caribbean/South America, the predominant genotype was Val/Val. For analysis, youth were grouped as carrying Val/Val or Met/Met alleles. Being female, being from SE Asia, and being younger when adopted were associated with fewer attention regulatory problem symptoms. Youth carrying at least one copy of the Met allele were more sensitive to the duration of deprivation, yielding an interaction that followed a differential susceptibility pattern. Thus, youth with Val/Met or Met/Met genotypes exhibited fewer symptoms than Val/Val genotypes when adoption was very early and more symptoms when adoption occurred later in development. Similar patterns were observed when SE Asian youth and youth from other parts of the world were analyzed separately. PMID:23062292

  19. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  20. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Lin PY

    2015-10-01

    Full Text Available Pao-Yen Lin1,2 1Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 2Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Abstract: Evidence has supported the role of brain-derived neurotrophic factor (BDNF in antidepressant effect. The precursor of BDNF (proBDNF often exerts opposing biological effects on mature BDNF (mBDNF. Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. Keywords: antidepressant, mature BDNF, neurotrophic effect, proBDNF cleavage 

  1. Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder - Results from a prospective study

    DEFF Research Database (Denmark)

    Jacoby, Anne Sophie; Munkholm, Klaus; Vinberg, Maj;

    2016-01-01

    . Further, 69 blood samples were drawn from 35 healthy control subjects with three months apart. In unadjusted mixed-model analysis, levels of IL-6 and IL-8 were increased 64% (b=1.64, 95% CI: 1.31-2.05, p=<0.0001) and 24% (b=1.24, 95% CI: 1.05-1.47, p=0.013), respectively in patients with bipolar disorder......BACKGROUND: Peripheral blood brain-derived neurotrophic factor (BDNF) and inflammatory markers may reflect key pathophysiological mechanisms in bipolar disorder in relation to disease activity and neuroprogression. AIMS: To investigate whether neutrophins and inflammatory marker vary with mood...... states and are increased in patients with bipolar disorder type I during euthymia as well as in all affective states as a group, compared to levels in healthy control subjects. METHODS: In a prospective 6-12 months follow-up study, we investigated state specific, intra-individual alterations in levels of...

  2. Gender and brain regions specific differences in brain derived neurotrophic factor protein levels of depressed individuals who died through suicide.

    Science.gov (United States)

    Hayley, Shawn; Du, Lisheng; Litteljohn, Darcy; Palkovits, Miklós; Faludi, Gábor; Merali, Zul; Poulter, Michael O; Anisman, Hymie

    2015-07-23

    Considerable evidence supports the view that depressive illness and suicidal behaviour stem from perturbations of neuroplasticity. Presently, we assessed whether depressed individuals who died by suicide displayed brain region-specific changes in brain derived neurotrophic factor (BDNF) and whether such effects varied by gender. Using postmortem samples from non-psychiatric controls and depressed individuals who died by suicide, BDNF protein levels were assessed within the hippocampus and frontopolar prefrontal cortex using Western blot. As expected, BDNF levels were reduced within the frontopolar prefrontal cortex among female depressed suicides; however, males showed no such effect. Contrastingly, within the hippocampus, depressed male but not female suicides displayed significant reductions of BDNF protein levels. Although the mechanisms driving the gender and brain region specific BDNF changes are unclear, our data do support the notion that complex alterations of neuroplasticity may be fundamentally involved in the illness. PMID:26033186

  3. Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke.

    Science.gov (United States)

    Rodríguez-Frutos, Berta; Otero-Ortega, Laura; Ramos-Cejudo, Jaime; Martínez-Sánchez, Patricia; Barahona-Sanz, Inés; Navarro-Hernanz, Teresa; Gómez-de Frutos, María Del Carmen; Díez-Tejedor, Exuperio; Gutiérrez-Fernández, María

    2016-09-01

    Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising tool to deliver proteins to select body areas. This study aimed to analyze whether UTMD was able to deliver brain-derived neurotrophic factor (BDNF) to the brain, enhancing functional recovery and white matter repair, in an animal model of subcortical stroke induced by endothelin (ET)-1. UTMD was used to deliver BDNF to the brain 24 h after stroke. This technique was shown to be safe, given there were no cases of hemorrhagic transformation or blood brain barrier (BBB) leakage. UTMD treatment was associated with increased brain BDNF levels at 4 h after administration. Targeted ultrasound delivery of BDNF improved functional recovery associated with fiber tract connectivity restoration, increasing oligodendrocyte markers and remyelination compared to BDNF alone administration in an experimental animal model of white matter injury. PMID:27240161

  4. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor

    Institute of Scientific and Technical Information of China (English)

    Hui XIE; Wing-ho YUNG

    2012-01-01

    Obstructive sleep apnea (OSA) is well known for its metabolic as well as neurobehavioral consequences.Chronic intermittent hypoxia (IH) is a major component of OSA.In recent years,substantial advances have been made in elucidating the cellular and molecular mechanisms underlying the effect of chronic IH on neurocognitive functions,many of which are based on studies in animal models.A number of hypotheses have been put forward to explain chronic IH-induced neurological dysfunctions.Among these,the roles of oxidative stress and apoptosis-related neural injury are widely accepted.Here,focusing on results derived from animal studies,we highlight a possible role of reduced expression of brain-derived neurotrophic factor (BDNF) in causing impairment in long-term synaptic plasticity and neurocognitive functions during chronic IH.The possible relationship between BDNF and previous findings on this subject will be elucidated.

  5. Association study of a brain-derived neurotrophic factor polymorphism and short-term antidepressant response in major depressive disorders

    Directory of Open Access Journals (Sweden)

    Lung-Cheng Huang

    2008-10-01

    Full Text Available Eugene Lin1,7, Po See Chen2,6,7, Lung-Cheng Huang3,4, Sen-Yen Hsu51Vita Genomics, Inc., Wugu Shiang, Taipei, Taiwan; 2Department of Psychiatry, Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Department of Psychiatry, National Taiwan University Hospital Yun-Lin Branch, Taiwan; 4Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Psychiatry, Chi Mei Medical Center, Liouying, Tainan, Taiwan; 6Department of Psychiatry, National Cheng Kung University Hospital, Dou-liou Branch, Yunlin, Taiwan; 7These authors contributed equally to this workAbstract: Major depressive disorder (MDD is one of the most common mental disorders worldwide. Single nucleotide polymorphisms (SNPs can be used in clinical association studies to determine the contribution of genes to drug efficacy. A common SNP in the brain-derived neurotrophic factor (BDNF gene, a methionine (Met substitution for valine (Val at codon 66 (Val66Met, is a candidate SNP for influencing antidepressant treatment outcome. In this study, our goal was to determine the relationship between the Val66Met polymorphism in the BDNF gene and the rapid antidepressant response to venlafaxine in a Taiwanese population with MDD. Overall, the BDNF Val66Met polymorphism was found not to be associated with short-term venlafaxine treatment outcome. However, the BDNF Val66Met polymorphism showed a trend to be associated with rapid venlafaxine treatment response in female patients. Future research with independent replication in large sample sizes is needed to confirm the role of the BDNF Val66Met polymorphism identified in this study.Keywords: antidepressant response, brain-derived neurotrophic factor, major depressive disorder, serotonin and norepinephrine reuptake inhibitor, single nucleotide polymorphisms

  6. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    OpenAIRE

    Rini Rossanti; Dida Akhmad Gurnida; Eddy Fadlyana

    2015-01-01

    Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brainderived neurotrophic factor (BDNF), a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative,...

  7. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  8. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    Science.gov (United States)

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered. PMID:22687148

  9. Interaction Between Childhood Adversity, Brain-Derived Neurotrophic Factor val/met and Serotonin Transporter Promoter Polymorphism on Depression : The TRAILS Study

    NARCIS (Netherlands)

    Nederhof, E; Bouma, Esther; Oldehinkel, A.J.; Ormel, J.

    2010-01-01

    Background: The three-way interaction between the functional polymorphism in the serotonin transporter gene linked promoter region, the val66met polymorphism in the brain-derived neurotrophic factor gene, and childhood adversity in the prediction of depression in children, reported by Kaufman and co

  10. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor

    OpenAIRE

    Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.; Boyd, Lara A

    2013-01-01

    Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategie...

  11. Brain Derived Neurotrophic Factor (BDNF) levels as a possible predictor of psychopathology in healthy twins at high and low risk for affective disorder

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Kessing, Lars Vedel

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a potential biomarker of affective disorder. However, longitudinal studies evaluating a potential predictive role of BDNF on subsequent psychopathology are lacking. The aim of this study was to investigate whether BDNF alone or in interaction with the...

  12. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    Science.gov (United States)

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  13. Brain-derived neurotrophic factor expression in dorsal root ganglion neurons in response to reanastomosis of the distal stoma after nerve grafting

    Institute of Scientific and Technical Information of China (English)

    Wei Yu; Jian Wang; Mingzhu Xu; Hanjiao Qin; Shusen Cui

    2012-01-01

    Studies have shown that retreatment of the distal stoma after nerve grafting can stimulate nerve regeneration. The present study attempted to verify the effects of reanastomosis of the distal stoma, after nerve grafting, on nerve regeneration by assessing brain-derived neurotrophic factor expression in 2-month-old rats. Results showed that brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after autologous nerve grafting post sciatic nerve injury, peaked at 14 days, decreased at 28 days, and reached similar levels to the sham-surgery group at 56 days. Brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia began to increase 3 days after reanastomosis of the distal stoma, 59 days after autologous nerve grafting post sciatic nerve injury, significantly increased at 63 days, peaked at 70 days, and gradually decreased thereafter, but remained higher compared with the sham-surgery group up to 112 days. The results of this study indicate that reanastomosis of the distal stoma after orthotopic nerve grafting stimulated brain-derived neurotrophic factor expression in L2-4 dorsal root ganglia.

  14. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats.

    Science.gov (United States)

    Leake, Patricia A; Hradek, Gary T; Hetherington, Alexander M; Stakhovskaya, Olga

    2011-06-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend on both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partially prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae, and this is the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a miniosmotic pump. In BDNF-treated cochleae, SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal, and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement of electrically evoked auditory brainstem response thresholds. BDNF may have potential therapeutic value in the developing auditory system, but many serious obstacles currently preclude clinical application. PMID:21452221

  15. Developmental Hypothyroidism Alters Brain-Derived Neurotrophic Factor (BDNF) Expression in Adulthood.

    Science.gov (United States)

    Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...

  16. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    Directory of Open Access Journals (Sweden)

    Rini Rossanti

    2015-10-01

    Full Text Available Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brainderived neurotrophic factor (BDNF, a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative, cross-sectional, analytic study was carried out on 40 elementary and high school students in Bandung, West Java, who were recruited by stratified random sampling. Short term memory was assessed by a psychologist using the Wechsler Intelligence Scale for Children-III Digit Span test (WISC-III Digit Span. Physical fitness was assessed by a clinical exercise physiologist using the Asian Committee on the Standardization of Physical Fitness Test (ACSPFT. Serum BDNF levels were measured by ELISA test in a certified laboratory. ANOVA test was used to assess for a correlation between serum BDNF concentration and short term memory, as well as between physical fitness level and short term memory. Pearson’s correlation test was used to analyze for a correlation between serum BDNF and physical fitness levels. Results The majority of subjects were in the physical fitness categories of moderate or poor. Subjects had a mean BDNF level of 44,227.8 (SD 10,359 pg/mL. There was no statistically significant difference in physical fitness with either serum BDNF or with short term memory levels (P=0.139 and P=0.383, respectively. Also, no correlation was determined between serum BDNF and physical fitness levels (r=0.222; P=0.169. Conclusion In obese adolescents, short term memory levels are not significantly different between physical fitness levels nor between serum BDNF levels.

  17. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    Science.gov (United States)

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. PMID:25934485

  18. Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects.

    Science.gov (United States)

    Reyes-Izquierdo, Tania; Nemzer, Boris; Shu, Cynthia; Huynh, Lan; Argumedo, Ruby; Keller, Robert; Pietrzkowski, Zb

    2013-08-28

    The present single-dose study was performed to assess the effect of whole coffee fruit concentrate powder (WCFC), green coffee caffeine powder (N677), grape seed extract powder (N31) and green coffee bean extract powder (N625) on blood levels of brain-derived neurotrophic factor (BDNF). Randomly assorted groups of fasted subjects consumed a single, 100mg dose of each material. Plasma samples were collected at time zero (T0) and at 30 min intervals afterwards, up to 120 min. A total of two control groups were included: subjects treated with silica dioxide (as placebo) or with no treatment. The collected data revealed that treatments with N31 and N677 increased levels of plasma BDNF by about 31% under these experimental conditions, whereas treatment with WCFC increased it by 143% (n 10), compared with baseline. These results indicate that WCFC could be used for modulation of BDNF-dependent health conditions. However, larger clinical studies are needed to support this possibility. PMID:23312069

  19. Expression and Localization of Brain-Derived Neurotrophic Factor (BDNF) mRNA and Protein in Human Submandibular Gland

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF) promotes cell survival and differentiation in the central and peripheral nervous systems. Previously, we reported that BDNF is produced by salivary glands under acute immobilization stress in rats. However, expression of BDNF is poorly understood in humans, although salivary gland localization of BDNF in rodents has been demonstrated. In the present study, we investigated the expression and localization of BDNF in the human submandibular gland (HSG) using reverse transcription-polymerase chain reaction, western blot analysis, in situ hybridization (ISH), immunohistochemistry (IHC), and ELISA. BDNF was consistently localized in HSG serous and ductal cells, as detected by ISH and IHC, with reactivity being stronger in serous cells. In addition, immunoreactivity for BDNF was observed in the saliva matrix of ductal cavities. Western blotting detected one significant immunoreactive 14 kDa band in the HSG and saliva. Immunoreactivities for salivary BDNF measured by ELISA in humans were 40.76±4.83 pg/mL and 52.64±8.42 pg/mL, in men and women, respectively. Although salivary BDNF concentrations in females tended to be higher than in males, the concentrations were not significantly different. In conclusion, human salivary BDNF may originate from salivary glands, as the HSG appears to produce BDNF

  20. Plasma brain-derived neurotrophic factor levels, learning capacity and cognition in patients with first episode psychosis

    Directory of Open Access Journals (Sweden)

    de Azua Sonia Ruiz

    2013-01-01

    Full Text Available Abstract Background Cognitive impairments are seen in first psychotic episode (FEP patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF levels are associated with cognitive impairment in FEP patients compared with healthy controls. Methods 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. Results Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability, immediate and delayed memory, abstract thinking and processing speed which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. Conclusion Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.

  1. Serum levels of brain-derived neurotrophic factor in alcohol-dependent patients receiving high-dose baclofen.

    Science.gov (United States)

    Geisel, Olga; Hellweg, Rainer; Müller, Christian A

    2016-06-30

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been suggested to be involved in the development and maintenance of addictive and other psychiatric disorders. Also, interactions of γ-aminobutyric acid (GABA)-ergic compounds and BDNF have been reported. The objective of this study was to investigate serum levels of BDNF over time in alcohol-dependent patients receiving individually titrated high-dose treatment (30-270mg/d) with the GABA-B receptor agonist baclofen or placebo for up to 20 weeks. Serum levels of BDNF were measured in patients of the baclofen/placebo group at baseline (t0), 2 weeks after reaching individual high-dose of baclofen/placebo treatment (t1) and after termination of study medication (t2) in comparison to carefully matched healthy controls. No significant differences in serum levels of BDNF between the baclofen and the placebo group or healthy controls were found at t0, t1, or at t2. Based on these findings, it seems unlikely that baclofen exerts a direct effect on serum levels of BDNF in alcohol-dependent patients. Future studies are needed to further explore the mechanism of action of baclofen and its possible relationship to BDNF in alcohol use disorders. PMID:27107672

  2. Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia.

    Science.gov (United States)

    Song, Juhyun; Cheon, So Yeong; Jung, Wonsug; Lee, Won Taek; Lee, Jong Eun

    2014-01-01

    Microglia are the resident macrophages of the central nervous system (CNS) and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF) in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury. PMID:25184950

  3. Resveratrol Induces the Expression of Interleukin-10 and Brain-Derived Neurotrophic Factor in BV2 Microglia under Hypoxia

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-09-01

    Full Text Available Microglia are the resident macrophages of the central nervous system (CNS and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB, which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury.

  4. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment.

    Science.gov (United States)

    Rossi, Chiara; Angelucci, Andrea; Costantin, Laura; Braschi, Chiara; Mazzantini, Mario; Babbini, Francesco; Fabbri, Maria Elena; Tessarollo, Lino; Maffei, Lamberto; Berardi, Nicoletta; Caleo, Matteo

    2006-10-01

    Neurogenesis continues to occur in the adult mammalian hippocampus and is regulated by both genetic and environmental factors. It is known that exposure to an enriched environment enhances the number of newly generated neurons in the dentate gyrus. However, the mechanisms by which enriched housing produces these effects are poorly understood. To test a role for neurotrophins, we used heterozygous knockout mice for brain-derived neurotrophic factor (BDNF+/-) and mice lacking neurotrophin-4 (NT-4-/-) together with their wild-type littermates. Mice were either reared in standard laboratory conditions or placed in an enriched environment for 8 weeks. Animals received injections of the mitotic marker bromodeoxyuridine (BrdU) to label newborn cells. Enriched wild-type and enriched NT-4-/- mice showed a two-fold increase in hippocampal neurogenesis as assessed by stereological counting of BrdU-positive cells in the dentate gyrus and double labelling for BrdU and the neuronal marker NeuN. Remarkably, this enhancement of hippocampal neurogenesis was not seen in enriched BDNF+/- mice. Failure to up-regulate BDNF accompanied the lack of a neurogenic response in enriched BDNF heterozygous mice. We conclude that BDNF but not NT-4 is required for the environmental induction of neurogenesis. PMID:17040481

  5. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex?

    DEFF Research Database (Denmark)

    Mastroeni, Claudia; Bergmann, Til Ole; Rizzo, Vincenzo;

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual......Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter......-individual variability which has been partially attributed to the val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val(66)met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in...... effects was modulated by the BDNF val(66)met polymorphism, our results do not support the notion that the BDNF val(66)met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND....

  6. Effects of brain-derived neurotrophic factor on synapsin expression in rat spinal cord anterior horn neurons cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhifei Wang; Daguang Liao; Changqi Li

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)promotes synaptic formation and functional maturation by upregulating synapsin expression in cortical and hippocampal neurons.However,it remains controversial whether BDNF affects synapsin expression in spinal cord anterior horn neurons.Wistar rat spinal cord anterior hom neurons were cultured in serum-supplemented medium containing BDNF,BDNF antibody,and Hank's solution for 3 days,and then synapsin I and synaptophysin protein and mRNA expression was detected.Under serum-supplemented conditions,the number of surviving neurons in the spinal cord anterior horn was similar among BDNF,anti-BDNF,and control groups(P > 0.05).Synapsin I and synaptophysin protein and mRNA expressions were increased in BDNF-treated neurons,but decreased in BDNF antibody-treated neurons(P< 0.01).These results indicated that BDNF significantly promotes synapsin I and synaptophysin expression in in vitro-cultured rat spinal cord anterior horn neurons.

  7. Correlation between hedgehog (hh) protein family and brain-derived neurotrophic factor (bdnf) in autism spectrum disorder (asd)

    International Nuclear Information System (INIS)

    To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). Study Design: An observational, comparative study. Place and Duration of Study: Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Methodology: Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient-r was determined. Results: The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. Conclusion: The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism. (author)

  8. Fingolimod phosphate attenuates oligomeric amyloid β-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons.

    Directory of Open Access Journals (Sweden)

    Yukiko Doi

    Full Text Available The neurodegenerative processes that underlie Alzheimer's disease are mediated, in part, by soluble oligomeric amyloid β, a neurotoxic protein that inhibits hippocampal long-term potentiation, disrupts synaptic plasticity, and induces the production of reactive oxygen species. Here we show that the sphingosine-1-phosphate (S1P receptor (S1PR agonist fingolimod phosphate (FTY720-P-a new oral drug for multiple sclerosis-protects neurons against oligomeric amyloid β-induced neurotoxicity. We confirmed that primary mouse cortical neurons express all of the S1P receptor subtypes and FTY720-P directly affects the neurons. Treatment with FTY720-P enhanced the expression of brain-derived neurotrophic factor (BDNF in neurons. Moreover, blocking BDNF-TrkB signaling with a BDNF scavenger, TrkB inhibitor, or ERK1/2 inhibitor almost completely ablated these neuroprotective effects. These results suggested that the neuroprotective effects of FTY720-P are mediated by upregulated neuronal BDNF levels. Therefore, FTY720-P may be a promising therapeutic agent for neurodegenerative diseases, such as Alzheimer's disease.

  9. Mesenchymal Stem Cells Expressing Brain-Derived Neurotrophic Factor Enhance Endogenous Neurogenesis in an Ischemic Stroke Model

    Directory of Open Access Journals (Sweden)

    Chang Hyun Jeong

    2014-01-01

    Full Text Available Numerous studies have reported that mesenchymal stem cells (MSCs can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs, we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO. Transplantation of MSCs induced the proliferation of 5-bromo-2′-deoxyuridine (BrdU- positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX- positive neuroblasts and Neuronal Nuclei (NeuN- positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

  10. An Antioxidant Dietary Supplement Improves Brain-Derived Neurotrophic Factor Levels in Serum of Aged Dogs: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Sara Sechi

    2015-01-01

    Full Text Available Biological aging is characterized by a progressive accumulation of oxidative damage and decreased endogenous antioxidant defense mechanisms. The production of oxidants by normal metabolism damages proteins, lipids, and nucleotides, which may contribute to cognitive impairment. In this study 36 dogs were randomly divided into four groups and fed croquettes of different compositions for 6 months. We monitored derivatives of reactive oxygen metabolites (dROMs and biological antioxidant potential (BAP levels in dogs’ plasma samples as well as brain-derived neurotrophic factor (BDNF serum levels at the beginning and at the end of the dietary regime. Our results showed that a dietary regime, enriched with antioxidants, induced a significant decrease of plasma levels of dROMs (p<0.005 and a significant increase in BDNF serum levels (p<0.005 after six months. Thus, we hypothesized a possible role of the diet in modulating pro- and antioxidant species as well as BDNF levels in plasma and serum, respectively. In conclusion the proposed diet enriched with antioxidants might be considered a valid alternative and a valuable strategy to counteract aging-related cognitive decline in elderly dogs.

  11. Dopaminergic and brain-derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule.

    Science.gov (United States)

    Gelegen, C; van den Heuvel, J; Collier, D A; Campbell, I C; Oppelaar, H; Hessel, E; Kas, M J H

    2008-07-01

    Increased physical activity and decreased motivation to eat are common features in anorexia nervosa. We investigated the development of these features and the potential implication of brain-derived neurotrophic factor (BDNF) and dopaminergic signalling in their development in C57BL/6J and A/J inbred mice, using the 'activity-based anorexia' model. In this model, mice on a restricted-feeding schedule are given unlimited access to running wheels. We measured dopamine receptor D2 and BDNF expression levels in the caudate putamen and the hippocampus, respectively, using in situ hybridization. We found that in response to scheduled feeding, C57BL/6J mice reduced their running wheel activity and displayed food anticipatory activity prior to food intake from day 2 of scheduled feeding as an indication of motivation to eat. In contrast, A/J mice increased running wheel activity during scheduled feeding and lacked food anticipatory activity. These were accompanied by increased dopamine receptor D2 expression in the caudate putamen and reduced BDNF expression in the hippocampus. Consistent with human linkage and association studies on BDNF and dopamine receptor D2 in anorexia nervosa, our study shows that dopaminergic and BDNF signalling are altered as a function of susceptibility to activity-based anorexia. Differences in gene expression and behaviour between A/J and C57BL/6J mice indicate that mouse genetic mapping populations based on these progenitor lines are valuable for identifying molecular determinants of anorexia-related traits. PMID:18363853

  12. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    Science.gov (United States)

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-01

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. PMID:25132151

  13. Exogenous brain-derived neurotrophic factor relieves pain symptoms of diabetic rats by reducing excitability of dorsal root ganglion neurons.

    Science.gov (United States)

    Li, Lei; Yu, Ting; Yu, Liling; Li, Haijun; Liu, Yongjuan; Wang, Dongqin

    2016-08-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking of effective treatments. Enhanced excitability of dorsal root ganglion (DRG) neuron plays a crucial role in the progression of diabetic neuropathic hyperalgesia. Brain-derived neurotrophic factor (BDNF) is known as a neuromodulator of nociception, but whether and how BDNF modulates the excitability of DRG neurons in the development of DPN remain to be clarified. This study investigated the role of exogenous BDNF and its high-affinity tropomyosin receptor kinase B (TrkB) in rats with streptozotocin-induced diabetic neuropathic pain. The results showed that continued intrathecal administration of BDNF to diabetic rats dramatically alleviated mechanical and thermal hyperalgesia, as well as inhibited hyperexcitability of DRG neurons. These effects were blocked by pretreatment with TrkB Fc (a synthetic fusion protein consisting of the extracellular ligand-binding domain of the TrkB receptor). The expression of BDNF and TrkB was upregulated in the DRG of diabetic rats. Intrathecal administration of BDNF did not affect this upregulation. These data provide novel information that exogenous BDNF relieved pain symptoms of diabetic rats by reducing hyperexcitability of DRG neurons and might be the potential treatment of painful diabetic neuropathy. PMID:26441011

  14. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    Indian Academy of Sciences (India)

    A Nair; V A Vaidya

    2006-09-01

    Depression is the major psychiatric ailment of our times, afflicting ∼20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.

  15. Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor.

    Directory of Open Access Journals (Sweden)

    Aron K Barbey

    Full Text Available Brain-derived neurotrophic factor (BDNF promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI. In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156 consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points, verbal comprehension (6 IQ points, perceptual organization (6 IQ points, working memory (8 IQ points, and processing speed (8 IQ points after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI.

  16. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF levels in a pharmacological model of mania

    Directory of Open Access Journals (Sweden)

    Laura Stertz

    2014-03-01

    Full Text Available Objective: In the present study, we aimed to examine the effects of repeated D-amphetamine (AMPH exposure, a well-accepted animal model of acute mania in bipolar disorder (BD, and histone deacetylase (HDAC inhibitors on locomotor behavior and HDAC activity in the prefrontal cortex (PFC and peripheral blood mononuclear cells (PBMCs of rats. Moreover, we aimed to assess brain-derived neurotrophic factor (BDNF protein and mRNA levels in these samples. Methods: We treated adult male Wistar rats with 2 mg/kg AMPH or saline intraperitoneally for 14 days. Between the 8th and 14th days, rats also received 47.5 mg/kg lithium (Li, 200 mg/kg sodium valproate (VPT, 2 mg/kg sodium butyrate (SB, or saline. We evaluated locomotor activity in the open-field task and assessed HDAC activity in the PFC and PBMCs, and BDNF levels in the PFC and plasma. Results: AMPH significantly increased locomotor activity, which was reversed by all drugs. This hyperactivity was associated with increased HDAC activity in the PFC, which was partially reversed by Li, VPT, and SB. No differences were found in BDNF levels. Conclusion: Repeated AMPH administration increases HDAC activity in the PFC without altering BDNF levels. The partial reversal of HDAC increase by Li, VPT, and SB may account for their ability to reverse AMPH-induced hyperactivity.

  17. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS

  18. A Lack of Correlation between Brain-Derived Neurotrophic Factor Serum Level and Verbal Memory Performance in Healthy Polish Population

    Science.gov (United States)

    Wilkosc, Monika; Markowska, Anita; Zajac-Lamparska, Ludmila; Skibinska, Maria; Szalkowska, Agnieszka; Araszkiewicz, Aleksander

    2016-01-01

    Brain derived neurotrophic factor (BDNF) is considered to be connected with memory and learning through the processes of long term synaptic potentiation and synaptic plasticity. The aim of the study was to examine the relationship between precursor BDNF (proBNDF) and mature BDNF (mBDNF) serum levels and performance on Rey Auditory-Verbal Learning Test (RAVLT) in 150 healthy volunteers. In addition, we have verified the relationships between serum concentration of both forms of BDNF and RAVLT with sociodemographic and lifestyle factors.We found no strong evidence for the correlation of proBDNF and mBDNF serum levels with performance on RAVLT in healthy Polish population in early and middle adulthood. We observed the mBDNF serum concentration to be higher in women compared with men. Moreover, we revealed higher mBDNF level to be connected with lower body mass index (BMI). In turn, the results of RAVLT correlated with sociodemographic and lifestyle factors, such as: age, education, gender, BMI and smoking. PMID:27242447

  19. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier

    Institute of Scientific and Technical Information of China (English)

    Ying Xing; Chun-yan Wen; Song-tao Li; Zong-xin Xia

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in the repair of central nervous system injury, but cannot directly tra-verse the blood-brain barrier. Liposomes are a new type of non-viral vector, able to carry macromolecules across the blood-brain barrier and into the brain. Here, we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of lipo-somes conjugated to transferrin (Tf) and polyethylene glycol (PEG), and carrying BDNF modiifed with cytomegalovirus promoter (pCMV) or glial ifbrillary acidic protein promoter (pGFAP) (Tf-pCMV-BDNF-PEG and Tf-pGFAP-BDNF-PEG, respectively). Both liposomes were able to traverse the blood-brain barrier, and BDNF was mainly expressed in the cerebral cortex. BDNF expression in the cerebral cortex was higher in the Tf-pGFAP-BDNF-PEG group than in the Tf-pCMV-BDNF-PEG group. This study demonstrates the successful construction of a non-virus targeted liposome, Tf-pGFAP-BDNF-PEG, which crosses the blood-brain barrier and is distributed in the cerebral cortex. Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain.

  20. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    Science.gov (United States)

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  1. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice.

    Science.gov (United States)

    Balkowiec, A; Katz, D M

    1998-07-15

    1. Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. 2. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem-spinal cord preparation from postnatal day (P) 0.5-2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. 3. Loss of one or both bdnf alleles resulted in an approximately 50% depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214% higher in bdnf null (bdnf-/-) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. 4. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  2. Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses.

    Science.gov (United States)

    Martin, Jessica L; Jenkins, Victoria K; Hsieh, Hui-ya; Balkowiec, Agnieszka

    2009-01-01

    Functional characteristics of the arterial baroreceptor reflex change throughout ontogenesis, including perinatal adjustments of the reflex gain and adult resetting during hypertension. However, the cellular mechanisms that underlie these functional changes are not completely understood. Here, we provide evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin with a well-established role in activity-dependent neuronal plasticity, is abundantly expressed in vivo by a large subset of developing and adult rat baroreceptor afferents. Immunoreactivity to BDNF is present in the cell bodies of baroafferent neurons in the nodose ganglion, their central projections in the solitary tract, and terminal-like structures in the lower brainstem nucleus tractus solitarius. Using ELISA in situ combined with electrical field stimulation, we show that native BDNF is released from cultured newborn nodose ganglion neurons in response to patterns that mimic the in vivo activity of baroreceptor afferents. In particular, high-frequency bursting patterns of baroreceptor firing, which are known to evoke plastic changes at baroreceptor synapses, are significantly more effective at releasing BDNF than tonic patterns of the same average frequency. Together, our study indicates that BDNF expressed by first-order baroreceptor neurons is a likely mediator of both developmental and post-developmental modifications at first-order synapses in arterial baroreceptor pathways. PMID:19054281

  3. Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons.

    Science.gov (United States)

    Buldyrev, Ilya; Tanner, Nathan M; Hsieh, Hui-ya; Dodd, Emily G; Nguyen, Loi T; Balkowiec, Agnieszka

    2006-12-01

    Activity-dependent plasticity in nociceptive pathways has been implicated in pathomechanisms of chronic pain syndromes. Calcitonin gene-related peptide (CGRP), which is expressed by trigeminal nociceptors, has recently been identified as a key player in the mechanism of migraine headaches. Here we show that CGRP is coexpressed with brain-derived neurotrophic factor (BDNF) in a large subset of adult rat trigeminal ganglion neurons in vivo. Using ELISA in situ, we show that CGRP (1-1000 nM) potently enhances BDNF release from cultured trigeminal neurons. The effect of CGRP is dose-dependent and abolished by pretreatment with CGRP receptor antagonist, CGRP(8-37). Intriguingly, CGRP-mediated BDNF release, unlike BDNF release evoked by physiological patterns of electrical stimulation, is independent of extracellular calcium. Depletion of intracellular calcium stores with thapsigargin blocks the CGRP-mediated BDNF release. Using transmission electron microscopy, our study also shows that BDNF-immunoreactivity is present in dense core vesicles of unmyelinated axons and axon terminals in the subnucleus caudalis of the spinal trigeminal nucleus, the primary central target of trigeminal nociceptors. Together, these results reveal a previously unknown role for CGRP in regulating BDNF availability, and point to BDNF as a candidate mediator of trigeminal nociceptive plasticity. PMID:17064360

  4. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Comini-Frota, E.R. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, D.H. [Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Miranda, E.C. [Ecoar Diagnostic Center, Belo Horizonte, MG (Brazil); Brum, D.G. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Kaimen-Maciel, D.R. [Unidade de Neurologia, Hospital Universitário, Universidade Estadual de Londrina, Londrina, PR (Brazil); Donadi, E.A. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Teixeira, A.L. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-11-23

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.

  5. High-Mobility Group Box-1 Induces Decreased Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu El-Asrar

    2013-01-01

    Full Text Available To test the hypothesis that brain-derived neurotrophic factor-(BDNF- mediated neuroprotection is reduced by high-mobility group box-1 (HMGB1 in diabetic retina, paired vitreous and serum samples from 46 proliferative diabetic retinopathy and 34 nondiabetic patients were assayed for BDNF, HMGB1, soluble receptor for advanced glycation end products (sRAGE, soluble intercellular adhesion molecule-1 (sICAM-1, monocyte chemoattractant protein-1 (MCP-1, and TBARS. We also examined retinas of diabetic and HMGB1 intravitreally injected rats. The effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced changes in retinal BDNF expressions was studied. Western blot, ELISA, and TBARS assays were used. BDNF was not detected in vitreous samples. BDNF levels were significantly lower in serum samples from diabetic patients compared with nondiabetics, whereas HMGB1, sRAGE, sICAM-1, and TBARS levels were significantly higher in diabetic serum samples. MCP-1 levels did not differ significantly. There was significant inverse correlation between serum levels of BDNF and HMGB1. Diabetes and intravitreal administration of HMGB1 induced significant upregulation of the expression of HMGB1, TBARS, and cleaved caspase-3, whereas the expression of BDNF and synaptophysin was significantly downregulated in rat retinas. Glycyrrhizin significantly attenuated diabetes-induced downregulation of BDNF. Our results suggest that HMGB1-induced downregulation of BDNF might be involved in pathogenesis of diabetic retinal neurodegeneration.

  6. Involvement of brain-derived neurotrophic factor (BDNF) on malathion induced depressive-like behavior in subacute exposure and protective effects of crocin

    OpenAIRE

    Somaye Ardebili Dorri; Hossein Hosseinzadeh; Khalil Abnous; Faezeh Vahdati Hasani; Rezvan Yazdian Robati; Bibi Marjan Razavi

    2015-01-01

    Objective(s): In this study the effect of crocin, a carotenoid isolated from saffron, on malathion (an organophosphate insecticide) induced depressive- like behavior in subacute exposure was investigated. Moreover the molecular mechanism of malathion induced depressive- like behavior and its decreasing effect on the level of brain derived neurotrophic factor (BDNF) in rat hippocampus and cerebral cortex were evaluated. Materials and Methods: Male Wistar rats were exposed to malathion (50 m...

  7. Chronic administration of brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reverses obesity induced by high-fat diet

    OpenAIRE

    Wang, Chuanfeng; Godar, Rebecca J.; Billington, Charles J.; Kotz, Catherine M.

    2010-01-01

    An acute injection of brain-derived neurotrophic factor (BDNF) in the hypothalamic paraventricular nucleus (PVN) reduces body weight by decreasing feeding and increasing energy expenditure (EE), in animals on standard laboratory chow. Animals have divergent responses to a high-fat diet (HFD) exposure, with some developing obesity and others remaining lean. In the current study, we tested two hypotheses: 1) BDNF in the PVN reverses HFD-induced obesity, and 2) animals with higher body fat have ...

  8. Brain-derived neurotrophic factor (BDNF) gene: a gender-specific role in cognitive function during normal cognitive aging of the MEMO-Study?

    OpenAIRE

    Laing, Katharine R.; Mitchell, David; Wersching, Heike; Czira, Maria E.; Berger, Klaus; Baune, Bernhard T

    2011-01-01

    Cognitive aging processes are underpinned by multiple processes including genetic factors. The brain-derived neurotrophic factor (BDNF) has been suggested to be involved in age-related cognitive decline in otherwise healthy individuals. The gender-specific role of the BDNF gene in cognitive aging remains unclear. The identification of genetic biomarkers might be a useful approach to identify individuals at risk of cognitive decline during healthy aging processes. The aim of this study was to ...

  9. Fetal Alcohol Spectrum Disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model

    OpenAIRE

    Caldwell, Kevin K.; Sheema, S.; Paz, Rodrigo D.; Samudio-Ruiz, Sabrina L.; Laughlin, Mary H.; Spence, Nathan E.; Roehlk, Michael J; Alcon, Sara N.; Allan, Andrea M

    2008-01-01

    Prenatal ethanol exposure is associated with an increased incidence of depressive disorders in patient populations. However, the mechanisms that link prenatal ethanol exposure and depression are unknown. Several recent studies have implicated reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampal formation and frontal cortex as important contributors to the etiology of depression. In the present studies, we sought to determine whether prenatal ethanol exposure is associate...

  10. Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats

    OpenAIRE

    Jeong, Hye Im; Ji, Eun-Sang; Kim, Su-Hyun; Kim, Tae-Wook; BAEK, SANG-BIN; Choi, Seung Wook

    2014-01-01

    Attention-deficit/hyperactivity disorder (ADHD) patients show learning difficulty and impulsiveness. Exercise is known to improve learning ability and memory function. In the present study, we investigated the duration-dependence of the effect of treadmill exercise on spatial learning ability in relation with brain-derived neurotrophic factor (BDNF) expression in ADHD rats. For this study, radial 8-arm maze test and western blot for BDNF and tyrosine kinase B (TrkB) were performed. Spontaneou...

  11. The Effects of Antecedent Exercise on Motor Function Recovery and Brain-derived Neurotrophic Factor Expression after Focal Cerebral Ischemia in Rats

    OpenAIRE

    KIM, GYEYEOP; Kim, Eunjung

    2013-01-01

    [Purpose] In the present study, we investigated the effect of antecedent exercise on functional recovery and brain-derived neurotrophic factor (BDNF) expression following focal cerebral ischemia injury. [Subjects] The rat middle cerebral artery occlusion (MCAO) model was employed. Adult male Sprague-Dawley rats were randomly divided into 4 groups. Group I included untreated normal rats (n=10); Group II included untreated rats with focal cerebral ischemia (n=10); Group III included rats that p...

  12. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial

    OpenAIRE

    Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N.; Armstrong, Hilary F.; Ballon, Jacob S; Khan, Samira; Chang, Rachel W.; Hansen, Marie C.; Ayanruoh, Lindsey; Lister, Amanda; Castrén, Eero; Smith, Edward E.; Sloan, Richard P.

    2015-01-01

    Individuals with schizophrenia display substantial neurocognitive deficits for which available treatments offer only limited benefits. Yet, findings from studies of animals, clinical and nonclinical populations have linked neurocognitive improvements to increases in aerobic fitness (AF) via aerobic exercise training (AE). Such improvements have been attributed to up-regulation of brain-derived neurotrophic factor (BDNF). However, the impact of AE on neurocognition, and the putative role of BD...

  13. Chronic Exercise Increases Plasma Brain-Derived Neurotrophic Factor Levels, Pancreatic Islet Size, and Insulin Tolerance in a TrkB-Dependent Manner

    OpenAIRE

    Alberto Jiménez-Maldonado; Elena Roces de Álvarez-Buylla; Sergio Montero; Valery Melnikov; Elena Castro-Rodríguez; Armando Gamboa-Domínguez; Alejandrina Rodríguez-Hernández; Mónica Lemus; Jesús Muñiz Murguía

    2014-01-01

    BACKGROUND: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. METHODS: Wistar rats were divided into five groups: control (sedentary, C); moderate- intensity training (MIT); ...

  14. Increase of plasma brain-derived neurotrophic factor levels in two psychotic depressed patients responding to lithium addition to paroxetine treatment

    OpenAIRE

    Yoshimura, Reiji; Tsuji, Koshiro; Ueda, Nobuhisa; Nakamura, Jun

    2007-01-01

    We report two patients with psychotic depression who were successfully treated with a lithium addition to ongoing paroxetine treatment. In both cases, plasma brain-derived neurotrophic factor (BDNF) levels increased about 2-fold after lithium augmentation to paroxetine, compared with paroxetine treatment alone. Plasma paroxetine levels did not change after lithium addition. These results suggest that the increases in plasma BDNF levels reflect recovery from depressive symptoms in psychotic de...

  15. The Effect of Recombinant Erythropoietin on Plasma Brain Derived Neurotrophic Factor Levels in Patients with Affective Disorders: A Randomised Controlled Study

    OpenAIRE

    Maj Vinberg; Kamilla Miskowiak; Pernille Hoejman; Maria Pedersen; Lars Vedel Kessing

    2015-01-01

    The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (...

  16. Expression of cFos and brain-derived neurotrophic factor in cortex and hippocampus of ethanol-withdrawn male and female rats

    OpenAIRE

    Alele, Paul E.; Devaud, Leslie L.

    2013-01-01

    Objective: To map areas of brain activation (cFos) alongside changes in levels of brain-derived neurotrophic factor (BDNF) to provide insights into neuronal mechanisms contributing to previously observed sex differences in behavioral measures of ethanol withdrawal (EW). Materials and Methods: Immunohistochemical analysis of cFos and BDNF levels using protein-specific antibodies and visualization with nickel-enhanced DAB staining in 3 cortical and 4 hippocampal regions was used to assess EW-in...

  17. Association of brain-derived neurotrophic factor and nerve growth factor gene polymorphisms with susceptibility to migraine.

    Science.gov (United States)

    Coskun, Salih; Varol, Sefer; Ozdemir, Hasan H; Agacayak, Elif; Aydın, Birsen; Kapan, Oktay; Camkurt, Mehmet Akif; Tunc, Saban; Cevik, Mehmet Ugur

    2016-01-01

    Migraine is one of the most common neurological diseases worldwide. Migraine pathophysiology is very complex. Genetic factors play a major role in migraine. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play an important role in central nervous system functioning, development, and modulation of pain. This study investigates whether polymorphisms in the BDNF and NGF genes are associated with migraine disease in a Turkish case-control population. Overall, 576 subjects were investigated (288 patients with migraine and 288 healthy controls) for the following polymorphisms: rs6265(G/A), rs8192466(C/T), rs925946(G/T), rs2049046(A/T), and rs12273363(T/C) in the BDNF gene, and rs6330(C/T), rs11466112(C/T), rs11102930(C/A), and rs4839435(G/A) in the NGF gene using 5'-exonuclease allelic discrimination assays. We found no differences in frequency of the analyzed eight polymorphisms between migraine and control groups. However, the frequency of minor A alleles of rs6265 in BDNF gene was borderline significant in the patients compared with the healthy controls (P=0.049; odds ratios [ORs] [95% confidence intervals {CIs}] =0.723 [0.523-0.999]). Moreover, when the migraine patients were divided into two subgroups, migraine with aura (MA) and migraine without aura (MO), the minor TT genotype of rs6330 in NGF was significantly higher in MA patients than in MO patients (P=0.036) or healthy controls (P=0.026), and this disappeared after correction for multiple testing. Also, the rs6330*T minor allele was more common in the MA group than in the MO group or controls (P=0.011, ORs [95% CIs] =1.626 [1.117-2.365] or P=0.007, ORs [95% CIs] =1.610 [1.140-2.274], respectively). In conclusion, this is the first clinical study to evaluate the association between BDNF and NGF polymorphisms in migraine patients compared with health controls. Our findings suggest that the NGF rs6330*T minor allele might be nominated as a risk factor for

  18. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  19. Differential brain-derived neurotrophic factor expression in limbic brain regions following social defeat or territorial aggression.

    Science.gov (United States)

    Taylor, Stacie L; Stanek, Lisa M; Ressler, Kerry J; Huhman, Kim L

    2011-12-01

    Syrian hamsters readily form dominant-subordinate relationships under laboratory conditions. Winning or losing in agonistic encounters can have striking, long-term effects on social behavior, but the mechanisms underlying this experience-induced behavioral plasticity are unclear. The present study tested the hypothesis that changes in brain-derived neurotrophic factor (BDNF) may at least in part mediate this plasticity. Male hamsters were paired for 15-min using a resident-intruder model, and individuals were identified as winners or losers on the basis of their behavior. BDNF was examined with in situ hybridization 2 hr after treatment during the consolidation period of emotional learning. Losing animals had significantly more BDNF mRNA in the basolateral (BLA) and medial (MeA) nuclei of the amygdala when compared with winning animals as well as novel cage and home cage controls. Interestingly, winning animals had significantly more BDNF mRNA in the dentate gyrus of the dorsal hippocampus than did losing animals, novel, and home cage controls. No conflict-related changes in BDNF mRNA were observed in several other regions including the bed nucleus of the stria terminalis and central amygdala. Next, we demonstrated that K252a, a Trk receptor antagonist, significantly reduced the acquisition of conditioned defeat when administered within the BLA. These data support a model in which BDNF-mediated plasticity within the BLA supports learning of submission or subordinate social status in losing animals, whereas BDNF-mediated plasticity within the hippocampus may instantiate aspects of winning such as control of a territory in dominant animals. PMID:22122152

  20. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania.

    Science.gov (United States)

    Fries, Gabriel R; Valvassori, Samira S; Bock, Hugo; Stertz, Laura; Magalhães, Pedro Vieira da Silva; Mariot, Edimilson; Varela, Roger B; Kauer-Sant'Anna, Marcia; Quevedo, João; Kapczinski, Flávio; Saraiva-Pereira, Maria Luiza

    2015-09-01

    Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala. PMID:26026487

  1. Role of Serum Brain Derived Neurotrophic Factor and Central N-Acetylaspartate for Clinical Response under Antidepressive Pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Sarah Nase

    2016-02-01

    Full Text Available Background: The predictive therapeutic value of brain derived neurotrophic factor (BDNF and its changes associated with the use of specific antidepressants are still unclear. In this study, we examined BDNF as a peripheral and NAA as a central biomarker over the time course of antidepressant treatment to specify both of their roles in the response to the medication and clinical outcome. Methods: We examined serum BDNF (ELISA kit in a sample of 76 (47 female and 29 male depressed patients in a naturalistic setting. BDNF was assessed before medication and subsequently after two, four and six weeks of antidepressant treatment. Additionally, in fifteen patients, N-acetylaspartate (NAA was measured in the anterior cingulate cortex (ACC with magnetic resonance spectroscopy (MRS. Over a time course of six weeks BDNF and NAA were also examined in a group of 41 healthy controls. Results: We found significant lower serum BDNF concentrations in depressed patients compared to the sample of healthy volunteers before and after medication. BDNF and clinical symptoms decreased significantly in the patients over the time course of antidepressant treatment. Serum BDNF levels at baseline predicted the symptom outcome after eight weeks. Specifically, responders and remitters had lower serum BDNF at baseline than the nonresponders and nonremitters. NAA was slightly decreased but not significantly lower in depressed patients when compared with healthy controls. During treatment period, NAA showed a tendency to increase. Limitations: A relative high drop-out rate and possibly, a suboptimal observation period for BDNF. Conclusion: Our data confirm serum BDNF as a biomarker of depression with a possible role in response prediction. However, our findings argue against serum BDNF increase being a prerequisite to depressive symptom reduction.

  2. High levels of brain-derived neurotrophic factor are associated with treatment adherence among crack-cocaine users.

    Science.gov (United States)

    Scherer, Juliana N; Schuch, Silvia; Ornell, Felipe; Sordi, Anne O; Bristot, Giovana; Pfaffenseller, Bianca; Kapczinski, Flávio; Kessler, Felix H P; Fumagalli, Fabio; Pechansky, Flavio; von Diemen, Lisia

    2016-09-01

    Due to the complexity of crack -cocaine addiction treatment, the identification of biological markers that could help determining the impact or outcome of drug use has become a major subject of study. Therefore, we aim to evaluate the association of Brain-Derived Neurotrophic Factor (BDNF) and Thiobarbituric Acid Reactive Substances (TBARS) levels in crack -cocaine users with treatment adherence and with drug addiction severity. A sample of 47 male inpatient crack- cocaine users were recruited in a treatment unit, and blood samples were collected at admission and discharge in order to measure BDNF and TBARS serum levels. Subjects were split into 2 groups: treatment non-completers (n=23) and treatment completers (n=24). The completer group had a tendency of higher levels of BDNF than non-completers at admission (16.85±3.24 vs. 14.65±5.45, p=0.10), and significant higher levels at discharge (18.10±4.88 vs. 13.91±4.77, p=0.001). A negative correlation between BDNF levels at admission and years of crack use was observed. We did not find significant changes in TBARS levels during inpatient treatment, although the completer group tended to decrease these levels while non-completers tend to increase it. These findings suggest an association between higher levels of BDNF and better clinical outcomes in crack- cocaine users after detoxification. We believe that the variation in BDNF and TBARS found here add evidence to literature data that propose that such biomarkers could be used to better understand the physiopathology of crack- cocaine addiction. PMID:27473943

  3. Relationship between Levels of Brain-Derived Neurotrophic Factor and Metabolic Parameters in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Banu Boyuk

    2014-01-01

    Full Text Available Background and Aim. Studies have suggested that brain-derived neurotrophic factor (BDNF plays a role in glucose and lipid metabolism and inflammation. The aim of this study was to evaluate the relationship between serum BDNF levels and various metabolic parameters and inflammatory markers in patients with type 2 diabetes mellitus (T2DM. Materials and Methods. The study included 88 T2DM patients and 33 healthy controls. Fasting blood samples were obtained from the patients and the control group. The serum levels of BDNF were measured with an ELISA kit. The current paper introduces a receiver-operating characteristic (ROC generalization curve to identify cut-off for the BDNF values in type 2 diabetes patients. Results. The serum levels of BDNF were significantly higher in T2DM patients than in the healthy controls (206.81 ± 107.32 pg/mL versus 130.84 ± 59.81 pg/mL; P<0.001. They showed a positive correlation with the homeostasis model assessment of insulin resistance (HOMA-IR (r=0.28; P<0.05, the triglyceride level (r=0.265; P<0.05, and white blood cell (WBC count (r=0.35; P<0.001. In logistic regression analysis, age (P<0.05, body mass index (BMI (P<0.05, C-reactive protein (CRP (P<0.05, and BDNF (P<0.01 were independently associated with T2DM. In ROC curve analysis, BDNF cut-off was 137. Conclusion. The serum BDNF level was higher in patients with T2DM. The BDNF had a cut-off value of 137. The findings suggest that BDNF may contribute to glucose and lipid metabolism and inflammation.

  4. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2016-07-15

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high. PMID:27113028

  5. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  6. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models.

    Science.gov (United States)

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-05-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  7. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells

    Science.gov (United States)

    Lin, Guiting; Zhang, Haiyang; Sun, Fionna; Lu, Zhihua; Reed-Maldonado, Amanda; Lee, Yung-Chin; Wang, Guifang; Banie, Lia

    2016-01-01

    Background Radical prostatectomy (RP) carries the risk of erectile dysfunction (ED) due to cavernous nerve (CN) injury. Schwann cells are essential for the maintenance of integrity and function of peripheral nerves such as the CNs. We hypothesize that brain-derived neurotrophic factor (BDNF) activates the Janus kinase (JAK)/(signal transducer and activator of transcription) STAT pathway in Schwann cells, not in neuronal axonal fibers, with the resultant secretion of cytokines from Schwann cells to facilitate nerve recovery. Methods Using four different cell lines—human neuroblastoma BE(2)-C and SH-SY5Y, human Schwann cell (HSC), and rat Schwann cell (RSC) RT4-D6P2T—we assessed the effect of BDNF application on the activation of the JAK/STAT pathway. We also assessed the time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment. We then assayed cytokine release from HSCs as a response to BDNF treatment using oncostatin M and IL6 as markers. Results We showed extensive phosphorylation of STAT3/STAT1 by BDNF at high dose (100 pM) in RSCs, with no JAK/STAT pathway activation in human neuroblastoma cell lines. The time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment showed an initial peak at shortly after treatment and then a second higher peak at 24–48 hours. Cytokine release from HSCs increased progressively after BDNF application, reaching statistical significance for IL6. Conclusions We demonstrated for the first time the indirect mechanism of BDNF enhancement of nerve regeneration through the activation of JAK/STAT pathway in Schwann cells, rather than directly on neurons. As a result of BDNF application, Schwann cells produce cytokines that promote nerve regeneration.

  8. Influence of brain-derived neurotrophic factor (BDNF) on serotonin neurotransmission in the hippocampus of adult rodents.

    Science.gov (United States)

    Benmansour, Saloua; Deltheil, Thierry; Piotrowski, Jonathan; Nicolas, Lorelei; Reperant, Christelle; Gardier, Alain M; Frazer, Alan; David, Denis J

    2008-06-10

    Whereas SSRIs produce rapid blockade of the serotonin transporter (SERT) in vitro and in vivo, the onset of an observable clinical effect takes longer to occur and a variety of pharmacological effects caused by antidepressants have been speculated to be involved either in initiating antidepressant effects and/or enhancing their effects on serotonergic transmission so as to cause clinical improvement. Among such secondary factors is increased activity of brain-derived neurotrophic factor (BDNF), which requires the Tropomyosine-related kinase B receptor (TrkB) for its effects. To begin an analysis of the influence of BDNF on serotonergic activity, we studied the acute effects of BDNF on SERT activity. A single BDNF injection (either intracerebroventricularly or directly into the CA3 region of hippocampus) decreased the signal amplitude and clearance rate produced by exogenously applied 5-HT compared to what was measured in control rats, shown using in vivo chronoamperometry. It also reduced the ability of a locally applied SSRI to block the clearance of 5-HT. In awake freely moving mice, acute intrahippocampal injection of BDNF decreased extracellular levels of 5-HT in the hippocampus, as measured using microdialysis. In addition, perfusion with BDNF decreased KCl-evoked elevations of 5-HT. These effects of BDNF were blocked by the non-selective antagonist of TrkB receptors, K252a. Overall, it may be inferred that in the hippocampus, through TrkB activation, a single injection of BDNF enhances SERT function. Such acute effects of BDNF would be expected to counter early effects of SSRIs, which might, in part, account for some delay in therapeutic effect. PMID:18474368

  9. Expression of Brain-derived Neurotrophic Factor and Tyrosine Kinase B in Cerebellum of Poststroke Depression Rat Model

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Chun Peng; Xu Guo; Jun-Jie You; Harishankar Prasad Yadav

    2015-01-01

    Background:The pathophysiology of poststroke depression (PSD) remains elusive because of its proposed multifactorial nature.Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of depression and PSD.And the cerebellar dysfunction may be important in the etiology of depression;it is not clear whether it also has a major effect on the risk of PSD.This study aimed to explore the expression of BDNF and high-affinity receptors tyrosine kinase B (TrkB) in the cerebellum of rats with PSD.Methods:The rat models with focal cerebral ischemic were made using a thread embolization method.PSD rat models were established with comprehensive separate breeding and unpredicted chronic mild stress (UCMS) on this basis.A normal control group,depression group,and a stroke group were used to compare with the PSD group.Thirteen rats were used in each group.Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) for detecting the expression of BDNF and TrkB protein and mRNA in the cerebellum were used at the 29th day following the UCMS.Results:Compared with the normal control group and the stroke group,the number ofBDNF immunoreactive (IR) positive neurons was less in the PSD group (P < 0.05).Furthermore,the number ofTrkB IR positive cells was significantly less in the PSD group than that in the normal control group (P < 0.05).The gene expression of BDNF and TrkB in the cerebellum of PSD rats also decreased compared to the normal control group (P < 0.05).Conclusions:These findings suggested a possible association between expression of BDNF and TrkB in the cerebellum and the pathogenesis of PSD.

  10. The effect of exercise training modality on serum brain derived neurotrophic factor levels in individuals with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Damon L Swift

    Full Text Available INTRODUCTION: Brain derived neurotrophic factor (BDNF has been implicated in memory, learning, and neurodegenerative diseases. However, the relationship of BDNF with cardiometabolic risk factors is unclear, and the effect of exercise training on BDNF has not been previously explored in individuals with type 2 diabetes. METHODS: Men and women (N = 150 with type 2 diabetes were randomized to an aerobic exercise (aerobic, resistance exercise (resistance, or a combination of both (combination for 9 months. Serum BDNF levels were evaluated at baseline and follow-up from archived blood samples. RESULTS: Baseline serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures (all, p>0.05. Similarly, no significant change in serum BDNF levels was observed following exercise training in the aerobic (-1649.4 pg/ml, CI: -4768.9 to 1470.2, resistance (-2351.2 pg/ml, CI:-5290.7 to 588.3, or combination groups (-827.4 pg/ml, CI: -3533.3 to 1878.5 compared to the control group (-2320.0 pg/ml, CI: -5750.8 to 1110.8. However, reductions in waist circumference were directly associated with changes in serum BDNF following training (r = 0.25, p = 0.005. CONCLUSIONS: Serum BDNF was not associated with fitness, body composition, anthropometry, glucose control, or strength measures at baseline. Likewise, serum BDNF measures were not altered by 9 months of aerobic, resistance, or combination training. However, reductions in waist circumference were associated with decreased serum BDNF levels. Future studies should investigate the relevance of BDNF with measures of cognitive function specifically in individuals with type-2 diabetes.

  11. Brain-derived neurotrophic factor (BDNF as a potential mechanism of the effects of acute exercise on cognitive performance

    Directory of Open Access Journals (Sweden)

    Aaron T. Piepmeier

    2015-03-01

    Full Text Available The literature shows that improvements in cognitive performance may be observed following an acute bout of exercise. However, evidence in support of the biological mechanisms of this effect is still limited. Findings from both rodent and human studies suggest brain-derived neurotrophic factor (BDNF as a potential mechanism of the effect of acute exercise on memory. The molecular properties of BDNF allow this protein to be assessed in the periphery (pBDNF (i.e., blood serum, blood plasma, making measurements of acute exercise-induced changes in BDNF concentration relatively accessible. Studies exploring the acute exercise–pBDNF–cognitive performance relationship have had mixed findings, but this may be more reflective of methodological differences between studies than it is a statement about the role of BDNF. For example, significant associations have been observed between acute exercise-induced changes in pBDNF concentration and cognitive performance in studies assessing memory, and non-significant associations have been found in studies assessing non-memory cognitive domains. Three suggestions are made for future research aimed at understanding the role of BDNF as a biological mechanism of this relationship: 1 Assessments of cognitive performance may benefit from a focus on various types of memory (e.g., relational, spatial, long-term; 2 More fine-grained measurements of pBDNF will allow for the assessment of concentrations of specific isoforms of the BDNF protein (i.e., immature, mature; 3 Statistical techniques designed to test the mediating role of pBDNF in the acute exercise-cognitive performance relationship should be utilized in order to make causal inferences.

  12. Relationship between brain-derived neurotrophic factor and cognitive function of obstructive sleep apnea/hypopnea syndrome patients

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong Wang; Guo-Ping He; Xu-Ping Xiao; Can Gu; Hua-Ying Chen

    2012-01-01

    Objective:To determine the relationship between the blood serum brain-derived neurotrophic factor (BDNF) level and cognitive function deterioration in patients with obstructive sleep apnea/hypopnea syndrome (OSAHS), and to explore the possible mechanism of cognitive impairment. Methods: Twenty-eight male OSAHS patients and 14 normal males (as controls) were enrolled in the study. Polysomnography and the Montreal cognitive assessment (MoCA) were conducted. The blood serum BDNF levels were measured using ELISA. Results: The OSAHS group had significantly decreased blood serum BDNF levels compared with the control group (t=-10.912, P= 0.000). The blood serum BDNF level of the subjects was significantly positively associated with the MoCA score (r= 0.544, P= 0.000), significantly negatively associated with the apnea-hypopnea index (AHI) and shallow sleep (S1+S2) (AHI:r=-0.607, P=0.000;S1+S2:r=-0.768, P=0.000), and significantly positively associated with the lowest SaO2 (LSO), slow wave sleep (S3+S4), and rapid eye movement sleep (REM) (LSO:r=0.566, P=0.000;S3+S4:r=0.778, P=0.000;REM:r= 0.575, P= 0.000). Conclusions: OSAHS patients have significantly decreased blood serum BDNF levels compared with the control. Nocturnal hypoxia as well as the deprivation of slow wave sleep and REM may lead to the decreased serum BDNF level of OSAHS patients. This decreased blood serum BDNF level may contribute to the cognitive impairment in OSAHS.

  13. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ.

    Science.gov (United States)

    Balkowiec, A; Katz, D M

    2000-10-01

    To define activity-dependent release of endogenous brain-derived neurotrophic factor (BDNF), we developed an in vitro model using primary sensory neurons and a modified ELISA, termed ELISA in situ. Dissociate cultures of nodose-petrosal ganglion cells from newborn rats were grown in wells precoated with anti-BDNF antibody to capture released BDNF, which was subsequently detected using conventional ELISA. Conventional ELISA alone was unable to detect any increase in BDNF concentration above control values following chronic depolarization with 40 mM KCl for 72 hr. However, ELISA in situ demonstrated a highly significant increase in BDNF release, from 65 pg/ml in control to 228 pg/ml in KCl-treated cultures. The efficacy of the in situ assay appears to be related primarily to rapid capture of released BDNF that prevents BDNF binding to the cultured cells. We therefore used this approach to compare BDNF release from cultures exposed for 30 min to either continuous depolarization with elevated KCl or patterned electrical field stimulation (50 biphasic rectangular pulses of 25 msec, at 20 Hz, every 5 sec). Short-term KCl depolarization was completely ineffective at evoking any detectable release of BDNF, whereas patterned electrical stimulation increased extracellular BDNF levels by 20-fold. In addition, the magnitude of BDNF release was dependent on stimulus pattern, with high-frequency bursts being most effective. These data indicate that the optimal stimulus profile for BDNF release resembles that of other neuroactive peptides. Moreover, our findings demonstrate that BDNF release can encode temporal features of presynaptic neuronal activity. PMID:11007900

  14. Upregulation of brain-derived neurotrophic factor expression in nodose ganglia and the lower brainstem of hypertensive rats.

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K; Hsieh, Hui-ya; Brown, Alexandra L; Page, Mollie P; Brooks, Virginia L; Balkowiec, Agnieszka

    2013-02-01

    Hypertension leads to structural and functional changes at baroreceptor synapses in the medial nucleus tractus solitarius (NTS), but the underlying molecular mechanisms remain unknown. Our previous studies show that brain-derived neurotrophic factor (BDNF) is abundantly expressed by rat nodose ganglion (NG) neurons, including baroreceptor afferents and their central terminals in the medial NTS. We hypothesized that hypertension leads to upregulation of BDNF expression in NG neurons. To test this hypothesis, we used two mechanistically distinct models of hypertension, the spontaneously hypertensive rat (SHR) and the deoxycorticosterone acetate (DOCA)-salt rat. Young adult SHRs, whose blood pressure was significantly elevated compared with age-matched Wistar-Kyoto (WKY) control rats, exhibited dramatic upregulation of BDNF mRNA and protein in the NG. BDNF transcripts from exon 4, known to be regulated by activity, and exon 9 (protein-coding region) showed the largest increases. Electrical stimulation of dispersed NG neurons with patterns that mimic baroreceptor activity during blood pressure elevations led to increases in BDNF mRNA that were also mediated through promoter 4. The increase in BDNF content of the NG in vivo was associated with a significant increase in the percentage of BDNF-immunoreactive NG neurons. Moreover, upregulation of BDNF in cell bodies of NG neurons was accompanied by a significant increase in BDNF in the NTS region, the primary central target of NG afferents. A dramatic increase in BDNF in the NG was also detected in DOCA-salt hypertensive rats. Together, our study identifies BDNF as a candidate molecular mediator of activity-dependent changes at baroafferent synapses during hypertension. PMID:23172808

  15. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons.

    Science.gov (United States)

    Balkowiec, Agnieszka; Katz, David M

    2002-12-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in activity-dependent modifications of neuronal connectivity and synaptic strength, including establishment of hippocampal long-term potentiation (LTP). To shed light on mechanisms underlying BDNF-dependent synaptic plasticity, the present study was undertaken to characterize release of native BDNF from newborn rat hippocampal neurons in response to physiologically relevant patterns of electrical field stimulation in culture, including tonic stimulation at 5 Hz, bursting stimulation at 25 and 100 Hz, and theta-burst stimulation (TBS). Release was measured using the ELISA in situ technique, developed in our laboratory to quantify secretion of native BDNF without the need to first overexpress the protein to nonphysiological levels. Each stimulation protocol resulted in a significant increase in BDNF release that was tetrodotoxin sensitive and occurred in the absence of glutamate receptor activation. However, 100 Hz tetanus and TBS, stimulus patterns that are most effective in inducing hippocampal LTP, were significantly more effective in releasing native BDNF than lower-frequency stimulation. For all stimulation protocols tested, removal of extracellular calcium, or blockade of N-type calcium channels, prevented BDNF release. Similarly, depletion of intracellular calcium stores with thapsigargin and treatment with dantrolene, an inhibitor of calcium release from caffeine-ryanodine-sensitive stores, markedly inhibited activity-dependent BDNF release. Our results indicate that BDNF release can encode temporal features of hippocampal neuronal activity. The dual requirement for calcium influx through N-type calcium channels and calcium mobilization from intracellular stores strongly implicates a role for calcium-induced calcium release in activity-dependent BDNF secretion. PMID:12451139

  16. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations

  17. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  18. Neonatal (+)-methamphetamine increases brain derived neurotrophic factor, but not nerve growth factor, during treatment and results in long-term spatial learning deficits

    OpenAIRE

    Skelton, Matthew R.; Williams, Michael T.; Schaefer, Tori L.; Vorhees, Charles V.

    2007-01-01

    In this study, brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were examined at five time points [postnatal day (P)11, 15, 20, 21, and 68 (the latter with or without behavioral testing)] during and after P11–20 (+)-methamphetamine (MA) (10 mg/ kg 4 × day) treatment. BDNF in MA-treated animals was elevated on P15 and P20 in the hippocampus but not in the hypothalamus and was unchanged on P11 and P21. On P68 (1 h after Morris water maze testing) MA-treated offspring showe...

  19. Effect of the Presence of Brain-Derived Neurotrophic Factor Val66Met Polymorphism on the Recovery in Patients With Acute Subcortical Stroke

    OpenAIRE

    Kim, Won-Seok; Lim, Jong Youb; Shin, Joon Ho; Park, Hye Kyung; Tan, Samuel Arnado; Park, Kyoung Un; Paik, Nam-Jong

    2013-01-01

    Objective To investigate the effect of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on the recovery after subcortical stroke, using the modified Rankin Scale (mRS). Methods Subcortical stroke patients with copies of BDNF Val66Met polymorphism (n=7) were compared to their controls (n=7) without a copy of BDNF Val66Met polymorphism after matching for initial severity, location and type of stroke. The mRS scores at 1 and 3 months after discharge from the neurorehabilitation uni...

  20. Association between brain-derived neurotrophic factor genetic polymorphism Val66Met and susceptibility to bipolar disorder: a meta-analysis

    OpenAIRE

    Wang, Zuowei; Li, Zezhi; Gao, Keming; Fang, Yiru

    2014-01-01

    Background In view of previous conflicting findings, this meta-analysis was performed to comprehensively determine the overall strength of associations between brain-derived neurotrophic factor (BDNF) genetic polymorphism Val66Met and susceptibility to bipolar disorders (BPD). Methods Literatures published and cited in Pubmed and Wanfang Data was searched with terms of ‘Val66Met’, ‘G196A’, ‘rs6265’, ‘BDNF’, ‘association’, and ‘bipolar disorder’ up to March 2014. All original case–control asso...

  1. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Matthews, V B; Åström, Maj-Brit; Chan, M H S;

    2009-01-01

    AIMS/HYPOTHESIS: Brain-derived neurotrophic factor (BDNF) is produced in skeletal muscle, but its functional significance is unknown. We aimed to determine the signalling processes and metabolic actions of BDNF. METHODS: We first examined whether exercise induced BDNF expression in humans. Next, C2......(79)) were analysed, as was fatty acid oxidation (FAO). Finally, we electroporated a Bdnf vector into the tibialis cranialis muscle of mice. RESULTS: BDNF mRNA and protein expression were increased in human skeletal muscle after exercise, but muscle-derived BDNF appeared not to be released...

  2. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury

    OpenAIRE

    Sheng Yi; Ying Yuan; Qianqian Chen; Xinghui Wang; Leilei Gong; Jie Liu; Xiaosong Gu; Shiying Li

    2016-01-01

    Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3′-UTR and caused both mRNA degradation and translation suppression of BDNF. Moreover, miR-1 induced BDNF mRNA degradation primarily through binding to target site 3 rather th...

  3. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹; 毛颖; 吴雪海

    2005-01-01

    Objective: To examine the effects of rat marrow stromal cells (rMSCs) on gene expression of local brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after injection of rMSCs into Cistern Magnum of adult rats subjected to traumatic brain injury(TBI).Results: Group cell transplantation had higher BDNF and NGF gene expressions than Group saline control during a period of less than 3 weeks (P<0.05).Conclusions: rMSCs transplantation via Cistern Magnum in rats subjected to traumatic brain injury can enhance expressions of local brain NGF and BDNF to a certain extent.

  4. Role of brain-derived neurotrophic factor and neuronal nitric oxide synthase in stress-induced depression

    Institute of Scientific and Technical Information of China (English)

    Dan Wang; Shucheng An

    2008-01-01

    BACKGROUND: Accumulated evidence indicates an important role for hippocampal dendrite atrophy in development of depression, while brain-derived neurotrophic factor (BDNF) participates in hippocampal dendrite growth. OBJECTIVE: To discuss the role of BDNF and neuronal nitric oxide synthase (nNOS) in chronic and unpredictable stress-induced depression and the pathogenesis of depression.DESIGN, TIME AND SETTING: Randomized, controlled animal experiment. The experiment was carried out from October 2006 to May 2007 at the Department of Animal Physiology, College of Life Science, Shaanxi Normal University.MATERIALS: Thirty-seven male Sprague-Dawley rats weighing 250-300 g at the beginning of the experiment were obtained from Shaanxi Provincial Institute of Traditional Chinese Medicine (Xi'an, China). BDNF antibody and nNOS antibody were provided by Santa Cruz (USA). K252a (BDNF inhibitor) and 7-NI (nNOS inhibitor) were provided by Sigma (USA). METHODS: Animals were randomly divided into five groups: Control group, chronic unpredicted mild stress (CUMS) group, K252a group, K252a+7-NI group and 7-NI+CUMS group. While the Control, K252a and K252a+7-NI groups of rats not subjected to stress had free access to food and water, other groups of rats were subjected to nine stressors randomly applied for 21 days, with each stressor applied 2-3 times. On days 1, 7, 14 and 21 during CUMS, rats received microinjection of 1 μL of physiological saline in the Control and CUMS groups, 1 μL of K252a in the K252a group, 1 μL of K252a and 7-NI in the K252a+7-NI group, and 1 μL of 7-NI in the 7-NI+CUMS group. We observed a variety of alterations in sucrose preference, body weight change, open field test and forced swimming test, and observed the expression of BDNF and nNOS in rat hippocampus by immunohistochemistry;RESULTS: Compared with the Control group, the behavior of the CUMS rats was significantly depressed, the expression of BDNF decreased (P < 0.01) but the expression of n

  5. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    OpenAIRE

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relat...

  6. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  7. Brain-derived neurotrophic factor serum levels in genetically isolated populations: gender-specific association with anxiety disorder subtypes but not with anxiety levels or Val66Met polymorphism.

    Science.gov (United States)

    Carlino, Davide; Francavilla, Ruggiero; Baj, Gabriele; Kulak, Karolina; d'Adamo, Pio; Ulivi, Sheila; Cappellani, Stefania; Gasparini, Paolo; Tongiorgi, Enrico

    2015-01-01

    Anxiety disorders (ADs) are disabling chronic disorders with exaggerated behavioral response to threats. This study was aimed at testing the hypothesis that ADs may be associated with reduced neurotrophic activity, particularly of Brain-derived neurotrophic factor (BDNF), and determining possible effects of genetics on serum BDNF concentrations. In 672 adult subjects from six isolated villages in North-Eastern Italy with high inbreeding, we determined serum BDNF levels and identified subjects with different ADs subtypes such as Social and Specific Phobias (PHSOC, PHSP), Generalized Anxiety Disorder (GAD), and Panic Disorder (PAD). Analysis of the population as a whole or individual village showed no significant correlation between serum BDNF levels and Val66Met polymorphism and no association with anxiety levels. Stratification of subjects highlighted a significant decrease in serum BDNF in females with GAD and males with PHSP. This study indicates low heritability and absence of any impact of the Val66Met polymorphism on circulating concentrations of BDNF. Our results show that BDNF is not a general biomarker of anxiety but serum BDNF levels correlate in a gender-specific manner with ADs subtypes. PMID:26539329

  8. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine ☆

    OpenAIRE

    Savignac, Helene M.; Corona, Giulia; Mills, Henrietta; Chen, Li; Spencer, Jeremy P.E.; Tzortzis, George; Burnet, Philip W. J.

    2013-01-01

    The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we exami...

  9. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    OpenAIRE

    Li-Min Wu; Mei-Hong Hu; Xian-Hong Tong; Hui Han; Ni Shen; Ren-Tao Jin; Wei Wang; Gui-Xiang Zhou; Guo-Ping He; Yu-Sheng Liu

    2012-01-01

    BACKGROUND: Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chroni...

  10. Scorpion venom heat-resistant peptide (SVHRP enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Scorpion venom heat-resistant peptide (SVHRP is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM-positive immature neurons in the subventricular zone (SVZ and subgranular zone (SGZ of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF but not nerve growth factor (NGF or glial cell line-derived neurotrophic factor (GDNF was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values

  11. Brain-derived neurotrophic factor serum levels in genetically isolated populations: gender-specific association with anxiety disorder subtypes but not with anxiety levels or Val66Met polymorphism

    OpenAIRE

    Carlino, Davide; Francavilla, Ruggiero; Baj, Gabriele; Kulak, Karolina; d’Adamo, Pio; Ulivi, Sheila; Cappellani, Stefania; Gasparini, Paolo; Tongiorgi, Enrico

    2015-01-01

    Anxiety disorders (ADs) are disabling chronic disorders with exaggerated behavioral response to threats. This study was aimed at testing the hypothesis that ADs may be associated with reduced neurotrophic activity, particularly of Brain-derived neurotrophic factor (BDNF), and determining possible effects of genetics on serum BDNF concentrations. In 672 adult subjects from six isolated villages in North-Eastern Italy with high inbreeding, we determined serum BDNF levels and identified subjects...

  12. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans.

    Science.gov (United States)

    Caldwell Hooper, Ann E; Bryan, Angela D; Hagger, Martin S

    2014-12-01

    Individuals who are intrinsically motivated to exercise are more likely to do so consistently. In previous research, those with at least one copy of the methionine (met) allele in the brain-derived neurotrophic factor gene (BDNF; rs6265) had greater increases in positive mood and lower perceived exertion during exercise. This study examined whether genotype for BDNF is also related to intrinsic motivation, measured by self-report during a treadmill exercise session and a free-choice behavioral measure (continuing to exercise given the option to stop) among 89 regular exercisers (age M = 23.58, SD = 3.95). Those with at least one copy of the met allele reported greater increases in intrinsic motivation during exercise and were more likely to continue exercising when given the option to stop (55 vs. 33%). Results suggest that underlying genetic factors may partially influence perceptions of inherent rewards associated with exercise and might inform the development of individually targeted interventions. PMID:24805993

  13. Plasma level of brain-derived neurotrophic factor and the related analysis in depressive patients with suicide attempt

    Institute of Scientific and Technical Information of China (English)

    操军

    2014-01-01

    Objective To explore the association between brainderived neurotrophic factor(BDNF)and suicidal behavior through analyzing and detecting the alteration of plasma BDNF level in depressive patients with suicide attempt.Methods Using enzyme-linked immunosorbent analysis(ELISA)to test the plasma level of BDNF in 27suicidal depressed patients,33 non-suicidal depressed patients and 30 normal controls.Meanwhile,the Hamilton Depression Scale(HAMD)and Beck

  14. The Chinese herbal formula Tongluo Jiunao promotes expression of brain-derived neurotrophic factor/tropomyosin-related kinase B pathways in a rat model of ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Peiman Alesheikh; Yangyang Yan; Huiling Tang; Pengtao Li; Wei Zhang; Yanshu Pan; Arezou Mashoufi; Liyun Zhao; Runjun Wang; Bo Di

    2011-01-01

    The neurotrophin-Trk receptor pathway is an intrinsic pathway to relieve damage to the central nervous system. The present study observed the effects of Tongluo Jiunao (TLJN), which comprises Panax Notoginseng and Gardenia Jasminoides, on expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in a rat model of focal cerebral ischemic injury. Xue Sai Tong (XST), comprising Panax Notoginseng, served as the positive control. Mechanisms of neuroprotection were analyzed following TLJN injection. Following establishment of the middle cerebral artery occlusion models, TLJN and XST were intraperitoneally injected, and 2, 3, 5-triphenyltetrazolium chloride staining results revealed that TLJN injection reduced infarct volume, suggesting that TLJN exerted a neuroprotective effect. Enzyme-linked immunosorbent assay results showed that TLJN elevated BDNF and growth associated protein-43 expression in ischemic brain tissues, as well as serum BDNF levels. Reverse-transcription polymerase chain reaction and western blot results showed that TLJN injection did not affect TrkB expression in the ischemic brain tissues of rats. These results suggested that TLJN injection reduced damage to ischemic brain tissues and increased BDNF expression. In addition, TLJN injection resulted in better promoting effects on neurotrophic factor expression compared with XST.

  15. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S;

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairmen...

  16. Interventional effect of laser acupoint radiation on the expression of Nissl body and brain-derived neurotrophic factor in newborn rat models with ischemic/hypoxic cerebral injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:Some researches report that He-Ne laser can activate function of erythrocytes and increase content of blood and oxygen via bio-stimulating effect;therefore,it suspects that laser radiation at Baihui and Dazhui can partially increase blood circulation for oxygen-supplying content of brain and improve functional status of neurons.OBJECTIVE:To verify the effects of laser radiation at Baihui and Dazhui on the expression of Nissl body of brain tissue neurons and brain-derived neurotrophic factor (BDNF) in newborn rats with ischemic/hypoxic cerebral injury.DESIGN:Randomized controlled animal study.SETTING:Department of Neurological Histochemistry,Xianning University.MATERIALS:Forty Wistar rats of 7 - 8 days old,weighing 15 - 20 g and of both genders,were selected from Wuhan Experimental Animal Center.All the rats were randomly divided into sham operation group (n =8),model group (n =16) and radiation group (n =16).The experimental animals were disposed according to ethical criteria.BDNF kit was provided by Wuhan Boster Bioengineering Co.,Ltd.METHODS:The experiment was carried out in the Department of Neurological Histochemistry,Xianning University from April 2005 to October 2006.Rats in the radiation group and model group were performed with ligation of left common carotid artery,recovered at room temperature for 1-6 days,maintained in self-made hypoxic cabin under normal pressure and injected mixture gas (0.05 volume fraction of O2 and 0.92 volume fraction of N2) for 2 hours.In addition,rats in the sham operation group were treated with separation of left common carotid artery but not ligation and hypoxia.Rats in the model group were not given any treatment;while,rats in the radiation group were exposed with He-Ne laser of 63.28 nm in the wave length at Baihui and Dazhui acupoints on the second day after ischemia-hypoxia.The radiation was given for 10 minutes per day and once a day.Ten days were regarded as a course and the rats were exposed for 2 courses in

  17. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF in mouse ovaries: relationship to oocytes developmental potential.

    Directory of Open Access Journals (Sweden)

    Li-Min Wu

    Full Text Available BACKGROUND: Brain-derived neurotropic factor (BDNF was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. METHODS: Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. RESULTS: Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. CONCLUSION: BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  18. Plasma brain-derived neurotrophic factor levels are increased in patients with tinnitus and correlated with therapeutic effects.

    Science.gov (United States)

    Xiong, Hao; Yang, Haidi; Liang, Maojin; Ou, Yongkang; Huang, Xiayin; Cai, Yuexin; Lai, Lan; Pang, Jiaqi; Zheng, Yiqing

    2016-05-27

    Tinnitus is the perception of sound without an external source and is known to be associated with altered neuronal excitability in the auditory system. Tinnitus severity can be assessed by various psychometric instruments and there is no objective measures developed to evaluate tinnitus severity and therapeutic effects so far. Brain-derived nerve growth factor (BDNF) is believed in playing a key role in regulating neuronal excitability in the brain. To determine whether BDNF correlates with tinnitus induction and severity, we described plasma BDNF levels in patients with tinnitus and healthy controls and evaluated the correlation between plasma BDNF levels and tinnitus severity measured by Tinnitus Handicap Inventory (THI) and Visual Analog Scale (VAS). Moreover, alteration of plasma BDNF levels before and after tinnitus retraining therapy (TRT) in patients with severe tinnitus was also analyzed. We found plasma BDNF levels were elevated in patients with tinnitus compared with healthy controls. In addition, plasma BDNF levels in patients with severe tinnitus were decreased significantly after effective TRT. However, plasma BDNF levels were not correlated with tinnitus loudness and tinnitus severity measured by THI and VAS. These findings support plasma BDNF as a marker for activity changes in the auditory system and could possibly evaluate therapeutic effects in patients with tinnitus. PMID:27095590

  19. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.

    Science.gov (United States)

    Tsai, Chia-Liang; Pan, Chien-Yu; Chen, Fu-Chen; Wang, Chun-Hao; Chou, Feng-Ying

    2016-07-01

    What is the central question of this study? Neurocognitive functions can be enhanced by acute aerobic exercise, which could be associated with changes in serum brain-derived neurotrophic factor (BDNF) concentrations. We aimed to explore acute exercise-induced changes in BDNF concentrations, neuropsychological and neurophysiological performances when individuals with different levels of cardiorespiratory fitness performed a cognitive task. What is the main finding and its importance? Only young adults with higher cardiorespiratory fitness could attain switching cost and neurophysiological benefits via acute aerobic exercise. The mechanisms might be fitness dependent. Although acute aerobic exercise could enhance serum BDNF concentrations, changes in peripheral BDNF concentrations could not be the potential factor involved in the beneficial effects on neurocognitive performance. This study investigated the effects of acute aerobic exercise on neuropsychological and neurophysiological performances in young adults with different cardiorespiratory fitness levels when performing a task-switching protocol and explored the potential associations between acute aerobic exercise-induced changes in serum brain-derived neurotrophic factor (BDNF) concentrations and various neurocognitive outcomes. Sixty young adults were categorized into one control group (i.e. non-exercise-intervention; n = 20) and two exercise-intervention (EI) groups [i.e. higher (EIH , n = 20) and lower (EIL , n = 20) cardiorespiratory fitness] according to their maximal oxygen consumption. At baseline and after either an acute bout of 30 min of moderate-intensity aerobic exercise or a control period, the neuropsychological and neurophysiological performances and serum BDNF concentrations were measured when the participants performed a task-switching protocol involving executive control and greater demands on working memory. The results revealed that although acute aerobic exercise decreased reaction

  20. Can low brain-derived neurotrophic factor levels be a marker of the presence of depression in obese women?

    Directory of Open Access Journals (Sweden)

    Celik Guzel E

    2014-11-01

    Full Text Available Eda Celik Guzel,1 Esra Bakkal,1 Savas Guzel,2 Hasan Emre Eroglu,3 Ayse Acar,2 Volkan Kuçukyalcin,2 Birol Topcu4 1Department of Family Physician, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 2Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 4Department of Biostatistics, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey Objective: Depression is a common condition in obese women that can result in severe impairment of their physical and social functioning. A deficiency of brain-derived neurotrophic factor (BDNF is involved in the mechanism of depression. The aim of this study is to investigate whether BDNF levels differ between obese female patients and healthy controls and whether BDNF levels alter with affective states in depressive obese women.Methods: The study group included 40 obese, 40 preobese, and 40 normal weight women. BDNF levels were measured with an enzyme-linked immunosorbent assay in patient and control groups. For identifying the depression and anxiety status, Beck Depression/Anxiety Inventories were used; and for the evaluation of cognitive functions, the mini-mental state examination was used.Results: BDNF levels were significantly lower in obese patients compared to the control group (P<0.01. BDNF levels were significantly lower in obese patients with depression compared to the obese patients without depression (P<0.05. The Beck Depression Inventory showed a negative correlation with BDNF (r=−0.044; P<0.01 and a positive correlation with the Beck Anxiety Inventory (r=0.643; P<0.001, vitamin B12 levels (r=0.023; P<0.001, and insulin levels (r=0.257; P<0.05 in obese patients. When receiver operating characteristic curve analysis was used to analyze the suitability of BDNF to identify depression in obese women, the area under the curve for BDNF, 0.756, was found to be significant (P=0.025. BDNF

  1. Is serum brain-derived neurotrophic factor related to craving for or use of alcohol, cocaine, or methamphetamine?

    Directory of Open Access Journals (Sweden)

    Gangwani P

    2011-06-01

    Full Text Available Craig Hilburn, Vicki A Nejtek, Wendy A Underwood, Meharvan Singh, Gauravkumar Patel, Pooja Gangwani, Michael J ForsterUniversity of North Texas Health Science Center at Fort Worth, TX, USABackground: Data suggests that brain-derived neurotropic factor (BDNF plays a neuroadaptive role in addiction. Whether serum BDNF levels are different in alcohol or psychostimulants as a function of craving is unknown. Here, we examined craving and serum BDNF levels in persons with alcohol versus psychostimulant dependence. Our goals were to explore BDNF as an objective biomarker for 1 craving 2 abstinence, and 3 years of chronic substance use.Methods: An exploratory, cross-sectional study was designed. Men and women between 20–65 years old with alcohol, cocaine, or methamphetamine dependence were eligible. A craving questionnaire was used to measure alcohol, cocaine and methamphetamine cravings. Serum levels of BDNF were measured using enzyme linked immunoassay. Analysis of variance, chi-square, and correlations were performed using a 95% confidence interval and a significance level of P < 0.05.Results: We found a significant difference in the mean craving score among alcohol, cocaine and methamphetamine dependent subjects. There were no significant influences of race, gender, psychiatric disorder or psychotropic medication on serum BDNF levels. We found that among psychostimulant users BDNF levels were significantly higher in men than in women when the number of abstinent days was statistically controlled. Further, a significant correlation between serum BDNF levels and the number of abstinent days since last psychostimulant use was found.Conclusion: These data suggest that BDNF may be a biomarker of abstinence in psychostimulant dependent subjects and inform clinicians about treatment initiatives. The results are interpreted with caution due to small sample size and lack of a control group.Keywords: BDNF, alcohol, cocaine, methamphetamine, craving

  2. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine.

    Science.gov (United States)

    Savignac, Helene M; Corona, Giulia; Mills, Henrietta; Chen, Li; Spencer, Jeremy P E; Tzortzis, George; Burnet, Philip W J

    2013-12-01

    The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and

  3. Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model

    Directory of Open Access Journals (Sweden)

    Tomotsuka N

    2014-07-01

    Full Text Available Naoto Tomotsuka,1 Ryuji Kaku,1 Norihiko Obata,1 Yoshikazu Matsuoka,1 Hirotaka Kanzaki,2 Arata Taniguchi,1 Noriko Muto,1 Hiroki Omiya,1 Yoshitaro Itano,1 Tadasu Sato,3 Hiroyuki Ichikawa,3 Satoshi Mizobuchi,1 Hiroshi Morimatsu1 1Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2Department of Pharmacy, Okayama University Hospital, Okayama, Japan; 3Department of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai, Japan Abstract: Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF, known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons but not in medium or large neurons (non-nociceptive neurons. Further, expression of nerve growth factor (NGF, which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain. Keywords: BDNF, bone cancer pain, chronic pain, nerve growth

  4. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders: a randomised controlled study.

    Directory of Open Access Journals (Sweden)

    Maj Vinberg

    Full Text Available The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO on plasma brain derived neurotrophic factor (BDNF levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD (Hamilton Depression Rating Scale-17 items (HDRS-17 score >17 (study 1 and 43 patients with bipolar disorder (BD in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS ≤ 14 (study 2. In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU or saline (0.9% NaCl infusions in a double-blind, placebo-controlled, parallel--group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI: EPO 10.94 ng/l (4.51-21.41 ng/l; mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l p=0.04, partial ŋ2=0.12. No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35. The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers.ClinicalTrials.gov: NCT00916552.

  5. Lower Cerebrospinal Fluid Concentration of Brain-Derived Neurotrophic Factor Predicts Progression from Mild Cognitive Impairment to Alzheimer's Disease.

    Science.gov (United States)

    Forlenza, Orestes Vicente; Diniz, Breno Satler; Teixeira, Antonio Lucio; Radanovic, Marcia; Talib, Leda Leme; Rocha, Natalia Pessoa; Gattaz, Wagner Farid

    2015-09-01

    There is little information on the dynamics of BDNF in the CSF in the continuum between healthy aging, MCI and AD. We included 128 older adults (77 with amnestic MCI, 26 with AD and 25 healthy controls). CSF BDNF level was measured by ELISA assay, and AD biomarkers (Aβ42, T-Tau and P-Tau181) were measured using a Luminex xMAP assay. CSF BDNF levels were significantly reduced in AD subjects compared to MCI and healthy controls (p = 0.009). Logistic regression models showed that lower CSF BDNF levels (p = 0.008), lower CSF Aβ42 (p = 0.005) and lower MMSE scores (p = 0.007) are significantly associated with progression from MCI to AD. The present study adds strong evidence of the involvement of BDNF in the pathophysiology of neurodegenerative changes in AD. Interventions aiming to restore central neurotrophic support may represent future therapeutic targets to prevent or delay the progression from MCI to AD. PMID:26138246

  6. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    Institute of Scientific and Technical Information of China (English)

    Heather Bowling; Aditi Bhattacharya; Eric Klann; Moses V Chao

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plas-ticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuitsin vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the ma-jority of studies on synaptic plasticity, learning and memory were performed in acute brain slices orin vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these ifndings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  7. Protection of dopamine neurons by vibration training and up-regulation of brain-derived neurotrophic factor in a MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Zhao, L; He, L X; Huang, S N; Gong, L J; Li, L; Lv, Y Y; Qian, Z M

    2014-01-01

    It is unknown whether the longer duration of vibration training (VT) has a beneficial effect on Parkinson's disease (PD). And also, the mechanisms underlying the reported sensorimotor-improvement in PD induced by short-duration of VT has not been determined. Here, we investigated the effects of longer duration (4 weeks) of low amplitude vibration (LAV) training on the numbers of dopaminergic neurons in the substantia nigra by immunostaining and the levels of dopamine (DA) and brain-derived neurotrophic factor (BDNF) in the striatum by HPLC and ELISA in the chronic MPTP lesion mouse. We demonstrated for the first time that the longer duration of VT could significantly increase the numbers of nigrostriatal DA neurons and the contents of striatal DA and BDNF in the MPTP mice. Our findings implied that longer duration of VT could protect dopaminergic neurons from the MPTP-induced damage probably by upregulating BDNF and also provided evidence for the beneficial effect of longer duration of VT on PD at the cellular and molecular level. PMID:24908088

  8. Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat

    Directory of Open Access Journals (Sweden)

    Xia Chun-Mei

    2012-02-01

    Full Text Available Abstract Background In humans, inflammation of either the urinary bladder or the distal colon often results in sensory cross-sensitization between these organs. Limited information is known about the mechanisms underlying this clinical syndrome. Studies with animal models have demonstrated that activation of primary afferent pathways may have a role in mediating viscero-visceral cross-organ sensitization. Methods Colonic inflammation was induced by a single dose of tri-nitrobenzene sulfonic acid (TNBS instilled intracolonically. The histology of the colon and the urinary bladder was examined by hematoxylin and eosin (H&E stain. The protein expression of transient receptor potential (TRP ion channel of the vanilloid type 1 (TRPV1 and brain-derived neurotrophic factor (BDNF were examined by immunohistochemistry and/or western blot. The inter-micturition intervals and the quantity of urine voided were obtained from analysis of cystometrograms. Results At 3 days post TNBS treatment, the protein level of TRPV1 was increased by 2-fold (p Conclusion Acute colonic inflammation increases bladder activity without affecting bladder morphology. Primary afferent-mediated BDNF up-regulation in the sensory neurons regulates, at least in part, the bladder activity during colonic inflammation.

  9. Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats.

    Science.gov (United States)

    Sakr, H F; Abbas, A M; El Samanoudy, A Z

    2015-04-01

    Brain-derived neurotrophic factor (BDNF) is involved in the proliferation of neurons, and its expression increases significantly with exercise. We aimed to investigate the effects of chronic exercise (swimming) and sustained hypoxia on cortical BDNF expression in both the presence and absence of vitamin E. Sixty four male Sprague-Dawley rats were divided into two equal groups; a normoxic group and a hypoxic group. Both groups were equally subdivided into four subgroups: sedentary, sedentary with vitamin E, chronic exercise either with or without vitamin E supplementation. Arterial PO(2), and the levels of cortical malondialdehyde (MDA), antioxidants (reduced glutathione GSH, superoxide dismutase (SOD), catalase (CAT) and vitamin E) and BDNF gene expression were investigated. Hypoxia significantly increased MDA production and BDNF gene expression and decreased the antioxidants compared to control rats. Chronic exercise in hypoxic and normoxic rats increased MDA level and BDNF gene expression and decreased the antioxidants. Providing vitamin E supplementation to the hypoxic and normoxic rats significantly reduced MDA and BDNF gene expression and increased antioxidants. We conclude that sustained hypoxia and chronic exercise increased BDNF gene expression and induced oxidative stress. Moreover, vitamin E attenuated the oxidative stress and decreased BDNF gene expression in sustained hypoxia and chronic exercise which confirms the oxidative stress-induced stimulation of BDNF gene expression. PMID:25903950

  10. Serum brain-derived neurotrophic factor and cognitive functioning in underweight, weight-recovered and partially weight-recovered females with anorexia nervosa.

    Science.gov (United States)

    Zwipp, Johannes; Hass, Johanna; Schober, Ilka; Geisler, Daniel; Ritschel, Franziska; Seidel, Maria; Weiss, Jessika; Roessner, Veit; Hellweg, Rainer; Ehrlich, Stefan

    2014-10-01

    Several studies support the assumption that the brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of eating disorders. In the present cross-sectional and longitudinal study, we investigated BDNF levels in patients with anorexia nervosa (AN) at different stages of their illness and the association with cognitive functioning. We measured serum BDNF in 72 acutely underweight female AN patients (acAN), 23 female AN patients who successfully recovered from their illness (recAN), and 52 healthy control women (HCW). Longitudinally, 30 acAN patients were reassessed after short-term weight gain. The association between BDNF levels and psychomotor speed was investigated using the Trail Making Test. BDNF serum concentrations were significantly higher in recAN participants if compared to acAN patients and increased with short-term weight gain. In acAN patients, but not HCW, BDNF levels were inversely associated with psychomotor speed. AcAN patients with higher BDNF levels also had lower life time body mass indexes. Taken together, our results indicate that serum BDNF levels in patients with AN vary with the stage of illness. Based on the pleiotropic functions of BDNF, changing levels of this neurotrophin may have different context-dependent effects, one of which may be the modulation of cognitive functioning in acutely underweight patients. PMID:24859292

  11. Beyond the Hypothesis of Serum Anticholinergic Activity in Alzheimer's Disease: Acetylcholine Neuronal Activity Modulates Brain-Derived Neurotrophic Factor Production and Inflammation in the Brain.

    Science.gov (United States)

    Hachisu, Mitsugu; Konishi, Kimiko; Hosoi, Misa; Tani, Masayuki; Tomioka, Hiroi; Inamoto, Atsuko; Minami, Sousuke; Izuno, Takuji; Umezawa, Kaori; Horiuchi, Kentaro; Hori, Koji

    2015-01-01

    The brain of Alzheimer's disease (AD) patients is characterized by neurodegeneration, especially an acetylcholine (ACh) neuronal deficit with accumulation of β-amyloid protein, which leads to oxygen stress and inflammation. The active oxygen directly damages the neuron by increasing intracellular Ca(2+). The inflammation is due to activation of the microglia, thereby producing cytokines which inhibit the production of brain-derived neurotrophic factor (BDNF). As the BDNF acts by neuronal protection, synaptogenesis and neurogenesis, the reduction of BDNF in the brain of AD patients worsens the symptoms of AD. On the other hand, treatment of AD patients with a cholinesterase inhibitor enhances ACh activity and inhibits inflammation. Then the expression of BDNF is restored and neuroprotection reestablished. However, there are several reports which showed controversial results concerning the relationship between BDNF and AD. We speculate that BDNF is related to some neurocognitive process and reflects neuronal activity in other neurodegenerative and neuropsychiatric disorders and that in the mild cognitive impairment stage, BDNF and choline acetyltransferase (ChAT) activities are hyperactivated because of a compensatory mechanism of AD pathology. In contrast, in the mild stage of AD, BDNF and ChAT activity are downregulated. PMID:26138497

  12. Expression of gp120 in mice evokes anxiety behavior: Co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala.

    Science.gov (United States)

    Bachis, Alessia; Forcelli, Patrick; Masliah, Eliezer; Campbell, Lee; Mocchetti, Italo

    2016-05-01

    Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety. PMID:26845379

  13. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology.

    Science.gov (United States)

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease. PMID:26950209

  14. Low-frequency electrical stimulation improves neurite outgrowth of dorsal root ganglion neurons in vitro via upregulating Ca2+-mediated brain-derived neurotrophic factor expression

    Institute of Scientific and Technical Information of China (English)

    Lidan Wan; Rong Xia; Wenlong Ding

    2010-01-01

    Short-term,low-frequency electrical stimulation of neural tissues significantly enhances axonal regeneration of peripheral nerves following injury.However,little is known about the mechanisms of electrical stimulation to induce neurite outgrowth.In the present study,short-term,low-frequency electrical stimulation,using identical stimulation parameters of in vivo experiments,was administered to in vitro dorsal root ganglion(DRG)neurons.Enhanced neurite outgrowth,as well as synthesis and release of brain-derived neurotrophic factor(BDNF),were examined in electrical stimulation-treated DRG neuronal cultures.Because the effects of electrical stimulation on neuronal intracellular signaling molecules are less reported,classic calcium intracellular signals are directly or indirectly involved in electrical stimulation effects on neurons.Cultured DRG neurons were pretreated with the calcium channel blocker nifedipine,followed by electrical stimulation.Results suggested that electrical stimulation not only promoted in vitro neurite outgrowth,but also enhanced BDNF expression.However,nifedipine reduced electrical stimulation-enhanced neurite outgrowth and BDNF biosynthesis.These results suggest that the promoting effects of electrical stimulation on DRG neurite outgrowth could be associated with altered calcium influx,which is involved induction of neuronal BDNF expression and secretion.

  15. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury

    Science.gov (United States)

    Yi, Sheng; Yuan, Ying; Chen, Qianqian; Wang, Xinghui; Gong, Leilei; Liu, Jie; Gu, Xiaosong; Li, Shiying

    2016-01-01

    Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3′-UTR and caused both mRNA degradation and translation suppression of BDNF. Moreover, miR-1 induced BDNF mRNA degradation primarily through binding to target site 3 rather than target site 1 or 2 of BDNF 3′-UTR. Following rat sciatic nerve injury, a rough inverse correlation was observed between temporal expression profiles of miR-1 and BDNF in the injured nerve. The overexpression or silencing of miR-1 in cultured Schwann cells (SCs) inhibited or enhanced BDNF secretion from the cells, respectively, and also suppressed or promoted SC proliferation and migration, respectively. Interestingly, BDNF knockdown could attenuate the enhancing effect of miR-1 inhibitor on SC proliferation and migration. These findings will contribute to the development of a novel therapeutic strategy for peripheral nerve injury, which overcomes the limitations of direct administration of exogenous BDNF by using miR-1 to regulate endogenous BDNF expression. PMID:27381812

  16. Stem cells modified by brain-derived neurotrophic fac-tor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; WANG Yan-min; HU Qun-liang; MA Tie-zhu; SUN Shi-zhong

    2009-01-01

    Objective: To promote stem cells differentiation into neurons and enhance neuromotor function after brain in-jury through brain-derived neurotrophic factor (BDNF) induction.Methods: Recombinant adenovirus vector was ap-plied to the transfection of BDNF into human-derived um-bilical cord mesenchymal stem cells (UCMSCs). Enzyme linked immunosorbent assay (ELISA) was used to deter-mine the secretion phase of BDNF. The brain injury model of athymic mice induced by hydraulic pressure percussion was established for transplantation of stem cells into the edge of injury site. Nerve function scores were obtained, and the expression level of transfected and non-transfected BDNF, proportion of neuron specific enolase (NSE) andglial fibrillary acidic protein (GFAP), and the number of apoptosis cells were compared respectively. Results: The BDNF expression achieved its stabiliza-tion at a high level 72 hours after gene transfection. The mouse obtained a better score of nerve function, and the proportion of the NSE-positive cells increased significantly (P<0.05), but GFAP-positive cells decreased in BDNF-UCMSCs group compared with the other two groups (P<0.05). At the site of high expression of BDNF, the number of apoptosis cells decreased markedly.Conclusion: BDNF gene can promote the differentia-tion of the stem cells into neurons rather than gliai cells, and enhance neuromotor function after brain injury.

  17. Intermittent hypoxia with or without hypercapnia is associated with tumorigenesis by decreasing the expression of brain derived neurotrophic factor and miR-34a in rats

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Guo Xu; Shi Yanwei; Ma Jing; Wang Guangfa

    2014-01-01

    Background Very recent studies revealed that obstructive sleep apnoea (OSA) is a contributor of the increased incidence and mortality of cancer in humans,but mechanisms of how OSA promotes tumorigenesis remains largely unknown.We investigated whether intermittent hypoxia with and without hypercapnia plays a role in tumorigenesis.Methods First,Sprague-Dawley (SD) male rats (12 weeks old) were subjected to different hypoxia exposures:intermittent hypoxia and intermittent hypoxia with hypercapnia; continuous hypoxia and normal air.The systemic application of chronic fast rate hypoxia with or without hypercapnia mimicked severe OSA patients with apnoea/hypopnea index equivalent to 60 events per hour.Then routine blood tests were performed and the levels of brain derived neurotrophic factor (BDNF) and miR-34a were examined.Results In contrast to intermittent hypoxia with hypercapnia,both intermittent hypoxia and continuous hypoxia treatments caused significantly higher levels of haematology parameters than normoxia treatments.Compared to normoxia,intermittent hypoxia with hypercapnia exposure resulted in substantial decrease of serum BDNF and,miR-34a in the lower brainstem,while less pronounced results were found in intermittent hypoxia and continuous hypoxia exposure.Conclusions The exposure of intermittent hypoxia with or without hypercapnia,mimicking the situations in severe OSA patients,was associated with,or even promoted tumorigenesis.

  18. Brain-derived neurotrophic factor protects neurons from GdCl3-induced impairment in neuron-astrocyte co-cultures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gadolinium (Gd3+) complexes are important contrast agents in medical magnetic resonance imaging (MRI) and of great potential value in brain research. In order to better understand the mechanisms of the action of Gd3+ on neurons in the complex central nervous system (CNS), the neurotoxic actions of GdCl3 have been investigated in both neuron monoculture and astrocyte-neuron co-culture systems. Measurements of lactate dehydrogenase release showed that GdCl3 causes significant cell death of monocultured neurons as a result of reactive oxygen species (ROS) generation and down-regulation of brain-derived neurotrophic factor (BDNF). However, GdCl3 does not affect the viability and BDNF expression of astrocytes. Both co-culturing of neurons with astrocytes and addition of BDNF ameliorated GdCl3-induced neurotoxicity by decreasing ROS generation and facilitating recovery of BDNF levels. The results obtained suggest that astrocytes in the CNS may protect neurons from GdCl3-induced impairment through secreting BDNF and thus up-regulating BDNF expression and interfering with Gd3+-induced cell signaling in neurons. A possible molecular mechanism is suggested which should be helpful in understand- ing the neurotoxic actions of gadolinium probes .

  19. Lack of association between brain-derived neurotrophic factor Val66Met polymorphism and body mass index change over time in healthy adults.

    Science.gov (United States)

    Nikolac Perkovic, Matea; Mustapic, Maja; Pavlovic, Mladen; Uzun, Suzana; Kozumplik, Oliver; Barisic, Ivan; Muck-Seler, Dorotea; Pivac, Nela

    2013-06-17

    Obesity is becoming the epidemic health problem worldwide with a very complex etiology. The interaction between diverse genetic and environmental factors contributes to development of obesity. Among myriad of functions in central and peripheral tissues, brain-derived neurotrophic factor (BDNF) also regulates energy homeostasis, food intake and feeding behavior, and has a role in obesity and increased body mass index (BMI). BDNF Val66Met (rs6265) polymorphism is associated with BMI gain, but both positive associations and non-replications are reported. Since BMI changes over time and since genetic influences on BMI vary with age, the aim of the study was to evaluate association between BDNF Val66Met polymorphism and BMI gain in healthy subjects with middle or old age. The study included a cohort of 339 adult healthy Caucasians of Croatian origin, free of eating and metabolic disorders, evaluated in three time periods in the year 1972, 1982 and 2006, when the subjects were around 40, 50 and 70 years old, respectively. The results revealed a significant effect of smoking on BMI, but a lack of significant association between BDNF Val66Met polymorphism and overweight or obesity, and no significant association between BDNF Val66Met and BMI changes over time. These results did not confirm the major role of BDNF Val66Met in the regulation of BMI changes in adult and old healthy subjects. PMID:23643991

  20. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress

    Institute of Scientific and Technical Information of China (English)

    Shuang Liang; Renbin Huang; Xing Lin; Jianchun Huang; Zhongshi Huang; Huagang Liu

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression were significantly elevated, and depression-like behaviors were improved. Open-field and novelty-suppressed feeding tests showed that mouse activity levels were increased and feeding latency was shortened following treatment. Our results indicate that YLSPS inhibits depression by upregulating monoamine neurotransmitters, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression.

  1. Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer’s disease

    OpenAIRE

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Salwa M. Abo El-khair; Helaly, Ahmed MN; Mahmoud, El-Hassanin M; Elshafey, Saad H

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive degeneration of the hippocampal and cortical neurons. This study was designed to demonstrate the protective effect of caffeine on gene expression of brain derived neurotrophic factor (BDNF) and its receptor neural receptor protein-tyrosine kinase-β (TrkB) as well as glial fibrillary acidic protein (GFAP) and Ki-67 immunoreactivity in Aluminum chloride (AlCl3) induced animal model of AD. Fifty adult rats included in this...

  2. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    OpenAIRE

    LIU, QIULI; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmis...

  3. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    OpenAIRE

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka; McGinty, Jacqueline F.

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine pri...

  4. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  5. Association between obesity and the brain-derived neurotrophic factor gene polymorphism Val66Met in individuals with bipolar disorder in Mexican population

    Directory of Open Access Journals (Sweden)

    Morales-Marín ME

    2016-07-01

    Full Text Available Mirna Edith Morales-Marín,1 Alma Delia Genis-Mendoza,1,2 Carlos Alfonso Tovilla-Zarate,3 Nuria Lanzagorta,4 Michael Escamilla,5 Humberto Nicolini1,4 1Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN, CDMX, Mexico; 2Psychiatric Care Services, Child Psychiatric Hospital Dr Juan N Navarro, CDMX, Mexico; 3Genomics Research Center, Juarez Autonomous University of Tabasco, Comalcalco, Mexico; 4Carracci Medical Group, CDMX, Mexico; 5Department of Psychiatry, Paul L Foster School of Medicine, Texas Tech University Health Science Center, El Paso TX, USA Background: The brain-derived neurotrophic factor (BDNF has been considered as an important candidate gene in bipolar disorder (BD; this association has been derived from several genetic and genome-wide studies. A polymorphic variant of the BDNF (Val66Met confers some differences in the clinical presentation of affective disorders. In this study, we evaluated a sample population from Mexico City to determine whether the BDNF (rs6265 Val66Met polymorphism is associated with the body mass index (BMI of patients with BD.Methods: This association study included a sample population of 357 individuals recruited in Mexico City. A total of 139 participants were diagnosed with BD and 137 were classified as psychiatrically healthy controls (all individuals were interviewed and evaluated by the Diagnostic Interview for Genetic Studies. Genomic DNA was extracted from peripheral blood leukocytes. The quantitative polymerase chain reaction (qPCR assay was performed in 96-well plates using the TaqMan Universal Thermal Cycling Protocol. After the PCR end point was reached, fluorescence intensity was measured in a 7,500 real-time PCR system and evaluated using the SDS v2.1 software, results were analyzed with Finetti and SPSS software. Concerning BMI stratification, random groups were defined as follows: normal <25 kg/m2, overweight (Ow =25.1–29.9 kg/m2

  6. Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic acid.

    Directory of Open Access Journals (Sweden)

    Yuan-Hong Jiang

    Full Text Available To investigate urinary nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF levels in interstitial cystitis/bladder pain syndrome (IC/BPS patients after hyaluronic acid (HA therapy.Thirty-three patients with IC/BPS were prospectively studied; a group of 45 age-matched healthy subjects served as controls. All IC/BPS patients received nine intravesical HA instillations during the 6-month treatment regimen. Urine samples were collected for measuring urinary NGF and BDNF levels at baseline and 2 weeks after the last HA treatment. The clinical parameters including visual analog scale (VAS of pain, daily frequency nocturia episodes, functional bladder capacity (FBC and global response assessment (GRA were recorded. Urinary NGF and BDNF levels were compared between IC/BPS patients and controls at baseline and after HA treatment.Urinary NGF, NGF/Cr, BDNF, and BDNF/Cr levels were significantly higher in IC/BPS patients compared to controls. Both NGF and NGF/Cr levels significantly decreased after HA treatment. Urinary NGF and NGF/Cr levels significantly decreased in the responders with a VAS pain reduction by 2 (both p < 0.05 and the GRA improved by 2 (both p < 0.05, but not in non-responders. Urinary BDNF and BDNF/Cr did not decrease in responders or non-responders after HA therapy.Urinary NGF, but not BDNF, levels decreased significantly after HA therapy; both of these factors remained higher than in controls even after HA treatment. HA had a beneficial effect on IC/BPS, but it was limited. The reduction of urinary NGF levels was significant in responders, with a reduction of pain and improved GRA.

  7. Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation.

    Science.gov (United States)

    Frias, B; Allen, S; Dawbarn, D; Charrua, A; Cruz, F; Cruz, C D

    2013-03-27

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) known to participate in chronic somatic pain. A recent study has indicated that BDNF may participate in chronic cystitis at the peripheral level. However, the principal site of action for this NT is the central nervous system, most notably the spinal cord. The effects of centrally-acting BDNF on bladder function in normal animals and its central role during chronic cystitis are presently unknown. The present study was undertaken to clarify this issue. For that purpose, control non-inflamed animals were intrathecally injected with BDNF, after which bladder function was evaluated. This treatment caused short-lasting bladder hyperactivity; whereas chronic intrathecal administration of BDNF did not elicit this effect. Cutaneous sensitivity was assessed by mechanical allodynia as an internal control of BDNF action. To ascertain the role of BDNF in bladder inflammation, animals with cyclophosphamide-induced cystitis received intrathecal injections of either a general Trk receptor antagonist or a BDNF scavenger. Blockade of Trk receptors or BDNF sequestration notably improved bladder function. In addition, these treatments also reduced referred pain, typically observed in rats with chronic cystitis. Reduction of referred pain was accompanied by a decrease in the spinal levels of extracellular signal-regulated kinase (ERK) phosphorylation, a marker of increased sensory barrage in the lumbosacral spinal cord, and spinal BDNF expression. Results obtained here indicate that BDNF, acting at the spinal cord level, contributes to bladder hyperactivity and referred pain, important hallmarks of chronic cystitis. In addition, these data also support the development of BDNF modulators as putative therapeutic options for the treatment of chronic bladder inflammation. PMID:23313710

  8. Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: as a biological predictor of response to group cognitive behavioral therapy.

    Science.gov (United States)

    Kobayashi, Keisuke; Shimizu, Eiji; Hashimoto, Kenji; Mitsumori, Makoto; Koike, Kaori; Okamura, Naoe; Koizumi, Hiroki; Ohgake, Shintaro; Matsuzawa, Daisuke; Zhang, Lin; Nakazato, Michiko; Iyo, Masaomi

    2005-06-01

    Little is known about biological predictors of treatment response in panic disorder. Our previous studies show that the brain-derived neurotrophic factor (BDNF) may play a role in the pathophysiology of major depressive disorders and eating disorders. Assuming that BDNF may be implicated in the putative common etiologies of depression and anxiety, the authors examined serum BDNF levels of the patients with panic disorder, and its correlation with therapeutic response to group cognitive behavioral therapy (CBT). Group CBT (10 consecutive 1 h weekly sessions) was administered to the patients with panic disorder after consulting the panic outpatient special service. Before treatment, serum concentrations of BDNF and total cholesterol were measured. After treatment, we defined response to therapy as a 40% reduction from baseline on Panic Disorder Severity Scale (PDSS) score as described by [Barlow, D.H., Gorman, J.M., Shear, M.K., Woods, S.W., 2000. Cognitive-behavioral therapy, imipramine, or their combination for panic disorder: A randomized controlled trial. JAMA. 283, 2529-2536]. There were 26 good responders and 16 poor responders. 31 age- and sex-matched healthy normal control subjects were also recruited in this study. The serum BDNF levels of the patients with poor response (25.9 ng/ml [S.D. 8.7]) were significantly lower than those of the patients with good response (33.7 ng/ml [S.D. 7.5]). However, there were no significant differences in both groups of the patients, compared to the normal controls (29.1 ng/ml [S.D. 7.1]). No significant differences of other variables including total cholesterol levels before treatment were detected between good responders and poor responders. These results suggested that BDNF might contribute to therapeutic response of panic disorder. A potential link between an increased risk of secondary depression and BDNF remains to be investigated in the future. PMID:15905010

  9. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Alberto eCosta

    2015-09-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a trophic factor regulating cell survival and synaptic plasticity. Recent findings indicate that BDNF could be a potential regulatory factor for cognitive functioning in normal and/or neuropathological conditions. With regard to neurological disorders, recent data suggest that individuals with Parkinson’s disease (PD may be affected by cognitive deficits and that they have altered BDNF production. Therefore, the hypothesis can be advanced that BDNF levels are associated with the cognitive state of these patients. With this in mind, the present study was aimed at exploring the relationship between BDNF serum levels and cognitive functioning in PD patients with mild cognitive impairment (MCI. Thirteen PD patients with MCI were included in the study. They were administered an extensive neuropsychological test battery that investigated executive, episodic memory, attention, visual-spatial and language domains. A single score was obtained for each cognitive domain by averaging z-scores on tests belonging to that specific domain. BDNF serum levels were measured by enzyme-linked immunoassay (ELISA. Pearson’s correlation analyses were performed between BDNF serum levels and cognitive performance. Results showed a significant positive correlation between BDNF serum levels and both attention (p<0.05 and executive (p<0.05 domains. Moreover, in the executive domain we found a significant correlation between BDNF levels and scores on tests assessing working memory and self-monitoring/inhibition. These preliminary data suggest that BDNF serum levels are associated with cognitive state in PD patients with MCI. Given the role of BDNF in regulating synaptic plasticity, the present findings give further support to the hypothesis that this trophic factor may be a potential biomarker for evaluating cognitive changes in PD and other neurological syndromes associated with cognitive decline.

  10. Gender-specific Associations of the Brain-derived Neurotrophic Factor Val66Met Polymorphism with Neurocognitive and Clinical Features in Schizophrenia

    Science.gov (United States)

    Kim, Sung-Wan; Lee, Ju-Yeon; Kang, Hee-Ju; Kim, Seon-Young; Bae, Kyung-Yeol; Kim, Jae-Min; Shin, Il-Seon; Yoon, Jin-Sang

    2016-01-01

    Objective To explore associations of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with cognitive functioning and psychopathology in patients with schizophrenia. Methods We included 133 subjects meeting the DSM-IV criteria for schizophrenia who were in the post-acute stage of the disease. BDNF Val66Met genotypes were identified via polymerase chain reaction. The computerized neurocognitive function battery, Positive and Negative Syndrome Scale (PANSS), Calgary Depression Scale for Schizophrenia (CDSS), Social and Occupational Functioning Scale (SOFAS), and the Subjective Well-being under Neuroleptic Treatment (SWN-K) were administered. Gender-stratified sub-analysis was also conducted to identify gender-specific patterns in the findings. Results In male patients, no significant difference in any measure by BDNF genotype was evident. In female patients, scores on the CDSS and total PANSS and all subscales were significantly higher in valine (Val) carriers. In addition, scores on the SOFAS and SWN-K were significantly lower in Val carriers. In terms of neurocognitive measures, female patients with the Val allele had significantly poorer reaction times and fewer correct responses on the Continuous Performance Test (CPT) and the Trail Making Test (Parts A and B). After adjustment of PANSS total scores and log-transformed CDSS scores, CPT outcomes were significantly poorer in female patients with than in those without the Val allele. Conclusion Gender-specific associations of the Val allele with poor neurocognitive function and more severe psychopathology were evident. Further studies are required to explore the mechanisms of these differences and the potential utility of the BDNF genotype as a predictor of outcome in patients with schizophrenia. PMID:27489381

  11. The Role of the Val66Met Polymorphism of the Brain Derived Neurotrophic Factor Gene in Coping Strategies Relevant to Depressive Symptoms.

    Science.gov (United States)

    Caldwell, Warren; McInnis, Opal A; McQuaid, Robyn J; Liu, Gele; Stead, John D; Anisman, Hymie; Hayley, Shawn

    2013-01-01

    Disturbances of brain derived neurotrophic factor (BDNF) signalling have been implicated in the evolution of depression, which likely arises, in part, as a result of diminished synaptic plasticity. Predictably, given stressor involvement in depression, BDNF is affected by recent stressors as well as stressors such as neglect experienced in early life. The effects of early life maltreatment in altering BDNF signalling may be particularly apparent among those individuals with specific BDNF polymorphisms. We examined whether polymorphisms of the Val66Met genotype might be influential in moderating how early-life events play out with respect to later coping styles, cognitive flexibility and depressive features. Among male and female undergraduate students (N = 124), childhood neglect was highly related to subsequent depressive symptoms. This outcome was moderated by the BDNF polymorphism in the sense that depressive symptoms appeared higher in Met carriers who reported low levels of neglect than in those with the Val/Val allele. However, under conditions of high neglect depressive symptoms only increased in the Val/Val individuals. In effect, the Met polymorphism was associated with depressive features, but did not interact with early life neglect in predicting later depressive features. It was further observed that among the Val/Val individuals, the relationship between neglect and depression was mediated by emotion-focused styles and diminished perceived control, whereas this mediation was not apparent in Met carriers. In contrast to the more typical view regarding this polymorphism, the data are consistent with the perspective that in the presence of synaptic plasticity presumably associated with the Val/Val genotype, neglect allows for the emergence of specific appraisal and coping styles, which are tied to depression. In the case of the reduced degree of neuroplasticity expected in the Met carriers, early life adverse experiences are not tied to coping styles

  12. The Role of the Val66Met Polymorphism of the Brain Derived Neurotrophic Factor Gene in Coping Strategies Relevant to Depressive Symptoms.

    Directory of Open Access Journals (Sweden)

    Warren Caldwell

    Full Text Available Disturbances of brain derived neurotrophic factor (BDNF signalling have been implicated in the evolution of depression, which likely arises, in part, as a result of diminished synaptic plasticity. Predictably, given stressor involvement in depression, BDNF is affected by recent stressors as well as stressors such as neglect experienced in early life. The effects of early life maltreatment in altering BDNF signalling may be particularly apparent among those individuals with specific BDNF polymorphisms. We examined whether polymorphisms of the Val66Met genotype might be influential in moderating how early-life events play out with respect to later coping styles, cognitive flexibility and depressive features. Among male and female undergraduate students (N = 124, childhood neglect was highly related to subsequent depressive symptoms. This outcome was moderated by the BDNF polymorphism in the sense that depressive symptoms appeared higher in Met carriers who reported low levels of neglect than in those with the Val/Val allele. However, under conditions of high neglect depressive symptoms only increased in the Val/Val individuals. In effect, the Met polymorphism was associated with depressive features, but did not interact with early life neglect in predicting later depressive features. It was further observed that among the Val/Val individuals, the relationship between neglect and depression was mediated by emotion-focused styles and diminished perceived control, whereas this mediation was not apparent in Met carriers. In contrast to the more typical view regarding this polymorphism, the data are consistent with the perspective that in the presence of synaptic plasticity presumably associated with the Val/Val genotype, neglect allows for the emergence of specific appraisal and coping styles, which are tied to depression. In the case of the reduced degree of neuroplasticity expected in the Met carriers, early life adverse experiences are not tied

  13. Brain-derived neurotrophic factor Val⁶⁶Met polymorphism affects resting regional cerebral blood flow and functional connectivity differentially in women versus men.

    Science.gov (United States)

    Wei, Shau-Ming; Eisenberg, Daniel P; Kohn, Philip D; Kippenhan, Jonathan S; Kolachana, Bhaskar S; Weinberger, Daniel R; Berman, Karen F

    2012-05-16

    The human Val⁶⁶Met single nucleotide polymorphism in the brain-derived neurotrophic factor (BDNF) gene impacts BDNF signaling at the cellular level. At the neural-systems level, it is associated with differences in prefrontal cortex (PFC) and hippocampal function during performance of cognitive and affective tasks. Because the impact of this variant on basal prefrontal and hippocampal activity is not known but may be relevant to understanding the function of this gene in health and disease, we studied 94 healthy individuals with H₂ ¹⁵O PET to assess regional cerebral blood flow (rCBF) during rest and tested for between-genotype differences. Because BDNF and gonadal steroid hormones conjointly influence neuronal growth, survival, and plasticity in hippocampus and PFC, we also tested for sex × genotype interactions. Finally, in light of the known impact of BDNF on plasticity and dendritic arborization, we complimented direct rCBF comparisons with connectivity analyses to determine how activity in hippocampal and prefrontal regions showing between-genotype group differences covaries with rCBF in other nodes throughout the brain in a genotype- or sex-dependent manner. Compared with Val homozygotes, Met carriers had higher rCBF in prefrontal (BA25 extending into BA10) and hippocampal/parahippocampal regions. Moreover, there were significant sex × genotype interactions in regions (including frontal, parahippocampal, and lateral temporal cortex) in which Val homozygotes showed higher rCBF in females than males, but Met carriers showed the opposite relationship. Functional connectivity analysis demonstrated that correlations of BA25, hippocampus, and parahippocampus with frontal and temporal networks were positive for Val homozygotes and negative for Met carriers. In addition, sex × genotype analysis of functional connectivity revealed that genotype affected directionality of the inter-regional correlations differentially in men versus women. Our data indicate

  14. Reduced brain-derived neurotrophic factor expression in cortex and hippocampus involved in the learning and memory deficit in molarless SAMP8 mice

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing-song; LIANG Zi-liang; WU Min-Jie; FENG Lin; LIU Li-li; ZHANG Jian-jun

    2011-01-01

    Background The molarless condition has been reported to compromise learning and memory functions. However, it remains unclear how the molarless condition directly affects the central nervous system, and the functional consequences on the brain cortex and hippocampus have not been described in detail. The aim of this study was to find the molecular mechanism related with learning and memory deficit after a bilateral molarless condition having been surgically induced in senescence-accelerated mice/prone8 (SAMP8) mice, which may ultimately provide an experimental basis for clinical prevention of senile dementia.Methods Mice were either sham-operated or subjected to complete molar removal. The animals' body weights were monitored every day. Learning ability and memory were measured in a water maze test at the end of the 1 st, 2nd, and 3rd months after surgery. As soon as significantly prolonged escape latency in the molarless group was detected, the locomotor activity was examined in an open field test. Subsequently, the animals were decapitated and the cortex and hippocampus were dissected for Western blotting to measure the expression levels of brain-derived neurotrophic factor (BDNF) and the tropomyosin related kinase B (TrkB), the high affinity receptor of BDNF.Results Slightly lower weights were consistently observed in the molarless group, but there was no significant difference in weights between the two groups (P>0.05). Compared with the sham group, the molarless group exhibited lengthened escape latency in the water maze test three months after surgery, whereas no difference in locomotor activity was observed. Meanwhile, in the cortex and hippocampus, BDNF levels were significantly decreased in the molarless group (P<0.05); but the expression of its receptor, TrkB, was not significantly affected.Conclusion These results suggested that the molarless condition impaired learning and memory abilities in SAMP8mice three months after teeth extraction, and this

  15. Sex and age differences in brain-derived neurotrophic factor and vimentin in the zebra finch song system: Relationships to newly generated cells.

    Science.gov (United States)

    Tang, Yu Ping; Wade, Juli

    2016-04-01

    The neural song circuit is enhanced in male compared with female zebra finches due to differential rates of incorporation and survival of cells between the sexes. Two double-label immunohistochemical experiments were conducted to increase the understanding of relationships between newly generated cells (marked with bromodeoxyuridine [BrdU]) and those expressing brain-derived neurotrophic factor (BDNF) and vimentin, a marker for radial glia. The song systems of males and females were investigated at posthatching day 25 during a heightened period of sexual differentiation (following BrdU injections on days 6-10) and in adulthood (following a parallel injection paradigm). In both HVC (proper name) and the robust nucleus of the arcopallium (RA), about half of the BrdU-positive cells expressed BDNF across sexes and ages. Less than 10% of the BDNF-positive cells expressed BrdU, but this percentage was greater in juveniles than adults. Across both brain regions, more BDNF-positive cells were detected in males compared with females. In RA, the number of these cells was also greater in juveniles than adults. In HVC, the average cross-sectional area covered by the vimentin labeling was greater in males than females and in juveniles compared with adults. In RA, more vimentin was detected in juveniles than adults, and within adults it was greater in females. In juveniles only, BrdU-positive cells appeared in contact with vimentin-labeled fibers in HVC, RA, and Area X. Collectively, the results are consistent with roles of BDNF- and vimentin-labeled cells influencing sexually differentiated plasticity of the song circuit. PMID:26355496

  16. The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial.

    Science.gov (United States)

    Kimhy, David; Vakhrusheva, Julia; Bartels, Matthew N; Armstrong, Hilary F; Ballon, Jacob S; Khan, Samira; Chang, Rachel W; Hansen, Marie C; Ayanruoh, Lindsey; Lister, Amanda; Castrén, Eero; Smith, Edward E; Sloan, Richard P

    2015-07-01

    Individuals with schizophrenia display substantial neurocognitive deficits for which available treatments offer only limited benefits. Yet, findings from studies of animals, clinical and nonclinical populations have linked neurocognitive improvements to increases in aerobic fitness (AF) via aerobic exercise training (AE). Such improvements have been attributed to up-regulation of brain-derived neurotrophic factor (BDNF). However, the impact of AE on neurocognition, and the putative role of BDNF, have not been investigated in schizophrenia. Employing a proof-of-concept, single-blind, randomized clinical trial design, 33 individuals with schizophrenia were randomized to receive standard psychiatric treatment (n = 17; "treatment as usual"; TAU) or attend a 12-week AE program (n = 16) utilizing active-play video games (Xbox 360 Kinect) and traditional AE equipment. Participants completed assessments of AF (indexed by VO2 peak ml/kg/min), neurocognition (MATRICS Consensus Cognitive Battery), and serum-BDNF before and after and 12-week period. Twenty-six participants (79%) completed the study. At follow-up, the AE participants improved their AF by 18.0% vs a -0.5% decline in the TAU group (P = .002) and improved their neurocognition by 15.1% vs -2.0% decline in the TAU group (P = .031). Hierarchical multiple regression analyses indicated that enhancement in AF and increases in BDNF predicted 25.4% and 14.6% of the neurocognitive improvement variance, respectively. The results indicate AE is effective in enhancing neurocognitive functioning in people with schizophrenia and provide preliminary support for the impact of AE-related BDNF up-regulation on neurocognition in this population. Poor AF represents a modifiable risk factor for neurocognitive dysfunction in schizophrenia for which AE training offer a safe, nonstigmatizing, and side-effect-free intervention. PMID:25805886

  17. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    Science.gov (United States)

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR. PMID:25010399

  18. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner.

    Directory of Open Access Journals (Sweden)

    Alberto Jiménez-Maldonado

    Full Text Available BACKGROUND: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. METHODS: Wistar rats were divided into five groups: control (sedentary, C; moderate- intensity training (MIT; MIT plus K252A TrkB blocker (MITK; high-intensity training (HIT; and HIT plus K252a (HITK. Training comprised 8 weeks of treadmill running. Plasma BDNF levels (ELISA assay, glucose tolerance, insulin tolerance, and immunohistochemistry for insulin and the pancreatic islet area were evaluated in all groups. In addition, Bdnf mRNA expression in the skeletal muscle was measured. PRINCIPAL FINDINGS: Chronic treadmill exercise significantly increased plasma BDNF levels and insulin tolerance, and both effects were attenuated by TrkB blocking. In the MIT and HIT groups, a significant TrkB-dependent pancreatic islet enlargement was observed. MIT rats exhibited increased liver glycogen levels following insulin administration in a TrkB-independent manner. CONCLUSIONS/SIGNIFICANCE: Chronic physical exercise exerted remarkable effects on insulin regulation by inducing significant increases in the pancreatic islet size and insulin sensitivity in a TrkB-dependent manner. A threshold for the induction of BNDF in response to physical exercise exists in certain muscle groups. To the best of our knowledge, these are the first results to reveal a role for TrkB in the chronic exercise-mediated insulin regulation in healthy rats.

  19. Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses.

    Science.gov (United States)

    Baldelli, Pietro; Hernandez-Guijo, Jesus-Miguel; Carabelli, Valentina; Carbone, Emilio

    2005-03-30

    Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% ("supra-additivity"), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from "segregated" to "nonuniform" distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites. PMID:15800191

  20. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells.

    Science.gov (United States)

    Dixon, Kirsty J; Sherrard, Rachel M

    2006-11-01

    In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, post-lesion plasticity may generate alternate paths providing models to investigate factors that promote reinnervation to appropriate targets. Following unilateral transection of the neonatal rat olivocerebellar pathway, axons from the remaining inferior olive reinnervate the denervated hemicerebellum and develop climbing fiber arbors on Purkinje cells. However, the capacity to recreate this accurate target reinnervation in a mature system remains unknown. In rats lesioned on day 15 (P15) or 30 and treated with intracerebellar injection of brain-derived neurotrophic factor (BDNF) or vehicle 24 h later, the morphology and organisation of transcommissural olivocerebellar reinnervation was examined using neuronal tracing and immunohistochemistry. In all animals BDNF, but not vehicle, induced transcommissural olivocerebellar axonal growth into the denervated hemicerebellum. The distribution of reinnervating climbing fibers was not confined to the injection sites but extended throughout the denervated hemivermis and, less densely, up to 3.5 mm into the hemisphere. Transcommissural olivocerebellar axons were organised into parasagittal microzones that were almost symmetrical to those in the right hemicerebellum. Reinnervating climbing fiber arbors were predominantly normal, but in the P30-lesioned group 10% were either branched within the molecular layer forming a smaller secondary arbor or were less branched, and in the P15 lesion group the reinnervating arbors extended their terminals almost to the pial surface and were larger than control arbors (P < 0.02). These results show that BDNF can induce transcommissural olivocerebellar reinnervation, which resembles developmental neuroplasticity to promote appropriate target reinnervation in a mature environment. PMID:16790241

  1. Tumor necrosis factor-α increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner.

    Science.gov (United States)

    Bałkowiec-Iskra, E; Vermehren-Schmaedick, A; Balkowiec, A

    2011-04-28

    Many chronic trigeminal pain conditions, such as migraine or temporo-mandibular disorders, are associated with inflammation within peripheral endings of trigeminal ganglion (TG) sensory neurons. A critical role in mechanisms of neuroinflammation is attributed to proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α (TNFα) that also contribute to mechanisms of persistent neuropathic pain resulting from nerve injury. However, the mechanisms of cytokine-mediated synaptic plasticity and nociceptor sensitization are not completely understood. In the present study, we examined the effects of TNFα on neuronal expression of brain-derived neurotrophic factor (BDNF), whose role in synaptic plasticity and sensitization of nociceptive pathways is well documented. We show that 4- and 24-h treatment with TNFα increases BDNF mRNA and protein, respectively, in neuron-enriched dissociated cultures of rat TG. TNFα increases the phosphorylated form of the cyclic AMP-responsive element binding protein (CREB), a transcription factor involved in regulation of BDNF expression in neurons, and activates transcription of BDNF exon IV (former exon III) and, to a lesser extent, exon VI (former exon IV), but not exon I. TNFα-mediated increase in BDNF expression is accompanied by increase in calcitonin gene-related peptide (CGRP), which is consistent with previously published studies, and indicates that both peptides are similarly regulated in TG neurons by inflammatory mediators. The effect of TNFα on BDNF expression is dependent on sodium influx through TTX-sensitive channels and on p38-mitogen-activated protein kinase. Moreover, electrical stimulation and forskolin, known to increase intracellular cAMP, potentiate the TNFα-mediated upregulation of BDNF expression. This study provides new evidence for a direct action of proinflammatory cytokines on TG primary sensory neurons, and reveals a mechanism through which TNFα stimulates de novo synthesis of BDNF in

  2. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking.

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A; Vu, Tania Q

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  3. Acute intermittent hypoxia-induced expression of Brain-Derived Neurotrophic Factor is disrupted in the brainstem of mecp2 null mice

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K.; Knopp, Sharon J.; Balkowiec, Agnieszka; Bissonnette, John M.

    2012-01-01

    Rett syndrome is a neurodevelopmental disorder caused by loss of function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2−/y) mice were subjected to three 5-min episodes of exposure to 8% O2/4% CO2/88% N2, delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, i.e. 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking Mecp2. The results indicate that Mecp2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo. PMID:22297041

  4. Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice.

    Science.gov (United States)

    Vermehren-Schmaedick, A; Jenkins, V K; Knopp, S J; Balkowiec, A; Bissonnette, J M

    2012-03-29

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2(-/y)) mice were subjected to three 5-min episodes of exposure to 8% O(2)/4% CO(2)/88% N(2), delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, that is, 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking MeCP2. The results indicate that MeCP2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo. PMID:22297041

  5. Glia determine the course of brain-derived neurotrophic factor-mediated dendritogenesis and provide a soluble inhibitory cue to dendritic growth in the brainstem.

    Science.gov (United States)

    Martin, J L; Brown, A L; Balkowiec, A

    2012-04-01

    Cardiorespiratory control neurons in the brainstem nucleus tractus solitarius (NTS) undergo dramatic expansion of dendritic arbors during the early postnatal period, when functional remodeling takes place within the NTS circuitry. However, the underlying molecular mechanisms of morphological maturation of NTS neurons are largely unknown. Our previous studies point to the neurotrophin brain-derived neurotrophic factor (BDNF), which is abundantly expressed by NTS-projecting primary sensory neurons, as a candidate mediator of NTS dendritogenesis. In the current study, we used neonatal rat NTS neurons in vitro to examine the role of BDNF in the dendritic development of neurochemically identified subpopulations of NTS neurons. In the presence of abundant glia, BDNF promoted NTS dendritic outgrowth and complexity, with the magnitude of the BDNF effect dependent on neuronal phenotype. Surprisingly, BDNF switched from promoting to inhibiting NTS dendritogenesis upon glia depletion. Moreover, glia depletion alone led to a significant increase in NTS dendritic outgrowth. Consistent with this result, astrocyte-conditioned medium (ACM), which promoted hippocampal dendritogenesis, inhibited dendritic growth of NTS neurons. The latter effect was abolished by heat-inactivation of ACM, pointing to a diffusible astrocyte-derived negative regulator of NTS dendritic growth. Together, these data demonstrate a role for BDNF in the postnatal development of NTS neurons, and reveal novel effects of glia on this process. Moreover, previously documented dramatic increases in NTS glial proliferation in victims of sudden infant death syndrome (SIDS) underscore the importance of our findings and the need to better understand the role of glia and their interactions with BDNF during NTS circuit maturation. Furthermore, while it has previously been demonstrated that the specific effects of BDNF on dendritic growth are context-dependent, the role of glia in this process is unknown. Thus, our data

  6. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells.

    Science.gov (United States)

    Kashiwai, Kei; Kajiya, Mikihito; Matsuda, Shinji; Ouhara, Kazuhisa; Takeda, Katsuhiro; Takata, Takashi; Kitagawa, Masae; Fujita, Tsuyoshi; Shiba, Hideki; Kurihara, Hidemi

    2016-07-01

    Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc. PMID:26581032

  7. Title: Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    Directory of Open Access Journals (Sweden)

    Gian David Greenberg

    2014-01-01

    Full Text Available Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus, a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF protein but not mRNA in the bed nucleus of the stria terminalis (BNST in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc. The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.

  8. Associations of Cigarette Smoking and Polymorphisms in Brain-Derived Neurotrophic Factor and Catechol-O-Methyltransferase with Neurocognition in Alcohol Dependent Individuals during Early Abstinence

    Directory of Open Access Journals (Sweden)

    TimothyDurazzo

    2012-10-01

    Full Text Available Chronic cigarette smoking and polymorphisms in brain-derived neurotrophic factor (BDNF and catechol-o-methyltransferase (COMT are associated with neurocognition in normal controls and those with various neuropsychiatric conditions. The influence of these polymorphisms on neurocognition in alcohol dependence is unclear. The goal of this report was to investigate the associations of single nucleotide polymorphisms (SNP in BDNF Val66Met and COMT Val158Met with neurocognition in a treatment-seeking alcohol dependent cohort and determine if neurocognitive differences between non-smokers and smokers previously observed in this cohort persist when controlled for these functional SNPs. Genotyping was conducted on 70 primarily male treatment-seeking alcohol dependent participants (ALC who completed a comprehensive neuropsychological battery after 33 ± 9 days of monitored abstinence. Smoking ALC performed significantly worse than non-smoking ALC on the domains of auditory-verbal and visuospatial learning and memory, cognitive efficiency, general intelligence, processing speed and global neurocognition. In smoking ALC, greater number of years of smoking over lifetime was related to poorer performance on multiple domains. COMT Met homozygotes were superior to Val homozygotes on measures of executive skills and showed trends for higher general intelligence and visuospatial skills, while COMT Val/Met heterozygotes showed significantly better general intelligence than Val homozygotes. COMT Val homozygotes performed better than heterozygotes on auditory-verbal memory. BDNF genotype was not related to any neurocognitive domain. The findings are consistent with studies in normal controls and neuropsychiatric cohorts that observed COMT Met carriers showed better performance on measures of executive skills and general intelligence. Overall, the findings support to the expanding clinical movement to make smoking cessation programs available at the inception of

  9. Serum levels of brain-derived neurotrophic factor in acute and posttraumatic stress disorder: a case report study Nível sérico do fator neurotrófico derivado do cérebro no transtorno de estresse agudo e no transtorno de estresse pós-traumático: relato de casos

    OpenAIRE

    Simone Hauck; Fabiano Gomes; Érico de Moura Silveira Júnior; Ellen Almeida; Marianne Possa; Lúcia Helena Freitas Ceitlin

    2009-01-01

    OBJECTIVE: The aim of this study was to evaluate brain-derived neurotrophic factor levels in two patients, one with posttraumatic stress disorder and one with acute stress disorder, before and after treatment, and to compare those levels to those of healthy controls. METHOD: Brain-derived neurotrophic factor level, Davidson Trauma Scale, Beck Depression Inventory, Global Assessment of Functioning, and Clinical Global Impression were assessed before and after 6 weeks of treatment. RESULTS: Bra...

  10. Influence of ginsenoside on expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in the medial septum of aged rats

    Institute of Scientific and Technical Information of China (English)

    Liang Zeng; Haihua Zhao; Yongli Lü; Wenbo Dai

    2008-01-01

    BACKGROUND: It has been shown that ginsenoside, the effective component of ginseng, can enhance expression of choline acetyl transferase, as well as brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB), in cholinergic neurons of the basal forebrain.OBJECTIVE: To qualitatively and quantitatively verify the influence of ginsenoside on expression of BDNF and its receptor, TrkB, in the medial septum of aged rats, and to provide a molecular basis for clinical application.DESIGN, TIME AND SETTING: A contrast study, which was performed in the Department of Anatomy, China Medical University, and the Department of Anatomy, Shenyang Medical College between December 2005 and May 2007.MATERIALS: Thirty-five, healthy, female, Sprague Dawley rats were selected for this study. Ginsenoside (81% purity) was provided by Jilin Ji'an Wantai Chinese Medicine Factory; anti-BDNF antibody, anti-TrkB antibody, and their kits were provided by Wuhan Boster Company.METHODS: A total of 35 rats were divided into three groups: young (four months old), aging (26 months old), and ginsenoside. Rats in the ginsenoside group were administered ginsenoside (25mg/kg/d) between 17 months and 26 months.MAIN OUTCOME MEASURES: Immunohistochemistry and in situ hybridization were used to measure expression of BDNF and TrkB in the medial septum of aged rats, and the detected results were expressed as gray values.RESULTS: ①Qualitative detection: using microscopy, degenerative neurons were visible in the medial septum in the aging group. However, neuronal morphology in the ginsenoside group was similar to neurons in the young group.②Quantitative detection: the mean gray value of BDNF-positive and TrkB-positive products in the aging group were significantly higher than in the young group (t=3.346,4.169, P<0.01); however, the mean gray value in the ginsenoside group was significantly lower than in the aging group (t=2.432,2.651, P<0.01).CONCLUSION: Ginsenoside can increase

  11. Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training.

    Science.gov (United States)

    Enge, Sören; Fleischhauer, Monika; Gärtner, Anne; Reif, Andreas; Lesch, Klaus-Peter; Kliegel, Matthias; Strobel, Alexander

    2016-01-01

    Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged

  12. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  13. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats

    Institute of Scientific and Technical Information of China (English)

    LI Ying; JI Yong-juan; JIANG Hong; LIU De-xiang; ZHANG Qian; FAN Shu-jian; PAN Fang

    2009-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Methods Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Results Age and stress had different effects on the behavior of different aged animals (age: F=6.173, P <0.05, stress: F=6.056, P <0.05). Stress was the main factor affecting sucrose preference (F=123.608, P <0.05). Decreased sucrose preference and suppressed behavior emerged directly following stress, lasting to at least the eighth day after stress in young animals (P <0.05). The older stress rats showed a lower sucrose preference than young stress rats (P <0.05). Older control rats behaved differently from the younger control animals in the OF test, spending more time in the central square (P <0.05), exhibiting fewer vertical movements (P <0.05) and less grooming (P <0.05). Following exposure to stress, older-aged rats showed no obvious changes in vertical movement and grooming. This indicates that aged rats were in an unexcited state before the stress period, and responded less to stressful stimuli than younger rats. There was significantly lower BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress

  14. Effects of electroconvulsive therapy and repetitive transcranial magnetic stimulation on serum brain-derived neurotrophic factor levels in patients with depression

    Directory of Open Access Journals (Sweden)

    Laura eGedge

    2012-02-01

    Full Text Available Objective: Brain-derived neurotrophic factor (BDNF levels are decreased in individuals with depression and increase following antidepressant treatment. The objective of this study is to compare pre- and post-treatment serum BDNF levels in patients with drug-resistant major depressive disorder (MDD who received either electroconvulsive therapy (ECT or repetitive transcranial magnetic stimulation (rTMS. It is hypothesized that non-pharmacological treatments also increase serum BDNF levels.Methods: This was a prospective, single-blind study comparing pre- and post-treatment serum BDNF levels of twenty-nine patients with drug-resistant MDD who received ECT or rTMS treatment. Serum BDNF levels were measured one week prior to and one week after treatment using the sandwich ELISA technique. Depression severity was measured one week before and one week after treatment using the Hamilton Depression Rating Scale. Two-sided normal distribution paired t-test analysis was used to compare pre- and post-treatment BDNF concentration and illness severity. Bivariate correlations using Pearson's coefficient assessed the relationship between post-treatment BDNF levels and post-treatment depression severity.Results: There was no significant difference in serum BDNF levels before and after ECT, although concentrations tended to increase from a baseline mean of 9.95 ng/ml to 12.29 ng/ml after treatment (p= 0.137. Treatment with rTMS did not significantly alter BDNF concentrations (p= 0.282. Depression severity significantly decreased following both ECT (p= 0.003 and rTMS (p< 0.001. Post-treatment BDNF concentration was not significantly correlated with post-treatment depression severity in patients who received either ECT (r= -0.133, p= 0.697 or rTMS (r= 0.374, p= 0.126.Conclusion: This study suggests that ECT and rTMS may not exert their clinical effects by altering serum BDNF levels. Serum BDNF concentration may not be a biomarker of ECT or rTMS treatment response.

  15. Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers

    Directory of Open Access Journals (Sweden)

    Sulejczak Dorota

    2009-12-01

    Full Text Available Abstract Background It has been postulated that exercise-induced activation of brain-derived neurotrophic factor (BDNF may account for improvement of stepping ability in animals after complete spinal cord transection. As we have shown previously, treadmill locomotor exercise leads to up-regulation of BDNF protein and mRNA in the entire neuronal network of intact spinal cord. The questions arise: (i how the treadmill locomotor training, supplemented with tail stimulation, affects the expression of molecular correlates of synaptic plasticity in spinal rats, and (ii if a response is related to BDNF protein level and distribution. We investigated the effect of training in rats spinalized at low thoracic segments on the level and distribution of BDNF immunoreactivity (IR in ventral quadrants of the lumbar segments, in conjunction with markers of presynaptic terminals, synaptophysin and synaptic zinc. Results Training improved hindlimb stepping in spinal animals evaluated with modified Basso-Beattie-Bresnahan scale. Grades of spinal trained animals ranged between 5 and 11, whereas those of spinal were between 2 and 4. Functional improvement was associated with changes in presynaptic markers and BDNF distribution. Six weeks after transection, synaptophysin IR was reduced by 18% around the large neurons of lamina IX and training elevated its expression by over 30%. The level of synaptic zinc staining in the ventral horn was unaltered, whereas in ventral funiculi it was decreased by 26% postlesion and tended to normalize after the training. Overall BDNF IR levels in the ventral horn, which were higher by 22% postlesion, were unchanged after the training. However, training modified distribution of BDNF in the processes with its predominance in the longer and thicker ones. It also caused selective up-regulation of BDNF in two classes of cells (soma ranging between 100-400 μm2 and over 1000 μm2 of the ventrolateral and laterodorsal motor nuclei

  16. Ginsenoside Rg1 changes brain-derived neurotrophic factor expression in the facial nucleus of rats after ovariectomy:A semiquantitative analysis

    Institute of Scientific and Technical Information of China (English)

    Cuiying Zhou; Wenlong Luo; Dong Wang

    2009-01-01

    BACKGROUND: Estrogen is neuroprotective, but long-term estrogen treatment can induce side effects such as breast carcinoma, endometrial cancer, and stroke. However, phytoestrogen is neuroprotective without these side effects.OBJECTIVE: To study the effects of Ginsenoside Rg1 on facial neurons and brain-derived neurotrophic factor (BDNF) expression in the facial nucleus in ovariectomized rats.DESIGN, TIME AND SETTING: The randomized, controlled animal experiments were performed at the Ultrasonic Institute, Second Affiliated Hospital, Chongqing Medical University, China, from September 2007 to September 2008.MATERIALS: Ginsenoside Rg1 (Sigma, USA), rabbit anti-rat BDNF, Bcl-2, Bax antibodies, biotin-labeled goat anti-rabbit IgG (Boster, China), and a TUNEL kit (Roche, Germany) were used in this study.METHODS: A total of 48 adult Sprague Dawley rats undergoing ovariectomy were randomly assigned into sham operation (n=8), model (n=20), and Ginsenoside Rg1 (n=20) groups. Facial nerve damage was induced by bilateral clamping of the facial nerve trunk. The bilateral facial nerve trunk was exposed in the sham operation group, with no clamping. Rats in the Ginsenoside Rg1 group were intraperitoneally injected with 10 mg/kg per day Ginsenoside Rg1; other groups received 2 mL saline, once a day, for 14 days.MAIN OUTCOME MEASURES: Morphologic changes in neurons of the facial nucleus were observed following hematoxylin-eosin staining. Neuronal apoptosis was detected by TUNEL. Changes in ultrastructure of the facial nerve fibers were observed with a transmission electron microscope. Expression of BDNF, Bcl-2, and Bax protein was quantified by semiquantitative immunohistochemistry.RESULTS: At 3-14 days following facial nerve damage, Ginsenoside Rg1 increased BDNF expression and the number of regenerated nerve fibers, and produced thicker myelin sheaths (P< 0.05). Ginsenoside Rg1 also gradually increased Bcl-2 protein expression and decreased Bax protein expression (P < 0.05). By

  17. P2X4-receptor mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation

    OpenAIRE

    Trang, Tuan; Beggs, Simon; Wan, Xiang; Salter, Michael W

    2009-01-01

    Microglia in the dorsal horn of the spinal cord are increasingly recognized as being crucial in the pathogenesis of pain hypersensitivity following injury to a peripheral nerve. It is known that P2X4 purinoceptors (P2X4Rs) cause the release of brain-derived neurotrophic factor (BDNF) from microglia, which is necessary for maintaining pain hypersensitivity after nerve injury. However, there is a critical gap in understanding how activation of microglial P2X4Rs leads to the release of BDNF. Her...

  18. Facial nucleus up-regulation of brain-derived neurotrophic factor mRNA following electroacupuncture treatment in a rabbit model of facial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Hong Gao; Bangyu Ju; Guohua Jiang

    2008-01-01

    BACKGROUND: The effect of acupuncture treatment on peripheral facial nerve injury is generally accepted. However, the mechanisms of action remain poorly understood. OBJECTIVE: To validate the effect of acupoint electro-stimulation on brain-derived neurotrophic factor (BDNF) mRNA expression in the facial nucleus of rabbits with facial nerve injury, with the hypothesis that acupuncture treatment efficacy is related to BDNE DESIGN, TIME AND SETTING: Peripheral facial nerve injury, in situ hybridization, and randomized, controlled, animal trial. The experiment was performed at the Laboratory of Anatomy, Heilongjiang University of Chinese Medicine from March to September 2005. MATERIALS: A total of 120 healthy, adult, Japanese rabbits, with an equal number of males and females were selected. Models of peripheral facial nerve injury were established using the facial nerve pressing method. METHODS: The rabbits were randomly divided into five groups (n = 24): sham operation, an incision to the left facial skin, followed by suture; model, no treatment following facial nerve model establishment; western medicine, 10 mg vitamin B1, 50 μg vitamin B12, and dexamethasone (2 mg/d, reduced to half every 7 days) intramuscular injection starting with the first day following lesion, once per day; traditional acupuncture, acupuncture at Yifeng, Quanliao, Dicang, Jiache, Sibai, and Yangbai acupoints using a acupuncture needle with needle twirling every 10 minutes, followed by needle retention for 30 minutes, for successive 5 days; electroacupuncture, similar to the traditional acupuncture group, the Yifeng (negative electrode), Jiache (positive electrode), Dicang (negative electrode), and Sibai (positive electrode) points were connected to an universal pulse electro-therapeutic apparatus for 30 minutes per day, with disperse-dense waves for successive 5 days, and resting for 2 days. MAIN OUTCOME MEASURES: Left hemisphere brain stem tissues were harvested on post-operative days 7, 14

  19. Changes in brain-derived neurotrophic factor expression after transplanting microencapsulated sciatic nerve cells of rabbits into injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Changes of brain-derived neurotrophic factor (BDNF) expression reflect function of nerve cells; meanwhile, they play a significant role in researching interventions on plerosis of nerve injury.OBJECTIVE: To observe and compare the effects on changes of BDNF expression in rats with spinal cord injury between microencapsulated sciatic nerve cells of rabbits and only transplanting sciatic nerve cells of rabbits.DESIGN: Randomized controlled animal study.SETTING: Medical School of Jiujiang College.MATERIALS: The experiment was carried out in the Medical Science Researching Center, Jiujiang College from May 2004 to May 2006. A total of 90 healthy adult SD rats, weighing 250 - 300 g, of either gender; and 10 rabbits, weighing 2.0 - 2.5 kg, of either gender, were provided by Jiangxi Experimental Animal Center.METHODS: Sciatic nerve tissue of rabbits was separated to make cell suspension. After centrifugation,suspension was mixed with 15 g/L alginate saline solution and ejaculated to 20 mmol/L barium chloride saline solution by double-cavity ejaculator. The obtained cell microcapsules were suspended in saline. Rats were randomly divided into microencapsulated group, only suspension group, and only injured group with 30 animals in each group. After anesthesia, T10 spinous process and vertebra lamina of rats in the former two groups were exposed. Spinal cord tissue in 2-mm length was removed from rats by spinal cord right hemi-section. The gelatin sponges with the size of 2 mm × 2 mm × 2 mm were grafted as filing cage,and absorbed 10 μμ L microencapsulated sciatic nerve cells of rabbit in the microencapsulated group and 10 μ L sciatic nerve cells of rabbits in the only suspension group; respectively. No graft was placed in the only injured group.MAIN OUTCOME MEASURES: On the 1st, 3rd, 7th, 14th and 28th days after operation,immunohistochemistry (SABC technique) was used to detect distribution and amount of positive-reactive neurons in BDNF of spinal cord

  20. Brain-derived neurotrophic factors increase the proliferation and differentiation of endogenous neural stem cells in mouse models of cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Dawei Zang; Juan Liu; Xianhua Zuo; Surindar Cheema

    2007-01-01

    BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous NSCs in vivo is still unclear.OBJECTIVE: To evaluate whether BDNF can induce the endogenous NSCs to proliferate and differentiate into the neurons in the mice model of cerebral infarction.DESIGN: A synchronal controlled observation.SETTINGS: Department of Neurology, Microbiology Division of the Department of Laboratory, Tianjin First Central Hospital; Howard Florey Institute, Medical College, the University of Melbourne.MATERIALS: Twenty-four pure breed C57BL/6J mice at the age of 10 weeks old (12 males and 12 females)were divided into saline control group and BDNF-treated group, 6 males and 6 females in each group.METHODS: The experiments were performed at the University of Melbourne from July 2004 to February 2005. ① The left middle cerebral artery (MCA) was ligated in both groups to establish models of cerebral infarction and the Matsushita measuring method was used to monitor the blood flow of the lesioned region supplied by MCA. 75% reduction of blood flow should be reached in the lesioned region. ② At 24 hours after infarction, mice in the BDNF-treated group were administrated with BDNF, which was slowly delivered using an ALZET osmium pump design. BDNF was dissolved in saline at the dosage of 500 mg/kg and injected into the pump, which could release the solution consistently in the following 28 days. The mice in the saline control group accepted the same volume of saline at 24 hours after infarction. ③ The Rotarod function test began at 1 week preoperatively, the time stayed on Rotarod was recorded. The mice were tested once a day till the end of the experiment. At 4 weeks post cerebral infarction, double labeling of Nestin and GFAP, BⅢ tubulin and CNPase immunostaining was performed to observe the differentiation directions of the re

  1. Disruption of the brain-derived neurotrophic factor (BDNF) immunoreactivity in the human Kölliker-Fuse nucleus in victims of unexplained fetal and infant death

    OpenAIRE

    Anna Maria Lavezzi

    2014-01-01

    Experimental studies have demonstrated that the neurotrophin brain-derived neutrophic factor (BDNF) is required for the appropriate development of the central respiratory network, a neuronal complex in the brainstem of vital importance to sustaining life. The pontine Kölliker-Fuse nucleus (KFN) is a fundamental component of this circuitry with strong implications in the pre- and postnatal breathing control. This study provides detailed account for the cytoarchitecture, the physiology and the ...

  2. Repair of spinal cord injury by neural stem cells transfected with brain-derived neurotrophic factor-green fluorescent protein in rats A double effect of stem cells and growth factors

    Institute of Scientific and Technical Information of China (English)

    Yansong Wang; Gang Lü

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)can significantly promote nerve regeneration and repair.High expression of the BDNF-green fluorescent protein(GFP)gene persists for a long time after transfection into neural stem cells.Nevertheless,little is known about the biological characteristics of BDNF-GFP modified nerve stem cells in vivo and their ability to induce BDNF expression or repair spinal cord injury.In the present study,we transplanted BDNF-GFP transgenic neural stem cells into a hemisection model of rats.Rats with BDNF-GFP stem cells exhibited significantly increased BDNF expression and better locomotor function compared with stem cells alone.Cellular therapy with BDNF-GFP transgenic stem cells can improve outcomes better than stem cells alone and may have therapeutic potential for spinal cord injury.

  3. Diagnostic value of serum brain-derived neurotrophic factor in bipolar disorder%血清脑源性神经营养因子对双相障碍诊断价值研究

    Institute of Scientific and Technical Information of China (English)

    谢筱颖; 蒋健昌; 李永生; 蓝燕玲

    2016-01-01

    Objective To investigate the diagnostic value of serum levels of brain-derived neurotrophic factor (BDNF) in bipo-lar disorder. Methods One hundred cases with bipolar disorder in our hospital from January 2013 to January 2016 were assessed using the manic scale (YMRS),functional assessment table (GAF) and depression table (MADRS),consisting of bipolar depression group(n=50) and bipolar mania group(n=50). In addition,50 cases with pure depression and 50 healthy participants were studied as controls. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum level of brain-derived neurotrophic factor. Results ⑴After treatment,there was no significant difference on BDNF between individual depression group and normal group(P>0.05);⑵After treatment,serum level of BDNF in bipolar depression group were significantly lower than that in normal group(P0.05);⑵治疗后,双相障碍抑郁组BDNF水平显著低于正常组,组间数据对比差异有统计学意义(P<0.05);⑶治疗后,双相障碍狂躁组BDNF水平显著低于正常组,组间数据对比差异有统计学意义(P<0.05)。结论双相障碍躁狂和抑郁与血清脑源性神经营养因子水平有关。

  4. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging?

    Science.gov (United States)

    Schimmang, T; Durán Alonso, B; Zimmermann, U; Knipper, M

    2014-12-26

    Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system. PMID:25064058

  5. Circulating levels of ciliary neurotrophic factor in normal pregnancy and preeclampsia

    OpenAIRE

    Akahori, Yoichiro; Takamoto, Norio; Masumoto,Akio; Inoue,Seiji; Nakatsukasa, Hideki; MASUYAMA, HISASHI; Hiramatsu,Yuji

    2010-01-01

    Ciliary neurotrophic factor (CNTF) has been shown to decrease food intake in mouse models of obesity and to improve insulin sensitivity. It is well known that tight regulation of glucose metabolism is essential for successful gestational outcomes (e.g. fetal growth), and that abnormal insulin resistance is associated with preeclampsia (PE). To investigate the possibility that CNTF might be involved in the regulation of insulin resistance during pregnancy, circulating levels of CNTF w...

  6. Possible Involvement of Standardized Bacopa monniera Extract (CDRI-08) in Epigenetic Regulation of reelin and Brain-Derived Neurotrophic Factor to Enhance Memory

    Science.gov (United States)

    Preethi, Jayakumar; Singh, Hemant K.; Rajan, Koilmani E.

    2016-01-01

    Bacopa monniera extract (CDRI-08; BME) has been known to improve learning and memory, and understanding the molecular mechanisms may help to know its specificity. We investigated whether the BME treatment alters the methylation status of reelin and brain-derived neurotropic factor (BDNF) to enhance the memory through the interaction of N-methyl-D-aspartate receptor (NMDAR) with synaptic proteins. Rat pups were subjected to novel object recognition test following daily oral administration of BME (80 mg/kg) in 0.5% gum acacia (per-orally, p.o.; PND 15–29)/three doses of 5-azacytidine (5-azaC; 3.2 mg/kg) in 0.9% saline (intraperitoneally, i.p.) on PND-30. After the behavioral test, methylation status of reelin, BDNF and activation of NMDAR, and its interactions with synaptic proteins were tested. Rat pups treated with BME/5-azaC showed higher discrimination towards novel objects than with old objects during testing. Further, we observed an elevated level of unmethylated DNA in reelin and BDNF promoter region. Up-regulated reelin along with the splice variant of apolipoprotein E receptor 2 (ApoER 2, ex 19) form a cluster and activate NMDAR through disabled adopter protein-1 (DAB1) to enhance BDNF. Observed results suggest that BME regulate reelin epigenetically, which might enhance NMDAR interactions with synaptic proteins and induction of BDNF. These changes may be linked with improved novel object recognition memory.

  7. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    Science.gov (United States)

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. PMID:24636743

  8. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB.

    Science.gov (United States)

    Zhao, Jia; Zheng, Xifu; Fu, Chongyang; Qu, Wei; Wei, Guoqiang; Zhang, Weiguo

    2014-09-15

    FK506 has been shown to exert neurotrophic and neuroprotective effects, but its long-term application for nerve regeneration is limited. This study evaluated the potential application of a novel FK506-loaded chitosan conduit for peripheral nerve repair, and explored the underlying mechanism. A sciatic nerve injury model was created in male Wistar rats, which were then randomly divided into three treatment groups (n=40, each): chitosan-only, chitosan+FK506 injection, and FK506-loaded chitosan. We found significant recovery of normal morphology of sciatic nerves and higher density of myelinated nerve fibers in rats treated with FK506-loaded chitosan. Similarly, the total number of myelinated nerve fibers, myelin sheath thickness, and axon diameters were significantly higher in this group compared with the others, and the compound muscle action potentials and motor nerve conduction velocity values of sciatic nerves were significantly higher. BDNF and TrkB levels in motor neurons were highest in rats treated with FK506-loaded chitosan. In conclusion, FK506-loaded chitosan promoted peripheral nerve repair and regeneration in a rat model of sciatic nerve injury. These effects are correlated with increased BDNF and TrkB expression in motor neurons. PMID:24954089

  9. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model.

    Directory of Open Access Journals (Sweden)

    Zheng Ke

    Full Text Available BACKGROUND: Stroke rehabilitation with different exercise paradigms has been investigated, but which one is more effective in facilitating motor recovery and up-regulating brain neurotrophic factor (BDNF after brain ischemia would be interesting to clinicians and patients. Voluntary exercise, forced exercise, and involuntary muscle movement caused by functional electrical stimulation (FES have been individually demonstrated effective as stroke rehabilitation intervention. The aim of this study was to investigate the effects of these three common interventions on brain BDNF changes and motor recovery levels using a rat ischemic stroke model. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and seventeen Sprague-Dawley rats were randomly distributed into four groups: Control (Con, Voluntary exercise of wheel running (V-Ex, Forced exercise of treadmill running (F-Ex, and Involuntary exercise of FES (I-Ex with implanted electrodes placed in two hind limb muscles on the affected side to mimic gait-like walking pattern during stimulation. Ischemic stroke was induced in all rats with the middle cerebral artery occlusion/reperfusion model and fifty-seven rats had motor deficits after stroke. Twenty-four hours after reperfusion, rats were arranged to their intervention programs. De Ryck's behavioral test was conducted daily during the 7-day intervention as an evaluation tool of motor recovery. Serum corticosterone concentration and BDNF levels in the hippocampus, striatum, and cortex were measured after the rats were sacrificed. V-Ex had significantly better motor recovery in the behavioral test. V-Ex also had significantly higher hippocampal BDNF concentration than F-Ex and Con. F-Ex had significantly higher serum corticosterone level than other groups. CONCLUSION/SIGNIFICANCE: Voluntary exercise is the most effective intervention in upregulating the hippocampal BDNF level, and facilitating motor recovery. Rats that exercised voluntarily also showed less

  10. Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q)suppresses brain-derived neurotrophic factor transcription in astrocytes

    Institute of Scientific and Technical Information of China (English)

    Linhui Wang; Fang Lin; Jin Wang; Junchao Wu; Rong Han; Lujia Zhu; Guoxing Zhang; Marian DiFiglia; Zhenghong Qin

    2012-01-01

    Although huntingtin (htt) can be cleaved at many sites by caspases,calpains,and aspartyl proteases,amino acid (aa) 552 was defined as a preferred site for cleavage in human Huntington disease (HD) brains in vivo.To date,the normal function of wild-type N-terminal htt fragment 1-552 aa (htt552) and its pathological roles of mutant htt552 are still unknown.Although mutant htt (mhtt) is also expressed in astrocytes,whether and how mhtt contributes to the neurodegeneration through astrocytes in HD remains largely unknown.In this study,a glia HD model,using an adenoviral vector to express wild-type htt552 (htt552-18Q) and its mutation (htt552-100Q) in rat primary cortical astrocytes,was generated to investigate the influence of htt552 on the transcription of brainderived neurotrophic factor (BDNF). Results from enzyme linked immunosorbent assay showed that the level of BDNF in astrocyte-conditioned medium was decreased in the astrocytes expressing htt552-100Q.Quantitative real-time polymerase chain reaction demonstrated that htt552-100Q reduced the transcripts of the BDNF Ⅲ and Ⅳ, hence, repressed the transcription of BDNF.Furthermore,immunofluorescence showed that aggregates formed by htt552-100Q entrapped transcription factors cAMP-response element-binding protein and stimulatory protein 1,which might account for the reduction of BDNF transcription.These findings suggest that mhtt552 reduces BDNF transcription in astrocytes,which might contribute to the neuronal dysfunction in HD.

  11. Mutation screen of the brain derived neurotrophic factor gene (BDNF): identification of several genetic variants and association studies in patients with obesity, eating disorders, and attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Friedel, S; Horro, F Fontenla; Wermter, A K; Geller, F; Dempfle, A; Reichwald, K; Smidt, J; Brönner, G; Konrad, K; Herpertz-Dahlmann, B; Warnke, A; Hemminger, U; Linder, M; Kiefl, H; Goldschmidt, H P; Siegfried, W; Remschmidt, H; Hinney, A; Hebebrand, J

    2005-01-01

    Several lines of evidence indicate an involvement of brain derived neurotrophic factor (BDNF) in body weight regulation and activity: heterozygous Bdnf knockout mice (Bdnf(+/-)) are hyperphagic, obese, and hyperactive; furthermore, central infusion of BDNF leads to severe, dose-dependent appetite suppression and weight loss in rats. We searched for the role of BDNF variants in obesity, eating disorders, and attention-deficit/hyperactivity disorder (ADHD). A mutation screen (SSCP and DHPLC) of the translated region of BDNF in 183 extremely obese children and adolescents and 187 underweight students was performed. Additionally, we genotyped two common polymorphisms (rs6265: p.V66M; c.-46C > T) in 118 patients with anorexia nervosa, 80 patients with bulimia nervosa, 88 patients with ADHD, and 96 normal weight controls. Three rare variants (c.5C > T: p.T2I; c.273G > A; c.*137A > G) and the known polymorphism (p.V66M) were identified. A role of the I2 allele in the etiology of obesity cannot be excluded. We found no association between p.V66M or the additionally genotyped variant c.-46C > T and obesity, ADHD or eating disorders. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148-7299:1/suppmat/index.html. PMID:15457498

  12. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. PMID:26764533

  13. The serotonin transporter linked polymorphic region and brain-derived neurotrophic factor valine to methionine at position 66 polymorphisms and maternal history of depression: associations with cognitive vulnerability to depression in childhood.

    Science.gov (United States)

    Hayden, Elizabeth P; Olino, Thomas M; Bufferd, Sara J; Miller, Anna; Dougherty, Lea R; Sheikh, Haroon I; Singh, Shiva M; Klein, Daniel N

    2013-08-01

    Preliminary work indicates that cognitive vulnerability to depression may be associated with variants of the serotonin transporter promoter polymorphism (5-HTTLPR) and the valine to methionine at position 66 (val66met) polymorphism of the brain-derived neurotrophic factor (BDNF) gene; however, existing reports come from small samples. The present study sought to replicate and extend this research in a sample of 375 community-dwelling children and their parents. Following a negative mood induction, children completed a self-referent encoding task tapping memory for positive and negative self-descriptive traits. Consistent with previous work, we found that children with at least one short variant of the 5-HTTLPR had enhanced memory for negative self-descriptive traits. The BDNF val66met polymorphism had no main effect but was moderated by maternal depression, such that children with a BDNF methionine allele had a heightened memory for negative self-descriptive traits when mothers had experienced depression during children's lifetimes; in contrast, children with a methionine allele had low recall of negative traits when mothers had no depression history. The findings provide further support for the notion that the 5-HTTLPR is associated with cognitive markers of depression vulnerability and that the BDNF methionine allele moderates children's sensitivity to contextual factors. PMID:23880378

  14. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    Science.gov (United States)

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. PMID:26874256

  15. Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: Possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation.

    Science.gov (United States)

    Kitamura, Yoshihisa; Hattori, Sayo; Yoneda, Saori; Watanabe, Saori; Kanemoto, Erika; Sugimoto, Misaki; Kawai, Toshiki; Machida, Ayumi; Kanzaki, Hirotaka; Miyazaki, Ikuko; Asanuma, Masato; Sendo, Toshiaki

    2015-10-01

    Many patients who have received chemotherapy to treat cancer experience depressive- and anxiety-like symptoms or cognitive impairment. However, despite the evidence for this, the underlying mechanisms are still not understood. This study investigated behavioral and biochemical changes upon treatment with doxorubicin and cyclophosphamide, focusing on mental and cognitive systems, as well as neurogenesis in male rats. Doxorubicin (2 mg/kg), cyclophosphamide (50 mg/kg), and the combination of doxorubicin and cyclophosphamide were injected intraperitoneally once per week for 4 weeks. In particular, the co-administration of doxorubicin and cyclophosphamide produced anhedonia-like, anxiety-like, and spatial cognitive impairments in rats. It also reduced both the number of proliferating cells in the subgranular zone of the hippocampal dentate gyrus and their survival. Serum brain-derived neurotrophic factor (BDNF) levels were decreased along with chemotherapy-induced decreases in platelet levels. However, hippocampal BDNF levels and Bdnf mRNA levels were not decreased by this treatment. On the other hand, hippocampal cyclin D1 levels were significantly decreased by chemotherapy. These results suggest that the co-administration of doxorubicin and cyclophosphamide induces psychological and cognitive impairment, in addition to negatively affecting hippocampal neurogenesis, which may be related to hippocampal cyclin D1 levels, but not hippocampal BDNF levels. PMID:26057360

  16. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    OpenAIRE

    Gomes Catarina; Ferreira Raquel; George Jimmy; Sanches Rui; Rodrigues Diana I; Gonçalves Nélio; Cunha Rodrigo A

    2013-01-01

    Abstract Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the...

  17. 脑源性神经营养因子复合导管的制备及其性能评价%Preparation of brain-derived neurotrophic factor composite conduit and evaluation of its properties

    Institute of Scientific and Technical Information of China (English)

    苏欢欢; 孙华燕; 徐风华

    2013-01-01

    目的 制备脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)复合导管并对其性能进行评价.方法 采用聚乳酸(PLA)作为支架材料,利用溶剂挥发法制备BDNF复合导管并对其浸入溶液前后的形态进行观察,利用万能材料实验机研究其力学性能,接触角测试仪检测其亲疏水性,ELlSA测定释放液中BDNF的浓度并评价其体外释药特性.结果与结论 BDNF导管的拉伸强度为1.80 MPa,断裂伸长率为204.17%,接触角为65.4°,药物缓慢释放可达90 d,累积释放率约70%.表明制备的BDNF复合导管具有一定的柔韧性、亲疏水性和缓释特性.%Objective To prepare the brain-derived neurotrophie factor( HDNF) composite conduit and evalualc its properties. Methods A composite conduit made of polylactic acid was prepared by solvent evaporation method. The surface morphology was observed before and after drug release in phosphate buffer. The mechanical property was tested by universal material testing machine. The hydrophilic-hydrophobic properties were studied with contact angle instrument and drug release characteristics in vitro were evaluated by the determination of BDNF in release buffer with KI.ISA. Results and Conclusion The tensile strength of BDNF conduit was 1. 80 MPa. the elongation at break was 204. 17% ,and the contact angle was 65.4° Drug release from the conduit could last 90 d.and the cumulative release rate was nearly 70%. The experimental results showed that the BDNF composite conduit has proper mechanical and hydrophilic-hydrophobic properties with an acceptable sustained-release profile.

  18. Ethinyl estradiol and levonorgestrel alter cognition and anxiety in rats concurrent with a decrease in tyrosine hydroxylase expression in the locus coeruleus and brain-derived neurotrophic factor expression in the hippocampus.

    Science.gov (United States)

    Simone, Jean; Bogue, Elizabeth A; Bhatti, Dionnet L; Day, Laura E; Farr, Nathan A; Grossman, Anna M; Holmes, Philip V

    2015-12-01

    In the United States, more than ten million women use contraceptive hormones. Ethinyl estradiol and levonorgestrel have been mainstay contraceptive hormones for the last four decades. Surprisingly, there is scant information regarding their action on the central nervous system and behavior. Intact female rats received three weeks of subcutaneous ethinyl estradiol (10 or 30μg/rat/day), levonorgestrel (20 or 60μg/rat/day), a combination of both (10/20μg/rat/day and 30/60μg/rat/day), or vehicle. Subsequently, the rats were tested in three versions of the novel object recognition test to assess learning and memory, and a battery of tests for anxiety-like behavior. Serum estradiol and ovarian weights were measured. All treatment groups exhibited low endogenous 17β-estradiol levels at the time of testing. Dose-dependent effects of drug treatment manifested in both cognitive and anxiety tests. All low dose drugs decreased anxiety-like behavior and impaired performance on novel object recognition. In contrast, the high dose ethinyl estradiol increased anxiety-like behavior and improved performance in cognitive testing. In the cell molecular analyses, low doses of all drugs induced a decrease in tyrosine hydroxylase mRNA and protein in the locus coeruleus. At the same time, low doses of ethinyl estradiol and ethinyl estradiol/levonorgestrel increased galanin protein in this structure. Consistent with the findings above, the low dose treatments of ethinyl estradiol and combination ethinyl estradiol/levonorgestrel reduced brain-derived neurotrophic factor mRNA in the hippocampus. These effects of ethinyl estradiol 10μg alone and in combination with levonorgestrel 20μg suggest a diminution of norepinephrine input into the hippocampus resulting in a decline in learning and memory. PMID:26352480

  19. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells--The potential of JNX1001 as a therapeutic agent.

    Science.gov (United States)

    Kim, Helena K; Mendonça, Karina M; Howson, Patrick A; Brotchie, Jonathan M; Andreazza, Ana C

    2015-10-01

    Mitochondrial complex I, which is the first member of the electron transport chain responsible for producing ATP, can produce reactive oxygen species and oxidative stress when it becomes dysfunctional. Complex I dysfunction and oxidative stress are strongly implicated in bipolar disorder (BD), a debilitating psychiatric disease, as is decreased levels of brain derived neurotrophic factor (BDNF) found in patients with BD, which is related to complex I activity. JNX1001, a clinical trial ready brain penetrant sapogenin, increases BDNF levels in animal models. Hence, we aimed to examine if JNX1001 can prevent complex I dysfunction-induced alterations produced by rotenone treatment in human neuroblastoma cells (SH-SY5Y). Complex I dysfunction decreased cell viability and increased protein carbonylation and nitration, confirming previous findings. Complex I dysfunction also decreased intracellular and extracellular BDNF levels. JNX1001 pre-treatment prevented complex I dysfunction-induced protein carbonylation and nitration and improved cell viability at concentrations of 30 nM and 300 nM, but more robustly at 300 nM. JNX1001 was also able to prevent decreased intracellular and extracellular BDNF levels, where it produced a ten-fold increase in intracellular BDNF levels at a concentration of 300 nM. While further studies are required to examine the neuroprotective ability of JNX1001 against alterations produced by complex I defect in more complex systems, such as in animal models, the findings of this study demonstrate the potential of JNX1001 to be used as a therapeutic agent to protect against complex I dysfunction-induced alterations that may be highly relevant to BD. PMID:26164791

  20. 不同年龄女性血清性激素与BDNF的相关性%Correlation between serum sex hormones and brain -derived neurotrophic factor in women at different age groups

    Institute of Scientific and Technical Information of China (English)

    王艳; 任慕兰

    2012-01-01

    Objective: To explore the change of brain -derived neurotrophic factor (BDNF) according to the variation of serum sex hormones levels. Methods: Sixty - two perimenopausal and postmenopausal women were selected and divided into different groups according to STRAW staging and menopausal time; sixteen healthy women of childhearing age were selected as control group. The fasting blood samples were obtained in the morning, then the serum levels of estradiol, testosterone, follicle stimulating hormone ( FSH) , and BDNF were detected. Results: The serum levels of BDNF in perimenopausal group and postmenopausal group were significantly lower than that in control group, there was a significant correlation between serum BDNF level and serum estradiol level (y =0. 303, P = 0. 017) . Conclusion; Serum BDNF level is related to endogenous estrogen level.%目的:探讨不同性激素水平时脑源性神经营养因子(BDNF)的变化.方法:筛选62例围绝经期及绝经后女性,按STRAW分期及绝经年限长短分组,并募集16例健康育龄女性作对照.采集晨间空腹血标本,分别测定血清雌二醇(E2)、睾酮(T)、卵泡刺激素(FSH)及BDNF的水平.结果:围绝经期组及绝经后组女性血清BDNF的水平明显低于健康育龄组女性,BDNF的水平与E2水平有显著相关性(r=0.303,P=0.017).结论:血清BDNF的水平与内源性雌激素水平有关.

  1. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    Directory of Open Access Journals (Sweden)

    Gomes Catarina

    2013-01-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM, as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF.

  2. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    Science.gov (United States)

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. PMID:24811179

  3. P2X4 receptor in the dorsal horn partially contributes to brain-derived neurotrophic factor oversecretion and toll-like receptor-4 receptor activation associated with bone cancer pain.

    Science.gov (United States)

    Jin, Xiao-Hong; Wang, Li-Na; Zuo, Jian-Ling; Yang, Jian-Ping; Liu, Si-Lan

    2014-12-01

    Previous studies have suggested that the microglial P2X7 purinoceptor is involved in the release of tumor necrosis factor-α (TNFα) following activation of toll-like receptor-4 (TLR4), which is associated with nociceptive behavior. In addition, this progress is evoked by the activation of the P2X4 purinoceptor (P2X4R). Although P2X4R is also localized within spinal microglia in the dorsal horn, little is known about its role in cancer-induced bone pain (CIBP), which is in some ways unique. With the present rat model of CIBP, we demonstrate a critical role of the microglial P2X4R in the enhanced nociceptive transmission, which is associated with TLR4 activation and secretion of brain-derived neurotrophic factor (BDNF) and TNFα in the dorsal horn. We assessed mechanical threshold and spontaneous pain of CIBP rats. Moreover, P2X4R small interfering RNA (siRNA) was administered intrathecally, and real-time PCR, Western blots, immunofluorescence histochemistry, and ELISA were used to detect the expression of P2X4R, TLR4, OX-42, phosphorylated-p38 MAPK (p-p38), BDNF, and TNFα. Compared with controls, intrathecal injection of P2X4R siRNA could prevent nociceptive behavior induced by ATP plus lipopolysaccharide and CIBP and reduce the expression of P2X4R, TLR4, p-p38, BDNF, and TNFα. In addition, the increase of BDNF protein in rat microglial cells depended on P2X4 receptor signaling, which is partially associated with TLR4 activation. The ability of microglial P2X4R to activate TLR4 in spinal cord leading to behavioral hypersensitivity and oversecretion of BDNF could provide an opportunity for the prevention and treatment of CIBP. PMID:24984884

  4. Research progress of bipolar disorder and signaling pathway of brain derived neurotrophic factor%双相障碍与脑源性神经营养因子信号通路研究进展

    Institute of Scientific and Technical Information of China (English)

    胡莺燕; 方贻儒

    2011-01-01

    Brain derived neurotrophic factor (BDNF) can prevent neurons from death, promote growth, development and differentiation of neurons, enhance restoration and regeneration of neurons, and reinforce signal transduction among synapses. It has been revealed that BDNF is related to the pathogenesis and treatment of bipolar disorder. The downstream signaling pathway of BDNF changes accordingly in bipolar disorder, and the mechanism of mood stabilizers in treatment of bipolar disorder may be related to the up-regulation of BDNF expression by mediating factors in the downstream signaling pathway of BDNF. In this paper, the relationship between the pathogenesis and treatment of bipolar disorder and signaling pathway of BDNF is reviewed.%脑源性神经营养因子(BDNF)具有防止神经元死亡的功能,可促进神经元生长、发育和分化,促进神经元修复和再生,加强突触间信号的转导.研究表明:BDNF与双相障碍的发病和治疗有关,双相障碍患者脑内BDNF下游信号转导通路也发生相应变化,而心境稳定剂的治疗机制可能与调控BDNF下游信号转导通路中各因子而上调BDNF表达有关.该文就双相障碍的发病和治疗与BDNF信号通路关系的研究进展进行综述.

  5. Serum levels of brain-derived neurotrophic factor in acute and posttraumatic stress disorder: a case report study Nível sérico do fator neurotrófico derivado do cérebro no transtorno de estresse agudo e no transtorno de estresse pós-traumático: relato de casos

    Directory of Open Access Journals (Sweden)

    Simone Hauck

    2009-03-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate brain-derived neurotrophic factor levels in two patients, one with posttraumatic stress disorder and one with acute stress disorder, before and after treatment, and to compare those levels to those of healthy controls. METHOD: Brain-derived neurotrophic factor level, Davidson Trauma Scale, Beck Depression Inventory, Global Assessment of Functioning, and Clinical Global Impression were assessed before and after 6 weeks of treatment. RESULTS: Brain-derived neurotrophic factor levels were higher in patients than in matched controls before treatment. After 6 weeks, there was a reduction in symptoms and an improvement in functioning in both cases. At the same time, brain-derived neurotrophic factor levels decreased after treatment, even in case 2, treated with psychotherapy only. CONCLUSIONS: These results suggest that serum levels of brain-derived neurotrophic factor, as opposed to what has been described in mood disorders, are increased in posttraumatic stress disorder as well as in acute stress disorder.OBJETIVO: O objetivo do estudo foi avaliar os níveis séricos do fator neurotrófico derivado do cérebro em um paciente com transtorno de estresse pós-traumático e em um paciente com transtorno de estresse agudo antes e após o tratamento, comparando esses níveis aos de controles saudáveis. MÉTODO: Os níveis do fator neurotrófico derivado do cérebro, a Escala Davidson de Trauma, o Inventário de Depressão de Beck, a Avaliação do Funcionamento Global e a Impressão Clínica Global foram medidos antes e após seis semanas de tratamento. RESULTADOS: Os níveis de fator neurotrófico derivado do cérebro foram maiores nos pacientes, quando comparados aos controles, antes do tratamento. Depois de seis semanas houve redução dos sintomas e melhora do funcionamento nos dois casos. Ao mesmo tempo, houve redução dos níveis de fator neurotrófico derivado do cérebro, mesmo no caso 2, tratado

  6. Adenovirus-mediates gene transfer of brain-derived neurotrophic factor for repairing sciatic nerve injury%重组腺病毒载体AxCA-BDNF基因转染修复坐骨神经损伤

    Institute of Scientific and Technical Information of China (English)

    李培建; 李兵仓

    2011-01-01

    BACKGROUND: How to accelerate injury repair and regeneration following peripheral nerve injury is the research focus. Gene therapy may be the possible treatment for this problem.OBJECTIVE: To observe the expression of the brain-derived neurotrophic factor (BDN F) gene after microinjected adenovirus-mediated gene transfer of BDNF (AxCA-BDNF) to the sciatic nerve for peripheral nerve regeneration.METHODS: Based on silicone tube graft as a support to bridge adult rat sciatic nerve gaps, Wistar rat were microinjected recombinant adenovirus vector of BDNF (AxCA-BDNF), BDNF and simple injection of virus buffer to the sciatic nerve respectively.With the methods of in situ hybridization and immunocytochemistry, the BDNF gene expression was certified, the number of the new nerve fibers and motoneurons in anterior horn of the spinal cord were calculated, and the myelin sheath thickness of the new nerve fibers was measu red at 3, 7, 14 days and 1 , 2, 4 months after operation.RESULTS AND CONCLUSION: Compared with the BDNF and control group, the expression of the BDNF gene in the proximal end, distal end and spinal cord (L3-6) of injured sciatic nerve were obviously higher than that of the BDNF and control groups (P < 0.01). The result of retrograde axonal transport of HRP tracer indicated the survival neurons, regenerated nerve fibers,thickness of myelin sheath, as well as the re-formation of nerve connection of the AxCA-BDNF group were superior to the control group(P < 0.01). The results demonstrated that exogenous BDNF gene and its express proteins were uptaken to the spinal cord motoneurons through retrograde axonal transport. Gene therapy for sciatic nerve injury of adult rats by adenovirus-mediated gene transfer of brain-derived neurotrophic factor in vivo not only promotes nerve regeneration but also protects the neurons in the spinal cord.%背景:如何促进周围神经损伤修复与再生一直是基础与临床研究的热点.基因治疗有可能成为今后

  7. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    Science.gov (United States)

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS. PMID:25579386

  8. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women.

    Science.gov (United States)

    Murawska-Cialowicz, E; Wojna, J; Zuwala-Jagiello, J

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is a protein that stimulates processes of neurogenesis, the survival of neurons and microglia, stimulates neuroplasticity, and takes part in the differentiation of cells developed in the hippocampus. BDNF is also released from skeletal muscles during exercise and can facilitate cross-talk between the nervous and muscular system. Irisin, the exercise hormone, is also released from skeletal muscles and is involved in oxidation processes in the organism. It is a vital issue from the point of view of prophylaxis and treatment through exercise of age-related diseases (e.g. senile dementia), obesity, type-2 diabetes. The aim of the study was to assess the changes in BDNF and irisin levels in young people after a 3-month CrossFit training program. At baseline and after the training, levels of BDNF and irisin were assayed before and after Wingate and progressive tests. Physical performance, body mass and composition, and muscle circumferences were also measured. There were noted: an improvement in aerobic capacity, an increase in VO2max, a reduction in adipose tissue percentage in women and an increase in LBM in all subjects. After CrossFit training the resting BDNF level increased significantly in all subjects while the resting level of irisin decreased in women, without changes in men. The resting level of BDNF at baseline was higher in men than in women. At baseline we observed an increased level of BDNF in women after Wingate and progressive tests, but in men only after the progressive test. After 3 months of CrossFit training the level of BDNF increased in all subjects, and also was higher in men than in women. In women we did not observe significant differences after both tests in comparison to rest. After the training BDNF was lower in men after Wingate and progressive tests than at rest. At baseline irisin level decreased in women after the Wingate and progressive tests. Changes in men were not observed after both tests

  9. Association study of brain-derived neurotrophic factor (BDNF) genetic polymorphism and obsessive-compulsive disorder%脑源性神经营养因子基因多态性与强迫症的关联研究

    Institute of Scientific and Technical Information of China (English)

    刘延辉; 刘世国; 寇海燕; 张心华

    2013-01-01

    目的:探讨脑源性神经营养因子(BDNF)基因与强迫症(OCD)的关联性. 方法:190例OCD患者和309个健康对照为研究对象,通过聚合酶链式反应与限制性片段长度多态性(PCR-RFLP)基因分型技术对BDNF基因标签单核苷酸多态性(SNP)位点rs6265进行基因分型.以耶鲁-布朗强迫量表(Y-BOCS)评定OCD患者的病情. 结果:OCD组和对照组之间rs6265位点的基因型和等位基因频率分布差异无统计学意义(P>0.05).在起病年龄和性别方面基因型和等位基因频率分布差异也无统计学意义(P>0.05). 结论:BDNF基因rs6265多态性与OCD可能没有关联.%Objective: The aim of this study was to investigate the association between brain-derived neurotrophic factor (BDNF) gene polymorphisms and obsessive-compulsive disorder (OCD). Method: Gen-otyping for BDNF (196G/A) was performed for 190 OCD patients and 309 health controls by the polymerase chain reaction and restriction fragment length polymorphism techniques. The OCD patients were assessed with Yale-Brown obsessive-compulsive severity scale (Y-BOCS). Results:There were no significant differences in genotype or allele of BDNF gene between OCD patients and health controls (P > 0.05). The genotypic and allel-ic distribution of rs6265 had no relationship with the onset age,gender in OCD patients (P >0.05). Conclusion: OCD may not be associated with BDNF SNP rs6265 gene polymorphisms.

  10. Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro

    Institute of Scientific and Technical Information of China (English)

    Yonghai Liu; Yucheng Song; Zunsheng Zhang; Xia Shen

    2006-01-01

    BACKGROUND; Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs.OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group.DESIGN: Randomized controlled animal study.SETTING : Department of Neurology, Affiliated Hospital of Xuzhou Medical College.MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou MedicalCollege from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old,weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF,RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company.METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3rd and the 7th days after induction, BMSCs were stained immunocytochemically with

  11. Circulating levels of ciliary neurotrophic factor in normal pregnancy and preeclampsia

    Directory of Open Access Journals (Sweden)

    Akahori,Yoichiro

    2010-04-01

    Full Text Available

    Ciliary neurotrophic factor (CNTF has been shown to decrease food intake in mouse models of obesity and to improve insulin sensitivity. It is well known that tight regulation of glucose metabolism is essential for successful gestational outcomes (e.g. fetal growth, and that abnormal insulin resistance is associated with preeclampsia (PE. To investigate the possibility that CNTF might be involved in the regulation of insulin resistance during pregnancy, circulating levels of CNTF were assessed in non-pregnant, normal pregnant, postpartum, and pregnant women with PE. Sera from healthy non-pregnant women (n10, pregnant women (n30:1st trimester;n10, 2nd trimester n10;3rd trimester;n10, postpartum women (n10, and patients with PE (n11 were studied with Western blotting. Circulating CNTF was detected by Western blotting, and the levels of CNTF in pregnant women were decreased as compared with those in non-pregnant women, and tended to decrease as pregnancy progressed. A significant decrease was found in PE as compared with normal pregnancy. Circulating CNTF might be associated with physiological and abnormal insulin resistance during pregnancy.

  12. Effect of vanillin inhalation on brain derived neurotrophic factor in depressed model rats%香兰素吸嗅对抑郁模型大鼠脑源性神经营养因子的影响

    Institute of Scientific and Technical Information of China (English)

    许慧; 李光武; 徐金勇; 刘扬

    2015-01-01

    .Nervous behavioral changes had been observed at different time after the administration of 5 weeks.The concentration of brain derived neurotrophic factor(BDNF) in the brain homogenate and the positive expression of BDNF in hippocampus had been also measured.Results Two weeks after the intervention,the immobility time of vanillin group((12.78 ±7.50) s) was lower than that of the model group((57.33±32.16) s) (P<0.05).The consumption of saccharose in vanillin group((52.88±25.18)g) was higher than that of model group((37.40±19.33) g) (P<0.05).BDNF of the brain homogenate in vanillin group (0.54±0.13) was significantly increased compared with model group (0.36± 0.06) (P<0.01).When compared with the OBX group (0.40±0.06),similar result was obtained.Immunohistochemistry and the average density of image analysis revealed that the expression of BNDF of hippocampal CA3 in vanillin group (0.40±0.03)was significantly increased compared with model group (0.25±0.04) and OBX group (0.28±0.03) (P<0.01).Conclusion Vanillin inhalation significantly relieves depression-like behaviors in depression rats.The possible mechanism may increase hippocampal neurogenesis by raising brain derived neurotrophic factor in brain.

  13. Effect of the antibody of brain-derived neurotrophic factor on the rat with ischemic injury from obstruction of middle cerebral artery%脑源性神经营养因子抗体对大脑中动脉阻塞大鼠缺血损伤的影响

    Institute of Scientific and Technical Information of China (English)

    陈英辉; 王根发; 陈兴华; 姚革; 陈伟; 周永炜

    2003-01-01

    AIM:To observe the effect of the antibody of brain derived neurotrophic factor(BDNF) by cortical microinjection on hippocampal ischemic injury rats.METHODS:Preparation of local cerebral ischemic reperfusion injury model: cortical stereostaxic approach, microinjection of BDNF antibody. Applied immunohistochemical method to observe distribution of BDNF in cortex after injection of the antibody,to observe the alteration of ischemic injury between control group and BDNF antibody group.RESULT: The volume of cerebral infarction in BDNF antibody group was larger than control group.CONCLUSION: BDNF has protection function for cerebral ischemia.

  14. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2015-02-01

    Full Text Available Yu Zhao,1 Ming Xiao,2 Wenbo He,3 Zhiyou Cai3 1Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China; 2Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China; 3Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People’s Republic of China Background and purpose: The cAMP response element binding protein (CREB plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB–BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB, and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia. Methods: The animal model was established by permanent bilateral occlusion of both common carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were examined by Western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry. BDNF was measured by immunohistochemistry and Western blotting. Results: The model rats after minocycline treatment swam shorter distances than control rats before finding the platform (P=0.0007. The number of times the

  15. 双相障碍Ⅰ型患者血浆脑源性神经营养因子水平的变化%Changes of plasma brain-derived neurotrophic factor in patients with bipolar disorder type Ⅰ

    Institute of Scientific and Technical Information of China (English)

    汪作为; 李则挚; 林治光; 吴志国; 苑成梅; 洪武; 李春波; 方贻儒

    2011-01-01

    目的 探讨血浆脑源性神经营养因子(BDNF)水平与双相障碍l型患者躁狂发作的关系.方法 采用全面临床访谈结合美国精神障碍诊断与统计手册第四版( DSM-Ⅳ)轴Ⅰ障碍定式临床检查病人版(SCID- Ⅰ/P)进行评估,入选双相障碍Ⅰ型躁狂发作患者28例(病例组),均给予锂盐联合喹硫平治疗;另选性别构成与年龄匹配的30名健康志愿者作为对照组.双抗体夹心ABC-ELISA法检测对照组和病例组治疗前及治疗后第2、4、8周末的血浆BDNF的质量浓度,分析病例组血浆BDNF水平与Young躁狂量表(YMRS)评分的相关性.结果 病例组治疗前和治疗后第8周末的血浆BDNF质量浓度显著高于对照组(P<0.05),而治疗后第2、4周末的血浆BDNF质量浓度与对照组比较差异无统计学意义(P>0.05).病例组治疗前、治疗后第2、8周末的血浆BDNF水平与YMRS评分无相关性(P>0.05),治疗后第4周末血浆BDNF水平与YMRS评分呈显著负相关(r=-0.450,P<0.05).结论 双相障碍Ⅰ型躁狂发作的疾病状态与血浆BDNF水平的变化缺乏一致性,有待大样本研究进一步验证两者的关系.%Objective To explore the relationship between plasma brain-derived neurotrophic factor ( BDNF) and manic episode of bipolar disorder type I . Methods With comprehensive clinical review and structured clinical interview for DSM-IV axis I disorders patient version (SCID- I /P), 28 patients with manic episode of bipolar disorder type I were enrolled (case group), and were treated with lithium and quetiapine. Another 30 gender- and age-matched healthy volunteers were served as controls. Plasma mass concentrations of BDNF in case group and control group were detected by ABC-ELISA before treatment and 2 weeks, 4 weeks and 8 weeks after treatment, and the relationship between plasma mass concentration of BDNF and Young mania rating scale (YMRS) was analysed in case group. Results The plasma mass concentrations of BDNF

  16. Brain-derived neurotrophic factor gene val66met polymorphism and executive functioning in patients with bipolar disorder Polimorfismo do gene do fator neurotrófico derivado do cérebro val66met e função executiva em pacientes com transtorno bipolar

    Directory of Open Access Journals (Sweden)

    Juliana Fernandes Tramontina

    2009-06-01

    Full Text Available OBJECTIVE: In the present study, we investigate the association between the val66met polymorphism of the brain-derived neurotrophic factor (BNDF and the performance on the Wisconsin Card Sorting Test in a sample of Caucasian Brazilian patients with bipolar disorder. METHOD: Sixty-four patients with bipolar disorder were assessed and their performance on the Wisconsin Card Sorting Test was compared with the allele frequency and genotype of the val66met polymorphism of the brain-derived neurotrophic factor. RESULTS: The percentage of non-perseverative errors was significantly higher among patients with the val/val genotype. There was no association between (BNDF genotype frequency and other Wisconsin Card Sorting Test domains. CONCLUSION: Our results did not replicate previous descriptions of an association between a worse cognitive performance and the presence of the met allele of the val66met brain-derived neurotrophic factor gene polymorphism.OBJETIVO: O presente estudo tem por objetivo investigar a associação entre o polimorfismo val66met do gene do fator neurotrófico derivado do cérebro (BDNF e o desempenho cognitivo no Teste Wisconsin de Classificação de Cartas em uma amostra de pacientes bipolares brasileiros caucasianos. MÉTODO: Sessenta e quatro pacientes com transtorno bipolar foram avaliados em relação a sua cognição por meio do Teste Wisconsin de Classificação de Cartas que foi comparada com a freqüência alélica e genotípica do polimorfismo val66met do gene do fator neurotrófico derivado do cérebro. RESULTADOS: O percentual de erros não-perseverativos foi significativamente maior nos indivíduos com genótipo val/val. Não foi encontrada diferença significativa entre a freqüência genotípica do polimorfismo do BDNF e os outros domínios do Teste Wisconsin de Classificação de Cartas. CONCLUSÃO: O estudo do polimorfismo val66met em relação ao desempenho executivo em pacientes bipolares caucasianos de uma

  17. Die Konzentrationen von Brain-Derived-Neurotrophic-Factor (BDNF) und Neurotrophin (NT 3) in humanem Hirngewebe bei der Demenz vom Alzheimer-Typ und Psychosen aus dem schizophrenen Formenkreis

    OpenAIRE

    Michel, Tanja Maria

    2003-01-01

    In der Vergangenheit wurden zahlreiche Untersuchungen durchgeführt, um die Bedeutung Neurotropher Faktoren (NTF) in der Pathogenese der Alzheimer Demenz bzw. schizophrener Psychosen besser zu verstehen, um daraus therapeutische Schlüsse zu ziehen (Hefti und Weiner, 1986; Koliatsos et al., 1991; Narisawa-Saito et al., 1996; Thome et al., 1996). Es stand zur Diskussion, ob es zu Veränderungen der BDNF- und NT 3-Konzentrationen in verschiedenen Gehirnregionen von Patienten mit DAT bzw. schizophr...

  18. Effect of small molecular-weight hyaluronan on up-regulating expression of brain-derived neurotrophic factor and vascular endothelial growth factor in astrocytes%小分子量透明质酸促进星形胶质细胞中脑源性神经营养因子和血管内皮生长因子的表达

    Institute of Scientific and Technical Information of China (English)

    胡星; 王军; 韦峰; 刘忠军; 姜亮; 刘晓光

    2012-01-01

    BACKGROUND: Foreign studies have shown that hyaluronan can contribute to the improvement of motor function after spinal cord injury in rats, but its mechanism is unclear. OBJECTIVE: To study the effect of hyaluronan on expression of neurotrophic factors in astrocytes. METHODS: Cultured astrocytes were obtained from the brain of SD rats under sterile conditions. Passage 3 cells were identified by immunochemistry method. Passage 4 cells were treated with hyaluronan (Mr: 125 000-175 000) for 24 hours, and control group was set. RESULTS AND CONCLUSION: The results of immunofluoresence showed that the positive rate of primary astrocytes was nearly 100%. The results of Western blotting and reverse transcription-PCR showed that expressions of brain-derived neurotrophic factor and vascular endothelial growth factor were significantly increased in 100 mg/L and 1 000 mg/L groups compared with the control, 1 mg/L and 10 mg/L groups (P < 0.05). Double-labeling immunofluoresence also showed that, under the effect of 1 000 mg/L hyaluronan, the expressions of brain-derived neurotrophic factor and vascular endothelial growth factor in astrocytes were strongly increased compared with the control group. It is confirmed that small molecular-weight hyaluronan can induce astrocytes to up-regulate expressions of brain-derived neurotrophic factor and vascular endothelial growth factor.%背景:国外研究表明透明质酸可以促进脊髓损伤后大鼠运动功能的改善,但其机制尚不清楚.目的:观察透明质酸对星形胶质细胞营养因子表达的影响.方法:无菌条件下分离SD大鼠脑组织星形胶质细胞进行原代培养,对培养第3代细胞采用免疫化学方法对其鉴定.对第4代细胞给予透明质酸(相对分子质量125 000~175 000)作用星形胶质细胞24 h,并设置对照组.结果与结论:免疫化学方法鉴定原代培养星形胶质细胞阳性率近100%.Western blot和RT-PCR分析结果显示,胶质细胞在质量浓度100,1 000

  19. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B.

    Science.gov (United States)

    Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Park, Seung Min; Ahn, Ji Yun; Kim, Dong Won; Cho, Jun Hwi; Kim, Jong-Dai; Kim, Young-Myeong; Won, Moo-Ho; Kang, Il-Jun

    2016-04-01

    4-Hydroxy‑3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well‑known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4‑HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki‑67, doublecortin (DCX) immunohistochemistry and 5‑bromo‑2'‑deoxyuridine (BrdU)/feminizing Locus on X 3 (NeuN) double immunofluorescence. In both the vanillin and 4‑HBA groups, the number of Ki‑67+ cells, DCX+ neuroblasts and BrdU+/NeuN+ neurons were significantly increased in the subgranular zone of the DG, as compared with the vehicle group. In addition, the levels of brain‑derived neurotrophic factor (BDNF) and tropomyosin‑related kinase B (TrkB), a BDNF receptor, were significantly increased in the DG in the vanillin and 4‑HBA groups compared with the vehicle group. These results indicated that vanillin and 4‑HBA enhanced cell proliferation, neuroblast differentiation and integration of granule cells in the DG of adolescent mice . These neurogenic effects of vanillin and 4‑HBA may be closely associated with increases in BDNF and TrkB. PMID:26935641

  20. Effect of brain-derived neurotrophic factor on BV2 microglia activated by ATP%脑源性神经营养因子在ATP活化BV2小胶质细胞中的作用

    Institute of Scientific and Technical Information of China (English)

    金海祥; 吴周浩

    2016-01-01

    目的:探讨脑源性神经营养因子(BDNF)在腺苷三磷酸(ATP)激活BV2小胶质细胞过程中的作用。方法以不同浓度ATP孵育BV2小胶质细胞后,采用Western blot法定量检测细胞中CD11b、BDNF表达水平,ELISA测定上清液中肿瘤坏死因子α(TNF‐α)的分泌水平。再将BV2细胞用不同浓度BDNF清除剂原肌球蛋白相关激酶B(TrkB)/Fc预处理后给予ATP孵育,检测细胞中CD11b、BDNF表达水平的变化及上清液中 TNF‐α的分泌水平。最后加入外源性重组BDNF ,检测细胞内CD11b表达和上清液中TNF‐α的水平变化。结果 ATP孵育BV2细胞后,细胞内 CD11b、BDNF及上清液中 TNF‐α水平在一定范围内呈剂量时间依赖性增加。加入TrkB/Fc后,BV2细胞中 CD11b、BDNF及上清液中TNF‐α表达水平在一定范围内呈剂量和时间依赖性降低。加入外源性BDNF后,细胞内CD11b及上清液中TNF‐α水平又出现增加。结论 BV2小胶质细胞活化后细胞内BDNF增多,外源性补充BDNF可激活小胶质细胞,BDNF在小胶质细胞的活化过程中可能发挥了重要作用。%Objective To study the effect of brain‐derived neurotrophic factor (BDNF) in the process of adenosine triphos‐phate (ATP) activating BV2 microglia .Methods BV2 microglia was cultured by adding different concentrations of ATP .Then the expression level of intracellular CD11b and BDNF and the secretion level of TNF‐α in the supernatant were quantitatively deter‐mined by Western blot .BV2 microglia was treated by different concentrations of BDNF scavenger tyrosine kinase receptors B (TrkB)/Fc and incubated by ATP .The expression level of intracellular CD11b and BDNF and the secretion level of TNF‐αin the supernatant were measured .Finally adding exogenous recombinant BDNF into cultured BV 2 microglia ,intracellular changes of CD11b and supernatant TNF‐αlevels were detected .Results After adding ATP for cultivating BV2

  1. Association between Serum Brain-derived Neurotrophic Factor Level and Cognitive Impairment in Patients with Mild Cognitive Impairment%轻度认知功能障碍患者认知损害与血清脑源性神经营养因子水平的相关性

    Institute of Scientific and Technical Information of China (English)

    张兰娥; 杨增云; 何冰; 范静波; 卢国华

    2013-01-01

    目的研究轻度认知功能障碍(mild cognitive impairment,MCI)患者认知损害与血清脑源性神经营养因子(brain derived neurotrophic factor,BDNF)水平的关系。方法从认知障碍门诊筛选MCI患者30例,正常对照老年人32例,采用酶联免疫吸附法(enzyme linked immunosorbent assay,ELISA)检测MCI患者的血清BDNF水平。结果 MCI的血清BDNF水平较正常对照组显著升高(P=0.025),MCI组中血清BDNF与简明精神状态量表(Mini-Mental State Examination Scale,MMSE)中的记忆力(r=-0.494,P=0.009)、语言能力(r=-0.399,P=0.039)呈负相关,与定向力、注意力和计算力、回忆能力无相关性;与临床痴呆量表(Clinical Dementia Rating Scale,CDR)总分呈正相关(r=0.476,P=0.012);与MMSE总分、全面衰退量表(Global Deterioration Scale,GDS)总分无相关性。结论 MCI患者的BDNF水平显著升高,提示BDNF可能参与MCI认知损害的病理生理过程。%Objective To investigate the relationship between cognitive function and brain-derived neurotrophic factor (BDNF) in mild cognitive impairment and healthy elders. Methods From the community society, we selected 30 samples of mild cognitive impairment (MCI) and 32 control samples. The cognitive function was evaluated by neuropsychological test and the level of BDNF was tested by enzyme-linked immunosorbent assay (ELISA). Results Compared to the control group, the level of BDNF in MCI patients was signiifcantly increased than healthy elders (P=0.025). Also, the level of BDNF in MCI patients was negatively correlated to memory (r=-0.494, P=0.009) and language (r=-0.399, P=0.039) of Mini-Mental State Examination Scale, and positively correlated to the scores of Clinical Dementia Rating Scale (r=0.476,P=0.012). Conclusion The increased level of BDNF in MCI patients showed that BDNF may be involved in the pathophysiology of cognitive impairment.

  2. 芒果苷对慢性应激抑郁小鼠行为及海马脑源性神经营养因子表达的影响%The effects of mangiterin on the improvement of behavior and expression of brain-derived neurotrophic factor in the hippocampus of chronic stress-induced depression model mice

    Institute of Scientific and Technical Information of China (English)

    付燕燕; 宋远见; 杨宜华; 段静雨

    2013-01-01

    Objective To explore the effects of mangiterin on behaviors and brain-derived neurotrophic factor(BDNF) of hippocampus in chronic stress depression mice.Methods 60 male mice were randomly divided into normol control group,model group,fluoxetin control group and mangiterin groups (low,medium and high dose),10 mice in each group.All mice except normal control group were singly housed and subjected to chronic stress-induced depression model for 21 consecutive days.The behaviors of mice were detected by open-field test and tail-suspension test.The expression of BDNF in the hippocampus were assessed using western blot.Results Compared with the normal group,mice exposed chronic stress showed decreased body weight((5.33 ±1.20) g),crossing lines (102 ± 18) and distances ((3425 ± 112) mm) notably decreased in open-field behavior test.The duration of immobility during tail-suspension was increased significantly.BDNF expression in the hippocampus(0.45 ± 0.03) was downregulated significantly(P< 0.01),while it was upregulated in the groups of mangiterin(P < 0.01).Mangiterin group in high dose had the similar effects to fluoxetin group(P > 0.05).Conclusion Mangiterin can ameliorate behavior impairment of chronic stress induced-depression mice and it may be related to the upregulation of BDNF expression in the hippocampus.%目的 探讨芒果苷(Mangiterin)对慢性应激抑郁模型(chronic unpredictable stress,CUS)小鼠行为学的改善作用及对海马脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)表达的影响.方法 将大鼠随机分为正常对照组,慢性应激模型组,氟西汀组,芒果苷低、中和高剂量组,共6组,每组10只.采用慢性轻度不可预见性应激配合孤养复制抑郁模型,通过旷场及悬尾实验观察行为学改变,并运用免疫印迹检测海马BDNF的表达.结果 与正常对照组比,模型组体质量增长缓慢[(5.33±1.20)g],水平穿格次数减少[(102±18)次/5 min

  3. 整体身心调节干预对颅脑损伤认知障碍患者血清脑源性神经营养因子的影响%Influence of integrative body-mind training on the brain derived neurotrophic factors in serum of patients ;with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    曹瑞秋; 赵雅宁; 郭霞; 吕志伟

    2015-01-01

    目的整体身心调节干预对颅脑损伤认知障碍患者血清脑源性神经营养因子( BDNF)的影响。方法采用投掷硬币随机分组法将85例认知障碍的颅脑损伤患者分为对照组(42例)和身心调节干预组(43例)。对照组给予针对性的认知康复训练,身心调节干预组在此基础上给予身心调节干预训练。采用执行缺陷综合征的行为评价( BADS)和洛文斯顿作业疗法认知评定测验( LOTCA)量表进行执行功能及认知能力评测;酶联免疫吸附试验( ELISE)检测血清BDNF的浓度。结果治疗前,两组患者的BADS各项指标评分以及LOTCA评分差异无统计学意义(P>0.05),BDNF浓度变化差异无统计学意义(P>0.05);治疗后,身心调节干预组BADS各项指标评分以及LOTCA评分优于对照组, BDNF血清浓度较对照组升高,差异有统计学意义( P<0.05)。结论整体身心调节行为干预可改善颅脑损伤患者执行功能障碍,与提高血清脑源性生长因子的浓度有关。%Objective To explore the influence of integrative body-mind training on the brain derived neurotrophic factors ( BDNF) in serum of patients with traumatic brain injury .Methods Randomly divided 85 cases into integrative body-mind training group(n=43)and control group(n=42).The control group took targeted cognitive interventions therapy .The treatment group with body-mind training combined coith cognitive training .The cognitive function and executive function were detected by the Behavioral Assessment of Dysexecutive Syndrome ( BADS) and Loewenstein Occupation Therapy Cognitive Assessment ( LOTCA).The level of BAND in serum was detected with enzyme linked immunosorbent assay .Results Before training, there was no significant difference in every BADS , LOTCA index and BAND level (P>0.05), After training, After training, they were much improved.Moreover,they were much more improved in integrativebody

  4. 焦虑抑郁障碍共病患者的特质焦虑与其血清BDNF水平的相关性研究%Correlation between trait anxiety and serum brain-derived neurotrophic factor level in patients with combined anxiety and depression

    Institute of Scientific and Technical Information of China (English)

    曾妍; 艾明; 陈建梅; 况利

    2011-01-01

    目的 探讨焦虑抑郁障碍共病患者的特质焦虑与其血清人脑源性神经营养因子(brain-derived neurotrophie factor,BDNF)变化水平的关系,分析特质焦虑是否对共病患者治疗效果产生影响。方法收集重医附一院门诊及住院部焦虑抑郁障碍共病患者64例,以及正常对照组人群60例,随机给予患者抗抑郁药帕罗西汀或舍曲林进行治疗,分别于治疗前,治疗后第2、4、8、12周使用焦虑状态-特质量表(state-trait anxiety inventory,STAI)中T-AI量表部分对患者特质焦虑程度进行测评,同时ELISA法测定患者及正常人群相应的血清BDNF水平。结果①治疗前焦虑抑郁障碍共病患者血清BDNF水平低于正常人群(P<0.05),共病患者T-AI量表评分高于正常人群(P<0.05)。②治疗后T-AI量表评分异常者较T-AI量表评分正常者血清BDNF水平恢复速度更慢。③患者的特质焦虑与其血清BDNF水平呈负相关(r=-0.502,P<0. 05)。结论焦虑抑郁障碍共病患者的特质焦虑与其血清BDNF水平相关,药物作用起效时间相对更晚。%Objective To study the correlation between trait anxiety and serum brain-derived neuro-trophic factor (BDNF) level in patients with combined anxiety and depression and analyze whether trait anxiety affects the therapeutic effect in such patients. Methods Sixty-four patients with combined anxiety and depression and 60 normal controls were enrolled in this study. Patients with combined anxiety and depression were treated with paroxetine or sertraline and their trait anxiety was assessed with the trait anxiety inventory (T-AI) scale in the state-trait anxiety inventory (S-TAI)before and 2,4, 8, 12 weeks after treatment. Serum BDNF levels in patients with combined anxiety and depression and normal controls were measured by ELISA and analyzed using the SPSS18.0. Results The serum BDNF levels were lower and the trait anxiety scores were higher in patients

  5. Observation of serum brain-derived neurotrophic factor levels in patients with depression of menopausal women%更年期妇女抑郁症患者的血清脑源性神经营养因子水平观察

    Institute of Scientific and Technical Information of China (English)

    刘丽; 杨文东

    2015-01-01

    目的:观察更年期妇女抑郁症患者的血清脑源性神经营养因子(BDNF)水平变化情况,探讨检测血清BDNF水平的价值.方法: 对确诊的70例更年期妇女抑郁症患者,于治疗前、治疗后(连续治疗观察8周)采用汉密尔顿抑郁量表(HAMD)评定抑郁症状,同时采用ELISA法检测血清BDNF水平,进行统计学分析.结果:抑郁症患者治疗8周后较治疗前,HAMD分值比较差异具有统计学意义(t=11.259,P<0.01),血清BDNF水平比较差异具有统计学意义(t=3.108,P<0.01).更年期抑郁症妇女HAMD分值与血清BDNF水平呈显著负相关(r=-0.507, P<0.01) .结论:更年期妇女抑郁程度与血清BDNF水平负相关,血清BDNF水平可作为判定更年期妇女抑郁程度及抗抑郁疗效的参考指标.%Objective:To observe serum brain-derived neurotrophic factor (BNDF) levels changes in patients with depression of menopausal women, and to discuss the value of serum BNDF detection.Methods: For diagnosis 70 case patients with depression of menopausal women, assessed for their depressive symptom by Hamilton Depression Rating Scale ( HAMD) before and after treatment(continuous treatment and observation 8 weeks), using ELISA methods to detect serum BNDF levels, and the data were statistical analysis.Results:Compared with before treatment, after 8 weeks of treatment in patients with depression, HAMD scores comparison the difference have statistical significance(t=11.259,P<0.01), serum BNDF levels comparison the difference have statistical significance(t=3.108,P<0.01). HAMD scores and serum BNDF levels were significantly negative correlation in patients with depression of menopausal women(t=-0.507,P<0.01).Conclusions: The degree of depression in menopausal women and serum BNDF levels were negative correlation, serum BNDF levels can be used as reference index for assessing the degree of depression and antidepressant effect.

  6. 多发性硬化、视神经脊髓炎患者血清及脑脊液中脑源性神经营养因子与胶质细胞源性神经营养因子水平%Investigation of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor concentrations in serum and cerebrospinal fluid of patients with multiple sclerosis and neuromyelitis optica

    Institute of Scientific and Technical Information of China (English)

    麦卫华; 胡学强; 陆正齐; 王玉鸽; 康庄

    2009-01-01

    Objective To investigate brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) concentrations in serum and cerebrospinal fluid (CSF) in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO),and their neuroprotective effects.Methods Sixty-two patients (49 patients were MS and 13 patients were NMO) and 21 controls were investigated in our studies.The disability severity in MS and NMO patients in their relapse period was assessed by the Expanded Disability Status Scale (EDSS).MRI scanning of brain,spinal cord or optic nerve was examined and the oligoclonal band in serum and CSF were detected.BDNF and GDNF concentrations in serum and CSF were assessed by Liquid Assay.Results There were no significant differences of BDNF (μg/L,5.616±0.650 in serum and 0.186±0.012 in CSF of MS patients;6.584±0.929 in serum and 0.176± 0.006 in CSF of NMO patients) and GDNF (μg/L,0.039 in serum and 0.080 in CSF of MS patients;0.029 in serum and 0.050 in CSF of NMO patients) concentrations in serum and CSF in patients with MS and NMO in relapse,compared with those in controls.There was a positive correlation between BDNF and GDNF concentrations in CSF (r=0.756,P=0.000),and a negative correlation between BDNF and GDNF concentrations in serum (r=-0.329,P=0.018).There were no correlations of BDNF and GDNF concentrations in serum and CSF with EDSS,blood brain barrier index,Delpech index and Tourtellotte synthesis rate.There were no significant differences of BDNF and GDNF concentration in serum and CSF between NMO/MS patients with and without atrophy.Conclusions The level of BDNF in patients with MS and NMO is correlated with that of GDNF,which may have a synergistic neurotrophic effect on MS and NMO.BDNF and GDNF are not associated with the blood-brain harrier destruction and lgG synthesis in central nervous system.However,associations of BDNF and GDNF with functional disability and neuron atrophy in NMO and MS patients still need

  7. Serum levels of brain-derived neurotrophic factor and thiobarbituric acid reactive substances in chronically medicated schizophrenic patients: a positive correlation Níveis séricos do fator neurotrófico derivado do cérebro e dos produtos de reação com o ácido tiobarbitúrico em pacientes com esquizofrenia cronicamente medicados: correlação positiva

    Directory of Open Access Journals (Sweden)

    Clarissa Severino Gama

    2008-12-01

    Full Text Available OBJECTIVE: The neurotrophins, antioxidant enzymes and oxidative markers have reciprocal interactions. This report verified in chronically stable medicated schizophrenic patients whether there are correlations between the serum levels of superoxide dismutase, a key enzyme in the antioxidant defense, thiobarbituric acid reactive substances, a direct index of lipid peroxidation, and brain-derived neurotrophic factor, the most widely distributed neurotrophin. METHOD: Sixty DSM-IV schizophrenic patients were included (43 males, 17 females. Mean age was 34.7 ± 10.8 years, mean age at first episode was 19.8 ± 7.9 years, and mean illness duration was 14.9 ± 8.5 years. Each subject had a blood sample collected for the determination of serum levels of brain-derived neurotrophic factor, thiobarbituric acid reactive substances and superoxide dismutase. RESULTS: Brain-derived neurotrophic factor levels showed a positive correlation with thiobarbituric acid reactive substances levels (r = 0.333, p = 0.009. Brain-derived neurotrophic factor levels were not correlated with superoxide dismutase levels (r = - 0.181, p = 0.166, and superoxide dismutase levels were not correlated with thiobarbituric acid reactive substances levels (r = 0.141, p = 0.284. CONCLUSIONS: The positive correlation between brain-derived neurotrophic factor and thiobarbituric acid reactive substances suggests the need of further investigation on intracellular interactions of neurotrophins, antioxidant enzymes and oxidative markers. In addition, this opens a venue for investigation on treatments for the prevention of neurotoxicity along the course of schizophrenia.OBJETIVO: As neurotrofinas, enzimas antioxidantes e marcadores de oxidação têm interações. Este estudo verificou se existem correlações entre os níveis séricos de superóxido-dismutase, uma enzima chave na defesa antioxidante, os produtos de reação com o ácido tiobarbitúrico, um indicador direto de peroxidação lip

  8. Effects of interactions between post-traumatic stress disorder with brain-derived neurotrophic factor gene Val66 Met polymorphism on serum lipid profiles in adolescents%PTSD 与 BDN F基因 Val66Met 多态性相互作用对青少年血脂的影响

    Institute of Scientific and Technical Information of China (English)

    樊梅; 李蓉晖; 胡敏珊; 方定志

    2015-01-01

    To test our hypothesis that the interplay may occur between post-traumatic stress disorder (PTSD) and brain-derived neurotrophic factor (BDNF) gene BDNF Val66Met polymorphism and affect serum lipid profiles .Chinese high school students were enrolled after the 2008 Wenchuan earthquake .The PTSD checklist-civilian version (PCL-C) was used to measure the symp-toms of PTSD .Body mass index (BMI) and waist-hip ratio (WHR) were calculated .Serum levels of total cholesterol (TC) ,tri-glyceride (TG) ,low-density lipoprotein cholesterol (LDL-C) ,high-density lipoprotein cholesterol (HDL-C) and glucose were tested by routine methods . BDNF Val66Met polymorphism was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and verified by DNA sequencing .The results show that the male PTSD subjects have higher TG than male subjects without PTSD in the V al/V al homozygotes .Compared with the Met allele carriers ,V al/V al homozygotes have higher TG in the males with PTSD .The female PTSD subjects have higher BMI than the female subjects without PTSD in the Met allele carriers .The results suggest that the changes of lipid profiles induced by interactions of PTSD and BDNF V al66Met polymorphism are different in adolescents with different gender .These findings will provide new insights into further exploration of factors influencing lipid profiles and the mechanism ,and precision medicine and personalized prevention of dysli-poproteinemia and cardiovascular diseases .%为验证“创伤后应激障碍(post-traumatic stress disorder ,PTSD)和脑源性神经营养因子(brain derived neurotrophic fac-tor ,BDNF)基因 BDNFVal66Met多态性之间存在相互作用并影响血脂及相关指标”的新假设,以2008年汶川地震灾区高中学生为研究对象,采用PTSD检查量表平民版(PTSD checklist-civilian version ,PCL-C)评估PTSD症状,常规体格检查并计算体质指数(body mass index

  9. 抑郁症患者无抽搐电休克治疗的疗效与脑源性神经营养因子基因多态性%Relationship between the effect of modified electroconvulsive therapy and brain-derived neurotrophic factor(BDNF) gene polymorphism in patients with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    楼丹丹; 况利; 李大奇; 甘窈; 艾明; 高新学

    2011-01-01

    目的:探讨抑郁症患者脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)基因两个单核苷酸多态性位点的多态性与无抽搐电休克治疗(modified electroconvulsive therapy,MECT)疗效的关系.方法:采用病例对照研究,研究组为110例符合美国精神障碍诊断统计手册第4版(Diagnostic and Statistical Manual of Mental Disorders,Fourth Edition,DSM-IV)抑郁症诊断标准的门诊及住院患者,对照组为100名正常人.患者入组后连续接受MECT 8次,使用汉密顿抑郁量表(Hamilton Depression Rat.ing Scale for Depression,HRSD)进行抑郁严重程度及疗效评估.运用PCR扩增及测序的方法,分析BD-NF基因rs6265、rs7103411单核苷酸多态性的分布,分析rs6265、rs7103411基因型及等位基因频率分布与MECT疗效的关系.结果:BDNF基因rs6265、rs7103411位点基因型及等位基因频率在对照组与患者组间的差异无统计学意义,MECT后2个位点基因型及rs710341I等位基因频率在不同疗效组间的差异无统计学意义.rs6265位点A等位基因频率和G等位基因频率在减分率I>50%组分别为47.9%、52.1%;在减分率<25%组分别为27.5%、72.5%,两组比较差异有统计学意义(P<0.05),且A等位基因对MECT反应好于G等位基因(OR=1.740,95%CI:1.022~2.963).结论:病情严重的抑郁症患者BDNF基因rs6265位点A等位基因可能与无抽搐电休克治疗效果有关,A等位基因携带者接受MECT的疗效较G等位基因携带者好.%Objective To explore the relation of brain-derived neurotrophic factor (BDNF) polymorphisms with the response to modified electroconvulsive therapy (MECT) in patients with major depressive disorder (MDD) . Methods: In this study, 110 patients with major depression were selected according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria, and 100 healthy person were used as controls. The patients received MECT 8 times consecutively and were assessed with

  10. Cross-sectional study of the association between serum concentration of brain-derived neurotrophic factor and bipolar disorder%脑源性神经营养因子血清浓度与双相障碍关系横断面研究

    Institute of Scientific and Technical Information of China (English)

    叶尘宇; 许烨勍; 胡华; 李春波; 林治光; 施慎逊; 王立伟

    2011-01-01

    Background:Recent studies have reached different conclusions about the relationship of brain-derived neurotrophic factor (BDNF) and the symptoms of bipolar disorder.Objective: Examine the correlation between the serum concentration of BDNF and bipolar disorder and consider whether or not family history of bipolar disorder mediates this relationship.Methods: Serum BDNF concentrations were measured in 228 patients with bipolar disorder and 153 normal controls.Patients with bipolar disorder were assessed using the Young Mania Rating Scale (YMRS) and the Hamilton Depression Rating Scale (HAMD-17):85 with YMRS≥20 were considered manic,14 with HAMD≥17 were considered depressed,and 129 with YMRS<20 and HAMD<17 were considered euthymic.Results: The mean (SD) concentration of BDNF in bipolar patients was significantly lower than that in the control group [18.75 (8.98) ng/ml vs.23.72(5.60) ng/ml;t=6.09,P<0.001],and this difference was present persisted in all three phases of bipolar illness (manic,depressive,euthymic).Moreover,serum BDNF was significantly higher in bipolar patients in the manic phase of illness than in those in the euthymic phase of illness.After controlling for all available variables in a multivariate regression model,the only factor significantly related to higher serum BDNF levels in bipolar patients was the YMRS score (standardized regression coefficien=0.17,P=0.011).Conclusion: The serum concentration of BDNF in bipolar patients is lower than that in normal controls and is positively related to the severity of manic symptoms.It is not related to family history of bipolar disorder.%背景近年来发现,脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)的血清浓度与双相障碍症状关系的研究结果不一致.目的检验BDNF血清浓度与双相障碍的关系,并讨论双相障碍家族史在两者关系中的作用.方法 检测了228例双相障碍患者和153名健康对照者的BDNF血清浓度,采用杨氏躁狂量

  11. The Effect of 810 nm Low Level Semiconductor Laser on the Expression of Brain Derive Neurotrophic Factor in the Retina after Optic Nerve Injury%低强度810nm半导体激光照射对大鼠视神经损伤后视网膜脑源性神经营养因子的影响

    Institute of Scientific and Technical Information of China (English)

    周方倩; 苑秀华

    2012-01-01

    Objective To determine whether or not 810 nm low power Ga-Al-As Laser treatment can stimulate the regeneration of damaged optic nerves by measuring the expression of brain derive neurotrophic factor (BDNF). Methods Forty-four Wistar rats weighing 180-220 g were randomly divided into the laser therapy group, injury group and normal group, which consist of 20, 16 and 8 rats respectively. Each group was subdivided into the 1st, 3rd, 6th and 9th week subgroups. Standardized crushing of optic nerves was applied to make the model. Then the rats in the laser therapy group were given 60 mW laser of a spot diameter of 5mm on the injured optic nerve for 3 minutes every day. The injury and normal groups received the same treatment with no laser output. The expression of BDNFmRNA was detected with RT-PCR respectively after 1, 3, 6 and 9 weeks of treatment. Results After the optic nerve was injured, the expression of BDNFmRNA reached the peak one week after the injury and then dropped. At the 1 st, 3rd, 6th and 9th week after the injury, the expression of BDNFmRNA in the laser therapy group was significantly higher than that in the injury group. Conclusions 810 nm low power Ga-Al-As laser can promote the BDNFmRNA expression of rats with optic nerve injury and repair ax-onal regeneration of neural.%目的 观察低强度810 nm半导体激光照射对大鼠视神经钳夹伤后视神经再生的影响.方法 健康成年Wistar大鼠44只,体重180~220g,分成激光治疗组20只、单纯损伤组16只、正常对照组8只,每组按治疗时间又分成1、3、6和9周4个时间点.标准的视神经钳夹伤模型制备成功后,激光治疗组行激光照射,照射参数:光斑直径5mm,照射功率60 mW,时间3min,经皮至视神经损伤处,每日照射1次.单纯损伤组及正常对照组在进行激光照射时,激光器无功率输出.激光治疗1、3、6和9周后测量视网膜中脑源性神经营养因子(BDNF)mRNA的含量.结果 激光治

  12. 人参皂苷对慢性应激抑郁模型大鼠行为学及HPA轴、BDNF的影响%Effects of ginsenosides on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor in rats exposed to chronic unpredictable mild stress

    Institute of Scientific and Technical Information of China (English)

    刘丽琴; 罗艳; 张瑞睿; 郭建友

    2011-01-01

    Gingseng is commonly used in traditional Chinese medicine community for the treatment of depression-like dis, orders. Ginsenosides is considered to be the major active components of ginseng. Previous studies have demonstrated that ginsenosides produced antidepressant-like action in various mouse models of behavioral despair. The present study aimed to examine whether ginsenosides could affect the chronic unpredictable mild stress (CUMS)-induced depression in rats. The mechanism(s) underlying the antidepressant-like action was investigated by measuring serum corticesterone level, glucocorticoid receptor ( GR), mineralocorticoid receptor (MR) and brain-derived neurotrophic factor (BDNF) mRNA levels in brain tissues. CUMS, being lasted for 6 weeks, caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Whereas serum corticosterone level was significantly increased in rats exposed to CUMS, expressions of GR mRNA in hippocampus, and BDNF mRNA in hippocampus and frontal cortex, were decreased in CUMS-treated rats. Daily intragastric administration of ginsenosides (12. 5, 25, 50 mg · kg-1) during the six weeks of CUMS significantly suppressed behavioral and biochemical changes induced by CUMS. However, there was no significant difference in MR mRNA level among groups. The results suggest that the antidepressant-like action of ginsenosides is likely mediated by modulating the function of hypothalamic- pituitary -adrenal axis and increasing the expression of BDNF in brain tissues.%目的:探讨人参皂苷对慢性应激所致大鼠抑郁模型的干预作用.方法:通过测定大鼠血清中皮质酮(COR)、糖皮质激素受体(GR)、盐皮质激素受体(MR)和脑组织中神经营养(BDNF)的mRNA表达水平,探讨人参皂苷的抗抑郁机制.结果:与正常组大鼠比较,经过慢性应激6周后大鼠糖水偏好显著下降,强迫游泳测试不动时间

  13. 精神分裂症首次发病未治疗患者血清脑源性神经营养因子水平测定%Clinical research of the relation of plasma levels of brain derived neurotrophic factor in the untreated illness in patients with first-episode schizophrenia

    Institute of Scientific and Technical Information of China (English)

    袁杰; 瞿正万; 蔡正宜; 杨建飞; 张洁; 金莹

    2015-01-01

    Objective:To explore the relation of plasma levels of brain derived neurotrophic factor in pa-tients with first-episode schizophrenia during untreated period . Provide a certain basis for clinical diagnosis and treatment. Method:We picked 66 untreated in-patients and out-patients who were newly diagnosed as schizo-phrenia according to ICD-10 as the study group and 40 normal people as the control group. After joining the group,the positive and negative symptoms scale( PANSS)was used to identify the degree of mental symptoms. Morning blood drawn and plasma concentrations of BDNF were also measured. Results:Plasma BDNF levels in patients with schizophrenia(21. 35 ± 3. 94)ug / L was lower than the normal control group(23. 68 ± 6. 14) ug/L,P<0. 05;The duration of untreated illness was related to serum BDNF levels(r=3. 216,P<0. 05). Conclusion:The longer duration of untreated illness,the more obvious BDNF levels decline,which suggest BD-NF levels may be an important indicator of disease development and prognosis.%目的:了解首发精神分裂症未治疗患者脑源性神经营养因子( BDNF)水平的变化,为临床诊治提供一定的依据。方法:抽取初诊的住院或门诊符合ICD-10精神分裂症诊断标准首发未治疗患者计66例,正常对照组40例。入组后使用阳性和阴性症状量表( PANSS)判别精神症状程度,抽取晨血,测定血清BDNF浓度。结果:精神分裂症患者血清BDNF水平(21.35±3.94)ug/L,显著低于正常对照组[(23.68±6.14)ug/L,P<0.05];未治疗时间与血清BDNF水平具有相关性(r=3.216,P<0.05)。结论:精神分裂症患者未治疗期越长,BDNF水平下降越明显,提示BDNF水平或许是精神分裂症患者发展的生物学指标之一。

  14. The effect of 8 Hz infrasound on the expression of brain derived neurotrophic factor in the rat hippocampus%8 Hz次声作用对大鼠海马脑源性神经营养因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    袁华; 陈景藻; 龙华; 牟翔; 李玲; 唐晨; 张美霞; 葛雪松; 刘静; 瞿丽莉

    2008-01-01

    目的 研究频率为8 Hz,声压级分别为90,100和130 dB的次声作用对大鼠海马脑源性神经营养因子(BDNF)表达水平的影响.方法 将48只SD大鼠随机分为对照组和90,100和130 dB次声作用组(次声频率均为8 Hz),每组12只.将各次声作用组大鼠暴露于8 Hz、不同声压级次声环境中,次声每天作用2 h;对照组大鼠同期也置于次声舱内,但期间不给予次声干预.于实验进行4周后,将各组大鼠处死取脑,采用免疫印迹法(Western blot)检测大鼠海马中BDNF蛋白含量变化情况;采用原位杂交法检测BDNF mRNA在海马分布中的变化.结果 各次声作用组大鼠海马中BDNF含量均有不同程度减少,随着次声声压级提高,BDNF水平下降幅度逐渐加重.原位杂交结果显示BDNF mRNA在大鼠海马各区域中均有分布,各次声作用组大鼠海马BDNF mRNA水平均较对照组下降,其中以齿状回部位的下降幅度最为显著.结论 实验大鼠经频率为8 Hz,声压级为90,100或130 dB的次声作用后,其海马(尤其是齿状回区)BDNF含量减少,BDNFmRNA表达水平下降,这可能是次声作用引起机体学习记忆障碍的重要原因之一.%Objective To investigate the effect of 8 Hz infrasound on the expression of brain derived neurotrophic factor(BDNF)in the rat hippocampus.Methods Forty-eight Sprague-Dawley rats were randomly divided into groups to be exposed to 90,100 and 130 dB infrasound,and a control group(n=12).All the animals in the infrasound exposure groups were exposed to 8 Hz infrasound at the planned intensity for 2 hours daily for 4 weeks.The rats of the control group were treated identically except that the infrasound amplitude was 0 dB.The animals were sacrificed and their brains were examined at the end of the 4-week infrasound exposure.Western blotting was used to detect the expression of BDNF protein,and in situ hybridization(ISH)was used to observe the distribution of BDNF mBNA in the hippocampus.Results Eight

  15. Mimicking the Neurotrophic Factor Profile of Embryonic Spinal Cord Controls the Differentiation Potential of Spinal Progenitors into Neuronal Cells

    OpenAIRE

    Nakamura, Masaya; Tsuji, Osahiko; BREGMAN, BARBARA S.; Toyama, Yoshiaki; Okano, Hideyuki

    2011-01-01

    Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BD...

  16. 单纯及丙泊酚联合电休克处理对抑郁大鼠海马BDNF mRNA的影响%Effect of electroconvulsive therapy and propofol combined with electroconvulsive therapy on brain-derived neurotrophic factor mRNA in hippocampus of depressed rats

    Institute of Scientific and Technical Information of China (English)

    刘永峰; 闵苏; 董军; 魏珂; 曹俊

    2009-01-01

    Objective To investigate the effect of propofol combined with electroconvulsive therapy on brain-derived neurotrophic factor in hippocampus of depressed rats. Methods 24 adult male SD rats weighing 200-250g were randomly divided into four groups(n= 6): control group (group C), depressed group (group D), electroconvulsive therapy group ( group E ) , propofol combined with electroconvulsive therapy group ( group M ) . The depression model of rat was produced by separation and chronic unpredictable mild stress. The anxiety-related behaviour and exploration of rats were tested in the open field. The expression of BDNF mRNA was measured by RT-PCR. Results Post-treatment, ambulation and rearing of open-field test were significantly increased in group E and group M compared with group D(P<0.05). Evasive latency of Morris water maze were significantly increased in group E compared with group D and M [group E(35. 8 ±6. 8)s, group D(28.4 ±4.1)s, group M(23.8±7.0) s] (P<0.05). Swimming time percentage in platform quadrant of Morris water maze were significantly decreased in group E compared with group D and M(P<0.05). The expression of BDNF mRNA was significantly decreased in group D compared with the ones in group C (P < 0.05). The expression of BDNF mRNA was significantly increased in group E and M compared with the ones in group D(P<0.05). Conclusions ECT and propofol combined with ECT may up-regulate the expression of BDNF mRNA in hippocampus to improve depression symptoms of depressed rats. BDNF pathway wouldn' t participate the mechanism of ECT impair learning memory.%目的 观察单纯电休克及丙泊酚联合电休克治疗对抑郁大鼠电休克疗效及海马内脑源性神经营养因子(BDNF)mRNA的影响.方法 24只SD大鼠随机分为对照组(C组)、抑郁组(D组)、单纯电休克组(E组),丙泊酚联合电休克组(M组),每组6只.C组正常饲养,D、E、M组采用孤养加慢性不可预见性应激建立抑郁模型,建

  17. Clinical analysis of serum levels of brain derived neurotrophic factor in type Ⅰ,Ⅱ schizophrenia patients%Ⅰ型、Ⅱ型精神分裂症患者脑源性神经营养因子水平临床分析

    Institute of Scientific and Technical Information of China (English)

    袁杰; 瞿正万; 蔡正宜; 杨建飞; 张洁; 金莹

    2015-01-01

    目的:分析Ⅰ型、Ⅱ型精神分裂症患者间血清脑源性神经营养因子(BDNF)水平与阳性和阴性精神症状可能的关系,为临床诊治提供一定依据。方法抽取初诊的住院或门诊符合ICD‐10精神分裂症诊断标准患者共计103例,其中Ⅰ型组63例,Ⅱ型组40例,健康对照组40例。入组后使用阳性和阴性症状量表(PANSS)判别精神症状程度,抽取晨血,测定血清BDNF浓度。结果精神分裂症患者血清BDNF水平为(21.38±4.57)μg/L ,低于健康对照组的(23.68±6.14)μg/L ,差异有统计学意义(P<0.05);Ⅰ型组BDNF水平为(22.50±4.41)μg/L ,明显高于Ⅱ型组的(19.61±4.31)μg/L ,差异有统计学意义(P<0.01),Ⅱ型组BDNF水平明显低于健康对照组,差异有统计学意义(P<0.05)。病程越长、复发次数越多,血清BDNF水平越低(P<0.05)。结论 BDNF可能参与了精神分裂症的发生、发展过程,Ⅱ型患者精神神经生化学病因基础可能不同,可作为判断预后的临床观测指标。%Objective To analyze the probable relationship between the serum brain derived neurotrophic fac‐tor (BDNF) levels and the positive and negative psychotic symptoms in the type Ⅰ and type Ⅱ schizophrenia pa‐tients in order to provide a certain basis for clinical diagnosis and treatment .Methods 103 newly diagnosed outpa‐tients or inpatients according with the ICD‐10 diagnostic criteria for schizophrenia were extracted ,including 63 cases in the type Ⅰ group and 40 cases in the type Ⅱ group .Other 40 healthy individuals were selected as the healthy con‐trol group .After joining the group ,the positive and negative symptoms scale (PANSS) was used to identify the de‐gree of mental symptoms and the morning blood was collected for detecting serum concentration of BDNF .Results Serum BDNF level in the schizophrenia patients was (21

  18. Construction, identification and application of fusion plasmid of brain-derived neurotrophic factor-green fluorescent protein%脑源性神经营养因子-绿色荧光蛋白融合基因载体的构建、鉴定及初步应用研究

    Institute of Scientific and Technical Information of China (English)

    方媛; 樊嘉雯; 莫晓芬; 孙兴怀; 郭文毅; 孔德升; 马端; 田洁

    2009-01-01

    目的 构建脑源性神经营养因子(BDNF)绿色荧光蛋白(GFP)融合表达质粒,观察其融合蛋白的特性.方法 将BDNF cDNA片段插入pcDNA3.1/NT-GFP-TOPO真核表达质粒,使其与GFP同处一个阅读框架中,测序鉴定后,转染培养的雪旺细胞,用免疫组织化学和蛋白质印迹(Western botting)观察外源性目的 蛋白的表达情况,并用该质粒活体转染视神经切断的大鼠模型,观察所表达外源性蛋白的神经保护作用.结果 测序证实质粒构建成功.Western botting结果 显示.BDNF-GFP融合蛋白表达一相对分子质量为41×103大小条带.荧光显微镜下可见BDNF-GFP转染的细胞发出绿色荧光,免疫组织化学染色后,可见绿色荧光与红色荧光完全重合.转染BDNF-GFP质粒和GFP质粒的大鼠视神经切断术后7d存活视网膜神经节细胞(RGC)分别为(1201±286)、(482±151)个/mm2,存活百分比分别为(51.39±12.24)%和(20.62±6.46)%;28 d时存活的RGC分别为(715±71)、(112±24)个/mm2,存活百分比分别为(30.59±3.04)%和(4.79±1.03)%.两组存活百分比比较,差异有统计学意义(t=3.144,11.378;P<0.01).结论 BDNF-GFP融合表达载体可以转录翻译为一融合蛋白,该蛋白可自发绿色荧光,并具有BDNF的生物学活性.%Objective To construct expression plasmid of the fusion protein of brain-derived neurotrophic factor (BDNF)-green fluorescent protein (GFP), and observe its characteristics. Methods BDNF cDNA segment was inserted into plasmid pcDNA3.1/NT-GFP-TOPO and in the same reading frame with GFP. After verified by sequencing, the BDNF-GFP plasmid was transferred into cultured Schwann cells by electroporation. And the expression of BDNF-GFP fusion protein was observed by immunohistochemistry and Western blotting. The neural-protective function of the fusion protein was evaluated by transferring the plasmid into adult rat retinas with transected optic nerve. Results The sequence of BDNF-GFP plasmid was verified correctly by

  19. Effect of Curcumin on Behavior of Autism Rats and the Expression of Brain Derived Neurotrophic Factor%姜黄素对孤独症大鼠行为及脑源性神经营养因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈淑娟; 姜志梅; 张士岭; 孙奇峰; 郭岚敏; 庞伟

    2012-01-01

    目的 研究姜黄素对孤独症鼠行为及脑源性神经营养因子(BDNF)表达的影响.方法 参照Schneider的方法在大鼠孕12.5 d时模型组母鼠腹腔注射丙戊酸钠(VPA) 600 mg.kg-建立孤独症动物模型,对仔鼠进行发育学、行为学、形态学鉴定.随机选取35 d孤独症鼠20只、盐水(NS)组鼠10只.NS组鼠为出正常对照组,孤独症鼠随机分为孤独症溶剂对照(VC)组10只、孤独症姜黄素干预( VPA-C)组10只.VPA-C组鼠于出生后35 d连续2周腹腔注射姜黄素50mg·kg-1[姜黄素用含1 mL· L-1二甲基亚砜(DMSO)的PBS液配成10 g·L-1的溶液].NS组、VC组鼠于生后35 d连续2周每日腹腔注射等量的含l mL·L-1DMSO的PBS液.观察姜黄素对孤独症鼠社交行为及重复理毛行为的影响,应用免疫组织化学染色法观察姜黄素干预后BDNF的表达情况.应用SPSS 18.0软件进行统计学处理.结果 姜黄素干预后,孤独症鼠社交行为较干预前次数增加(P<0.05),社交行为潜伏期缩短(P <0.001),重复理毛行为累积时间减少(P<0.01);姜黄素干预后孤独症鼠大脑颞叶皮质BDNF阳性细胞积分光密度(IOD)值较干预前增加(P<0.05).结论 姜黄素对孤独症有一定的治疗作用,可一定程度改善孤独症鼠异常行为,其机制可能通过增加BDNF表达发挥作用.%Objective To study the effect of curcumin on behavior of autism rats and expression of brain derived neurotrophic factor (BDNF). Methods Animal model of autism was established according to Schneider method,the female that received a single intraperitoneal injection of 600 mg·kg-1 sodium valproate on the 12.5 day after conception and then the auxanology, behavioral and morphological test were performed to identify autism mouse. Randomly selected animal model of autism (n = 20) and offspring of the NS group (n = 10) at age of 35 days , the saline group rats were designated as normal control (Con) group, the animal model of autism was randomly

  20. 运动训练对脊髓损伤大鼠脊髓内BDNF及其受体TrkB表达的影响%Effects of Exercise on Expressions of Brain-Derived Neurotrophic Factor and Tyrosine Kinase Receptor B in Injured Spinal Cord of Rats

    Institute of Scientific and Technical Information of China (English)

    贺晓玉

    2014-01-01

    目的:研究运动训练对脊髓损伤(SCI)大鼠脊髓内脑源性神经营养因子(BDNF)及其酪氨酸激酶受体B(TrkB)表达的影响。方法24只SD大鼠随机均分为假手术组、损伤对照组和运动训练组。采用通用型脊髓打击器建立T10 SCI大鼠模型。运动训练组于损伤后1周起对大鼠进行4周运动训练,假手术组和损伤对照组不进行运动训练。采用BBB评分观察损伤前及损伤后第1~5周大鼠后肢运动功能的变化。运动训练结束后取大鼠T12~L1节段脊髓,免疫组化结合图像平均光密度分析观察脊髓组织BDNF和TrkB的表达及分布,Western blot检测脊髓内BDNF和TrkB蛋白含量。结果损伤前,3组大鼠BBB评分为21.00分。损伤后,损伤对照组及运动训练组BBB评分均低于假手术组(均P<0.05)。损伤3周后运动训练组BBB评分高于损伤对照组(P<0.05)。BDNF、TrkB免疫反应阳性产物均多分布于脊髓前角、脊髓后角及中央管周围;运动训练组BDNF、TrkB阳性染色颗粒均增多,平均光密度值均高于假手术组和损伤对照组(均P<0.05)。运动训练组大鼠脊髓内BDNF及TrkB的表达高于假手术组和损伤对照组。结论运动训练能诱导SCI大鼠脊髓内BDNF及其受体TrkB表达,促进其运动功能恢复。%Objective To investigate the effects of exercise on expressions of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) in spinal cord of spinal cord injury (SCI) rats. Methods Spinal cord injury models were produced by universal spinal cord impact system. Twenty-four Sprague-Dawley rats were randomly divided into 3 groups, exercise group (SCI-induction and exercises, n=8), control group (SCI-induction without exercises,n=8) and sham-operation group (no operation, without SCI nor exercises, n=8). Exercise training began from the 7th day after injury for 4 weeks. The locomotor function was assessed by Basso

  1. 运动训练对大鼠损伤远端脊髓超微结构及脑源性神经营养因子表达的影响%The effect of exercise training on ultrastructure and brain-derived neurotrophic factor expression in spinal cord distal to injury level in rats

    Institute of Scientific and Technical Information of China (English)

    柴湘婷; 王红星; 丁晓晶; 陈文红; 王彤; 励建安

    2012-01-01

    目的:明确运动训练对大鼠脊髓损伤(SCI)后远端脊髓超微结构及脑源性神经营养因子(BDNF)表达的影响.方法:成年雌性SD大鼠18只,采用改良Allen撞击法制作T9不完全性SCI模型.术后随机分为损伤后1周组、对照组(未行训练)及训练组(术后1周开始训练,共4周).分别在损伤前、损伤后第1、2、3、4及5周时采用BBB评分评定运动功能,训练结束后取腰膨大段脊髓进行电镜观察超微结构,免疫组化检测BDNF蛋白表达情况.结果:①BBB评分:对照组与训练组BBB评分均较损伤后1周、2周明显提高,但训练组较对照组增加更为显著(P<0.05).②超微结构:损伤后1周组,髓鞘排列规律整齐、轴索较均匀一致、核仁清晰;对照组髓鞘松散、轴索与髓鞘间出现空隙、轴突变性及空泡;训练组髓鞘完整、较薄、轴索均匀、髓鞘下及神经纤维周围基质中少见空泡.③BDNF免疫组化:BDNF免疫反应阳性产物多分布于脊髓前角,中央管周围也有出现,背角少见;训练组BDNF阳性染色颗粒增多,平均光密度值较损伤后1周组及对照组均显著增加(P<0.05).结论:运动训练能减轻损伤远端脊髓继发性损害,并促进BDNF蛋白的表达.%Objective: To determine the effects of exercise training on ultras tincture and brain-derived neurotrophic factor (BDNF) expression in spinal cord distal to injury level in rats. Method: Eighteen female adult Sprague-Dawley rats were included to make incomplete spinal cord injury (SCI) at T9 level by using modified Allen's method. Those rats were divided randomly into 1 week post injury group, control group(without training) and exercise group (trained by body-weight-support-treadmill-training, started from 1 week after injury, lasted 10 min/time, twice a day, 5d/week, for 4 weeks). Locomotor function was evaluated us-ing Basso-Beattic-Bresnahan (BBB) scale before injury and at the 1st, 2nd, 3rd, 4th and 5th week post

  2. 抑郁症患者认知功能障碍与血浆脑源性神经营养因子水平的关系%The correlation of cognitive dysfunction with serum brain-derived neurotrophic factor level in depression patients

    Institute of Scientific and Technical Information of China (English)

    冯玉; 戴媛媛; 杨志寅; 吉峰

    2013-01-01

    目的 探讨抑郁症患者认知功能障碍的特征及其与血清脑源性神经营养因子(BDNF)水平的关系.方法 采用北京版蒙特利尔认知评估量表(MoCA-BJ)分别对73例抑郁症患者和71例正常人进行认知功能评定,根据MoCA-BJ得分,将抑郁症患者划分为伴认知功能障碍组,共36例;不伴认知功能障碍组,共37例.采用酶联免疫吸附法(ELISA)测定所有受试者血清BDNF水平.结果 抑郁症患者MoCA总分、视空间功能、执行功能、注意力、延迟记忆功能、时间定向力、地点定向力功能均低于正常对照组(P<0.05);抑郁症患者认知功能障碍发生率为49.3%;伴认知障碍组[(12.08±7.08) ng/ml]与不伴认知障碍组[(12.22±7.93) ng/ml]的血清BDNF水平差异无统计学意义(P>0.05),但两组BDNF水平均低于对照组[(16.55 ±7.47) ng/ml,P<0.01],血清BDNF水平与抑郁症患者各认知域功能无显著相关(P>0.05).结论 抑郁症患者认知损害累及视空间、执行功能、延迟记忆、注意力、定向力等多个认知领域.血清BD-NF水平与抑郁症关系密切,但与抑郁症认知功能无明显关系.%Objective To investigate the characteristics of cognitive dysfunction in patients with depression,and identify the correlation between cognitive dysfunction and serum brain-derived neurotrophic factor (BDNF) level.Methods All participants including 73 depressed patients and 71 healthy controls were received clinical and cognitive assessments at admission,the depression group was divided into two groups by the score of Beijing version of the Montreal Cognitive Assessment (MoCA-BJ),one was depression with cognitive dysfunction group which had 36 cases,the other was depression without cognitive dysfunction group which had 37 cases.Concentration of BDNF was measured by the ELISA method.Results Cognitive impairments were found in numerous cognitive domains of depressed patients,including visuospatial and executive

  3. Heroin-dependence and detoxification in the expression of brain-derived neurotrophic factor in rat%吗啡依赖及戒断对大鼠脑源性神经营养因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    罗庆华; 马祚田; 余会平; 杜向东; 蒙华庆

    2005-01-01

    BACKGROUND: Multiple applications of opium medicines can induce the accommodative changes of morphology and function in some intracerebral nerve positions. These accommodative changes are important neurobiological bases inducing drug-desire and re-addiction after detoxification. However, the actual molecular mechanism is unclear at present.OBJECTIVE: To investigate the impacts of the generation of heroin-dependence and detoxification on brain-derived neurotrophic factor (BDNF) in rat to provide a laboratorial gist for the participation of BDNS in heroin-dependence and detoxification.DESIGN: A randomized controlled study by employing experimental animals as subjectsSETTING: Mental health center of a medical university affiliated hospital MATERIALS: The study was conducted in the Laboratory of Pharmacology,Faculty of Pharmacology, Chongqing Medical University between March 2004and July 2004. Totally 30 inbreeding clean male SD rats with a bodymass between 200 g and 250 g were obtained from the Experimental Animal Center of the Third Military Medical University of Chinese PLA. Rats were randomly divided into blank control group(control group), heroin-dependent group (heroin group), and naloxone detoxification group(naloxone group) with 10rats each.METHODS: Morphine was subcutaneously injected into the rat with dose-increasing method to establish heroin-dependence rat model. Rats of naloxone group received subcutaneously injection of 2 mg/kg of naloxone to excite abstinent symptoms. The same dose of normal saline (NS) was injected in rats of control group. Model rats of each group were observed biologically and behaviorally. BDNF expression at different brain zone of rats in three different groups was tested with immunohistochemistry and digoxin-labeled oligonucleoide probe in situ hybridization technique.Comparison of the evaluation of abstinent symptoms in rats of each group.RESULTS: In the heroin group, the relative content of BDNF protein was higher in frontal lobe

  4. Brain-derived neurotrophic factor gene mRNA and protein expression in patients with bipolar disorder%双相障碍与脑源性神经营养因子外周血mRNA和蛋白表达相关性的研究

    Institute of Scientific and Technical Information of China (English)

    李则挚; 易正辉; 陈俊; 方贻儒; 汪作为; 禹顺英; 吴志国; 张晨; 洪武; 苑成梅; 黄佳; 林治光

    2012-01-01

    Objective To explore the association of peripheral brain-derived neurotrophic factor (BDNF) gene expression and serum protein levels with bipolar disorder (BPD).Methods The real-time quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) with TaqMan MGB was used to analyze the BDNF gene mRNA expression in peripheral leukocytes of 61 patients with BPD[32 cases with bipolar mania(BM),29 with bipolar depression(BD)] and 61 healthy controls.The serum BDNF level was measured with enzyme-linked immunosorbent assay (ELISA) method.The symptoms of the patients were assessed with the Hamilton Depression Rating Scale-17 (HAMD17) and Young Mania Rating Scale (YMRS).Results (1) The BDNF gene mRNA expression level in BPD group (0.0077±0.0019) was significantly lower than that in control group (0.0096±0.0028) (t=-3.74,P<0.01).There was significant difference among three groups on BDNF expression (BM:0.0081±0.0023,BD:0.0073±0.0024 ; F=7.55,P<0.01).Furthermore,BDNF gene mRNA decreased both in BM and BD group compared with that in controls (P<0.05,P<0.01,respectively).However,no difference was found between BM and BD groups (P>0.05).(2) BDNF serum levels in BPD group (2.80±0.19) was lower than that in control group (2.99±0.49) (t =-2.90,P<0.01).There was significant difference among three groups on BDNF expression (BM:2.81±0.17,BD:2.79 ±0.21; F=4.21,P<0.05).Furthermore,BDNF serum levels decreased in both BM and BD compared with those in controls (all P<0.05,respectively).However no difference was found between BM and BD (P>0.05).(3) Neither the expression levels nor serum levels of BDNF in BM were correlated with YMRS (P>0.05),and the same result was found in BD group (P>0.05).Conclusions The findings suggest that the decreased BDNF levels may be involved in the pathophysiology of BPD,while BDNF levels might not have polarized changes in different status of episodes.%目的 探讨脑源性神经营养因子(BDNF)外周血mRNA表达和

  5. The Effect of Erythropoietin on Neurotrophic Factors in N9 Murine Microglial Cells

    OpenAIRE

    Kuralay, Filiz; ÇAKIRLI, Başak BİNGOL; GENÇ, Şermin

    2008-01-01

    Aim: In this study, we investigated whether interferon gamma (IFNg), lipopolysaccharides (LPS) and amyloid beta (AMYb), as toxic stimulator agents, and erythropoietin (EPO), as a neurotrophic agent, have an effect on the production of the following neurotrophic factors in the N9 murine microglia cell line: neurotrophin 3 (NT3), neurotrophin 4 (NT4), and brain-derived neurotrophic factor (BDNF). Materials and Methods: Microglial cells were incubated with 50 μg/ml AMYb, or 1 _...

  6. Neurotrophic factor control of satiety and body weight.

    Science.gov (United States)

    Xu, Baoji; Xie, Xiangyang

    2016-05-01

    Energy balance - that is, the relationship between energy intake and energy expenditure - is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity. PMID:27052383

  7. Acute strength exercise and the involvement of small or large muscle mass on plasma brain‐derived neurotrophic factor levels

    OpenAIRE

    Paulo Roberto Correia; Aline Pansani; Felipe Machado; Marilia Andrade; Antonio Carlos da Silva; Fulvio Alexandre Scorza; Esper Abrão Cavalheiro; Ricardo Mario Arida

    2010-01-01

    OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large) and elbow (small) flexor and extensor muscles were measured on two separate...

  8. Enteric glia mediate neuronal outgrowth through release of neurotrophic factors

    Institute of Scientific and Technical Information of China (English)

    Christopher R.Hansebout; Caixin Su; Kiran Reddy; Donald Zhang; Cai Jiang; Michel P.Rathbone; Shucui Jiang

    2012-01-01

    Previous studies have shown that transplanted enteric glia enhance axonal regeneration,reduce tissue damage,and promote functional recovery following spinal cord injury.However,the mechanisms by which enteric glia mediate these beneficial effects are unknown.Neurotrophic factors can promote neuronal differentiation,survival and neurite extension.We hypothesized that enteric glia may exert their protective effects against spinal cord injury partially through the secretion of neurotrophic factors.In the present study,we demonstrated that primary enteric glia cells release nerve growth factor,brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor over time with their concentrations reaching approximately 250,100 and 50 pg/mL of culture medium respectively after 48 hours.The biological relevance of this secretion was assessed by incubating dissociated dorsal root ganglion neuronal cultures in enteric glia-conditioned medium with and/or without neutralizing antibodies to each of these proteins and evaluating the differences in neurite growth.We discovered that conditioned medium enhances neurite outgrowth in dorsal root ganglion neurons.Even though there was no detectable amount of neurotrophin-3 secretion using ELISA analysis,the neurite outgrowth effect can be attenuated by the antibody-mediated neutralization of each of the aforementioned neurotrophic factors.Therefore,enteric glia secrete nerve growth factor,brain-derived neurotrophic factor,glial cell line-derived neurotrophic factor and neurotrophin-3 into their surrounding environment in concentrations that can cause a biological effect.

  9. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  10. 卷烟烟气暴露对大鼠学习记忆功能及海马组织病理和BDNF表达的影响%Influence of cigarette smoke exposure on learning and memory function,histologic changes and brain-derived neurotrophic factor in rats

    Institute of Scientific and Technical Information of China (English)

    李跃; 潘秀颉; 杨陟华; 齐绍武; 朱茂祥

    2012-01-01

    设对照组(未染毒)、低剂量组(约2.5支烟,每天染毒10 min)、中剂量组(约5支烟,每天染毒20 min)及高剂量组(约10支烟,每天染毒40 min)4个处理,将雄性SD大鼠置于气体染毒箱内行被动吸烟,研究卷烟烟气暴露对大鼠学习记忆功能及海马病理和脑源性神经营养因子(brain-derived neurotrophicfactor,BDNF)的影响.结果表明:染毒30d,染毒组大鼠潜伏时间均显著短于对照组,BDNF表达显著高于对照组;染毒60 d,中剂量组大鼠潜伏时间显著短于对照组,BDNF表达显著高于对照组;染毒180 d,染毒组大鼠潜伏时间显著长于对照组,BDNF表达显著高于对照组;不同剂量处理大鼠的海马HE染色均无明显变化,大鼠的海马组织均无器质性损伤;短期烟气暴露可提高大鼠学习记忆功能,随染毒时间的延长,大鼠学习记忆功能下降,该作用与海马BDNF的表达密切相关.%Male SD rats were randomly divided into normal control group and cigarette smoke group (CS group). Rats in CS group were exposed to cigarette smoke in ventilated smoking chambers and divided into low-dose group (about 2.5 cigarettes, exposed for 10 minutes a day), medium-dose group (about 5 cigarettes, exposed for 20 minutes a day) and high-dose group (about 10 cigarettes, exposed for 40 minutes a day). The influence of cigarette smoke exposure on learning and memory function of rats, on pathological changes of hippocampus and on the expression of brain-derived neurotrophicfactor (BDNF) was explored by Morris water maze, H-E staining and immunohistochemistry staining, respectively. The results showed that the escape latency of CS group was significantly decreased and the expression of BDNF was significantly increased compared to normal control group 30 d after exposure; the escape latency of medium-dose group was shorter than that of the normal control group and the expression of BDNF of CS group was significantly increased 60 d after exposure

  11. Influence of tail vein administration of bone marrow mesenchymal stem cells on expression of brain-derived neurotrophic factor and nerve growth factor after spinal cord injury in rats%骨髓间充质干细胞尾静脉移植脊髓损伤大鼠脑源性神经营养因子及神经生长因子的表达

    Institute of Scientific and Technical Information of China (English)

    董锋; 林建华; 吴朝阳

    2011-01-01

    BACKGROUND: Transplantation of bone marrow mesenchymal stem cells has an effect on the treatment of spinal cord injury, but the mechanism is not fully understood.OBJECTIVE: To explore the influence of intravenous administration of bone marrow mesenchymal stem cells on expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after spinal cord injury in rats and to study possible mechanism of intravenous administration of bone marrow mesenchymal stem cells after spinal cord injury in adult rats.METHODS: Modified Allen method was applied to induce T 10 spinal cord injury to prepare rat models of paraplegia. There were 6 rats in sham operation group and 24 rats in injury group. Then, the injury group was randomly divided into transplantation group and control group. Rats in the sham operation and transplantation groups received tail vein transplantation of 1 mL bone marrow mesenchymal stem cells (1×106 cells), while those in the control group were treated with PBS.RESULTS AND CONCLUSION: After spinal cord injury in rats, the expression of BDNF and NGF was improved and advanced to increase via intravenous administration of bone marrow mesenchymal stem cells. Maybe it is one of the mechanisms of promoting restoration of injured spinal cord and improving motor function.%背景:骨髓间充质干细胞移植对脊髓损伤有治疗作用,但其机制尚不完全清楚.目的:应用免疫组织化学方法观察骨髓间充质干细胞静脉移植损伤脊髓局部脑源性神经营养因子及神经生长因子的表达,分析骨髓间充质干细胞移植治疗大鼠脊髓损伤的作用途径.方法:运用改良Allen 法制备T10 脊髓外伤性截瘫大鼠模型,假手术组6 只,脊髓损伤组24 只随机分为对照组和骨髓间充质干细胞移植组.骨髓间充质干细胞移植组、假手术组接受骨髓间充质干细胞单细胞悬液1 mL(1×106 cells)自大鼠尾静脉缓慢注射移植,对照组静脉注射PBS 1 mL.结果

  12. The change of serum brain-derived neurotrophic factor in schizophrenia before and after risperidone treatment%利培酮治疗精神分裂症前后血清脑源性神经营养因子的变化

    Institute of Scientific and Technical Information of China (English)

    张云飞; 贾黎方

    2015-01-01

    目的:探讨利培酮治疗精神分裂症前后患者血清脑源性神经营养因子(BDNF)的含量变化。方法分别采集健康对照者(健康对照组)和精神分裂症患者(病例组)经利培酮治疗前后的静脉血,使用ELISA法检测血清BDNF含量。结果利培酮治疗前病例组血清BDNF平均浓度为(10.50±5.47)μg/L ,与健康对照组(11.08±5.17)μg/L比较,差异无统计学意义(P>0.05);病例组患者治疗后血清BDNF平均浓度为(9.66±4.43)μg/L ,与治疗前比较,差异也无统计学意义(P>0.05)。结论 BDNF对精神分裂症的诊断和判断预后的价值尚不确定。%Objective To explore the change of serum brain‐derived neurotrophic factor in schizophrenia before and after risperidone treatmentMethods Venous blood were collected in healthy controls and schizophrenia patients before and after treatment with risperidone ,BDNF levels were measured by alzyme linked immunosorbent assay (ELISA) ,Statistical software SPSS13 .0 was used to analysis the dataResults The mean concentration of serum BD‐NF in schizophrenia patients were (10 .50 ± 5 .47)μg/L ,and (11 .08 ± 5 .17)μg/L in healthy subjects ,which had no significant difference between schizophrenia patients and healthy subjects (P>0 .05) .The mean concentration of ser‐um BDNF were (9 .66 ± 4 .43) μg/L in schizophrenia patients after risperidone treatment ,which had no significant difference compared with pre‐treatment patients (P>0 .05) .Conclusion The value of BDNF in diagnosis and prog‐nosis of schizophrenia is still uncertain .

  13. Study on changes of brain-derived neurotrophic factor and interleukins of depression or obsessive-compulsive disorder patients with complicated tuberculosis and their significance%抑郁症与强迫症合并肺结核患者脑源性神经营养因子及白细胞介素的变化研究

    Institute of Scientific and Technical Information of China (English)

    刘立滢; 贾碎林; 黄子夜

    2015-01-01

    目的:探讨抑郁症与强迫症合并肺结核脑源性神经营养因子(BDNF)、白细胞介素2(IL‐2)、白细胞介素6(IL‐6)的变化及意义,为提高临床诊治水平提供参考。方法选取2010年1月-2013年12月32例抑郁症合并肺结核患者(MD组)、32例强迫症合并肺结核患者(OCD组)为研究对象,选择健康人群56名为对照组,检测受试者血清BDNF、IL‐2、IL‐6水平。结果治疗前MD组、OCD组血清BDNF水平低于健康对照组,差异有统计学意义(P<0.01);治疗前MD组、OCD组血清IL‐2水平高于健康对照组,差异有统计学意义(P<0.01);MD组血清IL‐6水平高于OCD组和健康对照组,差异有统计学意义(P<0.01);治疗后MD组和OCD组血清BDNF水平均较治疗前上升(P<0.01),OCD组治疗后BDNF水平仍低于健康对照组,差异有统计学意义(P<0.01);治疗后MD组和OCD组血清IL‐2水平均较治疗前下降(P<0.01),差异有统计学意义(P<0.01);治疗后MD组血清IL‐6水平较治疗前下降(P<0.01);血清BDNF与抑郁症病程、症状呈负相关,血清IL‐2、IL‐6与抑郁症症状呈正相关;血清BDNF与强迫症病程、症状呈负相关,血清IL‐2与强迫症症状呈正相关。结论 BDNF、IL‐2、IL‐6在抑郁症合并肺结核中存在异常表达,且与抑郁症合并肺结核的病情相关,治疗后可获得改善;BDNF、IL‐2在强迫症合并肺结核患者血清中存在异常表达,且与强迫症合并肺结核的病情相关,治疗后亦可获得改善。%OBJECTIVE To study the changes of the brain‐derived neurotrophic factor (BDNF) ,interleukin‐2 (IL‐2) ,and interleukin‐6 (IL‐6) of the depression or obsessive‐compulsive disorder (OCD) patients with complicated tuberculosis and observe their significance so as to improve the clinical diagnosis and treatment .METHODS From Jan 2010 to

  14. The level changes of brain-derived neurotrophic factors, interleukin-2 and interleukin-6 in serum of patients with depression and obsessive-compulsive disorder before and after treatment and their clinical significance%抑郁症与强迫症患者治疗前后血清脑源性神经营养因子、白介素-2及白介素-6水平变化及其临床意义

    Institute of Scientific and Technical Information of China (English)

    江鸿波; 李莉欣

    2013-01-01

    Objective To explore the level changes of brain-derived neurotrophic factors (BDNF), interleukin-2 (IL-2) and interleukin-6 (IL-6) in serum of patients with depression and obsessive-compulsive disorder before and after treatment and the influential factors. Methods There were 30 cases in depression group (depression patients), 30 cases in obsessive-compulsive disorder group (patients with obsessive-compulsive disorder) and 30 cases in control group. On the basis of paroxetine therapy, the psychological therapy was administered in the depression group and the obsessive-compulsive disorder group. The levels of BDNF, IL-2 and IL-6 in serum of the three groups were detected by enzyme-linked immunosorbent assay (ELISA). Before and after treatment, the scale assessment was conducted. Hamilton depression rating scale (HAMD) was applied to assess the symptoms of depression while yale-brown obsessive compulsive scale (Y-BOCS) to evaluate obsessive compulsive symptoms. The relative analysis was conducted between the levels of BDNF, IL-2 and IL-6 in serum of patients with depression and obsessive - compulsive disorder and HAMD total score, Y-BOCS total score, disease duration, age and gender. Results After treatment, serum BDNF level in the depression group significantly increased, while the levels of IL-2 and IL-6 obviously decreased, but BDNF level was still lower than that in the control group. Serum BDNF level in obsessive-compulsive disorder group conspicuously elevated, whereas IL-2 level markedly reduced, but BDNF level was still lower than that in the control group. In the depression group, serum BDNF level was associated with HAMD score negatively, while the levels of IL-2 and IL-6 in serum were related to HAMD score positively. In the obsessive-compulsive disorder group, serum BDNF level is associated with Y-BOCS score negatively, while serum IL-6 was related to Y -BOCS score positively. Conclusion BDNF, IL-2 and IL-6 can provide possible evidences for the i

  15. 慢性锰中毒大鼠5-羟色胺、脑源性营养因子的表达变化%Expression changes of 5-hydroxytryptamine and brain-derived neurotrophic factor in rats with chronic manganism

    Institute of Scientific and Technical Information of China (English)

    黄婉媚; 王进; 黄坚毅; 庞霖霖

    2015-01-01

    Objective To observe the expression changes of 5-hydroxytryptamine (5-HT),brainderived neurotrophic factor (BDNF) in rats with chronic manganism.Methods Sixty healthy male Sprague-Dawley rats were randomly divided into control group (n =15) and experimental group (n =45).The experimental group was divided into three subgroups:low-dose group (n =15),middle-dose group (n =15),high-dose group (n =15).The rats in control group were given intraperitoneal injection of normal saline while the rats in low-dose group,middle-dose group,high-dose group were given intraperitoneal injection of 5 mg/kg,15 mg/kg and 25 mg/kg manganese chloride tetrahydrate,respectively for 5 days oncea week and lasted for 12 weeks.The depressive behavior changes of rats were observed by sucrose preference test and open field test.The concentrations of manganese in the striatum of rats were detected by inductively coupled plasma-atomic emission spectrometry.The expression of 5-HT in frontal cortex,hippocampus of rats was determined by high performance liquid chromatography.The expression of BDNF in frontal cortex,hippocampus of rats was examined by Western blotting.The expression of BDNF mRNA was detected using real-time fluorescence quantitative polymerase chain reaction.Results The chronic manganese poisoning rats presented depression-like behavior based on the sucrose preference test and open field test,which was more distinct in high-dose rats.As compared with the control group (frontal cortex (459.65 ± 16.81) ng/g,hippocampus (323.92 ± 17.41) ng/g;tissue wet weight),the expressions of 5-HT were significantly decreased in frontal cortex ((423.45 ± 17.19) ng/g,(376.89 ± 18.87) ng/g,(280.17 ± 25.46) ng/g),hippocampus ((265.71 ± 17.89) ng/g,(214.35 ±23.63) ng/g,(172.67 ± 18.24) ng/g) of the experimental group (F =132.68,69.66,both P < 0.05).As compared with the control group (frontal cortex 0.962 ±0.111,hippocampus 0.873 ± 0.101;the expressions of BDNF were significantly decreased in

  16. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    OpenAIRE

    Tirassa P; Quartini A; Iannitelli A

    2015-01-01

    Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR), Institute of Cell Biology and Neurobiology (IBCN), 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI), Rome, Italy; 4International Psychoanalytical Association (IPA), London, UKAbstract: The light information pathways and their relationship with the body rhythms have ge...

  17. Effect of γ-aminobutyric acid B receptors on the expression of brain-derived neurotrophic factor in hippocampus of rats with diabetic neuropathic pain with depression%γ-氨基丁酸B型受体对糖尿病神经痛合并抑郁大鼠海马脑源性神经生长因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    白惠萍; 刘朋; 杨淑红; 吴川; 任伟; 郭跃先; 王秀丽

    2014-01-01

    Objective To investigate the effect γ-aminobutyric acid B (GABAB) receptors on the expression of brain-derived neurotrophic factor (BDNF) in rats with diabetic neuropathic pain (DNP) with depression by using GABAB receptors agonist (baclofen) and antagonists (CGP55845).Methods 100 male SD rats were randomly divided into two groups:normal control group (C group) and DNP with depression model group (D group),in which the rats were intraperitonealy injected with saline or streptozocin (STZ) respectively.The DNP with depression models were established in 80 rats three weeks after the forced swimming test (FST),and 80 rats were randomly divided into 4 subgroups (n =20,each group) according to the given medicines:saline 10 μl + saline 10 μl injected intrathecally in D1 group,baclofen 0.5 μg + saline 10 μl in D2 group,CGP55845 10 μg + saline 10 μl in D3 group,and CGP55845 10 μg +baclofen 0.5 μg in D4 group.Saline 10 μl + saline 10 μl were injected intrathecally in 20 normal rats (C group).There was an interval of 15 min between twice intrathecal injections in five groups for 4 days.The paw withdrawal threshold (PWT) and immobility time of FST (IMFST) were measured two h (T1) and two weeks after intrathecal injection (T2) respectively.The hippocampi of rats were removed after measurements of PWT and IMFST for detection of BDNF expression.Results As compared with C group,the PWT was significantly reduced [(13.02 ± 1.68) g vs.(3.46 ±0.84) g,P <0.05],the IMFST was significantly prolonged [(47.14 ±3.65) s vs.(178.12 ± 12.49) s,P <0.05],and the expression of BDNF was decreased (P < 0.05) in D group.As compared with D1 group,the IMFST was significantly shortened (P < 0.05) in D2 and D3 groups,the expression of BDNF was increased (P < 0.05) in D2 and D3 groups,and the PWT was significantly increased (P < 0.05) in D2 group but showed no significant change in D3 group.The PWT,IMFST and expression of BDNF showed no significant change in D4 group as

  18. Brain-Derived Neurotrophic Factor Predicts Mortality Risk in Older Women

    DEFF Research Database (Denmark)

    Krabbe, K.S.; Mortensen, E.L.; Avlund, K.; Pedersen, Agnes N.; Pedersen, B.K.; Jorgensen, T.; Bruunsgaard, H.

    2009-01-01

    -old men and women. DESIGN Longitudinal study with 50- to 58-month follow-up. SETTING The 1914 cohort, a population-based cohort established in 1964 by the Research Center for Prevention and Health at Glostrup Hospital. PARTICIPANTS One hundred eighty-eight unselected 85-year-old Danes. MEASUREMENTS BDNF...... was measured in plasma and serum. The Danish National Register of Patients was used to collect data on morbidity. The primary outcome in Cox regression analyses was all-cause mortality. RESULTS Women with low plasma BDNF (lowest tertile) had greater all-cause mortality risk than women with high plasma...... BDNF (highest tertile) (hazard ratio=2.2, 95% confidence interval=1.1-4.7). Low plasma BDNF predicted mortality independently of activities of daily living; education; and a history of central nervous system disease, cerebrovascular accidents, cardiovascular disease, cancer, respiratory disease, and...

  19. Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains

    OpenAIRE

    Dunham, Jason S.; Deakin, J. F. William; Miyajima, Fabio; Payton, Tony; Toro, Carla Tatiana

    2009-01-01

    Several lines of evidence implicate BDNF in the pathophysiology of psychiatric illness. BDNF polymorphisms have also been associated with the risk of schizophrenia and mood disorders. We therefore investigated whether levels of (pro)BDNF and receptor proteins, TrkB and p75, are altered in hippocampus in schizophrenia and mood disorder and whether polymorphisms in each gene influenced protein expression. Formalin-fixed paraffin-embedded hippocampal sections from subjects with...

  20. Effects of multiparity on recognition memory, monoaminergic neurotransmitters, and brain-derived neurotrophic factor (BDNF)

    OpenAIRE

    Macbeth, Abbe H.; Scharfman, Helen E.; MacLusky, Neil J.; Gautreaux, Claris; Luine, Victoria N.

    2007-01-01

    Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5–6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic ...

  1. Rare Syndromes and Common Variants of the Brain-Derived Neurotrophic Factor Gene in Human Obesity.

    Science.gov (United States)

    Han, J C

    2016-01-01

    Rare genetic disorders that cause BDNF haploinsufficiency, such as WAGR syndrome, 11p deletion, and 11p inversion, serve as models for understanding the role of BDNF in human energy balance and neurocognition. Patients with BDNF haploinsufficiency or inactivating mutations of the BDNF receptor exhibit hyperphagia, childhood-onset obesity, intellectual disability, and impaired nociception. Prader-Willi, Smith-Magenis, and ROHHAD syndromes are separate genetic disorders that do not directly affect the BDNF locus but share many similar clinical features with BDNF haploinsufficiency, and BDNF insufficiency is believed to possibly contribute to the pathophysiology of each of these conditions. In the general population, common variants of BDNF that affect BDNF gene expression or BDNF protein processing have also been associated with modest alterations in energy balance and cognitive functioning. Thus, variable degrees of BDNF insufficiency appear to contribute to a spectrum of excess weight gain and cognitive impairment that ranges in phenotypic severity. In this modern era of precision medicine, genotype-specific therapies aimed at increasing BDNF signaling in patients with rare and common disorders associated with BDNF insufficiency could serve as useful approaches for treating obesity and neurodevelopmental disorders. PMID:27288826

  2. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    Science.gov (United States)

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  3. Brain-Derived Neurotrophic Factor from Microglia: A Molecular Substrate for Neuropathic Pain

    OpenAIRE

    Trang, Tuan; Beggs, Simon; Salter, Michael W

    2011-01-01

    One of the most significant advances in pain research is the realization that neurons are not the only cell type involved in the etiology of chronic pain. This realization has caused a radical shift from the previous dogma that neuronal dysfunction alone accounts for pain pathologies, to the current framework of thinking that takes into account all cell types within the central nervous system (CNS). This shift in thinking stems from growing evidence that glia can modulate the function and dir...

  4. The Pattern of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampus of Diabetic Rats

    OpenAIRE

    Iraj Salehi; Safar Farajnia; Mustafa Mohammadi; Masoud Sabouri Ghannad

    2010-01-01

    Objective(s)The aim of this study was to evaluate the effects of regular exercise in preventing diabetes complication in the hippocampus of streptozotocin (STZ)-induced diabetic rat.Materials and MethodsA total of 48 male wistar rats were divided into four groups (control, control exercise, diabetic and diabetic exercise). Diabetes was induced by injection of single dose of STZ. Exercise was performed for one hr every day, over a period of 8 weeks. The antioxidant enzymes (SOD, GPX, CAT and G...

  5. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    OpenAIRE

    Akyol ES; Albayrak Y; Beyazyüz M; Aksoy N; Kuloglu M; Hashimoto K

    2015-01-01

    Esra Soydas Akyol,1 Yakup Albayrak,2 Murat Beyazyüz,3 Nurkan Aksoy,4 Murat Kuloglu,5 Kenji Hashimoto6 1Deparment of Psychiatry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 2Department of Psychiatry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Department of Psychiatry, Biga State Hospital, Çanakkale, Turkey; 4Department of Biochemistry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 5Department of Psychiatry, Faculty of Medicine, ...

  6. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    Science.gov (United States)

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease. PMID:25206697

  7. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats☆

    OpenAIRE

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-01-01

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat m...

  8. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    Institute of Scientific and Technical Information of China (English)

    Qun Zhao; Zhi-yue Li; Ze-peng Zhang; Zhou-yun Mo; Shi-jie Chen; Si-yu Xiang; Qing-shan Zhang; Min Xue

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro-trophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site;their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the micro-spheres at 300-µm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implanta-tion, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve ifbers were observed and dis-tributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  9. Effects of long-term replacement therapy of compound nylestriol tablet or low-dose 17 beta-estradiol on expression of brain-derived neurotrophic factor in OVX rat hippocampal formation%长期口服复方尼尔雌醇和小剂量17 β-雌二醇对去卵巢大鼠海马结构内脑源性神经营养因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    蒋波; 廖二元; 谭利明; 戴如春; 廖慧娟; 肖志杰

    2005-01-01

    目的观察长期雌激素缺乏大鼠海马结构内脑源性神经营养因子(br血-derived neurotrophic factor,BDNF)表达的变化,同时观察比较长期口服小剂量17β-雌二醇和复方尼尔雌醇对去卵巢大鼠海马结构内BDNF表达的作用及效果.方法7月龄SD大鼠按体重随机分成5组:正常对照组(Normal,NORM)、假手术组(Sham-ovariectomy,SHAM)、去卵巢组(Ovariectomy,OVX)、17 β-雌二醇预防干预组(Preventive intervention by 17 β-estradiol,OVX/ERT)和复方尼尔雌醇预防干预组(Preventive intervention by compound nylestriol,OVX/NL)连续观察.5组均在去卵巢后35周处死.用免疫组织化学的方法(SABC法)显示大鼠海马结构内BDNF的表达,细胞计数及图象分析法观察去卵巢大鼠海马结构内BDNF表达的变化.结果OVX组海马结构内各亚区BDNF阳性神经元较少.OVX组海马结构内各亚区BDNF阳性神经元数量、平均光密度均低于NORM组、SHAM组、OVX/ERT组和OVX/NL组(P<0.05).结论长期雌激素缺乏导致了大鼠海马结构内BDNF表达的下降,长期口服小剂量17β-雌二醇和复方尼尔雌醇补充治疗有利于去卵巢大鼠海马结构内神经元BDNF的正常表达,从而发挥雌激素的神经营养作用.复方尼尔雌醇获得了与小剂量17β-雌二醇相同的效果.

  10. Cocaine-induced Psychosis and Brain-derived Neurothrophic Factor in Patients with Cocaine Dependence: Report of Two Cases.

    Science.gov (United States)

    Roncero, Carlos; Palma-Álvarez, Raul Felipe; Ros-Cucurull, Elena; Barral, Carmen; Gonzalvo, Begoña; Corominas-Roso, Margarida; Casas, Miguel; Grau-López, Lara

    2016-02-29

    Brain-derived neurotrophic factor (BDNF) is linked to numerous brain functions. In addition, BDNF alterations contribute to neurological, mental, and addictive disorders. Cocaine dependence has received much attention recently due to its prevalence and psychological effects. Symptoms of psychosis are one of the most serious adverse events precipitated by cocaine use. It is particularly important to identify patients at risk of developing cocaine-induced psychosis (CIP). We described two cases of patients with cocaine dependence who presented with CIP and had changes in their BDNF levels during the psychotic episode. BDNF levels were initially low in both patients, and then decreased by more than 50% in association with CIP. The relationship between BDNF and psychosis is described in the literature. These cases revealed that BDNF levels decreased during a CIP episode and, thus, it is necessary to investigate BDNF and its relationship with CIP further. PMID:26792050

  11. Flavonoids Induce the Synthesis and Secretion of Neurotrophic Factors in Cultured Rat Astrocytes: A Signaling Response Mediated by Estrogen Receptor

    Directory of Open Access Journals (Sweden)

    Sherry L. Xu

    2013-01-01

    Full Text Available Neurotrophic factors are playing vital roles in survival, growth, and function of neurons. Regulation of neurotrophic factors in the brain has been considered as one of the targets in developing drug or therapy against neuronal disorders. Flavonoids, a family of multifunctional natural compounds, are well known for their neuronal beneficial effects. Here, the effects of flavonoids on regulating neurotrophic factors were analyzed in cultured rat astrocytes. Astrocyte is a major secreting source of neurotrophic factors in the brain. Thirty-three flavonoids were screened in the cultures, and calycosin, isorhamnetin, luteolin, and genistein were identified to be highly active in inducing the synthesis and secretion of neurotrophic factors, including nerve growth factor (NGF, glial-derived neurotrophic factor (GDNF, and brain-derived neurotrophic factor (BDNF. The inductions were in time- and dose-dependent manners. In cultured astrocytes, the phosphorylation of estrogen receptor was triggered by application of flavonoids. The phosphorylation was blocked by an inhibitor of estrogen receptor, which in parallel reduced the flavonoid-induced expression of neurotrophic factors. The results proposed the role of flavonoids in protecting brain diseases, and therefore these flavonoids could be developed for health food supplement for patients suffering from neurodegenerative diseases.

  12. Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration.

    Science.gov (United States)

    Hernandez-Morato, Ignacio; Sharma, Sansar; Pitman, Michael J

    2016-10-01

    Injury to the recurrent laryngeal nerve (RLN) leads to the loss of ipsilateral laryngeal fold movement, with dysphonia, and occasionally dysphagia. Functional movement of the vocal folds is never restored due to misrouting of regenerating axons to agonist and antagonist laryngeal muscles. Changes of neurotrophic factor expression within denervated muscles occur after nerve injury and may influence nerve regeneration, axon guidance and muscle reinnervation. This study investigates the expression of certain neurotrophic factors in the laryngeal muscles during the course of axonal regeneration using RT-PCR. The timing of neurotrophic factor expression was correlated to the reinnervation of the laryngeal muscles by motor axons. Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Netrin-1 (NTN-1) increased their expression levels in laryngeal muscles after nerve section and during regeneration of RLN. The upregulation of trophic factors returned to control levels following regeneration of RLN. The expression levels of the neurotrophic factors were correlated with the innervation of regenerating axons into the denervated muscles. The results suggest that certain neurotrophic factor expression is strongly correlated to the reinnervation pattern of the regenerating RLN. These factors may be involved in guidance and neuromuscular junction formation during nerve regeneration. In the future, their manipulation may enhance the selective reinnervation of the larynx. PMID:27421227

  13. Trigeminal Neurotrophic Ulceration

    OpenAIRE

    El-Daly, Ahmed; Snyderman, Carl H.

    1997-01-01

    A 74 year-old female developed a trigeminal neurotrophic ulcer (TNU) 20 years following surgical ablation of the trigeminal nerve. The diagnosis of this unusual disorder is suggested when an ulcerative lesion develops. In the ala nasi in a patient with trigeminal sensory loss. A history of self-induced trauma to that area and some form of mental impairment further support the diagnosis.

  14. The Cytokine Ciliary Neurotrophic Factor (CNTF) Activates Hypothalamic Urocortin-Expressing Neurons Both In Vitro and In Vivo

    OpenAIRE

    Purser, Matthew J.; Dalvi, Prasad S.; Wang, Zi C.; Belsham, Denise D.

    2013-01-01

    Ciliary neurotrophic factor (CNTF) induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold...

  15. Mimicking the neurotrophic factor profile of embryonic spinal cord controls the differentiation potential of spinal progenitors into neuronal cells.

    Directory of Open Access Journals (Sweden)

    Masaya Nakamura

    Full Text Available Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF and brain-derived neurotrophic factor (BDNF mRNA before differentiation. BDNF gene expression significantly decreases with their differentiation into the specific lineage, whereas CNTF gene expression significantly increases. The temporal pattern of neurotrophic factor gene expression in progenitor cells is similar to that of the spinal cord during postnatal development. Approximately 50% of spinal progenitor cells differentiated into astrocytes. To determine the effect of endogenous CNTF on their differentiation, we neutralized endogenous CNTF by administration of its polyclonal antibody. Neutralization of endogenous CNTF inhibited the differentiation of progenitor cells into astrocytes, but did not affect the numbers of neurons or oligodendrocytes. Furthermore, to mimic the profile of neurotrophic factors in the spinal cord during embryonic development, we applied BDNF or neurotrophin (NT-3 exogenously in combination with the anti-CNTF antibody. The exogenous application of BDNF or NT-3 promoted the differentiation of these cells into neurons or oligodendrocytes, respectively. These findings suggest that endogenous CNTF and exogenous BDNF and NT-3 play roles in the differentiation of embryonic spinal cord derived progenitor cells into astrocytes, neurons and oligodendrocytes, respectively.

  16. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO).

    Science.gov (United States)

    Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M Y; McCloskey, Karen D; Allen, Shelley; Cruz, Francisco; Cruz, Célia Duarte

    2015-02-01

    Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients. PMID:25653370

  17. The Role of Brain-Derived Neurotrophic Factor (BDNF) in the Development of Neurogenic Detrusor Overactivity (NDO)

    OpenAIRE

    Frias, Bárbara; Santos, João; Morgado, Marlene; Sousa, Mónica Mendes; Gray, Susannah M Y; McCloskey, Karen; Allen, Shelley; Cruz, Francisco; Cruz, Célia Duarte

    2015-01-01

    Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrop...

  18. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate

    Science.gov (United States)

    Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V

    2016-01-01

    Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF. DOI: http://dx.doi.org/10.7554/eLife.15092.001 PMID:27253067

  19. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vivek, E-mail: vivek.gupta@mq.edu.au [Australian School of Advanced Medicine, Macquarie University (Australia); Chitranshi, Nitin; You, Yuyi [Australian School of Advanced Medicine, Macquarie University (Australia); Gupta, Veer [School of Medical Sciences, Edith Cowan University, Perth (Australia); Klistorner, Alexander; Graham, Stuart [Australian School of Advanced Medicine, Macquarie University (Australia); Save Sight Institute, Sydney University, Sydney (Australia)

    2014-11-21

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF{sup +/−} animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling.

  20. Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity

    DEFF Research Database (Denmark)

    Xapelli, S; Bernardino, L; Ferreira, R;

    2008-01-01

    -day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2...... up-regulation of neuronal TrkB immunoreactivity, as well as the presence of BDNF-immunoreactive microglial cells at sites of injury. Thus, an increase of AMPA-receptor mediated neurodegeneration, in the mouse hippocampus, was prevented by neuroprotective pathways activated by NPY receptors (Y(1) and...

  1. Resveratrol Induces the Expression of Interleukin-10 and Brain-Derived Neurotrophic Factor in BV2 Microglia under Hypoxia

    OpenAIRE

    Juhyun Song; So Yeong Cheon; Wonsug Jung; Won Taek Lee; Jong Eun Lee

    2014-01-01

    Microglia are the resident macrophages of the central nervous system (CNS) and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects,...

  2. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF in the R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Carmela Giampà

    Full Text Available Loss of huntingtin-mediated BDNF gene transcription has been shown to occur in HD and thus contribute to the degeneration of the striatum. Several studies have indicated that an increase in BDNF levels is associated with neuroprotection and amelioration of neurological signs in animal models of HD. In a recent study, an increase in BDNF mRNA and protein levels was recorded in mice administered recombinant BDNF peripherally. Chronic, indwelling osmotic mini-pumps containing either recombinant BDNF or saline were surgically placed in R6/2 or wild-type mice from 4 weeks of age until euthanasia. Neurological evaluation (paw clasping, rotarod performance, locomotor activity in an open field was performed. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that BDNF- treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as brain volume, striatal atrophy, size and morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. BDNF was effective in increasing significantly the levels of activated CREB and of BDNF the striatal spiny neurons. Moreover, systemically administered BDNF increased the synthesis of BDNF as demonstrated by RT-PCR, and this might account for the beneficial effects observed in this model.

  3. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    OpenAIRE

    Nair, A.; Vaidya, V A

    2006-01-01

    Depression is the major psychiatric ailment of our times, afflicting ~20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to...

  4. Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus

    Directory of Open Access Journals (Sweden)

    Guey-Ying Liao

    2015-06-01

    Conclusion: This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons.

  5. Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling

    International Nuclear Information System (INIS)

    Highlights: • BDNF knockdown leads to activation of GSK3β in the neuronal cells. • BDNF knockdown can induce GSK3β activation beyond TrkB mediated effects. • BDNF impairment in vivo leads to age dependent activation of GSK3β in the retina. • Systemic treatment with TrkB agonist induces inhibition of retinal GSK3β. - Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in several biochemical processes in neurons regulating cellular survival, gene expression, cell fate determination, metabolism and proliferation. GSK3β activity is inhibited through the phosphorylation of its Ser-9 residue. In this study we sought to investigate the role of BDNF/TrkB signalling in the modulation of GSK3β activity. BDNF/TrkB signalling regulates the GSK3β activity both in vivo in the retinal tissue as well as in the neuronal cells under culture conditions. We report here for the first time that BDNF can also regulate GSK3β activity independent of its effects through the TrkB receptor signalling. Knockdown of BDNF lead to a decline in GSK3β phosphorylation without having a detectable effect on the TrkB activity or its downstream effectors Akt and Erk1/2. Treatment with TrkB receptor agonist had a stimulating effect on the GSK3β phosphorylation, but the effect was significantly less pronounced in the cells in which BDNF was knocked down. The use of TrkB receptor antagonist similarly, manifested itself in the form of downregulation of GSK3β phosphorylation, but a combined TrkB inhibition and BDNF knockdown exhibited a much stronger negative effect. In vivo, we observed reduced levels of GSK3β phosphorylation in the retinal tissues of the BDNF+/− animals implicating critical role of BDNF in the regulation of the GSK3β activity. Concluding, BDNF/TrkB axis strongly regulates the GSK3β activity and BDNF also exhibits GSK3β regulatory effect independent of its actions through the TrkB receptor signalling

  6. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala.

    Directory of Open Access Journals (Sweden)

    Harini Lakshminarasimhan

    Full Text Available Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2 h/day causes growth of dendrites and spines in the basolateral amygdala (BLA, but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity--BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2 h leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders.

  7. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Pedersen, Maria; Krabbe, Karen S;

    2009-01-01

    identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity and......-inducible protein in skeletal muscle that is capable of enhancing lipid oxidation in skeletal muscle via activation of AMPK. Thus, BDNF appears to play a role both in neurobiology and in central as well as peripheral metabolism. The finding of low BDNF levels both in neurodegenerative diseases and in type 2...

  8. Quantitative Untersuchungen von Interleukin 6, Brain Derived neurotrophic Factor und Nachweis des Bornavirus bei onkologischen Patienten mit Depression

    OpenAIRE

    Becker, Beatrice

    2010-01-01

    55 inpatient cancer patients were tested of depression using HADS (cutoff 8 points). In this way are created two populations: cancer patients with depression (N 29) and a control group without depression (N 26). In contrast "depression" to "no depression" there were measured BDNF level (ELISA) and interleucin 6 (ELISA). All patients were classed in Karnofsky-Index - to look, whether there is a correlation of general states and depression, or not. Results: There is no significant correlati...

  9. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons.

    Science.gov (United States)

    Du, Fang; Li, Rui; Huang, Yuangui; Li, Xuping; Le, Weidong

    2005-11-01

    Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection. PMID:16307585

  10. Hyperbaric oxygen preserves neurotrophic activity of carbon monoxide-exposed astrocytes.

    Science.gov (United States)

    Jurič, Damijana M; Šuput, Dušan; Brvar, Miran

    2016-06-24

    In astrocytes, carbon monoxide (CO) poisoning causes oxidative stress and mitochondrial dysfunction accompanied by caspase and calpain activation. Impairment in astrocyte function can be time-dependently reduced by hyperbaric (3bar) oxygen (HBO). Due to the central role of astrocytes in maintaining neuronal function by offering neurotrophic support we investigated the hypothesis that HBO therapy may exert beneficial effect on acute CO poisoning-induced impairment in intrinsic neurotrophic activity. Exposure to 3000ppm CO in air followed by 24-72h of normoxia caused a progressive decline of gene expression, synthesis and secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) to different extent. 1h treatment with 100% oxygen disclosed a pressure- and time-dependent efficacy in preserving astrocytic neurotrophic support. The beneficial effect was most evident when the astrocytes were exposed to HBO 1-5h after exposure to CO. The results further support an active role of hyperbaric, not normobaric, oxygenation in reducing dysfunction of astrocytes after acute CO poisoning. By preserving endogenous neurotrophic activity HBO therapy might promote neuronal protection and thus prevent the occurrence of late neuropsychological sequelae. PMID:27113706

  11. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    OpenAIRE

    Tirassa, Paola

    2015-01-01

    Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR), Institute of Cell Biology and Neurobiology (IBCN), 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI), Rome, Italy; 4International Psychoanalytical Association (IPA), London, UKAbstract: The light information pathways and their relationship with the body...

  12. Neurotrophic regulation of synapse development and plasticity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neurotrophic factors are traditionally thought to be secretory proteins that regulate long-tern survival and differe, ntiation of neurons. Recent studies have revealed a previously unexpected role for these factors in synaptie de velopment ami plasticity in diverse neuronal populations. Here we review experimeuts carried oul in our own laboratory in the last few years.. We have made two important discoveries.First,we were among the first to report that brain-derived. neurotrophie faclor (BDNF) facilitates hippocampal hmg-term potentiation (LTP), a form of synaptic plaslicity believed to be involved in learning and memory. BDNF modulates LTP al CAI synapses by enhaneing synaptic responses to high frequency, tetanic slimulalion. This is achieved primafily by facilitating synaptie vesicle doeking, possibly due to an in crease in the levels of the vesicle prolein synaptobrevin and synaptoplysin in the nerve terminals. Gene knockout study demonstrates thai the effects of BDNF are primarily mediated through presynaptic mechanisms. Second, we demonstrated a form of long-term, neurotrophin-mediated synaptic regulation. We showed that long-term treatment of the neuromuscu lar synapses with neurotrophin-3 (NT3) resulted in an enhancement of both spontaneous and evoked synaptic currcuts, as well as profound changes in thc number of synaptic varicosities and syuaptic vesicle proteins in motoneurons, all of which are indicative of more mature synapses. Our current work addresses the following issues:(i) activity-dependent trafficking of neurotrophin receptors, and its role in synapse-specific modulation; (ii) signal transduction mechanisms medialing the acute enhancement of synaplic transmission by neurotrophins; (iii) acute and long-tenn synaptie actions of the GDNF family; (iv) role of BDNF in late-phase LTP and in the development of hippocampal circuit.

  13. Shuganjieyu capsule increases neurotrophic factor expression in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Jinhua Fu; Yingjin Zhang; Renrong Wu; Yingjun Zheng; Xianghui Zhang; Mei Yang; Jingping Zhao; Yong Liu

    2014-01-01

    Shuganjieyu capsule has been approved for clinical treatment by the State Food and Drug Ad-ministration of China since 2008. In the clinic, Shuganjieyu capsule is often used to treat mild to moderate depression. In the rat model of depression established in this study, Shuganjieyu capsule was administered intragastrically daily before stress. Behavioral results conifrmed that depressive symptoms lessened after treatment with high-dose (150 mg/kg) Shuganjieyu capsule. Immunohistochemistry results showed that high-dose Shuganjieyu capsule signiifcantly increased phosphorylation levels of phosphorylation cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor expression in the medial prefrontal cortex and hippocampal CA3 area. Overall, our results suggest that in rats, Shuganjieyu capsule effec-tively reverses depressive-like behaviors by increasing expression levels of neurotrophic factors in the brain.

  14. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    Directory of Open Access Journals (Sweden)

    Thabisile Mpofana

    2016-01-01

    Full Text Available Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF and glial cell derived neurotrophic factor (GDNF that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA, we measured corticosterone (CORT in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life.

  15. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    Science.gov (United States)

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test. PMID:25820756

  16. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    Science.gov (United States)

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders. PMID:23475543

  17. Ectopic Muscle Expression of Neurotrophic Factors Improves Recovery After Nerve Injury.

    Science.gov (United States)

    Glat, Micaela Johanna; Benninger, Felix; Barhum, Yael; Ben-Zur, Tali; Kogan, Elena; Steiner, Israel; Yaffe, David; Offen, Daniel

    2016-01-01

    Sciatic nerve damage is a common medical problem. The main causes include direct trauma, prolonged external nerve compression, and pressure from disk herniation. Possible complications include leg numbness and the loss of motor control. In mild cases, conservative treatment is feasible. However, following severe injury, recovery may not be possible. Neuronal regeneration, survival, and maintenance can be achieved by neurotrophic factors (NTFs). In this study, we examined the potency of combining brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) on the recovery of motor neuron function after crush injury of the sciatic nerve. We show that combined NTF application increases the survival of motor neurons exposed to a hypoxic environment. The ectopic expression of NTFs in the injured muscle improves the recovery of the sciatic nerve after crush injury. A significantly faster recovery of compound muscle action potential (CMAP) amplitude and conduction velocity is observed after muscle injections of viral vectors expressing a mixture of the four NTF genes. Our findings suggest a rationale for using genetic treatment with a combination of NTF-expressing vectors, as a potential therapeutic approach for severe peripheral nerve injury. PMID:26385386

  18. Upregulation of Neurotrophic Factors Selectively in Frontal Cortex in Response to Olfactory Discrimination Learning

    Directory of Open Access Journals (Sweden)

    Ari Naimark

    2007-01-01

    Full Text Available We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks.

  19. [The effect of neurotrophic treatment on the activation of reparative processes in patients with acute traumatic brain injury].

    Science.gov (United States)

    Selianina, N V; Karakulova, Iu V

    2012-01-01

    The complex study of cognitive and emotional status, levels of serum serotonin and brain-derived neurotrophic factor (BDNF) were performed in 72 patients with acute traumatic brain injury, with a special focus on middle brain injuries (MBI), treated with Cerebrolysin. The neurological and cognitive impairment, mild state anxiety and depression and increased levels of humoral serotonin, which depends on the severity of the injury, were identified in patients with MBI before treatment. After the treatment, there were the decrease in the severity of neurological symptoms and a significant positive dynamics on the FAB scale as well as the increase in blood BDNF and serotonin levels. It has been concluded that using cerebrolysin in complex treatment of acute MBI promotes activation of neurotrophic processes and improves outcomes of closed craniocerebral injury. PMID:22951781

  20. Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-04-01

    Full Text Available PURPOSE: To investigate neurotrophins expression and neurotrophic effect change in mesenchymal stem cells (MSCs under different types of stimulation. METHODS: Rats were exposed in 10,000 lux white light to develop light-induced retinal injury. Supernatants of homogenized retina (SHR, either from normal or light-injured retina, were used to stimulate MSCs. Quantitative real time for polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA were conducted for analysis the expression change in basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF and ciliary neurotrophic factor (CNTF in MSCs after stimulation. Conditioned medium from SHR-stimulated MSCs and control MSCs were collected for evaluation their effect on retinal explants. RESULTS: Supernatants of homogenized retina from light-injured rats significantly promoted neurotrophins secretion from MSCs (p<0.01. Conditioned medium from mesenchymal stem cells stimulated by light-injured SHR significantly reduced DNA fragmentation (p<0.01, up-regulated bcl-2 (p<0.01 and down-regulated bax (p<0.01 in retinal explants, displaying enhanced protective effect. CONCLUSIONS: Light-induced retinal injury is able to enhance neurotrophins secretion from mesenchymal stem cells and promote the neurotrophic effect of mesenchymal stem cells.

  1. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors.

    Directory of Open Access Journals (Sweden)

    Jae-Sung Park

    Full Text Available Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF, brain derived neurotrophic factor (BDNF and insulin-like growth factor-1 (IGF-1, in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration.

  2. Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus.

    Science.gov (United States)

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2009-06-30

    Nicotine, the psychoactive ingredient in tobacco, can be neuroprotective but the mechanism is unknown. In the adult hippocampus, chronic nicotine can increase expression of growth factors which could contribute to nicotine's neuroprotective effects. During development, nicotine could also increase expression of neurotrophic factors. Therefore, we determined whether chronic neonatal nicotine (CNN) exposure increased mRNA expression levels of brain-derived neurotrophic factor (BDNF), nerve-growth factor (NGF), neurotrophin-3 (NT-3), fibroblast growth factor-2 (FGF-2), and insulin-like growth factor-1 (IGF-1). Nicotine (6 mg/kg/day in milk formula) or milk formula (controls) were delivered in three daily doses via oral gastric intubation to rat pups from postnatal day (P)1 to P8, and then sacrificed. Brains were processed for in situ hybridization using specific (35)S-labeled cRNA probes. At P8, CNN had a significant stimulant treatment effect on the expression of BDNF, FGF-2, NT-3 and IGF-1 [pCNN increased the number of IGF-1-expressing cells in CA1 (18.0%), CA3 (20.9%) and DG (17.7%). Thus, nicotine exposure during early postnatal development differentially up-regulated expression of neurotrophic factor mRNAs in the hippocampus, which could increase neurotrophic tone and alter developmental processes. PMID:19410565

  3. Rat ciliary neurotrophic factor (CNTF)

    OpenAIRE

    Carroll, P.; Sendtner, M.; Meyer, Michael; Thoenen, Hans

    1993-01-01

    The structure of the rat ciliary neurotrophic factor (CNTF) gene and the regulation of CNTF mRNA levels in cultured glial cells were investigated. The rat mRNA is encoded by a simple two-exon transcription unit. Sequence analysis of the region upstream of the transcription start-site did not reveal a typical TATA-box consensus sequence. Low levels of CNTF mRNA were detected in cultured Schwann cells, and CNTF mRNA was not increased by a variety of treatments. Three-week-old astrocyte-enriched...

  4. Responses of serum neurotrophic factors to exercise in pregnant and postpartum women.

    Science.gov (United States)

    Vega, Sandra Rojas; Kleinert, Jens; Sulprizio, Marion; Hollmann, Wildor; Bloch, Wilhelm; Strüder, Heiko K

    2011-02-01

    It was recently shown in humans that exercise affects the neurotrophic factors known to function as neurogenesis regulators. No data related to exercise and pregnancy, however, is yet available. Thus, we investigated the effects of acute exercise on pregnant women during late pregnancy and women postpartum, on the serum concentration of the brain-derived neurotrophic factor (BDNF), the insulin-like growth factor 1 (IGF-1), the vascular endothelial growth factor (VEGF), prolactin (PRL) and cortisol (COR). Twenty women with uncomplicated pregnancies underwent a graded submaximal exercise test during pregnancy (weeks 32-36 of gestation; T(1)) and postpartum (10-12 weeks after childbirth; T(2)). On two of these test days the women carried out an intensifying exercise test (25 W steps) on a cycle ergometer until a heart rate of 150 bpm was reached. Blood samples were taken in the rest period before beginning the exercise, immediately at the end of the exercise and after recovery periods of 5 and 10 min, respectively. Basal maternal IGF-1, PRL and COR were found to be higher during T(1) (pexercise, was at a higher level after exercise (pExercise increased the BDNF and IGF-1 during T(1) and T(2) (pexercise increases the serum concentrations of IGF-1 and BDNF during pregnancy and postpartum as well as VEGF postpartum. Thus, exercise might be a beneficial lifestyle factor with therapeutic/public health implications i.e. with regard to maternal mood and cognitive performance. PMID:20692101

  5. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    Science.gov (United States)

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene. PMID:25634725

  6. Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment

    DEFF Research Database (Denmark)

    Larsen, Marianne H; Mikkelsen, Jens D; Hay-Schmidt, Anders;

    2010-01-01

    Chronic unpredictable stress (CUS) is a widely used animal model of depression. The present study was undertaken to investigate behavioral, physiological and molecular effects of CUS and/or chronic antidepressant treatment (venlafaxine or imipramine) in the same set of animals. Anhedonia, a core ...... of the dorsal hippocampus correlated with chronic antidepressant treatment emphasizing a role for BDNF in the mechanisms underlying antidepressant activity....

  7. Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    OpenAIRE

    Greenberg, Gian D.; Laman-Maharg, Abigail; Campi, Katharine L.; Voigt, Heather; Orr, Veronica N.; Schaal, Leslie; Trainor, Brian C.

    2014-01-01

    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males....

  8. Individual Differences in Novelty Seeking Predict Subsequent Vulnerability to Social Defeat through a Differential Epigenetic Regulation of Brain-Derived Neurotrophic Factor Expression

    OpenAIRE

    Duclot, Florian; Kabbaj, Mohamed

    2013-01-01

    Some personality traits, including novelty seeking, are good predictors of vulnerability to stress-related mood disorders in both humans and rodents. While high-novelty-seeking rats [high responders (HRs)] are vulnerable to the induction of depressive-like symptoms by social defeat stress, low-novelty-seeking rats [low responders (LRs)] are not. Here, we show that such individual differences are critically regulated by hippocampal BDNF. While LR animals exhibited an increase in BDNF levels fo...

  9. Title: Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    OpenAIRE

    Gian David Greenberg; Campi, Katharine L.

    2014-01-01

    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males....

  10. Sex differences in stress-induced social withdrawal: Role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    OpenAIRE

    Greenberg, GD; Laman-Maharg, A; Campi, KL; Voigt, H; Orr, VN; Schaal, L; Trainor, BC

    2014-01-01

    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males....

  11. Differential expression of brain-derived neurotrophic factor transcripts after pilocarpine-induced seizure-like activity is related to mode of Ca2+ entry

    DEFF Research Database (Denmark)

    Poulsen, F R; Lauterborn, J; Zimmer, J;

    2004-01-01

    growth factor (NGF) and tyrosine kinase B (trkB) also were studied. Pilocarpine (5 mM) induced a dose- and time-dependent increase in total BDNF (exon V) mRNA expression in the dentate granule cells and CA3-CA1 pyramidal cells with maximal effects at 6 and 24 h, respectively. Increases were blocked by co...

  12. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes

    DEFF Research Database (Denmark)

    Vaz, Sandra H; Jørgensen, Trine Nygaard; Cristóvão-Ferreira, Sofia;

    2011-01-01

    /MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was...

  13. BRAIN-DERIVED NEUROTROPHIC FACTOR AND SPINAL CORD INJURY%脑源性神经营养因子与脊髓损伤

    Institute of Scientific and Technical Information of China (English)

    尹昭; 李明; 王廷华; 孙军

    2003-01-01

    Spinal cord injury (SCI) is such a serious disease that it would bring heavy burdens of both health and economy to the victims as well as the society. Although worldwide medical researchers of neuroscience have made great efforts to attempt to solve this big problem for nearly a century, there still exists the depressing fact that the patients suffered from

  14. The Differences in Neuroprotective Efficacy of Progesterone and Medroxyprogesterone Acetate Correlate with Their Effects on Brain-Derived Neurotrophic Factor Expression

    OpenAIRE

    Jodhka, Parmeet K.; Kaur, Paramjit; Underwood, Wendy; Lydon, John P.; Singh, Meharvan

    2009-01-01

    Whereas hormone therapy is used for the treatment of menopausal symptoms, its efficacy in helping reduce the risk of other diseases such as Alzheimer’s disease has been questioned in view of the results of recent clinical trials that appeared inconsistent with numerous basic research studies that supported the beneficial effects of hormones. One possible explanation of this discrepancy may lie in the choice of hormone used. For example, we and others found that progesterone is neuroprotective...

  15. Comparison of efficacy, safety and brain derived neurotrophic factor (BDNF) levels in patients of major depressive disorder, treated with fluoxetine and desvenlafaxine.

    Science.gov (United States)

    Ghosh, R; Gupta, R; Bhatia, M S; Tripathi, A K; Gupta, L K

    2015-12-01

    This randomized, open label, prospective, observational study compared clinical efficacy, safety alongwith plasma BDNF levels in outpatients of depression treated with fluoxetine and desvenlafaxine. Patients (aged 18-60 years) with moderate to severe major depressive disorder (MDD) diagnosed by DSM-IV criteria, and Hamilton Rating Scale for Depression (HAM-D) score ≥14, who were prescribed fluoxetine or desvenlafaxine were included (n=30 in each group). Patients were followed up for 12 weeks for evaluation of clinical efficacy, safety along with BDNF levels. In the fluoxetine group, HAM-D scores at the start of treatment was 19±4.09 which significantly (p<0.05) reduced to 9.24±3.98 at 12 weeks. In the desvenlafaxine group, HAM-D scores at the start of treatment was 18±3.75 which significantly (p<0.05) reduced to 10±3.75 at 12 weeks. The BDNF levels in the fluoxetine group were 775.32±30.38pg/ml at the start of treatment which significantly (p<0.05) increased to 850.3±24.92pg/ml at 12 weeks. The BDNF levels in the desvenlafaxine group were 760.5±28.53pg/ml at the start of treatment which significantly (p<0.05) increased to 845.8±32.82pg/ml at 12 weeks. Both the antidepressants were found to be safe and well tolerated. The efficacy and the safety profile of desvenlafaxine is comparable to fluoxetine in patients of MDD. BDNF levels were significantly increased post-treatment with both the antidepressive agents. Whether BDNF may have a prognostic value in predicting treatment response to antidepressant drugs needs to be investigated in a larger patient population. PMID:26514447

  16. Early Life Stressors and Genetic Influences on the Development of Bipolar Disorder: The Roles of Childhood Abuse and Brain-Derived Neurotrophic Factor

    Science.gov (United States)

    Liu, Richard T.

    2010-01-01

    Objectives: Although there is increasing research exploring the psychosocial influences and biological underpinnings of bipolar disorder, relatively few studies have specifically examined the interplay between these factors in the development of this illness. Social-biological models within a developmental psychopathology perspective are necessary…

  17. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice

    DEFF Research Database (Denmark)

    Jacobsen, J P R; Redrobe, J P; Hansen, H H;

    2009-01-01

    and the question is difficult to address pharmacologically due to the lack of subtype-selective SK-channel modulators. In this study, we used doxycycline-induced conditional SK3-deficient (T/T) mice to address the cognitive consequences of selective SK3 deficiency. In T/T mice SK3 protein is near-eliminated from...... the brain following doxycycline treatment. We tested T/T and wild type (WT) littermate mice in five distinct learning and memory paradigms. In Y-maze spontaneous alternations and five-trial inhibitory avoidance the performance of T/T mice was markedly inferior to WT mice. In contrast, T/T and WT mice...

  18. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    Science.gov (United States)

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  19. Optimizing neurotrophic factor combinations for neurite outgrowth

    Science.gov (United States)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  20. Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles

    Science.gov (United States)

    Baseri, Babak; Choi, James J.; Deffieux, Thomas; Samiotaki, Gesthimani; Tung, Yao-Sheng; Olumolade, Oluyemi; Small, Scott A.; Morrison, Barclay, III; Konofagou, Elisa E.

    2012-04-01

    The brain-derived neurotrophic factor (BDNF) has been shown to have broad neuroprotective effects in addition to its therapeutic role in neurodegenerative disease. In this study, the efficacy of delivering exogenous BDNF to the left hippocampus is demonstrated in wild-type mice (n = 7) through the noninvasively disrupted blood-brain barrier (BBB) using focused ultrasound (FUS). The BDNF bioactivity was found to be preserved following delivery as assessed quantitatively by immunohistochemical detection of the pTrkB receptor and activated pAkt, pMAPK, and pCREB in the hippocampal neurons. It was therefore shown for the first time that systemically administered neurotrophic factors can cross the noninvasively disrupted BBB and trigger neuronal downstream signaling effects in a highly localized region in the brain. This is the first time that the administered molecule is tracked through the BBB and localized in the neuron triggering molecular effects. Additional preliminary findings are shown in wild-type mice with two additional neurotrophic factors such as the glia-derived neurotrophic factor (n = 12) and neurturin (n = 2). This further demonstrates the impact of FUS for the early treatment of CNS diseases at the cellular and molecular level and strengthens its premise for FUS-assisted drug delivery and efficacy.

  1. Coping with unpredictability: Dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L.)

    DEFF Research Database (Denmark)

    Vindas, Marco A; Sørensen, Christina; Johansen, Ida;

    2014-01-01

    abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental......Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in...... Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding...

  2. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone

    Directory of Open Access Journals (Sweden)

    Giesser Barbara S

    2008-07-01

    Full Text Available Abstract Background Multiple sclerosis is a chronic inflammatory disease of the central nervous system with a pronounced neurodegenerative component. It has been suggested that novel treatment options are needed that target both aspects of the disease. Evidence from basic and clinical studies suggests that testosterone has an immunomodulatory as well as a potential neuroprotective effect that could be beneficial in MS. Methods Ten male MS patients were treated with 10 g of gel containing 100 mg of testosterone in a cross-over design (6 month observation period followed by 12 months of treatment. Blood samples were obtained at three-month intervals during the observation and the treatment period. Isolated blood peripheral mononuclear cells (PBMCs were used to examine lymphocyte subpopulation composition by flow cytometry and ex vivo protein production of cytokines (IL-2, IFNγ, TNFα, IL-17, IL-10, IL-12p40, TGFβ1 and growth factors (brain-derived neurotrophic factor BDNF, platelet-derived growth factor PDGF-BB, nerve growth factor NGF, and ciliary neurotrophic factor CNTF. Delayed type hypersensitivity (DTH skin recall tests were obtained before and during treatment as an in vivo functional immune measure. Results Testosterone treatment significantly reduced DTH recall responses and induced a shift in peripheral lymphocyte composition by decreasing CD4+ T cell percentage and increasing NK cells. In addition, PBMC production of IL-2 was significantly decreased while TGFβ1 production was increased. Furthermore, PBMCs obtained during the treatment period produced significantly more BDNF and PDGF-BB. Conclusion These results are consistent with an immunomodulatory effect of testosterone treatment in MS. In addition, increased production of BDNF and PDGF-BB suggests a potential neuroprotective effect. Trial Registration NCT00405353 http://www.clinicaltrials.gov

  3. The cytokine ciliary neurotrophic factor (CNTF activates hypothalamic urocortin-expressing neurons both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Matthew J Purser

    Full Text Available Ciliary neurotrophic factor (CNTF induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.

  4. Ciliary neurotrophic factor is an endogenous pyrogen.

    OpenAIRE

    Shapiro, L; Zhang, X. X.; Rupp, R G; Wolff, S. M.; Dinarello, C A

    1993-01-01

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) foll...

  5. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity.

    Science.gov (United States)

    Broom, Lauren; Jenner, Peter; Rose, Sarah

    2015-01-01

    The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation. PMID:25218309

  6. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    Science.gov (United States)

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  7. Neurotrophic effects of neudesin in the central nervous system

    OpenAIRE

    Kimura, Ikuo; Nakayama, Yoshiaki; Zhao, Ying; Konishi, Morichika; Itoh, Nobuyuki

    2013-01-01

    Neudesin (neuron-derived neurotrophic factor; NENF) was identified as a neurotrophic factor that is involved in neuronal differentiation and survival. It is abundantly expressed in the central nervous system, and its neurotrophic activity is exerted via the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. Neudesin is also an anorexigenic factor that suppresses food intake in the hypothalamus. It is a member of the membrane-associated progesterone rece...

  8. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment.

    Science.gov (United States)

    Landry, Thomas G; Wise, Andrew K; Fallon, James B; Shepherd, Robert K

    2011-12-01

    Cochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p = 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone. PMID:21762764

  9. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells.

    Science.gov (United States)

    Wang, Sheng-Yu; Freeman, Michelle R; Sathish, Venkatachalem; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S

    2016-07-01

    Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma. J. Cell. Physiol. 231: 1586-1592, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566264

  10. Effects of chronic aluminum exposure on learning and memory and brain-derived nerve growth factor in rats

    Institute of Scientific and Technical Information of China (English)

    潘宝龙

    2013-01-01

    Objective To investigate the effects of chronic aluminum exposure on the learning and memory abilities and brain-derived nerve growth factor (BDNF) in SpragueDawley (SD) rats.Methods Thirty-two male SD rats were randomly and equally divided into 4 groups:control group and high-,middle-,and low-dose exposure groups.The rats in high-,middle-,and low-dose expo-

  11. Fetal Circulation

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Fetal Circulation Updated:Jul 8,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  12. Neurotrophic factors in women with crack cocaine dependence during early abstinence: the role of early life stress

    Science.gov (United States)

    Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Levandowski, Mateus Luz; Pezzi, Júlio Carlos; Bauer, Moisés Evandro; Teixeira, Antonio Lúcio; Grassi-Oliveira, Rodrigo

    2014-01-01

    Background Neurotrophic factors have been investigated in the pathophysiology of alcohol and drug dependence and have been related to early life stress driving developmental programming of neuroendocrine systems. Methods We conducted a follow-up study that aimed to assess the plasma levels of glial cell line–derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5) in crack users during 3 weeks of early abstinence in comparison with healthy controls. We performed a comprehensive clinical assessment in female inpatients with crack cocaine dependence (separated into 2 groups: participants with (CSA+) and without (CSA−) a history of childhood sexual abuse) and a group of nonuser control participants. Results Our sample included 104 women with crack cocaine dependence and 22 controls; of the women who used crack cocaine, 22 had a history of childhood sexual abuse and 82 did not. The GDNF plasma levels in the CSA+ group increased dramatically during 3 weeks of detoxification. In contrast, those in the CSA− group showed lower and stable levels of GDNF under the same conditions. Compared with the control group, BDNF plasma levels remained elevated and NGF levels were reduced during early abstinence. We found no differences in NT3 and NT4/5 between the patients and controls. However, within-group analyses showed that the CSA+ group exhibited higher levels of NT4/5 than the CSA− group at the end of detoxification. Limitations Some of the participants were using neuroleptics, mood stabilizers or antidepressants; our sample included only women; memory bias could not be controlled; and we did not investigate the possible confounding effects of other forms of stress during childhood. Conclusion This study supports the association between early life stress and peripheral neurotrophic factor levels in crack cocaine users. During early abstinence, plasmastic GDNF and NT4/5 were

  13. Neurotrophic factors in tension-type headache

    Directory of Open Access Journals (Sweden)

    Renan B. Domingues

    2015-05-01

    Full Text Available Neurotrophic factors (NF are involved in pain regulation and a few studies have suggested that they may play a pathophysiological role in primary headaches. The aim of this study was to investigate NF levels in patients with tension type headache (TTH. We carried out a cross sectional study including 48 TTH patients and 48 age and gender matched controls. Beck Depression and Anxiety Inventories, and Headache Impact Test were recorded. Serum levels of NF were determined by ELISA. There were not significant differences between NF levels between TTH patients and controls. Patients with chronic and episodic TTH had not significant differences in NF levels. The presence of headache at the time of evaluation did not significantly alter the levels of NF. Depression and anxiety scores as well as headache impact did not correlate with NF levels. Our study suggest that the serum levels of NF are not altered in TTH.

  14. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  15. Diagnosis and management of neurotrophic keratitis

    Directory of Open Access Journals (Sweden)

    Sacchetti M

    2014-03-01

    Full Text Available Marta Sacchetti,1 Alessandro Lambiase2 1Cornea and Ocular Surface Unit, Ospedale San Raffaele di Milano-IRCCS, Milan, 2Ophthalmology, University La Sapienza of Rome, Italy Abstract: Neurotrophic keratitis (NK is a degenerative disease characterized by corneal sensitivity reduction, spontaneous epithelium breakdown, and impairment of corneal healing. Several causes of NK, including herpetic keratitis, diabetes, and ophthalmic and neurosurgical procedures, share the common mechanism of trigeminal damage. Diagnosis of NK requires accurate investigation of clinical ocular and systemic history, complete eye examination, and assessment of corneal sensitivity. All diagnostic procedures to achieve correct diagnosis and classification of NK, including additional examinations such as in vivo confocal microscopy, are reviewed. NK can be classified according to severity of corneal damage, ie, epithelial alterations (stage 1, persistent epithelial defect (stage 2, and corneal ulcer (stage 3. Management of NK should be based on clinical severity, and aimed at promoting corneal healing and preventing progression of the disease to stromal melting and perforation. Concomitant ocular diseases, such as exposure keratitis, dry eye, and limbal stem cell deficiency, negatively influence the outcome of NK and should be treated. Currently, no specific medical treatment exists, and surgical approaches, such as amniotic membrane transplantation and conjunctival flap, are effective in preserving eye integrity, without ameliorating corneal sensitivity or visual function. This review describes experimental and clinical reports showing several novel and potential therapies for NK, including growth factors and metalloprotease inhibitors, as well as three ongoing Phase II clinical trials. Keywords: neurotrophic keratitis, cornea sensitivity, cornea innervation, persistent epithelial defect

  16. Resveratrol Produces Neurotrophic Effects on Cultured Dopaminergic Neurons through Prompting Astroglial BDNF and GDNF Release

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2012-01-01

    Full Text Available Increasing evidence indicated astroglia-derived neurotrophic factors generation might hold a promising therapy for Parkinson’s disease (PD. Resveratrol, naturally present in red wine and grapes with potential benefit for health, is well known to possess a number of pharmacological activities. Besides the antineuroinflammatory properties, we hypothesized the neuroprotective potency of resveratrol is partially due to its additional neurotrophic effects. Here, primary rat midbrain neuron-glia cultures were applied to investigate the neurotrophic effects mediated by resveratrol on dopamine (DA neurons and further explore the role of neurotrophic factors in its actions. Results showed resveratrol produced neurotrophic effects on cultured DA neurons. Additionally, astroglia-derived neurotrophic factors release was responsible for resveratrol-mediated neurotrophic properties as evidenced by the following observations: (1 resveratrol failed to exert neurotrophic effects on DA neurons in the cultures without astroglia; (2 the astroglia-conditioned medium prepared from astroglia-enriched cultures treated with resveratrol produced neurotrophic effects in neuron-enriched cultures; (3 resveratrol increased neurotrophic factors release in the concentration- and time-dependent manners; (4 resveratrol-mediated neurotrophic effects were suppressed by blocking the action of the neurotrophic factors. Together, resveratrol could produce neurotrophic effects on DA neurons through prompting neurotrophic factors release, and these effects might open new alternative avenues for neurotrophic factor-based therapy targeting PD.

  17. Lung Circulation.

    Science.gov (United States)

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  18. Antimanic-like activity of candesartan in mice: Possible involvement of antioxidant, anti-inflammatory and neurotrophic mechanisms.

    Science.gov (United States)

    de Souza Gomes, Júlia Ariana; de Souza, Greicy Coelho; Berk, Michael; Cavalcante, Lígia Menezes; de Sousa, Francisca Cléa F; Budni, Josiane; de Lucena, David Freitas; Quevedo, João; Carvalho, André F; Macêdo, Danielle

    2015-11-01

    Activation of the brain angiotensin II type 1 receptor (AT1R) triggers pro-oxidant and pro-inflammatory mechanisms which are involved in the neurobiology of bipolar disorder (BD). Candesartan (CDS) is an AT1 receptor antagonist with potential neuroprotective properties. Herein we investigated CDS effects against oxidative, neurotrophic inflammatory and cognitive effects of amphetamine (AMPH)-induced mania. In the reversal protocol adult mice were given AMPH 2 mg/kg i.p. or saline and between days 8 and 14 received CDS 0.1, 0.3 or 1 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention treatment, mice were pretreated with CDS, Li or saline prior to AMPH. Locomotor activity and working memory performance were assessed. Glutathione (GSH), thiobarbituric acid-reactive substance (TBARS) and TNF-α levels were evaluated in the hippocampus (HC) and cerebellar vermis (CV). Brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK-3beta) levels were measured in the HC. CDS and Li prevented and reversed the AMPH-induced increases in locomotor activity. Only CDS prevented and reversed AMPH-induced working memory deficits. CDS prevented AMPH-induced alterations in GSH (HC and CV), TBARS (HC and CV), TNF-α (HC and CV) and BDNF (HC) levels. Li prevented alterations in BDNF and phospho-Ser9-GSK3beta. CDS reversed AMPH-induced alterations in GSH (HC and CV), TBARS (HC), TNF-α (CV) and BDNF levels. Li reversed AMPH-induced alterations in TNF-α (HC and CV) and BDNF (HC) levels. CDS is effective in reversing and preventing AMPH-induced behavioral and biochemical alterations, providing a rationale for the design of clinical trials investigating CDS׳s possible therapeutic effects. PMID:26321203

  19. Neurotrophic and antioxidant potential of neuropeptides and trace elements

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available Neurotrophic therapy with brain extract-based drugs has been performed for decades. The basis for their neurotrophic activity is amino acids and neuropeptides. However, incomplete information on the composition of these drugs precludes a detailed description of mechanisms through which their pharmacological effects occur. The review considers the results of the most recent molecular pharmacological investigations and the mechanisms of therapeutic action of cerebrolysin.

  20. Neurotrophic and antioxidant potential of neuropeptides and trace elements

    OpenAIRE

    O. A. Gromova; A. V. Pronin; I. Yu. Torshin; A. G. Kalacheva; T. R. Grishina

    2016-01-01

    Neurotrophic therapy with brain extract-based drugs has been performed for decades. The basis for their neurotrophic activity is amino acids and neuropeptides. However, incomplete information on the composition of these drugs precludes a detailed description of mechanisms through which their pharmacological effects occur. The review considers the results of the most recent molecular pharmacological investigations and the mechanisms of therapeutic action of cerebrolysin.

  1. Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival

    OpenAIRE

    Sendtner, Michael; Arakawa, Yoshihiro; Stöckli, Kurt A.; Kreutzberg, Georg W.; Thoenen, Hans

    2010-01-01

    We have demonstrated that the extensive degeneration of motoneurons in the rat facial nucleus after transection of the facial nerve in newborn rats can be prevented by local ciliary neurotrophic factor (CNTF) administration. CNTF differs distinctly from known neurotrophic molecules such as NGF, BDNF and NT-3 in both its molecular characteristics (CNTF is a cytosolic rather than a secretory molecule) and its broad spectrum of biological activities. CNTF is expressed selectively by Schwann cell...

  2. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice.

    Science.gov (United States)

    Gumuslu, Esen; Mutlu, Oguz; Celikyurt, Ipek K; Ulak, Guner; Akar, Furuzan; Erden, Faruk; Ertan, Merve

    2016-08-01

    Exenatide is a potent and selective agonist for the GLP-1 (glucagon-like peptide-1) receptor. Recent studies are focused on the effects of GLP-1 analogues on hippocampal neurogenesis, cognition, learning and memory functions. The aim of this study was to assess the effects of chronic exenatide treatment (0.1 μg/kg, s.c, twice daily for 2 weeks) on spatial memory functions by using the modified elevated plus maze (mEPM) test and emotional memory functions by using the passive avoidance (PA) test in streptozotocin/nicotinamide (STZ-NA)-induced diabetic mice. As the genes involved in neurite remodelling are among the primary targets of regulation, the effects of diabetes and chronic administration of exenatide on brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) messenger ribonucleic acid (mRNA) levels in the hippocampus of mice were also determined using quantitative real-time polymerase chain reaction (RT-PCR). This study revealed that in the mEPM and PA tests, type-2 diabetes-induced mice exhibited significant impairment of learning and memory which were ameliorated by GLP-1 receptor agonist exenatide. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in diabetic mice, and these alterations were increased by exenatide treatment. Since, exenatide improves cognitive ability in STZ/NA-induced diabetic mice and activates molecular mechanisms of memory storage in response to a learning experience, it may be a candidate for alleviation of mood and cognitive disorder. PMID:26935863

  3. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons.

    Science.gov (United States)

    Satriotomo, I; Nichols, N L; Dale, E A; Emery, A T; Dahlberg, J M; Mitchell, G S

    2016-05-13

    Repetitive acute intermittent hypoxia (rAIH) increases growth/trophic factor expression in respiratory motor neurons, thereby eliciting spinal respiratory motor plasticity and/or neuroprotection. Here we demonstrate that rAIH effects are not unique to respiratory motor neurons, but are also expressed in non-respiratory, spinal alpha motor neurons and upper motor neurons of the motor cortex. In specific, we used immunohistochemistry and immunofluorescence to assess growth/trophic factor protein expression in spinal sections from rats exposed to AIH three times per week for 10weeks (3×wAIH). 3×wAIH increased brain-derived neurotrophic factor (BDNF), its high-affinity receptor, tropomyosin receptor kinase B (TrkB), and phosphorylated TrkB (pTrkB) immunoreactivity in putative alpha motor neurons of spinal cervical 7 (C7) and lumbar 3 (L3) segments, as well as in upper motor neurons of the primary motor cortex (M1). 3×wAIH also increased immunoreactivity of vascular endothelial growth factor A (VEGFA), the high-affinity VEGFA receptor (VEGFR-2) and an important VEGF gene regulator, hypoxia-inducible factor-1α (HIF-1α). Thus, rAIH effects on growth/trophic factors are characteristic of non-respiratory as well as respiratory motor neurons. rAIH may be a useful tool in the treatment of disorders causing paralysis, such as spinal injury and motor neuron disease, as a pretreatment to enhance motor neuron survival during disease, or as preconditioning for cell-transplant therapies. PMID:26944605

  4. Determining Concentration of Neurotrophic Factors and Neuron Specific Enolase in the Blood of Newborns with Central Nervous System Damages as a New Approach in Clinical Diagnostics

    Directory of Open Access Journals (Sweden)

    M.V. Vedunova

    2015-06-01

    Full Text Available The aim of the investigation is to assess the quantity of brain-derived neurotrophic factor (BDNF, glial cell line-derived neurotrophic factor (GDNF and neuron specific enolase (NSE in plasma of newborns with perinatal hypoxic damage of CNS. Materials and Methods. Neurotrophic factors and NSE enzyme concentrations in plasma of newborns (gestation age 31–42 weeks was studied. The main groups consisted of newborns with the symptoms of perinatal CNS damage (group 1 — with convulsive states, group 2 — with the signs of severe perinatal CNS damage, diagnosed according to physical examination, evaluation of the neurological status dynamics and neurosonographic studies. Control group included healthy neonates. Concentration of BDNF, GDNF (R&D Systems, USA and NSE enzyme (Vector Best, Russia was determined by ELISA kit during hospitalization and on day 10–14 after the rehabilitation therapy. Results. Carried out experiments revealed the significant increase of NSE concentration in plasma of newborns with convulsive states. The higher levels of this enzyme were detected in infants with severe perinatal CNS damage. Moreover, BDNF concentration significantly increases in plasma of patients with the symptoms of severe CNS damage in the period following rehabilitation therapy. These experiments also demonstrate the inverse correlation between BDNF and GDNF levels. It was shown the important prognostic value of BDNF and NSE determination in plasma of newborns with CNS injury. Conclusion. The most diagnostic value for assessing the severity of brain damage in early neonatal period is associated with measurements of NSE and BDNF concentrations in plasma, which allows to use these markers immediately after birth and before the development of neurological symptoms.

  5. Synergistic neurotrophic effects of piracetam and thiotriazoline

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance glucose utilization, and to improve regional blood flow in the ischemic brain regions. Due to its action, the drug activates glycolytic processes and elevates ATP concentrations in brain tissue. Thiotriazoline is a compound that has antioxidant, anti-ischemic properties. The co-administration of piracetam and thiothriazoline is an innovation area in the treatment of stroke and other brain damages, especially in insulin resistance and high blood glucose levels. The paper considers the neurobiological properties of thiotriazoline and piracetam, which synergistically exert neuroprotective and neurotrophic effects.

  6. Streptococcus pneumoniae infection regulates expression of neurotrophic factors in the olfactory bulb and cultured olfactory ensheathing cells.

    Science.gov (United States)

    Ruiz-Mendoza, S; Macedo-Ramos, H; Santos, F A; Quadros-de-Souza, L C; Paiva, M M; Pinto, T C A; Teixeira, L M; Baetas-da-Cruz, W

    2016-03-11

    Streptococcus pneumoniae is the causative agent of numerous diseases including severe invasive infections such as bacteremia and meningitis. It has been previously shown that strains of S. pneumoniae that are unable to survive in the bloodstream may colonize the CNS. However, information on cellular components and pathways involved in the neurotropism of these strains is still scarce. The olfactory system is a specialized tissue in which olfactory receptor neurons (ORNs) are interfacing with the external environment through several microvilli. Olfactory ensheathing cells (OECs) which also form the glial limiting membrane at the surface of the olfactory bulb (OB) are the only cells that ensheathe the ORNs axons. Since previous data from our group showed that OECs may harbor S. pneumoniae, we decided to test whether infection of the OB or OEC cultures modulates the expression levels of neurotrophic factor's mRNA and its putative effects on the activation and viability of microglia. We observed that neurotrophin-3 (NT-3) and glial cell-line-derived neurotrophic factor (GDNF) expression was significantly higher in the OB from uninfected mice than in infected mice. A similar result was observed when we infected OEC cultures. Brain-derived neurotrophic factor (BNDF) expression was significantly lower in the OB from infected mice than in uninfected mice. In contrast, in vitro infection of OECs resulted in a significant increase of BDNF mRNA expression. An upregulation of high-mobility group box 1 (HMGB1) expression was observed in both OB and OEC cultures infected with S. pneumoniae. Moreover, we found that conditioned medium from infected OEC cultures induced the expression of the pro-apoptotic protein cleaved-caspase-3 and an apparently continuous nuclear factor-kappa B (NF-κB) p65 activation in the N13 microglia. Altogether, our data suggest the possible existence of an OEC-pathogen molecular interface, through which the OECs could interfere on the activation and

  7. Neurotrophic keratitis in a patient with disseminated lymphangiomatosis

    Directory of Open Access Journals (Sweden)

    Jared E Knickelbein

    2009-10-01

    Full Text Available Jared E Knickelbein1,2, Susan T Stefko1, Puwat Charukamnoetkanok11Department of Ophthalmology, 2Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Introduction: Neurotrophic keratitis, a degenerative corneal disease caused by trigeminal nerve impairment, has many etiologies and remains very difficult to treat.Methods: Case report of a 23-year-old male with a right corneal ulcer that failed to improve despite broad-spectrum antimicrobials.Results: Prior diagnosis of disseminated lymphangiomatosis with a lesion in the right petrous apex effacing Meckel’s (trigeminal cave in conjunction with a history of nonhealing corneal abrasions suggested a neurotrophic etiology. Drawstring temporary tarsorrhaphy, in addition to antibiotics and autologous serum, lead to successful clearing of the infection and resolution of the corneal ulcer. Visual acuity improved from light perception (LP at the peak of infection to 20/40 six weeks after treatment.Conclusions: To our knowledge, we report the first case of neurotrophic keratitis in a patient with disseminated lymphangiomatosis that caused a mass effect in Meckel’s (trigeminal cave leading to compression of the trigeminal nerve. The antibiotic-resistant corneal ulcer was successfully treated with drawstring tarsorrhaphy, confirming the utility of this therapeutic measure in treating neurotrophic keratitis.Keywords: neurotrophic keratitis, corneal abrasion, drawstring tarsorrhaphy, disseminated lymphangiomatosis

  8. Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets?

    Science.gov (United States)

    Serafini, Gianluca; Hayley, Shawn; Pompili, Maurizio; Dwivedi, Yogesh; Brahmachari, Goutam; Girardi, Paolo; Amore, Mario

    2014-01-01

    Major depression is one of the leading causes of disability and psychosocial impairment worldwide. Although many advances have been made in the neurobiology of this complex disorder, the pathophysiological mechanisms are still unclear. Among the proposed theories, impaired neuroplasticity and hippocampal neurogenesis have received considerable attention. The possible association between hippocampal neurogenesis, neurotrophic factors, major depression, and antidepressant responses was critically analyzed using a comprehensive search of articles/book chapters in English language between 1980 and 2014. One common emerging theme was that chronic stress and major depression are associated with structural brain changes such as a loss of dendritic spines and synapses, as well as reduced dendritic arborisation, together with diminished glial cells in the hippocampus. Both central monoamines and neurotrophic factors were associated with a modulation of hippocampal progenitor proliferation and cell survival. Accordingly, antidepressants are generally suggested to reverse stress-induced structural changes augmenting dendritic arborisation and synaptogenesis. Such antidepressant consequences are supposed to stem from their stimulatory effects on neurotrophic factors, and possibly modulation of glial cells. Of course, accumulating evidence also suggested that glutamatergic systems are implicated in not only basic neuroplastic processes, but also in the core features of depression. Hence, it is critical that antidepressant strategies focus on links between the various neurotransmitter systems, neurotrophic processes of hippocampal neurogenesis, and neurotrophic factors with regards to depressive symptomology. The identification of novel alternative antidepressant medications that target these systems is discussed in this review. PMID:25470403

  9. Influence of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhengrong Peng; Sue Wang; Pingtian Xiao

    2009-01-01

    BACKGROUND: It has been previously shown that hyperbaric oxygen may promote proliferation of neural stem cells and reduce death of endogenous neural stem cells (NSCs).OBJECTIVE: To explore the effects of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived NSCs into neuron-like cells and compare with high-concentration oxygen and high pressure.DESIGN, TIME AND SETTING: An in vitro contrast study, performed at Laboratory of Neurology,Central South University between January and May 2006.MATERIALS: A hyperbaric oxygen chamber (YLC 0.5/1A) was provided by Wuhan Shipping Design Research Institute; mouse anti-rat microtubute-associated protein 2 monoclonal antibody by Jingmei Company, Beijing; mouse anti-rat glial fibrillary acidic protein monoclonal antibody by Neo Markers,USA; mouse anti-rat galactocerebroside monoclonal antibody by Santa Cruz Biotechnology Inc.,USA; and goat anti-mouse fluorescein isothiocyanate-labeled secondary antibody by Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Brain-derived NSCs isolated from brain tissues of neonatal Sprague Dawiey rats werecloned and passaged, and assigned into five groups: normal control, model, high-concentration oxygen, high pressure, and hyperbaric oxygen groups. Cells in the four groups, excluding the normal control group, were incubated in serum-containing DMEM/F12 culture medium. Hypoxic/ischemic models of NSCs were established in an incubator comprising 93% N2, 5% CO2, and 2% O2.Thereafter, cells were continuously cultured as follows: compressed air (0.2 MPa, 1 hour, once a day)in the high pressure group, compressed air+a minimum of 80% O2 in the hyperbaric oxygen group,and a minimum of 80% O2 in the high-concentration oxygen group. Cells in the normal control and model groups were cultured as normal.MAIN OUTCOME MEASURES: At day 7 after culture, glial fibrillary acidic protein,microtubule-associated protein 2, and galactocerebroside immunofluorescence staining were examined to

  10. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B

    OpenAIRE

    Cho, Jeong-Hwi; Park, Joon Ha; AHN, JI HYEON; Lee, Jae-Chul; Hwang, In Koo; PARK, SEUNG MIN; AHN, JI YUN; Kim, Dong Won; Cho, Jun Hwi; Kim, Jong-Dai; Kim, Young-Myeong; Won, Moo-Ho; Kang, Il-Jun

    2016-01-01

    4-Hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well-known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4-HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki-67, doublecortin (DCX) immunohistochemistry and 5-bromo-2′-de-oxyur...

  11. Brain-derived neurotrophic factor in development and plasticity of visual system%脑源性神经营养因子在视觉系统发育和可塑性研究中的进展

    Institute of Scientific and Technical Information of China (English)

    郝瑞; 赵堪兴

    2007-01-01

    弱视是一种与视觉中枢发育相关的疾病.近年来对于弱视中枢机制的研究集中于视皮层神经元突触可塑性及各种相关信号分子的表达差异.神经营养因子与神经系统发育及可塑性变化之间具有显著的相关性,其中脑源性神经营养因子(BDNF)在视觉系统中对神经元的正常发育、存活、分化、功能维持及可塑性等方面具有重要作用,既能调控神经元群体的程序性凋亡,亦能调制神经系统突触发育可塑性的效应.本文综述此方面的研究进展,以期对弱视发病机制的进一步研究有所提示.

  12. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress☆

    OpenAIRE

    Liang, Shuang; Huang, Renbin; Lin, Xing; Huang, Jianchun; Huang, Zhongshi; Liu, Huagang

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity ...

  13. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S;

    2010-01-01

    )R binding was reflected in reduced functional output in two 5-HT(2A)-receptor mediated behavioral tests, the head-twitch response (HTR) and the ear-scratch response (ESR). BDNF(2L/2LCk-cre) mutants treated with the 5-HT(2A) receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) showed a clearly...

  14. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells.

    Science.gov (United States)

    Lattanzio, Francesca; Carboni, Lucia; Carretta, Donatella; Candeletti, Sanzio; Romualdi, Patrizia

    2016-05-01

    The deposition of Amyloid β peptide plaques is a pathological hallmark of Alzheimer's disease (AD). The Aβ (25-35) peptide is regarded as the toxic fragment of full-length Aβ (1-42). The mechanism of its toxicity is not completely understood, along with its contribution to AD pathological processes. The aim of this study was to investigate the effect of the neurotoxic Aβ (25-35) peptide on the expression of the neuroprotective factors Pin1, Sirtuin1, and Bdnf in human neuroblastoma cells. Levels of Pin1, Sirtuin 1, and Bdnf were compared by real-time PCR and Western blotting in SH-SY5Y cells treated with Aβ (25-35) or administration vehicle. The level of Pin1 gene and protein expression was significantly decreased in cells exposed to 25μM Aβ (25-35) compared to vehicle-treated controls. Similarly, Sirtuin1 expression was significantly reduced by Aβ (25-35) exposure. In contrast, both Bdnf mRNA and protein levels were significantly increased by Aβ (25-35) treatment, suggesting the activation of a compensatory response to the insult. Both Pin1 and Sirtuin 1 exert a protective role by reducing the probability of plaque deposition, since they promote amyloid precursor protein processing through non-amyloidogenic pathways. The present results show that Aβ (25-35) peptide reduced the production of these neuroprotective proteins, thus further increasing Aβ generation. PMID:26915812

  15. Expression of Human Brain Derived Neurotrophic Factor Gene in E. coli%hBDNF基因原核表达重组质粒的构建及其在大肠杆菌中的表达

    Institute of Scientific and Technical Information of China (English)

    刘智敏; 陈俊杰; 林佳; 王若菡; 游乐然; 东云华

    2001-01-01

    The primers specific for the full-length BDNF coding sequence was designed and synthesized. The BDNF coding sequence was directly amplified from human genomic DNA by using PCR and inserted into vector pGEM-3Zf(+). The recombinant DNA was transformed into the host cells JM109 to obtain the positive clone pGEMBF18. The restriction enzyme analysis and DNA sequence detection confirmed that the inser ted fragment of clone pGEMBF18 is the full-length BDNF coding sequence. The hBD NF DNA fragment was recovered from the clone pGEMBF18 and ligated with prokaryot ic expression vector pGEX-5T to construct the recombinant expression plasmid p5 TBF34. The E.coli JM109 transformed with p5TBF34 was induced with IPTG. A new pr otein band with apparent molecular weight 43 kDa was detected in the lysate of t he transformed cell by using SDS-PAGE. The result of western hybridization show ed that this fusion protein reacted specifically to the antibodies to human BDNF . The amount of the soluble fusion protein was about 503.04mg/L lysate, 7.53% of total bacterial soluble protein of transformed cells, estimated by absorbance sc anning of SDS-PAGE and protein quantitation.%我们按照hBDNF基因全长编码序列设计合成引物,从人基因组DNA中扩增 出76 0bp的片段,反向插入到pGEM-3Zf(+)载体上,获得pGEMBF18克隆,限制性酶分析和DNA序 列测定均证实该克隆插入片段为hBDNF基因全长编码序列。从pGEMBF18克隆中获取hBDNF全长 编码片段,与原核表达载体pGEX-5T连接,构建了p5TBF34原核表达重组质粒。重组质粒转 化大肠杆菌JM109,经IPTG诱导表达,SDS-PAGE特异区带分子量为43kDa,此重组蛋白占菌 体可溶性蛋白总量的7.53%, Western杂交证实该特异区带具hBDNF抗原活性。

  16. Effectiveness of the Viet Nam produced, mouse brain-derived, inactivated Japanese encephalitis vaccine in Northern Viet Nam.

    Directory of Open Access Journals (Sweden)

    Florian Marks

    Full Text Available BACKGROUND: Japanese encephalitis (JE is a flaviviral disease of public health concern in many parts of Asia. JE often occurs in large epidemics, has a high case-fatality ratio and, among survivors, frequently causes persistent neurological sequelae and mental disabilities. In 1997, the Vietnamese government initiated immunization campaigns targeting all children aged 1-5 years. Three doses of a locally-produced, mouse brain-derived, inactivated JE vaccine (MBV were given. This study aims at evaluating the effectiveness of Viet Nam's MBV. METHODOLOGY: A matched case-control study was conducted in Northern Viet Nam. Cases were identified through an ongoing hospital-based surveillance. Each case was matched to four healthy controls for age, gender, and neighborhood. The vaccination history was ascertained through JE immunization logbooks maintained at local health centers. PRINCIPAL FINDINGS: Thirty cases and 120 controls were enrolled. The effectiveness of the JE vaccine was 92.9% [95% CI: 66.6-98.5]. Confounding effects of other risk variables were not observed. CONCLUSIONS: Our results strongly suggest that the locally-produced JE-MBV given to 1-5 years old Vietnamese children was efficacious.

  17. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  18. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    Science.gov (United States)

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  19. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    Science.gov (United States)

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  20. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    Science.gov (United States)

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists. PMID:27186358

  1. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  2. Coping with unpredictability: dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Marco A Vindas

    Full Text Available Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward' causes increased aggression in Atlantic salmon (Salmo salar. Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding. Subsequently, the expected food reward was delayed for 30 minutes during two out of three meals per day in the OER treatment, while the previously established routine was maintained in control groups. After 8 days there was no effect of OER on baseline brain stem serotonin (5-HT or dopamine (DA activity. Subsequent exposure to acute confinement stress led to increased plasma cortisol and elevated turnover of brain stem DA and 5-HT in all animals. The DA response was potentiated and DA receptor 1 (D1 mRNA abundance was reduced in the OER-exposed fish, indicating a sensitization of the DA system. In addition OER suppressed abundance of BDNF in the telencephalon of non-stressed fish. Regardless of OER treatment, a strong positive correlation between BDNF and D1 mRNA abundance was seen in non-stressed fish. This correlation was disrupted by acute stress, and replaced by a negative correlation between BDNF abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental unpredictability.

  3. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?★

    OpenAIRE

    Yoon, Hyung Ho; Min, Joongkee; Shin, Nari; Kim, Yong Hwan; Kim, Jin-Mo; Hwang, Yu-Shik; Suh, Jun-Kyo Francis; Hwang, Onyou; Jeon, Sang Ryong

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-der...

  4. Glycyrrhiza uralensis flavonoids inhibit brain microglial cell TNF-α secretion, p-IκB expression, and increase brain-derived neurotropic factor (BDNF) secretion

    OpenAIRE

    Patil, Sangita P; Changda Liu; Joseph Alban; Nan Yang; Xiu-Min Li

    2014-01-01

    Objective: Asthma sufferers exhibit high prevalence of anxiety/depression. Elevated tumor-necrosis factor-alpha (TNF-α) levels in peripheral system and central nervous system (CNS) are associated with anxiety/depression, whereas brain-derived neurotropic factor (BDNF) has anti-depressant effects. An anti-asthma herbal medicine intervention ASHMI inhibits peripheral TNF-α secretion in an animal model of asthma. We hypothesize that ASHMI and its compounds may have modulatory effects on CNS TNF-...

  5. Systemic administration of ciliary neurotrophic factor induces cachexia in rodents.

    OpenAIRE

    Henderson, J T; Seniuk, N A; Richardson, P.M.; Gauldie, J; Roder, J. C.

    1994-01-01

    Ciliary neurotrophic factor (CNTF) has previously been shown to promote the survival of several classes of neurons and glial. We report here that in addition to its effects on the nervous system, CNTF can induce potent effects in extra-neural tissues. Implantation of C6 glioma cells engineered to secrete CNTF either subcutaneously or into the peritoneal cavity of adult mice, or systemic injections of purified rat or human recombinant CNTF, resulted in a rapid syndrome of weight loss resulting...

  6. Ciliary Neurotrophic Factor Receptor Regulation of Adult Forebrain Neurogenesis

    OpenAIRE

    Lee, Nancy; Batt, Myra K.; Cronier, Brigitte A.; Jackson, Michele C.; Bruno Garza, Jennifer L; Trinh, Dennis S.; Mason, Carter O.; Spearry, Rachel P.; Bhattacharya, Shayon; Robitz, Rachel; Nakafuku, Masato; MacLennan, A. John

    2013-01-01

    Appropriately targeted manipulation of endogenous neural stem progenitor (NSP) cells may contribute to therapies for trauma, stroke, and neurodegenerative disease. A prerequisite to such therapies is a better understanding of the mechanisms regulating adult NSP cells in vivo. Indirect data suggest that endogenous ciliary neurotrophic factor (CNTF) receptor signaling may inhibit neuronal differentiation of NSP cells. We challenged subventricular zone (SVZ) cells in vivo with low concentrations...

  7. Rodent Models of Depression: Neurotrophic and Neuroinflammatory Biomarkers

    OpenAIRE

    Mikhail Stepanichev; Nikolay N Dygalo; Grigory Grigoryan; Shishkina, Galina T.; Natalia Gulyaeva

    2014-01-01

    Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) du...

  8. Amitriptyline-mediated cognitive enhancement in aged 3×Tg Alzheimer's disease mice is associated with neurogenesis and neurotrophic activity.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available Approximately 35 million people worldwide suffer from Alzheimer's disease (AD. Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Aβ oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration. Several antidepressants have shown promise in improving cognition and alleviating oxidative stress in AD but have failed as long-term therapeutics. In this study, amitriptyline, an FDA-approved tricyclic antidepressant, was administered orally to aged and cognitively impaired transgenic AD mice (3×TgAD. After amitriptyline treatment, cognitive behavior testing demonstrated that there was a significant improvement in both long- and short-term memory retention. Amitriptyline treatment also caused a significant potentiation of non-toxic Aβ monomer with a concomitant decrease in cytotoxic dimer Aβ load, compared to vehicle-treated 3×TgAD controls. In addition, amitriptyline administration caused a significant increase in dentate gyrus neurogenesis as well as increases in expression of neurosynaptic marker proteins. Amitriptyline treatment resulted in increases in hippocampal brain-derived neurotrophic factor protein as well as increased tyrosine phosphorylation of its cognate receptor (TrkB. These results indicate that amitriptyline has significant beneficial actions in aged and damaged AD brains and that it shows promise as a tolerable novel therapeutic for the treatment of AD.

  9. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression.

    Science.gov (United States)

    de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; Vasconcelos, Germana Silva; Silva, Márcia Calheiros Chaves; da Silva, Jéssica Calheiros; Macêdo, Danielle; de Lucena, David Freitas; Vasconcelos, Silvânia Maria Mendes

    2015-12-15

    Brain derived neurotrophic factor (BDNF) is linked to the pathophysiology of depression. We hypothesized that BDNF is one of the neurobiological pathways related to the augmentation effect of alpha-lipoic acid (ALA) when associated with antidepressants. Female mice were administered vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days the animals were divided in groups that were further administered: vehicle, desvenlafaxine (DVS) 10 or 20mg/kg, ALA 100 or 200mg/kg or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200 or DVS20+ALA200. ALA or DVS alone or in combination reversed CORT-induced increase in immobility time in the forced swimming test and decrease in sucrose preference, presenting, thus, an antidepressant-like effect. DVS10 alone reversed CORT-induced decrease in BDNF in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The same was observed in the HC and ST of ALA200 treated animals. The combination of DVS and ALA200 reversed CORT-induced alterations in BDNF and even, in some cases, increased the levels of this neurotrophin when compared to vehicle-treated animals in HC and ST. Taken together, these results suggest that the combination of the DVS+ALA may be valuable for treating conditions in which BDNF levels are decreased, such as depression. PMID:26350703

  10. Neurotrophic factors and their receptors in human sensory neuropathies.

    Science.gov (United States)

    Anand, Praveen

    2004-01-01

    Neurotrophic factors may play key roles in pathophysiological mechanisms of human neuropathies. Nerve growth factor (NGF) is trophic to small-diameter sensory fibers and regulates nociception. This review focuses on sensory dysfunction and the potential of neurotrophic treatments. Genetic neuropathy. Mutations of the NGF high-affinity receptor tyrosine kinase A (Trk A) have been found in congenital insensitivity to pain and anhidrosis; these are likely to be partial loss-of-function mutations, as axon-reflex vasodilatation and sweating can be elicited albeit reduced, suggesting rhNGF could restore nociception in some patients. Leprous neuropathy. Decreased NGF in leprosy skin may explain cutaneous hypoalgesia even with inflammation and rhNGF may restore sensation, as spared nerve fibers show Trk A-staining. Diabetic neuropathy. NGF is depleted in early human diabetic neuropathy skin, in correlation with dysfunction of nociceptor fibers. We proposed rhNGF prophylaxis may prevent diabetic foot ulceration. Clinical trials have been disappointed, probably related to difficulty delivering adequate doses and need for multiple trophic factors. NGF and glial cell line-derived neurotrophic factor (GDNF) are both produced by basal keratinocytes and neurotrophin (NT-3) by suprabasal keratinocytes: relative mRNA expression was significantly lower in early diabetic neuropathy skin compared to controls, for NGF (P 0.05). Posttranslational modifications of mature and pro-NGF may also affect bioactivity and immunoreactivity. A 53 kD band that could correspond to a prepro-NGF-like molecule was reduced in diabetic skin. Traumatic neuropathy and pain. While NGF levels are acutely reduced in injured nerve trunks, neuropathic patients with chronic skin hyperalgesia and allodynia show marked local increases of NGF levels; here anti-NGF agents may provide analgesia. Physiological combinations of NGF, NT-3 and GDNF, to mimic a 'surrogate target organ', may provide a novel 'homeostatic

  11. Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle;

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a...

  12. Astrocytes produce an insulin-like neurotrophic factor

    International Nuclear Information System (INIS)

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fraction of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of 125I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation

  13. A novel neurotrophic drug for cognitive enhancement and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qi Chen

    Full Text Available Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD, the focus is the amyloid beta peptide (Aß that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model.

  14. HIV-1 tropism for the central nervous system: Brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor

    International Nuclear Information System (INIS)

    We previously described envelope glycoproteins of an HIV-1 isolate adapted in vitro for growth in microglia that acquired a highly fusogenic phenotype and lower CD4 dependence, as well as resistance to inhibition by anti-CD4 antibodies. Here, we investigated whether similar phenotypic changes are present in vivo. Envelope clones from the brain and spleen of an HIV-1-infected individual with neurological disease were amplified, cloned, and sequenced. Phylogenetic analysis demonstrated clustering of sequences according to the tissue of origin, as expected. Functional clones were then used in cell-to-cell fusion assays to test for CD4 and co-receptor utilization and for sensitivity to various antibodies and inhibitors. Both brain- and spleen-derived envelope clones mediated fusion in cells expressing both CD4 and CCR5 and brain envelopes also used CCR3 as co-receptor. We found that the brain envelopes had a lower CD4 dependence, since they efficiently mediated fusion in the presence of low levels of CD4 on the target cell membrane, and they were significantly more resistant to blocking by anti-CD4 antibodies than the spleen-derived envelopes. In contrast, we observed no difference in sensitivity to the CCR5 antagonist TAK-779. However, brain-derived envelopes were significantly more resistant than those from spleen to the fusion inhibitor T-1249 and concurrently showed slightly greater fusogenicity. Our results suggest an increased affinity for CD4 of brain-derived envelopes that may have originated from in vivo adaptation to replication in microglial cells. Interestingly, we note the presence of envelopes more resistant to a fusion inhibitor in the brain of an untreated, HIV-1-infected individual

  15. Resveratrol Produces Neurotrophic Effects on Cultured Dopaminergic Neurons through Prompting Astroglial BDNF and GDNF Release

    OpenAIRE

    Feng Zhang; Yan-Ying Wang; Hang Liu; Yuan-Fu Lu; Qin Wu; Jie Liu; Jing-Shan Shi

    2012-01-01

    Increasing evidence indicated astroglia-derived neurotrophic factors generation might hold a promising therapy for Parkinson’s disease (PD). Resveratrol, naturally present in red wine and grapes with potential benefit for health, is well known to possess a number of pharmacological activities. Besides the antineuroinflammatory properties, we hypothesized the neuroprotective potency of resveratrol is partially due to its additional neurotrophic effects. Here, primary rat midbrain neuron-glia c...

  16. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

    OpenAIRE

    Du, Jie; Gao, Xiaoqing; Deng, Li; Chang, Nengbin; Xiong, Huailin; Zheng, Yu

    2014-01-01

    Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, microtubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the supernatant were significantly hig...

  17. Continued Administration of Ciliary Neurotrophic Factor Protects Mice from Inflammatory Pathology in Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle; Bourbonniere, Lyne; Zehntner, Simone; Guilhot, Florence; Herman, Alexandra; Guay-Giroux, Angélique; Antel, Jack P.; Owens, Trevor; Gauchat, Jean-François

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a survival and differentiation factor for neurons and oligodendrocytes, significantly ameliorates the clinical course of a mouse model of multiple sclerosis. In the acute phase of experimental autoimmune en...

  18. Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells

    OpenAIRE

    Ito, Yasuhiro; Wiese, Stefan; Funk, Natalja; Chittka, Alexandra; Rossoll, Wilfried; Bömmel, Heike; Watabe, Kazuhiko; Wegner, Michael; Sendtner, Michael

    2006-01-01

    Ciliary neurotrophic factor (Cntf) plays an essential role in postnatal maintenance of spinal motoneurons. Whereas the expression of this neurotrophic factor is low during embryonic development, it is highly up-regulated after birth in myelinating Schwann cells of rodents. To characterize the underlying transcriptional mechanisms, we have analyzed and compared the effects of various glial transcription factors. In contrast to Pit-1, Oct-1, Unc-86 homology region (POU) domain class 3, transcri...

  19. Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence

    OpenAIRE

    Lohoff, Falk W.; Bloch, Paul J.; Ferraro, Thomas N.; Berrettini, Wade H.; Pettinati, Helen M.; Dackis, Charles A.; O’Brien, Charles P.; Kampman, Kyle M.; Oslin, David W

    2009-01-01

    Cocaine induced neuroplasticity changes in the mesocorticolimbic dopamine systems are thought to be involved in the pathophysiology of cocaine dependence. Since neurotrophic factors have been observed to prevent/reverse and mimic cocaine-induced neurobiological changes in the brain, related genes are plausible candidates for susceptibility to cocaine dependence. The novel conserved dopamine neurotrophic factor protein (CDNF) promotes the survival, growth, and function of dopamine-specific neu...

  20. Transcript-specific effects of adrenalectomy on seizure-induced BDNF expression in rat hippocampus

    DEFF Research Database (Denmark)

    Lauterborn, J C; Poulsen, F R; Stinis, C T;

    1998-01-01

    Activity-induced brain-derived neurotrophic factor (BDNF) expression is negatively modulated by circulating adrenal steroids. The rat BDNF gene gives rise to four major transcript forms that each contain a unique 5' exon (I-IV) and a common 3' exon (V) that codes for BDNF protein. Exon-specific i...

  1. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants

    OpenAIRE

    Sieving, Paul A.; Caruso, Rafael C.; Tao, Weng; Coleman, Hanna R.; Thompson, Darby J. S.; Fullmer, Keri R.; Bush, Ronald A.

    2006-01-01

    Neurotrophic factors are agents with a promising ability to retard progression of neurodegenerative diseases and are effective in slowing photoreceptor degeneration in animal models of retinitis pigmentosa. Here we report a human clinical trial of a neurotrophic factor for retinal neurodegeneration. In this Phase I safety trial, human ciliary neurotrophic factor (CNTF) was delivered by cells transfected with the human CNTF gene and sequestered within capsules that were surgically implanted in...

  2. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  3. Alzheimer's Disease Brain-Derived Amyloid-{beta}-Mediated Inhibition of LTP In Vivo Is Prevented by Immunotargeting Cellular Prion Protein.

    LENUS (Irish Health Repository)

    Barry, Andrew E

    2011-05-18

    Synthetic amyloid-β protein (Aβ) oligomers bind with high affinity to cellular prion protein (PrP(C)), but the role of this interaction in mediating the disruption of synaptic plasticity by such soluble Aβ in vitro is controversial. Here we report that intracerebroventricular injection of Aβ-containing aqueous extracts of Alzheimer\\'s disease (AD) brain robustly inhibits long-term potentiation (LTP) without significantly affecting baseline excitatory synaptic transmission in the rat hippocampus in vivo. Moreover, the disruption of LTP was abrogated by immunodepletion of Aβ. Importantly, intracerebroventricular administration of antigen-binding antibody fragment D13, directed to a putative Aβ-binding site on PrP(C), prevented the inhibition of LTP by AD brain-derived Aβ. In contrast, R1, a Fab directed to the C terminus of PrP(C), a region not implicated in binding of Aβ, did not significantly affect the Aβ-mediated inhibition of LTP. These data support the pathophysiological significance of SDS-stable Aβ dimer and the role of PrP(C) in mediating synaptic plasticity disruption by soluble Aβ.

  4. Effect of neurotrophic factor, MDP, on rats’ nerve regeneration

    Directory of Open Access Journals (Sweden)

    A.A. Fornazari

    2011-04-01

    Full Text Available Our objective was to determine the immune-modulating effects of the neurotrophic factor N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP on median nerve regeneration in rats. We used male Wistar rats (120-140 days of age, weighing 250-332 g and compared the results of three different techniques of nerve repair: 1 epineural neurorrhaphy using sutures alone (group S - 10 rats, 2 epineural neurorrhaphy using sutures plus fibrin tissue adhesive (FTA; group SF - 20 rats, and 3 sutures plus FTA, with MDP added to the FTA (group SFM - 20 rats. Functional assessments using the grasp test were performed weekly for 12 weeks to identify recovery of flexor muscle function in the fingers secondary to median nerve regeneration. Histological analysis was also utilized. The total number and diameter of myelinated fibers were determined in each proximal and distal nerve segment. Two indices, reported as percentage, were calculated from these parameters, namely, the regeneration index and the diameter change index. By the 8th week, superiority of group SFM over group S became apparent in the grasping test (P = 0.005. By the 12th week, rats that had received MDP were superior in the grasping test compared to both group S (P < 0.001 and group SF (P = 0.001. Moreover, group SF was better in the grasping test than group S (P = 0.014. However, no significant differences between groups were identified by histological analysis. In the present study, rats that had received MDP obtained better function, in the absence of any significant histological differences.

  5. Treatment of diabetic polyneuropathy with the neurotrophic peptide ORG 2766.

    Science.gov (United States)

    Valk, G D; Kappelle, A C; Tjon-A-Tsien, A M; Bravenboer, B; Bakker, K; Michels, R P; Groenhout, C M; Bertelsmann, F W

    1996-03-01

    The efficacy of the neurotrophic peptide ORG 2766 in diabetic patients with polyneuropathy was evaluated in a double-blind, placebo-controlled, multicentre trial. One hundred and twenty four patients were randomised in five groups to receive 0.1, 0.4, 2 or 5 mg ORG 2766 or placebo, once daily, administered subcutaneously 52 weeks. Thermal discrimination thresholds (TDT) and vibration perception thresholds (VPT), motor and sensory nerve conduction velocity, Hoffmann reflex, heart rate variation during deep breathing and heart rate response after standing up, neurological examination score and neuropathic symptom score were determined at baseline and after 17, 34 and 52 weeks of treatment. Of the nerve function indices studied, at week 52 the TDTwarmth of the hand in the ORG 2766 0.1, 0.4 and 5 mg groups and the TDTcold of the foot in the ORG 2766 0.1 and 0.4 mg groups significantly improved compared with placebo. Further significant improvement as compared with placebo was observed in the paraesthesia score at week 34 and week 52 in the ORG 2766 2 mg group. Only at week 34 had both the heartbeat variation during deep breathing and the VPT of the foot in the ORG 2766 0.1 mg group improved significantly, compared with placebo. No further statistically significant differences were observed at time for the other measures. No adverse reactions were observed. The only recorded drug-induced side effect was pain at the injection site. Taking all measures of efficacy into account, the statistically significant results observed did not show consistency within each measure. Therefore, it is concluded that ORG 2766, in contrast to earlier reports, is not effective in treating diabetic polyneuropathy. PMID:8936356

  6. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex

    Science.gov (United States)

    Senzacqua, Martina; Severi, Ilenia; Perugini, Jessica; Acciarini, Samantha; Cinti, Saverio; Giordano, Antonio

    2016-01-01

    Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating

  7. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex.

    Science.gov (United States)

    Senzacqua, Martina; Severi, Ilenia; Perugini, Jessica; Acciarini, Samantha; Cinti, Saverio; Giordano, Antonio

    2016-01-01

    Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating

  8. Codon optimization and factorial screening for enhanced soluble expression of human ciliary neurotrophic factor in Escherichia coli

    OpenAIRE

    Itkonen, Jaakko M; Urtti, Arto; Bird, Louise E.; Sarkhel, Sanjay

    2014-01-01

    Abstract Background Neurotrophic factors influence survival, differentiation, proliferation and death of neuronal cells within the central nervous system. Human ciliary neurotrophic factor (hCNTF) has neuroprotective properties and is also known to influence energy balance. Consequently, hCNTF has potential therapeutic applications in neurodegenerative, obesity and diabetes relat...

  9. Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) Has a Unique Mechanism to Rescue Apoptotic Neurons

    OpenAIRE

    Hellman, M.; Arumae, U.; Yu, L.-y.; Lindholm, P.; Peranen, J.; Saarma, M.; Permi, P. (Perttu)

    2010-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects neurons and repairs the Parkinson disease-like symptoms in a rat 6-hydroxydopamine model. We show a three-dimensional solution structure of human MANF that differs drastically from other neurotrophic factors. Remarkably, the C-terminal domain of MANF (C-MANF) is homologous to the SAP domain of Ku70, a well known inhibitor of proapoptotic Bax (Bcl-2-associated X protein). Cellular studies confirm that MANF and C-MANF protect n...

  10. Concepts in Assisted Circulation

    OpenAIRE

    Lefemine, Armand A.; Dunbar, Jacob; DeLucia, Anthony

    1986-01-01

    Assisted circulation by extracorporeal and extracardiac bypass techniques must be based on the requirements of the heart and of the total body, though these may differ. The cardiac problem in cardiogenic shock is more likely to be a biventricular problem demanding decompression of both sides. Extra pulmonary oxygenation should be avoided because of complexity in long-term use. Principles of assisted circulation may be applied in an extra-thoracic temporary manner or as an intracorporeal long-...

  11. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways

    Directory of Open Access Journals (Sweden)

    Yenari Midori A

    2011-03-01

    Full Text Available Abstract Background We previously showed that microglia damage blood brain barrier (BBB components following ischemic brain insults, but the underlying mechanism(s is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4 activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC. However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO and inducible NO synthase (iNOS induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS also prevented injury in these cocultures. To assess the signaling pathway(s involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection.

  12. In vitro construction of a recombinant human embryonic brain-derived neurotrophin-4 gene and pEGFP-N1 vector

    Institute of Scientific and Technical Information of China (English)

    Jintao Li; Qi Yan; Xingbao Zhu; Dan Xu; Tinghua Wang; Huatang Zhang; Jia Liu

    2009-01-01

    BACKGROUND: Neurotrophin-4 (NT-4) can promote neuronal growth, development, differentiation, maturation, and survival. NT-4 can also improve recovery and regeneration of injured neurons, but cannot pass through the blood-brain barrier, which limits its activity in the central nervous system. Delivering NT-4 into the central nervous system via cells or vectors may have therapeutic benefit.OBJECTIVE: To construct a recombinant vector with a human embryonic brain-derived NT-4 gene and pEGFP-N1.DESIGN, TIME AND SETTING: Neural genetic engineering experiment. The study was performed at the Neuroscience Institute of Kunming Medical College between October 2007 and March 2008.MATERIALS: The pEGFP-N1 plasmid vector was provided by Kunming Institute of Zoology, Chinese Academy of Sciences; embryonic brain tissues were provided by the First Affiliated Hospital of Kunming Medical College. TRIzol RNA extraction Kit was purchased from Sigma (USA), One Step RNA PCR Kit (AMV) etc. were from Takara (Dalian, China).METHODS: Total RNA was extracted from human embryonic brain tissues using Trizol. The agarose gel electrophoresis showed two bands: 18 S and 28 S, which were essential subunits of total RNA. The human NT-4 DNA was obtained via RT-PCR and inserted into the pEGFP-N1 vector using ligation and transformation reaction.MAIN OUTCOME MEASURES: The sequencing results of the DNA in the recombinant of NT-4-pEGFP-N1.RESULTS: The NT-4-pEGFP-N1 vector was sequence-verified and showed the expected molecular weight.CONCLUSION: The recombinant of NT-4-pEGFP-N1 was constructed successfully in vitro.

  13. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair.

    Science.gov (United States)

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-07-15

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  14. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve