WorldWideScience

Sample records for circularly polarized electromagnetic

  1. Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1999-01-01

    This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation

  2. Raman backscattering of circularly polarized electromagnetic waves propagating along a magnetic field

    International Nuclear Information System (INIS)

    Maraghechi, B.; Willett, J.e.

    1979-01-01

    The stimulated Raman backscattering of an intense electromagnetic wave propagating in the extraordinary mode along a uniform, static magnetic field is considered. The dispersion relation for a homogeneous magnetized plasma in the presence of the circularly polarized pump waves is developed in the cold-plasma approximation with the pump frequency above the plasma frequency. Formulas are derived for the threshold νsub(OT) of the parametric instability and for the growth rate γ of the backscattered extraordinary wave and Langmuir wave. The effects of the magnetic field parallel to the direction of propagation on νsub(0T) and γ are studied numerically. (author)

  3. Atomistic modeling of IR action spectra under circularly polarized electromagnetic fields: toward action VCD spectra.

    Science.gov (United States)

    Calvo, Florent

    2015-03-01

    The nonlinear response and dissociation propensity of an isolated chiral molecule, camphor, to a circularly polarized infrared laser pulse was simulated by molecular dynamics as a function of the excitation wavelength. The results indicate similarities with linear absorption spectra, but also differences that are ascribable to dynamical anharmonic effects. Comparing the responses between left- and right-circularly polarized pulses in terms of dissociation probabilities, or equivalently between R- and S-camphor to a similarly polarized pulse, we find significant differences for the fingerprint C = O amide mode, with a sensitivity that could be sufficient to possibly enable vibrational circular dichroism as an action technique for probing molecular chirality and absolute conformations in the gas phase. © 2015 Wiley Periodicals, Inc.

  4. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  5. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  6. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  7. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  8. Cygnus X-1: Discovery of variable circular polarization

    International Nuclear Information System (INIS)

    Michalsky, J.J.; Swedlund, J.B.; Stokes, R.A.

    1975-01-01

    HDE 226868, the optical counterpart of Cyg X-1, has been observed for circular polarization during 1974. Observations in five colors suggest that circular polarization results from an interstellar effect. Measurements of the blue polarization reveal circular polarization variations synchronous with the 5)./sub /6 orbital period. The circular polarization variation appears to be similar to the blue intensity variation

  9. Multiband Circular Polarizer Based on Fission Transmission of Linearly Polarized Wave for X-Band Applications

    Directory of Open Access Journals (Sweden)

    Farman Ali Mangi

    2016-01-01

    Full Text Available A multiband circular polarizer based on fission transmission of linearly polarized wave for x-band application is proposed, which is constructed of 2 × 2 metallic strips array. The linear-to-circular polarization conversion is obtained by decomposing the linearly incident x-polarized wave into two orthogonal vector components of equal amplitude and 90° phase difference between them. The innovative approach of “fission transmission of linear-to-circular polarized wave” is firstly introduced to obtain giant circular dichroism based on decomposition of orthogonal vector components through the structure. It means that the incident linearly polarized wave is converted into two orthogonal components through lower printed metallic strips layer and two transmitted waves impinge on the upper printed strips layer to convert into four orthogonal vector components at the end of structure. This projection and transmission sequence of orthogonal components sustain the chain transmission of electromagnetic wave and can achieve giant circular dichroism. Theoretical analysis and microwave experiments are presented to validate the performance of the structure. The measured results are in good agreement with simulation results. In addition, the proposed circular polarizer exhibits the optimal performance with respect to the normal incidence. The right handed circularly polarized wave is emitted ranging from 10.08 GHz to 10.53 GHz and 10.78 GHz to 11.12 GHz, while the left handed circular polarized wave is excited at 10.54 GHz–10.70 GHz and 11.13 GHz–11.14 GHz, respectively.

  10. Circularly polarized millimeter-wave imaging for personnel screening

    Science.gov (United States)

    Sheen, David M.; McMakin, Douglas L.; Lechelt, Wayne M.; Griffin, Jeffrey W.

    2005-05-01

    A novel polarimetric millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory (PNNL) for concealed weapon detection applications. Wideband millimeter-wave imaging systems developed at PNNL utilize low-power, coherent, millimeter-wave illumination in the 10-100 GHz range to form high-resolution images of personnel. Electromagnetic waves in these frequency ranges easily penetrate most clothing materials and are reflected from the body and any concealed items. Three-dimensional images are formed using computer image reconstruction algorithms developed to mathematically focus the received wavefronts scattered from the target. Circular polarimetric imaging can be employed to obtain additional information from the target. Circularly polarized waves incident on relatively smooth reflecting targets are typically reversed in their rotational handedness, e.g. left-hand circular polarization (LHCP) is reflected to become right-hand circular polarization (RHCP). An incident wave that is reflected twice (or any even number) of times prior to returning to the transceiver, has its handedness preserved. Sharp features such as wires and edges tend to return linear polarization, which can be considered to be a sum of both LHCP and RHCP. These characteristics can be exploited for personnel screening by allowing differentiation of smooth features, such as the body, and sharper features present in many concealed items. Additionally, imaging artifacts due to multipath can be identified and eliminated. Laboratory imaging results have been obtained in the 10-20 GHz frequency range and are presented in this paper.

  11. Circular Polarization in Turbulent Blazar Jets

    Directory of Open Access Journals (Sweden)

    Nicholas Roy MacDonald

    2017-11-01

    Full Text Available Circular polarization (CP provides an invaluable probe into the underlying plasma content of relativistic jets. CP can be generated within the jet through a physical process known as linear birefringence. This is a physical mechanism through which initially linearly polarized emission produced in one region of the jet is attenuated by Faraday rotation as it passes through other regions of the jet with distinct magnetic field orientations. Marscher developed the turbulent extreme multi-zone (TEMZ model of blazar emission which mimics these types of magnetic geometries with collections of thousands of plasma cells passing through a standing conical shock. I have recently developed a radiative transfer algorithm to generate synthetic images of the time-dependent circularly polarized intensity emanating from the TEMZ model at different radio frequencies. In this study, we produce synthetic multi-epoch observations that highlight the temporal variability in the circular polarization produced by the TEMZ model. We also explore the effect that different plasma compositions within the jet have on the resultant levels of CP.

  12. Generation of Gigawatt Circularly Polarized Attosecond-Pulse Pairs

    Science.gov (United States)

    Hu, K.; Wu, H.-C.

    2017-12-01

    A novel scheme for generating a pair of gigawatt attosecond pulses by coherent Thomson scattering from relativistic electron sheets is proposed. With a circularly polarized relativistic laser pulse, the scattered x-ray signal can have a saddlelike temporal profile, where the lower electromagnetic frequencies are found mostly in the center region of this saddlelike profile. By filtering out the latter, we can obtain two few-attosecond pulses separated by a subfemtosecond interval, which is tunable by controlling the energy of the sheet electrons. Such a pulse pair can be useful for an attosecond pump probe at an unprecedented time resolution and for ultrafast chiral studies in molecules and materials.

  13. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    Science.gov (United States)

    2017-08-08

    the band and for scan angles up to 60° from normal. The antenna efficiency and axial ratio degrade by 1 dB at some points near the edges of the band...Prescribed by ANSI Std. Z39-18 i Approved for public release; distribution is unlimited Table of Contents Section Page 1.0 Summary...51 6.4 Estimating Finite Polarizer Edge Effects

  14. Komar fluxes of circularly polarized light beams and cylindrical metrics

    Science.gov (United States)

    Lynden-Bell, D.; Bičák, J.

    2017-11-01

    The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.

  15. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials.

    Science.gov (United States)

    Kim, Teun-Teun; Oh, Sang Soon; Kim, Hyeon-Don; Park, Hyun Sung; Hess, Ortwin; Min, Bumki; Zhang, Shuang

    2017-09-01

    Active control of polarization states of electromagnetic waves is highly desirable because of its diverse applications in information processing, telecommunications, and spectroscopy. However, despite the recent advances using artificial materials, most active polarization control schemes require optical stimuli necessitating complex optical setups. We experimentally demonstrate an alternative-direct electrical tuning of the polarization state of terahertz waves. Combining a chiral metamaterial with a gated single-layer sheet of graphene, we show that transmission of a terahertz wave with one circular polarization can be electrically controlled without affecting that of the other circular polarization, leading to large-intensity modulation depths (>99%) with a low gate voltage. This effective control of polarization is made possible by the full accessibility of three coupling regimes, that is, underdamped, critically damped, and overdamped regimes by electrical control of the graphene properties.

  16. Dynamics of a charged particle in a circularly polarized travelling electromagnetic wave. Self-consistent model for the wave-particle dynamical interaction; Dynamique d'une particule chargee dans un champ electromagnetique polarise circulairement. Traitement auto-consistant de l'interaction entre plusieurs particules et l'onde

    Energy Technology Data Exchange (ETDEWEB)

    Bourdier, A

    1999-07-01

    This work concerns mainly the dynamics of a charged particle in an electromagnetic wave. It is a first step in elaborating a more general model permitting to predict the wave-particle interaction. We show how deriving a first integral gives an idea on how to create an electron current in a cold electron plasma. We present results which can be used to test the 2D and 3D Vlasov-Maxwell codes being built up in CEA-DAM. These codes will allow the calcination of the magnetic field created by an electromagnetic wave like the one due to the inverse Faraday effect when a circularly polarized wave drives the electrons of a plasma into circular orbits. (author)

  17. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  18. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  19. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  20. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  1. Spin polarization in quantum dots by radiation field with circular polarization

    CERN Document Server

    Bulgakov, E N

    2001-01-01

    For circular quantum dot (QD) with account of the Razhba spin-orbit interaction (SOI) an exact energy spectrum is obtained. For the small SOI constant the Eigen functions of the QD are found. It is shown that application of radiation field with circular polarization lifts the Kramers degeneracy of the Eigen states of the QD. Effective spin polarization of transmitted electrons through the QD by radiation field with circular polarization is demonstrated

  2. Negative circular polarization as a universal property of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Matthew W.; Spencer, Peter; Murray, Ray [The Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-03-23

    This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character.

  3. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator

    Science.gov (United States)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-01-01

    We demonstrate theoretically that a strong high-frequency circularly polarized electromagnetic field can turn a two-dimensional periodic array of interconnected quantum rings into a topological insulator. The elaborated approach is applicable to calculate and analyze the electron energy spectrum of the array, the energy spectrum of the edge states, and the corresponding electronic densities. As a result, the present theory paves the way to optical control of the topological phases in ring-based mesoscopic structures.

  4. Circular polarization measurements with a Ge(Li) detector

    DEFF Research Database (Denmark)

    Kopecký, J.; Warming, Inge Elisabeth

    1969-01-01

    This paper presents the results obtained in measurements of the degree of circular polarization of gamma transitions to bound states of 33S, 36Cl, 49Ti, 56Mn, 57Fe, 60Co and 64Cu following the capture of polarized thermal neutrons. Spin values have been determined on the basis of these results....

  5. Polymer photovoltaic cells sensitive to the circular polarization of light

    Energy Technology Data Exchange (ETDEWEB)

    Gilot, Jan; Abbel, Robert; Lakhwani, Girish; Meijer, E.W.; Schenning, Albertus P.H.J.; Meskers, Stefan C.J. [Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology (Netherlands)

    2010-05-25

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties of all layers inside the device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Simulation of erasure of photoinduced anisotropy by circularly polarized light

    DEFF Research Database (Denmark)

    Sajti, Sz.; Kerekes, Á.; Barabás, M.

    2001-01-01

    The temporal evolution of photoinduced birefringence is investigated on the basis of a model proposed by Pedersen and co-workers, This model is extended for the case of elliptically polarized light, and used to describe the erasure of photoinduced birefringence by circularly polarized light...

  7. A New Limit on CMB Circular Polarization from SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; List, J. F. Van Der; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $33<\\ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$ ranging from 141 $\\mu K ^2$ to 203 $\\mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.

  8. Circular polarization in a non-magnetic resonant tunneling device

    Directory of Open Access Journals (Sweden)

    Airey Robert

    2011-01-01

    Full Text Available Abstract We have investigated the polarization-resolved photoluminescence (PL in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW PL presents strong circular polarization (values up to -70% at 19 T. The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  9. MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2009-12-01

    Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.

  10. Slotted Circularly Polarized Microstrip Antenna for RFID Application

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2017-12-01

    Full Text Available A single layer coaxial fed rectangular microstrip slotted antenna for circular polarization (CP is proposed for radio frequency identification (RFID application. Two triangular shaped slots and one rectangular slot along the diagonal axis of a square patch have been embedded. Due to slotted structure along the diagonal axis and less surface area, good quality of circular polarization has been obtained with the reduction in the size of microstrip antenna by 4.04 %. Circular polarization radiation performance has been studied by size and angle variation of diagonally slotted structures. The experimental result found for 10-dB return loss is 44 MHz with 10MHz of 3dB Axial Ratio (AR bandwidth respectively at the resonant frequency 910 MHz. The overall proposed antenna size including the ground plane is 80 mm x 80 mm x 4.572 mm.

  11. Inkjet printed circularly polarized antennas for GPS applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    Two novel, inkjet printed circularly polarized antenna designs are presented for GPS applications. First antenna design comprises a planar monopole which has been made circularly polarized by the introduction of an L-shaped slit. The antenna shows a gain of 0.2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 3.8%. The second antenna design comprises a modified monopole in the form of an inverted L and has been termed as circularly polarized inverted L antenna (CILA). The antenna shows a gain of -2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 4.1%. Both the antenna designs are attractive for mobile applications.

  12. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    Science.gov (United States)

    Lee, Choon S.; Justice, D. W.; Lee, Shung-Wu

    1988-01-01

    It is shown that a circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. The device is cheaper and lighter in weight than the corrugated one.

  13. Acceleration of polarized protons in circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  14. Gold helix photonic metamaterial as broadband circular polarizer.

    Science.gov (United States)

    Gansel, Justyna K; Thiel, Michael; Rill, Michael S; Decker, Manuel; Bade, Klaus; Saile, Volker; von Freymann, Georg; Linden, Stefan; Wegener, Martin

    2009-09-18

    We investigated propagation of light through a uniaxial photonic metamaterial composed of three-dimensional gold helices arranged on a two-dimensional square lattice. These nanostructures are fabricated via an approach based on direct laser writing into a positive-tone photoresist followed by electrochemical deposition of gold. For propagation of light along the helix axis, the structure blocks the circular polarization with the same handedness as the helices, whereas it transmits the other, for a frequency range exceeding one octave. The structure is scalable to other frequency ranges and can be used as a compact broadband circular polarizer.

  15. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  16. Monolithic Superconducting Emitter of Tunable Circularly Polarized Terahertz Radiation

    Science.gov (United States)

    Elarabi, A.; Yoshioka, Y.; Tsujimoto, M.; Kakeya, I.

    2017-12-01

    We propose an approach to controlling the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in a single crystalline high-temperature superconductor Bi2Sr2CaCu2O8 . Monolithic control of the surface high-frequency current distributions in the truncated square mesa structure allows us to modulate the polarization of the emitted terahertz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.

  17. Circular polarization in the optical afterglow of GRB 121024A.

    Science.gov (United States)

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-08

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  18. Analysis of Circular Polarization of Cylindrically Bent Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available When circularly polarized (CP microstrip antennas are bent, the polarization becomes elliptical. We present a simple model that describes the phenomenon. The two linear modes present in a CP patch are modeled separately and added together to produce CP. Bending distorts the almost-spherical equiphase surface of a linearly polarized patch, which leads to phase imbalance in the far-field of a CP patch. The model predicts both the frequency shifting of the axial ratio band as well as the narrowing of the axial ratio beam. Uncontrolled bending is a problem associated especially with flexible textile antennas, and wearable antennas should therefore be designed somewhat conformal.

  19. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  20. Modeling radio circular polarization in the Crab nebula

    Science.gov (United States)

    Bucciantini, N.; Olmi, B.

    2018-03-01

    In this paper, we present, for the first time, simulated maps of the circularly polarized synchrotron emission from the Crab nebula, using multidimensional state of the art models for the magnetic field geometry. Synchrotron emission is the signature of non-thermal emitting particles, typical of many high-energy astrophysical sources, both Galactic and extragalactic ones. Its spectral and polarization properties allow us to infer key information on the particles distribution function and magnetic field geometry. In recent years, our understanding of pulsar wind nebulae has improved substantially thanks to a combination of observations and numerical models. A robust detection or non-detection of circular polarization will enable us to discriminate between an electron-proton plasma and a pair plasma, clarifying once for all the origin of the radio emitting particles, setting strong constraints on the pair production in pulsar magnetosphere, and the role of turbulence in the nebula. Previous attempts at measuring the circular polarization have only provided upper limits, but the lack of accurate estimates, based on reliable models, makes their interpretation ambiguous. We show here that those results are above the expected values, and that current polarimetric techniques are not robust enough for conclusive result, suggesting that improvements in construction and calibration of next generation radio facilities are necessary to achieve the desired sensitivity.

  1. Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2017-09-01

    Full Text Available We propose a polarization-dependent multi-functional metamaterial using ring-cross resonator. Based on the analysis of surface current distributions induced by different polarized incidence, we demonstrate that the proposed metamaterial serves as a polarization filter, a transparent wall and a circular polarizer under different polarization normal incidence. Additionally, parameter analyses on the control of resonance are discussed to complementally explain the physical origin. Simulated results show that the proposed metamaterial functions as a polarization filter eliminating the x-polarization wave at 10.1 GHz and y-polarization wave at 14.3 GHz, a transparent wall transmitting both x-polarized and y-polarized incident waves at 12.6 GHz, and a broadband circular polarizer converting the +45° polarized (-45° polarized incident wave to the left (right handed circularly polarized wave from 10.8 to 12.8 GHz, respectively. Measured results agree well with the simulation and validate the performance of the proposed multifunctional metamaterial.

  2. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  3. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  4. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  5. A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna

    Directory of Open Access Journals (Sweden)

    Biao Li

    2016-01-01

    Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.

  6. Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces

    Science.gov (United States)

    Gao, Xi; Yu, Xing-Yang; Cao, Wei-Ping; Jiang, Yan-Nan; Yu, Xin-Hua

    2016-12-01

    An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic (EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm (in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 dB. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61461016 and 61661012), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFAA118366, 2014GXNSFAA118283, and 2015jjBB7002), and the Innovation Project of Graduate Education of Guilin University of Electronic Technology, China (Grant No. 2016YJCX82).

  7. Passive polarization agile antenna based on the electromagnetically induced transparency-like effect

    International Nuclear Information System (INIS)

    Zhu, Lei; Meng, Fan-Yi; Wu, Qun; Chen, Wan; Fu, Jia-Hui; Dong, Liang

    2014-01-01

    We propose a design method for a passive polarization agile antenna based on the electromagnetically induced transparency-like (EIT-like) effect. Benefiting from strong dispersion properties governed by EIT-like effects, the proposed structure can endow electromagnetic waves transmitted through it with quite different polarization states at very close frequencies. The experimental measurement was conducted to demonstrate agile polarization controls by placing a designed EIT-like waveplate in front of a standard microwave horn antenna. Results show that the polarization state of radiated waves by the horn antenna with a waveplate can be easily transformed among linear, circular and elliptical polarizations through fine-tuning the operating frequency, which is extremely important for certain special applications, e.g. electronic countermeasures. Our scheme could also be utilized at higher operating frequencies by the simply scaling principle. (paper)

  8. Passive polarization agile antenna based on the electromagnetically induced transparency-like effect

    Science.gov (United States)

    Zhu, Lei; Meng, Fan-Yi; Wu, Qun; Dong, Liang; Chen, Wan; Fu, Jia-Hui

    2014-10-01

    We propose a design method for a passive polarization agile antenna based on the electromagnetically induced transparency-like (EIT-like) effect. Benefiting from strong dispersion properties governed by EIT-like effects, the proposed structure can endow electromagnetic waves transmitted through it with quite different polarization states at very close frequencies. The experimental measurement was conducted to demonstrate agile polarization controls by placing a designed EIT-like waveplate in front of a standard microwave horn antenna. Results show that the polarization state of radiated waves by the horn antenna with a waveplate can be easily transformed among linear, circular and elliptical polarizations through fine-tuning the operating frequency, which is extremely important for certain special applications, e.g. electronic countermeasures. Our scheme could also be utilized at higher operating frequencies by the simply scaling principle.

  9. Full-Stokes polarimetry with circularly polarized feeds. Sources with stable linear and circular polarization in the GHz regime

    Science.gov (United States)

    Myserlis, I.; Angelakis, E.; Kraus, A.; Liontas, C. A.; Marchili, N.; Aller, M. F.; Aller, H. D.; Karamanavis, V.; Fuhrmann, L.; Krichbaum, T. P.; Zensus, J. A.

    2018-01-01

    We present an analysis pipeline that enables the recovery of reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the effective treatment of the instrumental effects even before the computation of the Stokes parameters, contrary to conventionally used methods such as that based on the Müller matrix. For instance, instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted by instrumental effects. The accuracy we reach in terms of polarization degree is of the order of 0.1-0.2%. The polarization angles are determined with an accuracy of almost 1°. The presented methodology was applied to recover the linear and circular polarization of around 150 active galactic nuclei, which were monitored between July 2010 and April 2016 with the Effelsberg 100-m telescope at 4.85 GHz and 8.35 GHz with a median cadence of 1.2 months. The polarized emission of the Moon was used to calibrate the polarization angle measurements. Our analysis showed a small system-induced rotation of about 1° at both observing frequencies. Over the examined period, five sources have significant and stable linear polarization; three sources remain constantly linearly unpolarized; and a total of 11 sources have stable circular polarization degree mc, four of them with non-zero mc. We also identify eight sources that maintain a stable polarization angle. All this is provided to the community for future polarization observations reference. We finally show that our analysis method is conceptually different from those traditionally used and performs better than the Müller matrix method. Although it has been developed for a system equipped with circularly polarized feeds, it can easily be generalized to systems with linearly polarized feeds as well. The data used to create Fig. C.1 are only available at the CDS via anonymous ftp to http

  10. Anisotropy-Guided Enantiomeric Enhancement in Alanine Using Far-UV Circularly Polarized Light.

    Science.gov (United States)

    Meinert, Cornelia; Cassam-Chenaï, Patrick; Jones, Nykola C; Nahon, Laurent; Hoffmann, Søren V; Meierhenrich, Uwe J

    2015-06-01

    All life on Earth is characterized by its asymmetry - both the genetic material and proteins are composed of homochiral monomers. Understanding how this molecular asymmetry initially arose is a key question related to the origins of life. Cometary ice simulations, L-enantiomeric enriched amino acids in meteorites and the detection of circularly polarized electromagnetic radiation in star-forming regions point to a possible interstellar/protostellar generation of stereochemical asymmetry. Based upon our recently recorded anisotropy spectra g(λ) of amino acids in the vacuum-UV range, we subjected amorphous films of racemic (13)C-alanine to far-UV circularly polarized synchrotron radiation to probe the asymmetric photon-molecule interaction under interstellar conditions. Optical purities of up to 4% were reached, which correlate with our theoretical predictions. Importantly, we show that chiral symmetry breaking using circularly polarized light is dependent on both the helicity and the wavelength of incident light. In order to predict such stereocontrol, time-dependent density functional theory was used to calculate anisotropy spectra. The calculated anisotropy spectra show good agreement with the experimental ones. The European Space Agency's Rosetta mission, which successfully landed Philae on comet 67P/Churyumov-Gerasimenko on 12 November 2014, will investigate the configuration of chiral compounds and thereby obtain data that are to be interpreted in the context of the results presented here.

  11. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    DEFF Research Database (Denmark)

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...... on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n - p* and n ’ p* transitions, respectively, in several chiral enones...

  12. Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa.

    Science.gov (United States)

    Brady, Parrish; Cummings, Molly

    2010-05-01

    Circularly polarized light is rare in the terrestrial environment, and cuticular reflections from scarab beetles are one of the few natural sources. Chrysina gloriosa LeConte 1854, a scarab beetle found in montane juniper forests of the extreme southwestern United States and northern Mexico, are camouflaged in juniper foliage; however, when viewed with right circularly polarizing filters, the beetles exhibit a stark black contrast. Given the polarization-specific changes in the appearance of C. gloriosa, we hypothesized that C. gloriosa can detect circularly polarized light. We tested for phototactic response and differential flight orientation of C. gloriosa toward different light stimuli. Chrysina gloriosa exhibited (a) positive phototaxis, (b) differential flight orientation between linear and circularly polarized light stimuli of equal intensities, and (c) discrimination between circularly polarized and unpolarized lights of different intensities consistent with a model of circular polarization sensitivity based on a quarter-wave plate. These results demonstrate that C. gloriosa beetles respond differentially to circularly polarized light. In contrast, Chrysina woodi Horn 1885, a close relative with reduced circularly polarized reflection, exhibited no phototactic discrimination between linear and circularly polarized light. Circularly polarized sensitivity may allow C. gloriosa to perceive and communicate with conspecifics that remain cryptic to predators, reducing indirect costs of communication.

  13. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  14. A Minkowski Fractal Circularly Polarized Antenna for RFID Reader

    Directory of Open Access Journals (Sweden)

    Yanzhong Yu

    2014-11-01

    Full Text Available A design of fractal-like antenna with circular polarization for radio frequency identification (RFID reader applications is presented in this article. The modified Minkowski fractal structure is adopted as radiating patch for size reduction and broadband operation. A corner-truncated technology and a slot-opened method are employed to realize circular polarization and improve the gain of the proposed antenna, respectively. The proposed antenna is analyzed and optimized by HFSS. Return loss and maximum gain of the optimized antenna achieve to -22.2 dB and 1.12 dB at 920 MHz, respectively. The optimized design has an axial ratio (AR of 1.2 dB at central frequency of 920 MHz and impedance bandwidth (S11<=-10 dB of 40 MHz (4.3 %. Its input impedance is (57.9-j2.6 W that is close to input impedance of coaxial line (50 W. Numerical results demonstrate that the optimized antenna exhibits acceptable performances and may satisfy requirements of RFID reader applications.

  15. Multi-band circular polarizer based on a twisted triple split-ring resonator

    International Nuclear Information System (INIS)

    Wu Song; Huang Xiao-Jun; Yang He-Lin; Xiao Bo-Xun; Jin Yan

    2014-01-01

    A multi-band circular polarizer using a twisted triple split-ring resonator (TSRR) is presented and studied numerically and experimentally. At four distinct resonant frequencies, the incident linearly polarized wave can be transformed into left/right-handed circularly polarized waves. Numerical simulation results show that a y-polarized wave can be converted into a right-handed circularly polarized wave at 5.738 GHz and 9.218 GHz, while a left-handed circularly polarized wave is produced at 7.292 GHz and 10.118 GHz. The experimental results are in agreement with the numerical results. The surface current distributions are investigated to illustrate the polarization transformation mechanism. Furthermore, the influences of the structure parameters of the circular polarizer on transmission spectra are discussed as well. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure.

    Science.gov (United States)

    McDonald, Luke T; Finlayson, Ewan D; Wilts, Bodo D; Vukusic, Pete

    2017-08-06

    Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.

  17. Improvement of RF Wireless Power Transmission Using a Circularly Polarized Retrodirective Antenna Array with EBG Structures

    Directory of Open Access Journals (Sweden)

    Son Trinh-Van

    2018-02-01

    Full Text Available This paper presents the performance improvement of a circularly polarized (CP retrodirective array (RDA through the suppression of mutual coupling effects. The RDA is designed based on CP Koch-shaped patch antenna elements with an inter-element spacing as small as 0.4 λ for a compact size ( λ is the wavelength in free space at the designed frequency of 5.2 GHz. Electromagnetic band gap (EBG structures are applied to reduce the mutual coupling between the antenna elements, thus improving the circular polarization characteristic of the RDA. Two CP RDAs with EBGs, in the case 5 × 5 and 10 × 10 arrays, are used as wireless power transmitters to transmit a total power of 50 W. A receiver is located at a distance of 1 m away from the transmitter to harvest the transmitted power. At the broadside direction, the simulated results demonstrate that the received powers are improved by approximately 11.32% and 12.45% when using the 5 × 5 and 10 × 10 CP RDAs with the EBGs, respectively, as the transmitters.

  18. Annular billiard dynamics in a circularly polarized strong laser field

    Science.gov (United States)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  19. Vertical-Strip-Fed Broadband Circularly Polarized Dielectric Resonator Antenna.

    Science.gov (United States)

    Altaf, Amir; Jung, Jin-Woo; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2017-08-18

    A vertical-strip-fed dielectric resonator antenna exhibiting broadband circular polarization characteristics is presented. A broad 3 dB axial ratio bandwidth (ARBW) is achieved by combining multiple orthogonal modes due to the use of a special-shaped dielectric resonator. The proposed antenna is fabricated to evaluate its actual performance capabilities. The antenna exhibits a measured 3 dB ARBW of 44.2% (3.35-5.25 GHz), lying within a -10 dB reflection bandwidth of 82.7% (2.44-5.88 GHz). The measured peak gain within 3 dB ARBW is found to be 5.66 dBic at 4.8 GHz. The measured results are in good agreement with the simulated results.

  20. A survey of synchrotron radiation devices producing circular or variable polarization

    International Nuclear Information System (INIS)

    Kim, K.J.

    1990-01-01

    This paper reviews the properties and operating principles of the new types of synchrotron radiation devices that produce circular polarization, or polarization that can be modulated in arbitrary fashion

  1. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  2. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  3. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    International Nuclear Information System (INIS)

    Pérez, A. M.; Boria, V. E.; Gimeno, B.; Anza, S.; Vicente, C.; Gil, J.

    2014-01-01

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE 11 circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored

  4. Analysis of the multipactor effect in circular waveguides excited by two orthogonal polarization waves

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, A. M.; Boria, V. E. [Departamento de Comunicaciones-iTEAM, Universidad Politécnica de Valencia Camino de Vera s/n, 46022 Valencia (Spain); Gimeno, B. [Departamento de Física Aplicada y Electromagnetismo-ICMUV, Universitat de València c/Dr. Moliner, 50, 46100 Valencia (Spain); Anza, S.; Vicente, C.; Gil, J. [Aurora Software and Testing S.L., Edificio de Desarrollo Empresarial 9B, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2014-08-15

    Circular waveguides, either employed as resonant cavities or as irises connecting adjacent guides, are widely present in many passive components used in different applications (i.e., particle accelerators and satellite subsystems). In this paper, we present the study of the multipactor effect in circular waveguides considering the coexistence of the two polarizations of the fundamental TE{sub 11} circular waveguide mode. For a better understanding of the problem, only low multipactor orders have been explored as a function of the polarization ellipse eccentricity. Special attention has been paid to the linear and circular polarizations, but other more general configurations have also been explored.

  5. A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2015-01-01

    Full Text Available A new kind of circular polarization leaky-wave antenna with N-shaped slots cut in the upper side of substrate integrated waveguide (SIW is investigated and presented. The radiation pattern and polarization axial ratio of the leaky-wave antenna are studied. The results show that the width of N-shaped slots has significant effect on the circular polarization property of the antenna. By properly choosing structural parameters, the SIW based leaky-wave antenna can realize circular polarization with excellent axial ratio in 8 GHz satellite band.

  6. Dual circularly polarized broadside beam antenna based on metasurfaces

    Science.gov (United States)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  7. New material equations for electromagnetism with toroid polarizations

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Martsenyuk, M.A.; Saha, B.

    1999-09-01

    With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written. (author)

  8. Last scattering, relic gravitons and the circular polarization of the CMB

    CERN Document Server

    Giovannini, Massimo

    2010-01-01

    The tensor contribution to the $V$-mode polarization induced by a magnetized plasma at last scattering vanishes exactly. Conversely a polarized background of relic gravitons cannot generate a $V$-mode polarization. The reported results suggest that, in the magnetized $\\Lambda$CDM paradigm, the dominant source of circular dichroism stems from the large-scale fluctuations of the spatial curvature.

  9. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    Science.gov (United States)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  10. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    International Nuclear Information System (INIS)

    Boll, D I R; Fojón, O A

    2017-01-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets. (paper)

  11. Weak-electromagnetic interference in polarized eD scattering

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1992-09-01

    Observation of parity non-conservation in deep-inelastic scattering of polarized electrons from deuterium was reported in an experiment at SLAC in 1978. The events at SLAC and elsewhere leading to the successful search for parity non-conservation in the electromagnetic processes are described

  12. Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization

    Science.gov (United States)

    Greem. David; DuToit, Cornelis

    2013-01-01

    The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.

  13. Linearly and circularly polarized laser photoinduced molecular order in azo dye doped polymer films

    Directory of Open Access Journals (Sweden)

    Saad Bendaoud

    2017-01-01

    Full Text Available Photo-induced behavior of Azo Disperse one (AZD1 doped Poly(Methyl MethAcrylate (PMMA using both linear and circular polarized light is studied. The anisotropy is not erased by the circular polarization light. The circular polarization light combined with relatively long lifetime of the cis state in azo dye doped polymers activate all transverse directions of the angular hole burning through the spot in the film inducing anisotropy. Under circular polarized light, there is no orientation perpendicularly to the helex described by the rotating electric field vector, trans molecules reorients in the propagation direction of the pump beam. The polarization state of the probe beam after propagation through the pumped spot depends strongly on the angle of incidence of both pump and probe beams on the input face. In the case where circular polarized pump and probe beams are under the same angle of incidence, the probe beam “sees” anisotropic film as if it is isotropic. Results of this work shows the possibility to reorient azobenzene-type molecules in two orthogonal directions using alternately linearly and circularly polarized beams.

  14. Cometary dust dynamics and polarization in electromagnetic radiation fields

    Science.gov (United States)

    Herranen, J.; Markkanen, J.; Muinonen, K.

    2017-09-01

    In our work, we apply a fast solution of electromagnetic scattering to determine the induced spin and movement of a dust particle in a cometary coma. The resulted aligned spinning state is then used to determine the observable polarization of the dust, and compared against the randomly averaged polarization of the same particle. We find that measurable effects arise due to the alignment. In the future, similar methods can be used to model the dynamics and in turn the polarization of the whole coma.

  15. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  16. What makes single-helical metamaterials generate "pure" circularly polarized light?

    Science.gov (United States)

    Wu, Lin; Yang, ZhenYu; Zhao, Ming; Zhang, Peng; Lu, ZeQing; Yu, Yang; Li, ShengXi; Yuan, XiuHua

    2012-01-16

    Circular polarizers with left-handed helical metamaterials can transmit right-handed circularly polarized (RCP) light with few losses. But a certain amount of left-handed circularly polarized (LCP) light will occur in the transmitted light, which is the noise of the circular polarizer. Therefore, we defined the ratio of the RCP light intensity to the LCP light intensity as the signal-to-noise (S/N) ratio. In our previous work, it's found that circular polarizers with multi-helical metamaterials have two orders higher S/N ratios than that of single-helical metamaterials. However, it has been a great challenge to fabricate such multi-helical structures with micron or sub-micron feature sizes. Is it possible for the single-helical metamaterials to obtain equally high S/N ratios as the multi-helical ones? To answer this question, we systematically investigated the influences of structure parameters of single-helical metamaterials on the S/N ratios using the finite-different time-domain (FDTD) method. It was found that the single-helical metamaterials can also reach about 30dB S/N ratios, which are equal to the multi-helical ones. Furthermore, we explained the phenomenon by the antenna theory and optimized the performances of the single-helical circular polarizers.

  17. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  18. Forced Response of Polar Orthotropic Tapered Circular Plates Resting on Elastic Foundation

    Directory of Open Access Journals (Sweden)

    A. H. Ansari

    2016-01-01

    Full Text Available Forced axisymmetric response of polar orthotropic circular plates of linearly varying thickness resting on Winkler type of elastic foundation has been studied on the basis of classical plate theory. An approximate solution of problem has been obtained by Rayleigh Ritz method, which employs functions based upon the static deflection of polar orthotropic circular plates. The effect of transverse loadings has been studied for orthotropic circular plate resting on elastic foundation. The transverse deflections and bending moments are presented for various values of taper parameter, rigidity ratio, foundation parameter, and flexibility parameter under different types of loadings. A comparison of results with those available in literature shows an excellent agreement.

  19. Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: a decoupled case.

    Science.gov (United States)

    Xu, Jing; Wu, Bingbing; Chen, Yuntian

    2015-05-04

    Mode properties of circularly symmetric waveguides with one special type of bianisotropy are studied using finite element approach. We find that the polarization degeneracy in circularly symmetric waveguides can be eliminated, by introducing intrinsic crossing coupling between electric and magnetic moments in the constituent units of the waveguide media. Breaking the polarization degeneracy in high order mode groups is also confirmed numerically. With the bianisotropic parameters chosen in this work, the x and y-polarized modes remain decoupled. Typically, the y-polarized modes remain completely unchanged, while the x-polarized modes are turned into leaky modes that are lossy along propagation direction. A perturbation model from coupled mode theory is developed to explain the results and shows excellent agreement. Such asymmetric behavior between different polarizations might be feasible and useful for developing compact polarizers in terahertz or mid-infrared regime.

  20. Electromagnetic near-field coupling induced polarization conversion and asymmetric transmission in plasmonic metasurfaces

    Science.gov (United States)

    Peng, Yu-Xiang; Wang, Kai-Jun; He, Meng-Dong; Luo, Jian-Hua; Zhang, Xin-Min; Li, Jian-Bo; Tan, Shi-Hua; Liu, Jian-Qiang; Hu, Wei-Da; Chen, Xiaoshuang

    2018-04-01

    In this paper, we demonstrate the effect of polarization conversion in a plasmonic metasurface structure, in which each unit cell consists of a metal bar and four metal split-ring resonators (SRRs). Such effect is attributed to the fact that the dark plasmon mode of SRRs (bar), which radiates cross-polarized component, is induced by the bright plasmon mode of bar (SRRs) due to the electromagnetic near-field coupling between bar and SRRs. We find that there are two ways to achieve a large cross-polarized component in our proposed metasurface structure. The first way is realized when the dark plasmon mode of bar (SRRs) is in resonance, while at this time the bright plasmon mode of SRRs (bar) is not at resonant state. The second way is realized when the bright plasmon mode of SRRs (bar) is resonantly excited, while the dark plasmon mode of bar (SRRs) is at nonresonant state. It is also found that the linearly polarized light can be rotated by 56.50 after propagation through the metasurface structure. Furthermore, our proposed metasurface structure exhibits an asymmetric transmission for circularly polarized light. Our findings take a further step in developing integrated metasurface-based photonics devices for polarization manipulation and modulation.

  1. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder-Loaded Circular Waveguide Open End Fed by Crossed Dipoles

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Bang

    2016-01-01

    Full Text Available This paper presents a new dual circularly polarized feed that provides good axial ratio over wide angles and low cross-polarized radiation in backward direction. A circular waveguide open end is fed with two orthogonally polarized waves in phase quadrature by a pair of printed crossed dipoles and a compact connectorized quadrature hybrid coupler. The waveguide aperture is loaded with a dielectric cylinder to reduce the cross-polarization beyond 90 degrees off the boresight. The fabricated feed has, at 5.5 GHz, 6.33-dBic copolarized gain, 3-dB beamwidth of 106°, 10-dB beamwidth of 195°, 3-dB axial ratio beamwidth of 215°, maximum cross-polarized gain of −21.4 dBic, and 27-dB port isolation. The reflection coefficient of the feed is less than −10 dB at 4.99–6.09 GHz.

  2. Circular polarization of radio emission from air showers in thunderstorm conditions

    NARCIS (Netherlands)

    Trinh, T. N. G.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Thoudam, S.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; ter Veen, S.; Winchen, T.

    2017-01-01

    We present measured radio emission from cosmic-ray-induced air showers under thunderstorm conditions. We observe for these events large differences in intensity, linear polarization and circular polarization from the events measured under fair-weather conditions. This can be explained by the effects

  3. Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry.

    Science.gov (United States)

    Patty, C H Lucas; Luo, David A; Snik, Frans; Ariese, Freek; Buma, Wybren Jan; Ten Kate, Inge Loes; van Spanning, Rob J M; Sparks, William B; Germer, Thomas A; Garab, Győző; Kudenov, Michael W

    2018-03-09

    Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Aixin Chen

    2012-01-01

    Full Text Available Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.

  5. Analysis of the Influence of a Uniform Hydrometeorological Formation on the Polarization Characteristics of an Electromagnetic Wave

    Science.gov (United States)

    Masalov, E. V.; Krivin, N. N.; Eshchenko, S. Yu.

    2018-01-01

    The influence of a homogeneous medium filled with water droplets on the polarization structure of electromagnetic waves propagating in it, emitted in series with horizontal and circular (e.g., right-handed) polarization, is considered. An approach is proposed for estimating the influence of the resulting transformation of the polarization structure on the magnitude of the modified radar reflectivity, based on the use of the functional dependence of the components of the Jones vector on the angle of ellipticity and the tilt angle of the polarization ellipse. A distinguishing feature of the proposed approach consists in the relationships calculated using it for determining the modified radar reflectivity, obtained for the case of backscattering by the medium, where the orientation of the polarization basis of the medium is different from that of the measurement basis. Estimates of the modified radar reflectivity have been obtained, allowing one to determine regions with elevated values of this parameter.

  6. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, J.A.; Tong, W.G. [San Diego State Univ., CA (United States). Dept. of Chemistry; Chandler, D.W.; Rahn, L.A. [Sandia National Lab., Livermore, CA (United States). Combustion Research Facility

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  7. Electromagnetic cloaking devices for TE and TM polarizations

    International Nuclear Information System (INIS)

    Bilotti, Filiberto; Tricarico, Simone; Vegni, Lucio

    2008-01-01

    In this paper, we present the design of an electromagnetic cloaking device working for both transverse electric (TE) and transverse magnetic (TM) polarizations. The theoretical approach to cloaking used here is inspired by the one presented by Alu and Engheta (2005 Phys. Rev. E 72 016623) for TM polarization. The case of TE polarization is firstly considered and, then, an actual inclusion-based cloak for TE polarization is also designed. In such a case, the cloak is made of a mu-near-zero (MNZ) metamaterial, as the dual counterpart of the epsilon-near-zero (ENZ) material that can be used for purely dielectric objects. The operation and the robustness of the cloaking device for the TE polarization is deeply investigated through a complete set of full-wave numerical simulations. Finally, the design and an application of a cloak operating for both TE and TM polarizations employing both magnetic inclusions and the parallel plate medium already used by Silveirinha et al (Phys. Rev. E 75 036603) are presented.

  8. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  9. Amplification of Circularly Polarized Luminescence through Triplet-Triplet Annihilation-Based Photon Upconversion.

    Science.gov (United States)

    Han, Jianlei; Duan, Pengfei; Li, Xianggao; Liu, Minghua

    2017-07-26

    Amplification of circularly polarized luminescence (CPL) is demonstrated in a triplet-triplet annihilation-based photon upconversion (TTA-UC) system. When chiral binaphthyldiamine acceptors are sensitized with an achiral Pt(II) octaethylporphine (PtOEP) in solution, upconverted circularly polarized luminescence (UC-CPL) were observed for the first time, in which the positive or negative circularly polarized emission could be obtained respectively, following the molecular chirality of the acceptors (R/S). More interestingly, one order of magnitude amplification of the dissymmetry factor g lum in UC-CPL was obtained in comparison with the normal promoted CPL. The multistep photophysical process of TTA-UC including triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA) have been suggested to enhance the UC-CPL, which provided a new strategy to design CPL materials with a higher dissymmetry factor.

  10. Polarization-independent electromagnetically induced transparency-like metasurface

    Science.gov (United States)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    A classical electromagnetically induced transparency-like (EIT-like) metasurface is numerically simulated. This metasurface is composed of two identical and orthogonal double-end semitoroidals (DESTs) metal resonators. Under the excitation of the normal incidence waves, each of the two DESTs structure exhibits electromagnetic dipole responses at different frequencies, which leads to the polarization-independent EIT-like effect. The features of the EIT-like effect are qualitatively analyzed based on the surface current and magnetic field distribution. In addition, the large index is extracted to verify the slow-light property within the transmission window. The EIT-like metasurface structure with the above-mentioned characteristics may have potential applications in some areas, such as sensing, slow light, and filtering devices.

  11. Tripling the capacity of wireless communications using electromagnetic polarization.

    Science.gov (United States)

    Andrews, M R; Mitra, P P; deCarvalho, R

    2001-01-18

    Wireless communications are a fundamental part of modern information infrastructure. But wireless bandwidth is costly, prompting a close examination of the data channels available using electromagnetic waves. Classically, radio communications have relied on one channel per frequency, although it is well understood that the two polarization states of planar waves allow two distinct information channels; techniques such as 'polarization diversity' already take advantage of this. Recent work has shown that environments with scattering, such as urban areas or indoors, also possess independent spatial channels that can be used to enhance capacity greatly. In either case, the relevant signal processing techniques come under the heading of 'multiple-input/multiple-output' communications, because multiple antennae are required to access the polarization or spatial channels. Here we show that, in a scattering environment, an extra factor of three in channel capacity can be obtained, relative to the conventional limit using dual-polarized radio signals. The extra capacity arises because there are six distinguishable electric and magnetic states of polarization at a given point, rather than two as is usually assumed.

  12. Circular polarization in the optical afterglow of GRB 121024A

    DEFF Research Database (Denmark)

    Wiersema, K.; Covino, S.; Toma, K.

    2014-01-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of th...

  13. Parametric study of uniformly polarized stochastic electromagnetic beam and its imaging

    International Nuclear Information System (INIS)

    Du Xinyue; Zhao Daomu

    2009-01-01

    A parametric study is performed in investigating the stochastic electromagnetic beam generated by a uniformly polarized electromagnetic Gaussian Schell-model source and passing through ABCD optical systems. Through theoretical analysis, the requirement is derived that the uniformly polarized electromagnetic field can be obtained at the output plane of the imaging optical system. Furthermore, the general imaging formula of the stochastic electromagnetic beam is derived. Numerical examples are also presented to illustrate the application.

  14. Induced polarization and electromagnetic field surveys of sedimentary uranium deposits

    International Nuclear Information System (INIS)

    Campbell, D.L.; Smith, B.D.

    1985-01-01

    Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)

  15. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    Science.gov (United States)

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  16. Applications of circularly polarized photons at the ALS with a bend magnet source

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High {Tc} Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements.

  17. Photoemission of Bi_{2}Se_{3} with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Directory of Open Access Journals (Sweden)

    J. Sánchez-Barriga

    2014-03-01

    Full Text Available Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50–70 eV with linear or circular polarization indeed probe the initial-state spin texture of Bi_{2}Se_{3} while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

  18. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Kagoshima, Y.; Muto, S.; Miyahara, T.; Koide, T.; Yamamoto, S.; Kitamura, H.

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW number-sign 28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ∼10 10 photons/s has been achieved with energy resolution of around 500--1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented

  19. Circular polarization with crossed-planar undulators in high-gain FELs

    CERN Document Server

    Kim, K J K J

    2000-01-01

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  20. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Hurtado, A. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Institute of Photonics, Physics Department, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, Scotland (United Kingdom); Korpijarvi, V.-M.; Guina, M. [Optoelectronics Research Centre (ORC), Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland)

    2015-01-12

    We report the experimental observation of circular polarization switching (PS) and polarization bistability (PB) in a 1300 nm dilute nitride spin-vertical cavity surface emitting laser (VCSEL). We demonstrate that the circularly polarized optical signal at 1300 nm can gradually or abruptly switch the polarization ellipticity of the spin-VCSEL from right-to-left circular polarization and vice versa. Moreover, different forms of PS and PB between right- and left-circular polarizations are observed by controlling the injection strength and the initial wavelength detuning. These results obtained at the telecom wavelength of 1300 nm open the door for novel uses of spin-VCSELs in polarization sensitive applications in future optical systems.

  1. High-order-harmonic generation in benzene with linearly and circularly polarized laser pulses

    Science.gov (United States)

    Wardlow, Abigail; Dundas, Daniel

    2016-02-01

    High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density-functional theory while the ions move classically. The interaction with both linearly and circularly polarized infrared (λ =800 nm) laser pulses of duration of ten cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarized pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included, while our results for linearly polarized pulses are compared with both previous calculations and experiment. We find that even for the short-duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarized pulses are used, the response to circularly polarized pulses is almost comparable, in agreement with previous experimental results.

  2. Circular Polarization of Light By Planet Mercury and Enantiomorphism of Its Surface Minerals

    Science.gov (United States)

    Meierhenrich, U. J.; Thiemann, W. H.-P.; Barbier, B.; Brack, A.; Nahon, L.; Alcaraz, C.; Wolstencroft, R.

    Different mechanisms for the generation of circular polarization on the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For Bepi- Colombo, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter,[1,2] ca- pable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE. [1] C. Alcaraz, R. Thissen, M. Compin, A. Jolly, M. Drescher, L. Nahon: First po- larization measurements of Ophelie: a versatile polarization VUV undulator at Super- Aco. SPIE 3773 (1999), 250-261. [2] C. Alcaraz, J.L. Marlats, D. Nether, B. Pilette, L. Nahon: A dedicated precise polarimeter for measurement of VUV versatile photon polarizations, Applied Optics, manuscript under preparation.

  3. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    Science.gov (United States)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  4. Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

    Science.gov (United States)

    Janda, T.; Roy, P. E.; Otxoa, R. M.; Šobáň, Z.; Ramsay, A.; Irvine, A. C.; Trojanek, F.; Surýnek, M.; Campion, R. P.; Gallagher, B. L.; Němec, P.; Jungwirth, T.; Wunderlich, J.

    2017-05-01

    Domain wall motion driven by ultra-short laser pulses is a pre-requisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conversion of the circular polarization of incident femtosecond laser pulses into inertial displacement of a domain wall in a ferromagnetic semiconductor. In our study, we combine electrical measurements and magneto-optical imaging of the domain wall displacement with micromagnetic simulations. The optical spin-transfer torque acts over a picosecond recombination time of the spin-polarized photo-carriers that only leads to a deformation of the initial domain wall structure. We show that subsequent depinning and micrometre-distance displacement without an applied magnetic field or any other external stimuli can only occur due to the inertia of the domain wall.

  5. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  6. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    Science.gov (United States)

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  7. Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: An angular spectrum approach

    Science.gov (United States)

    Picardi, Michela F.; Manjavacas, Alejandro; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2017-06-01

    Unidirectional evanescent-wave coupling from circularly polarized dipole sources is one of the most striking types of evidence of spin-orbit interactions of light and an inherent property of circularly polarized dipoles. Polarization handedness self-determines propagation direction of guided modes. In this paper, we compare two different approaches currently used to describe this phenomenon: the first requires the evaluation of the coupling amplitude between dipole and waveguide modes, while the second is based on the calculation of the angular spectrum of the dipole. We present an analytical expression of the angular spectrum of dipole radiation, unifying the description for both electric and magnetic dipoles. The symmetries unraveled by the implemented formalism show the existence of specific terms in the dipole spectrum which can be recognized as being directly responsible for directional evanescent-wave coupling. This provides a versatile tool for both a comprehensive understanding of the phenomenon and a fully controllable engineering of directionality of guided modes.

  8. Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma

    International Nuclear Information System (INIS)

    Sepehri Javan, N.

    2013-01-01

    The present study is aimed to investigate the problem of modulation instability of an intense laser beam in the hot magnetized plasma. The propagation of intense circularly polarized laser beam along the external magnetic field is considered using a relativistic fluid model. The nonlinear equation describing the interaction of laser pulse with magnetized hot plasma is derived in the quasi-neutral approximation, which is valid for hot plasma. Nonlinear dispersion equation for hot plasma is obtained. For left- and right-hand polarizations, the growth rate of instability is achieved and the effect of temperature, external magnetic field, and kind of polarization on the growth rate is considered. It is observed that for the right-hand polarization, increase of magnetic field leads to the increasing of growth rate. Also for the left-hand polarization, increase of magnetic field inversely causes decrease of the growth rate.

  9. Circularly polarized light interaction in topological insulators investigated by time-resolved ARPES

    Science.gov (United States)

    Bugini, D.; Hedayat, H.; Boschini, F.; Yi, H.; Chen, C.; Zhou, X.; Manzoni, C.; Dallera, C.; Cerullo, G.; Carpene, E.

    2017-10-01

    Topological Insulators (TI) represent a hot-topic for both basic physics and promising applications because of the in-plane spin-polarized surface states (TSS) arising within the bulk insulating energy gap. The backscattering protection and the control of the spin polarization using ultrashort light pulses open new scenarios in the use of this class of materials for future opto-spintronic devices. Using time- and angle-resolved photoemission spectroscopy on Sb x Bi(2‑x )Se y Te(3‑y ) class we studied the response of spin-polarized electrons to ultrashort circularly-polarized pulses. Here, we report for the first time the experimental evidence of a direct coupling between light and empty topological surface states (ESS) and the establishment of a flow of spin-polarized electrons in k-space i.e. a photon-induced spin-current.

  10. Scanning differential polarization microscope: Its use to image linear and circular differential scattering

    International Nuclear Information System (INIS)

    Mickols, W.; Maestre, M.F.

    1988-01-01

    A differential polarization microscope that couples the sensitivity of single-beam measurement of circular dichroism and circular differential scattering with the simultaneous measurement of linear dichroism and linear differential scattering has been developed. The microscope uses a scanning microscope stage and single-point illumination to give the very shallow depth of field found in confocal microscopy. This microscope can operate in the confocal mode as well as in the near confocal condition that can allow one to program the coherence and spatial resolution of the microscope. This microscope has been used to study the change in the structure of chromatin during the development of sperm in Drosophila

  11. NEAR-INFRARED IMAGING POLARIMETRY OF GGD 27: CIRCULAR POLARIZATION AND MAGNETIC FIELD STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jungmi; Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hough, James H. [University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Nagata, Tetsuya [Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Saito, Hiro, E-mail: jungmi.kwon@astron.s.u-tokyo.ac.jp [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan)

    2016-06-20

    Near-infrared imaging polarimetry in the J , H , and K{sub s} bands was carried out for GGD 27 in the dark cloud Lynds 291. Details of an infrared reflection nebula associated with the optical nebulosity GGD 27 and the infrared nebula GGD 27 IRS are presented. Aperture photometry of 1263 point-like sources, detected in all three bands, was used to classify them based on a color–color diagram, and the linear polarization of several hundred sources was determined, with the latter used to map the magnetic field structure around GGD 27. This field, around GGD 27 IRS, appears to be associated with the extended CO outflow of IRAS 18162–2048; however, there are partly distorted or bent components in the field. The Chandrasekhar–Fermi method gives an estimate of the magnetic field strength as ∼90 μ G. A region associated with GGD 27 IRS is discovered to have a circular polarization in the range of ∼2%–11% in the K{sub s} band. The circular polarization has an asymmetric positive/negative pattern and extends out to ∼ 120″ or 1.0 pc. The circular and linear polarization patterns are explained as resulting from a combination of dense inner and fainter outer lobes, suggesting episodic outflow.

  12. Nonlinear optical responses to circularly polarized lights of the surface state of a topological insulator

    Science.gov (United States)

    Misawa, Tetsuro; Yokoyama, Takehito; Murakami, Shuichi

    2012-02-01

    Recent photoelectron spectroscopy experiments have revealed the presence of the Dirac cone on the surface of the topological insulator and its spin-splitting due to the spin-orbit interaction. In general, on spin-orbit coupled systems, electric fields induce spin polarizations as linear and nonlinear responses. Here we investigate the inverse Faraday effect on the surface of the topological insulator. The inverse Faraday effect is a non-linear optical effect where a circularly polarized light induces a dc spin polarization. We employ the Keldysh Green's function method to calculate the induced spin polarization and discuss its frequency dependence. In particular, in the low frequency limit, our analytical result gives the spin polarization proportional to the frequency and the square of the lifetime. As for the finite frequency regime, we employ numerical methods to discuss the resonance due to interband transitions. We also discuss the photogalvanic effect, where an illumination of a circular polarized light generates the dc charge current. Lastly, we evaluate those quantities with realistic parameters.[4pt] [1] T. Misawa, T. Yokoyama, S. Murakami, Phys. Rev. B84, 165407 (2011).

  13. FDTD modelling of induced polarization phenomena in transient electromagnetics

    Science.gov (United States)

    Commer, Michael; Petrov, Peter V.; Newman, Gregory A.

    2017-04-01

    The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  14. Particle flow oriented electromagnetic calorimeter optimization for the circular electron positron collider

    Science.gov (United States)

    Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.

    2018-03-01

    The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.

  15. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    Science.gov (United States)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  16. Design of CPW fed printed slot antenna with circular polarization for UWB application

    Science.gov (United States)

    Choudhary, N.; Tiwari, A.; Jangid, K. G.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper reports the design and performance of a CPW-fed circularized polarized elliptical slot antenna for UWB (ultra wide band) applications. The circular polarization is achieved by applying triangular stubs in the ground plane. The overall volume of this antenna is 40mm × 40 mm × 1.59 mm. The proposed antenna is simulated by applying CST Microwave Studio simulator. This elliptical patch slot antenna provides broad impedance bandwidth (3.1GHz to 10.6 GHz) with maximum gain 4.31dB at 4.45GHz. The simulated 3-dB axial ratio bandwidth is close to 2.51GHz (from 4.76GHz to 7.27GHz) which is 41.76% with respect to the central frequency 6.01GHz.

  17. High-flux normal incidence monochromator for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Schaefers, F.; Peatman, W.; Eyers, A.; Heckenkamp, C.; Schoenhense, G.; Heinzmann, U.

    1986-01-01

    A 6.5-m normal incidence monochromator installed at the storage ring BESSY, which is optimized for a high throughput of circularly polarized off-plane radiation at moderate resolution is described. The monochromator employs two exit slits and is specially designed and used for low-signal experiments such as spin- and angle-resolved photoelectron spectroscopy on solids, adsorbates, free atoms, and molecules. The Monk--Gillieson mounting (plane grating in a convergent light beam) allows for large apertures with relatively little astigmatism. With two gratings, a flux of more than 10 11 photons s -1 bandwidth -1 (0.2--0.5 nm) with a circular polarization of more than 90% in the wavelength range from 35 to 675 nm is achieved

  18. Circularly Polarized Antenna Array Fed by Air-Bridge Free CPW-Slotline Network

    Directory of Open Access Journals (Sweden)

    Yilin Liu

    2017-01-01

    Full Text Available A novel design of 1×2 and 2×2 circularly polarized (CP microstrip patch antenna arrays is presented in this paper. The two CP antenna arrays are fed by sequentially rotated coplanar waveguide (CPW to slotline networks and are processed on 1 mm thick single-layer FR4 substrates. Both of the two arrays are low-profile and lightweight. An air-bridge free CPW-slotline power splitter is appropriately designed to form the feeding networks and realize the two CP antenna arrays. The mechanism of circular polarization in this design is explained. The simulated and measured impedance bandwidths as well as the 3 dB axial ratio bandwidths and the radiation patterns of the two proposed antenna arrays are presented. This proposed design can be easily extended to form a larger plane array with good performance owing to its simple structure.

  19. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  20. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    International Nuclear Information System (INIS)

    Strempfer, J.; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H.; Bouchenoire, L.

    2016-01-01

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L 3 absorption edges are presented.

  1. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Strempfer, J., E-mail: Joerg.Strempfer@desy.de; Mardegan, J. R. L.; Francoual, S.; Veiga, L. S. I.; Spitzbart, T.; Zink, H. [Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22603 Hamburg (Germany); Bouchenoire, L. [XMaS, ESRF, 6 rue Jules Horowitz, BP220, Grenoble 38043 (France); Department of Physics, University of Liverpool, Liverpool, L69 7ZE (United Kingdom)

    2016-07-27

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L{sub 3} absorption edges are presented.

  2. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    International Nuclear Information System (INIS)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.

    2013-01-01

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the ∼0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B ∼ 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  3. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  4. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Daniel; Rudolf, Denis, E-mail: d.rudolf@fz-juelich.de; Juschkin, Larissa [RWTH Aachen University, Experimental Physics of EUV, Steinbachstraße 15, 52074 Aachen (Germany); Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany); Weier, Christian; Adam, Roman; Schneider, Claus M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), JARA-FIT, 52425 Jülich (Germany); Winkler, Gerrit; Frömter, Robert [Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); Danylyuk, Serhiy [RWTH Aachen University, Chair for Technology of Optical Systems, JARA-FIT, Steinbachstraße 15, 52074 Aachen (Germany); Bergmann, Klaus [Fraunhofer Institute for Laser Technology, Steinbachstrasse 15, 52074 Aachen (Germany); Grützmacher, Detlev [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany)

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  5. Polarization monotones of two-dimensional and three-dimensional random electromagnetic fields

    Science.gov (United States)

    Bosyk, G. M.; Bellomo, G.; Luis, A.

    2018-02-01

    We propose a formal resource-theoretic approach to quantify the degree of polarization of two- and three-dimensional random electromagnetic fields. This endows the space of spectral polarization matrices with the orders induced by majorization or convex mixing that naturally recover the best-known polarization measures.

  6. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  7. Optimized fan-shaped chiral metamaterial as an ultrathin narrow-band circular polarizer at visible frequencies

    Science.gov (United States)

    He, Yizhuo; Wang, Xinghai; Ingram, Whitney; Ai, Bin; Zhao, Yiping

    2018-04-01

    Chiral metamaterials have the great ability to manipulate the circular polarizations of light, which can be utilized to build ultrathin circular polarizers. Here we build a narrow-band circular polarizer at visible frequencies based on plasmonic fan-shaped chiral nanostructures. In order to achieve the best optical performance, we systematically investigate how different fabrication factors affect the chiral optical response of the fan-shaped chiral nanostructures, including incident angle of vapor depositions, nanostructure thickness, and post-deposition annealing. The optimized fan-shaped nanostructures show two narrow bands for different circular polarizations with the maximum extinction ratios 7.5 and 6.9 located at wavelength 687 nm and 774 nm, respectively.

  8. Circularly Polarized X Rays: Another Probe of Ultrafast Molecular Decay Dynamics

    International Nuclear Information System (INIS)

    Travnikova, Oksana; Lindblad, Andreas; Nicolas, Christophe; Soederstroem, Johan; Kimberg, Victor; Miron, Catalin; Liu Jicai; Gel'mukhanov, Faris

    2010-01-01

    Dissociative nuclear motion in core-excited molecular states leads to a splitting of the fragment Auger lines: the Auger-Doppler effect. We present here for the first time experimental evidence for an Auger-Doppler effect following F1s→a 1g * inner-shell excitation by circularly polarized x rays in SF 6 . In spite of a uniform distribution of the dissociating S-F bonds near the polarization plane of the light, the intersection between the subpopulation of molecules selected by the core excitation with the cone of dissociation induces a strong anisotropy in the distribution of the S-F bonds that contributes to the scattering profile measured in the polarization plane.

  9. Nonlinear Free Vibration Analysis of Axisymmetric Polar Orthotropic Circular Membranes under the Fixed Boundary Condition

    Directory of Open Access Journals (Sweden)

    Zhoulian Zheng

    2014-01-01

    Full Text Available This paper presents the nonlinear free vibration analysis of axisymmetric polar orthotropic circular membrane, based on the large deflection theory of membrane and the principle of virtual displacement. We have derived the governing equations of nonlinear free vibration of circular membrane and solved them by the Galerkin method and the Bessel function to obtain the generally exact formula of nonlinear vibration frequency of circular membrane with outer edges fixed. The formula could be degraded into the solution from small deflection vibration; thus, its correctness has been verified. Finally, the paper gives the computational examples and comparative analysis with the other solution. The frequency is enlarged with the increase of the initial displacement, and the larger the initial displacement is, the larger the effect on the frequency is, and vice versa. When the initial displacement approaches zero, the result is consistent with that obtained on the basis of the small deflection theory. Results obtained from this paper provide the accurate theory for the measurement of the pretension of polar orthotropic composite materials by frequency method and some theoretical basis for the research of the dynamic response of membrane structure.

  10. Circular polarization of gravitational waves from non-rotating supernova cores: a new probe into the pre-explosion hydrodynamics

    Science.gov (United States)

    Hayama, Kazuhiro; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2018-04-01

    We present an analysis of the circular polarization of gravitational-waves (GWs) using results from three-dimensional (3D), general relativistic (GR) core-collapse simulations of a non-rotating 15M⊙ star. For the signal detection, we perform a coherent network analysis taking into account the four interferometers of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA. We focus on the Stokes V parameter, which directly characterizes the asymmetry of the GW circular polarization. We find that the amplitude of the GW polarization becomes bigger for our 3D-GR model that exhibits strong activity of the standing accretion shock instability (SASI). Our results suggest that the SASI-induced accretion flows to the proto-neutron star (PNS) lead to a characteristic, low-frequency modulation (100 ˜ 200 Hz) in both the waveform and the GW circular polarization. By estimating the signal-to-noise ratio of the GW polarization, we demonstrate that the detection horizon of the circular polarization extends by more than a factor of several times farther comparing to that of the GW amplitude. Our results suggest that the GW circular polarization, if detected, could provide a new probe into the pre-explosion hydrodynamics such as the SASI activity and the g-mode oscillation of the PNS.

  11. Strong Circularly Polarized Luminescence from Highly Emissive Terbium Complexes in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda; Lunkley, Jamie; Muller, Gilles; Raymond, Kenneth

    2010-03-15

    Two luminescent terbium(III) complexes have been prepared from chiral ligands containing 2-hydroxyisophthalamide (IAM) antenna chromophores and their non-polarized and circularly-polarized luminescence properties have been studied. These tetradentate ligands, which form 2:1 ligand/Tb{sup III} complexes, utilize diaminocyclohexane (cyLI) and diphenylethylenediamine (dpenLI) backbones, which we reasoned would impart conformational rigidity and result in Tb{sup III} complexes that display both large luminescence quantum yield ({phi}) values and strong circularly polarized luminescence (CPL) activities. Both Tb{sup III} complexes are highly emissive, with {phi} values of 0.32 (dpenLI-Tb) and 0.60 (cyLI-Tb). Luminescence lifetime measurements in H{sub 2}O and D{sub 2}O indicate that while cyLI-Tb exists as a single species in solution, dpenLI-Tb exists as two species: a monohydrate complex with one H{sub 2}O molecule directly bound to the Tb{sup III} ion and a complex with no water molecules in the inner coordination sphere. Both cyLI-Tb and dpenLI-Tb display increased CPL activity compared to previously reported Tb{sup III} complexes made with chiral IAM ligands. The CPL measurements also provide additional confirmation of the presence of a single emissive species in solution in the case of cyLI-Tb, and multiple emissive species in the case of dpenLI-Tb.

  12. Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications.

    Science.gov (United States)

    Zheng, Hongzhi; Li, Wanru; Li, Wen; Wang, Xiaojun; Tang, Zhiyong; Zhang, Sean Xiao-An; Xu, Yan

    2018-02-12

    Circularly polarized light (CPL) is central to photonic technologies. A key challenge lies in developing a general route for generation of CPL with tailored chiroptical activity using low-cost raw materials suitable for scale-up. This study presents that cellulose films with photonic bandgaps (PBG) and left-handed helical sense have an intrinsic ability for circular polarization leading to PBG-based CPL with extraordinary |g | values, well-defiend handedness, and tailorable wavelength by the PBG change. Using such cellulose films, incident light ranging from near-UV to near-IR can be transformed to passive L-CPL and R-CPL with viewing-side-dependent handedness and |g | values up to 0.87, and spontaneous emission transformed to R-CPL emission with |g | values up to 0.68. Unprecedented evidence is presented with theoretical underpinning that the PBG effect can stimulate the R-CPL emission. The potential of cellulose-based CPL films for polarization-based encryption is illustrated. The evaporation-induced self-assembly coupled with nanoscale mesogens of cellulose nanocrystals opens new venues for technological advances and enables a versatile strategy for rational design and scalable manufacturing of organic and inorganic CPL films for photonic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications.

    Science.gov (United States)

    Zaid, Jamal; Abdulhadi, Abdulhadi; Kesavan, Arun; Belaizi, Yassin; Denidni, Tayeb A

    2017-07-05

    A circular polarized patch antenna for UHF RFID tag-based sensor applications is presented, with the circular polarization (CP) generated by a new antenna shape, an asymmetric stars shaped slotted microstrip patch antenna (CP-ASSSMP). Four stars etched on the patch allow the antenna's size to be reduced by close to 20%. The proposed antenna is matched with two RFID chips via inductive-loop matching. The first chip is connected to a resistive sensor and acts as a sensor node, and the second is used as a reference node. The proposed antenna is used for two targets, serving as both reference and sensor simultaneously, thereby eliminating the need for a second antenna. Its reader can read the RFID chips at any orientation of the tag due to the CP. The measured reading range is about 25 m with mismatch polarization. The operating frequency band is 902-929 MHz for the two ports, which is covered by the US RFID band, and the axial-ratio bandwidth is about 7 MHz. In addition, the reader can also detect temperature, based on the minimum difference in the power required by the reference and sensor.

  14. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  15. Circularly polarized few-optical-cycle solitons in the short-wave-approximation regime

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, Herve [Laboratoire de Photonique d' Angers, EA 4464, Universite d' Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex 01 (France); Triki, Houria [Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, Post Office Box 12, 23000 Annaba (Algeria); Mihalache, Dumitru [Laboratoire de Photonique d' Angers, EA 4464, Universite d' Angers, 2 Boulevard Lavoisier, F-49045 Angers Cedex 01 (France); Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, RO-077125 Magurele-Bucharest (Romania); Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest (Romania)

    2011-08-15

    We consider the propagation of few-cycle pulses (FCPs) beyond the slowly varying envelope approximation in media in which the dynamics of constituent atoms is described by a two-level Hamiltonian by taking into account the wave polarization. We consider the short-wave approximation, assuming that the resonance frequency of the two-level atoms is well below the inverse of the characteristic duration of the optical pulse. By using the reductive perturbation method (multiscale analysis), we derive from the Maxwell-Bloch-Heisenberg equations the governing evolution equations for the two polarization components of the electric field in the first order of the perturbation approach. We show that propagation of circularly polarized (CP) few-optical-cycle solitons is described by a system of coupled nonlinear equations, which reduces in the scalar case to the standard sine Gordon equation describing the dynamics of linearly polarized FCPs in the short-wave-approximation regime. By direct numerical simulations, we calculate the lifetime of CP FCPs, and we study the transition to two orthogonally polarized single-humped pulses as a generic route of their instability.

  16. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields

    Science.gov (United States)

    Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong

    2014-04-01

    Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia.

  17. Investigation of beam self-polarization in the future e+e− circular collider

    CERN Document Server

    AUTHOR|(CDS)2075800

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the eþe− Future Circular Collider (FCC-eþe−) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of selfpolarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-eþe− ring are presented.

  18. Photoionization in the presence of circularly polarized fundamental and odd-order harmonic fields

    Science.gov (United States)

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2017-05-01

    We present a study of the photoelectron spectra for the ionization process driven by counterrotating and corotating circularly polarized fundamental and odd-order harmonic fields. The main features of the spectra, such as symmetric lobed structures, are understood using simple arguments based on the strong field approximation (SFA) picture of ionization. A deviation from this picture is, most notably, the presence of the low-energy structures (LES) in the spectra. We show that the Rydberg states populated as a result of the combined absorption of the photons from the fundamental and harmonic fields are responsible for the origin of LES.

  19. Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields

    DEFF Research Database (Denmark)

    Busl, Maria; Platero, Gloria; Jauho, Antti-Pekka

    2012-01-01

    We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene irradiated by an ac electric field. Several approximations are developed...... that allow one to develop a semianalytical theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the properties of the excitations in doped...

  20. Analytical Solutions of Temporal Evolution of Populations in Optically-Pumped Atoms with Circularly Polarized Light

    Directory of Open Access Journals (Sweden)

    Heung-Ryoul Noh

    2016-03-01

    Full Text Available We present an analytical calculation of temporal evolution of populations for optically pumped atoms under the influence of weak, circularly polarized light. The differential equations for the populations of magnetic sublevels in the excited state, derived from rate equations, are expressed in the form of inhomogeneous second-order differential equations with constant coefficients. We present a general method of analytically solving these differential equations, and obtain explicit analytical forms of the populations of the ground state at the lowest order in the saturation parameter. The obtained populations can be used to calculate lineshapes in various laser spectroscopies, considering transit time relaxation.

  1. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    DEFF Research Database (Denmark)

    Bekshaev, A. Ya; Angelsky, O. V.; Hanson, Steen Grüner

    2012-01-01

    Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry...... between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special...

  2. Frequency-driven quantum oscillations in a graphene layer under circularly polarized ac fields

    Energy Technology Data Exchange (ETDEWEB)

    Vega Monroy, R., E-mail: ricardovega@mail.uniatlantico.edu.co; Martinez Castro, O.; Salazar Cohen, G.

    2015-06-19

    In this paper we predict a new type of quantum oscillations driven by the frequency of a circularly polarized ac field in a monolayer of graphene placed inside an optical cavity. We show that the displacement of the structure of photon-dressed electron states near the Fermi level and the electron transitions, from extended states to bound photon-dressed electron states inside an energy gap, lead to a periodic change of singularities in the electron density of states, resulting in quantum oscillations in thermodynamic, transport and other properties in graphene.

  3. Graphene superlattices in strong circularly polarized fields: Chirality, Berry phase, and attosecond dynamics

    Science.gov (United States)

    Koochaki Kelardeh, Hamed; Apalkov, Vadym; Stockman, Mark I.

    2017-08-01

    We propose and theoretically explore states of graphene superlattices with relaxed P and T symmetries created by strong circularly polarized ultrashort pulses. The conduction-band electron distribution in the reciprocal space forms an interferogram with discontinuities related to topological (Berry) fluxes at the Dirac points. This can be studied using time- and angle-resolved photoemission spectroscopy (TR-ARPES). Our findings hold promise for control and observation of ultrafast electron dynamics in topological solids and may be applied to petahertz-scale information processing.

  4. Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells

    OpenAIRE

    Demenev, A. A.; Kulakovskii, V. D.; Schneider, C.; Brodbeck, S.; Kamp, M.; Höfling, S.; Lobanov, S. V.; Weiss, T.; Gippius, N. A.; Tikhodeev, S. G.

    2016-01-01

    This work has been funded by Russian Scientific Foundation (Grant No. 14-12-01372) and State of Bavaria. We report close to circularly polarized lasing at ћω = 1.473 and 1.522 eV from an AlAs/AlGaAs Bragg microcavity, with 12 GaAs quantum wells in the active region and chirally etched upper distributed Bragg refractor under optical pump at room temperature. The advantage of using the chiral photonic crystal with a large contrast of dielectric permittivities is its giant optical activity, a...

  5. Dynamical behaviour of FEL devices operating with two undulators having opposite circular polarizations

    International Nuclear Information System (INIS)

    Dattoli, G.; Ottaviani, P. L.; Bucci, L.

    2000-01-01

    Optical-Klystron FELs operating with undulators having opposite circular polarizations are characterized by a spontaneous emission spectrum which does not exhibit the characteristic interference pattern. The use of the Madey theorem may allow the conclusion that, for such configuration, the dispersive section does not provide any gain enhancement. In this paper it has been analyzed the problem from a dynamical point of view and clarify how the optical field evolve, what is the role of the bunching and how the consequences of the Madey theorem should be correctly understood [it

  6. Vitamin E Circular Dichroism Studies: Insights into Conformational Changes Induced by the Solvent’s Polarity

    Directory of Open Access Journals (Sweden)

    Drew Marquardt

    2016-12-01

    Full Text Available We used circular dichroism (CD to study differences in CD spectra between α-, δ-, and methylated-α-tocopherol in solvents with different polarities. CD spectra of the different tocopherol structures differ from each other in intensity and peak locations, which can be attributed to chromanol substitution and the ability to form hydrogen bonds. In addition, each structure was examined in different polarity solvents using the Reichardt index—a measure of the solvent’s ionizing ability, and a direct measurement of solvent–solute interactions. Differences across solvents indicate that hydrogen bonding is a key contributor to CD spectra at 200 nm. These results are a first step in examining the hydrogen bonding abilities of vitamin E in a lipid bilayer.

  7. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction...... of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation. The focus of the present article is to understand the strong-field ionization of one......-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron...

  8. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light

    International Nuclear Information System (INIS)

    Varlamova, Olga; Costache, Florenta; Reif, Juergen; Bestehorn, Michael

    2006-01-01

    Surface ripples generation upon femtosecond laser ablation is attributed to self-organized structure formation from instability. We report that linear arrangements are observed not only for linearly polarized light but also for ablation with circularly polarized light. Long ordered chains of spherical nanoparticles, reminding of bead-strings are almost parallel but exhibit typical non-linear dynamics features such as bifurcations. In a first attempt to understand the self-assembly, we rely on models recently developed for the description of similar structures upon ion beam erosion and for the simulation of instabilities in thin liquid films. Our picture describes an unstable surface layer, non-uniformly eroded through Coulomb repulsion between individual positive charges

  9. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  10. Circularly Polarized Luminescence from a Pyrene-Cyclodextrin Supra-Dendron.

    Science.gov (United States)

    Zhang, Yuening; Yang, Dong; Han, Jianlei; Zhou, Jin; Jin, Qingxian; Liu, Minghua; Duan, Pengfei

    2018-04-19

    Soft nanomaterials with circularly polarized luminescence (CPL) have been currently attracting great interests. Here, we report a pyrene-containing π-peptide dendrons hydrogel, which showed 1D and 2D nanostructures with varied CPL activities. It was found that the individual dendron formed hydrogels in a wide pH range (3-12) and self-assembled into helices with pH-tuned pitches. Through chirality transfer, the pyrene unit could show CPL originated from both the monomer and excimer bands. When cyclodextrin was introduced, different supra-dendrons were obtained with β-cyclodextrin (PGAc@β-CD) and γ-cyclodextrin (PGAc@γ-CD) through host-guest interactions, respectively. Interestingly, the PGAc@β-CD and PGAc@γ-CD supra-dendrons self-assembled into 2D nanosheet and entangled nanofibers, respectively, showing cyclodextrin induced circularly polarized emission from both the monomer and excimer bands of pyrene moiety. Thus, through a simple host-guest interaction, both the nanostructures and the chiroptical activities could be modulated.

  11. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.; Chen, S.H. [Univ. of Rochester, NY (United States); Blanton, T.N. [Eastman Kodak Co., Rochester, NY (United States)

    1999-06-01

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of a blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.

  12. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  13. Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens.

    Science.gov (United States)

    Finlayson, Ewan D; McDonald, Luke T; Vukusic, Pete

    2017-06-01

    The evolution of structural colour mechanisms in biological systems has given rise to many interesting optical effects in animals and plants. The instance of the scarab beetle Chrysina resplendens is particularly distinctive. Its exoskeleton has a bright, golden appearance and reflects both right-handed and left-handed circularly polarized light concurrently. The chiral nanostructure responsible for these properties is a helicoid, in which birefringent dielectric planes are assembled with an incremental rotation. This study correlates details of the beetle's circularly polarized reflectance spectra directly with physical aspects of its structural morphology. Electron micrography is used to identify and measure the physical dimensions of the key constituent components. These include a chiral multilayer configuration comprising two chirped, left-handed helicoids that are separated by a birefringent retarder. A scattering matrix technique is used to simulate the system's optical behaviour in which the roles of each component of the morphological substructure are elucidated by calculation of the fields throughout its depth. © 2017 The Author(s).

  14. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  15. Circularly Polarized Low-Profile Antenna for Radiating Parallel to Ground Plane for RFID Reader Applications

    Directory of Open Access Journals (Sweden)

    Kittima Lertsakwimarn

    2013-01-01

    Full Text Available This paper presents a low-profile printed antenna with double U-shaped arms radiating circular polarization for the UHF RFID readers. The proposed antenna consists of double U-shaped strip structures and a capacitive feeding line to generate circular polarization. A part of the U-shaped arms is bent by 90° to direct the main beam parallel to the ground plane. From the results, -10 dB |S11| and 3 dB axial ratio of the antenna cover a typical UHF RFID band from 920 MHz to 925 MHz. The bidirectional beam is obtained with the maximum gain of 1.8 dBic in the parallel direction to the ground plane at the 925 MHz. The overall size of the proposed antenna including ground plane is 107 mm × 57 mm × 12.8 mm (0.33λ0 × 0.17λ0 × 0.04λ0.

  16. 77 GHz MEMS antennas on high-resistivity silicon for linear and circular polarization

    KAUST Repository

    Sallam, M. O.

    2011-07-01

    Two new MEMS antennas operating at 77 GHz are presented in this paper. The first antenna is linearly polarized. It possesses a vertical silicon wall that carries a dipole on top of it. The wall is located on top of silicon substrate covered with a ground plane. The other side of the substrate carries a microstrip feeding network in the form of U-turn that causes 180 phase shift. This phase-shifter feeds the arms of the dipole antenna via two vertical Through-Silicon Vias (TSVs) that go through the entire wafer. The second antenna is circularly polarized and formed using two linearly polarized antennas spatially rotated with respect to each other by 90 and excited with 90 phase shift. Both antennas are fabricated using novel process flow on a single high-resistivity silicon wafer via bulk micromachining. Only three processing steps are required to fabricate these antennas. The proposed antennas have appealing characteristics, such as high polarization purity, high gain, and high radiation efficiency. © 2011 IEEE.

  17. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  18. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  19. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses

    Directory of Open Access Journals (Sweden)

    O. Klimo

    2008-03-01

    Full Text Available Acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses is investigated using one- and two-dimensional particle simulations. A circularly polarized laser wave heats the electrons much less efficiently than the wave of linear polarization and the ion acceleration process takes place on the front side of the foil. The ballistic evolution of the foil becomes important after all ions contained in the foil have been accelerated. In the ongoing acceleration process, the whole foil is accelerated as a dense compact bunch of quasineutral plasma implying that the energy spectrum of ions is quasimonoenergetic. Because of the ballistic evolution, the velocity spread of an accelerated ion beam is conserved while the average velocity of ions may be further increased. This offers the possibility to control the parameters of the accelerated ion beam. The ion acceleration process is described by the momentum transfer from the laser beam to the foil and it might be fairly efficient in terms of the energy transferred to the heavy ions even if the foil contains a comparable number of light ions or some surface contaminants. Two-dimensional simulations confirm the formation of the quasimonoenergetic spectrum of ions and relatively good collimation of the ion bunch, however the spatial distribution of the laser intensity poses constraints on the maximum velocity of the ion beam. The present ion acceleration mechanism might be suitable for obtaining a dense high energy beam of quasimonoenergetic heavy ions which can be subsequently applied in nuclear physics experiments. Our simulations are complemented by a simple theoretical model which provides the insights on how to control the energy, number, and energy spread of accelerated ions.

  20. Propagation of intense and short circularly polarized pulses in a molecular gas: From multiphoton ionization to nonlinear macroscopic effects

    Science.gov (United States)

    Lytova, M.; Lorin, E.; Bandrauk, A. D.

    2016-07-01

    We present a detailed analysis of the propagation dynamics of short and intense circularly polarized pulses in an aligned diatomic gas. Compared to linearly polarized intense pulses, high harmonic generation (HHG) and the coherent generation of attosecond pulses in the intense-circular-polarization case are a new research area. More specifically, we numerically study the propagation of intense and short circularly polarized pulses in the one-electron H2+ molecular gas, using a micro-macro Maxwell-Schrödinger model. In this model, the macroscopic polarization is computed from the solution of a large number of time-dependent Schrödinger equations, the source of dipole moments, and using a trace operator. We focus on the intensity and the phase of harmonics generated in the H2+ gas as a function of the pulse-propagation distance. We show that short coherent circularly polarized pulses of same helicity can be generated in the molecular gas as a result of cooperative phase-matching effects.

  1. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  2. Photo double ionization of helium 100 eV and 450 eV above threshold: II. Circularly polarized light

    International Nuclear Information System (INIS)

    Knapp, A; Kheifets, A; Bray, I; Weber, Th; Landers, A L; Schoessler, S; Jahnke, T; Nickles, J; Kammer, S; Jagutzki, O; Schmidt, L Ph H; Schoeffler, M; Osipov, T; Prior, M H; Schmidt-Boecking, H; Cocke, C L; Doerner, R

    2005-01-01

    We present a joint experimental and theoretical study of the fully differential cross section of the photo double ionization of helium with left and right circularly polarized light at E exc = 100 eV and 450 eV above the threshold. We analyse angular distributions for the slow electron and the normalized circular dichroism for various energy sharings of the excess energy between the two electrons. The experimental results are well reproduced by convergent close coupling calculations

  3. High-frequency microstrip cross resonators for circular polarization electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Henderson, J J; Ramsey, C M; Quddusi, H M; del Barco, E

    2008-07-01

    In this article we discuss the design and implementation of a novel microstrip resonator which allows absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Omega impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled through small gaps to three arms of the cross to connect the resonator to the excitation ports. The control of the relative magnitude and phase between the two microwave stimuli at the input ports of each line allows for tuning the degree and type of polarization of the microwave excitation at the center of the cross resonator. The third (output) port is used to measure the transmitted signal, which is crucial to work at low temperatures, where reflections along lengthy coaxial lines mask the signal reflected by the resonator. Electron paramagnetic resonance spectra recorded at low temperature in an S=5/2 molecular magnet system show that 82% fidelity circular polarization of the microwaves is achieved over the central area of the resonator.

  4. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  5. Tailoring polarization of electromagnetically induced transparency based on non-centrosymmetric metasurfaces

    Science.gov (United States)

    Li, Hai-ming; Xue, Feng

    2017-09-01

    In this manuscript, tailoring polarization of analogy of electromagnetically induced transparency (EIT-like) based on non-centrosymmetric metasurfaces has been numerically and experimentally demonstrated. The EIT-like metamaterial is composed of a rectangle ring and two cut wires. The rectangle ring and the cut wire are chosen as the bright mode and the quasi-dark mode, respectively. Under the incident electromagnetic wave excitation, a polarization insensitive EIT-like transmission window can be observed at specific polarization angles. Within the transmission window, the phase steeply changes, which leads to the large group index. Tailoring polarization of EIT-like metamaterial with large group index at specific polarization angles may have potential application in slow light devices.

  6. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  7. Unpolarized nucleon structure studies utilizing polarized electromagnetic probes

    International Nuclear Information System (INIS)

    Arrington, J.

    2009-01-01

    By the mid-1980s, measurements of the nucleon form factors had reached a stage where only slow, incremental progress was possible using unpolarized electron scattering. The development of high quality polarized beams, polarized targets, and recoil polarimeters led to a renaissance in the experimental program. I provide an overview of the changes in the field in the last ten years, which were driven by the dramatically improved data made possible by a new family of tools to measure polarization observables

  8. Circular polarization control for the European XFEL in the soft X-ray regime

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-06-01

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  9. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets.

    Science.gov (United States)

    Fan, Jing; Li, Yannian; Bisoyi, Hari Krishna; Zola, Rafael S; Yang, Deng-Ke; Bunning, Timothy J; Weitz, David A; Li, Quan

    2015-02-09

    Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    Directory of Open Access Journals (Sweden)

    Mursyidul Idzam Sabran

    Full Text Available This paper presents a compact circularly polarized (CP antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11 impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  11. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  12. Photodetachment of F- by a few-cycle circularly polarized laser field

    Science.gov (United States)

    Bivona, Saverio; Burlon, Riccardo; Leone, Claudio

    2006-12-01

    We report on calculations of the above threshold detachment of F- by a few-cycle circularly polarized laser field, discussing the effects of both the carrier-envelope relative phase and the number of the cycle contained in a pulse on the angular distribution of ejected photoelectron. The results are analyzed in terms of a two-step semiclassical model: after the electrons are detached through tunnelling their motion is determined by the electric field pulse according to the classical dynamics laws. Anisotropies in the angular distributions of the electrons ejected on the plane perpendicular to the laser propagation direction are found that depend on the number of cycle of the laser pulse.

  13. Improvement on a 2 × 2 Elements High-Gain Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-01-01

    Full Text Available A novel antipodal Vivaldi antenna with tapering serrated structure at the edges is proposed. Compared with traditional Vivaldi antennas without serrated structure, the gain of the designed antenna is significantly improved in the desired frequency band (4.5–7.5 GHz. In addition, a 2 × 2 Vivaldi antenna array with an orthorhombic structure is designed and fabricated to achieve a circular polarization (CP characteristic. With this configuration, the 3 dB axial ratio bandwidth of the array reaches about 42% with respect to the center frequency of 6 GHz and a high gain is achieved as well. The novel Vivaldi antenna and CP antenna array both have ultrawide band (UWB and high-gain characteristics, which may be applied to the field of commercial communication, remote sensing, and so forth.

  14. Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871 (China); Zheng, C. Y.; He, X. T. [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2013-06-15

    The dynamics of the ultra-intense circularly polarized solitons under inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell and relativistic hydrodynamic equations and is solved with fully implicit energy-conserving numerical scheme. The soliton is self-consistently generated by the interaction between laser and plasma on the vacuum-plasma interface, and the generation mechanism is well confirmed by two dimensional particle-in-cell simulation. It is shown that a propagating weak soliton can be decreased and reflected by increasing plasma background, which is consistent with the existing studies based on hypothesis of weak density response. However, it is found that ultra-intense soliton is well trapped and kept still when encountering increasing background. Probably, this founding can be applied for trapping and amplifying high-intensity laser-fields.

  15. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses.

    Science.gov (United States)

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-08-11

    We experimentally demonstrate ultrafast dynamic of generation of the 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the C(3)Π(u) and B(3)Π(g) states of N(2) for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  16. Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes

    Science.gov (United States)

    Law, Ga-Lai; Andolina, Christopher M.; Xu, Jide; Luu, Vinh; Rutkowski, Philip X.; Muller, Gilles; Shuh, David K.; Gibson, John K.; Raymond, Kenneth N.

    2012-01-01

    A key distinction between the lanthanide (4f) and actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, the spectra of the highly luminescent complexes showed significant emission peak-shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra. PMID:22920726

  17. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    Science.gov (United States)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  18. Oxygen-Bridged Diphenylnaphthylamine as a Scaffold for Full-Color Circularly Polarized Luminescent Materials.

    Science.gov (United States)

    Nishimura, Hidetaka; Tanaka, Kazuo; Morisaki, Yasuhiro; Chujo, Yoshiki; Wakamiya, Atsushi; Murata, Yasujiro

    2017-05-19

    An oxygen-bridged diphenylnaphthylamine with a helical shape was designed and synthesized as a key scaffold for circularly polarized luminescent (CPL) materials. The introduction of electron-withdrawing groups, such as formyl and 2,2-dicyanovinyl substituents at the naphthyl moiety in this skeleton effectively decreases the LUMO level and thus allows a tuning of the band gap. The prepared model compounds exhibit intense CPL signals with a dissymmetry factor (g value) of 10 -3 both in CH 2 Cl 2 solutions and in the solid states. The emission colors of these derivatives are influenced both by the substituents as well as by solvent effects, covering the whole visible region from blue to deep red.

  19. CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    B. T. P. MADHAV

    2016-02-01

    Full Text Available Coplanar waveguide fed circularly polarized microstrip patch antenna performance evaluation is presented in this paper. The broadband characteristics are attained by placing open end slot at the lower side of the antenna. The proposed design has the return loss of less than -10dB and VSWR<2 in the desired band of operation. A gain of 3dB to 4dB is attained in the desired band with good radiation characteristics and a suitable axial ratio of less than 3 dB is attained in the prescribed band of operation. Proposed antenna is fabricated on the FR4 substrate with dielectric constant of 4.4. Parametric analysis with change in substrate permittivity also performed and the optimized dimensions are presented in this work.

  20. Classical trajectory analysis of Mg in a circularly polarized laser field

    Science.gov (United States)

    Xu, Tong-Tong; Ben, Shuai; Zhang, Jun; Liu, Xue-Shen

    2017-05-01

    The nonsequential double ionization (NSDI) of Mg atoms is investigated in a circularly polarized laser field using the classical ensemble method. We demonstrate the time evolution of the two-electron energy distribution, the time evolution of the repulsion energy distribution between two electrons in the double ionization process and the time of evolution of the distance distribution between the nucleus and two electrons. The theoretical results indicate that a single recollision leads to the NSDI process. Moreover, we also look into the elliptical trajectories to illustrate the difference in the return process of the first ionized electron. The dependence of the electron momentum distribution on the angle between the momentum and the force of laser field at the time of the first electron is also investigated and the results show that the angle plays a key role in the electron recollision time.

  1. Coupling of translational and rotational motion in chiral liquids in electromagnetic and circularly polarised electric fields.

    Science.gov (United States)

    English, Niall J; Kusalik, Peter G; Woods, Sarah A

    2012-03-07

    Non-equilibrium molecular dynamics simulations of R and S enantiomers of 1,1-chlorofluoroethane, both for pure liquids and racemic mixtures, have been performed at 298 K in the absence and presence of both electromagnetic (e/m) and circularly polarised electric (CP) fields of varying frequency (100-2200 GHz) and intensity (0.025-0.2 V Å(-1) (rms)). Significant non-thermal field effects were noted in the coupling of rotational and translational motion; for instance, in microwave and far-infrared (MW/IR) e/m fields, marked increases in rotational and translational diffusion vis-à-vis the zero-field case took place at 0.025-0.1 V Å(-1) (rms), with a reduction in translational diffusion vis-à-vis the zero-field case above 0.1 V Å(-1) (rms) above 100 GHz. This was due to enhanced direct coupling of rotational motion with the more intense e/m field at the ideal intrinsic rotational coupling frequency (approximately 700 GHz) leading to such rapidly oscillating rotational motion that extent of translational motion was effectively reduced. In the case of CP fields, rotational and translational diffusion was also enhanced for all intensities, particularly at approximately 700 GHz. For both MW/IR and CP fields, non-linear field effects were evident above around 0.1 V Å(-1) (rms) intensity, in terms of enhancements in translational and rotational motion. Simulation of 90-10 mol. % liquid mixtures of a Lennard-Jones solvent with R and S enantiomer-solutes in MW/IR and CP fields led to more limited promotion of rotational and translational diffusion, due primarily to increased frictional effects. For both e/m and CP fields, examination of the laboratory- and inertial-frame auto- and cross-correlation functions of velocity and angular velocity demonstrated the development of explicit coupling with the external fields at the applied frequencies, especially so in the more intense fields where nonlinear effects come into play. For racemic mixtures, elements of the laboratory

  2. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  3. Unified understanding of tunneling ionization and stabilization of atomic hydrogen in circularly and linearly polarized intense laser fields

    International Nuclear Information System (INIS)

    Miyagi, Haruhide; Someda, Kiyohiko

    2010-01-01

    On the basis of the Floquet formalism, the ionization mechanisms of atomic hydrogen in circularly and linearly polarized intense laser fields are discussed. By using the complex scaling method in the velocity gauge, the pole positions of the scattering-matrix on the complex quasienergy Riemann surface are calculated, and pole trajectories with respect to the variation of the laser intensity are obtained. In the low-frequency regime, the pole trajectory exhibits a smooth ponderomotive energy shift in the case of circular polarization. In contrast, the smoothness is lost in the case of linear polarization. In the high-frequency regime, the pole trajectories exhibit the stabilization phenomenon for both the types of polarization. These observations are elucidated by a unified picture based on the analysis of the adiabatic potentials for the radial motion of the electron in the acceleration gauge. The ionization in the case of circular polarization of the low-frequency regime is governed by the electron tunneling through a barrier of a single adiabatic potential. The stabilization in the high-frequency regime can be explained by the change in the avoided crossings among the adiabatic potential curves. The transition between the different frequency regimes is explicable by the change in the structure of the adiabatic potentials. The difference caused by the type of polarization is ascribable to the difference in the space-time symmetry.

  4. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525...

  5. Circular polarization of γ-quanta radiated in the capture of polarized neutrons by protons and the quark compound bag model

    International Nuclear Information System (INIS)

    Grach, I.L.; Shmatkov, M.Zh.

    1983-01-01

    The circular polarization Psub(γ) of γ-quanta radiated in the capture of polarized neutrons by protons is calculated The contribution of the M1 and E2 radiation of nucleons to Psub(γ) is found using the accurate wave functions of the continuous spectrum. The contribution of the six-quark bag to the polarization Psub(γ) is determined. The value of Psub(γ) is related to the admixture of the 6q-bag in the deuteron. Experimental value of Psub(γ) corresponds to small (< or approximately 0.7%) admixture of the bag

  6. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  7. A helical optical for circular polarized UV-FEL project at the UVSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  8. The polarization evolution of electromagnetic waves as a diagnostic method for a motional plasma

    Science.gov (United States)

    Shahrokhi, Alireza; Mehdian, Hassan; Hajisharifi, Kamal; Hasanbeigi, Ali

    2017-12-01

    The polarization evolution of electromagnetic (EM) radiation propagating through an electron beam-ion channel system is studied in the presence of self-magnetic field. Solving the fluid-Maxwell equations to obtain the medium dielectric tensor, the Stokes vector-Mueller matrix approach is employed to determine the polarization of the launched EM wave at any point in the propagation direction, applying the space-dependent Mueller matrix on the initial polarization vector of the wave at the plasma-vacuum interface. Results show that the polarization evolution of the wave is periodic in space along the beam axis with the specified polarization wavelength. Using the obtained results, a novel diagnostic method based on the polarization evolution of the EM waves is proposed to evaluate the electron beam density and velocity. Moreover, to use the mentioned plasma system as a polarizer, the fraction of the output radiation power transmitted through a motional plasma crossed with the input polarization is calculated. The results of the present investigation will greatly contribute to design a new EM amplifier with fixed polarization or EM polarizer, as well as a new diagnostic approach for the electron beam system where the polarimetric method is employed.

  9. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  10. Variation in the circularly polarized light reflection of Lomaptera (Scarabaeidae) beetles.

    Science.gov (United States)

    Carter, I E; Weir, K; McCall, M W; Parker, A R

    2016-07-01

    An extended spectroscopic study on the left-through-left circularly polarized reflection spectra of a large number of beetles from the Australasian Scrabaeidae:Cetoniinae of the Lomaptera genus was undertaken. We have obtained a five-category spectral classification. The principal spectral features, which even within the genus range from blue to infrared, are related to structural chirality in the beetle shells. The detailed features of each spectral classification are related to different structural perturbations of the helix, including various pitch values and abrupt twist defects. These spectral characteristics and associated shell structures are confirmed on the basis of simple modelling. An important conclusion from our study is that the simple helical structure resulting in a single symmetric Bragg peak is not the dominant spectral type. Rather the reality is a rich tapestry of spectral types. One intriguing specimen is identified via a scanning electron micrograph to consist of a double interstitial helix leading to a particular double-peak spectrum. © 2016 The Authors.

  11. Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2016-01-01

    Full Text Available A circularly polarized (CP Microstrip Yagi array antenna (MSYA is designed in order to achieve high front-to-back ratio R(F/B and high gain over wide range in the forward radiation space. A Wilkinson power divider owning two output ways with the same magnitude and different phase is used to feed the antenna. Parametric studies are carried out to investigate the effects of some key geometrical sizes on the antenna’s performance. A prototype of the antenna is fabricated, and good agreement between the measured results and the numerical simulations is observed. The overlap bandwidth of VSWR ≤ 1.5 and AR ≤ 3 dB is about 11%. The steering angle (α between the peak gain direction and the broadside can achieve 35°, R(F/B reaches 19 dB, and the gain at the front point (G0 is only 4.3 dB lower than the maximum gain (Gm. The antenna has a wide beamwidth CP radiation pattern over wide spatial range including 0° ≤ θ ≤ 90° in vertical plane and −35° ≤ φ ≤ 55° in horizontal plane.

  12. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  13. Classical radiation effects on relativistic electrons in ultraintense laser fields with circular polarization

    Science.gov (United States)

    Schlegel, Theodor; Tikhonchuk, Vladimir T.

    2012-07-01

    The propagation of a relativistic electron with initial energy ≳100 MeV in a number of simple one-dimensional laser field configurations with circular polarization is studied by solving the relativistic equation of motion in the Landau-Lifschitz approach to account for the radiation friction force. The radiation back-reaction on the electron dynamics becomes visible at dimensionless field amplitudes a ≳ 10 at these high particle energies. Analytical expressions are derived for the energy and the longitudinal momentum of the electron, the frequency shift of the light scattered by the electron and the particle trajectories. These findings are compared with the numerical solutions of the basic equations. A strong radiation damping effect results in reduced light scattering, forming at the same time a broad quasi-continuous spectrum. In addition, the electron dynamics in the strong field of a quasistationary laser piston is investigated. Analytical solutions for the electron trajectories in this complex field pattern are obtained and compared with the numerical solutions. The radiation friction force may stop a relativistic electron after propagation over several laser wavelengths at high laser field strengths, which supports the formation of a stable piston.

  14. Application of circularly polarized laser radiation for sensing of crystal clouds.

    Science.gov (United States)

    Balin, Yurii; Kaul, Bruno; Kokhanenko, Grigorii; Winker, David

    2009-04-13

    The application of circularly polarized laser radiation and measurement of the fourth Stokes parameter of scattered radiation considerably reduce the probability of obtaining ambiguous results for radiation depolarization in laser sensing of crystal clouds. The uncertainty arises when cloud particles appear partially oriented by their large diameters along a certain azimuth direction. Approximately in 30% of all cases, the measured depolarization depends noticeably on the orientation of the lidar reference plane with respect to the particle orientation direction. In this case, the corridor of the most probable depolarization values is about 0.1-0.15, but in individual cases, it can be noticeably wider. The present article considers theoretical aspects of this phenomenon and configuration of a lidar capable of measuring the fourth Stokes parameter together with an algorithm of lidar signal processing in the presence of optically thin cloudiness when molecular scattering cannot be neglected. It is demonstrated that the element ?44 of the normalized backscattering phase matrix (BSPM) can be measured. Results of measurements are independent of the presence or absence of azimuthal particle orientation. For sensing in the zenith or nadir, this element characterizes the degree of horizontal orientation of long particle diameters under the action of aerodynamic forces arising during free fall of particles.

  15. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Do, King; Ingram, Andrew; Moore, Evan; Muller, Gilles; Raymond, Kenneth

    2009-06-04

    The modular syntheses of three new octadentate, enantiopure ligands are reported, one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with bidentate 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands, are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields {phi}{sub Eu} = 0.05-0.08 and {phi}{sub Tb} = 0.30-0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08-0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments.

  16. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    Directory of Open Access Journals (Sweden)

    B. F. Zong

    2016-04-01

    Full Text Available In this paper, a broadband circularly polarized (CP microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL based sequential rotation (SR feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a 2×2 antenna array comprising sequentially rotated coupled stacked CP antenna elements is designed, fabricated and measured. Both the simulated and measured results indicate that the performances of the antenna element are further enhanced when the SR network is used. The antenna array exhibits the VSWR less than 1.8 dB from 4 GHz to 7 GHz and the 3 dB axial ratio (AR from 4.4 GHz to 6.8 GHz. Also, high peak gain of 13.7 dBic is obtained. Besides, the normalized radiation patterns at the operating frequencies are symmetrical and the side lobe levels are low at φ=0º and φ=90º.

  17. Helical Oligonaphthodioxepins Showing Intense Circularly Polarized Luminescence (CPL) in Solution and in the Solid State.

    Science.gov (United States)

    Takaishi, Kazuto; Yamamoto, Takahiro; Hinoide, Sakiko; Ema, Tadashi

    2017-07-12

    A series of oligonaphthodioxepins was synthesized, revealing a helically arranged octamer, (R,R,R,R,R,R,R)-3, which showed intense circularly polarized luminescence (CPL) both in solution and in the solid state. The fluorescence quantum yields (Φ FL ) in solution and in the solid state were 0.90 and 0.22, respectively, and the g lum values in solution and in the solid state were +2.2×10 -3 and +7.0×10 -3 , respectively. This is one of the highest solid-state CPL g lum values yet reported. The high Φ FL and g lum values were due to the rigidity, as well as to the fact that (R,R,R,R,R,R,R)-3 was a non-planar molecule. Moreover, (R,R,R,R,R,R,R)-3 was highly stable both chemically and stereochemically. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamical behaviour of FEL devices operating with two undulators having opposite circular polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Rome (Italy); Ottaviani, P.L. [ENEA, Divisione Fisica Applicata, Centro Ricerche, Bologna (Italy); Bucci, L. [ENEA, Guest Rome (Italy)

    2000-07-01

    Optical-Klystron FELs operating with undulators having opposite circular polarizations are characterized by a spontaneous emission spectrum which does not exhibit the characteristic interference pattern. The use of the Madey theorem may allow the conclusion that, for such configuration, the dispersive section does not provide any gain enhancement. In this paper it has been analyzed the problem from a dynamical point of view and clarify how the optical field evolve, what is the role of the bunching and how the consequences of the Madey theorem should be correctly understood. [Italian] Klystron ottici operanti con ondulatori aventi polarizzazione elicoidali opposte, sono caratterizzati da uno spettro di emissione spontanea senza il termine interferenziale dovuto alla sezione dispersiva. L'uso del teorema di Madey indurrebbe alla conclusione che, per una tale configurazione, la sezione dispersiva non induce nessun aumento del guadagno. In questo lavoro analizziamo il problema da un punto di vista dinamico che chiarisce l'evoluzione del campo ottico, quale e' il ruolo del bunching e come le conseguenze del teorema di Madey debbano essere interpretate.

  19. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    Energy Technology Data Exchange (ETDEWEB)

    Jangid, K. G.; Kulhar, V. S. [Department of Physics, Manipal University Jaipur, Jaipur-303007 (India); Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Bhatnagar, D., E-mail: dbhatnagar-2000@rediffmail.com [Microwave Lab, Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-03-09

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  20. Polarization-dependent electromagnetic responses in an A-shape metasurface.

    Science.gov (United States)

    Zhang, Ning; Xu, Quan; Li, Shaoxian; Ouyang, Chunmei; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Han, Jiaguang; Zhang, Weili

    2017-08-21

    We numerically and experimentally demonstrate polarization-dependent terahertz responses in a proposed metasurface of A-shape resonators. With the horizontal polarization incidence, the observed transmission window is formed by two resonance dips, corresponding to the inductive-capacitive resonance at the lower frequency and the high-order antisymmetric resonance at a higher frequency, respectively. When the incident wave is perpendicularly polarized, the transmission window arises from the plasmon-induced transparency spectral response. The origin of the polarization-sensitive resonance properties is revealed by mapping the electric field and terahertz-induced surface current in the proposed metamaterials. Moreover, the influence of the geometry of the A-shape microstructures on the transmission spectra is analyzed. These polarization-dependent metamaterials may provide more degrees of freedom in tuning the electromagnetic responses, thus offering a path toward robust metamaterials design.

  1. Evidence of a circularly polarized light mode along the optic axis in c-cut NH4H2PO4, induced by circular differential reflection and anomalous birefringence

    International Nuclear Information System (INIS)

    Kaminsky, Werner; Steininger, Steven; Herreros-Cedres, Javier; Glazer, Anthony Michael

    2010-01-01

    The anomalous birefringence and circular differential reflection of NH 4 H 2 PO 4 (4-bar2m), cut on the optic axis, have been found to cause an additional signal in measurements of the optical rotation employing polarized light technology, with the sample between crossed and slightly modulated linear polarizers (tilting high accuracy universal polarimetry). The azimuthal rotation of the linearly polarized light, up to 100 times larger than expected, is described in terms of a circularly polarized light mode along the optic axis of varying amplitude. Experimental evidence leading to our conclusion is given and a qualitative model for the effect is presented.

  2. Low-Gain Circularly Polarized Antenna with Torus-Shaped Pattern

    Science.gov (United States)

    Amaro, Luis R.; Kruid, Ronald C.; Vacchione, Joseph D.; Prata, Aluizio

    2012-01-01

    The Juno mission to Jupiter requires an antenna with a torus-shaped antenna pattern with approximately 6 dBic gain and circular polarization over the Deep Space Network (DSN) 7-GHz transmit frequency and the 8-GHz receive frequency. Given the large distances that accumulate en-route to Jupiter and the limited power afforded by the solar-powered vehicle, this toroidal low-gain antenna requires as much gain as possible while maintaining a beam width that could facilitate a +/-10deg edge of coverage. The natural antenna that produces a toroidal antenna pattern is the dipole, but the limited approx. = 2.2 dB peak gain would be insufficient. Here a shaped variation of the standard bicone antenna is proposed that could achieve the required gains and bandwidths while maintaining a size that was not excessive. The final geometry that was settled on consisted of a corrugated, shaped bicone, which is fed by a WR112 waveguide-to-coaxial- waveguide transition. This toroidal low-gain antenna (TLGA) geometry produced the requisite gain, moderate sidelobes, and the torus-shaped antenna pattern while maintaining a very good match over the entire required frequency range. Its "horn" geometry is also low-loss and capable of handling higher powers with large margins against multipactor breakdown. The final requirement for the antenna was to link with the DSN with circular polarization. A four-layer meander-line array polarizer was implemented; an approach that was fairly well suited to the TLGA geometry. The principal development of this work was to adapt the standard linear bicone such that its aperture could be increased in order to increase the available gain of the antenna. As one increases the aperture of a standard bicone, the phase variation across the aperture begins to increase, so the larger the aperture becomes, the greater the phase variation. In order to maximize the gain from any aperture antenna, the phase should be kept as uniform as possible. Thus, as the standard

  3. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  4. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Mrózek, M., E-mail: mariusz.mrozek@uj.edu.pl; Rudnicki, D. S.; Gawlik, W. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow (Poland); Mlynarczyk, J. [Department of Electronics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland)

    2015-07-06

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit may be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves.

  5. Study of a filament with a circularly polarized beam at 3.8 cm

    International Nuclear Information System (INIS)

    Straka, R.M.; Papagiannis, M.D.; Kogut, J.A.

    1975-01-01

    Extensive observations of left and right circularly polarized emission were carried out with the 120 ft Haystack antenna, which at 3.8 cm has a HPBW of 4.4 minutes of arc. During a very quite period, September 22-26, 1974, two regions were observed in the southern hemisphere of the sun with brightness temperatures approximately 10% below the surrounding solar disk temperature. Hα photographs show that the main region was associated with a long filament. The separation between the center of the radio depression and the filament increased as the filament advanced toward the limb, with the depression finally disappearing when the filament was at a radial distance >0.8 R(Sun) from the center of the solar disk. These observations are in agreement with a filament model consisting of a thin, tall and exceedingly long sheet of enhanced density encaged in a large and equally long tunnel-like cavity of lower density. The electron density at the 3.8 cm emission level which occurs immediately below the transition zone was estimated to be lower inside the cavity than outside by a factor of 2. The origin of the other depression remains unclear because no relation to any Hα or magnetic feature could be found. A possible association with a coronal hole could not be established because no pertinent EUV or X-ray data were available. It would be of interest to investigate in future observations if a secondary depression is normally associated with the primary depression region over a long filament. (Auth.)

  6. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    International Nuclear Information System (INIS)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-01-01

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities (∼100 W/cm 2 ) and comparatively small detunings (∼1000-10 000 linewidths), trap depths of ∼1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  7. Polarization properties of low frequency electromagnetic cyclotron waves associated with magnetic clouds

    Science.gov (United States)

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.; Huang, J.

    2018-03-01

    Recent studies have revealed that there are a large number of low frequency electromagnetic cyclotron waves (ECWs) occurring in and around magnetic clouds (MCs) that are common magnetic structures in interplanetary space. Using magnetic field data from the STEREO spacecraft, this paper investigates polarization properties of ECWs associated with 120 MCs. Results show that the ECWs are highly transverse, strongly polarized waves with large ellipticities. Specifically, almost all of the waves take place with the ratios of transverse power to total power higher than 0.94, polarization degrees greater than 0.85, and ellipticities larger than 0.5. The mean values of these quantities can be up to 0.99, 0.96, 0.85, respectively. In particular, there is a tendency of ellipticities decreasing with respect to the wave normal angles for ECWs with left handed polarization. The decreasing tendency is consistent with the recent theory and simulation results.

  8. Calcium hydroxylapatite treatment of human skin: evidence of collagen turnover through picrosirius red staining and circularly polarized microscopy

    Directory of Open Access Journals (Sweden)

    Zerbinati N

    2018-01-01

    Full Text Available Nicola Zerbinati,1 Alberto Calligaro2 1Department of Surgical and Morphological Sciences, University of Insubria (Varese and Polyspecialist Medical Center, Pavia, 2Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy Background: Calcium hydroxylapatite (CaHA, Radiesse® is a biocompatible, injectable filler for facial soft-tissue augmentation that provides volume to tissues, followed by a process of neocollagenesis for improved skin quality. Objective: To examine the effects of CaHA treatment on the molecular organization of collagen using a combination of picrosirius red staining and circularly polarized light microscopy.Methods: Five subjects received subdermal injection of 0.3 mL of CaHA in tissues scheduled for removal during abdominoplasty 2 months later. Tissue specimens from the CaHA injection site and a control untreated area were obtained from excised skin at the time of surgery. Processed tissue sections were stained with picrosirius red solution 0.1% and visualized under circularly polarized light microscopy for identification of thick mature (type I and thin newly formed (type III collagen fibers. Pixel signals from both the control and CaHA-treated areas were extracted from the images, and morphometric computerized hue analysis was performed to provide a quantitative evaluation of mature and newly formed collagen fibers.Results: Under picrosirius red staining and circularly polarized light microscopy, green/yellow areas (thin newly formed collagen type III were visible among the collagen fibers in tissue sections from the area of CaHA injection. In contrast, the majority of the collagen fibers appeared red (thick mature collagen type I in control tissues. Morphometric analysis confirmed that, following CaHA treatment, the proportion of fibers represented by thin newly formed collagen type III increased significantly (p<0.01 in comparison with the

  9. Effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic beams passing through an astigmatic optical system.

    Science.gov (United States)

    Pan, Liuzhan; Sun, Mengle; Ding, Chaoliang; Zhao, Zhiguo; Lü, Baida

    2009-04-27

    Analytical formulas for the cross-spectral density matrix of stochastic electromagnetic Gaussian Schell-model (EGSM) beams passing through an astigmatic optical system are derived. We show both analytically and by numerical examples the effects of astigmatism on spectra, coherence and polarization of stochastic electromagnetic EGSM beams propagating through an astigmatic lens. A comparison with the aberration-free case is made, and shows that the astigmatism has significant effect on the spectra, coherence and polarization.

  10. Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror.

    Science.gov (United States)

    Zhao, Jiang; Li, Bo; Zhao, Heng; Wang, Wenjin; Hu, Yi; Liu, Sisi; Wang, Youqing

    2014-06-10

    A hybrid circular subwavelength grating mirror is proposed and fabricated as a rear mirror in a fast axial flow CO2 laser system to generate azimuthally polarized beams (APBs). This grating mirror, with particular gold-covered ridges and nanopillar-stuffed grooves, performs wideband TE wave reflectivity and high polarization selectivity. It shows that the polarization selectivity mechanism lies in the gold ridge's high reflectivity to the TE wave and the lower TM wave reflectivity, which are the result of the mode leaking into substrate through the dielectric-like nanopillar layer. Finally, a high-quality 550 W APB is obtained in subsequent experiments, which provides potential applications in drilling and welding.

  11. Calculation of the vibrationally resolved, circularly polarized luminescence of d-camphorquinone and (S,S)-trans-beta-hydrindanone.

    Science.gov (United States)

    Pritchard, Benjamin; Autschbach, Jochen

    2010-08-02

    Circularly polarized luminescence (CPL), the differential emission of left- and right-handed circularly polarized light from a molecule, is modeled by using time-dependent density functional theory. Calculations of the CPL spectra for the first electronic excited states of d-camphorquinone and (S,S)-trans-beta-hydrindanone under the Franck-Condon approximation and using various functionals are presented, as well as calculations of absorption, emission, and circular dichroism spectra. The functionals B3LYP, BHLYP, and CAM-B3LYP are employed, along with the TZVP and aug-cc-pVDZ Gaussian-type basis sets. For the lowest-energy transitions, all functionals and basis sets perform comparably, with the long-range-corrected CAM-B3LYP better reproducing the excitation energy of camphorquinone but leading to a blue shift with respect to experiment for hydrindanone. The vibrationally resolved spectra of camphorquinone are very well reproduced in terms of peak location, widths, shapes, and intensities. The spectra of hydrindanone are well reproduced in terms of overall envelope shape and width, as well as the lack of prominent vibrational structure in the emission and CPL spectra. Overall the simulated spectra compare well with experiment, and reproduce the band shapes, emission red shifts, and presence or absence of visible vibrational fine structure.

  12. Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

    International Nuclear Information System (INIS)

    Dragila, R.; Vukovic, S.

    1988-01-01

    The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave

  13. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks.

    Science.gov (United States)

    Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H

    2017-08-01

    A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.

  14. Natural circular dichroism of amino acid films observed in soft X-ray and VUV region using polarizing undulator

    International Nuclear Information System (INIS)

    Nakagawa, K.; Kaneko, F.; Ohta, Y.; Tanaka, M.; Kitada, T.; Agui, A.; Fujii, F.; Yokoya, A.; Yagi-Watanabe, K.; Yamada, T.

    2005-01-01

    We observed the natural circular dichroism NCD of amino acid films in the soft X-ray region for the first time [M. Tanaka, K. Nakagawa, A. Agui, K. Fujii, A. Yokoya, Physica Scripta, in press]. Based on the success, a new generation of detection system is now under preparation. Vacuum ultraviolet NCD of amino acid films was measured successfully using a polarizing undulator [H. Onuki, Nucl. Instrum. Meth. A 246 (1986) 94] installed at the TERAS electron storage ring at AIST, Tsukuba, Japan. A result of NCD measurement for alanine films is described in detail

  15. Extended high circular polarization in the Orion massive star forming region: implications for the origin of homochirality in the solar system.

    Science.gov (United States)

    Fukue, Tsubasa; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H; Bailey, Jeremy; Whittet, Douglas C B; Lucas, Philip W; Nakajima, Yasushi; Hashimoto, Jun

    2010-06-01

    We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.

  16. ANN Synthesis Model of Single-Feed Corner-Truncated Circularly Polarized Microstrip Antenna with an Air Gap for Wideband Applications

    Directory of Open Access Journals (Sweden)

    Zhongbao Wang

    2014-01-01

    Full Text Available A computer-aided design model based on the artificial neural network (ANN is proposed to directly obtain patch physical dimensions of the single-feed corner-truncated circularly polarized microstrip antenna (CPMA with an air gap for wideband applications. To take account of the effect of the air gap, an equivalent relative permittivity is introduced and adopted to calculate the resonant frequency and Q-factor of square microstrip antennas for obtaining the training data sets. ANN architectures using multilayered perceptrons (MLPs and radial basis function networks (RBFNs are compared. Also, six learning algorithms are used to train the MLPs for comparison. It is found that MLPs trained with the Levenberg-Marquardt (LM algorithm are better than RBFNs for the synthesis of the CPMA. An accurate model is achieved by using an MLP with three hidden layers. The model is validated by the electromagnetic simulation and measurements. It is enormously useful to antenna engineers for facilitating the design of the single-feed CPMA with an air gap.

  17. Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial

    Science.gov (United States)

    Stephen, Lincy; Yogesh, N.; Subramanian, V.

    2018-01-01

    The giant optical activity of chiral metamaterials (CMMs) holds great potential for tailoring the polarization state of an electromagnetic (EM) wave. In controlling the polarization state, the aspect of asymmetric transmission (AT), where a medium allows the EM radiation to pass through in one direction while restricting it in the opposite direction, adds additional degrees of freedom such as one-way channelling functionality. In this work, a CMM formed by a pair of mutually twisted slanted complementary metal strips is realized for broadband AT accompanied with cross-polarization (CP) conversion for linearly polarized EM waves. Numerically, the proposed ultra-thin (˜λ/42) CMM shows broadband AT from 8.58 GHz to 9.73 GHz (bandwidth of 1.15 GHz) accompanied with CP transmission magnitude greater than 0.9. The transmission and reflection spectra reveal the origin of the asymmetric transmission as the direction sensitive cross polarization conversion and anisotropic electric coupling occurring in the structure which is then elaborated with the surface current analysis and electric field distribution within the structure. An experiment is carried out to verify the broadband AT based CP conversion of the proposed CMM at microwave frequencies, and a reliable agreement between numerical and experimental results is obtained. Being ultra-thin, the reported broadband AT based CP conversion of the proposed CMM is useful for controlling radiation patterns in non-reciprocal EM devices and communication networks.

  18. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    Science.gov (United States)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  19. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Holmegaard, Lotte; Kalhøj, Line

    2011-01-01

    are quantum-state selected using a deflector and three-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position......We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally-oriented asymmetric top molecule, benzonitrile (C7H5N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules...... of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D...

  20. Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.

    1988-01-01

    A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak

  1. Effects of astigmatism on spectra and polarization of aberrant electromagnetic nonuniformly correlated beams in turbulent ocean.

    Science.gov (United States)

    Tang, Miaomiao; Zhao, Daomu

    2014-12-01

    Analytical formulas are derived, for the cross spectral density matrix of electromagnetic nonuniformly correlated (EMUNC) beams, with astigmatic aberration propagating through oceanic turbulence. We investigate the effects of astigmatism on the spectral density, and the spectral degree of polarization, in great detail. It can be seen that, unlike for an aberration-free case, the lateral shifted intensity maximum (of an astigmatic EMUNC beam) does not return back to the on-axis position, after propagating at sufficiently large distances in the turbulence. Furthermore, in the far-zone, the deviation of its maximum value (from the optical axis) gradually increases, in accordance with growing propagation distance.

  2. Cross-polarization detection enables fast measurement of vibrational circular dichroism

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr

    2009-01-01

    Roč. 10, č. 12 (2009), s. 1983-1985 ISSN 1439-4235 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational circular dichroism * time-resolved experiment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.453, year: 2009

  3. Use of Linear and Circular Polarization: The Secret LCD Screen and 3D Cinema

    Science.gov (United States)

    Richtberg, Stefan; Girwidz, Raimund

    2017-01-01

    References to everyday life are important for teaching physics. Discussing polarization phenomena, liquid crystal displays (LCDs) and 3D cinemas provide such references. In this paper we describe experiments to support students' understanding of linearly polarized light as well as the phenomenon of inverted colors using a secret LCD screen.…

  4. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light

    International Nuclear Information System (INIS)

    Yudin, V. I.; Taichenachev, A. V.; Dudin, Y. O.; Velichansky, V. L.; Zibrov, A. S.; Zibrov, S. A.

    2010-01-01

    We develop a generalized principle of electromagnetically induced transparency (EIT) vector magnetometry based on high-contrast EIT resonances and the symmetry of atom-light interaction in the linearly polarized bichromatic fields. Operation of such vector magnetometer on the D 1 line of 87 Rb has been demonstrated. The proposed compass-magnetometer has an increased immunity to shifts produced by quadratic Zeeman and ac-Stark effects, as well as by atom-buffer gas and atom-atom collisions. In our proof-of-principle experiment the detected angular sensitivity to magnetic field orientation is 10 -3 deg/Hz 1/2 , which is limited by laser intensity fluctuations, light polarization quality, and magnitude of the magnetic field.

  5. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    Science.gov (United States)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  6. Stopping power and polarization induced in a plasma by a fast charged particle in circular motion

    Energy Technology Data Exchange (ETDEWEB)

    Villo-Perez, Isidro [Departamento de Electronica, Tecnologia de las Computadoras y Proyectos, Universidad Politecnica de Cartagena, Cartagena (Spain); Arista, Nestor R. [Division Colisiones Atomicas, Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, Bariloche (Argentina); Garcia-Molina, Rafael [Departamento de Fisica, Universidad de Murcia, Murcia (Spain)

    2002-03-28

    We describe the perturbation induced in a plasma by a charged particle in circular motion, analysing in detail the evolution of the induced charge, the electrostatic potential and the energy loss of the particle. We describe the initial transitory behaviour and the different ways in which convergence to final stationary solutions may be obtained depending on the basic parameters of the problem. The results for the stopping power show a resonant behaviour which may give place to large stopping enhancement values as compared with the case of particles in straight-line motion with the same linear velocity. The results also explain a resonant effect recently obtained for particles in circular motion in magnetized plasmas. (author)

  7. The effect of the excitation and of the temperature on the photoluminescence circular polarization of AlInAs/AlGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, N. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Melliti, A., E-mail: adnenmelliti@yahoo.fr [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Sahli, A.; Maaref, M.A. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Testelin, C. [Institut des NanoSciences de Paris, Campus Boucicaut, Universites Paris 6 et 7, CNRS, UMR7588, 140 rue de Lourmel, 75015 Paris (France); Kuszelewiez, R. [Laboratoire de Photonique et Nanostructures, CNRS, UPR 20 (France)

    2009-12-15

    In this paper, we present a study of photoluminescence (PL) from AlInAs/AlGaAs quantum dots (QDs) structures grown by molecular beam epitaxy. Specifically, we describe the effects of the temperature and of the excitation density on the photoluminescence circular polarization. We have found that the circular polarization degree depends on temperature. On the other hand, the study of the excitation density dependent circular polarization PL degree shows that the last increases in the case of the sample of weak dot density. However, in the case of large dot density, it is almost constant in the excitation density range from 0.116 W cm{sup -2} to 9 W cm{sup -2}.

  8. 3-D Forward modeling of Induced Polarization Effects of Transient Electromagnetic Method

    Science.gov (United States)

    Wu, Y.; Ji, Y.; Guan, S.; Li, D.; Wang, A.

    2017-12-01

    In transient electromagnetic (TEM) detection, Induced polarization (IP) effects are so important that they cannot be ignored. The authors simulate the three-dimensional (3-D) induced polarization effects in time-domain directly by applying the finite-difference time-domain method (FDTD) based on Cole-Cole model. Due to the frequency dispersion characteristics of the electrical conductivity, the computations of convolution in the generalized Ohm's law of fractional order system makes the forward modeling particularly complicated. Firstly, we propose a method to approximate the fractional order function of Cole-Cole model using a lower order rational transfer function based on error minimum theory in the frequency domain. In this section, two auxiliary variables are introduced to transform nonlinear least square fitting problem of the fractional order system into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Secondly, the time-domain expression of Cole-Cole model is obtained by using Inverse Laplace transform. Then, for the calculation of Ohm's law, we propose an e-index auxiliary equation of conductivity to transform the convolution to non-convolution integral; in this section, the trapezoid rule is applied to compute the integral. We then substitute the recursion equation into Maxwell's equations to derive the iterative equations of electromagnetic field using the FDTD method. Finally, we finish the stimulation of 3-D model and evaluate polarization parameters. The results are compared with those obtained from the digital filtering solution of the analytical equation in the homogeneous half space, as well as with the 3-D model results from the auxiliary ordinary differential equation method (ADE). Good agreements are obtained across the three methods. In terms of the 3-D model, the proposed method has higher efficiency and lower memory requirements as execution times and memory usage were reduced by 20

  9. Electromagnetics

    CERN Document Server

    Rothwell, Edward J

    2009-01-01

    Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem

  10. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures......, we show that ionization by a circularly polarized pulse completely maps out the angular nodal structure of the initial state, thus providing a potential tool for studying orbital symmetry in individual systems or during chemical reactions....

  11. Reduction of the Thomson scattering cross-section in a strong circularly polarized light field in plasma with the change of its spectrum

    Science.gov (United States)

    Korobkin, Vladlen V.; Romanovsky, Michael Y.

    1992-06-01

    It is shown that in a strong circularly polarized laser field, classical electron motion around the ions can occur. The non-relativistic scattering by these electrons in plasma has a certain (Thomson) cross-section only in the limit of a very strong field (it is practically the case of relativistic motion of electrons). In a circularly polarized field with an amplitude on the order of the inneratomic one, the cross section of this process is less. In the spectrum that the scattering of this field gives in plasma, there are non-ion satellites along with the basic frequency.

  12. Inclusive π0 Production in Polarized pp Collisions using the STAR Endcap Electromagnetic Calorimeter

    International Nuclear Information System (INIS)

    Webb, Jason C.

    2007-01-01

    The two-spin helicity asymmetry for inclusive π0 production in polarized pp collisions probes the gluon's contribution to the spin of the proton with sensitivity comparable to that attainable with full jet reconstruction. Measurements of A LL (π0) at larger rapidity provide information about a different set of partonic subprocesses and are subject to different theoretical and experimental uncertainties than midrapidity jet measurements, providing an important cross-check. The STAR Endcap Electromagnetic calorimeter provides the capability to reconstruct high-pT π0 decays in the range 1 < η < 2 with full azimuthal coverage using a fine-grained scintillating-strip Shower-Maximum detector. Data with longitudinally polarized beams were accumulated in 2005 (sampled luminosity 3 pb-1 with beam polarizations ≅ 45 - 50%), and in 2006 (L ≅ 6pb-1, P-bar ≅ 60%) after the installation of additional shielding to reduce backgrounds. We present preliminary results from the 2005 data, and discuss the current status of the 2006 analysis

  13. Solid polymer films exhibiting handedness-switchable, full-color-tunable selective reflection of circularly polarized light.

    Science.gov (United States)

    Nagata, Yuuya; Takagi, Keisuke; Suginome, Michinori

    2014-07-16

    Poly(quinoxaline-2,3-diyl)s bearing (S)-2-methylbutyl, n-butyl, and 8-chlorooctyl groups as side chains were synthesized to fabricate dry solid polymer thin films. These films exhibited selective reflection of right-handed circular polarized light (CPL) in the visible region after annealing in CHCl3 vapor at room temperature. The handedness of reflected CPL was inverted to the left after annealing in 1,2-dichloroethane vapor. It was also found that the color of a particular single film along with the handedness of reflected CPL were fully tuned reversibly, upon exposure of the film to the vapor of various mixtures of chloroform and 1,2-dichloroethane in different ratios.

  14. Coulomb-corrected Volkov-type solution for an electron in an intense circularly polarized laser field

    Science.gov (United States)

    Bauer, Jaroslaw

    2001-04-01

    A simple analytical approximation exists for the wavefunction of an unbound electron interacting both with a strong circularly polarized laser field and an atomic Coulomb potential (Reiss and Krainov 1994 Phys. Rev. A 50 R910). This wavefunction is the Volkov state with a first-order Coulomb correction coming from some perturbative expansion of the potential in the Kramers-Henneberger reference frame. The expansion is valid, if the distance from the centre of the Coulomb force is smaller than the classical radius of motion of a free electron in a plane-wave field. We improve the approximate Coulomb-Volkov wavefunction by including the next term in the perturbative expansion of the atomic potential.

  15. Dual-Band Operation of a Circularly Polarized Four-Arm Curl Antenna with Asymmetric Arm Length

    Directory of Open Access Journals (Sweden)

    Son Xuat Ta

    2016-01-01

    Full Text Available This paper presents dual-band operation of a single-feed composite cavity-backed four-arm curl antenna. Dual-band operation is achieved with the presence of the asymmetrical arm structure. A pair of vacant-quarter printed rings is used in the feed structure to produce a good circular polarization (CP at both bands. The cavity-backed reflector is employed to improve the CP radiation characteristics in terms of the 3-dB axial ratio beamwidth and broadside gain. The proposed antenna is widely applicable in dual-band communication systems that have a small frequency ratio. Examples of such a system are global positioning systems.

  16. The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams

    Science.gov (United States)

    Chen, Jiannong; Gao, Xiumin; Zhu, Linwei; Xu, Qinfeng; Ma, Wangzi

    2014-05-01

    We demonstrate that a complete right-handed or left-handed spiral-shaped focus can be created by focusing circularly polarized and three spatially shifted vortex beams through high numerical objective. By dividing the back aperture into multi annular zones and applying an additional phase term, the multi focal spots aligned along z axis of individual three dimensional focal shapes can be generated. The spiral shaped focus provides a pathway of manipulating the micro-particles in a curved trajectory and opens up a possibility of measuring mechanical torque of biological large molecules such as DNA by chemically binding one end on the cover-glass. The multi focal spots aligned along the z axis can eliminate the need of z axis scanning in the direct laser writing fabrication of some metamaterials which is composed of three-dimensional array of specific shapes of building blocks.

  17. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    CERN Document Server

    Daimon, H

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously.

  18. Bright Linearly and Circularly Polarized Extreme Ultraviolet and Soft X-ray High Harmonics for Absorption Spectroscopy

    Science.gov (United States)

    Fan, Tingting

    High harmonic generation (HHG) is an extreme nonlinear optical process. When implemented in a phase-matched geometry, HHG coherent upconverts femtosecond laser light into coherent "X-ray laser" beams, while retaining excellent spatial and temporal coherence, as well as the polarization state of the driving laser. HHG has a tabletop footprint, with femtosecond to attosecond time resolution, combined with nanometer spatial resolution. As a consequence of these unique capabilities, HHG is now being widely adopted for use in molecular spectroscopy and imaging, materials science, as well as nanoimaging in general. In the first half of this thesis, I demonstrate high flux linearly polarized soft X-ray HHG, driven by a single-stage 10-mJ Ti:sapphire regenerative amplifier at a repetition rate of 1 kHz. I first down-converted the laser to 1.3 mum using an optical parametric amplifier, before up-converting it into the soft X-ray region using HHG in a high-pressure, phase-matched, hollow waveguide geometry. The resulting optimally phase-matched broadband spectrum extends to 200 eV, with a soft X-ray photon flux of > 106 photons/pulse/1% bandwidth at 1 kHz, corresponding to > 109 photons/s/1% bandwidth, or approximately a three orders-of-magnitude increase compared with past work. Using this broad bandwidth X-ray source, I demonstrated X-ray absorption spectroscopy of multiple elements and transitions in molecules in a single spectrum, with a spectral resolution of 0.25 eV, and with the ability to resolve the near edge fine structure. In the second half of this thesis, I discuss how to generate the first bright circularly polarized (CP) soft X-ray HHG and also use them to implement the first tabletop X-ray magnetic circular dichroism (XMCD) measurements. Using counter-rotating CP lasers at 1.3 mum and 0.79 mum, I generated CPHHG with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right CP peaks, with energies

  19. High-Frequency Microstrip Cross Resonators for Circular Polarization EPR Spectroscopy

    OpenAIRE

    Henderson, J. J.; Ramsey, C. M.; Quddusi, H. M.; del Barco, E.

    2008-01-01

    In this article we discuss the design and implementation of a novel microstrip resonator which allows for the absolute control of the microwaves polarization degree for frequencies up to 30 GHz. The sensor is composed of two half-wavelength microstrip line resonators, designed to match the 50 Ohms impedance of the lines on a high dielectric constant GaAs substrate. The line resonators cross each other perpendicularly through their centers, forming a cross. Microstrip feed lines are coupled th...

  20. A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer.

    Science.gov (United States)

    Coffey, Aaron M; Shchepin, Roman V; Feng, Bibo; Colon, Raul D; Wilkens, Ken; Waddell, Kevin W; Chekmenev, Eduard Y

    2017-11-01

    Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B 0 /B 1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1- 13 C-d 3 , where the 13 C polarization was estimated to be P 13C =20±2.5% corresponding to 13 C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13 C enhancement at 3 T with respect to thermally induced polarization at room temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Modeling induced polarization effects in helicopter time domain electromagnetic data: Synthetic case studies

    DEFF Research Database (Denmark)

    Viezzoli, Andrea; Kaminskiy, Vladislav; Fiandaca, Gianluca

    2017-01-01

    We have developed a synthetic multiparametric modeling and inversion exercise undertaken to study the robustness of inverting airborne time-domain electromagnetic (TDEM) data to extract Cole-Cole parameters. The following issues were addressed: nonuniqueness, ill posedness, dependency on manual...... constrained multiparametric inversion was evaluated, including recovery of chargeability distributions from shallow and deep targets based on analysis of induced polarization (IP) effects, simulated in airborne TDEM data. Different scenarios were studied, including chargeable targets associated...... by a shallower chargeable target, became possible only when full Cole-Cole modeling was used in the inversion. Lateral constraints improved the recoverability of model parameters. Finally, modeling IP effects increased the accuracy of recovered electrical resistivity models....

  2. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Reduction of the Thompson scattering cross section in a strong circularly polarized light field in a plasma with the change of its spectrum. “quantum-classical” electron

    Science.gov (United States)

    Korobkin, V. V.; Romanovsky, M. Yu.

    1992-12-01

    It is shown that in a strong circularly polarized laser field a classical electron motion around ions can occur. The scattering of these electrons in a plasma has the Thompson cross section in the limit of strongs field only and for a subrelativistic motion of the electrons. There are non-ion satellites apart from the basic frequency in the scattering spectrum.

  4. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    the first experiment, the HHG beam was spectrally dispersed using a spectrometer com- posed of a toroidal mirror, a laminar Au grating with a groove...field of the foil. The alternating polarity of the CCD Grating Toroid Magnetic foil Electro- magnet Al filter λ = 790 nm, 40 fs, 4 kHz, 10 W λ/2 λ/2 λ/4...our spectrometer. The spectrometer consists of a toroid mirror (glass substrate coated by 100 nm of B4C and tilted at a grazing angle of 8°), a

  5. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  6. MECHANISMS OF PRIMARY RECEPTION OF ELECTROMAGNETIC WAVES OF OPTICAL RANGE AS A BIOPHYSICAL BASIS OF POLARIZED LIGHT THERAPY

    Directory of Open Access Journals (Sweden)

    S. O. Hulyar

    2015-09-01

    Full Text Available An existence of separate functional system of electromagnetic balance regulation has been substantiated and a working conception of light puncture has been formulated. As a basis, there is a possibility to use the acupuncture points for input of biologically necessary electromagnetic waves into the system of their conductors in a body that might be considered as a transport facility for energy ofthe polarized electromagnetic waves. Zones-recipients are organs having an electromagnetic disbalance due to excess of biologically inadequate radiation and being the targets for peroxide oxidation, foremost, a body has the neurohormonal and immune regulatory systems. Electromagnetic stimulation or modification of functions of the zones-recipients determines achievement of therapeutic and useful effects, and their combination with local reparative processes allows attaining a clinical goal. We represent own and literary experimental data about development of physiological responses (analgesia, bronchospasm control, immune stimulation and inhibition of peroxide oxidation of lipids to BIOPTRON-light exposure on the acupuncture points or biologically active zones. We show the experimental facts in support of a hypothesis that a living organism can perceive an action of the electromagnetic waves of optical range not only via the visual system, but also through the off-nerve receptors (specific energy-sensitive proteins detecting critical changes of energy in cells and functioning as the "sensory" cell systems, as well as via the acupuncture points. This confirms an important role of the electromagnetic waves of optical range in providing normal vital functions of living organisms. A current approach to BIOPTRON light therapy consists in combined (local and system exposure of the electromagnetic waves within the biologically necessary range.

  7. Protons and electrons generated from a 5-{mu}m thick copper tape target irradiated by s-, circularly-, and p-polarized 55-fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan)], E-mail: lizhong@sinap.ac.cn; Daido, H. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Fukumi, A. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Bulanov, S.V.; Sagisaka, A.; Ogura, K.; Yogo, A.; Nishiuchi, M.; Orimo, S.; Mori, M. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Oishi, Y.; Nayuki, T.; Fujii, T.; Nemoto, K. [Central Research Institute of Electric Power Industry, Nagasaka 2-6-1, Yokosuka, Kanagawa 240-0196 (Japan); Nakamura, S.; Noda, A. [Institute of Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Choi, I.W.; Sung, J.H.; Ko, D.-K.; Lee, J. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2007-10-01

    The angular distribution and energy spectra of energetic protons emitted from a 5-{mu}m thick copper tape target irradiated by p-, circularly-, and s-polarized 55-fs laser pulses with intensity of 8-9x10{sup 18} W/cm{sup 2} are measured. The protons are found in the rear target normal direction while the hot electrons are found in the laser propagation direction. The maximum energy of protons is equal to 1.34 MeV for p-polarized irradiation. The energy spectrum of protons depends strongly on the total amount of electrons but it does not so strongly depend on the electron angular distribution under our experiment conditions. Two-dimensional particle in cell simulations also show the maximal proton acceleration for the p-polarized pulse, less efficient acceleration for the circular polarization, and lower acceleration efficiency in the case of the s-polarization, which is related to the electron acceleration efficiency at the front side of the target.

  8. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    Science.gov (United States)

    2016-05-23

    used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s...condition for full phase matching by analyzing the operator that propagates the vec- torial pump field in circularly polarized HHG (we assume nothing about...throughout propagation. It is instructive to obtain the propagation operator that transfer t  E , 0BC ( ) of equation (6) to t  E z,BC ( ) of equation (7

  9. NON-RACEMIC AMINO ACID PRODUCTION BY ULTRAVIOLET IRRADIATION OF ACHIRAL INTERSTELLAR ICE ANALOGS WITH CIRCULARLY POLARIZED LIGHT

    International Nuclear Information System (INIS)

    De Marcellus, Pierre; Nuevo, Michel; Danger, Gregoire; Deboffle, Dominique; Le Sergeant d'Hendecourt, Louis; Meinert, Cornelia; Filippi, Jean-Jacques; Meierhenrich, Uwe J.; Nahon, Laurent

    2011-01-01

    The delivery of organic matter to the primitive Earth via comets and meteorites has long been hypothesized to be an important source for prebiotic compounds such as amino acids or their chemical precursors that contributed to the development of prebiotic chemistry leading, on Earth, to the emergence of life. Photochemistry of inter/circumstellar ices around protostellar objects is a potential process leading to complex organic species, although difficult to establish from limited infrared observations only. Here we report the first abiotic cosmic ice simulation experiments that produce species with enantiomeric excesses (e.e.'s). Circularly polarized ultraviolet light (UV-CPL) from a synchrotron source induces asymmetric photochemistry on initially achiral inter/circumstellar ice analogs. Enantioselective multidimensional gas chromatography measurements show significant e.e.'s of up to 1.34% for ( 13 C)-alanine, for which the signs and absolute values are related to the helicity and number of CPL photons per deposited molecule. This result, directly comparable with some L excesses measured in meteorites, supports a scenario in which exogenous delivery of organics displaying a slight L excess, produced in an extraterrestrial environment by an asymmetric astrophysical process, is at the origin of biomolecular asymmetry on Earth. As a consequence, a fraction of the meteoritic organic material consisting of non-racemic compounds may well have been formed outside the solar system. Finally, following this hypothesis, we support the idea that the protosolar nebula has indeed been formed in a region of massive star formation, regions where UV-CPL of the same helicity is actually observed over large spatial areas.

  10. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Science.gov (United States)

    Hewson, D.; Vukusic, P.; Eichhorn, S. J.

    2017-06-01

    Evaporation induced self-assembled (EISA) thin films of cellulose nanocrystals (CNCs) have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP) light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP) light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM) images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  11. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Directory of Open Access Journals (Sweden)

    D. Hewson

    2017-06-01

    Full Text Available Evaporation induced self-assembled (EISA thin films of cellulose nanocrystals (CNCs have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  12. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  13. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  14. Scattering of Electromagnetic Radiation by Apertures: II. Oblique Incidence on the Slotted Plane for Parallel Polarization,

    Science.gov (United States)

    The report is the second in a series of investigations into the diffraction of electromagnetic radiation by apertures in conducting screens. Herein...is presented a technique for obtaining the fields everywhere for plane electromagnetic radiation incident obliquely on a slotted conducting plane. The

  15. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  16. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  17. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  18. Polarization observables in the process d + p → d+ X and electromagnetic form factors of N → N* transitions

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Tomasi-Gustafsson, E.

    1996-01-01

    We analyze the properties of the inclusive d + p-reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms (ω-,σ-, n- exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances excitation. Existing data on the tensor analyzing power are in agreement with the predictions based on the ω-exchange model. (authors)

  19. Polarization observables in the process d + p {yields} d+ X and electromagnetic form factors of N {yields} N* transitions

    Energy Technology Data Exchange (ETDEWEB)

    Rekalo, M.P.; Tomasi-Gustafsson, E.

    1996-12-31

    We analyze the properties of the inclusive d + p-reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms ({omega}-,{sigma}-, n- exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances excitation. Existing data on the tensor analyzing power are in agreement with the predictions based on the {omega}-exchange model. (authors). 18 refs.

  20. Effects of electric field and light polarization on the electromagnetically induced transparency in an impurity doped quantum ring

    Science.gov (United States)

    Bejan, D.; Stan, C.; Niculescu, E. C.

    2018-01-01

    We theoretically investigated the effects of the impurity position, in-plane electric field, intensity and polarization of the probe and control lasers on the electromagnetically induced transparency (EIT) in GaAs/GaAlAs disc shaped quantum ring. Our study reveals that, depending on the impurity position, the quantum system presents two specific configurations for the EIT occurrence even in the absence of the external electric field, i.e. ladder-configuration or V-configuration, and changes the configuration from ladder to V for specific electric field values. The polarization of the probe and control lasers plays a crucial role in obtaining a good transparency. The electric field controls the red-shift (blue-shift) of the transparency window and modifies its width. The system exhibits birefringence for the probe light in a limited interval of electric field values.

  1. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  2. 20/30 GHz dual-band circularly polarized reflectarray antenna based on the concentric dual split-loop element

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich

    2012-01-01

    A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...

  3. Probing the Interaction of Human Serum Albumin with Norfloxacin in the Presence of High-Frequency Electromagnetic Fields: Fluorescence Spectroscopy and Circular Dichroism Investigations

    Directory of Open Access Journals (Sweden)

    Jamshidkhan Chamani

    2011-11-01

    Full Text Available The present study describes an investigation by fluorescence quenching, circular dichroism and UV-visible spectroscopy of the interaction between norfloxacin (NRF and human serum albumin (HSA in the presence of electromagnetic fields (EMFs. The results obtained from this study indicated that NRF had a strong ability to quench HSA at λex = 280 nm. In addition, a slight blue shift occurred, which suggested that the microenvironment of the protein became more hydrophobic after addition of NRF. The interaction between the NRF and HSA, whether in the absence or presence of an EMF, was considered to be a static quenching mechanism. Moreover, synchronous fluorescence demonstrated that the microenvironment around Trp became modified. Data of HSA-NRF in the presence of EMFs between 1 Hz–1 MHz confirmed the results of quenching and blue shifts. Corresponding Stern-Volmer plots were also drawn and the resultant Ksv and kq values were compared. Moreover, the binding parameters, including the number of binding sites, the binding constant and the distance, r, between donor and acceptor, were calculated based on Förster’s non-radiative energy transfer theory. According to far and near UV-CD, the formation of the complex caused changes of the secondary and tertiary structures of HSA. The obtained results are significant for patients who are subjected to high-frequency radiation as this was found to reduce the affinity of NRF to HSA.

  4. Vacuum polarization effects in the (μ-4He)+ atom and the Born-Infeld electromagnetic theory

    International Nuclear Information System (INIS)

    Iacopini, E.; Zavattini, E.

    1983-01-01

    It is shown that the Born-Infeld nonlinear electromagnetic theory predicts the n = 2 fine-structure differences in the (μ -4 He) + system in fair agreement with the experimental results. A discussion on the birifrangence induced in vacuum by a static magnetic field within the frame of classical Born-Infeld-type theories is also presented

  5. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  6. Electromagnetic fields of an ultra-short tightly-focused radially-polarized laser pulse

    Science.gov (United States)

    Salamin, Yousef I.; Li, Jian-Xing

    2017-12-01

    Fully analytic expressions, for the electric and magnetic fields of an ultrashort and tightly focused laser pulse of the radially polarized category, are presented to lowest order of approximation. The fields are derived from scalar and vector potentials, along the lines of our earlier work for a similar pulse of the linearly polarized variety. A systematic program is also described from which the fields may be obtained to any desired accuracy, analytically or numerically.

  7. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  8. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  9. Light-induced spin polarizations in quantum rings

    NARCIS (Netherlands)

    Joibari, F.K.; Blanter, Y.M.; Bauer, G.E.W.

    2014-01-01

    Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the principle by studying a simple generic model system, i.e., the

  10. Electromagnetic Power Harvester Using Wide-Angle and Polarization-Insensitive Metasurfaces

    Directory of Open Access Journals (Sweden)

    Xuanming Zhang

    2018-03-01

    Full Text Available A new wide-angle and polarization-insensitive metasurface (MS instead of traditional antenna is built as the primary ambient energy harvester in this paper. The MS is a two-dimensional energy harvesting array that is composed of subwavelength electrical small ring resonator that is working at 2.5 GHz (LTE/WiFi. In the case of different polarization and incidence angles, we demonstrate the metasurface can achieve high harvesting efficiency of 90%. The fabricated prototype of 9 × 9 MS energy harvesting array is measured, and the experimental results validate that the proposed MS has a good performance more than 80% of energy harvesting efficiency for arbitrary polarization and wide-angle incident waves. The good agreement of the simulation with the experiment results verifies the practicability and effectiveness of the proposed MS structure, which will provide a new source of supply in wireless sensor networks (WSN.

  11. Recent progress on the unified theory of polarization and coherence for stochastic electromagnetic fields

    DEFF Research Database (Denmark)

    Wang, Wei; Zhao, Juan; Hu, Xiaoying

    2017-01-01

    All optical fields undergo random fluctuation and the underlying theory referred to as coherence and polarization of optical fields has played a fundamental role as an important manifestation of the random fluctuations of the electric fields. In this paper, we reviewed our recent theoretical...

  12. Three-Way-Switchable (Right/Left/OFF) Selective Reflection of Circularly Polarized Light on Solid Thin Films of Helical Polymer Blends.

    Science.gov (United States)

    Nagata, Yuuya; Uno, Makoto; Suginome, Michinori

    2016-06-13

    Two poly(quinoxaline-2,3-diyl) copolymers bearing miscibility-enhancing 8-chlorooctyloxy and (S)-2-methylbutoxy or n-butoxy side chains were synthesized. After annealing in CHCl3 vapor, a polymer-blend film of these copolymers exhibited selective reflection of right-handed circularly polarized light (CPL) in the visible region. The handedness of the CPL reflected was completely inverted upon annealing of the film in THF vapor. Annealing in n-hexane vapor resulted in the phase separation of the polymer blend, which turned the selective reflection off. This three-way-switchable reflection, that is, reflection of right-handed or left-handed CPL, together with an OFF state, could be observed visually through right- and left-handed CPL filters. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  14. Propagation properties of right-hand circularly polarized Airy-Gaussian beams through slabs of right-handed materials and left-handed materials.

    Science.gov (United States)

    Huang, Jiayao; Liang, Zijie; Deng, Fu; Yu, Weihao; Zhao, Ruihuang; Chen, Bo; Yang, Xiangbo; Deng, Dongmei

    2015-11-01

    The propagation of right-hand circularly polarized Airy-Gaussian beams (RHCPAiGBs) through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the parameter χ0 on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating effect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we go a step further to explore the radiation force including the gradient force and scattering force of the RHCPAiGBs.

  15. Electron's anomalous magnetic-moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    International Nuclear Information System (INIS)

    Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  16. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu

    2012-07-01

    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  17. Jordan Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    Science.gov (United States)

    Mota, R. D.; Xicoténcatl, M. A.; Granados, V. D.

    2004-02-01

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.

  18. Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    Energy Technology Data Exchange (ETDEWEB)

    Mota, R D [Unidad Profesional Interdisciplinaria de IngenierIa y TecnologIas Avanzadas, IPN. Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico DF (Mexico); Xicotencatl, M A [Departamento de Matematicas del Centro de Investigacion y Estudios Avanzados del IPN, Mexico DF, 07000 (Mexico); Granados, V D [Escuela Superior de FIsica y Matematicas, Instituto Politecnico Nacional, Ed. 9, Unidad Profesional Adolfo Lopez Mateos, 07738 Mexico DF (Mexico)

    2004-02-20

    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.

  19. A New Approach to Suppress the Effect of Machining Error for Waveguide Septum Circular Polarizer at 230 GHz Band in Radio Astronomy

    Science.gov (United States)

    Hasegawa, Yutaka; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu; Nishimura, Atsushi; Han, Johnson; Inoue, Makoto

    2017-05-01

    A new stepped septum-type waveguide circular polarizer (SST-CP) was developed to operate in the 230 GHz band for radio astronomy, especially submillimeter-band VLBI observations. For previously reported SST-CP models, the 230 GHz band is too high to achieve the design characteristics in manufactured devices because of unexpected machining errors. To realize a functional SST-CP that can operate in the submillimeter band, a new method was developed, in which the division surface is shifted from the top step of the septum to the second step from the top, and we simulated the expected machining error. The SST-CP using this method can compensate for specified machining errors and suppress serious deterioration. To verify the proposed method, several test pieces were manufactured, and their characteristics were measured using a VNA. These results indicated that the insertion losses were approximately 0.75 dB, and the input return losses and the crosstalk of the left- and right-hand circular polarization were greater than 20 dB at 220-245 GHz on 300 K. Moreover, a 230 GHz SST-CP was developed by the proposed method and installed in a 1.85-m radio telescope receiver systems, and then had used for scientific observations during one observation season without any problems. These achievements demonstrate the successful development of a 230 GHz SST-CP for radio astronomical observations. Furthermore, the proposed method can be applicable for observations in higher frequency bands, such as 345 GHz.

  20. Administrative Circulars

    CERN Multimedia

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  1. Difference between the Brewster angle and angle of minimum reflectance for incident unpolarized or circularly polarized light at interfaces between transparent media.

    Science.gov (United States)

    Azzam, R M A

    2015-06-01

    For reflection at interfaces between transparent optically isotropic media, the difference between the Brewster angle ϕB of zero reflectance for incident p-polarized light and the angle ϕu min of minimum reflectance for incident unpolarized or circularly polarized light is considered as function of the relative refractive n in external and internal reflection. We determine the following. (i) ϕu min reflection (n > 1), the maximum difference (ϕB - ϕu min)max = 75° at n = 2 + √3. (iii) In internal reflection and 0 reflectance R0 at normal incidence is in the range 0 ≤ R0 ≤ 1/3, ϕu min = 0, and ϕB - ϕu min = ϕB. (v) For internal reflection and 0 < n < 2 - √3, ϕu min exhibits an unexpected maximum (= 12.30°) at n = 0.24265. Finally, (vi) for 1/3 ≤ R0 < 1, Ru min at ϕu min is limited to the range 1/3 ≤ Ru min < 1/2.

  2. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    Science.gov (United States)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  3. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  4. Circular differential microscopy

    International Nuclear Information System (INIS)

    Maestre, M.F.; Bustamante, C.; Keller, D.

    1985-01-01

    The authors describe the historical development of the theory of differential imaging and the invention of the circular differential imaging microscope. The technique is shown to be a logical extension of the research on the interaction of circularly polarized light with stuctures whose dimensions are arbitrary with respect to the wavelength of light. Shown is the circular dichroism spectra in arbitrary units of E. cirrhosa sperm heads, measured by techniques with different collection angles of scattered light. Also presented is a scanning electron micrograph of a freexe-dried sperm head from E. cirrhosa. It was shown that circular differential scattering is specially sensitive to the dimensions of the structure close to the wavelength of the incident light, and application of circular intensity differential scattering theory to images extend these results

  5. Two-dimensional s-polarized solitary waves in plasmas. II. Stability, collisions, electromagnetic bursts, and post-soliton evolution

    International Nuclear Information System (INIS)

    Sanchez-Arriaga, G.; Lefebvre, E.

    2011-01-01

    The dynamics of two-dimensional s-polarized solitary waves is investigated with the aid of particle-in-cell (PIC) simulations. Instead of the usual excitation of the waves with a laser pulse, the PIC code was directly initialized with the numerical solutions from the fluid plasma model. This technique allows the analysis of different scenarios including the theoretical problems of the solitary wave stability and their collision as well as features already measured during laser-plasma experiments such as the emission of electromagnetic bursts when the waves reach the plasma-vacuum interface, or their expansion on the ion time scale, usually named post-soliton evolution. Waves with a single density depression are stable whereas multihump solutions decay to several waves. Contrary to solitons, two waves always interact through a force that depends on their relative phases, their amplitudes, and the distance between them. On the other hand, the radiation pattern at the plasma-vacuum interface was characterized, and the evolution of the diameter of different waves was computed and compared with the ''snow plow'' model.

  6. Real photon spectral weight functions, imaginary part of vacuum polarization and electromagnetic vertices

    International Nuclear Information System (INIS)

    Chahine, C.; College de France, 75 - Paris. Lab. de Physique Corpusculaire)

    1978-02-01

    The concept of a real photon spectral weight function for any cross-section involving charged particles is introduced as a simple approximation taking into account the soft part of photon emission to all orders in perturbation theory. The spectral weight function replaces the energy-momentum conservation delta function in the elastic cross-section. The spectral weight function is computed in closed form in space-time and in the peaking approximation in momentum space. The spectral weight function description is applied to the imaginary part of vacuum polarization ImPI and to electron-proton scattering. A spectral representation for ImPI is derived and its content compared with the known fourth order result, showing in particular the identity of the soft and peaking approximations in lowest order. The virtual photon radiative corrections are discussed in part, with emphasis on the threshold behavior of the vertex functions. A relativistic generalization of the electric non-relativistic vertex function is given, whose asymptotic behavior is approppriate to use in conjuction with the spectral weight function

  7. Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas

    International Nuclear Information System (INIS)

    Afzal, Muhammad U.; Esselle, Karu P.

    2015-01-01

    This paper presents a quasi-analytical technique to design a continuous, all-dielectric phase correcting structures (PCSs) for circularly polarized Fabry-Perot resonator antennas (FPRAs). The PCS has been realized by varying the thickness of a rotationally symmetric dielectric block placed above the antenna. A global analytical expression is derived for the PCS thickness profile, which is required to achieve nearly uniform phase distribution at the output of the PCS, despite the non-uniform phase distribution at its input. An alternative piecewise technique based on spline interpolation is also explored to design a PCS. It is shown from both far- and near-field results that a PCS tremendously improves the radiation performance of the FPRA. These improvements include an increase in peak directivity from 22 to 120 (from 13.4 dBic to 20.8 dBic) and a decrease of 3 dB beamwidth from 41.5° to 15°. The phase-corrected antenna also has a good directivity bandwidth of 1.3 GHz, which is 11% of the center frequency

  8. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits

    International Nuclear Information System (INIS)

    Blanchet, Luc; Faye, Guillaume; Iyer, Bala R; Sinha, Siddhartha

    2008-01-01

    The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes

  9. Lethality in mice and rats exposed to 2450 MHz circularly polarized microwaves as a function of exposure duration and environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E.; Kinn, J.B.; Ali, J.; Carter, H.B.; Rehnberg, B.; Stead, A.G.

    1985-02-01

    Adult male CD-1 mice and CD rats were used to determine LD50/24 h lethality rates from exposure to 2450-MHz circularly polarized microwaves. Groups of 16 mice or six rats were exposed in each of 32 combinations of nominal power density, exposure duration, and environmental temperature and relative humidity. An analysis of variance probit model was used to determine the influence each variable had on the probability of death. Significant factors in lethality were nominal power density, exposure duration and environmental temperature, but not environmental relative humidity. The estimated power density (mW cm-2) required to kill 50% of the animals in 24 h is halved when the environmental temperature is increased from 20 to 30 degrees C. Similarly, only 20-25% of the power density is required when the exposure duration is increased from 1 to 4 h. The use of nominal power density as a predictor of the probability of death was more efficient than specific absorption rate estimated experimentally by twin-well calorimetry. The exposure of one mouse at a time, instead of 16, did not alter the predicted death rate.

  10. Compton polarimetry detection of small circularly and linearly polarized impurities in Mössbauer 8.4 keV (3/2-1/2) M1 γ-transition of {sup 169}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Tsinoev, V.; Cherepanov, V.; Shuvalov, V.; Balysh, A.; Gabbasov, R., E-mail: graul@list.ru [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-12-15

    The arrangement of an experiment to detect the P−odd and P, T−odd polarized part of the Mössbauer ({sup +}3/2– {sup +}1/2) gamma transition of a deformed {sup 169}Tm nucleus with an energy of 8.4 keV by Compton polarimetry is discussed. Tm {sub 2}O{sub 3} single crystal with a quadrupolarly split Mössbauer spectrum is proposed as a resonance polarizer. A Be-scatterer-based Compton polarimeter and a synchronously detecting system will be used to measure the P-odd circular polarization P{sub C}and P, T-odd linear polarization P{sub L}.The expected accuracy of measuring the relative magnitude of the P, T-odd contribution is about 1% of the magnitude of usual weak nucleon–nucleon interaction.

  11. Influence of gravitation on the propagation of electromagnetic radiation

    Science.gov (United States)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  12. Decay of a weakly bound level in a monochromatic electromagnetic field and a static magnetic field

    International Nuclear Information System (INIS)

    Rylyuk, V.M.; Ortner, J.

    2003-01-01

    We consider an electron that is bound by a zero-range potential and a constant magnetic field and which becomes disturbed by a monochromatic laser beam with elliptical polarization. The exact solution of the Schroedinger equation for an electron in the presence of an arbitrary electromagnetic wave and a static magnetic field is obtained. Exact expressions have been found for the complex energy, whose real and imaginary parts yield the level position and the width of an electron in a zero-range force field, a constant magnetic field, and a monochromatic electromagnetic field. These expressions have been analyzed in details for the case of a circularly polarized laser light

  13. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry

    International Nuclear Information System (INIS)

    Modica, Paola; De Marcellus, Pierre; D'Hendecourt, Louis Le Sergeant; Meinert, Cornelia; Meierhenrich, Uwe J.; Nahon, Laurent

    2014-01-01

    The discovery of meteoritic amino acids with enantiomeric excesses of the L-form (ee L ) has suggested that extraterrestrial organic materials may have contributed to prebiotic chemistry and directed the initial occurrence of the ee L that further led to homochirality of amino acids on Earth. A proposed mechanism for the origin of ee L in meteorites involves an asymmetric photochemistry of extraterrestrial ices by UV circularly polarized light (CPL). We have performed the asymmetric synthesis of amino acids on achiral extraterrestrial ice analogs by VUV CPL, investigating the chiral asymmetry transfer at two different evolutionary stages at which the analogs were irradiated (regular ices and/or organic residues) and at two different photon energies (6.6 and 10.2 eV). We identify 16 distinct amino acids and precisely measure the L-enantiomeric excesses using the enantioselective GC × GC-TOFMS technique in five of them: α-alanine, 2,3-diaminopropionic acid, 2-aminobutyric acid, valine, and norvaline, with values ranging from ee L = –0.20% ± 0.14% to ee L = –2.54% ± 0.28%. The sign of the induced ee L depends on the helicity and the energy of CPL, but not on the evolutionary stage of the samples, and is the same for all five considered amino acids. Our results support an astrophysical scenario in which the solar system was formed in a high-mass star-forming region where icy grains were irradiated during the protoplanetary phase by an external source of CPL of a given helicity and a dominant energy, inducing a stereo-specific photochemistry.

  14. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Muhammad Shumail

    2016-07-01

    Full Text Available Permanent magnet insertion devices (IDs, which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λ_{u} and undulator deflection parameter (K are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  15. Information Circulars

    International Nuclear Information System (INIS)

    1969-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  16. Magnetization reversal in ferromagnetic film through solitons by electromagnetic field

    International Nuclear Information System (INIS)

    Veerakumar, V.; Daniel, M.

    2001-07-01

    We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)

  17. Information Circulars

    International Nuclear Information System (INIS)

    1965-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  18. Information circulars

    International Nuclear Information System (INIS)

    1997-02-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to February 1997, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  19. Information circulars

    International Nuclear Information System (INIS)

    1992-08-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex

  20. Information circulars

    International Nuclear Information System (INIS)

    1999-06-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to the end of May 1999, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  1. Information circulars

    International Nuclear Information System (INIS)

    1994-08-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex

  2. Information Circulars

    International Nuclear Information System (INIS)

    1966-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  3. Information circulars

    International Nuclear Information System (INIS)

    2002-05-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to the end of April 2002. A complete numerical list of information circulars is reproduced with their titles in the Annex

  4. Circular Motion of a Small Oscillator in a Zero-Point Field Without External Forces: Is It Possible?

    OpenAIRE

    Levin, Yefim S.

    2016-01-01

    A small dipole oscillator moving along a circular trajectory in zero-point electromagnetic field ( ZPF ) and with a polarization normal to the rotation plane, is considered. Temporal periodicity conditions are imposed on ZPF, associated with the way the rotating oscillator observes ZPF. They are similar to spatial boundary conditions in Casimir phenomenon and therefore result in ZPF spectrum change from continuous one to a discrete one and, as a consequence, an effective temperature of the mo...

  5. Information Circulars

    International Nuclear Information System (INIS)

    1973-01-01

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  6. Circular Updates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...

  7. Modelling the circular polarisation of Earth-like exoplanets: constraints on detecting homochirality

    Science.gov (United States)

    Hogenboom, Michael; Stam, Daphne; Rossi, Loic; Snik, Frans

    2016-04-01

    The circular polarisation of light is a property of electromagnetic radiation from which extensive information can be extracted. It is oft-neglected due to its small signal relative to linear polarisation and the need for advanced instrumentation in measuring it. Additionally, numerical modelling is complex as the full Stokes vector must always be computed. Circular polarisation is commonly induced through the multiple scattering of light by aerosols te{hansen} and multiple reflections of light by rough surfaces te{circplanets}. Most interestingly, distinctive spectral circular polarimetric behaviour is exhibited by light reflected by organisms due to the homochiral molecular structure of all known organisms te{chiralbailey}. Especially fascinating is the unique circular polarimetric behaviour of light reflected by photosynthesising organisms at the absorption wavelength of the chlorophyll pigment te{circpolchar}. This presents the previously unexplored possibility of circular polarimetry as a method for identifying and characterising the presence of organisms, a method which could be applied in the hunt for extraterrestrial life. To date, few telescopes exist that measure circular polarisation and none that have been deployed in space. Observations of the circular polarisation reflected by other planets in the solar system have been made with ground-based telescopes, with significant results te{circplanets}. However, none of these observations have been made at the phase angles at which exoplanets will be observed. Also, none have been made of the Earth, which is the logical starting point for the study of biologically induced circular polarisation signals. This introduces the need for numerical modelling to determine the extent to which circular polarisation is present in light reflected by exoplanets or the Earth. In this study, we model the multiple scattering and reflection of light using the doubling-adding method te{dehaan}. We will present circular

  8. Information circulars

    International Nuclear Information System (INIS)

    1987-06-01

    The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex

  9. Detection of ULF electromagnetic emissions as a precursor to an earthquake in China with an improved polarization analysis

    Directory of Open Access Journals (Sweden)

    Y. Ida

    2008-07-01

    Full Text Available An improved analysis of polarization (as the ratio of vertical magnetic field component to the horizontal one has been developed, and applied to the approximately four years data (from 1 March 2003 to 31 December 2006 observed at Kashi station in China. It is concluded that the polarization ratio has exhibited an apparent increase only just before the earthquake on 1 September 2003 (magnitude = 6.1 and epicentral distance of 116 km.

  10. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  11. Non-isomorphic radial wavenumber dependencies of residual zonal flows in ion and electron Larmor radius scales, and effects of initial parallel flow and electromagnetic potentials in a circular tokamak

    Science.gov (United States)

    Yamagishi, Osamu

    2018-04-01

    Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.

  12. Operational Circulars

    CERN Multimedia

    2003-01-01

    Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...

  13. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  14. Information circulars

    International Nuclear Information System (INIS)

    1989-04-01

    The document summarizes the Information Circulars published by the IAEA under the symbol INFCIRC/ for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A complete list of INFCIRCs in numerical order with their titles is given in the Annex

  15. Concerning the electromagnetic radiation spectrum of a hot plasma with Langmuir turbulence in a magnetic field

    International Nuclear Information System (INIS)

    Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2001-01-01

    We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)

  16. Analysis on Electromagnetic Interference for Power Plane-Battery Management System (PP-BMS Enclosure

    Directory of Open Access Journals (Sweden)

    Yanpeng SUN

    2014-11-01

    Full Text Available Finite Difference Time Domain (FDTD is applied to study the characteristics of electromagnetic interference for power plane-battery management system (PP-BMS enclosure, for modeling the coupling of an incident electromagnetic pulse (EMP with a conducting wire through a BMS enclosure and aperture on it. Simulation and analysis are done by radius of the wires, incidence angles of EMP in the conditions of different polarized direction, and different annular apertures in consideration. The simulation result shows that interference of the electromagnetic coupling into the PP-BMS enclosure can be affected in different degrees by above factors. At low frequency, the larger the radius of the wire penetrated into the PP-BMS enclosure, the more interference is coupled into the BMS enclosure from electromagnetic field. Also, the electromagnetic energy coupled by penetrated wire when incident wave radiates aslant is more than the coupling energy when incident wave radiates the target vertically in the condition of vertical polarized direction of electric field, and less in the condition of horizontally polarized direction of electric field. Furthermore, in the case of the same aperture area, the coupling electromagnetic energy into the circular annular aperture is smaller than that into the rectangular and the square ones.

  17. Circular RNAs

    DEFF Research Database (Denmark)

    Han, Yi-Neng; Xia, Shengqiang; Zhang, Yuan-Yuan

    2017-01-01

    Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5' or 3' tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhi...... and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment....

  18. Polarimetric purity and the concept of degree of polarization

    Science.gov (United States)

    Gil, José J.; Norrman, Andreas; Friberg, Ari T.; Setälä, Tero

    2018-02-01

    The concept of degree of polarization for electromagnetic waves, in its general three-dimensional version, is revisited in the light of the implications of the recent findings on the structure of polarimetric purity and of the existence of nonregular states of polarization [J. J. Gil et al., Phys Rev. A 95, 053856 (2017), 10.1103/PhysRevA.95.053856]. From the analysis of the characteristic decomposition of a polarization matrix R into an incoherent convex combination of (1) a pure state Rp, (2) a middle state Rm given by an equiprobable mixture of two eigenstates of R, and (3) a fully unpolarized state Ru -3 D, it is found that, in general, Rm exhibits nonzero circular and linear degrees of polarization. Therefore, the degrees of linear and circular polarization of R cannot always be assigned to the single totally polarized component Rp. It is shown that the parameter P3 D proposed formerly by Samson [J. C. Samson, Geophys. J. R. Astron. Soc. 34, 403 (1973), 10.1111/j.1365-246X.1973.tb02404.x] takes into account, in a proper and objective form, all the contributions to polarimetric purity, namely, the contributions to the linear and circular degrees of polarization of R as well as to the stability of the plane containing its polarization ellipse. Consequently, P3 D constitutes a natural representative of the degree of polarimetric purity. Some implications for the common convention for the concept of two-dimensional degree of polarization are also analyzed and discussed.

  19. Circular mats under arbitrary loading

    International Nuclear Information System (INIS)

    Banerjee, A.; Jankov, Z.D.

    1975-01-01

    The analysis of mats as in nuclear power plants may become difficult when the large number of features are intended to be accounted for. Circular mats and arbitrary loadings are only a few of these that are considered. If the subgrade reaction can be represented as the function of subgrade displacement as given by Winkler's, Boussinesq's, or two elastic characteristic approaches, the general numerical method is then possible. Boussinesq's approach was treated in more detail when applied on circular mat with arbitrary loadings. Full polar grid formation that must be used when liftoff occurs is compared to harmonic formulation. The possibility of taking into account the superstructure restraint is indicated

  20. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    Science.gov (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  1. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  2. Applying TM-polarization geoelectric exploration for study of low-contrast three-dimensional targets

    Science.gov (United States)

    Zlobinskiy, Arkadiy; Mogilatov, Vladimir; Shishmarev, Roman

    2018-03-01

    With using new field and theoretical data, it has been shown that applying the electromagnetic field of transverse magnetic (TM) polarization will give new opportunities for electrical prospecting by the method of transient processes. Only applying a pure field of the TM polarization permits poor three-dimensional objects (required metalliferous deposits) to be revealed in a host horizontally-layered medium. This position has good theoretical grounds. There is given the description of the transient electromagnetic method, that uses only the TM polarization field. The pure TM mode is excited by a special source, which is termed as a circular electric dipole (CED). The results of three-dimensional simulation (by the method of finite elements) are discussed for three real geological situations for which applying electromagnetic fields of transverse electric (TE) and transverse magnetic (TM) polarizations are compared. It has been shown that applying the TE mode gives no positive results, while applying the TM polarization field permits the problem to be tackled. Finally, the results of field works are offered, which showed inefficiency of application of the classical TEM method, whereas in contrast, applying the field of TM polarization makes it easy to identify the target.

  3. Vlasov Antenna Data for Electromagnetic Code Validation

    National Research Council Canada - National Science Library

    Greenwood, Andrew

    2003-01-01

    Measured antenna data is provided for validating computational electromagnetic (CEM) computer programs. The subject antenna is the Vlasov antenna, which is formed by cutting a hollow circular cylindrical waveguide at an oblique angle...

  4. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  5. Manipulating light polarizations with a hyperbolic metamaterial waveguide.

    Science.gov (United States)

    Zhu, Hua; Yin, Xiang; Chen, Lin; Zhu, Zhongshu; Li, Xun

    2015-10-15

    In this Letter we demonstrate that a hyperbolic metamaterial (HMM) waveguide array exhibits a giant modal birefringence between the TE and TM modes by utilization of a rectangular waveguide cross section. We further reveal that the designed polarization manipulation device using such a HMM waveguide array with a subwavelength thickness presents the ability to function as a polarizer or quarter- or half-wave plate that enables transmission only for electromagnetic wave (EW) that is polarized at a specific direction, or converting linearly polarized EW to circularly and elliptically polarized EW or rotating linearly polarized EW with 90° at terahertz (THz) frequencies. A giant modal birefringence between the TE and TM modes from 0.8 to 2 between 2 and 4.8 THz is achievable, which is dozens of times higher than conventional quartz birefringent crystals for THz waves. This polarization manipulation device has the performance merits including high transmission efficiency, ultra-compactness, and tunable birefringence, offering a promising approach to manipulating the polarization states of EW.

  6. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field

    International Nuclear Information System (INIS)

    Gomez R, F.; Ondarza R, R.

    2004-01-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  7. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field

    International Nuclear Information System (INIS)

    Gomez R, F.; Ondarza R, R.

    2004-01-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  8. Spacetime algebra as a powerful tool for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Dressel, Justin, E-mail: prof.justin.dressel@gmail.com [Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Konstantin Y. [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Interdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Nori, Franco [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-08

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann–Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric–magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  9. Enantioselective femtosecond laser photoionization spectrometry of limonene using photoelectron circular dichroism

    NARCIS (Netherlands)

    Rafiee Fanood, M.M.; Janssen, M.H.M.; Powis, I.

    2015-01-01

    Limonene is ionized by circularly polarized 420 nm femtosecond laser pulses. Ion mass and photoelectron energy spectra identify the dominant (2 + 1) multiphoton ionization mechanism, aided by TDDFT calculations of the Rydberg excitations. Photoelectron circular dichroism measurements on pure

  10. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  11. Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers.

    Science.gov (United States)

    Sawicki, John; Kastor, Nikolas; Xu, Min

    2008-04-14

    A method for directly simulating coherent backscattering of polarized light by a turbid medium has been developed based on the Electric field Monte Carlo (EMC) method. Electric fields of light traveling in a pair of time-reversed paths are added coherently to simulate their interference. An efficient approach for computing the electric field of light traveling along a time-reversed path is derived and implemented based on the time-reversal symmetry of electromagnetic waves. Coherent backscattering of linearly and circularly polarized light by a turbid medium containing Mie scatterers is then investigated using this method.

  12. Polarization sensitive optical frequency domain imaging system for endobronchial imaging.

    Science.gov (United States)

    Li, Jianan; Feroldi, Fabio; de Lange, Joop; Daniels, Johannes M A; Grünberg, Katrien; de Boer, Johannes F

    2015-02-09

    A polarization sensitive endoscopic optical frequency domain imaging (PS-OFDI) system with a motorized distal scanning catheter is demonstrated. It employs a passive polarization delay unit to multiplex two orthogonal probing polarization states in depth, and a polarization diverse detection unit to detect interference signal in two orthogonal polarization channels. Per depth location four electro-magnetic field components are measured that can be represented in a complex 2x2 field matrix. A Jones matrix of the sample is derived and the sample birefringence is extracted by eigenvalue decomposition. The condition of balanced detection and the polarization mode dispersion are quantified. A complex field averaging method based on the alignment of randomly pointing field phasors is developed to reduce speckle noise. The variation of the polarization states incident on the tissue due to the circular scanning and catheter sheath birefringence is investigated. With this system we demonstrated imaging of ex vivo chicken muscle, in vivo pig lung and ex vivo human lung specimens.

  13. Spiky soliton in circular polarized Alfven wave

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Sanuki, H.; Konno, K.; Wadati, M.

    1979-06-01

    A new type of nonlinear evolution equation for the Alfven waves, propagating parallel to the magnetic field, is now registered to the completely integrable family of nonlinear evolution equations. In spite of the extensive studies of Kaup and Newell, and of Kawata and Inoue, these analysis have been dealing with solutions for restricted boundary conditions. The present paper presents full account of stationary solitary wave solutions for the plane wave boundary condition. The obtained results exhibit peculiar structure of spiky modulation of amplitude and phase, which arises from the derivative nonlinear coupling term. A nonlinear equation for complex amplitude associated with the carrier wave is shown to be a mixed type of nonlinear Schroedinger equation, having and ordinary cubic nonlinear term and the derivative of cubic nonlinear term. (author)

  14. Broadband Circularly Polarized Patch Antenna and Method

    Science.gov (United States)

    2016-09-16

    invention to provide a patch antenna having improved impedance bandwidth and optimized axial ratio over a wide range of frequencies. Attorney Docket...rods 28 in layers above emitter 12. Spacers 26 can be made from syntactic foam, polystyrene foam, polyethylene foam or any number of other polymer ... ceramic having a permittivity εr ~ 30. Other high dielectric material can be used for rods 28 if it has a permittivity εr between about 25 to 35

  15. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  16. Far-field divergence of a vectorial plane wave diffracted by a circular aperture from the vectorial structure

    International Nuclear Information System (INIS)

    Zhou Guo-Quan

    2011-01-01

    Based on the vectorial structure of an electromagnetic wave, the analytical and concise expressions for the TE and TM terms of a vectorial plane wave diffracted by a circular aperture are derived in the far-field. The expressions of the energy flux distributions of the TE term, the TM term and the diffracted plane wave are also presented. The ratios of the power of the TE and TM terms to that of the diffracted plane wave are examined in the far-field. In addition, the far-field divergence angles of the TE term, the TM term and the diffracted plane wave, which are related to the energy flux distribution, are investigated. The different energy flux distributions of the TE and TM terms result in the discrepancy of their divergence angles. The influences of the linearly polarized angle and the radius of the circular aperture on the far-field divergence angles of the TE term, the TM term and the diffracted plane wave are discussed in detail. This research may promote the recognition of the optical propagation through a circular aperture. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Circular dichroism of luminous energy, induced by the dissipation in light scattering by aligned atoms

    International Nuclear Information System (INIS)

    Agre, M.Ya.

    1996-01-01

    A compact expression for the cross section of light scattering by aligned atomic systems is derived. It is shown that in above-threshold or resonant scattering, when the channel of luminous energy dissipation is open, circular dichroism effects can be observed in the angular distribution and the degree of polarization of the scattered light. In such cases circular polarization of the scattered light is also induced when the incident light has no circular polarization

  18. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  19. Circular polarisation in AGN

    NARCIS (Netherlands)

    Macquart, JP

    2002-01-01

    We discuss the constraints that recent observations place on circular polarisation in AGN. In many sources the circular polarisation is variable on short timescales, indicating that it originates in compact regions of the sources. The best prospects for gleaning further information about circular

  20. Modeling magnetic circular dichroism within the polarizable embedding approach

    DEFF Research Database (Denmark)

    Nørby, Morten Steen; Coriani, Sonia; Kongsted, Jacob

    2018-01-01

    Magnetic circular dichroism (MCD) is defined as the differential absorption of left and right circularly polarized light in a sample subjected to an external magnetic field. In order to interpret the results of MCD measurements, theoretical predictions of key MCD parameters can be of utmost...... of the more conventional dielectric continuum approach. Results are presented for cytosine and hypoxanthine solvated in water....

  1. High-efficiency broadband polarization converter based on Ω-shaped metasurface

    Science.gov (United States)

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian

    2017-11-01

    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  2. Administrative Circulars Rev.

    CERN Multimedia

    2003-01-01

    Administrative Circular N° 19 (Rev. 3) - April 2003 Subsistence indemnity - Other expenses necessarily incurred in the course of duty travelAdministrative Circular N° 25 (Rev. 2) - April 2003 Shift work - Special provisions for the Fire and Rescue Service - These circulars have been revised. Human Resources Division Tel. 74128Copies of these circulars are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://humanresources.web.cern.ch/humanresources/internal/admin_services/admincirc/listadmincirc.asp

  3. Coherent control of optical polarization effects in metamaterials

    Science.gov (United States)

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  4. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    Science.gov (United States)

    Stevenson, T.; Benford, D.; Bennett, C.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.; Kogut, A.; Moseley, S.; Panek, J.; Schneider, G.; Travers, D.; U-Yen, K.; Voellmer, G.; Wollack, E.

    2008-04-01

    We describe a prototype detector system designed for precise measurements of Cosmic Microwave Background polarization. The design combines a quasi-optical polarization modulator, a metal feedhorn, a superconducting planar microwave circuit, and a pair of transition-edge sensor (TES) bolometers operating at <100 mK. The circular feedhorn produces highly symmetric beams with very low cross-polarization. The planar circuit preserves symmetry in coupling to bolometers measuring orthogonal polarizations. We implement the circuit with superconducting niobium transmission lines. Three-dimensional interfaces between the planar circuit and waveguides leading to feedhorn and backshort have been carefully designed with electromagnetic simulations. Power is thermalized in resistors and conducted to bolometers via normal electrons. Our system is designed for a 29 43 GHz signal band. We have tested individual circuit elements in this frequency range. Fabrication of a full single-pixel system is underway.

  5. Polarization properties of Gendrin mode waves observed in the Earth's magnetosphere: observations and theory

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2009-12-01

    Full Text Available We show a case of an outer zone magnetospheric electromagnetic wave propagating at the Gendrin angle, within uncertainty of the measurements. The chorus event occurred in a "minimum B pocket". For the illustrated example, the measured angle of wave propagation relative to the ambient magnetic field θkB was 58°±4°. For this event the theoretical Gendrin angle was 62°. Cold plasma model is used to demonstrate that Gendrin mode waves are right-hand circularly polarized, in excellent agreement with the observations.

  6. Publication of administrative circular

    CERN Multimedia

    HR Department

    2009-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003

  7. PUBLICATION OF ADMINISTRATIVE CIRCULAR

    CERN Multimedia

    HR Department

    2008-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003

  8. A Circular Statistical Method for Extracting Rotation Measures

    Indian Academy of Sciences (India)

    Abstract. We propose a new method for the extraction of Rotation Measures from spectral polarization data. The method is based on maximum likelihood analysis and takes into account the circular nature of the polarization data. The method is unbiased and statistically more efficient than the standard 2 procedure.

  9. Polarization fluctuations in stationary light beams

    International Nuclear Information System (INIS)

    Shevchenko, A.; Setaelae, T.; Kaivola, M.; Friberg, A.T.; Royal Institute of Technology , Department of Microelectronics and Applied Physics; Sweden)

    2009-01-01

    For stationary beams the degree of polarization contains only limited information on time dependent polarization. Two approaches towards assessing a beams polarization dynamics, one based on Poincare and the other on Jones vector formalism, are described leading to the notion of polarization time. Specific examples of partially temporally coherent electromagnetic beams are discussed. (Author)

  10. Towards Circular Economy

    DEFF Research Database (Denmark)

    Guldmann, Eva

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  11. Towards Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva; Remmen, Arne

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  12. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  13. Circularity and Lambda Abstraction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  14. Building a Circular Future

    DEFF Research Database (Denmark)

    Merrild, Heidi

    2016-01-01

    Natural resources are scarce and construction accounts for 40 percent of the material and energy consumption in Europe. This means that a switch to a circular future is necessary. ’Building a Circular Future’ maps out where we are, where we are going, and what is needed for this conversion to take...... of the circular strategies is not only in the future. Increased flexibility, optimized operation and maintenance, as well as a healthier building, is low-hanging fruit that can be harvested today. The project’s principles can be implemented in industrialized construction in a large scale today. That is proven...... by the three 1:1 prototypes of building elements, which are designed for maximum reuse and circular economy, that has been developed as a result of the project. Several built projects and commercially available products support this assertion. CIRCULAR PRINCIPLES The focus throughout the book is how to build...

  15. A new soft X-ray magnetic circular dichroism facility at the BSRF beamline 4B7B

    Science.gov (United States)

    Guo, Zhi-Ying; Hong, Cai-Hao; Xing, Hai-Ying; Tang, Kun; Zheng, Lei; Xui, Wei; Chen, Dong-Liang; Cui, Ming-Qi; Zhao, Yi-Dong

    2015-04-01

    X-ray magnetic circular dichroism (XMCD) has become an important and powerful tool because it allows the study of material properties in combination with elemental specificity, chemical state specificity, and magnetic specificity. A new soft X-ray magnetic circular dichroism apparatus has been developed at the Beijing Synchrotron Radiation Facility (BSRF). The apparatus combines three experimental conditions: an ultra-high-vacuum environment, moderate magnetic fields and in-situ sample preparation to measure the absorption signal. We designed a C-type dipole electromagnet that provides magnetic fields up to 0.5 T in parallel (or anti-parallel) direction relative to the incoming X-ray beam. The performances of the electromagnet are measured and the results show good agreement with the simulation ones. Following film grown in situ by evaporation methods, XMCD measurements are performed. Combined polarization corrections, the magnetic moments of the Fe and Co films determined by sum rules are consistent with other theoretical predictions and experimental measurements. Supported by National Natural Science Foundation of China (61204008)

  16. Broadband, Low Sidelobe, Zero Height, Slotted Circular Disk Antenna

    African Journals Online (AJOL)

    A rigorous mathematical theory for a rotationally symmetrical slotted circular disk antenna was developed. The theory applies the principle of "Gradient Invariance" of electromagnetic fields to determine the field components that are unique and single valued at any point in space. To detemine the radiation characteristics of ...

  17. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  18. Electromagnetic wave analogue of electronic diode

    OpenAIRE

    Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...

  19. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  20. [Review] Polarization and Polarimetry

    Science.gov (United States)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  1. Administrative & Operational Circulars - Reminder

    CERN Document Server

    HR Department

    2011-01-01

    All Administrative and Operational Circulars are available on the intranet site of the Human Resources Department at the following address: http://cern.ch/hr-docs/admincirc/admincirc.asp Department Head Office  

  2. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used re...... such as the circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  3. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  4. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  5. Electromagnetic Attraction.

    Science.gov (United States)

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  6. Electromagnetic interactions

    CERN Document Server

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  7. Measurement of inclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Woodward, C.E.; Beise, E.J.; Belz, J.E.; Carr, R.W.; Filippone, B.W.; Lorenzon, W.B.; McKeown, R.D.; Mueller, B.; O'Neill, T.G.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Lee, K.; Makins, N.; Milner, R.; Thompson, A.; Tieger, D.; van den Brand, J.; Young, A.; Yu, X.; Zumbro, J.

    1990-01-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target. This measurement represents the first demonstration of a new method for studying electromagnetic nuclear structure: the scattering of polarized electrons from a polarized nuclear target. The measured asymmetry is in good agreement with a Faddeev calculation and supports the picture of spin-dependent quasielastic scattering from polarized 3 He as predominantly scattering from a polarized neutron

  8. Kramers-Kronig relations for interstellar polarization

    International Nuclear Information System (INIS)

    Martin, P.G.

    1975-01-01

    The difficulties encountered in using the Kramers-Kronig relations to predict the behavior of interstellar polarization are pointed out, while at the same time their value in an interpretive role is acknowledged. Observations of interstellar circular polarization lead to restrictions on the interstellar grain composition, and additional constraints should be possible through measurement of linear polarization in the infrared and the ultraviolet

  9. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul

    2012-08-10

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity\\'s width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.

  10. Circular depolarization ratios of single water droplets and finite ice circular cylinders: a modeling study

    Directory of Open Access Journals (Sweden)

    M. Nicolet

    2012-05-01

    Full Text Available Computations of the phase matrix elements for single water droplets and ice crystals in fixed orientations are presented to determine if circular depolarization δC is more accurate than linear depolarization for phase discrimination. T-matrix simulations were performed to calculate right-handed and left-handed circular depolarization ratios δ+C, respectively δ−C and to compare them with linear ones. Ice crystals are assumed to have a circular cylindrical shape where their surface-equivalent diameters range up to 5 μm. The circular depolarization ratios of ice particles were generally higher than linear depolarization and depended mostly on the particle orientation as well as their sizes. The fraction of non-detectable ice crystals (δ<0.05 was smaller considering a circular polarized light source, reaching 4.5%. However, water droplets also depolarized light circularly for scattering angles smaller than 179° and size parameters smaller than 6 at side- and backscattering regions. Differentiation between ice crystals and water droplets might be difficult for experiments performed at backscattering angles which deviate from 180° unlike LIDAR applications. Instruments exploiting the difference in the P44/P11 ratio at a scattering angle around 115° are significantly constrained in distinguishing between water and ice because small droplets with size parameters between 5 and 10 do cause very high circular depolarizations at this angle. If the absence of the liquid phase is confirmed, the use of circular depolarization in single particle detection is more sensitive and less affected by particle orientation.

  11. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  12. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  13. Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters

    Science.gov (United States)

    Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis

    2018-03-01

    We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.

  14. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  15. SIMULTANEOUS LINEAR AND CIRCULAR OPTICAL POLARIMETRY OF ASTEROID (4) VESTA

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, Sloane J.; Nofi, Larissa A., E-mail: sloanew@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-02-10

    From a single 3.8 hr observation of the asteroid (4) Vesta at 13.°7 phase angle with the POlarimeter at Lick for Inclination Studies of Hot jupiters 2 (POLISH2) at the Lick Observatory Shane 3 m telescope, we confirm rotational modulation of linear polarization in the B and V bands. We measure the peak-to-peak modulation in the degree of linear polarization to be ΔP = (294 ± 35) × 10{sup −6} (ppm) and time-averaged ΔP/P = 0.0575 ± 0.0069. After rotating the plane of linear polarization to the scattering plane, asteroidal rotational modulation is detected with 12σ confidence and observed solely in Stokes Q/I. POLISH2 simultaneously measures Stokes I, Q, U (linear polarization), and V (circular polarization), but we detect no significant circular polarization with a 1σ upper limit of 78 ppm in the B band. Circular polarization is expected to arise from multiple scattering of sunlight by rough surfaces, and it has previously been detected in nearly all other classes of solar system bodies except for asteroids. Subsequent observations may be compared with surface albedo maps from the Dawn Mission, which may allow the identification of compositional variation across the asteroidal surface. These results demonstrate the high accuracy achieved by POLISH2 at the Lick 3 m telescope, which is designed to directly detect scattered light from spatially unresolvable exoplanets.

  16. Phenomenology of the deuteron electromagnetic form factors

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; H. Anklin; J. Arvieux; James P. Ball; Shelton Beedoe; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; K. Dow; Jean-Eric Ducret; Jim Dunne; Lars Ewell; L. Eyraud; C. Furget; Michel Garcon; Ron Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; A. Honegger; J. Jourdan; Serge Kox; Gerfried Kumbartzki; L. Lu; Allison Lung; Pete Markowitz; Justin McIntyre; David Meekins; F. Merchez; Joseph Mitchell; R. Mohring; S. Mtingwa; H. Mrktchyan; D. Pitz; Liming Qin; Ronald Ransome; J.-S. R'eal; Philip Roos; Paul Rutt; Reyad Sawafta; Stepan Stepanyan; Raphael Tieulent; E. Tomasi-Gustafsson; William Turchinetz; K. Vansyoc; J. Volmer; E. Voutier; Claude Williamson; Stephen Wood; Chen Yan; Jianguo Zhao; W. Zhao

    2000-01-01

    A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data

  17. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-09-26

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  18. System for circular and complex tomography

    International Nuclear Information System (INIS)

    Hellstrom, M.J.

    1979-01-01

    This invention discloses a system for conducting circular as well as complex tomographic procedures utilizing apparatus which has no mechanical linkage between the X-ray source and the X-ray receptor. The path of travel of the X-ray source both circularly and linearly is sensed by electromagnetic radiation and more particularly by light radiation which is generated by a laser. The linear travel is sensed by means of reflected laser radiation directed to the X-ray source and fed to an interferometer. The circular travel, on the other hand, is sensed by means of a laser gyroscope also receiving light radiation from a laser. Optical energy sensing means is thus used to generate command signals which are coupled to respective drive motors which act to rotate and when desirable, translate the X-ray receptor so that its motion follows the motion, both orbital and linear, of the X-ray source for performing any desired type of tomographic procedure

  19. Baryon spectroscopy with polarization observables from CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States)

    2016-08-01

    Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.

  20. Polarized electroluminescence from silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, Nikolay; Danilovsky, Eduard; Gets, Dmitry; Klyachkin, Leonid; Kudryavtsev, Andrey; Kuzmin, Roman; Malyarenko, Anna [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Mashkov, Vladimir [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation)

    2012-05-15

    We present the first findings of the circularly polarized electroluminescence (CPEL) from silicon nanostructures which are the p-type ultra-narrow silicon quantum well (Si-QW) confined by {delta}-barriers heavily doped with boron. The CPEL dependences on the forward current and lateral electric field show the circularly polarized light emission which appears to be caused by the exciton recombination through the negative-U dipole boron centers at the Si-QW-{delta}-barriers interface with the assistance of phosphorus donors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Polarized positron sources for the future linear colliders

    International Nuclear Information System (INIS)

    Chaikovska, I.

    2012-01-01

    This thesis introduces the polarized positron source as one of the key element of the future Linear Collider (LC). In this context, the different schemes of the polarized positron source are described highlighting the main issues in this technology. In particular, the main focus is on the Compton based positron source adopted by the CLIC as a preferred option for the future positron source upgrade. In this case, the circularly polarized high energy gamma rays resulting from Compton scattering are directed to a production target where an electromagnetic cascade gives rise to the production of positrons by e + -e - pair conversion. To increase the efficiency of the gamma ray production stage, a multiple collision point line integrated in energy recovery linac is proposed. The simulations of the positron production, capture and primary acceleration allow to estimate the positron production efficiency and provide a simple parametrization of the Compton based polarized positron source in the view of the future LC requirements. The storage ring based Compton source option, so-called Compton ring, is also described. The main constraint of this scheme is given by the beam dynamics resulting in the large energy spread and increased bunch length affecting the gamma ray production rate. An original theoretical contribution is shown to calculate the energy spread induced by Compton scattering. Moreover, an experiment to test the gamma ray production by Compton scattering using a state-of-art laser system developed at LAL has been conducted in the framework of the 'Mighty Laser' project at the ATF, KEK. The experimental layout as well as the main results obtained are discussed in details. The studies carried out in this thesis show that the polarized positron source based on Compton scattering is a promising candidate for the future LC polarized positron source. (author)

  2. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    Energy Technology Data Exchange (ETDEWEB)

    Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  3. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  4. Kappa Coefficients for Circular Classifications

    NARCIS (Netherlands)

    Warrens, Matthijs J.; Pratiwi, Bunga C.

    2016-01-01

    Circular classifications are classification scales with categories that exhibit a certain periodicity. Since linear scales have endpoints, the standard weighted kappas used for linear scales are not appropriate for analyzing agreement between two circular classifications. A family of kappa

  5. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    Science.gov (United States)

    Patty, C. H. Lucas; Visser, Luuk J. J.; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J. M.; Röling, Wilfred F. M.; Snik, Frans

    2017-03-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤ 1 % . In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼ 1 *10-4 and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of Hedera helix leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll a levels measured over the same period by means of UV-vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.

  6. High-speed circular polarimetry of AM Herculis

    International Nuclear Information System (INIS)

    Stockman, H.S.; Sargent, T.A.

    1979-01-01

    The magnetic variable AM Her shows synchronous 3.09 hr variations in its optical flux and polarization, its spectral features, and its two-component X-ray flux. Similar optical behavior is seen in AN UMa and VV Pup. While most theories for these systems assume that the accreting, magnetic white dwarf is rotating with the orbital period, a ''fast rotator'' model has been suggested by Fabian et al. Their model predicts strong modulation of the optical circular polarization with a period of approx.1 minute. We have measured the circular polarization in Am Her for 6 hours with 2 s resolution and obtain an upper limit of 0.2% on the semiamplitude of any steady oscillation in the polarization with a period less than 2 minutes. Such a low limit essentially eliminates fast-rotator models for AM Her. However, the circular polarization is found to show strong flickering with time scales greater than 10 s. This is correlated with the varying optical flux, proving that the optical flickering occurs near the surface of the white dwarf where the field is strong enough for optical cyclotron emission. The lack of significant flickering with time scales less than 10 s and a 30 s delay between flickers in the flux and in polarization suggest that the optical emission region is more extended than ''thin shock'' models predict

  7. Generating surface states in a Weyl semimetal by applying electromagnetic radiation

    Science.gov (United States)

    Deb, Oindrila; Sen, Diptiman

    2017-04-01

    We show that the application of circularly polarized electromagnetic radiation on the surface of a Weyl semimetal can generate states at that surface. These states can be characterized by their surface momentum. The Floquet eigenvalues ei θ of these states come in complex conjugate pairs rather than being equal to ±1 . If the amplitude of the radiation is small, we find some unusual bulk-boundary relations: the values of θ of the surface states lie at the extrema of the θ 's of the bulk system, and the peaks of the Fourier transforms of the surface state wave functions lie at the momenta where the bulk θ 's have extrema. For the case of zero surface momentum, we can analytically derive scaling relations between the decay length of the surface states and the amplitude and penetration length of the radiation. For topological insulators, we again find that circularly polarized radiation can generate states on the top surface; these states have much larger decay lengths than the surface states which are present even in the absence of radiation. Finally, we show that radiation can generate surface states for trivial insulators also.

  8. Physical optics and full-wave simulations of transmission of electromagnetic fields through electrically large planar meta-sheets

    Directory of Open Access Journals (Sweden)

    E. Öziş

    2017-09-01

    Full Text Available Ultra-thin metamaterials, called meta-surfaces or meta-sheets, open up new opportunities in designing microwave radomes, including an improved transmission over a broader range of antenna scan angles, tailorable and reconfigurable frequency bands, polarization transformations, one-way transmission and switching ability. The smallness of the unit cells combined with the large electrical size of microwave radomes significantly complicates full-wave numerical simulations as a very fine sampling over an electrically large area is required. Physical optics (PO can be used to approximately describe transmission through the radome in terms of the homogenized transmission coefficient of the radome wall. This paper presents the results of numerical simulations of electromagnetic transmission through planar meta-sheets (infinite and circularly shaped obtained by using a full-wave electromagnetic field simulator and a PO-based solution.

  9. Circular fringe projection profilometry.

    Science.gov (United States)

    Zhao, Hong; Zhang, Chunwei; Zhou, Changquan; Jiang, Kejian; Fang, Meiqi

    2016-11-01

    In this Letter, a novel three-dimensional (3D) measurement method, called the circular fringe projection profilometry (CFPP), is proposed. Similar to the conventional fringe projection profilometry, CFPP also requires fringe pattern projection and capture, phase demodulation, and phase unwrapping. However, it works with a totally different mechanism. CFPP recovers the height of a point by calculating its distance to the optical center of a projector along the optical axis. This distance is calculated with the aid of the divergence angle of a projected light ray and the distance between the measured point and the optical axis. The distance between the measured point and the optical axis is detected by a camera with telecentric lenses, while the divergence angle can be calculated from the phase of a captured circular fringe pattern. The validity of CFPP is confirmed by a set of experiments.

  10. ADMINISTRATIVE CIRCULAR N° 12

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved the amounts used for the reimbursements mentioned in Administrative Circular N° 12 as follows : The figures, effective from 1 September 2002, are : § 8a : 16 Swiss francs (unchanged) § 9a : 640 Swiss francs (previously 622.- Swiss francs) § 9b : 32 Swiss francs (unchanged) Human Resources Division Tel. 72862

  11. Administrative Circular N° 12

    CERN Document Server

    2003-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved the amounts used for the reimbursements mentioned in Administrative Circular N° 12 as follows : The figures, effective from 1 September 2003, are : § 8a : 16.50 Swiss francs (previously 16.- Swiss francs) § 9a : 663 Swiss francs (previously 640.- Swiss francs) § 9b : 33 Swiss francs (previously 32.- Swiss francs) Human Resources Division Tel. 72862/74474

  12. ADMINISTRATIVE CIRCULAR N° 12

    CERN Document Server

    HR Division

    2001-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved an adjustment of the amounts used for the reimbursements mentioned in Administrative Circular N° 12. The new figures, effective from 1 September 2001, are : § 8a : 16 Swiss francs (previously 15.50 Swiss francs) § 9a : 622 Swiss francs (previously 609.- Swiss francs) § 9b : 32 Swiss francs (previously 31.- Swiss francs)

  13. ADMINISTRATIVE CIRCULAR NR 12

    CERN Document Server

    Division HR; HR Division; Tel. 72862

    2000-01-01

    Following a recommendation by the Standing Concertation Committee, the Director-General has approved an adjustment of the amounts used for the reimbursements mentioned in Administrative Circular N° 12. The new figures, effective from 1 September 2000, are : § 8a : 15.50 Swiss francs (previously 15.- Swiss francs) § 9a : 609 Swiss francs (previously 591.- Swiss francs) § 9b : 31 Swiss francs (previously 30.- Swiss francs)

  14. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  15. Perturbation approach to design of circularly polarised microstrip antennas

    Science.gov (United States)

    Lo, Y. T.; Richards, W. F.

    1981-05-01

    One of the most interesting applications of microstrip antennas is its use for transmitting or receiving circularly polarized (CP) waves. A description is given of a simple but accurate method to determine the critical dimensions needed to produce circular polarization for nearly square and nearly circular microstrip antennas. Shen (1981) in connection with the determination of the proper dimensions of an elliptical patch CP microstrip antenna first expressed the modal field in terms of Mathieu functions. To avoid the complicated numerical computation of the Mathieu functions, he approximated these functions in terms of Bessel functions. It is pointed out that the computation of Mathieu functions, or their approximate expressions can be avoided altogether if a perturbation method is applied to find the resonant frequencies of the two orthogonal modes. The implementation of this approach is demonstrated.

  16. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    NARCIS (Netherlands)

    Patty, C. H Lucas; Visser, Luuk J J; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J M; Röling, Wilfred F M; Snik, Frans

    2016-01-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤1%. In vegetation, these signals

  17. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  18. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  19. Multifrequency Behaviour of Polars

    Directory of Open Access Journals (Sweden)

    K. Reinsch

    2015-02-01

    Full Text Available Cataclysmic variables emit over a wide range of the electromagnetic spectrum. In this paper I will review observations of polars in relevant passbands obtained during the last decade and will discuss their diagnostical potential to access the physics of the main components within the binary systems. This will include a discussion of intrinsic source variability and the quest for simultaneous multi-frequency observations.

  20. Photon polarization in Compton scattering: pulse shape effects

    International Nuclear Information System (INIS)

    Boca, M; Stoica, C; Dumitriu, A; Florescu, V

    2015-01-01

    We study in the framework of quantum electrodynamics the scattering of a plane wave electromagnetic field on free electrons in the low intensity limit. We derive analytic formulas describing the polarization properties of the emitted photons. We discuss and illustrate with a numerical example the effects of the electromagnetic pulse duration on their polarization

  1. Model of the motion of a charged particle into a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, A.P. 2-139, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytical model for the description of the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized propagating along of a static and homogeneous external magnetic field in a plasma starting from the force equation is presented. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary amplitude and modulated by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radiative effects. (Author)

  2. Motion model for a charged particle in a plasma during the interaction of an electromagnetic pulse elliptically polarized propagating in the direction of a static and homogeneous magnetic field; Modelo del movimiento de una particula cargada en un plasma durante la interaccion de un pulso electromagnetico elipticamente polarizado propagandose en la direccion de un campo magnetico estatico y homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    An analytic model is presented for the description of the motion of a charged particle in the interaction of an elliptically electromagnetic pulse polarized propagating along a static and homogeneous external magnetic field in a plasma starting from the force equation. The method allows to express the solution in terms of the invariant phase, obtaining differential equations for the trajectory of the accelerated particle by means of an electromagnetic pulse of arbitrary and modulated width by an encircling Gaussian. The numerical solutions reported in this work can find varied applications, for example in the physics of the interaction laser-plasma, in the acceleration of particles, in hot plasma and in radioactive effects. (Author)

  3. Electromagnetically induced transparency in 6Li

    International Nuclear Information System (INIS)

    Fuchs, J; Duffy, G J; Rowlands, W J; Akulshin, A M

    2006-01-01

    We report electromagnetically induced transparency for the D1 and D2 lines in 6 Li in both a vapour cell and an atomic beam. Electromagnetically induced transparency is created using copropagating mutually coherent laser beams with a frequency difference equal to the hyperfine ground state splitting of 228.2 MHz. The effects of various optical polarization configurations and applied magnetic fields are investigated. In addition, we apply an optical Ramsey spectroscopy technique which further reduces the observed resonance width

  4. Circular RNAs in cancer

    DEFF Research Database (Denmark)

    Kristensen, L S; Hansen, T B; Venø, M T

    2018-01-01

    Circular RNA (circRNA) is a novel member of the noncoding cancer genome with distinct properties and diverse cellular functions, which is being explored at a steadily increasing pace. The list of endogenous circRNAs involved in cancer continues to grow; however, the functional relevance of the vast...... for circRNA cancer research and current caveats, which must be addressed to facilitate the translation of basic circRNA research into clinical use.Oncogene advance online publication, 9 October 2017; doi:10.1038/onc.2017.361....

  5. Computational Electromagnetics

    CERN Document Server

    Rylander, Thomas; Bondeson, Anders

    2013-01-01

    Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understan...

  6. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  7. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  8. Use of the Polarized Radiance Distribution Camera System in the RADYO Program

    Science.gov (United States)

    2011-01-28

    polarizer’s (Melles Griot , 03 FPG 019). Polarizer’s are orientated at 0 deg, 60 deg, and 120 deg (angles relative to the first polarizer). The combination...combination of a broadband mica quarter wave plate (Melles Griot , 02 WRM001) and a polarizer to form a circular polarization analyzer. The combination of the

  9. Polarization bremsstrahlung in α decay

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Zon, B. A.; Kretinin, I. Yu.

    2007-01-01

    A mechanism of formation of electromagnetic radiation that accompanies α decay and is associated with the emission of photons by electrons of atomic shells due to the scattering of α particles by these atoms (polarization bremsstrahlung) is proposed. It is shown that, when the photon energy is no higher than the energy of K electrons of an atom, polarization bremsstrahlung makes a significant contribution to the bremsstrahlung in α decay

  10. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  11. Noninvasive valve monitor using alternating electromagnetic field

    Science.gov (United States)

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  12. Interactions between electromagnetic fields and matter

    CERN Document Server

    Steiner, Karl-Heinz

    2013-01-01

    Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.

  13. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  14. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  15. Circular Migration and Human Development

    OpenAIRE

    Newland, Kathleen

    2009-01-01

    This paper explores the human development implications of circular migration — both where it occurs naturally and where governments work to create it. The paper discusses various conceptions and definitions of circular migration, and concludes that circular migration is not intrinsically positive or negative in relation to human development; its impact depends upon the circumstances in which it occurs, the constraints that surround it and—above all—the degree of choice that ind...

  16. Exciton circular dichroism in channelrhodopsin.

    Science.gov (United States)

    Pescitelli, Gennaro; Kato, Hideaki E; Oishi, Satomi; Ito, Jumpei; Maturana, Andrés Daniel; Nureki, Osamu; Woody, Robert W

    2014-10-16

    Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant

  17. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  18. Baryon spectroscopy with polarization observables from CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-01

    The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results will be given.

  19. High Precision Linear And Circular Polarimetry. Sources With Stable Stokes Q,U & V In The Ghz Regime

    Science.gov (United States)

    Myserlis, Ioannis; Angelakis, E.; Zensus, J. A.

    2017-10-01

    We present a novel data analysis pipeline for the reconstruction of the linear and circular polarization parameters of radio sources. It includes several correction steps to minimize the effect of instrumental polarization, allowing the detection of linear and circular polarization degrees as low as 0.3 %. The instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted. The instrumental circular polarization is corrected with two independent techniques which yield consistent Stokes V results. The accuracy we reach is of the order of 0.1-0.2 % for the polarization degree and 1\\u00ba for the angle. We used it to recover the polarization of around 150 active galactic nuclei that were monitored monthly between 2010.6 and 2016.3 with the Effelsberg 100-m telescope. We identified sources with stable polarization parameters that can be used as polarization standards. Five sources have stable linear polarization; three are linearly unpolarized; eight have stable polarization angle; and 11 sources have stable circular polarization, four of which with non-zero Stokes V.

  20. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  1. Circular defects detection in welded joints using circular hough transform

    International Nuclear Information System (INIS)

    Hafizal Yazid; Mohd Harun; Shukri Mohd; Abdul Aziz Mohamed; Shaharudin Sayuti; Muhamad Daud

    2007-01-01

    Conventional radiography is one of the common non-destructive testing which employs manual image interpretation. The interpretation is very subjective and depends much on the inspector experience and working conditions. It is therefore useful to have pattern recognition system in order to assist human interpreter in evaluating the quality of the radiograph sample, especially radiographic image of welded joint. This paper describes a system to detect circular discontinuities that is present in the joints. The system utilizes together 2 different algorithms, which is separability filter to identify the best object candidate and Circular Hough Transform to detect the present of circular shape. The result of the experiment shows a promising output in recognition of circular discontinuities in a radiographic image. This is based on 81.82-100% of radiography film with successful circular detection by using template movement of 10 pixels. (author)

  2. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  3. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site......-specific, ragged sonic landscape. The work exhibits intrinsic, non-trivial, emerging behaviour, cyclic or wave-like, which converges and ebbs. It varies its sonic and visual display through a dynamic interaction of light sources, fog and light sensors. The system maintains a fluxing state of ambivalence between...

  4. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  5. Light-matter interactions in a polarization standing wave

    OpenAIRE

    Fang, X.; MacDonald, K.F.; Zheludev, N.I.

    2015-01-01

    We report on the application of polarization standing waves (PSW) to the coherent control of light-matter interactions in planar photonic nanostructures. Such waves, formed by counter-propagating (linear or circular) orthogonally polarized beams can uniquely detect polarization conversion, planar chirality and related asymmetric transmission effects.

  6. What Are Electromagnetic Fields?

    Science.gov (United States)

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  7. Harmonic radiation emission from periodic lattices irradiated by short-pulse elliptically polarized laser light.

    Science.gov (United States)

    Ondarza-Rovira, R; Boyd, T J

    2001-10-01

    Radiated emission at high-order harmonic numbers is observed from thin crystalline layers irradiated by short femtosecond elliptically polarized laser light. The applied external radiation field drives the free electrons in the material to large oscillation amplitudes and harmonics are generated by the electronic response to the periodic lattice potential. A model was modified by introducing a more general expression for the lattice force that by sharpening or by smoothing the potential in turn allows the strength of the electronic perturbation to be varied. The electron motion is computed numerically by solving the electromagnetic force equation and by regarding the lattice potential as a perturbative source. For linearly polarized laser light the radiation spectra are characterized by emission lines forming a flat plateau in the region of low harmonic orders with a sharp cutoff for higher numbers. For circular polarization strong emission is found for two harmonic numbers, the first in the low-harmonic region and the second around the cutoff. By solving analytically the electron motion in an elliptically polarized laser field, an exact expression for the electron displacement in all three spatial directions is found. The amplitude of the oscillations sets the analytic form for calculating the peak harmonic numbers emitted from the laser-lattice interaction. The radiation effect studied here, if detected, might hold some potential as a diagnostic and could be used, in principle, as a method for determining the lattice parameter in crystalline structures.

  8. Coupled Lattice Polarization and Ferromagnetism in Multiferroic NiTiO 3 Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Tamas; Droubay, Timothy C.; Kovarik, Libor; Nandasiri, Manjula I. [Imaging; Shutthanandan, Vaithiyalingam; Hu, Dehong; Kim, Bumsoo [Materials; Department; Jeon, Seokwoo [Department; Hong, Seungbum [Materials; Department; Li, Yulan; Chambers, Scott A.

    2017-06-22

    Polarization-induced weak ferromagnetism (WFM) was demonstrated a few years back in LiNbO3-type compounds, MTiO3 (M = Fe, Mn, Ni). Although the coexistence of ferroelectric polarization and ferromagnetism has been demonstrated in this rare multiferroic family before, first in bulk FeTiO3, then in thin-film NiTiO3, the coupling of the two order parameters has not been confirmed Here, we report the stabilization of polar, ferromagnetic NiTiO3 by oxide epitaxy on a LiNbO3 substrate utilizing tensile strain and demonstrate the theoretically predicted coupling between its polarization and ferromagnetism by X-ray magnetic circular dichroism under applied fields. The experimentally observed direction of ferroic ordering in the film is supported by simulations using the phase-field approach. Our work validates symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and WFM in MTiO3 transition metal titanates crystallizing in the LiNbO3 structure. It also demonstrates the applicability of epitaxial strain as a viable alternative to high-pressure crystal growth to stabilize metastable materials and a valuable tuning parameter to simultaneously control two ferroic order parameters to create a multiferroic. Multiferroic NiTiO3 has potential applications in spintronics where ferroic switching is used, such as new four-stage memories and electromagnetic switches.

  9. Electromagnet. Elektromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Amaya, N.; Weiss, F.; Schmitt, A.

    1991-04-18

    An electromagnet, particularly for use in switching valves for the direct control of a fuel injection quantity on fuel injection pumps, has a magnet pot (25) made of soft magnetic material, an annular excitation coil (30) and a magnet armature (29), which is situated with a working air gap in front of the magnet pot (25). To improve the dynamic behaviour of the electromagnet (20), ie: to achieve extremely low switching times with simple manufacture of the magnetic circuit, the magnet pot (25) and/or the magnet armature (29) made as a solid part is provided with an even number of at least four radial slots (41), which pass through the magnet pot (25) or the magnet armature (29) over their whole axial length. Successive radial slots (41a, 41b) extend alternately from the outside or from the inside jacket surface (311 or 321) to near the inside or the outside jacket surface (321 or 311) respectively and end there, always leaving a bar of material (42 or 43).

  10. Inclusive quasielastic scattering of polarized electrons from polarized nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Universidad de Granada (Spain). Dept. de Fisica Moderna]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Caballero, J.A. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia]|[Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear; Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Center for Theoretical Physics]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Lab. for Nuclear Science]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics; Moya de Guerra, E. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia

    1996-12-23

    The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to {sup 39}K. Results are presented using two models for the ejected nucleon - when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon`s momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed. (orig.).

  11. Polarization characteristics of radiation in both 'light' and conventional undulators

    Science.gov (United States)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.; Strokov, S. A.

    2017-07-01

    As a rule, an intensity spectrum of undulator radiation (UR) is calculated by using the classical approach, even for electron energy higher than 10 GeV. Such a spectrum is determined by an electron trajectory in an undulator while neglecting radiation loss. Using Planck's law, the UR photon spectrum can be calculated from the obtained intensity spectrum, for both linear and nonlinear regimes. The electron radiation process in a field of strong electromagnetic waves is considered within the quantum electrodynamics framework, using the Compton scattering process or radiation in a 'light' undulator. A comparison was made of the results from using these two approaches, for UR spectra generated by 250-GeV electrons in an undulator with a 11.5-mm period; this comparison shows that they coincide with high accuracy. The characteristics of the collimated UR beam (i.e. spectrum and circular polarization) were simulated while taking into account the discrete process of photon emission along an electron trajectory in both undulator types. Both spectral photon distributions and polarization dependence on photon energy are 'smoothed', in comparison to that expected for a long undulator-the latter of which considers the ILC positron source (ILC Technical Design Report).

  12. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Energy Technology Data Exchange (ETDEWEB)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  13. Realisation and Optimization the System of Ridge Waveguide Polarizer by Genetic Algorithms for Telecommunication Satellite Antennas

    OpenAIRE

    BOUSALAH, FAYZA; BOUKLI HACENE, NOUR EDDINE

    2012-01-01

    The ridged waveguide polarizer is considered as the better way to get right-hand and left-hand circular polarization in the antennas of telecommunications satellites. In fact, it is a system of three ports used to feed a square waveguide antenna in order to achieve high purity in the right-hand and left-hand circular polarization. Obtaining a great purity of polarization results by the addition from screw from adaptation and blades from correction. A solution with ...

  14. Transfer Matrix for Obliquely Incident Electromagnetic Waves Propagating in One Dimension Plasma Photonic Crystals

    International Nuclear Information System (INIS)

    Guo Bin

    2009-01-01

    Based on the electromagnetic theory and by using an analytical technique-the transfer matrix method, the obliquely incident electromagnetic waves propagating in one-dimension plasma photonic crystals is studied. The dispersion relations for both the P-polarization waves and S-polarization waves, depending on the plasma density, plasma thickness and period, are discussed. (basic plasma phenomena)

  15. The electromagnet design for 3-D superconducting actuator using HTS bulk

    International Nuclear Information System (INIS)

    Kim, S.B.; Inoue, T.; Shimizu, A.; Murase, S.

    2006-01-01

    We have been developing a three-dimensional (3-D) superconducting actuator consists of a field-cooled HTS bulk for mover and two-dimensional arranged multiple electromagnets as a stator. The HTS bulk is magnetically connected with electromagnets and it can be moved in 3-D directions and rotates without upper side electromagnets and spatial restrictions. The current and the polarity of each electromagnet were individually controlled by the switching power supply. In this paper, we experimentally investigated the effects of the shapes of HTS bulks (disk shape with/without inner hole) and electromagnets (4 and 8 polarities) in points of stabilities and forces of levitation

  16. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  17. Structural characterization of chiral molecules using vibrational circular dichroism spectroscopy

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2006-01-01

    chiral molecules. This project is about application of one such technique, circular dichroism (CD) spectroscopy, which measures the difference in absorption of left- and right circularly polarized light - hence the name circular dichroism. This study has focused on the infrared (IR) range because...... compounds of pharmaceutical interest. Others are transition metal complexes relevant for the search for parity-violation effects in vibrational spectroscopy (rhenium complexes), for asymmetric catalysis (Schiff-base complexes), or as model systems for metal centres in biology (Schiff-bases and heme....... Currently, only part of the enhancement can be reproduced theoretically, as demonstrated for the Schiff-bases. Their conformers and absolute configurations were also identified. As for proteins, the interpretation of their spectra is different, because the immense number of overlapping vibrational modes...

  18. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...

  19. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...

  20. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  1. Thermal effects on the propagation of large-amplitude electromagnetic waves in magnetized relativistic electron-positron plasma.

    Science.gov (United States)

    Domínguez, Macarena; Muñoz, Víctor; Valdivia, Juan Alejandro

    2012-05-01

    The propagation of circularly polarized electromagnetic waves along a constant background magnetic field in an electron-positron plasma is calculated by means of both a fluid and a kinetic theory treatment. In the fluid theory, relativistic effects are included in the particle motion, the wave field, and in the thermal motion by means of a function f, which depends only on the plasma temperature. In this work we analyze the consistency of the fluid results with those obtained from a kinetic treatment, based on the relativistic Vlasov equation. The corresponding kinetic dispersion relation is numerically studied for various temperatures, and results are compared with the fluid treatment. Analytic expressions for the Alfvén velocity are obtained for the fluid and kinetic models, and it is shown that, in the kinetic treatment, the Alfvén branch is suppressed for large temperatures.

  2. Electrostatic potential and field of a round beam coasting off axis in a circular vacuum chamber

    International Nuclear Information System (INIS)

    Regenstreif, E.

    1976-01-01

    The purpose of this paper is to present closed expressions for the potential and the field produced by a uniform or non-uniform beam coasting off the center-line of an infinite cylindrical vacuum chamber of circular cross section. This is a problem of classical electromagnetism; its rigorous solution involves however a refined application of Poisson's and Laplace's equations. (author)

  3. Numerical Modeling of Induction Heating Process using Inductors with Circular Shape Turns

    Directory of Open Access Journals (Sweden)

    Mihaela Novac

    2008-05-01

    Full Text Available This paper is focused on the problemof numerical modeling of electromagneticfield coupled with the thermal one in theheating process of the steel billets, usinginductors with circular shape turns. As resultswe have: electromagnetic field lines evolutionand map temperatures in piece at the endingof heating process.

  4. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  5. Digitalizing the Circular Economy

    Science.gov (United States)

    Reuter, Markus A.

    2016-12-01

    Metallurgy is a key enabler of a circular economy (CE), its digitalization is the metallurgical Internet of Things (m-IoT). In short: Metallurgy is at the heart of a CE, as metals all have strong intrinsic recycling potentials. Process metallurgy, as a key enabler for a CE, will help much to deliver its goals. The first-principles models of process engineering help quantify the resource efficiency (RE) of the CE system, connecting all stakeholders via digitalization. This provides well-argued and first-principles environmental information to empower a tax paying consumer society, policy, legislators, and environmentalists. It provides the details of capital expenditure and operational expenditure estimates. Through this path, the opportunities and limits of a CE, recycling, and its technology can be estimated. The true boundaries of sustainability can be determined in addition to the techno-economic evaluation of RE. The integration of metallurgical reactor technology and systems digitally, not only on one site but linking different sites globally via hardware, is the basis for describing CE systems as dynamic feedback control loops, i.e., the m-IoT. It is the linkage of the global carrier metallurgical processing system infrastructure that maximizes the recovery of all minor and technology elements in its associated refining metallurgical infrastructure. This will be illustrated through the following: (1) System optimization models for multimetal metallurgical processing. These map large-scale m-IoT systems linked to computer-aided design tools of the original equipment manufacturers and then establish a recycling index through the quantification of RE. (2) Reactor optimization and industrial system solutions to realize the "CE (within a) Corporation—CEC," realizing the CE of society. (3) Real-time measurement of ore and scrap properties in intelligent plant structures, linked to the modeling, simulation, and optimization of industrial extractive process

  6. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  7. On the sensitivity of the 2D electromagnetic invisibility cloak

    Energy Technology Data Exchange (ETDEWEB)

    Kaproulias, S. [Department of Physics, University of Patras, 26504 Patras (Greece); Sigalas, M.M., E-mail: sigalas@upatras.gr [Department of Materials Science, University of Patras, 26504 Patras (Greece)

    2012-10-15

    A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.

  8. Modified Clemmow-Mullaly-Allis diagram for large-amplitude electromagnetic waves in magnetoplasmas

    International Nuclear Information System (INIS)

    Minami, K.; Mori, Y.; Takeda, S.

    1975-02-01

    A possible modification to the well known Clemmow- Mullaly-Allis diagram is analysed taking into account the radiation pressure force due to a large-amplitude electromagnetic field E in magnetoplasmas. We restrict ourselves here to the propagations parallel (the right and left-hand circularly polarized waves) and/or perpendicular (the ordinary and extraordinary modes) to the static magnetic field Bsub(o). We analyse electromagnetic waves incident normally on a semi-infinite uniform plasma, on which Bsub(o) is applied parallel and/or perpendicular to the surface. Considerations are limited to a cold collisionless plasma where the incident waves are evanescent. Simple expressions are obtained for the cut-off conditions of the waves except the extraordinary mode. In the latter case, the cut-off condition is calculated numerically solving an integral equation. The results are demonstrated in the usual Clemmow-Mullaly-Allis diagram for the various values of b=2Esub(i) 2 e 2 /mω 2 kappaTsub(e') where Esub(i) and ω are, respectively, the amplitude and the angular frequency of the incident wave. The cut-off lines are shown to move towards the higher densities with increasing b. (auth.)

  9. Circular photocurrent in Ag/Pd resistive films upon excitation by femtosecond laser pulses

    Science.gov (United States)

    Mikheev, G. M.; Saushin, A. S.; Vanyukov, V. V.; Mikheev, K. G.; Svirko, Yu. P.

    2016-11-01

    This paper presents the results of the experimental investigation of the generation of nanosecond photocurrent pulses in silver-palladium (Ag/Pd) resistive films under excitation by laser pulses with a duration of 120 fs at a wavelength of 795 nm. The photocurrent was detected in the direction perpendicular to the plane of incidence of the laser beam on the film. The 20-μm-thick films under investigation were a porous polycrystalline material consisting predominantly of nanocrystallites of the palladium oxide PdO and the Ag-Pd solid solution. The direction of the photocurrent observed in the films depends on the sign of the circular polarization of the incident radiation. It was found that the observed photocurrent depends on the angle of incidence in accordance with the odd law and consists of the circular and linear contributions, which are dependent on and independent of the sign of the circular polarization, respectively. It was shown that the circular photocurrent is significantly higher than the linear photocurrent. It was established that, for both the circular and linear polarizations, the photocurrent is directly proportional to the power of the excitation radiation. For the linearly polarized laser radiation, the photocurrent depends on the polarization angle in accordance with the odd law. The regularities revealed are consistent with the mechanism of the generation of transverse photocurrent with the photon drag effect.

  10. RFID antenna design for circular polarization in UHF band

    Science.gov (United States)

    Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel

    2017-05-01

    A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.

  11. Minimum Q circularly polarized electrically small spherical antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2011-01-01

    The radiation problem for the TM10- and TE10-mode electric current densities on the surface of a spherical magnetic-coated PEC core is solved analytically. The combination of the electric and magnetic dipole modes reduces the radiation Q of the antenna. Moreover, with an appropriately designed ma...

  12. A Novel Triangular Shaped UWB Fractal Antenna Using Circular Slot

    Science.gov (United States)

    Shahu, Babu Lal; Pal, Srikanta; Chattoraj, Neela

    2016-03-01

    The article presents the design of triangular shaped fractal based antenna with circular slot for ultra wideband (UWB) application. The antenna is fed using microstrip line and has overall dimension of 24×24×1.6 mm3. The proposed antenna is covering the wide frequency bandwidth of 2.99-11.16 GHz and is achieved using simple fractal based triangular-circular geometries and asymmetrical ground plane. The antenna is designed and parametrical studies are performed using method of moment (MOM) based Full Wave Electromagnetic (EM) software Simulator Zeland IE3D. The prototype of proposed antenna is fabricated and tested to compare the simulated and measured results of various antenna parameters. The antenna has good impedance bandwidth, nearly constant gain and stable radiation pattern. Measured return loss shows fair agreement with simulated one. Also measured group delay variation obtained is less than 1.0 ns, which proves good time domain behavior of the proposed antenna.

  13. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  14. Dual wavelength asymmetric photochemical synthesis with circularly polarized light† †Electronic supplementary information (ESI) available: Full detailed methods used for the entire study; further discussion of the work not central to the main message of the paper; full derivation of the kinetics models used to predict the dual wavelength enantioselectivity; computational details and energy breakdown; more complete mechanism for the reaction. See DOI: 10.1039/c4sc03897e

    Science.gov (United States)

    Richardson, Robert D.; Baud, Matthias G. J.; Weston, Claire E.; Rzepa, Henry S.

    2015-01-01

    Asymmetric photochemical synthesis using circularly polarized (CP) light is theoretically attractive as a means of absolute asymmetric synthesis and postulated as an explanation for homochirality on Earth. Using an asymmetric photochemical synthesis of a dihydrohelicene as an example, we demonstrate the principle that two wavelengths of CP light can be used to control separate reactions. In doing so, a photostationary state (PSS) is set up in such a way that the enantiomeric induction intrinsic to each step can combine additively, significantly increasing the asymmetric induction possible in these reactions. Moreover, we show that the effects of this dual wavelength approach can be accurately determined by kinetic modelling of the PSS. Finally, by coupling a PSS to a thermal reaction to trap the photoproduct, we demonstrate that higher enantioselectivity can be achieved than that obtainable with single wavelength irradiation, without compromising the yield of the final product. PMID:29218156

  15. Switching the response of metasurfaces in polarization standing waves

    OpenAIRE

    Fang, X.; MacDonald, K.F.; Zheludev, N.I.

    2015-01-01

    We demonstrate experimentally that standing waves of polarization, as opposed to intensity, can be engaged to coherently control light-matter interactions in planar photonic nanostructures, presenting unique opportunities for all-optical data processing and polarization-dependent molecular spectroscopy. Such waves, formed by counter-propagating (linear or circular) orthogonally polarized beams can, for example, uniquely detect polarization conversion, planar chirality and related asymmetric t...

  16. Acceleration of Polarized Protons to High Energy

    International Nuclear Information System (INIS)

    Roser, T.

    1999-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian Snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian Snakes and polarimeters are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  17. Geophysical characterization of circular structures in Chubut and Mendoza (Argentina): Impact vs. Volcanism

    Science.gov (United States)

    Prezzi, C.; Orgeira, M. J.; Risso, C.; Acevedo, R.; Ponce, F.; Nullo, F.; Martinez, O.; Rabassa, J.; Margonari, L.; Corbella, H.

    2013-05-01

    This work focuses on two main objectives. One of them is to provide information to discern the genesis of the circular structures present in Bajada del Diablo (Chubut, Argentina) considered as impact craters, and the other one is to contribute to a better knowledge of the circular structures located in the volcanic fields of Llancanelo and Payunia (Mendoza, Argentina). Chubut circular structures have been attributed to the collision of an extraterrestrial body, possibly an asteroid. However, doubts persist about their genesis because of the lack of direct geological evidences. Since detailed geomorphological studies have ruled out an origin by wind deflation, the prevailing alternative hypothesis attributes these circular structures to a volcanic process. On the other hand, the study of the volcanic fields of Payunia and Llancanelo (Mendoza) will contribute to the knowledge of the mechanics of hydromagmatic processes in the area, and the origin of circular structures morphologically similar to those located in Chubut. In the Payunia volcanic field at least 27 cones with evidences of hydromagmatism, in a field of more than 800 pure magmatic cones, have been recognized. This study tries to determine if a relationship between the observed volcanic circular structures and participation of water during the eruption exists. Magnetic and gravity field surveys of the circular volcanic structures in Llancanelo and Payunia volcanic fields were performed in order to determine their relationship with the type of eruption. Electromagnetic, magnetic and gravity field surveys were also carried out in Chubut circular structures. The comparative analysis of geological and geophysical results obtained in the circular structures of Chubut and those obtained in the circular structures in the volcanic areas of Llancanelo and Payunia suggest an impact origin for the circular structures of Chubut.

  18. Teaching Electromagnetic Waves in College Physics Laboratory

    Science.gov (United States)

    Kezerashvili, Roman Y.; Leng, L.

    2006-12-01

    One of the important educational advantages of the simultaneous study of the electromagnetic waves and light is to show that light and the electromagnetic radiation have the same properties so that the students can visualize the properties of the electromagnetic radiation through observation of light propagation. In our approach we are suggest to study the properties of a microwave radiation and light in parallel. The following experiments can be easily designed and they provide a methodical introduction to electromagnetic theory using the microwave radiation and light: the study of the inverse square law of the dependence of the intensity of radiation (microwave and light) on the distance, the law of reflection and refraction, investigation of the phenomenon of polarization and how a polarizer can be used to alter the polarization of microwave radiation and light, measuring the Brewster's angle, studying interference by performing double-slit experiment for microwave radiation and light. Finally students measure the wavelength of the laser light and microwave radiation using the corresponding versions the Michelson’s interferometer, and recognize that these two radiations only differ by the wavelength or frequency.

  19. Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes

    Science.gov (United States)

    Wang, Zeng; Teh, Bing Hong; Wang, Yue; Adamo, Giorgio; Teng, Jinghua; Sun, Handong

    2017-05-01

    Manipulating light spin (or circular polarization) is an important research field and may find broad applications from sensors, display technology, to quantum computing and communication. To this end, planar metasurfaces with larger circular dichroism are strongly demanded. However, current planar chiral metasurface structures suffer from either fabrication challenge, especially from near-infrared to visible spectrum, or insufficient circular dichroism. Here, we report a chiral metasurface composed of achiral nanoholes which allow for precisely creating apexes in the designed structure. Our investigation indicates that the apexes act as super chiral hot spots and enable the highly concentrated near-field optical chirality leading to a remarkable enhancement of circular dichroism in the far-field. A 4-fold enhancement of the circular dichroism and a strong optical activity of ˜15 degrees have been experimentally achieved. Besides the enhanced chirality, our design genuinely overcomes the nanofabrication challenge faced in existing planar chiral metasurfaces.

  20. Topological events in polarization resolved angular patterns of nematic liquid crystal cells at varying ellipticity of incident wave

    OpenAIRE

    Kiselev, Alexei D.; Vovk, Roman G.

    2008-01-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...

  1. Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith

    Science.gov (United States)

    Leyser, Thomas B.; James, H. Gordon; Gustavsson, Björn; Rietveld, Michael T.

    2018-02-01

    The response of ionospheric plasma to pumping by powerful HF (high frequency) electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association) Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer) spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O) conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.

  2. Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith

    Directory of Open Access Journals (Sweden)

    T. B. Leyser

    2018-02-01

    Full Text Available The response of ionospheric plasma to pumping by powerful HF (high frequency electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.

  3. Homologous Circular-ribbon Flares Driven by Twisted Flux Emergence

    Science.gov (United States)

    Xu, Z.; Yang, K.; Guo, Y.; Zhao, J.; Zhao, Z. J.; Kashapova, L.

    2017-12-01

    In this paper, we report two homologous circular-ribbon flares associated with two filament eruptions. They were well observed by the New Vacuum Solar Telescope and the Solar Dynamics Observatory on 2014 March 5. Prior to the flare, two small-scale filaments enclosed by a circular pre-flare brightening lie along the circular polarity inversion line around the parasitic polarity, which has shown a continuous rotation since its first appearance. Two filaments eventually erupt in sequence associated with two homologous circular-ribbon flares and display an apparent writhing signature. Supplemented by the nonlinear force-free field extrapolation and the magnetic field squashing factor investigation, the following are revealed. (1) This event involves the emergence of magnetic flux ropes into a pre-existing polarity area, which yields the formation of a 3D null-point topology in the corona. (2) Continuous input of the free energy in the form of a flux rope from beneath the photosphere may drive a breakout-type reconnection occurring high in the corona, supported by the pre-flare brightening. (3) This initiation reconnection could release the constraint on the flux rope and trigger the MHD instability to first make filament F1 lose equilibrium. The subsequent more violent magnetic reconnection with the overlying flux is driven during the filament rising. In return, the eruption of filament F2 is further facilitated by the reduction of the magnetic tension force above. These two processes form a positive feedback to each other to cause the energetic mass eruption and flare.

  4. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  5. Field theory of polar continua

    International Nuclear Information System (INIS)

    Heinz, C.

    1988-01-01

    A Lagrangian density in the polar space X 1+3+3 depending of the potentials and their derivativs and of the fluxes is introduced. The potentials are then the mechanical and electromagnetic potentials, the potentials of gravity and in the polar space X 1+3+3 the components of affine connection. The fluxes are essentially the tangential motors of the mechanical and electromagnetic world-lines multiplied with the density of mass and electric charge. The Hamilton principle gives, with the in variational calculus usual integrations by part, here done via the theorem of Gauss, the equations of motion and the field equations. The conditions of integrability for these equations are discussed. (author)

  6. Circular SAR Optimization Imaging Method of Buildings

    Directory of Open Access Journals (Sweden)

    Wang Jian-feng

    2015-12-01

    Full Text Available The Circular Synthetic Aperture Radar (CSAR can obtain the entire scattering properties of targets because of its great ability of 360° observation. In this study, an optimal orientation of the CSAR imaging algorithm of buildings is proposed by applying a combination of coherent and incoherent processing techniques. FEKO software is used to construct the electromagnetic scattering modes and simulate the radar echo. The FEKO imaging results are compared with the isotropic scattering results. On comparison, the optimal azimuth coherent accumulation angle of CSAR imaging of buildings is obtained. Practically, the scattering directions of buildings are unknown; therefore, we divide the 360° echo of CSAR into many overlapped and few angle echoes corresponding to the sub-aperture and then perform an imaging procedure on each sub-aperture. Sub-aperture imaging results are applied to obtain the all-around image using incoherent fusion techniques. The polarimetry decomposition method is used to decompose the all-around image and further retrieve the edge information of buildings successfully. The proposed method is validated with P-band airborne CSAR data from Sichuan, China.

  7. Ecodesign for a Circular Economy

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie

    The Earth is a closed system and with the exception of energy, the resources available to us are finite, but our consumption and productions systems are typically linear systems where resources are extracted, used and wasted. The circular economy is proposed as an alternative and is defined...... as a consumption and production system based on closed loops that minimise resources, energy flows and environmental degradation. In this PhD thesis, I have examined how ecodesign can close the material loops in the circular economy for electrical and electronic equipment. The study examines how to improve...... be necessary to develop both product and company specific guidelines. The analysis revealed that activities or product attributes of importance to a circular economy are not solely driven by ecodesign....

  8. Polarization control of high order harmonics in the EUV photon energy range.

    Science.gov (United States)

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  9. Realisation and Optimization the System of Ridge WaveguidePolarizer by Genetic Algorithms for Telecommunication Satellite Antennas

    OpenAIRE

    BOUSALAH1, FAYZA; NOUR EDDINE2; BOUKLI HACENE

    2013-01-01

    The ridged waveguide polarizer is considered as the better way to get right-hand and left-hand circular polarization in the antennas of telecommunications satellites. In fact, it is a system of three ports used to feed a square waveguide antenna in order to achieve high purity in the right-hand and left-hand circular polarization. Obtaining a great purity of polarization results by the addition from screw from adaptation and blades from correction. A solution with this pr...

  10. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  11. Logistic regression for circular data

    Science.gov (United States)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  12. Circular coloring and Mycielski construction

    OpenAIRE

    Alishahi, Meysam; Hajiabolhassan, Hossein

    2010-01-01

    In this paper, we investigate circular chromatic number of Mycielski construction of graphs. It was shown in \\cite{MR2279672} that $t^{{\\rm th}}$ Mycielskian of the Kneser graph $KG(m,n)$ has the same circular chromatic number and chromatic number provided that $m+t$ is an even integer. We prove that if $m$ is large enough, then $\\chi(M^t(KG(m,n)))=\\chi_c(M^t(KG(m,n)))$ where $M^t$ is $t^{{\\rm th}}$ Mycielskian. Also, we consider the generalized Kneser graph $KG(m,n,s)$ and show that there ex...

  13. COHERENCE PROPERTIES OF ELECTROMAGNETIC RADIATION,

    Science.gov (United States)

    ELECTROMAGNETIC RADIATION , COHERENT SCATTERING), (*COHERENT SCATTERING, ELECTROMAGNETIC RADIATION ), LIGHT, INTERFERENCE, INTENSITY, STATISTICAL FUNCTIONS, QUANTUM THEORY, BOSONS, INTERFEROMETERS, CHINA

  14. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  15. Best Practice Examples of Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva

    Best practice examples of circular business models are presented in this report. The purpose is to inform and inspire interested readers, in particular companies that aspire to examine the potentials of the circular economy. Circular business models in two different sectors are examined, namely...... the textile and clothing sector as well as the durable goods sector. In order to appreciate the notion of circular business models, the basics of the circular economy are outlined along with three frameworks for categorizing the various types of circular business models. The frameworks take point of departure......, and to look for circular business opportunities in this flow of goods and value, is key in a circular economy. Establishing new or closer collaboration with stakeholders within or beyond the traditional supply chain is another important skill in creating circular business models. Many of the examined...

  16. Electromagnetics and optics

    National Research Council Canada - National Science Library

    Kriezis, E. E; Chrissoulidis, D. P; Papagiannakis, A. G

    1992-01-01

    ..., since light is a high-frequency electromagnetic radiation. Although both electromagnetics and optics are their common origin is only superficially realised physics or electrical engineering. Deeper physical by treating electromagnetics and optics in parallel thus enlightening the natural link between them. By presenting principles, theory a...

  17. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  18. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  19. An optically pumped polarized lithium ion source

    International Nuclear Information System (INIS)

    Myers, E.G.; Mendez, A.J.; Schmidt, B.G.; Kemper, K.W.

    1991-01-01

    A laser-optically-pumped polarized lithium ion source is being developed to provide beams of nuclear polarized 6,7 Li - for injection into the FSU tandem Van de Graaff-linac. Electro-optically modulated, circularly polarized light optically pumps a lithium atomic beam into a single magnetic substate, M 1 =1, M J =1/2. No inhomogeneous magnetic field (sextupole or quadrupole) is needed. Adiabatic rf transitions enable the polarization to be changed by transferring the population into different magnetic substates. Using a second electro-optic to modulate a second beam from the same laser, and Zeeman tuning, the polarization of the atomic beam is obtained by laser induced fluorescence. The polarized atomic beam is ionized to Li + and then charge exchanged to Li - . (orig.)

  20. Topological px+ipy superfluid phase of fermionic polar molecules

    NARCIS (Netherlands)

    Levinsen, J.; Cooper, N.R.; Shlyapnikov, G.V.

    2011-01-01

    We discuss the topological px+ipy superfluid phase in a 2D gas of single-component fermionic polar molecules dressed by a circularly polarized microwave field. This phase emerges because the molecules may interact with each other via a potential Vo(r) that has an attractive dipole-dipole 1/r^3 tail,

  1. 140 CIRCULAR INTERACTION BETWEEN LINGUISTIC ...

    African Journals Online (AJOL)

    economy. Although a country or administrative district should have one or more official languages for obvious reasons, Nelde (1991) proposes that the ... circular interaction between linguistic departments and language departments. Finding an answer to' Plato's abovementioned problem entails that as many languages as ...

  2. Inverting the Circular Radon Transform

    National Research Council Canada - National Science Library

    Redding, Nicholas

    2001-01-01

    ...) can be viewed as the inversion of the circular Radon transform. The advantage of viewing image formation in this way is that it could be used in situations where more standard methods could fail such as high squint and ultra-wideband SAR...

  3. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  4. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  5. Development of polarization magneto-optics of paramagnetic crystals

    International Nuclear Information System (INIS)

    Zapasskij, V.S.; Feofilov, P.P.

    1975-01-01

    The present status of the polarization magnetooptics of crystals containing paramagnetic ion impurities is reviewed. The paper discusses methods of measurement of circular magnetic anisotropy and results obtained in recent years in the field of conventional magnetooptical studies, e.g., magnetooptical activity in absorption spectra for intrinsic and impurity defects in crystals, luminescence magnetic circular polarization, anisotropy of magnetooptical activity in cubic crystals. The main emphasis is placed on new trends in polarization magnetooptics: studies of interactions of a spin system with a lattice, in particular, spin-lattice relaxation and spin memory effect, experiments in the double radiooptical resonance, studies of optical spin relaxation, nonlinear magnetooptical effects, etc

  6. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  7. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  8. Concentric circular focusing reflector realized using high index contrast gratings

    Science.gov (United States)

    Fang, Wenjing; Huang, Yongqing; Fei, Jiarui; Duan, Xiaofeng; Liu, Kai; Ren, Xiaomin

    2017-11-01

    A non-periodic concentric circular high index contrast grating (CC-HCG) focusing reflector on 500 nm silicon-on-insulator (SOI) platform is fabricated and experimentally demonstrated. The proposed mirror is realized with phase modulation of wave front in a high reflectivity region. The circular structure based HCG focusing reflector has a spot of high concentration at the 10.87 mm with normal incidence for radially polarization, along with the center wavelength set at 1550 nm. The FWHM spot size of the focusing beam decreases to 260 μm, and the intensity increases to 1.26 compared with the incident beam. The focusing efficiency of about 80% is observed at 1550 nm in the experimental measurement.

  9. Unique Signal Override Plug electromagnetic test report

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, R.H.

    1990-10-01

    The MC4039 Unique Signal Override Plug (USOP) provides the unique signal for the B90 when fielded on aircraft that are not equipped with unique signal capability. Since the USOP is field installed, the concern is that it might be susceptible to electromagnetic radiation prior to installation on the weapon. This report documents a characterization of the USOP, evaluates various techniques for attaching electromagnetic shields, and evaluates the susceptibility of a fully assembled passive-USOP. Tests conducted evaluated the electromagnetic susceptibility of the passive, unconnected USOP. During normal operation the USOP is powered directly from the weapon. During the course of this test program two prototypes were developed. The prototype 1 USOP internal circuitry contains one SA3727 chip, five diodes, three resistors, and two capacitors; these are mounted on a circular circuit board and contained inside a metal back shell cover, which serves as an electromagnetic shield. The prototype 2 design incorporated four changes. The manufacturer of the SA3727 chip was changed from Lasarray to LSI Logic, the circuit board ground was tied to the case ground through a straight wire, Cl was changed from 1 microfarad to 0.1 microfarads. and the circuit board was changed, as required. 2 refs., 17 figs., 3 tabs. (JF)

  10. Absorption of resonant electromagnetic radiation in electron-atom collisions

    International Nuclear Information System (INIS)

    Arslanbekov, T.U.; Pazdzerskii, V.A.; Usachenko, V.I.

    1986-01-01

    Nonrelativistic quantum theory is used to study the possibility of amplification of electromagnetic radiation in forced braking scattering of an electron beam on atoms. The interaction of the atom with the electromagnetic field is considered in the resonant approximation. Cases of large and small detuning from resonance are considered. It is shown that for any orientation of the electron beam relative to the field polarization vector, absorption of radiation occurs, with the major contribution being produced by atomic electrons

  11. Highly excited atom in the electromagnetic field

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.; Shepelyanskij, D.L.; AN SSSR, Novosibirsk. Inst. Yadernoj Fiziki)

    1983-01-01

    Properties of highly excited atom placed in electromagnetic field are reviewed. Probabilities of bound-boUnd and bound-free transition between quasi-classical atomic states, as well approximate rules of selection for such transitions, are considered. Properties of dynamic polarization of highly excited atomic states are investigated. Quantum mechanisms of ionization (multiphoton and tunnel) of highly excited states are discussed. A considerable part of the review is devoted to the consideration of the stochastic dynamics of the classic atomic electron in the variable monochromatic electromagnetic field. Threshold values of field intensity for the appearance of stochastic electron motion and atom ionization depending on field frequency, its polarization and the main quantum number of the atomic state considered are presented. The effect of the orbital moment of the ionized state on the process of stochasticity appearance is discussed. In the framework of classical mechanics and quasiclassical approximation of quantum mechanics the classical diffusion ionization of highly excited atom in electromagnetic field is considered. The problem on the application of classical mechanics in the investigation of properties of highly excited atom in electromagnetic field is discussed. Conditions for the realization of quantum and quasiclassic ionization of highly excited atoms are considered. In the last part of the review experimental data on the behaviour of highly excited atoms in the field of radiofrequency range are analyzed. The comparison of the data of experiments and those of the theory given in the revieW deronstrate their good agreement

  12. Structure of polarization-resolved conoscopic patterns of planar oriented liquid crystal cells

    Science.gov (United States)

    Kiselev, A. D.; Vovk, R. G.

    2010-05-01

    The geometry of distributions of the polarization of light in conoscopic patterns of planar oriented nematic and cholesteric liquid crystal (LC) cells is described in terms of the polarization singularities including C-points (points of circular polarization) and L lines (lines of linear polarization). Conditions for the formation of polarization singularities ( C-points) in an ensemble of conoscopic patterns parametrized by the polarization azimuth and ellipticity of the incident light wave have been studied. A characteristic feature of these conditions is selectivity with respect to the polarization parameters of the incident light wave. The polarization azimuth and ellipticity are determining parameters for nematic and cholesteric LC cells, respectively.

  13. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  14. Circular Business: Collaborate and Circulate : a bookreview

    NARCIS (Netherlands)

    Timmermans, Ratna W.; Witjes, S.|info:eu-repo/dai/nl/381088200

    2016-01-01

    With their book, “Circular Business: Collaborate and Circulate”, Circular Collaboration, Amersfoort, ISBN: 978-90-824902-0-6, €35, Kraaijenhagen et al. (2016) give companies practical guidance on their contribution to the development of a more circular economy by presenting a practical 10-step

  15. Capacitance of circular patch resonator

    International Nuclear Information System (INIS)

    Miano, G.; Verolino, L.; Naples Univ.; Panariello, G.; Vaccaro, V.G.; Naples Univ.

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  16. Colours in a Circular Economy

    OpenAIRE

    Niinimäki, Kirsi; Smirnova, Eugenia; Ilen, Elina; Sixta, Herbert; Hummel, Michael

    2017-01-01

    | openaire: EC/H2020/646226/EU//Trash-2-Cash This paper reports on preliminary results on the recycling of coloured cellulose-based textiles using a novel dry-jet wet spinning denoted as the Ioncell-F process. The practical possibility of colour circulation is useful knowledge for colour designers in the industry. The findings can help define further parameters for circular economy products

  17. Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates

    Directory of Open Access Journals (Sweden)

    S. Bedra

    2017-05-01

    Full Text Available In this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials.  Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.

  18. Circular on planned parenthood, 1987.

    Science.gov (United States)

    1987-01-01

    In 1987 fourteen units of the Government of Henan issued a Circular stating that: "Planned parenthood must be publicized deep into the grass roots and among the people, and importance must be attached to results." The Circular stresses: "In the propaganda drive, it is necessary to successfully grasp three key links: 1. It is necessary to disseminate intensively the important directive on population problems that is contained in the report of the 13th CPC National Congress and the seriousness of the population situation of our country and province so that the cadres and the masses can understand the relationship between population control and the achievement of the strategic target of the three big steps, understand the reason for carrying out planned parenthood, understand that the one-child policy is still advocated, and conscientiously carry out planned parenthood. 2. It is essential to succeed in propagating knowledge of contraception, sterilization, childbirth, and child care and in conducting ideological education for those who undergo operations and for their family members. 3. It is imperative to visit those who have undergone operations and to help them solve practically their difficulties in making a living." The Circular concludes by demanding that under the unified leadership of party committees and governments at all levels, the propaganda drive be carried out by relying on the efforts of all of society. In conjunction with their own work, departments, including the propaganda, education, public health, and cultural departments, must carry out propaganda and education for planned parenthood. full text

  19. Multi-circular flux motor

    Energy Technology Data Exchange (ETDEWEB)

    El-Kharashi, Eyhab Aly, E-mail: EyhabElkharahi@hotmail.com [Faculty of Engineering, Electrical Power and Machines Department, Ain Shams University, 1 El-Sarayat Street, Abdou Basha Square, Abbassia 11517, Cairo (Egypt)

    2011-11-15

    Highlights: {yields} The paper uses the multi-circular rotor in the switched reluctance motor to increase its output torque and its efficiency. {yields} Finite element is used to model the new SRM accurately. {yields} The Matlab/Simulink is used to dynamically model the new SRM. {yields} The paper compares the torque capability of the multi-circular rotor SRM. {yields} The new SRM produces approximately double the torque of its equivalent conventional SRM. - Abstract: The paper introduces a new type of electrical machines which has significantly high output torque. The toothed-rotor in the conventional electrical machine is replaced by a multi-circular rotor to increase the saliency and to shorten the flux loops consequently the output torque increases. The paper presents the design steps of this new type of electrical machine and also examines its performance. In addition, the paper compares the percentage increase in output torque from the proposed new electric machine to its equivalent conventional motor. Then the paper proceeds to discuss the relation between the switching on angle and the maximum speed, the torque ripples, and the efficiency.

  20. High energy physics with polarized beams and targets. [65 papers

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, M L [ed.

    1976-01-01

    Sixty-six papers are presented as a report on conference sessions held from August 23-27, 1976, at Argonne National Laboratory. Topics covered include: (1) strong interactions; (2) weak and electromagnetic interactions; (3) polarized beams; and (4) polarized targets. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA) and for the INIS Atomindex. (PMA)