WorldWideScience

Sample records for circular equatorial orbits

  1. Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole.

    Science.gov (United States)

    Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels

    2014-10-17

    For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

  2. Fast Evolution and Waveform Generator for Extreme-Mass-Ratio Inspirals in Equatorial-Circular Orbits

    CERN Document Server

    Han, Wen-Biao

    2016-01-01

    In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio-inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculation of waveform templates of EMRIs for the gravitational wave detectors such as the evolved Laser Interferometer Space Antenna (...

  3. Motion around a monopole + ring system: I. stability of equatorial circular orbits vs regularity of three-dimensional motion

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Caro, Javier; Letelier, Patricio S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Pedraza, Juan F. [University of Texas at Austin, TX (United States)

    2011-07-01

    Full text: We study the motion of test particles around a center of attraction represented by a monopole (with and without spheroidal deformation) surrounded by a ring, given as a superposition of Morgan and Morgan discs. We deal with two kinds of bounded orbits: (i) Equatorial circular orbits and (ii) general three-dimensional orbits. The first case provides a method to perform a linear stability analysis of these structures by studying the behavior of vertical and epicyclical frequencies as functions of the mass ratio, the size of the ring and/or the quadrupolar deformation. In the second case, we study the influence of these parameters in the regularity or chaoticity of motion. We find that there is a close connection between linear stability (or un- stability) of structures and regularity (or chaoticity) of the three-dimensional motion. This result suggests, in a very first approximation, an explanation for the stability of some known structures of the solar system which can be described as a monopole plus a ring with axial symmetry. (author)

  4. Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA

    International Nuclear Information System (INIS)

    Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco) -- more particularly, on orbits for which the angular velocity Ω is 0.03∼isco≤1.0. The computations are based on the Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representative values of the hole's mass M and spin a and the inspiraling object's mass μ, with the distance to Earth chosen to be ro=1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and μ. Graphs are presented showing the range of the {M,a,μ} parameter space, for which S/N>10 at r0=1 Gpc during the last year of inspiral. The hole's spin a has a factor of ∼10 influence on the range of M (at fixed μ) for which S/N>10, and the presence or absence of a white-dwarf--binary background has a factor of ∼3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed waves

  5. The effect of J{sub 2} on equatorial and halo orbits around a magnetic planet

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain)], E-mail: vlancha@unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain); Pablo Salas, J. [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain)

    2009-10-15

    We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.

  6. Fourier Series Approximations to J2-Bounded Equatorial Orbits

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available The current paper offers a comprehensive dynamical analysis and Fourier series approximations of J2-bounded equatorial orbits. The initial conditions of heterogeneous families of J2-perturbed equatorial orbits are determined first. Then the characteristics of two types of J2-bounded orbits, namely, pseudo-elliptic orbit and critical circular orbit, are studied. Due to the ambiguity of the closed-form solutions which comprise the elliptic integrals and Jacobian elliptic functions, showing little physical insight into the problem, a new scheme, termed Fourier series expansion, is adopted for approximation herein. Based on least-squares fitting to the coefficients, the solutions are expressed with arbitrary high-order Fourier series, since the radius and the flight time vary periodically as a function of the polar angle. As a consequence, the solutions can be written in terms of elementary functions such as cosines, rather than complex mathematical functions. Simulations enhance the proposed approximation method, showing bounded and negligible deviations. The approximation results show a promising prospect in preliminary orbits design, determination, and transfers for low-altitude spacecrafts.

  7. Marginally stable circular orbits in stationary axisymmetric spacetimes

    CERN Document Server

    Beheshti, Shabnam

    2015-01-01

    We derive a necessary condition for the existence of marginally stable circular orbits of test particles in stationary axisymmetric spacetimes which possess a refection symmetry with respect to the equatorial plane; photon orbits are also addressed. Energy and angular momentum are shown to decouple from metric quantities, rendering a purely geometric characterization of circular orbits for this general class of metrics. The subsequent system is analyzed using resultants, providing an algorithmic approach for finding MSCO conditions. MSCOs are explicitly calculated for concrete examples of physical interest.

  8. The Marginally Stable Circular Orbit of the Fluid Disk around a Black Hole

    OpenAIRE

    Qian, Lei; Wu, Xue-Bing; Li, Li-Xin

    2016-01-01

    The inner boundary of a black hole accretion disk is often set to the marginally stable circular orbit (or the innermost stable circular orbit, ISCO) around the black hole. It is important for the theories of black hole accretion disks and their applications to astrophysical black hole systems. Traditionally, the marginally stable circular orbit is obtained by considering the equatorial motion of a test particle around a black hole. However, in reality the accretion flow around black holes co...

  9. Transition from inspiral to plunge for eccentric equatorial Kerr orbits

    CERN Document Server

    O'Shaughnessy, R

    2003-01-01

    Ori and Thorne have discussed the duration and observability (with LISA) of the transition from circular, equatorial inspiral to plunge for stellar-mass objects into supermassive ($10^{5}-10^{8}M_{\\odot}$) Kerr black holes. We extend their computation to eccentric Kerr equatorial orbits. Even with orbital parameters near-exactly determined, we find that there is no universal length for the transition; rather, the length of the transition depends sensitively -- essentially randomly -- on initial conditions. Still, Ori and Thorne's zero-eccentricity results are essentially an upper bound on the length of eccentric transitions involving similar bodies (e.g., $a$ fixed). Hence the implications for observations are no better: if the massive body is $M=10^{6}M_{\\odot}$, the captured body has mass $m$, and the process occurs at distance $d$ from LISA, then $S/N \\lesssim (m/10 M_{\\odot})(1\\text{Gpc}/d)\\times O(1)$, with the precise constant depending on the black hole spin. For low-mass bodies ($m \\lesssim 7 M_\\odot$...

  10. Equations for spinning test particles in equatorial orbits when they are orbiting in a weak rotating field

    CERN Document Server

    Velandia, Nelson

    2016-01-01

    This paper formulates, via the Mathisson - Papapetrou - Dixon equations, the system of equations for a test particle with spin when it is orbiting a weak Kerr metric. We shall restrict ourselves to the case of circular orbits with the purpose of comparing our results with the results of the literature. In particular, we solve the set of equations of motion for the case of circular trajectories both spinless and spinning test particles around rotating bodies in equatorial plane. The results obtained are an important guideline for the study of the effects of the particles with spin in rotating gravitational fields such as Gravitomagnetics Effects or gravitational waves.

  11. Circular orbits and related quasi-harmonic oscillatory motion of charged particles around weakly magnetized rotating black holes

    CERN Document Server

    Tursunov, Arman; Kološ, Martin

    2016-01-01

    We study motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasi-circular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyse the circular orbits using the so called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum and specific energy of the circular orbits in dependence on the black hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with outward oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged parti...

  12. Circular orbits on a warped spandex fabric

    CERN Document Server

    Middleton, Chad A

    2013-01-01

    We present a theoretical and experimental analysis of circular-like orbits made by a marble rolling on a warped spandex fabric. We show that the mass of the fabric interior to the orbital path influences the motion of the marble in a nontrivial way, and can even dominate the orbital characteristics. We also compare a Kepler-like expression for such orbits to similar expressions for orbits about a spherically-symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.

  13. Circular orbits and related quasiharmonic oscillatory motion of charged particles around weakly magnetized rotating black holes

    Science.gov (United States)

    Tursunov, Arman; Stuchlík, Zdeněk; Kološ, Martin

    2016-04-01

    We study the motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with an outward-oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ, frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr˜ωθ≫ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We demonstrate that for the rapidly rotating black holes the role of the "Wald induced charge" can be relevant.

  14. Circular orbits in the extreme Reissner-Nordstr{\\o}m dihole metric

    CERN Document Server

    Wünsch, Andreas; Weiskopf, Daniel; Wunner, Günter; 10.1103/PhysRevD.87.024007

    2013-01-01

    We study the motion of neutral test particles in the gravitational field of two charged black holes described by the extreme Reissner-Nordstr{\\o}m dihole metric where the masses and charges of the black holes are chosen such that the gravitational attraction is compensated by the electrostatic repulsion. We investigate circular orbits in the equatorial plane between the two black holes with equal masses as well as the case of circular orbits outside this symmetry plane. We show that the first case reduces to an effective two-body problem with a behavior similar to a system described by the Reissner-Nordstr{\\o}m spacetime. The main focus is directed to the second case with circular orbits outside the equatorial plane.

  15. Nonradial stability of marginal stable circular orbits in stationary axisymmetric spacetimes

    CERN Document Server

    Ono, Toshiaki; Asada, Hideki

    2016-01-01

    We study linear nonradial perturbations and stability of a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a test particle in stationary axisymmetric spacetimes which possess a reflection symmetry with respect to the equatorial plane. The proposed approach is applied to Kerr solution and Majumdar-Papapetrou solution to Einstein equation. Finally, we reexamine MSCOs for a modified metric of a rapidly spinning black hole that has been recently proposed by Johannsen and Psaltis [PRD, 83, 124015 (2011)]. We show that, for the Johannsen and Psaltis's model, circular orbits that are stable against radial perturbations for some parameter region become unstable against vertical perturbations. This suggests that the last circular orbit for this model may be larger than the ISCO.

  16. The Marginally Stable Circular Orbit of the Fluid Disk around a Black Hole

    CERN Document Server

    Qian, Lei; Li, Li-Xin

    2016-01-01

    The inner boundary of a black hole accretion disk is often set to the marginally stable circular orbit (or the innermost stable circular orbit, ISCO) around the black hole. It is important for the theories of black hole accretion disks and their applications to astrophysical black hole systems. Traditionally, the marginally stable circular orbit is obtained by considering the equatorial motion of a test particle around a black hole. However, in reality the accretion flow around black holes consists of fluid, in which the pressure often plays an important role. Here we consider the influence of fluid pressure on the location of marginally stable circular orbit around black holes. It is found that when the temperature of the fluid is so low that the thermal energy of a particle is much smaller than its rest energy, the location of marginally stable circular orbit is almost the same as that in the test particle case. However, we demonstrate that in some special cases the marginally stable circular orbit can be d...

  17. An analysis of near-circular lunar mapping orbits

    Indian Academy of Sciences (India)

    R V Ramanan; V Adimurthy

    2005-12-01

    Numerical investigations have been carried out to analyse the evolution of lunar circular orbits and the influence of the higher order harmonics of the lunar gravity field.The aim is to select the appropriate near-circular orbit characteristics,which extend orbit life through passive orbit maintenance.The spherical harmonic terms that make major contributions to the orbital behaviour are identified through many case studies.It is found that for low circular orbits,the 7th and the 9th zonal harmonics have predominant effect in the case of orbits for which the evolution is stable and the life is longer,and also in the case of orbits for which the evolution is unstable and a crash takes place in a short duration.By analysing the contribution of the harmonic terms to the orbit behaviour,the appropriate near-circular orbit characteristics are identified.

  18. Vertical stability of circular orbits in relativistic razor-thin disks

    CERN Document Server

    Vieira, Ronaldo S S; Saa, Alberto

    2016-01-01

    During the last few decades, there has been a growing interest in exact solutions of Einstein equations describing razor-thin disks. Despite the progress in the area, the analytical study of geodesic motion crossing the disk plane in these systems is not yet so developed. In the present work, we propose a definite vertical stability criterion for circular equatorial timelike geodesics in static, axially symmetric thin disks, possibly surrounded by other structures preserving axial symmetry. It turns out that the strong energy condition for the disk stress-energy content is sufficient for vertical stability of these orbits. Moreover, adiabatic invariance of the vertical action variable gives us an approximate third integral of motion for oblique orbits which deviate slightly from the equatorial plane. Such new approximate third integral certainly points to a better understanding of the analytical properties of these orbits. The results presented here, derived for static spacetimes, may be a starting point to s...

  19. Modeling a circular equatorial test-particle in a Kerr spacetime

    CERN Document Server

    Carré, Jérôme

    2012-01-01

    Extreme Mass Ratio Inspirals (EMRIs) are one of the main gravitational wave (GW) sources for a future space detector, such as eLISA/NGO, and third generation ground-based detectors, like the Einstein Telescope. These systems present an interest both in astrophysics and fundamental physics. In order to make a high precision determination of their physical parameters, we need very accurate theoretical waveform models or templates. In the case of a circular equatorial orbit, the key stumbling block to the creation of these templates is the flux function of the GW. This function can be modeled either via very expensive numerical simulations, which then make the templates unusable for GW astronomy, or via some analytic approximation method such as a post-Newtonian approximation. This approximation is known to be asymptotically divergent and is only known up to 5.5PN order for the Schwarzschild case and to 4PN order for the Kerr case. A way to improve the convergence of the flux is to use re-summation methods. In t...

  20. Circular orbits in extremal Reissner-Nordstrom spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Parthapratim, E-mail: pppradhan77@gmail.co [Department of Physics, Vivekananda Satabarshiki Mahavidyalaya, Manikpara, Paschim Medinipur, WestBengal 721513 (India); Majumdar, Parthasarathi, E-mail: parthasarathi.majumdar@saha.ac.i [Saha Institute of Nuclear Physics, Kolkata 700 064 (India)

    2011-01-17

    Circular null geodesic orbits, in extremal Reissner-Nordstrom spacetime, are examined with regard to their stability, and compared with similar orbits in the near-extremal situation. Extremization of the effective potential for null circular orbits shows the existence of a stable circular geodesic in the extremal spacetime, precisely on the event horizon which coincides with the null geodesic generator. Such a null orbit on the horizon is also indicated by the global minimum of the effective potential for circular timelike orbits. This type of geodesic is of course absent in the corresponding near-extremal spacetime, as we show here, testifying to differences between the extremal limit of a generic RN spacetime and the exactly extremal geometry.

  1. Analysis of optimal and near-optimal continuous-thrust transfer problems in general circular orbit

    Science.gov (United States)

    Kéchichian, Jean A.

    2009-09-01

    A pair of practical problems in optimal continuous-thrust transfer in general circular orbit is analyzed within the context of analytic averaging for rapid computations leading to near-optimal solutions. The first problem addresses the minimum-time transfer between inclined circular orbits by proposing an analytic solution based on a split-sequence strategy in which the equatorial inclination and node controls are done separately by optimally selecting the intermediate orbit size at the sequence switch point that results in the minimum-time transfer. The consideration of the equatorial inclination and node state variables besides the orbital velocity variable is needed to further account for the important J2 perturbation that precesses the orbit plane during the transfer, unlike the thrust-only case in which it is sufficient to consider the relative inclination and velocity variables thus reducing the dimensionality of the system equations. Further extensions of the split-sequence strategy with analytic J2 effect are thus possible for equal computational ease. The second problem addresses the maximization of the equatorial inclination in fixed time by adopting a particular thrust-averaging scheme that controls only the inclination and velocity variables, leaving the node at the mercy of the J2 precession, providing robust fast-converging codes that lead to efficient near-optimal solutions. Example transfers for both sets of problems are solved showing near-optimal features as far as transfer time is concerned, by directly comparing the solutions to "exact" purely numerical counterparts that rely on precision integration of the raw unaveraged system dynamics with continuously varying thrust vector orientation in three-dimensional space.

  2. Spin-orbit coupling for quasi-circular coorbital bodies

    CERN Document Server

    Correia, Alexandre C M

    2013-01-01

    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies $n\\pm k\

  3. Possible potentials responsible for stable circular relativistic orbits

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prashant; Bhattacharya, Kaushik, E-mail: kprash@iitk.ac.in, E-mail: kaushikb@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2011-07-15

    Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In this paper an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic systems. The stability criterion for potentials which can produce stable, circular orbits in the relativistic central force problem has been deduced and a general solution of it is presented. It is seen that the inverse square law passes the relativistic test but the kind of force required for simple harmonic motion does not. Special relativistic effects do not allow stable, circular orbits in the presence of a force which is proportional to the negative of the displacement of the particle from the potential centre.

  4. Near-horizon circular orbits and extremal limit for dirty rotating black holes

    CERN Document Server

    Zaslavskii, O B

    2015-01-01

    We consider generic rotating axially symmetric "dirty" (surrounded by matter) black holes. Near-horizon circular equatorial orbits are examined in two different cases of near-extremal (small surface gravity $\\kappa $) and exactly extremal black holes. This has a number of qualitative distinctions. In the first case, it is shown that such orbits can lie as close to the horizon as one wishes on suitably chosen slices of space-time when $\\kappa \\rightarrow 0$. This generalizes observation of T.\\ Jacobson Class. Quantum Grav. 28 187001 (2011) made for the Kerr metric. If a black hole is extremal ($\\kappa =0$), circular on-horizon orbits are impossible for massive particles but, in general, are possible in its vicinity. The corresponding black hole parameters determine also the rate with which a fine-tuned particle on the noncircular near-horizon orbit asymptotically approaches the horizon. Properties of orbits under discussion are also related to the Ba% \\~{n}ados-Silk-West effect of high energy collisions near b...

  5. Forced circular seam welding of tubes automated with orbital heads

    International Nuclear Information System (INIS)

    The MG process with pulse width modulated current and cold wire filler is suitable mainly for the production of high-quality welded joints. Three orbital welding heads adapted to requirements of the nuclear power station constructor have been designed for the mechanized forced circular seam welding of tubes. They differ in respect of their scope, in the structural height and in the number of the motor - controllable functions and the maximal values of the parameters defined by the functions. (orig.)

  6. Evaluation of non-circular orbit in thallium-201 myocardial SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shinya; Meguro, Mitsuhiko; Takeishi, Yasuchika (Yamagata Univ. (Japan). School of Medicine) (and others)

    1991-09-01

    A non-circular orbit in thallium-201 myocardial SPECT was evaluated using phantom studies. Spatial resolution, data uniformity, and defect detectability were compared with those obtained by a circular orbit. Spatial resolution in the horizontal direction was better by a non-circular orbit than by a circular orbit; however, there was little or no improvement in the vertical direction. A non-circular orbit was a little inferior to a circular orbit for data uniformity in SPECT with 180deg data acquisition. It had higher ability to detect perfusion defects in the anterior, septal, and lateral walls, corresponding to the areas where spatial resolution was improved. There was no difference in posterior defect between non-circular and circular orbits. (N.K.).

  7. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    Science.gov (United States)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  8. Gyroscope precession along unbound equatorial plane orbits around a Kerr black hole

    CERN Document Server

    Bini, Donato; Jantzen, Robert T

    2016-01-01

    The precession of a test gyroscope along unbound equatorial plane geodesic orbits around a Kerr black hole is analyzed with respect to a static reference frame whose axes point towards the "fixed stars." The accumulated precession angle after a complete scattering process is evaluated and compared with the corresponding change in the orbital angle. Limiting results for the non-rotating Schwarzschild black hole case are also discussed.

  9. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    CERN Document Server

    Bini, Donato; Jantzen, Robert T

    2016-01-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed and the precession angular velocity of the gyro's parallel transported spin vector and the increment in precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  10. Circular Orbits in the Taub-NUT and mass-less Taub-NUT Space-time

    CERN Document Server

    Pradhan, Parthapratim

    2016-01-01

    In this work we study the equatorial causal geodesics of the Taub-NUT(TN) space-time in comparison with \\emph{mass-less} TN space-time. We emphasized both on the null circular geodesics and time-like circular geodesics. From the effective potential diagram of null and time-like geodesics, we differentiate the geodesics structure between TN spacetime and mass-less TN space-time. It has been shown that there is a key role of the NUT parameter to changes the shape of pattern of the potential well in the NUT spacetime in comparison with mass-less NUT space-time. We compared the ISCO (innermost stable circular orbit), MBCO (marginally bound circular orbit) and CPO (circular photon orbit) of the said space-time with graphically in comparison with mass-less cases. Moreover, we compute the radius of ISCO, MBCO and CPO for \\emph{extreme} TN black hole. Interestingly, we show that these \\emph{three radii} coincides with the Killing horizon i.e. the null geodesic generators of the horizon. Finally in Appendix, we comput...

  11. Inner-most stable circular orbits in extremal and non-extremal Kerr-Taub-NUT spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur [Saha Institute of Nuclear Physics, Kolkata (India)

    2014-02-15

    We study causal geodesics in the equatorial plane of the extremal Kerr-Taub-NUT spacetime, focusing on the inner-most stable circular orbit (ISCO), and we compare its behavior with extant results for the ISCO in the extremal Kerr spacetime. Calculations of the radii of the direct ISCO, its Kepler frequency, and the rotational velocity show that the ISCO coincides with the horizon in the exactly extremal situation. We also study geodesics in the strong non-extremal limit, i.e., in the limit of a vanishing Kerr parameter (i.e., for Taub-NUT and massless Taub-NUT spacetimes as special cases of this spacetime). It is shown that the radius of the direct ISCO increases with NUT charge in Taub-NUT spacetime. As a corollary, it is shown that there is no stable circular orbit in massless NUT spacetimes for timelike geodesics. (orig.)

  12. Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Alexandre C. M. [Departamento de Física, I3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Robutel, Philippe [Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, F-75014 Paris (France)

    2013-12-10

    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n ± kν/2, where n is the orbital mean motion, ν the orbital libration frequency, and k an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ, has the same magnitude as ν, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ν << σ, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.

  13. EMRI corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole

    OpenAIRE

    Shah, Abhay G; Friedman, John L.; Keidl, Tobias S.

    2012-01-01

    This is the first of two papers on computing the self-force in a radiation gauge for a particle moving in circular, equatorial orbit about a Kerr black hole. In the EMRI (extreme-mass-ratio inspiral) framework, with mode-sum renormalization, we compute the renormalized value of the quantity $h_{\\alpha\\beta}u^\\alpha u^\\beta$, gauge-invariant under gauge transformations generated by a helically symmetric gauge vector; and we find the related order $\\frak{m}$ correction to the particle's angular...

  14. Orbit classification in the planar circular Pluto-Charon system

    CERN Document Server

    Zotos, Euaggelos E

    2015-01-01

    We numerically investigate the orbital dynamics of a spacecraft, or a comet, or an asteroid in the Pluto-Charon system in a scattering region around Charon using the planar circular restricted three-body problem. The test particle can move in bounded orbits around Charon or escape through the necks around the Lagrangian points $L_1$ and $L_2$ or even collide with the surface of Charon. We explore four of the five possible Hill's regions configurations depending on the value of the Jacobi constant which is of course related with the total orbital energy. We conduct a thorough numerical analysis on the phase space mixing by classifying initial conditions of orbits and distinguishing between three types of motion: (i) bounded, (ii) escaping and (iii) collisional. In particular, we locate the different basins and we relate them with the corresponding spatial distributions of the escape and collision times. Our results reveal the high complexity of this planetary system. Furthermore, the numerical analysis shows a...

  15. Aligned spins: orbital elements, decaying orbits, and last stable circular orbit to high post-Newtonian orders

    International Nuclear Information System (INIS)

    In this paper, the quasi-Keplerian parameterization for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin–orbit, next-to-next-to-leading order spin(1)–spin(2) and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity-type variable x. (paper)

  16. Innermost Stable Circular Orbits and Epicyclic Frequencies Around a Magnetized Neutron Star

    CERN Document Server

    Gutierrez-Ruiz, Andres F; Pachon, Leonardo A

    2013-01-01

    A full-relativistic approach is used to compute the radius of the innermost stable circular orbit (ISCO), the Keplerian, frame-dragging, precession and oscillation frequencies of the radial and vertical motions of neutral test particles orbiting the equatorial plane of a magnetized neutron star. The space-time around the star is modelled by the six parametric solution derived by Pachon et al. It is shown that the inclusion of an intense magnetic field, such as the one of a neutron star, have non-negligible effects on the above physical quantities, and therefore, its inclusion is necessary in order to obtain a more accurate and realistic description of the physical processes occurring in the neighbourhood of this kind of objects such as the dynamics of accretion disk. The results discussed here also suggest that the consideration of strong magnetic fields may introduce non-negligible corrections in, e.g., the relativistic precession model and therefore on the predictions made on the mass of neutron stars.

  17. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akihiro; Higuchi, Arika [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  18. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    International Nuclear Information System (INIS)

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  19. Gravitational self-force on eccentric equatorial orbits around a Kerr black hole

    CERN Document Server

    van de Meent, Maarten

    2016-01-01

    This paper presents the first calculation of the gravitational self-force on a small compact object on an eccentric equatorial orbit around a Kerr black hole to first order in the mass-ratio. That is the pointwise correction to the object's equations of motion (both conservative and dissipative) due to its own gravitational field treated as a linear perturbation to the background Kerr spacetime generated by the much larger spinning black hole. The calculation builds on recent advances on constructing the local metric and self-force from solutions of the Teukolsky equation, which led to the calculation of the Detweiler-Barack-Sago redshift invariant on eccentric equatorial orbits around a Kerr black hole in a previous paper. After deriving the necessary expression to obtain the self-force from the Weyl scalar $\\psi_4$, we perform several consistency checks of the method and numerical implementation, including a check of the balance law relating orbital average of the self-force to average flux of energy and an...

  20. THEOS-2 Orbit Design: Formation Flying in Equatorial Orbit and Damage Prevention Technique for the South Atlantic Magnetic Anomaly (SAMA)

    Science.gov (United States)

    Pimnoo, Ammarin

    2016-07-01

    Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.

  1. Circular revisit orbits design for responsive mission over a single target

    Science.gov (United States)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  2. The curiously circular orbit of Kepler-16b

    CERN Document Server

    Dunhill, Alex

    2013-01-01

    The recent discovery of a number of circumbinary planets lends a new tool to astrophysicists seeking to understand how and where planet formation takes place. Of the increasingly numerous circumbinary systems, Kepler-16 is arguably the most dynamically interesting: it consists of a planet on an almost perfectly circular orbit (e = 0.0069) around a moderately eccentric binary (e = 0.16). We present high-resolution 3D smoothed-particle hydrodynamics simulations of a Kepler-16 analogue embedded in a circumbinary disc, and show that the planet's eccentricity is damped by its interaction with the protoplanetary disc. We use this to place a lower limit on the gas surface density in the real disc through which Kepler-16b migrated of \\Sigma_min ~ 10 g cm^-2. This suggests that Kepler-16b, and other circumbinary planets, formed and migrated in relatively massive discs. We argue that secular evolution of circumbinary discs requires that these planets likely formed early on in the lifetime of the disc and migrated inwar...

  3. Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes

    CERN Document Server

    Chartas, G; Zalesky, L; Kochanek, C S; Dai, X; Morgan, C W; Mosquera, A

    2016-01-01

    We present a promising new technique, the g-distribution method, for measuring the inclination angle (i), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g-distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g-distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131-1231 (z_s=0.658, z_l=0.295), QJ 0158-4325 (z_s=1.294, z_l=0.317), and SDSS 1004+4112 (z_s=1.734, z_l=0.68). For RX J1131-1231 our initial results indicate that r_ISCO 76 degrees. We detect two shifted Fe lines, in several observations, as predicted in our numerical simulations of caustic crossings. The current DeltaE-distribution of RX J1131-1231 is sparsely sampled but further X-ray monitoring of RX J1131-1231 and other lensed quasars will provide improved constrai...

  4. Keplerian frequencies and innermost stable circular orbits of rapidly rotating strange stars

    CERN Document Server

    Stergioulas, N; Bulik, T

    1999-01-01

    It has been suggested that the frequency in the co-rotating innermost stable circular orbit (ISCO) about a compact stellar remnant can be determined through X-ray observations of low-mass X-ray binaries, and that its value can be used to constrain the equation of state of ultradense matter. Upon constructing numerical models of rapidly rotating strange (quark) stars in general relativity, we find that for stars rotating at the equatorial mass-shedding limit, the ISCO is indeed above the stellar surface, for a wide range of central energy densities at a height equal to 11% of the circumferential stellar radius, which scales inversely with the square root of the energy density, of self-bound quark matter at zero presure. In contrast to static stars, the ISCO frequencies of rapidly rotating strange stars can be as low as 0.9 kHz for a 1.3 solar mass strange star. Hence, the presence of strange stars in low-mass X-ray binaries cannot be excluded on the basis of the currently observed frequencies of kHz QPOs, such...

  5. Time-domain inspiral templates for spinning compact binaries in quasi-circular orbits described by their orbital angular momenta

    International Nuclear Information System (INIS)

    We present a prescription to compute the time-domain gravitational wave (GW) polarization states associated with spinning compact binaries inspiraling along quasi-circular orbits. We invoke the orbital angular momentum L rather than its Newtonian counterpart LN to describe the binary orbits while the two spin vectors are freely specified in an inertial frame associated with the initial direction of the total angular momentum. We show that the use of L to describe the orbits leads to additional 1.5PN order amplitude contributions to the two GW polarization states compared to the LN-based approach and discuss few implications of our approach. Furthermore, we provide a plausible prescription for GW phasing based on certain theoretical considerations and which may be treated as the natural circular limit to GW phasing for spinning compact binaries in inspiraling eccentric orbits (Gopakumar A and Schäfer G 2011 Phys. Rev. D 84 124007). (paper)

  6. Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases

    Science.gov (United States)

    FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre

    2007-01-01

    This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.

  7. Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa

    Directory of Open Access Journals (Sweden)

    J. P. S. Carvalho

    2014-01-01

    Full Text Available Space missions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, because missions to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time, evaluated by the integral of those forces over the time. This value depends on the dynamical model and on the orbit of the spacecraft. The perturbing forces considered are the third-body perturbation that comes from Jupiter and the J2, J3, and C22 terms of the gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital elements.

  8. Circular orbit spacecraft control at the L4 point using Lyapunov functions

    CERN Document Server

    Agrawal, Rachana

    2015-01-01

    The objective of this work is to demonstrate the utility of Lyapunov functions in control synthesis for the purpose of maintaining and stabilizing a spacecraft in a circular orbit around the L4 point in the circular restricted three body problem (CRTBP). Incorporating the requirements of a fixed radius orbit and a desired angular momentum, a Lyapunov function is constructed and the requisite analysis is performed to obtain a controller. Asymptotic stability is proved in a defined region around the L4 point using LaSalle's principle.

  9. Eccentricity generation in hierarchical triple systems with non-coplanar and initially circular orbits

    OpenAIRE

    Georgakarakos, Nikolaos

    2014-01-01

    In a previous paper, we developed a technique for estimating the inner eccentricity in coplanar hierarchical triple systems on initially circular orbits, with comparable masses and with well separated components, based on an expansion of the rate of change of the Runge-Lenz vector. Now, the same technique is extended to non-coplanar orbits. However, it can only be applied to systems with ${I_{0}140.77^{\\circ}}$, where ${I}$ is the inclination of the two orbits, because of complications arisin...

  10. Eccentricity generation in hierarchical triple systems with non-coplanar and initially circular orbits

    CERN Document Server

    Georgakarakos, Nikolaos

    2014-01-01

    In a previous paper, we developed a technique for estimating the inner eccentricity in coplanar hierarchical triple systems on initially circular orbits, with comparable masses and with well separated components, based on an expansion of the rate of change of the Runge-Lenz vector. Now, the same technique is extended to non-coplanar orbits. However, it can only be applied to systems with ${I_{0}140.77^{\\circ}}$, where ${I}$ is the inclination of the two orbits, because of complications arising from the so-called 'Kozai effect'. The theoretical model is tested against results from numerical integrations of the full equations of motion.

  11. Orbital Rashba effect and its detection by circular dichroism angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Park, Jin-Hong; Kim, Choong H.; Rhim, Jun-Won; Han, Jung Hoon

    2012-05-01

    We show, by way of tight-binding and first-principles calculations, that a one-to-one correspondence between an electron's crystal momentum k and nonzero orbital angular momentum (OAM) is a generic feature of surface bands. The OAM forms a chiral structure in momentum space much as its spin counterpart in Rashba model does, as a consequence of the inherent inversion symmetry breaking at the surface but not of spin-orbit interaction. This is the orbital counterpart of conventional Rashba effect and may be called the “orbital Rashba effect.” The circular dichroism (CD) angle-resolved photoemission (ARPES) method is an efficient way to detect this new order, and we derive formulas explicitly relating the CD-ARPES signal to the existence of OAM in the band structure. The cases of degenerate p- and d-orbital bands are considered.

  12. EMRI corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole

    CERN Document Server

    Shah, Abhay G; Keidl, Tobias S

    2012-01-01

    This is the first of two papers on computing the self-force in a radiation gauge for a particle moving in circular, equatorial orbit about a Kerr black hole. In the EMRI (extreme-mass-ratio inspiral) framework, with mode-sum renormalization, we compute the renormalized value of the quantity $h_{\\alpha\\beta}u^\\alpha u^\\beta$, gauge-invariant under gauge transformations generated by a helically symmetric gauge vector; and we find the related order $\\frak{m}$ correction to the particle's angular velocity at fixed renormalized redshift (and to its redshift at fixed angular velocity). The radiative part of the perturbed metric is constructed from the Hertz potential which is extracted from the Weyl scalar by an algebraic inversion\\cite{sf2}. We then write the spin-weighted spheroidal harmonics as a sum over spin-weighted spherical harmonics and use mode-sum renormalization to find the renormalization coefficients by matching a series in $L=\\ell+1/2$ to the large-$L$ behavior of the expression for $H := \\frac12 h_{...

  13. Nonlinear Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium

    CERN Document Server

    Kim, Woong-Tae

    2010-01-01

    We use three-dimensional hydrodynamic simulations to investigate the nonlinear gravitational responses of gas to, and the resulting drag forces on, very massive perturbers moving on circular orbits. This work extends our previous studies that explored the cases of low-mass perturbers on circular orbits and massive perturbers on straight-line trajectories. The background medium is assumed to be non-rotating, adiabatic with index 5/3, and uniform with density rho0 and sound speed a0. We model the gravitating perturber using a Plummer sphere with mass Mp and softening radius rs in a uniform circular motion at speed Vp and orbital radius Rp, and run various models with differing R=rs/Rp, Mach=Vp/a0, and B=G*Mp/(a0^2*Rp). A quasi-steady density wake of a supersonic model consists of a hydrostatic envelope surrounding the perturber, an upstream bow shock, and a trailing low-density region. The continuous change in the direction of the perturber motion makes the detached shock distance reduced compared to the linear...

  14. A Substellar Companion in a 1.3 yr Nearly-circular Orbit of HD 16760

    CERN Document Server

    Sato, Bunei; Ida, Shigeru; Harakawa, Hiroki; Omiya, Masashi; Johnson, John A; Marcy, Geoffrey W; Toyota, Eri; Hori, Yasunori; Isaacson, Howard; Howard, Andrew W; Peek, Kathryn M G

    2009-01-01

    We report the detection of a substellar companion orbiting the G5 dwarf HD 16760 from the N2K sample. Precise Doppler measurements of the star from Subaru and Keck revealed a Keplerian velocity variation with a period of 466.47+-0.35 d, a semiamplitude of 407.71+-0.84 m/s, and an eccentricity of 0.084+-0.003. Adopting a stellar mass of 0.78+-0.05 M_Sun, we obtain a minimum mass for the companion of 13.13+-0.56 M_JUP, which is close to the planet/brown-dwarf transition, and the semimajor axis of 1.084+-0.023 AU. The nearly circular orbit despite the large mass and intermediate orbital period makes this companion unique among known substellar companions.

  15. Application of Sturm's theorem to marginal stable circular orbits of a test body in spherically symmetric and static spacetimes

    CERN Document Server

    Ono, Toshiaki; Fushimi, Naomasa; Yamada, Kei; Asada, Hideki

    2015-01-01

    In terms of Sturm's theorem, we reexamine a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. MSCOs for some of exact solutions to the Einstein's equation are discussed. Strum's theorem is explicitly applied to the Kottler (often called Schwarzschild-de Sitter) spacetime. Moreover, we analyze MSCOs for a spherically symmetric, static and vacuum solution in Weyl conformal gravity.

  16. Orbit and Attitude Control of Asymmetric Satellites in Polar Near-Circular Orbit

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2009-10-01

    Full Text Available In this paper, the general problem about the orbit and attitude dynamic model is discussed. A feedback linearization control method is introduced for this model. Due to the asymmetric structure, the orbital properties of such satellites are the same as traditional symmetric ones, but the attitude properties are greatly different from the symmetric counterparts. With perturbations accumulate with time, the attitude angles increase periodically with time, but the orbital elements change much slower than the attitude angles. In the attitude dynamic model, chaos could appear. Traditional linear controllers can not compensate enough for asymmetric satellite when the mission is complex, especially in maneuver missions. Thus nonlinear control method is required to solve such problem in large scale. A feedback linearization method, one robust nonlinear control method, is introduced and applied to the asymmetric satellite in this paper. Some simulations are also given and the results show that feedback linearization controller not only stabilizes the system, but also exempt the chaos in the system.

  17. Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Orbits

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Blanke, Mogens

    2007-01-01

    This paper applies different control design methods to a tethered satellite system (TSS) to investigate essential control properties of this under-actuated and nonlinear system. When the tether position in the orbit plane is controlled by the tether current, out of orbit plane motions occur as an...

  18. NOTE: Explaining why the Uranian satellites have equatorial prograde orbits despite the large planetary obliquity

    OpenAIRE

    Morbidelli, Alessandro; Tsiganis, Kleomenis; Batygin, Konstantin; Crida, Aurelien; Gomes, Rodney

    2012-01-01

    We show that the existence of prograde equatorial satellites is consistent with a collisional tilting scenario for Uranus. In fact, if the planet was surrounded by a proto-satellite disk at the time of the tilting and a massive ring of material was temporarily placed inside the Roche radius of the planet by the collision, the proto-satellite disk would have started to precess incoherently around the equator of the planet, up to a distance greater than that of Oberon. Collisional damping would...

  19. The innermost stable circular orbit and its shifts due to conservative forces

    Science.gov (United States)

    Favata, Marc

    2011-04-01

    The innermost stable circular orbit (ISCO) of a black hole spacetime denotes the boundary between the stable circular orbits of a test-mass and those that plunge into the event horizon. For geodesic orbits the location of the ISCO is well known in the Schwarzschild and Kerr spacetimes. If conservative forces act on the test-mass, they will shift the location (and frequency) of the ISCO. For the conservative piece of the gravitational self-force, this shift has been calculated by Barack and Sago. I will discuss a similar shift in the ISCO caused by the spin-curvature coupling force on a spinning test-mass. I will also discuss a particular condition for the ISCO that, although derived from the unmodified post- Newtonian equations of motion, is able to exactly reproduce the Kerr ISCO and the ISCO shift due to a spinning test-mass. This condition also closely approximates the Barack-Sago conservative self-force ISCO shift. It is not clear why an ISCO condition derived from approximate post-Newtonian equations is able to accurately reproduce strong-field results.

  20. 2.5PN kick from black-hole binaries in circular orbit: Nonspinning case

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2013-01-01

    Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.

  1. Eccentricity generation in hierarchical triple systems with coplanar and initially circular orbits

    CERN Document Server

    Georgakarakos, Nikolaos

    2014-01-01

    We develop a technique for estimating the inner eccentricity in hierarchical triple systems with well separated components. We investigate systems with initially circular and coplanar orbits and comparable masses. The technique is based on an expansion of the rate of change of the Runge-Lenz vector for calculating short period terms by using first order perturbation theory. The combination of the short period terms with terms arising from octupole level secular theory, results in the derivation of a rather simple formula for the eccentricity of the inner binary. The theoretical results are tested against numerical integrations of the full equations of motion. Comparison is also made with other results on the subject.

  2. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    Science.gov (United States)

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier

    2016-07-01

    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  3. Imprints of molecular orbitals using photoelectron angular distribution by strong laser pulses of circular polarization

    Institute of Scientific and Technical Information of China (English)

    Ren Xiang-He; Wu Yan; Zhang Jing-Tao; Ma Hui; Xu Yu-Long

    2013-01-01

    We theoretically investigate the strong-field ionization of H2+ molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields.We find that the structure of photoelectron angular distribution depends on the molecular orbital as well as the energy of the photoelectron.The location of main lobes changes with the symmetric property of the molecular orbital.Generally,for molecules with bonding electronic states,the photoelectron's angular distribution shows a rotation of π/2 with respect to the molecular axis,while for molecules with antibonding electronic states,no rotation occurs.We use an interference scenario to interpret these phenomena.We also find that,due to the interference effect,a new pair of jets appears in the waist of the main lobes,and the main lobes or jets of the photoelectron's angular distribution are split into two parts if the photoelectron energy is sufficiently high.

  4. The final spin from binary black holes in quasi-circular orbits

    CERN Document Server

    Hofmann, Fabian; Rezzolla, Luciano

    2016-01-01

    We revisit the problem of predicting the spin magnitude and direction of the black hole resulting from the merger of two black holes with arbitrary masses and spins inspiralling in quasi-circular orbits. We do this by analyzing a catalog of 641 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum, but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins...

  5. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.

    Science.gov (United States)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Zhang, Peng

    2016-09-01

    Focusing fields of optical vortex (OV) beams with circular or radial polarizations carry both spin angular momentum (SAM) and orbital angular momentum (OAM), and can realize non-axial spinning and orbiting motion of absorptive particles. Using the T-matrix method, we evaluate the optical forces and torques exerted on micro-sized particles induced by the OV beams. Numerical results demonstrate that the particle is trapped on the circle of intensity maxima, and experiences a transverse spin torque along azimuthal direction, a longitudinal spin torque, and an orbital torque, respectively. The direction of spinning motion is not only related to the sign of topological charge of the OV beam, but also to the polarization state. However, the topological charge controls the direction of orbiting motion individually. Optically induced rotations of particles with varying sizes and absorptivity are investigated in OV beams with different topological charges and polarization states. These results may be exploited in practical optical manipulation, especially for optically induced rotations of micro-particles.

  6. Cloud and Wind Variability in Saturn's Equatorial Jet prior to the Cassini orbital tour

    Science.gov (United States)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.

    2004-11-01

    We use ground-based observations (going back to 1876), Pioneer-11 data (1979), Voyager 1 and 2 encounter images in 1980 and 1981, and HST 1990-2004 images, to study the changes that occurred in the vertical cloud structure and morphology and motions, in Saturn's Equatorial Region (approximately the band between latitudes 40 deg North and South). We compare ``calm periods" with ``stormy periods" i. e. those that occur during the development of the phenomenon known as the ``Great White Spots." We discuss different interpretations of the mechanisms that can be involved in the observed changes: vertical wind shears, waves, storm - mean flow interaction and changes in atmospheric angular momentum. Acknowledgements: This work was supported by the Spanish MCYT AYA 2003-03216. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  7. Generalized probability model for calculation of interference to the Deep Space Network due to circularly Earth-orbiting satellites

    Science.gov (United States)

    Ruggier, C. J.

    1992-01-01

    The probability of exceeding interference power levels and the duration of interference at the Deep Space Network (DSN) antenna is calculated parametrically when the state vector of an Earth-orbiting satellite over the DSN station view area is not known. A conditional probability distribution function is derived, transformed, and then convolved with the interference signal uncertainties to yield the probability distribution of interference at any given instant during the orbiter's mission period. The analysis is applicable to orbiting satellites having circular orbits with known altitude and inclination angle.

  8. Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime

    CERN Document Server

    Thornburg, Jonathan

    2016-01-01

    If a small "particle" of mass $\\mu M$ (with $\\mu \\ll 1$) orbits a black hole of mass $M$, the leading-order radiation-reaction effect is an $\\mathcal{O}(\\mu^2)$ "self-force" acting on the particle, with a corresponding $\\mathcal{O}(\\mu)$ "self-acceleration" of the particle away from a geodesic. Such "extreme--mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th order puncture field, followed by an $e^{im\\phi}$ ("m-mode") Fourier decomposition and a separate time-domain numerical evolution in $2+1$ dimensions for each $m$. We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the world...

  9. Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens

    Science.gov (United States)

    Liu, Ai-Ping; Xiong, Xiao; Ren, Xi-Feng; Cai, Yong-Jing; Rui, Guang-Hao; Zhan, Qi-Wen; Guo, Guang-Can; Guo, Guo-Ping

    2013-01-01

    We demonstrate a novel detection scheme for the orbital angular momentum (OAM) of light using circular plasmonic lens. Owing to a division-of-amplitude interference phenomenon between the surface plasmon waves and directly transmitted light, specific intensity distributions are formed near the plasmonic lens surface under different OAM excitations. Due to different phase behaviors of the evanescent surface plasmon wave and the direct transmission, interference patterns rotate as the observation plane moves away from the lens surface. The rotation direction is a direct measure of the sign of OAM, while the amount of rotation is linked to the absolute value of the OAM. This OAM detection scheme is validated experimentally and numerically. Analytical expressions are derived to provide insights and explanations of this detection scheme. This work forms the basis for the realization of a compact and integrated OAM detection architect that may significantly benefit optical information processing with OAM states. PMID:23929189

  10. Spinning test-body orbiting around Schwarzschild black hole: circular dynamics and gravitational-wave fluxes

    CERN Document Server

    Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro

    2016-01-01

    We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary-condition (SSC), the Pirani SSC and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of [Phys.~Rev.~D.90,~044018(2014)]. We analyze the four different dynamics in terms of the ISCO shifts and in terms of the coordinate invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational wave fluxes produced by the spinning body are computed by solving the inhomogeneous $(2+1)D$ Teukolsky equation and contrasted for the different cases. For small orbital frequencies $\\Omega$, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, ${x \\equiv (M \\Omega)^{2/3} >0.1 }$, where $M$ is the black hole mass, and ...

  11. HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit

    CERN Document Server

    Brahm, R; Bakos, G Á; Penev, K; Espinoza, N; Rabus, M; Hartman, J D; Bayliss, D; Ciceri, S; Zhou, G; Mancini, L; Tan, T G; de Val-Borro, M; Bhatti, W; Csubry, Z; Bento, J; Henning, T; Schmidt, B; Suc, V; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M$_{\\star}$=1.131 $\\pm$ 0.030 M$_{\\odot}$, R$_{\\star}$=1.091$^{+0.070}_{-0.046}$ R$_{\\star}$) metal-rich ([Fe/H]=+0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 $\\pm$ 0.056 R$_J$ given its Jupiter-like mass of 1.338 $\\pm$ 0.065 M$_J$. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.

  12. The Final Spin from Binary Black Holes in Quasi-circular Orbits

    Science.gov (United States)

    Hofmann, Fabian; Barausse, Enrico; Rezzolla, Luciano

    2016-07-01

    We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.

  13. NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits

    CERN Document Server

    Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S J; Chatterjee, S; Cordes, J M; Demorest, P B; Deng, X; Dolch, T; Ellis, J A; Ferdman, R D; Finn, L S; Garver-Daniels, N; Jenet, F; Jones, G; Kaspi, V M; Koop, M; Lam, M; Lazio, T J W; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D R; McLaughlin, M; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Sesana, A; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W W

    2014-01-01

    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of $h_0\\lesssim 3.8\\times 10^{-14}$ at a frequency of 10 nHz. Furthermore, we place 95% ...

  14. Analysis of stability boundaries of satellite's equilibrium attitude in a circular orbit

    Science.gov (United States)

    Novikov, M. A.

    2016-03-01

    An asymmetric satellite equipped with control momentum gyroscopes (CMGs) with the center of mass of the system moving uniformly in a circular orbit was considered. The stability of a relative equilibrium attitude of the satellite was analyzed using Lyapunov's direct method. The Lyapunov function V is a positive definite integral of the total energy of the perturbed motion of the system. The asymptotic stability analysis of the stationary motion of the conservative system was based on the Barbashin-Krasovskii theorem on the nonexistence of integer trajectories of the set dot V, which was obtained using the differential equations of motion of the satellite with CMGs. By analyzing the sign definiteness of the quadratic part of V, it was found earlier by V.V. Sazonov that the stability region is described by four strict inequalities. The asymptotic stability at the stability boundary was analyzed by sequentially turning these inequalities into equalities with terms of orders higher than the second taken into account in V. The sign definiteness analysis of the inhomogeneous function V at the stability boundary involved a huge amount of computations related to the multiplication, expansion, substitution, and factorization of symbolic expressions. The computations were performed by applying a computer algebra system on a personal computer.

  15. Extreme-mass-ratio inspiral corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole

    Science.gov (United States)

    Shah, Abhay G.; Friedman, John L.; Keidl, Tobias S.

    2012-10-01

    This is the first of two papers on computing the self-force in a radiation gauge for a particle of mass m moving in circular, equatorial orbit about a Kerr black hole. In the extreme-mass-ratio inspiral (EMRI) framework, with mode-sum renormalization, we compute the renormalized value of the quantity H≔(1)/(2)hαβuαuβ, gauge-invariant under gauge transformations generated by a helically symmetric gauge vector; here, hαβ is the metric perturbation, uα the particle’s 4-velocity. We find the related order m correction to the particle’s angular velocity at fixed renormalized redshift (and to its redshift at fixed angular velocity), each of which can be written in terms of H. The radiative part of the metric perturbation is constructed from a Hertz potential that is extracted from the Weyl scalar by an algebraic inversion T. S. Keidl , Phys. Rev. D 82, 124012 (2010). We then write the spin-weighted spheroidal harmonics as a sum over spin-weighted spherical harmonics Yℓms and use mode-sum renormalization to find the renormalization coefficients by matching a series in L=ℓ+1/2 to the large-L behavior of the expression for H. The nonradiative parts of the perturbed metric associated with changes in mass and angular momentum are calculated in the Kerr gauge.

  16. HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Day Circular Orbit

    Science.gov (United States)

    Brahm, R.; Jordán, A.; Bakos, G. Á.; Penev, K.; Espinoza, N.; Rabus, M.; Hartman, J. D.; Bayliss, D.; Ciceri, S.; Zhou, G.; Mancini, L.; Tan, T. G.; de Val-Borro, M.; Bhatti, W.; Csubry, Z.; Bento, J.; Henning, T.; Schmidt, B.; Rojas, F.; Suc, V.; Lázár, J.; Papp, I.; Sári, P.

    2016-04-01

    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V = 12.4) G-type ({M}\\star = 1.131+/- 0.030 {M}⊙ , {R}\\star = {1.091}-0.046+0.070 {R}⊙ ) metal-rich ([Fe/H] = +0.3 dex) host star in a circular orbit with a period of P = 16.2546 days. HATS-17b has a very compact radius of 0.777+/- 0.056 {R}{{J}} given its Jupiter-like mass of 1.338+/- 0.065 {M}{{J}}. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17 will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m telescope at the ESO Observatory in La Silla and with the 3.9 m AAT in Siding Spring Observatory. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope. Based on observations taken with the HARPS spectrograph (ESO 3.6 m telescope at La Silla) under programme 097.C-0571.

  17. Gravitationally Induced Density Wake of a Circularly Orbiting Object As an Interpretative Framework of Ubiquitous Spirals and Arcs

    CERN Document Server

    Kim, Hyosun

    2011-01-01

    An orbiting object in a gas rich environment creates a gravitational density wake containing information about the object and its orbit. Using linear perturbation theory, we analyze the observable properties of the gravitational wake due to the object circularly moving in a static homogeneous gaseous medium, in order to derive the Bondi accretion radius $r_B$, the orbital distance $r_p$, and the Mach number of the object. Supersonic motion, producing a wake of spiral-onion shell structure, exhibits a single-armed Archimedes spiral and two-centered circular arcs with respect to the line of sight. The pitch angle, arm width, and spacing of the spiral pattern are entirely determined by the orbital distance $r_p$ and Mach number of the object. The arm-interarm density contrast is proportional to the Bondi accretion radius, decreasing as a function of distance with a power index of -1. The background density distribution is globally changed from initially uniform to centrally concentrated. The vertical structure o...

  18. Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits

    CERN Document Server

    Labousse, Matthieu; Perrard, Stéhane; Bush, John W M

    2016-01-01

    We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.

  19. A Fast Frequency-Domain Algorithm for Gravitational Self-Force: I, Circular Orbits in Schwarzschild Spacetime

    CERN Document Server

    Akcay, Sarp

    2010-01-01

    Fast, reliable orbital evolutions of compact objects around massive black holes will be needed as input for gravitational wave search algorithms in the data stream generated by the planned Laser Interferometer Space Antenna (LISA). Currently, the state of the art is a time-domain code by [Phys. Rev. D{\\bf 81}, 084021, (2010)] that computes the gravitational self-force on a point-particle in an eccentric orbit around a Schwarzschild black hole. Currently, time-domain codes take up to a few days to compute just one point in parameter space. In a series of articles, we advocate the use of a frequency-domain approach to the problem of gravitational self-force (GSF) with the ultimate goal of orbital evolution in mind. Here, we compute the GSF for a particle in a circular orbit in Schwarzschild spacetime. We solve the linearized Einstein equations for the metric perturbation in Lorenz gauge. Our frequency-domain code reproduces the time-domain results for the GSF up to $\\sim 1000$ times faster for small orbital rad...

  20. Self-recovery effect of orbital angular momentum mode of circular beam in weak non-Kolmogorov turbulence.

    Science.gov (United States)

    Zhang, Tao; Liu, Yi-Dong; Wang, Jiandong; Liu, Pusheng; Yang, Yuanjie

    2016-09-01

    It is generally true that the orbital angular momentum (OAM) mode persistently degenerate when a vortex beam propagates in the atmospheric turbulence. Here, however, we unveil an interesting self-recovery effect of OAM mode of the circular beam (CiB) in weak non-Kolmogorov turbulence. We show that the CiB displays the self-focusing effect and has clear focus in the weak non-Kolmogorov turbulence if we choose proper complex parameters, and the detection probability of the original OAM mode reaches the maximum at the focus. Our study proposes a method to alleviate the turbulent effects on OAM-based communication.

  1. Conservative second-order gravitational self-force on circular orbits and the effective one-body formalism

    CERN Document Server

    Bini, Donato

    2016-01-01

    We consider Detweiler's redshift variable $z$ for a nonspinning mass $m_1$ in circular motion (with orbital frequency $\\Omega$) around a nonspinning mass $m_2$. We show how the combination of effective-one-body (EOB) theory with the first law of binary dynamics allows one to derive a simple, exact expression for the functional dependence of $z$ on the (gauge-invariant) EOB gravitational potential $u=(m_1+m_2)/R$. We then use the recently obtained high-post-Newtonian(PN)-order knowledge of the main EOB radial potential $A(u ; \

  2. Self-recovery effect of orbital angular momentum mode of circular beam in weak non-Kolmogorov turbulence.

    Science.gov (United States)

    Zhang, Tao; Liu, Yi-Dong; Wang, Jiandong; Liu, Pusheng; Yang, Yuanjie

    2016-09-01

    It is generally true that the orbital angular momentum (OAM) mode persistently degenerate when a vortex beam propagates in the atmospheric turbulence. Here, however, we unveil an interesting self-recovery effect of OAM mode of the circular beam (CiB) in weak non-Kolmogorov turbulence. We show that the CiB displays the self-focusing effect and has clear focus in the weak non-Kolmogorov turbulence if we choose proper complex parameters, and the detection probability of the original OAM mode reaches the maximum at the focus. Our study proposes a method to alleviate the turbulent effects on OAM-based communication. PMID:27607655

  3. Canonical Angles In A Compact Binary Star System With Spinning Components: Approximative Solution Through Next-To-Leading-Order Spin-Orbit Interaction for Circular Orbits

    CERN Document Server

    Tessmer, Manuel; Schäfer, Gerhard

    2013-01-01

    This publication will deal with an explicit determination of the time evolution of the spin orientation axes and the evolution of the orbital phase in the case of circular orbits under next-to-leading order spin-orbit interactions. We modify the method of Schneider and Cui proposed in ["Theoreme \\"uber Bewegungsintegrale und ihre Anwendungen in Bahntheorien", Verlag der Bayerischen Akademie der Wissenschaften, volume 212, 2005.] to iteratively remove oscillatory terms in the equations of motion for different masses that were not present in the case of equal masses. Our smallness parameter is chosen to be the difference of the symmetric mass ratio to the value 1/4. Before the first Lie transformation, the set of conserved quantities consists of the total angular momentum, the amplitudes of the orbital angular momentum and of the spins, $L, S_1,$ and $S_2$. In contrary, the magnitude of the total spin $S=|S_1+S_2|$ is not conserved and we wish to shift its non-conservation to higher orders of the smallness para...

  4. Nonadiabatic tunnel ionization of current-carrying orbitals of prealigned linear molecules in strong circularly polarized laser fields

    Science.gov (United States)

    Liu, Kunlong; Barth, Ingo

    2016-10-01

    We derive the analytical formula of the ratio of the ionization rates of degenerate valence π± orbitals of prealigned linear molecules in strong circularly polarized (CP) laser fields. Interestingly, our theory shows that the ionization ratio for molecular orbitals with opposite azimuthal quantum numbers ±|m | (e.g., π±) is identical to that for atomic orbitals with the same ±|m | (e.g., p±). In general, the electron counter-rotating to the CP laser field tunnels more easily, not only for atoms but also for linear molecules. Our theoretical predictions are then verified by numerically solving the three-dimensional time-dependent Schrödinger equation for the ionization of the prealigned nitric oxide (NO) molecule in strong CP laser fields. Due to the spin-orbital coupling in the electronic ground state of NO and the sensitivity of ionization to the sense of electron rotation, the ionization of NO in CP fields can produce spin-polarized photoelectrons with high controllability of spin polarization up to 100 % .

  5. Gravitomagnetic draconitic clock effect for inclined and quasi-circular orbits around a spinning body arbitrarily oriented in space

    CERN Document Server

    Iorio, Lorenzo

    2014-01-01

    In the weak-field and slow-motion approximation of general relativity, the rotation of a body discriminates between the opposite directions of motion of a pair of counter-revolving tests particles orbiting it along geometrically identical trajectories: it is the so-called gravitomagnetic clock effect. In this paper, we analytically calculate the gravitomagnetic corrections to both the draconitic and to the anomalistic periods of arbitrarily inclined, quasi-circular orbits for a generic orientation of the spin axis of the primary. While the anomalistic period is left unchanged, the draconitic one experiences a generally non-vanishing correction which, to zero order in the eccentricity, gains a minus sign if the velocity of the test particle is reversed. As a result, a gravitomagnetic draconitic clock effect arises since a generally non-zero difference of the draconitic periods of a pair of counter-orbiting test particles arises. Remarkably, it is independent of their initial conditions, with some advantages fr...

  6. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  7. X-ray magnetic circular dichroism: Orbital and spin moments of iron single-crystal thin film deposited on MgO substrate

    Institute of Scientific and Technical Information of China (English)

    LI Honghong; WANG Jie; LI Ruipeng; GUO Yuxian; WANG Feng; HU Zhiwei

    2005-01-01

    X-ray magnetic circular dichroism in absorption of the single-crystal iron layer deposited epitaxially on MgO substrate is studied. Spin and orbital moment, 0.069 and 2.33 -B, respectively, are calculated in terms of the XMCD sum rules. Our results are accordant to those published. Experiments show that the orbital moment would be decreased to that in bulk materials as iron film is thinned down, but spin moment changes little.

  8. MACSAT - A Near Equatorial Earth Observation Mission

    Science.gov (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  9. From circular paths to elliptic orbits A geometric approach to Kepler's motion

    CERN Document Server

    González-Villanueva, A; Martínez y Romero, R P; Núñez-Yépez, H N; Salas-Brito, A L

    1998-01-01

    The hodograph, i.e. the path traced by a body in velocity space, was introduced by Hamilton in 1846 as an alternative for studying certain dynamical problems. The hodograph of the Kepler problem was then investigated and shown to be a circle, it was next used to investigate some other properties of the motion. We here propose a new method for tracing the hodograph and the corresponding configuration space orbit in Kepler's problem starting from the initial conditions given and trying to use no more than the methods of synthetic geometry in a sort of Newtonian approach. All of our geometric constructions require straight edge and compass only.

  10. Regular and chaotic orbits near a massive magnetic dipole

    CERN Document Server

    Kovář, Jiří; Karas, Vladimí; Kojima, Yasufumi; 10.1088/0264-9381/30/2/025010

    2013-01-01

    Within the framework of Bonnor's exact solution describing a massive magnetic dipole, we study the motion of neutral and electrically charged test particles. In dependence on the Bonnor spacetime parameters, we determine regions enabling the existence of stable circular orbits confined to the equatorial plane and of those levitating above the equatorial plane. Constructing Poincar\\'e surfaces of section and recurrence plots, we also investigate the dynamics of particles moving along general off-equatorial trajectories bound in effective potential wells forming around the stable circular orbits. We demonstrate that the motion in the Bonnor spacetime is not integrable. This extends previous investigations of generalized St\\"ormer's problem into the realm of exact solutions of Einstein-Maxwell equations, where the gravitational and electromagnetic effects play a comparable role on the particle motion.

  11. Innermost stable circular orbit near dirty black holes in magnetic field and ultra-high-energy particle collisions

    International Nuclear Information System (INIS)

    We consider the behavior of the innermost stable circular orbit (ISCO) in the magnetic field near ''dirty'' (surrounded by matter) axially symmetric black holes. The cases of near-extremal, extremal, and nonextremal black holes are analyzed. For nonrotating black holes, in the strong magnetic field ISCO approaches the horizon (when backreaction of the field on the geometry is neglected). Rotation destroys this phenomenon. The angular momentum and radius of ISCO look model-independent in the main approximation. We also study the collisions between two particles that results in the ultra-high energy Ec.m. in the center-of-mass frame. Two scenarios are considered - when one particle moves on the near-horizon ISCO or when collision occurs on the horizon, one particle having the energy and angular momentum typical of ISCO. If the magnetic field is strong enough and a black hole is slowly rotating, Ec.m. can become arbitrarily large. The kinematics of the high-energy collision is discussed. As an example, we consider the magnetized Schwarzschild black hole for an arbitrary strength of the field (the Ernst solution). It is shown that backreaction of the magnetic field on the geometry can bound the growth of Ec.m. (orig.)

  12. Energy and periastron advance of compact binaries on circular orbits at the fourth post-Newtonian order

    CERN Document Server

    Bernard, Laura; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain

    2016-01-01

    In this paper, we complete our preceding work on the Fokker Lagrangian describing the dynamics of compact binary systems at the fourth post-Newtonian (4PN) order in harmonic coordinates. We clarify the impact of the non-local character of the Fokker Lagrangian or the associated Hamiltonian on both the conserved energy and the relativistic periastron precession for circular orbits. We show that the non-locality of the action, due to the presence of the tail effect at the 4PN order, gives rise to an extra contribution to the conserved integral of energy with respect to the Hamiltonian computed on shell, which was not taken into account in our previous work. We also provide a direct derivation of the periastron advance by taking carefully into account this non-locality. We then argue that the infra-red (IR) divergences in the calculation of the gravitational part of the action are problematic, which motivates us to introduce a second ambiguity parameter, in addition to the one already assumed previously. After f...

  13. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Science.gov (United States)

    Goings, Joshua J.; Li, Xiaosong

    2016-06-01

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  14. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    Science.gov (United States)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  15. LF equatorial emissions recorded by DEMETER/ICE experiment

    Science.gov (United States)

    Boudjada, Mohammed; Parrot, Michel; Schwingenschuh, Konrad; Eichelberger, Hans; Lammer, Helmut; Sawas, Sami; Denisenko, Valery; Besser, Bruno

    2016-07-01

    We report on electric field observations recorded on the Earth's night-side by DEMETER/ICE experiment. DEMETER is a low-altitude satellite with polar and circular orbits. Observations were recorded at invariant latitudes less than 65° and an altitude of about 650 km. The sun-synchronous night-side orbits correspond to up-going half-orbits with a local time equal to 22:30. We consider in our analysis the low frequency emissions observed at frequencies less than 500 kHz. We show the occurrence of multiple spaced frequency bands between 30 kHz and 500 kHz, and occasionally harmonic components appear in the upper frequency of the instrument (i.e. between 3 MHz - 3.5 MHz,). Those bands are recorded close to the equatorial plane, when the satellite latitudes are between -05° and +05°, and particular enhancements occur at two geographical longitudes, i.e. 130°E and 160°W. We assume that those low frequency radio waves may be associated to density irregularities in the equatorial region. Probably these irregularities are localized along ray paths between the emission source regions and the satellite. We discuss the source locations of such frequency bands, and we show that the observed spectral features may be linked to the plasmasphere dynamic.

  16. Effects of Pauli, Rashba and Dresselhaus spin-orbit interactions on electronic states in 2D circular hydrogenic anti-dot

    Science.gov (United States)

    Abuali, Z.; Golshan, M. M.; Davatolhagh, S.

    2016-09-01

    The present work is concerned with a report on the effects of Pauli, Rashba and Dresselhaus spin-orbit interactions (SOI) on the energy levels of a 2D circular hydrogenic quantum anti-dot(QAD). To pursue this aim, we first present a brief review on the analytical solutions to the Schrödinger equation of electronic states in a quantum anti-dot when a hydrogenic donor is placed at the center, revealing the degeneracies involved in the ground, first and second excited states. We then proceed by adding the aforementioned spin-orbit interactions to the Hamiltonian and treat them as perturbation, thereby, calculating the energy shifts to the first three states. As we show, the Rashba spin-orbit interaction gives rise to a shift in the energies of the ground and second excited states, while it partially lifts the degeneracy of the first excited state. Our calculations also indicate that the Dresselhaus effect, while keeping the degeneracy of the ground and second excited states intact, removes the degeneracy of the first excited state in the opposite sense. The Pauli spin-orbit interaction, on the other hand, is diagonal in the appropriate bases, and thus its effect is readily calculated. The results show that degeneracy of ℓ = 0 (prevailing in the ground and second excited state) remains but the degeneracy of ℓ = 1 (prevailing in the first excited state) is again partially lifted. Moreover, we present the energy corrections due to the three spin-orbit interactions as functions of anti-dot's radius, Rashba and Dresselhaus strengths discussing how they affect the corresponding states. The material presented in the article conceives the possibility of generating spin currents in the hydrogenic circular anti-dots.

  17. Evolutionary outcomes for pairs of planets undergoing orbital migration and circularization: second order resonances and observed period ratios in Kepler's planetary systems

    CERN Document Server

    Xiang-Gruess, M

    2015-01-01

    In order to study the origin of the architectures of low mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range $(1-4)\\ \\rmn{M}_{\\oplus}.$ These evolve for up to $2\\times10^7 \\rmn{yr}$ under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow ircularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few $\\%$ terminating in second order resonances. Both planetary eccentricities were small $< 0.1$ and all resonant angles liberated. This type of survey produced o...

  18. Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole to the 11th Post-Newtonian Order

    CERN Document Server

    Fujita, Ryuichi

    2014-01-01

    We compute the energy flux of the gravitational waves radiated by a particle of mass $\\m$ in circular orbits around a rotating black hole of mass $M$ up to the 11th post-Newtonian order (11PN), i.e. $v^{22}$ beyond the leading Newtonian approximation where $v$ is the orbital velocity of the particle. By comparing the PN results for the energy flux with high precision numerical results in black hole perturbation theory, we find the region of validity in the PN approximation becomes larger with increasing PN orders. If one requires the relative error of the energy flux in the PN approximation to be less than $10^{-5}$, the energy flux at 11PN (4PN) can be used for $v\\lessapprox 0.33$ ($v\\lessapprox 0.13$). The region of validity can be further extended to $v\\lessapprox 0.4$ if one applies a resummation method to the energy flux at 11PN. We then compare the orbital phase during two-year inspiral from the PN results with the high precision numerical results. We find that for late (early) inspirals when $q\\le 0.3$...

  19. Orbiting.

    OpenAIRE

    Halford, Sarah Juliette

    2013-01-01

    I always knew I was from another planet. Earth was my home, yes, I liked hamburgers and roller coasters, but there was still an orbit in me that seemed out of place. My imaginative orbit felt like it didn't to spin the "normal" way. As a performer I spent more time alienating myself and judging how different I felt, rather than owning the creative space I lived in and applying it to my craft. My past three years at UC San Diego have been the perfect atmosphere for my artist self. I have been ...

  20. Third-Body Perturbation in the Case of Elliptic Orbits for the Disturbing Body

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2008-01-01

    Full Text Available This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed.

  1. Frequency analysis of the non-principal-axis rotation of uniaxial space debris in circular orbit subjected to gravity-gradient torque

    Science.gov (United States)

    Lin, Hou-Yuan; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2016-03-01

    The non-principal-axis rotational motion of uniaxial space debris can be decomposed into periodic motions associated with two frequencies: the polhode frequency of the space debris rotating around the symmetry axis, and the tumbling frequency of the symmetry axis rotating around the angular momentum. To determine from optical measurements the rotational motion of upper rocket stages in circular orbits subjected to gravity-gradient torque, the evolutions of these two frequencies need to be analyzed. Taking into account only the long-term changes in the long-period variables, the differential equations of the non-principal axis rotational motion of the uniaxial space debris are averaged and reduced, from which the evolutions of the polhode and tumbling frequencies are then obtained analytically. The theoretical results are verified by numerical simulations of the diffuse reflection model. The frequencies in the variation of the reflected light intensity in the simulation are analyzed using the frequency map analysis (FMA) method. Errors of these results are found to be less than 1%. Based on the theoretical expressions, the rotational state of the uniaxial space debris can be estimated in the simulation without any prior information except the orbital parameters. A series of state variables are estimated, including the ratio of the moments of inertia about the transverse axis and the symmetry axis, the instantaneous rotation velocity, the orientation of the angular momentum, and the precession cone of the symmetry axis.

  2. Effect of Gravitational Frame Dragging on Orbiting Qubits

    CERN Document Server

    Lanzagorta, Marco

    2012-01-01

    In this paper we discuss the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-1/2 qubits moving in an equatorial radial fall with zero angular momentum and equatorial circular orbits. We ignore the ${\\cal O}(\\hbar)$ order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-1/2 particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle's trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose's cosmic censorship hypothesis.

  3. Do floating orbits in extreme mass ratio binary black holes exist?

    CERN Document Server

    Kapadia, Shasvath J; Glampedakis, Kostas

    2013-01-01

    This paper examines the possibility of floating or non-decaying orbits for extreme mass ratio binary black holes. In the adiabatic approximation, valid in the extreme mass ratio case, if the orbital flux lost due to gravitational radiation reaction is compensated for by the orbital flux gained from the spins of the black holes via superradiant scattering (or, equivalently, tidal acceleration) the orbital decay would be stalled, causing the binary to "float". We show that this flux balance is not, in practice, possible for extreme mass ratio binary black holes with circular equatorial orbits; furthermore, adding eccentricity and inclination to the orbits will not significantly change this null result, thus ruling out the possibility of floating orbits for extreme mass ratio binary black holes. We also argue that binaries consisting of material bodies dense and massive enough to generate gravitational waves detectable by any kind of gravitational wave detector are also unlikely to float. Using a multipolar anal...

  4. A Numerical Study of Low-Thrust Limited Power Trajectories between Coplanar Circular Orbits in an Inverse-Square Force Field

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2012-01-01

    Full Text Available A numerical study of optimal low-thrust limited power trajectories for simple transfer (no rendezvous between circular coplanar orbits in an inverse-square force field is performed by two different classes of algorithms in optimization of trajectories. This study is carried out by means of a direct method based on gradient techniques and by an indirect method based on the second variation theory. The direct approach of the trajectory optimization problem combines the main positive characteristics of two well-known direct methods in optimization of trajectories: the steepest-descent (first-order gradient method and a direct second variation (second-order gradient method. On the other hand, the indirect approach of the trajectory optimization problem involves two different algorithms of the well-known neighboring extremals method. Several radius ratios and transfer durations are considered, and the fuel consumption is taken as the performance criterion. For small-amplitude transfers, the results are compared to the ones provided by a linear analytical theory.

  5. Origin-independent sum over states simulations of magnetic and electronic circular dichroism spectra via the localized orbital/local origin method.

    Science.gov (United States)

    Štěpánek, Petr; Bouř, Petr

    2015-04-15

    Although electronic and magnetic circular dichroism (ECD, MCD) spectra reveal valuable details about molecular geometry and electronic structure, quantum-chemical simulations significantly facilitate their interpretation. However, the simulated results may depend on the choice of coordinate origin. Previously (Štěpánek and Bouř, J. Comput. Chem. 2013, 34, 1531), the sum-over-states (SOS) methodology was found useful for efficient MCD computations. Approximate wave functions were "resolved" using time-dependent density functional theory, and the origin-dependence was avoided by placing the origin to the center of mass of the investigated molecule. In this study, a more elegant way is proposed, based on the localized orbital/local origin (LORG) formalism, and a similar approach is also applied to generate ECD intensities. The LORG-like approach yields fully origin-independent ECD and MCD spectra. The results thus indicate that the computationally relatively cheap SOS simulations open a new way of modeling molecular properties, including those involving the origin-dependent magnetic dipole moment operator. PMID:25662937

  6. Administrative Circulars

    CERN Multimedia

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  7. Timelike and null equatorial geodesics in the Bonnor-Sackfield relativistic disk

    Directory of Open Access Journals (Sweden)

    Guillermo A. González

    2011-06-01

    Full Text Available A study of timelike and null equatorial geodesics in the BonnorSackfield relativistic thin disk is presented. The motion of test particles in the equatorial plane is analyzed, both for the newtonian thin disk model as for the corresponding relativistic disk. The nature of the possible orbits is studied by means of a qualitative analysis of the effective potential and by numerically solving the motion equation for radial and non-radial equatorial trajectories. The existence of stable, unstable and marginally stable circular orbits is analyzed, both for the newtonian and relativistic case. Examples of the numerical results, obtained with some simple values of the parameters, are presented. Resumen. En este trabajo se presenta un estudio de las geodésicas temporales y nulas en el disco delgado relativista y newtoniano de Bonnor-Sackfield. Se analiza el movimiento de las partículas de prueba en el plano ecuatorial, tanto para el modelo newtoniano del disco delgado como para el disco relativista correspondiente. La naturaleza de las órbitas posibles se estudia por medio de un análisis cualitativo del potencial efectivo, y numéricamente mediante la solución de la ecuación de movimiento de las trayectorias ecuatorial radial y no radial: Se analiza la existencia de órbitas estables, circulares inestables y estables marginalmente, tanto para el caso newtoniano, como el relativista. Se presentan ejemplos de los resultados numéricos obtenidos con algunos valores de los parámetros simples.

  8. Orbital-driven environmental changes recorded at ODP Site 959 (eastern equatorial Atlantic) from the Late Miocene to the Early Pleistocene

    Science.gov (United States)

    Vallé, Francesca; Westerhold, Thomas; Dupont, Lydie M.

    2016-06-01

    Palaeorecords from tropical environments are important to explore the linkages between precipitation, atmospheric circulation and orbital forcing. In this study, new high-resolution XRF data from ODP Site 959 (3°37'N, 2°44'W) have been used to investigate the relationship between palaeoenvironmental changes in West Africa and sedimentation in the tropical East Atlantic Ocean. Iron intensity data have been used to build a 91-m composite depth record that has been astronomically tuned allowing the development of a detailed age model from 6.2 to 1.8 Ma. Based on this new stratigraphy, we studied the variations of Ti/Al, Ti/Ca and Al/Si ratios, proxies for aeolian versus fluvial supply, as dust indicator and fine versus coarse grain size, respectively. We discuss sedimentation patterns at ODP Site 959 associated with the environmental changes from the late Miocene until the early Pleistocene. During the interval corresponding to the earlier stages of the Messinian Salinity Crisis, our proxy records indicate enhanced run-off from the West African continent and major supply of fine material at ODP Site 959, suggesting a stronger monsoon and increased precipitation during eccentricity minima. A long-term decrease of river supply is documented after 5.4 Ma until the end of the Pliocene. From the increased values and variability of Ti/Al and Ti/Ca ratios, we suggest that after 3.5 Ma dust started to reach the study site probably as a result of the southward shift of the Intertropical Convergence Zone during winter. Between 3.2 and 2.9 Ma, ODP Site 959 Ti/Ca ratios exhibit three maxima corresponding to eccentricity maxima similarly to other dust records of northern Africa. This suggests continent-wide aridity or larger climate variability during that interval. Eccentricity forcing (405 and 100 kyr) and precession frequencies are found in the entire studied interval. The variations of Ti/Al ratio suggest stronger seasonality between 5.8 and 5.5 Ma and after 3.2 Ma.

  9. Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    CERN Document Server

    Michtchenko, Tatiana A; Barros, Douglas A; Lépine, Jacques R D

    2016-01-01

    Context: Resonances in the stellar orbital motion under perturbations from spiral arms structure play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (for nearly circular orbits), but is not suitable in general. Aims: To expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped profiles, without any restriction on the stellar orbital configurations, and expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes are constructed numerically, in order to characterize the phase-space structure and identify the precise location of the resonances. The study is complemented by the construction of dynamical power spectra, which provide the identif...

  10. A Colorful Equatorial Wonderland

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Papua New Guinea (PNG) is one of the least visited countries in the world... a last frontier for international travelers. PNG is a colorful equatorial wonderland as well as a living example of human's culture 1000 years ago.

  11. High orbital angular momentum quantum numbers in the electronic ground states of Fe$_2^+$ and Co$_2^+$ as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy

    CERN Document Server

    Zamudio-Bayer, V; Langenberg, A; Lawicki, A; Terasaki, A; Issendorff, B v; Lau, J T

    2015-01-01

    The $^6\\Delta$ electronic ground state of the Co$_2^+$ diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, $^6\\Phi$, $^6\\Gamma$, and $^8\\Gamma$, for the electronic ground state of Fe$_2^+$ have been identified. These states carry sizable ground-state orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of $3d$ elements cannot be assumed to be connected by a one-electron process.

  12. Information circulars

    International Nuclear Information System (INIS)

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex

  13. Information circulars

    International Nuclear Information System (INIS)

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex

  14. Intermonsoonal equatorial jets

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    Three transects each from the cruises of R V Pioneer (84 , 88 degrees and 92 degrees E) during May-June 1964 and R V Vityaz (77 , 84 degrees and 94 degrees E) during October-November 1962 were used to compare pre and postmonsoon equatorial jets...

  15. Study of equatorial regions of Moon with the help of backscattering coefficient obtained from LRO data

    Indian Academy of Sciences (India)

    O P N Calla; Shubhra Mathur; Monika Jangid

    2014-03-01

    The Lunar Reconnaissance Orbiter (LRO) has a miniature radio-frequency (Mini-RF) payload, i.e., the Synthetic Aperture Radar (SAR) that has provided very fundamental information about the lunar surface and subsurface which was not known inspite of many manned and unmanned missions. Microwave sensors are used for analyzing the equatorial region of the Moon (60°N to 60°S) which is covered with many well-known craters like Kopff, Taylor, Maunder, Descartes, Jackson and Santos Dumont, each having different topography. The LRO data in terms of the scattering coefficient (°LH and °LV) with incidence angle of 49° has been used for computing physical and electrical parameter of lunar surface and to learn more about the impact cratering process. Most of the lunar surface shows small Circular Polarization Ratio (CPR), i.e., the reversal of polarization is normal, but some targets have high CPR. In this paper we have discussed the scattering behaviour of lunar equatorial region where the value of CPR < 1. Studies say that the LV intensity is always greater than LH but from the data obtained from LRO, it is observed that it varies at each pixel depending upon the target properties under radar view.

  16. Equatorial MST radars: Further consideration

    Science.gov (United States)

    Lagos, P.

    1983-01-01

    The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.

  17. Integrated magnetometer-horizon sensor low-earth orbit determination using UKF

    Science.gov (United States)

    Farahanifar, Mohammad; Assadian, Nima

    2015-01-01

    The estimation of the satellite orbital elements using the integrated magnetometer and horizon sensors data has been investigated in this study. These sensors are generally employed for attitude estimation. The magnetometer and the horizon sensor measure the Earth's magnetic field as well as the Earth's center direction in the body frame, respectively. The magnitude of the magnetic field and the angle between two vectors have been used for orbit estimation purpose. This excludes the knowledge of the attitude in the orbit determination. The Gaussian variation of parameters equations is used for the orbital motion dynamical model to have the orbital elements as the states of the system. Since the dynamics of the system and the measurement model are nonlinear, the unscented Kalman filter (UKF) is utilized. Moreover, the magnetometer is subjected to scale factor and bias errors and these parameters are also estimated together with the orbital elements. It has been revealed that the UKF-based orbit determination algorithm can determine the sensor error parameters as well as the Keplerian orbital elements. The sensitivity analysis results show that this approach is insensitive to inclination and eccentricity for most orbits and can be adopted for near equatorial as well as near circular orbits.

  18. Stable photon orbits in stationary axisymmetric electrovacuum spacetimes

    CERN Document Server

    Dolan, Sam R

    2016-01-01

    We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we classify the equatorial circular photon orbits of Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordstr\\"om di-holes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a torus around a di-hole, via a selection of Poincar\\'e sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electrovacuum; but not in pure vacuum.

  19. Stable photon orbits in stationary axisymmetric electrovacuum spacetimes

    Science.gov (United States)

    Dolan, Sam R.; Shipley, Jake O.

    2016-08-01

    We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we review the classification of equatorial circular photon orbits on Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordström diholes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a toroidal region around a dihole, via a selection of Poincaré sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electro vacuum, but not in pure vacuum.

  20. Detection of gravitational frame dragging using orbiting qubits

    Science.gov (United States)

    Lanzagorta, Marco; Salgado, Marcelo

    2016-05-01

    In this paper we propose information theoretic and interferometric techniques to detect the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-\\tfrac{1}{2} qubits moving in equatorial circular orbits. We ignore the { O }({\\hslash }) order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-\\tfrac{1}{2} particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle’s trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose’s cosmic censorship hypothesis. Finally we propose how the Wigner rotation strictly due to frame dragging could be observed using interferometry and other quantum metrology techniques.

  1. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    of the orbital structure of the initial state as well as the carrier-envelope phase of the applied pulse. Our ab initio results are compared with results obtained using the length-gauge strong-field approximation, which allows for a clear interpretation of the results in terms of classical physics. Furthermore...

  2. A Pair of Giant Planets around the Evolved Intermediate-Mass Star HD 47366: Multiple Circular Orbits or a Mutually Retrograde Configuration

    CERN Document Server

    Sato, Bun'ei; Liu, Yu-Juan; Zhao, Gang; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Wittenmyer, Robert A; Butler, Paul; Song, Nan; He, Wei; Zhao, Fei; Kambe, Eiji; Noguchi, Kunio; Ando, Hiroyasu; Izumiura, Hideyuki; Okada, Norio; Yoshida, Michitoshi; Takeda, Yoichi; Itoh, Yoichi; Kokubo, Eiichiro; Ida, Shigeru

    2016-01-01

    We report the detection of a double planetary system around the evolved intermediate-mass star HD 47366 from precise radial-velocity measurements at Okayama Astrophysical Observatory, Xinglong Station, and Australian Astronomical Observatory. The star is a K1 giant with a mass of 1.81+-0.13M_sun, a radius of 7.30+-0.33R_sun, and solar metallicity. The planetary system is composed of two giant planets with minimum mass of 1.75^{+0.20}_{-0.17}Mjup and 1.86^{+0.16}_{-0.15}Mjup, orbital period of 363.3^{+2.5}_{-2.4} d and 684.7^{+5.0}_{-4.9} d, and eccentricity of 0.089^{+0.079}_{-0.060} and 0.278^{+0.067}_{-0.094}, respectively, which are derived by a double Keplerian orbital fit to the radial-velocity data. The system adds to the population of multi-giant-planet systems with relatively small orbital separations, which are preferentially found around evolved intermediate-mass stars. Dynamical stability analysis for the system revealed, however, that the best-fit orbits are unstable in the case of a prograde conf...

  3. Circular Updates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...

  4. Information circulars

    International Nuclear Information System (INIS)

    The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex

  5. Operational Circulars

    CERN Multimedia

    2003-01-01

    Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...

  6. Circular motion in NUT space-time

    CERN Document Server

    Jefremov, Paul

    2016-01-01

    We consider circular motion in the NUT (Newman-Unti-Tamburino) space-time. Among other things, we determine the location of circular time-like geodesic orbits, in particular of the innermost stable circular orbit (ISCO) and of the marginally bound circular orbit. Moreover, we discuss the von Zeipel cylinders with respect to the stationary observers and with respect to the Zero Angular Momentum Observers (ZAMOs). We also investigate the relation of von Zeipel cylinders to inertial forces, in particular in the ultra-relativistic limit. Finally, we generalise the construction of thick accretion tori ("Polish doughnuts") which are well known on the Schwarzschild or Kerr background to the case of the NUT metric. We argue that, in principle, a NUT source could be distinguished from a Schwarzschild or Kerr source by observing the features of circular matter flows in its neighbourhood.

  7. Equatorial oceanography. [review of research

    Science.gov (United States)

    Cane, M. A.; Sarachik, E. S.

    1983-01-01

    United States progress in equatorial oceanography is reviewed, focusing on the low frequency response of upper equatorial oceans to forcing by the wind. Variations of thermocline depth, midocean currents, and boundary currents are discussed. The factors which determine sea surface temperature (SST) variability in equatorial oceans are reviewed, and the status of understanding of the most spectacular manifestation of SST variability, the El Nino-Southern Oscillation phenomenon, is discussed. The problem of observing surface winds, regarded as a fundamental factor limiting understanding of the equatorial oceans, is addressed. Finally, an attempt is made to identify those current trends which are expected to bear fruit in the near and distant future.

  8. The quantum spectra analysis of the circular billiards in wells

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Hui; Zhang Li-Qin; Xu Xue-You; Ge Mei-Hua; Lin Sheng-Lu; Du Meng-Li

    2006-01-01

    We use a recently defined quantum spectral function and apply the method of closed-orbit theory to the 2D circular billiard system. The quantum spectra contain rich information of all classical orbits connecting two arbitrary points in the well. We study the correspondence between quantum spectra and classical orbits in the circular, 1/2 circular and 1/4 circular wells using the analytic and numerical methods. We find that the peak positions in the Fourier-transformed quantum spectra match accurately with the lengths of the classical orbits. These examples show evidently that semi-classical method provides a bridge between quantum and classical mechanics.

  9. Information circulars

    International Nuclear Information System (INIS)

    The document summarizes the Information Circulars published by the IAEA under the symbol INFCIRC/ for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A complete list of INFCIRCs in numerical order with their titles is given in the Annex

  10. ADMINISTRATIVE CIRCULARS

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    N° 2 (Rev. 1) - March 2000Guidelines and procedures concerning recruitment and probation period of staff membersN° 9 (Rev. 2) - March 2000Staff members contractsN° 16 (Rev. 2) - January 2000TrainingN° 30 (Rev. 1) - January 2000Indemnities and reimbursements upon taking up appointment and termination of contractN° 32 - February 2000Principles and procedures governing complaints of harassmentThese circular have been amended (No 2, N° 9, N° 16 and N° 30) or drawn up (N° 32).Copies are available in the Divisional Secretariats.Note:\tAdministrative and operational circulars, as well as the lists of those in force, are available for consultation in the server SRV4_Home in the Appletalk zone NOVELL (as GUEST or using your Novell username and password), volume PE Division Data Disk.The Word files are available in the folder COM, folder Public, folder ADM.CIRC.docHuman Resources DivisionTel. 74128

  11. Taming the post-Newtonian expansion: Simplifying the modes of the gravitational wave energy flux at infinity for a point particle in a circular orbit around a Schwarzschild black hole

    CERN Document Server

    Johnson-McDaniel, Nathan K

    2014-01-01

    (Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduct...

  12. The Equatorial Ekman Layer

    CERN Document Server

    Marcotte, Florence; Soward, Andrew

    2016-01-01

    The steady incompressible viscous flow in the wide gap between spheres rotating about a common axis at slightly different rates (small Ekman number E) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the limit E<<1, was undertaken by Stewartson (J. Fluid Mech. 1966, vol. 26, pp. 131-144). The mainstream flow, exterior to the E^{1/2} Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder C, is geostrophic. Stewartson identified a complicated nested layer structure on C, which comprises relatively thick quasi-geostrophic E^{2/7} (inside C) and E^{1/4} (outside C) layers. They embed a thinner E^{1/3} ageostrophic shear layer (on C), which merges with the inner sphere Ekman layer to form the E^{2/5} Equatorial Ekman layer of axial length E^{...

  13. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    Science.gov (United States)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  14. PMP-2: Equatorial wave dynamics

    Science.gov (United States)

    Hirota, I.

    1982-01-01

    After the discovery of the quasi-biennial oscillation (QBO) in the stratospheric zonal wind, there were, in the last two decades, a large number of observational and theoretical studies on the structure and behavior of the mean zonal wind and waves in the tropical stratosphere. Planetary-scale, vertically propagating equatorial waves play an important role in producing the QBO through the mechanism of wave-mean flow interaction. Concerning the dynamics of the equatorial upper stratosphere and mesosphere, however, little was known about the possible wave motions, except for tides, mainly because of the lack of adequate observations in this region. The main purpose is to provide the nature of various types of equatorial wave modes, with the aid of improved sounding techniques and sophisticated numerical modelings.

  15. Recurring Slope Lineae in Mid-Latitude and Equatorial Mars

    Science.gov (United States)

    McEwen, A. S.; Dundas, C. M.; Mattson, S.; Toigo, A. D.; Ojha, L.; Wray, J. J.; Chojnacki, M.; Byrne, S.; Murchie, S. L.; Thomas, N.

    2013-12-01

    A key to potential present-day habitability of Mars is the presence of liquid H2O (water). Recurring slope lineae (RSL) could be evidence for the seasonal flow of water on relatively warm slopes. RSL are narrow (250 K to >300 K. In the past year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris. They are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. However, predicted peak temperatures for north-facing slopes are nearly constant throughout the Martian year because orbital periapse occurs near the southern summer solstice. Although warm temperatures and steep low-albedo slopes are required, some additional effect besides temperature may serve to trigger and stop RSL activity. Seasonal variation in the atmospheric column abundance of water does not match the RSL activity. Although seasonal melting of shallow ice could explain the mid-latitude RSL, the equatorial activity requires a different explanation, perhaps migration of briny groundwater. To explain RSL flow lengths, exceeding 1 km in Valles Marineris, the water is likely to be salty. Several RSL attributes are not yet understood: (1) the relation between apparent RSL activity and dustiness of the atmosphere; (2) salt composition and concentration; (3) variability in RSL activity from year to year; (4) seasonal activity on north-facing equatorial slopes in spite of little change in temperature; and (5) temporal changes in the color properties of fans where RSL terminate. Continued orbital monitoring, laboratory experiments, and future orbital and landed exploration with new measurement types are needed. Equatorial water activity, if confirmed, creates new exploration opportunities and challenges. RSL >1 km long near boundary between Eos and Capri Chasmata of Valles Marineris, Mars.

  16. Multiple-Orbit Simulations of Binary Neutron Stars

    CERN Document Server

    Suh, InSaeng; Haywood, J Reese; Lan, N Q

    2016-01-01

    We study the general relativistic hydrodynamic evolution of neutron stars in binary orbits and analyze the equation of state dependence of the orbits as the stars approach the inner most last stable circular orbit. We show that by employing a conformally flat condition on the metric, one can stably numerically evolve ~100 quasi-circular orbits and could straightforwardly extend the calculation to the ~10,000 orbits needed to follow stars through the LIGO frequency band. We apply this code to orbiting neutron stars in the quasi-circular orbit approximation to both demonstrate the stability of this approach and explore the equation of state dependence of the orbital properties. We employ variety of available realistic neutron star equations of state as well as a Gamma=2 polytrope. We confirm that both the orbital and emergent gravity wave frequency evolve more slowly for a softer equation of state as the stars approach the innermost stable circular orbit.

  17. A Study of Single- and Double-Averaged Second-Order Models to Evaluate Third-Body Perturbation Considering Elliptic Orbits for the Perturbing Body

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2013-01-01

    Full Text Available The equations for the variations of the Keplerian elements of the orbit of a spacecraft perturbed by a third body are developed using a single average over the motion of the spacecraft, considering an elliptic orbit for the disturbing body. A comparison is made between this approach and the more used double averaged technique, as well as with the full elliptic restricted three-body problem. The disturbing function is expanded in Legendre polynomials up to the second order in both cases. The equations of motion are obtained from the planetary equations, and several numerical simulations are made to show the evolution of the orbit of the spacecraft. Some characteristics known from the circular perturbing body are studied: circular, elliptic equatorial, and frozen orbits. Different initial eccentricities for the perturbed body are considered, since the effect of this variable is one of the goals of the present study. The results show the impact of this parameter as well as the differences between both models compared to the full elliptic restricted three-body problem. Regions below, near, and above the critical angle of the third-body perturbation are considered, as well as different altitudes for the orbit of the spacecraft.

  18. Equatorial enhancement of the nighttime OH mesospheric infrared airglow

    Science.gov (United States)

    Baker, D. J.; Thurgood, B. K.; Harrison, W. K.; Mlynczak, M. G.; Russell, J. M.

    2007-05-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (Δv=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings.

  19. Equatorial enhancement of the nighttime OH mesospheric infrared airglow

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D J [Utah State University, EL-302, Logan, UT 84322-4140 (United States); Thurgood, B K [Utah State University, EL-302, Logan, UT 84322-4140 (United States); Harrison, W K [Utah State University, EL-302, Logan, UT 84322-4140 (United States); Mlynczak, M G [NASA Langley Research Center, Mail Stop 401-B, Hampton, VA 23665-5225 (United States); Russell, J M [Center for Atmospheric Sciences, Hampton University, 23 Tyler Street Hampton, VA 23668 (United States)

    2007-05-15

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH ({delta}v=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O{sub 3} is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings.

  20. LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation

    Science.gov (United States)

    1988-01-01

    The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.

  1. ORBITS, MASSES, AND EVOLUTION OF MAIN BELT TRIPLE (87) SYLVIA

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Julia; Margot, Jean-Luc [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Rojo, Patricio [Departamento de Astronomia, Universidad de Chile, Santiago (Chile)

    2012-08-15

    Sylvia is a triple asteroid system located in the main belt. We report new adaptive optics observations of this system that extend the baseline of existing astrometric observations to a decade. We present the first fully dynamical three-body model for this system by fitting to all available astrometric measurements. This model simultaneously fits for individual masses, orbits, and primary oblateness. We find that Sylvia is composed of a dominant central mass surrounded by two satellites orbiting at 706.5 {+-} 2.5 km and 1357 {+-} 4.0 km, i.e., about 5 and nearly 10 primary radii. We derive individual masses of 1.484{sup +0.016}{sub -0.014} Multiplication-Sign 10{sup 19} kg for the primary (corresponding to a density of 1.29 {+-} 0.39 g cm{sup -3}), 7.33{sup +4.7}{sub -2.3} Multiplication-Sign 10{sup 14} kg for the inner satellite, and 9.32{sup +20.7}{sub -8.3} Multiplication-Sign 10{sup 14} kg for the outer satellite. The oblateness of the primary induces substantial precession and the J{sub 2} value can be constrained to the range of 0.0985-0.1. The orbits of the satellites are relatively circular with eccentricities less than 0.04. The spin axis of the primary body and the orbital poles of both satellites are all aligned within about 2 deg of each other, indicating a nearly coplanar configuration and suggestive of satellite formation in or near the equatorial plane of the primary. We also investigate the past orbital evolution of the system by simulating the effects of a recent passage through 3:1 mean-motion eccentricity-type resonances. In some scenarios this allow us to place constraints on interior structure and past eccentricities.

  2. Circularity and Lambda Abstraction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    In this tribute to Doaitse Swierstra, we present the rst transformation between lazy circular programs a la Bird and strict cir- cular programs a la Pettorossi. Circular programs a la Bird rely on lazy recursive binding: they involve circular unknowns and make sense equa- tionally. Circular...... unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  3. Orbital maneuvers and space rendezvous

    Science.gov (United States)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  4. Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies

    NARCIS (Netherlands)

    Liu, H.; Lühr, H.; Watanabe, S.; Köhler, W.; Henize, V.; Visser, P.N.A.M.

    2006-01-01

    Using 3 years (2002–2004), over 16,400 orbits of measurements from the accelerometer on board the CHAMP satellite, we have studied the climatology of the equatorial zonal wind in the upper thermosphere. Several main features are noticed. The most prominent one is that the solar flux significantly in

  5. Circular-rubbing Manipulation

    Institute of Scientific and Technical Information of China (English)

    SHEN Guo-quan; XIAO Yuan-chun

    2003-01-01

    @@ "Mo" literally means "rubbing between two things"and "eliminating". Circular-rubbing is one of the earliest manipulations used in clinical practice. Circular-rubbing differs from pressing actually. Pressing is a static manipulation and acts to inhibit motion; circular-rubbing is a movable manipulation and serves to eliminate stationary. Circular-rubbing can be performed by either the palm or the finger.

  6. Circular polarisation in AGN

    NARCIS (Netherlands)

    Macquart, JP

    2002-01-01

    We discuss the constraints that recent observations place on circular polarisation in AGN. In many sources the circular polarisation is variable on short timescales, indicating that it originates in compact regions of the sources. The best prospects for gleaning further information about circular po

  7. Optimal Broadcasting of Mixed Equatorial Qubits

    Institute of Scientific and Technical Information of China (English)

    YU Zong-Wen

    2009-01-01

    We derive an optimal 2→M phase-covariant quantum broadcasting of mixed equatorial qubits.This quantum broadcasting is optimal in the sense that the shrinking factor between the input and the output single qubit achieves the upper bound.The result shows that we can copy two identical mixed equatorial qubits with the same quality as those of two identical pure equatorial states.

  8. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  9. Radio wave scintillations at equatorial regions

    Science.gov (United States)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  10. Collision probability at low altitudes resulting from elliptical orbits

    Science.gov (United States)

    Kessler, Donald J.

    1990-01-01

    The probability of collision between a spacecraft and another object is calculated for various altitude and orbit conditions, and factors affecting the probability are discussed. It is shown that a collision can only occur when the spacecraft is located at an altitude which is between the perigee and apogee altitudes of the object and that the probability per unit time is largest when the orbit of the object is nearly circular. However, at low altitudes, the atmospheric drag causes changes with time of the perigee and the apogee, such that circular orbits have a much shorter lifetime than many of the elliptical orbits. Thus, when the collision probability is integrated over the lifetime of the orbiting object, some elliptical orbits are found to have much higher total collision probability than circular orbits. Rocket bodies used to boost payloads from low earth orbit to geosynchronous orbit are an example of objects in these elliptical orbits.

  11. Central Equatorial Pacific Experiment (CEPEX)

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  12. Orbit selection for a Mars geoscience/climatology orbiter

    Science.gov (United States)

    Uphoff, C.

    1984-01-01

    This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.

  13. Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes

    CERN Document Server

    Hayasaki, Kimitake; Loeb, Abraham

    2015-01-01

    We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precurso...

  14. Stable Bound Orbits around Black Rings

    Energy Technology Data Exchange (ETDEWEB)

    Igata, Takahisa; Ishihara, Hideki; Takamori, Yohsuke, E-mail: igata@sci.osaka-cu.ac.jp [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)

    2011-09-22

    We study stable bound orbits of a free particle around a black ring. Unlike the higher-dimensional black hole case, we find that there exist stable bound orbits in toroidal spiral shape near the ring axis and stable circular orbits on the axis. In addition, radii of stable bound orbits can be infinitely large if the ring thickness is less than a critical value.

  15. Toroidal circular dichroism

    Science.gov (United States)

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  16. Strong Trinucleotide Circular Codes

    Directory of Open Access Journals (Sweden)

    Christian J. Michel

    2011-01-01

    Full Text Available Recently, we identified a hierarchy relation between trinucleotide comma-free codes and trinucleotide circular codes (see our previous works. Here, we extend our hierarchy with two new classes of codes, called DLD and LDL codes, which are stronger than the comma-free codes. We also prove that no circular code with 20 trinucleotides is a DLD code and that a circular code with 20 trinucleotides is comma-free if and only if it is a LDL code. Finally, we point out the possible role of the symmetric group ∑4 in the mathematical study of trinucleotide circular codes.

  17. Publication of administrative circular

    CERN Multimedia

    HR Department

    2009-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003

  18. PUBLICATION OF ADMINISTRATIVE CIRCULAR

    CERN Multimedia

    HR Department

    2008-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003

  19. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  20. Circularly symmetric light scattering from nanoplasmonic spirals.

    Science.gov (United States)

    Trevino, Jacob; Cao, Hui; Dal Negro, Luca

    2011-05-11

    In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors. PMID:21466155

  1. Nanophotonic control of circular dipole emission.

    Science.gov (United States)

    le Feber, B; Rotenberg, N; Kuipers, L

    2015-01-01

    Controlling photon emission by single emitters with nanostructures is crucial for scalable on-chip information processing. Nowadays, nanoresonators can affect the lifetime of linear dipole emitters, while nanoantennas can steer the emission direction. Expanding this control to the emission of orbital angular momentum-changing transitions would enable a future coupling between solid state and photonic qubits. As these transitions are associated with circular dipoles, such control requires knowledge of the interaction of a complex dipole with optical eigenstates containing local helicity. We experimentally map the coupling of classical, circular dipoles to photonic modes in a photonic crystal waveguide. We show that, depending on the combination of the local helicity of the mode and the dipole helicity, circular dipoles can couple to left- or rightwards propagating modes with a near-unity directionality. The experimental maps are in excellent agreement with calculations. Our measurements, therefore, demonstrate the possibility of coupling the spin to photonic pathway. PMID:25833305

  2. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF HOT JUPITERS ON HIGHLY ECCENTRIC ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Kataria, T.; Showman, A. P.; Lewis, N. K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, M. S.; Freedman, R. S., E-mail: tkataria@lpl.arizona.edu [NASA Ames Research Center 245-3, Moffett Field, CA 94035 (United States)

    2013-04-10

    Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has major implications for the planet's atmospheric dynamical regime. However, little is known about the fundamental dynamical regime of such planetary atmospheres, and how it may influence the observations of these planets. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model (the MITgcm) with a plane-parallel, two-stream, non-gray radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. As in Showman and Polvani, we show that the day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. We find that as the eccentricity and/or stellar flux is increased (corresponding to shorter orbital periods), the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit light curves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) light curves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large temperature differences from dayside to nightside and rapid rotation rates, we find that the light curves can exhibit 'ringing' as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric

  3. Lux in obscuro: Photon Orbits of Extremal Black Holes Revisited

    CERN Document Server

    Khoo, Fech Scen

    2016-01-01

    It has been shown in the literature that the event horizon of an asymptotically flat extremal Reissner-Nordstr\\"om black hole is also a stable photon sphere. We further clarify this statement and give a general proof that this holds for a large class of static spherically symmetric black hole spacetimes with an extremal horizon. In contrast, an asymptotically flat extremal Kerr black hole has an unstable photon orbit on the equatorial plane of its horizon. In addition, we show that an asymptotically flat extremal Kerr-Newman black hole exhibits two equatorial photon orbits if $a M/2$, there is only one equatorial photon orbit, located on the extremal horizon, and it is unstable. There can be no photon orbit on the horizon of a non-extremal Kerr-Newman black hole.

  4. Perfect Circular Dichroic Metamirrors

    CERN Document Server

    Wang, Zuojia; Liu, Yongmin

    2015-01-01

    In nature, the beetle Chrysina gloriosa derives its iridescence by selectively reflecting left-handed circularly polarized light only. Here, for the first time, we introduce and demonstrate the optical analogue based on an ultrathin metamaterial, which we term circular dichroic metamirror. A general method to design the circular dichroic metasmirror is presented under the framework of Jones calculus. It is analytically shown that the metamirror can be realized by two layers of anisotropic metamaterial structures, in order to satisfy the required simultaneous breakings of n-fold rotational (n>2) and mirror symmetries. We design an infrared metamirror, which shows perfect reflectance for left-handed circularly polarized light without reversing its handedness, while almost completely absorbs right-handed circularly polarized light. These findings offer new methodology to realize novel chiral optical devices for a variety of applications, including polarimetric imaging, molecular spectroscopy, as well as quantum ...

  5. Optical and photometric studies of Earth orbiting small space objects

    Science.gov (United States)

    Selim, I. M.; El-Hameed, Afaf M. Abd; Bakhtigaraev, N. S.; Attia, Gamal F.

    2016-03-01

    Variations of light curves for space objects are investigated. Optical observations and photometric measurements for small space debris on highly elliptical orbits (HEO) and geostationary orbits (GEO) are used to determine their orbital parameters. Light curves of small space debris with various area-to-mass ratios and orbital characteristics are discussed. Tracking of some objects shows very rapid brightness variations related to perturbations of the orbital parameters. Changes in brightness and equatorial coordinates of the studied objects are found in observational data. Our results allow improving the accuracy of space debris orbital elements.

  6. Circular statistics in R

    CERN Document Server

    Pewsey, Arthur; Ruxton, Graeme D

    2013-01-01

    Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concretebridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are c

  7. The dependence of the stability of hierarchical triple systems on the orbital inclination

    OpenAIRE

    Georgakarakos, Nikolaos

    2013-01-01

    In this paper we study numerically the effect of the initial mutual orbital inclination on the stability of hierarchical triple systems with initially circular orbits. Our aim is to investigate the possibility that the stability boundary may be independent of the orbital inclination for certain mass ratios. We integrate numerically the equations of motion of hierarchical triple systems with initially circular orbits and different orbital configurations. The mass ratios cover the range from 0....

  8. Recurring slope lineae in equatorial regions of Mars

    Science.gov (United States)

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  9. Administrative & Operational Circulars - Reminder

    CERN Multimedia

    HR Department

    2011-01-01

    All Administrative and Operational Circulars are available on the intranet site of the Human Resources Department at the following address: http://cern.ch/hr-docs/admincirc/admincirc.asp Department Head Office  

  10. Circular words and applications

    Directory of Open Access Journals (Sweden)

    Benoît Rittaud

    2011-08-01

    Full Text Available We define the notion of circular words, then consider on such words a constraint derived from the Fibonacci condition. We give several results on the structure of these circular words, then mention possible applications to various situations: periodic expansion of numbers in numeration systems, "gcd-property" of integer sequences, partition of the prefix of the fixed point of the Fibonacci substitution, spanning trees of a wheel. Eventually, we mention some open questions.

  11. The effect of non-migrating tides on the equatorial electrojet

    OpenAIRE

    Hermann Lühr; Martin Rother; Häusler, K.; Alken, P.; Maus, S.

    2008-01-01

    The climatological model of the equatorial electrojet, EEJM-1, derived from Ørsted, CHAMP and SAC-C satellite measurements [Alken and Maus, 2007] provides the opportunity to investigate the longitudinal variation of the current strength in detail. Special emphasis is put in this paper on the effect of non-migrating tides. We have found that the influence of the diurnal eastward propagating mode with wavenumber 3, DE3, is particularly strong. In polar orbiting satellite observations the DE3 ti...

  12. The orbital evolution of binary galaxies

    Science.gov (United States)

    Chan, R.; Junqueira, S.

    2001-02-01

    We present the results of self-consistent numerical simulations performed to study the orbital circularization of binary galaxies. We have generalized a previous model (Junqueira & de Freitas Pacheco 1994) and confirmed partially their results. The orbital evolution of pairs of galaxies is faster when we consider interacting pairs with contacting ``live'' galaxy halos but the circularization time remains larger than the Hubble time. Besides, the time behavior of the orbits has changed in comparison with previous work because of tidal forces and dynamical friction acting on the halos.

  13. The orbital evolution of planets in disks

    OpenAIRE

    Kley, Wilhelm

    2000-01-01

    The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about ...

  14. An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet Complex Structure

    Science.gov (United States)

    Sanchez-Lavega, A.; Wong, M. H.; Simon, A. A.; Hueso, R.; Perez-Hoyos, S.; Antuñano, A.; Rojas, J. F.; del Rio-Gaztelurrutia, T.; Barrado-Izagirre, N.; Garate-Lopez, I.; Garcia-Melendo, E.; Sanz-Requena, J. F.; Gomez-Forrelad, J. M.; De Pater, I.; Li, L.

    2015-12-01

    Saturn has an intense and broad eastward equatorial jet at cloud level whose variability and meridional and vertical structure are complex and actively debated. Due to its 27º rotation axis tilt and orbital eccentricity, Saturn is under a strong seasonal insolation cycle, enhanced at equator by the ring shadowing periods. These factors make it a good natural laboratory to test models of equatorial jet generation in giant planets. We report on a bright equatorial storm observed in 2015 that moved rapidly but steadily at a high speed of 450 ms-1, not reported since Voyagers times (Sanchez-Lavega et al., Icarus 147, 405-420, 2000). Imaging with the Hubble Space Telescope (HST) WFC3 showed detailed storm morphology at red wavelengths (689, 750 and 937 nm) confirming its high speed. Other equatorial clouds moved with velocities matching the Cassini ISS profile (García-Melendo et al., Icarus, 215, 62-74, 2011), while the storm matches the Voyager 1 and 2 profile. We interpret this result as the simultaneous detection of the wind profile at two separated altitude levels within the cloud layer. In addition, the HST methane band and ultraviolet images, allowed retrieving winds at a third altitude level of motion, in the haze layer above the cloud deck. Combining the current wind data with previous dates allowed us to construct a vertical - meridional section of the structure of Saturn's equatorial jet at cloud level. We discuss the implications of these results on the long-term stability of Saturn's equatorial jet.

  15. Compact waveguide circular polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  16. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two......On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...

  17. Orbital pseudotumor

    Science.gov (United States)

    ... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duane’s ...

  18. Equatorially coordinated lanthanide single ion magnets.

    Science.gov (United States)

    Zhang, Peng; Zhang, Li; Wang, Chao; Xue, Shufang; Lin, Shuang-Yan; Tang, Jinkui

    2014-03-26

    The magnetic relaxation dynamics of low-coordinate Dy(III) and Er(III) complexes, namely three-coordinate ones with an equatorially coordinated triangle geometry and five-coordinate ones with a trigonal bipyramidal geometry, have been exploited for the first time. The three-coordinate Er-based complex is the first equatorially coordinated mononuclear Er-based single-molecule magnet (SMM) corroborating that simple models can effectively direct the design of target SMMs incorporating 4f-elements. PMID:24625001

  19. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    Science.gov (United States)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  20. Around the circular law

    CERN Document Server

    Bordenave, Charles

    2011-01-01

    These expository notes are centered around the circular law theorem, which states that the empirical spectral distribution of a n \\times n random matrix with i.i.d. entries of variance 1/n tends to the uniform law on the unit disc of the complex plane as the dimension n tends to infinity. This phenomenon is the non-Hermitian counterpart of the semi circular limit for Wigner random Hermitian matrices, and the quarter circular limit for Marchenko-Pastur random covariance matrices. We present a proof in a Gaussian case, due to Silverstein, based on a formula by Ginibre, and a proof of the universal case by revisiting the approach of Tao and Vu, based on the Hermitization of Girko, the logarithmic potential, and the control of the small singular values. Beyond the finite variance model, we also consider the case where the entries have heavy tails, by using the objective method of Aldous and Steele borrowed from randomized combinatorial optimization. The limiting law is then no longer the circular law and is relat...

  1. Wiimote Experiments: Circular Motion

    Science.gov (United States)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  2. Periodicity in the occurrence of equatorial plasma bubbles

    Science.gov (United States)

    Choi, J.; Kim, Y.; Kil, H.; Kwak, Y.; Lee, W.

    2013-12-01

    The observations of equatorial plasma bubbles by low-inclination orbit satellites show periodic occurrence of bubbles along satellite orbits. The periodicity in the bubble occurrence provides a useful tool for identifying the role of gravity waves in the creation of bubbles. In this study, we investigate the variability of the periodicity in the bubble occurrence by analyzing the observations of Communication/Navigation Outage Forecasting System (C/NOFS) and the first Republic of China satellite (ROCSAT-1). Here the periodicity indicates spatial periodicity and is derived by applying a Fourier analysis to the electron densities projected onto the magnetic apex height. Our preliminary results show an occurrence of significant amplitudes of periodicity peaks on the spatial scale range of 50-1000 km. The periodicity on small scales may be associated with the bifurcation of bubbles or to the creation of multiple bubbles for one wave seeding. The periodicity on larger scales is considered to be related with the scale size of a seeding mechanism. We present statistics of the periodicity and the coincident satellite observations of periodic bubbles with ground observations.

  3. Equatorial Guinea : Public Investment Management Review

    OpenAIRE

    Munoz Moreno, Rafael

    2009-01-01

    The chapter offers concise diagnostics of the public investment management (PIM) system in Equatorial Guinea. It provides specific examples of how underperforming institutions throughout the investment process raise the risk of selecting white elephants, reducing the value for money of investment projects and undermining the quality of completed projects. Politically compatible recommendat...

  4. Variability in equatorial foF2

    International Nuclear Information System (INIS)

    Investigation on the variability of foF2 at an equatorial station in the African continent was undertaken. The analysis included diurnal, seasonal and solar cycle effects on both absolute and relative variability. The trends in the behavior of absolute variability are different from those of relative variability. (author)

  5. Variability of TEC over an equatorial station

    International Nuclear Information System (INIS)

    Variability in TEC obtained by the Faraday rotation technique at an equatorial station is investigated. Diurnal, seasonal and solar cycle effects were observed. Both absolute and relative variability were considered. The trend of variations in absolute variability is completely different from those of relative variability. (author)

  6. Coccolithophores in the equatorial Atlantic Ocean

    DEFF Research Database (Denmark)

    Kinkel, Hanno; Baumann, K.-H.; Cepek, M.

    2000-01-01

    The present study was initiated to ascertain the significance of coccolithophores as a proxy for paleoceanographic and paleoproductivity studies in the equatorial Atlantic. Data from a range of different samples, from the plankton, surface sediments as well as sediment cores are shown and compare...

  7. PMP-2 Report: Equatorial Wave Dynamics

    Science.gov (United States)

    Hirota, I.

    1982-01-01

    The activities of the pre-MAP project 2 (PMP-2) from 1978 through 1981 are described. The following topics relating to the equatorial middle atmosphere are discussed briefly: (1) the semi-annual oscillation and Kelvin waves; (2) planetary Rossby waves; (3) upper mesospheric waves; and (4) gravity waves.

  8. Formation of Hot Planets by a combination of planet scattering, tidal circularization, and Kozai mechanism

    OpenAIRE

    Nagasawa, M; Ida, S.; Bessho, T

    2008-01-01

    We have investigated the formation of close-in extrasolar giant planets through a coupling effect of mutual scattering, Kozai mechanism, and tidal circularization, by orbital integrations. We have carried out orbital integrations of three planets with Jupiter-mass, directly including the effect of tidal circularization. We have found that in about 30% runs close-in planets are formed, which is much higher than suggested by previous studies. We have found that Kozai mechanism by outer planets ...

  9. Equatorial scintillations: advances since ISEA-6

    Science.gov (United States)

    Basu, Sunanda; Basu, Santimay

    1985-10-01

    Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities. The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope ( p1

  10. OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite

    Directory of Open Access Journals (Sweden)

    Jan-Bai Nee

    2010-01-01

    Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height _ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 _ 2.1 km usually lying within _ latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.

  11. Equinoctial orbit elements - Application to artificial satellite orbits.

    Science.gov (United States)

    Cefola, P. J.

    1972-01-01

    The matrizant of the two-body problem is developed in terms of elements that are free from singularities for zero eccentricities and zero- and ninety-degree inclinations. Retrograde equinoctial elements eliminate the singularity for inclinations near 180 degrees, with only minor changes in the expressions for the matrizant. The 'single-averaged' variation-of-parameters equations for these elements are developed for third-body, oblateness, and drag effects. Higher order terms are included in the expansions for the third-body and oblateness potential. A computer program that uses these equations to predict orbital evolution is described. Numerical results are given for a near-circular orbit.

  12. Study of certain launching techniques using long orbiting tethers

    Science.gov (United States)

    Colombo, G.; Arnold, D. A.

    1981-01-01

    A study of the basic equations governing orbital transfers using long orbiting tethers is presented. A very simple approximation to the general transfer equation is derived for the case of short tethers and low eccentricity orbits. Numerical examples are calculated for the case of injection into a circular orbit from a platform in eccentric orbit and injection into eccentric orbit from a platform in circular orbit. For the case of long tethers, a method is derived for reducing tether mass and increasing payload mass by tapering the tether to maintain constant stress per unit of tether cross section. Formulas are presented for calculating the equilibrium orbital parameters taking into account the mass of the platform, tether, and payload.

  13. Seasonal-longitudinal variability of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    W. J. Burke

    2004-09-01

    Full Text Available We compare seasonal and longitudinal distributions of more than 8300 equatorial plasma bubbles (EPBs observed during a full solar cycle from 1989-2000 with predictions of two simple models. Both models are based on considerations of parameters that influence the linear growth rate, γRT, of the generalized Rayleigh-Taylor instability in the context of finite windows of opportunity available during the prereversal enhancement near sunset. These parameters are the strength of the equatorial magnetic field, Beq, and the angle, α, it makes with the dusk terminator line. The independence of α and Beq from the solar cycle phase justifies our comparisons.

    We have sorted data acquired during more than 75000 equatorial evening-sector passes of polar-orbiting Defense Meteorological Satellite Program (DMSP satellites into 24 longitude and 12 one-month bins, each containing ~250 samples. We show that: (1 in 44 out of 48 month-longitude bins EPB rates are largest within 30 days of when α=0°; (2 unpredicted phase shifts and asymmetries appear in occurrence rates at the two times per year when α≈0°; (3 While EPB occurrence rates vary inversely with Beq, the relationships are very different in regions where Beq is increasing and decreasing with longitude. Results (2 and (3 indicate that systematic forces not considered by the two models can become important. Damping by interhemispheric winds appears to be responsible for phase shifts in maximum rates of EPB occurrence from days when α=0°. Low EPB occurrence rates found at eastern Pacific longitudes suggest that radiation belt electrons in the drift loss cone reduce γRT by enhancing E-layer Pedersen conductances. Finally, we analyze an EPB event observed during a magnetic storm at a time and place where α≈-27°, to illustrate how electric-field penetration from

  14. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  15. Evolution of nutricline dynamics in the equatorial Pacific during the late Pliocene

    Science.gov (United States)

    Bolton, C. T.; Gibbs, S.; Wilson, P.

    2009-12-01

    The tropics have played a central role in modulating Earth’s climate throughout the Plio-Pleistocene, with tropical productivity fluctuations a key mechanism in the operation of the global carbon cycle and linkage of high and low latitude climates. Published records of tropical sea surface temperatures (SSTs) during the Plio-Pleistocene appear to vary primarily in tune with high latitude climate both on orbital and secular timescales. Yet contemporaneous changes in equatorial primary productivity are less well constrained, particularly at sites where climate is not dominated by upwelling or monsoon systems. Furthermore, the role of thermocline dynamics (tilt and mean depth changes) in forcing SST and productivity on orbital timescales remains uncertain. Here we report new, high-resolution calcareous nannofossil records from two Ocean Drilling Program (ODP) sites in the western and eastern equatorial Pacific (WEP, EEP) during marine isotope stages (MIS) 95 to 101; about 2400 to 2600 thousand years ago (ka). Our records of paleoproductivity and nutricline depth reveal synchronous, large-amplitude glacial-interglacial (G-IG) productivity variations at both ends of the equatorial Pacific indicating (i) remote (high latitude) forcing of primary productivity and (ii) no primary role for east-west tilting of the equatorial Pacific thermocline, with important implications regarding the operation of El Niño-like dynamics in the Pliocene Pacific. Instead, the paleoproductivity variations and phase relationships that we document suggest the interaction of two mechanisms operating on obliquity timescales: a ‘bottom-up’ forcing transmitted via the upwelling of high latitude source waters in conjunction with the ‘top-down’ forcing of atmospheric greenhouse gases.

  16. Orbit and spin evolution of synchronous binary stars on the main sequence

    Institute of Scientific and Technical Information of China (English)

    Lin-Sen Li

    2012-01-01

    A set of synchronous equations are derived from a set of non-synchronous equations.The analytical solutions are given by solving the set of differential equations.The results of the evolutionary trend of the spin-orbit interaction are that the semi-major axis gradually shrinks with time; the orbital eccentricity gradually decreases with time until orbital circularization occurs; the orbital period gradually shortens with time and the rotational angular velocity of the primary component gradually speeds up with time before the orbit achieves circularization.The theoretical results are applied to evolution of the orbit and spin of synchronous binary stars Algol A and B that are on the main sequence.The circularization time,lifetime and the evolutionary numerical solutions of orbit and spin when circularization time occurs are estimated for Algol A and B.

  17. Orbital dynamics and equilibrium points around an asteroid with gravitational orbit-attitude coupling perturbation

    Science.gov (United States)

    Wang, Yue; Xu, Shijie

    2016-07-01

    The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit-attitude coupling of the spacecraft. This gravitational orbit-attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.

  18. Displaced geostationary orbit design using hybrid sail propulsion

    OpenAIRE

    Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.; Biggs, James D.

    2011-01-01

    Because of an increase in the number of geostationary spacecraft and the limits imposed by east–west spacing requirements, the geostationary orbit is becoming congested. To increase its capacity, this paper proposes to create new geostationary slots by displacing the geostationary orbit either out of or in the equatorial plane by means of hybrid solar sail and solar electric propulsion. To minimize propellant consumption, optimal steering laws for the solar sail and solar-electric...

  19. Observational features of equatorial coronal hole jets

    OpenAIRE

    Nisticò, G.; V. Bothmer; S. Patsourakos; Zimbardo, G.

    2010-01-01

    Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet e...

  20. Sunrise enhancement of equatorial vertical plasma drift

    Science.gov (United States)

    Liu, Libo; Zhang, Ruilong; Le, Huijun

    2016-04-01

    Sunrise enhancement in vertical plasma drift over equatorial regions is not discernible in the statistical picture compared with the significant enhancement during dusk hours. In this report, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag. Moreover, we will report the effects of the sunrise enhancement of vertical plasma drift on the equatorial ionosphere as indicated from the observations and model simulations. We thanks National Central University of Taiwan providing the ROCSAT-1 data. The Ap and F107 indices are obtained from the National Geophysical Data Center (http://spidr.ngdc.noaa.gov/spidr/). This research is supported by National Natural Science Foundation of China (41231065), the Chinese Academy of Sciences project (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604) and National Natural Science Foundation of China (41321003).

  1. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  2. Observations of the generation of eastward equatorial electric fields near dawn

    Science.gov (United States)

    Kelley, M. C.; Rodrigues, F. S.; Pfaff, R. F.; Klenzing, J.

    2014-09-01

    We report and discuss interesting observations of the variability of electric fields and ionospheric densities near sunrise in the equatorial ionosphere made by instruments onboard the Communications/Navigation Outage Forecasting System (C/NOFS) satellite over six consecutive orbits. Electric field measurements were made by the Vector Electric Field Instrument (VEFI), and ionospheric plasma densities were measured by Planar Langmuir Probe (PLP). The data were obtained on 17 June 2008, a period of solar minimum conditions. Deep depletions in the equatorial plasma density were observed just before sunrise on three orbits, for which one of these depletions was accompanied by a very large eastward electric field associated with the density depletion, as previously described by de La Beaujardière et al. (2009), Su et al. (2009) and Burke et al. (2009). The origin of this large eastward field (positive upward/meridional drift), which occurred when that component of the field is usually small and westward, is thought to be due to a large-scale Rayleigh-Taylor process. On three subsequent orbits, however, a distinctly different, second type of relationship between the electric field and plasma density near dawn was observed. Enhancements of the eastward electric field were also detected, one of them peaking around 3 mV m-1, but they were found to the east (later local time) of pre-dawn density perturbations. These observations represent sunrise enhancements of vertical drifts accompanied by eastward drifts such as those observed by the San Marco satellite (Aggson et al., 1995). Like the San Marco measurements, the enhancements occurred during winter solstice and low solar flux conditions in the Pacific longitude sector. While the evening equatorial ionosphere is believed to present the most dramatic examples of variability, our observations exemplify that the dawn sector can be highly variable as well.

  3. Circularization of tidally disrupted stars around spinning supermassive black holes

    Science.gov (United States)

    Hayasaki, Kimitake; Stone, Nicholas; Loeb, Abraham

    2016-10-01

    We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing 3D smoothed particle hydrodynamic simulations with post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disc. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precursor to the subsequent tidal disruption flare. The circularization time-scale is remarkably long in the radiatively efficient cooling case, and is also sensitive to black hole spin. Specifically, Lense-Thirring torques cause dynamically important nodal precession, which significantly delays debris circularization. On the other hand, nodal precession is too slow to produce observable signatures in the radiatively inefficient case. Since the stellar debris is optically thick and its photon diffusion time is likely longer than the time-scale of shock heating, our inefficient cooling scenario is more generally applicable in eccentric tidal disruption events (TDEs). However, in parabolic TDEs for MBH ≳ 2 × 106 M⊙, the spin-sensitive behaviour associated with efficient cooling may be realized.

  4. Testing a class of non-Kerr metrics with hot spots orbiting SgrA*

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan; Li, Zilong; Bambi, Cosimo, E-mail: danliu12@fudan.edu.cn, E-mail: zilongli@fudan.edu.cn, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China)

    2015-01-01

    SgrA*, the supermassive black hole candidate at the Galactic Center, exhibits flares in the X-ray, NIR, and sub-mm bands that may be interpreted within a hot spot model. Light curves and images of hot spots orbiting a black hole are affected by a number of special and general relativistic effects, and they can be potentially used to check whether the object is a Kerr black hole of general relativity. However, in a previous study we have shown that the relativistic features are usually subdominant with respect to the background noise and the model-dependent properties of the hot spot, and eventually it is at most possible to estimate the frequency of the innermost stable circular orbit. In this case, tests of the Kerr metric are only possible in combination with other measurements. In the present work, we consider a class of non-Kerr spacetimes in which the hot spot orbit may be outside the equatorial plane. These metrics are difficult to constrain from the study of accretion disks and indeed current X-ray observations of stellar-mass and supermassive black hole candidates cannot put interesting bounds. Here we show that near future observations of SgrA* may do it. If the hot spot is sufficiently close to the massive object, the image affected by Doppler blueshift is brighter than the other one and this provides a specific observational signature in the hot spot's centroid track. We conclude that accurate astrometric observations of SgrA* with an instrument like GRAVITY should be able to test this class of metrics, except in the more unlikely case of a small viewing angle.

  5. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.;

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  6. Analysis of the Day Side Equatorial Anomaly

    OpenAIRE

    Shankar, Jayaprabha

    2007-01-01

    Equatorial Ionization Anomaly (EIA) is a region of peak plasma density found at ± 10 ◦ to 20 ◦ magnetic latitudes at F-region altitudes. In 2002, NASA launched the Global Ultra Violet Imager (GUVI), which can observe the EIA at various local times, longitudes, and seasons by the glow of the recombining electrons and ions in the plasma. This thesis presents the observations of the geomagnetic quiet time EIA and its global behavior at all local times using 1356 ˚A radiance data from high altitu...

  7. Republic of Equatorial Guinea; Statistical Appendix

    OpenAIRE

    International Monetary Fund

    2010-01-01

    This report discusses the IMF estimates and projections of the Republic of Equatorial Guinea's central government financial operations, 2001–06; the tax system as of march 2007; public investment program during 2004–06 (execution) and 2007–08 (budgeted); monetary survey during 2001–06; details of central bank and commercial bank assets during 2001–06; fiscal indicators during 2001–06; and estimates on public debts during 2001–06, etc.

  8. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  9. FLUID EXCHANGE ACROSS THE EQUATORIAL FRONT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the cusp-shaped wave pattern (Legeckis wave) along the Equatorial Front (EF) is modeled by a meandering jet, and the motion of fluid parcels in a two-dimensional kinematic model of the meandering jet along EF is studied using Melnikov's method. Results indicated that the velocity field of the cusp-shaped wave pattern can indeed be modeled by a meandering jet; that the EF will act as a barrier to fluid exchange if there is no variability, but that it is just the variability that moves the buoy across the EF.

  10. FLUID EXCHANGE ACROSS THE EQUATORIAL FRONT

    Institute of Scientific and Technical Information of China (English)

    姜传丽; 吕建; 吴德星

    2001-01-01

    In this paper, the cusp-shaped wave pattern (Legeckis wave) along the Equatorial Front (EF) is modeled by a meandering jet, and the motion of fluid parcels in a two-dimensional kine-matic model of the meandering jet along EF is studied using Melnikov's method. Results indicated that the velocity field of the cusp-shaped wave pattern can indeed be modeled by a meandering jet; that the EF will act as a barrier to fluid exchange if there is no variability, but that it is just the variability that moves the buoy across the EF.

  11. The equatorial F-layer: progress and puzzles

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    Full Text Available This work reviews some aspects of the ionospheric F-layer in the vicinity of the geomagnetic equator. Starting with a historical introduction, brief summaries are given of the physics that makes the equatorial ionosphere so interesting, concentrating on the large-scale structure rather than the smaller-scale instability phenomena. Several individual topics are then discussed, including eclipse effects, the asymmetries of the `equatorial trough', variations with longitude, the semiannual variation, the effects of the global thermospheric circulation, and finally the equatorial neutral thermosphere, including `superrotation' and possible topographic influences.

    Keyword: Ionosphere (equatorial ionosphere

  12. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... repeatedly to convey the feeling of a man and a woman falling in love. This raises the question of why producers and directors choose certain stylistic features to narrate certain categories of content. Through the analysis of several short film and TV clips, this article explores whether...... or not there are perceptual aspects related to specific stylistic features that enable them to be used for delimited narrational purposes. The article further attempts to reopen this particular stylistic debate by exploring the embodied aspects of visual perception in relation to specific stylistic features...

  13. Circular PVDF Airborne Transducer

    Institute of Scientific and Technical Information of China (English)

    JIAO Li-hua; XU Li-mei; HONG Hu

    2007-01-01

    With the required increased audio pressure of the parametric ultrasonic transducer array and the difficulty to theoretically analyse the complex ultrasonic structure in audio beam application, an computafionally efficient model is desired to describe the characteristic of the parametric ultrasonic transducer array for the system design and optimization. By applying the symmetry boundary conditions at the mid-plane in the thickness direction, a finite element model based on the half thickness simplification is presented to analyze the parametric circular transducer which is designed by gluing the poly Vinylidene fluoride film (PVDF). The validity of the proposed model is confirmed by a comparison of finite element aalysis results with the theoretical value and experimental data, which show that they are making a good agreement with each other.

  14. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  15. Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System

    Science.gov (United States)

    Lissauer, Jack

    2016-01-01

    Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.

  16. The orbital evolution of planets in disks

    CERN Document Server

    Kley, W

    2000-01-01

    The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about 5 Jupiter masses. The interaction of the disk with several planets may halt the migration process and lead to a system similar to the solar planetary system.

  17. Adiabatic chaos in the spin orbit problem

    Science.gov (United States)

    Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio

    2008-05-01

    We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.

  18. Be discs in binary systems I. Coplanar orbits

    CERN Document Server

    Panoglou, Despina; Vieira, Rodrigo G; Cyr, Isabelle H; Jones, Carol E; Okazaki, Atsuo T; Rivinius, Thomas

    2016-01-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio, eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phas...

  19. Comparing Gaseous and Stellar Orbits in a Spiral Potential

    CERN Document Server

    Gómez, Gilberto C; Martos, Marco A

    2013-01-01

    It is generally assumed that gas in a galactic disk follows closely non self-intersecting periodic stellar orbits. In order to test this common assumption, we have performed MHD simulations of a galactic-like disk under the influence of a spiral galactic potential. We also have calculated the actual orbit of a gas parcel and compared it to stable periodic stellar orbits in the same galactic potential and position. We found that the gaseous orbits approach periodic stellar orbits far from the major orbital resonances only. Gas orbits initialized at a given galactocentric distance but at different azimuths can be different, and scattering is conspicuous at certain galactocentric radii. Also, in contrast to the stellar behaviour, near the 4:1 (or higher order) resonance the gas follows nearly circular orbits, with much shorter radial excursions than the stars. Also, since the gas does not settle into a steady state, the gaseous orbits do not necessarily close on themselves.

  20. LF radio wave propagation at equatorial regions

    Science.gov (United States)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick H. M.; Eichelberger, Hans; Schwingenschuh, Konrad

    2016-04-01

    We analyse night-side electric field observations recorded by the ICE experiment onboard the DEMETER micro-satellite. We show the presence of multiple spaced frequency bands between 30 kHz and 500 kHz, and sometimes in the range 3 MHz - 3.5 MHz, the upper frequency of the instrument. The frequency bandwidth is found to be less than 5 kHz and the time duration about several minutes. The frequency bands are recorded close to the equatorial plane, when the satellite latitudes extend between -05° and +05°. Particular enhancements occur at two geographical longitudes: 130°E and 160°W. Those LF radio waves may be associated to density irregularities in the equatorial region. These irregularities are occurring along the ray path between the emission source region and the satellite. We discuss in this study the locations where such frequency bands are generated, and we show that the observed spectral features may be comparable to the kilometric continuum radiation which is considered as a non-thermal radio emission.

  1. Fading of Jupiter's South Equatorial Belt

    Science.gov (United States)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  2. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  3. Central Equatorial Pacific Experiment (CEPEX). Design document

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  4. Observational features of equatorial coronal hole jets

    Directory of Open Access Journals (Sweden)

    G. Zimbardo

    2010-03-01

    Full Text Available Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s−1, while the deceleration rate appears to be about 0.11 km s−2, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.

  5. Splitting of levels in a circular dielectric waveguide

    CERN Document Server

    Petrov, Nikolai I

    2013-01-01

    A splitting of modes in a circular graded-index optical fiber is demonstrated by solving the full Maxwell equations using the perturbation analysis. It is shown that the degeneracy of vortex Laguerre-Gauss modes with distinct orbital angular momentum (OAM) and polarization (spin) but the same total angular momentum is lifted due to the spin-orbit (vector) and tensor forces. Numerical estimations of group delays of modes in optical fiber and frequency splitting in Fabry-Perot and ring resonators are presented.

  6. Photodetachment of hydrogen negative ion inside a circular microcavity

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua; Liu Sheng; Li Shao-Sheng; Wang Yi-Hao

    2013-01-01

    The photodetachment of a hydrogen negative ion inside a circular microcavity is studied based on the semiclassical closed orbit theory.The closed orbit of the photo-detached electron in a circular microcavity is investigated and the photodetachment cross section of this system is calculated.The calculation result suggests that oscillating structure appears in the photodetachment cross section,which is caused by the interference effects of the returning electron waves with the outgoing waves traveling along the closed orbits.Besides,our study suggests that the photodetachment cross section of the negative ions depends on the laser polarization sensitively.In order to show the correspondence between the cross section and the closed orbits of the detached electron clearly,we calculate the Fourier transformation of the cross section and find that each peak corresponds to the length of one closed orbit.We hope that our results will be useful for understanding the photodetachment process of negative ions or the electron transport in a microcavity.

  7. Circular chemiresistors for microchemical sensors

    Science.gov (United States)

    Ho, Clifford K.

    2007-03-13

    A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.

  8. A Campaign to Study Equatorial Ionospheric Phenomena over Guam

    Science.gov (United States)

    Habash Krause, L.; Balthazor, R.; Dearborn, M.; Enloe, L.; Lawrence, T.; McHarg, M.; Petrash, D.; Reinisch, B. W.; Stuart, T.

    2007-05-01

    With the development of a series of ground-based and space-based experiments, the United States Air Force Academy (USAFA) is in the process of planning a campaign to investigate the relationship between equatorial ionospheric plasma dynamics and a variety of space weather effects, including: 1) ionospheric plasma turbulence in the F region, and 2) scintillation of radio signals at low latitudes. A Digisonde Portable Sounder DPS-4 will operate from the island of Guam (with a magnetic latitude of 5.6° N) and will provide measurements of ionospheric total electron content (TEC), vertical drifts of the bulk ionospheric plasma, and electron density profiles. Additionally, a dual-frequency GPS TEC/scintillation monitor will be located along the Guam magnetic meridian at a magnetic latitude of approximately 15° N. In campaign mode, we will combine these ground-based observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low-earth orbit satellite missions, the first of which is scheduled to be active over a period of several months beginning in the 2007 calendar year. The satellite experiments are designed to characterize in situ irregularities in plasma density, and include measurements of bulk ion density and temperature, minority-to- majority ion mixing ratios, small scale (10 cm to 1 m) plasma turbulence, and ion distribution spectra in energy with sufficient resolution for observations of non-thermalized distributions that may be associated with velocity- space instabilities. Specific targets of investigation include: a) a comparison of plasma turbulence observed on- orbit with spread F on ionograms as measured with the Digisonde, b) a correlation between the vertical lifting of the ionospheric layer over Guam and the onset of radio scintillation activity along the Guam meridian at 15° N magnetic latitude, and c) a correlation between on-orbit turbulence and ionospheric scintillation at 15° N magnetic latitude. These relationships

  9. The statistical mechanics of planet orbits

    CERN Document Server

    Tremaine, Scott

    2015-01-01

    The final "giant-impact" phase of terrestrial planet formation is believed to begin with a large number of planetary "embryos" on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region of phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter that is determined by the planetary masses. The predicted properties are generally consistent ...

  10. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...

  11. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  12. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...

  13. Phytochelatin concentrations in the equatorial Pacific

    Science.gov (United States)

    Ahner, Beth A.; Lee, Jennifer G.; Price, Neil M.; Morel, François M. M.

    1998-11-01

    Phytochelatin, an intracellular metal-binding polypeptide synthesized in eucaryotic algae in response to metals such as Cd and Cu, was measured in particulate samples collected from the equatorial Pacific. The concentrations in these samples (normalized to total particulate chl a) were unexpectedly high compared to laboratory culture data and were on average slightly more than in coastal areas where the metal concentrations are typically much greater. In part, the high field concentrations can be explained by the low cellular concentrations of chlorophyll a resulting from very low ambient Fe, but laboratory experiments provide a possible explanation for the rest of the difference. At low concentrations of inorganic Cd (Cd'=3 pM), increasing amounts of phytochelatin were induced by decreasing Zn concentrations in the culture medium of two diatoms: Thalassiosira weissflogii, a coastal species, and T. parthenaia, an isolate from the equatorial Pacific. In all previous studies, phytochelatin production has been directly correlated with increasing metal concentrations. Decreasing Co also resulted in higher phytochelatin concentrations in T. weissflogii and Emiliania huxleyi. Replicating the field concentrations of Zn, Co, and Cd in the laboratory results in cellular concentrations (amol -1 cell) that are very similar to those estimated for the field. Contrary to the expectation that high metal concentrations in the equatorial upwelling would cause elevated phytochelatin concentrations, there was no increase in phytochelatin concentrations from 20° S to 10° N—near surface samples were roughly the same at all stations. Also, most of the depth profiles had a distinct subsurface maximum. Neither of these features is readily explained by the available Zn and Cd data. Incubations with additions of Cd and Cu performed on water sampled at four separate stations induced significantly higher concentrations of phytochelatins than those in controls in a majority of the samples

  14. Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector

    Science.gov (United States)

    Oryema, B.; Jurua, E.; D'ujanga, F. M.; Ssebiyonga, N.

    2015-11-01

    This paper presents the annual, seasonal and diurnal variations in ionospheric TEC along the African equatorial region. The study also investigated the effects of a geomagnetic storm on ionospheric TEC values. Dual-frequency GPS derived TEC data obtained from four stations within the African equatorial region for the high solar activity year 2012 were used in this study. Annual variations showed TEC having two peaks in the equinoctial months, while minima values were observed in the summer and winter solstices. The diurnal pattern showed a pre-dawn minimum, a steady increase from about sunrise to an afternoon maximum and then a gradual fall after sunset to attain a minimum just before sunrise. Nighttime enhancements of TEC were observed mostly in the equinoctial months. There was comparably higher percentage TEC variability during nighttime than daytime and highest during equinoxes, moderate in winter and least during summer solstice. TEC was observed to exhibit a good correlation with geomagnetic storm indices.

  15. Long wavelength irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    We have used the radar interferometer technique at Jicamarca to study in detail irregularities with wavelengths of a few kilometers generated in the unstable equatorial electrojet plasma during strong type 1 conditions. In-situ rocket observations of the same instability process are discussed in a companion paper. These large scale primary waves travel essentially horizontally and have large amplitudes. The vertical electron drift velocities driven by the horizontal wave electric fields reach or exceed the ion-acoustic velocity even though the horizontal phase velocity of the wave is considerably smaller. A straightforward extension to the long wavelength regime of the usual linear theory of the electrojet instability explains this and several other observed features of these dominant primary waves

  16. Alkylmercury species in the equatorial Pacific

    Science.gov (United States)

    Mason, R. P.; Fitzgerald, W. F.

    1990-10-01

    HIGH levels of mercury in piscivorous fish constitute a long-standing health hazard1-6. Monomethyl mercury, the main form of mercury in fish, is more toxic than inorganic mercury. But although something is known of the ability of organisms to methylate mercury7,8, the sources, synthesis and fate of methyl mercury in aquatic waters are not well understood. Inorganic and alkylated mercury has been studied in natural waters9-11, precipitation and the atmosphere12,13. We now report evidence of monomethyl and dimethyl mercury in the low-oxygen waters of the equatorial Pacific. The presence of these species has important implications for our understanding of the biogeochemical cycling of mercury in the marine environment. Although the source of monomethyl mercury in open-ocean fish is still unknown, our data show that a pathway exists for the accumulation of methylated mercury in marine pelagic fish.

  17. Equatorial trench at the magnetopause under saturation

    CERN Document Server

    Dmitriev, A; 10.1029/2012JA017834

    2013-01-01

    Magnetic data from GOES geosynchronous satellites were applied for statistical study of the low-latitude dayside magnetopause under a strong interplanetary magnetic field of southward orientation when the reconnection at the magnetopause was saturated. From minimum variance analysis, we determined the magnetopause orientation and compared it with predictions of a reference model. The magnetopause shape was found to be substantially distorted by a duskward shifting such that the nose region appeared in the postnoon sector. At equatorial latitudes, the shape of magnetopause was characterized by a prominent bluntness and by a trench formed in the postnoon sector. The origin of distortions was regarded in the context of the storm-time magnetospheric currents and the large-scale quasi-state reconnection at the dayside magnetopause.

  18. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    梁科; 侯自新

    2001-01-01

    Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.

  19. Dynamical variability in Saturn Equatorial Atmosphere

    Science.gov (United States)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.; Grupo Ciencias Planetarias Team

    2003-05-01

    Historical ground-based and recent HST observations show that Saturn's Equatorial Atmosphere is the region where the most intense large-scale dynamical variability took place at cloud level in the planet. Large-scale convective storms (nicknamed the ``Great White Spots") occurred in 1876, 1933 and 1990. The best studied case (the 1990 storm), produced a dramatic change in the cloud aspect in the years following the outburst of September 1990. Subsequently, a new large storm formed in 1994 and from 1996 to 2002 our HST observations showed periods of unusual cloud activity in the southern part of the Equator. This contrast with the aspect observed during the Voyager 1 and 2 encounters in 1980 and 1981 when the Equator was calm, except for some mid-scale plume-like features seen in 1981. Cloud-tracking of the features have revealed a dramatic slow down in the equatorial winds from maximum velocities of ˜ 475 m/s in 1980-1981 to ˜ 275 m/s during 1996-2002, as we have recently reported in Nature, Vol. 423, 623 (2003). We discuss the possibility that seasonal and ring-shadowing effects are involved in generating this activity and variability. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  20. Digital ionosonde observations during equatorial spread F

    International Nuclear Information System (INIS)

    In this paper we present and discuss equatorial spread F data taken with a digital ionosonde/HF radar located at Huancayo, Peru. A modified phenomenology is developed which uses the system's ability to do echo location. The onset of irregularities is seen to occur in the east and to move westward, while inside this large-scale structure the plasma is found to drift eastward. A very curious difference has been identified between spread F observations with the ionosonde and with the VHF radar at Jicamarca. At VHF, spread F onset often occurs when the ionosphere is rising, whereas in all five examples presented here, the digital ionosonde detected onset when the apparent ionosphere motion was downward. The result even held on the one night of common data taking. The effect could be instrumental but may be related to the considerable orographic differences in the two sites. Isolated scattering patches are observed and are tentatively identified as detached or ''fossil'' plumes. At frequencies above the nominal f0F2 the system (and other ionosondes) may in fact function as a coherent radar. During one night, data were obtained simultaneously with the HF radar, a rocket, and the Jicamarca VHF radar. Comparisons of these data are discussed in detail. Finally, additional evidence is presented that acoustic gravity waves play a role in the development of equatorial spread F and in the formation of detached plumes. To be self-consistent, the gravity waves must come from nearby sources such as the tropical rain forest to the east of Jicamarca

  1. Circularly-Polarized Microstrip Antenna

    Science.gov (United States)

    Stanton, P. H.

    1985-01-01

    Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.

  2. Eye and orbit ultrasound

    Science.gov (United States)

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  3. Of Orbits, Conics, and Grammar

    Science.gov (United States)

    Henderson, Hugh

    2005-02-01

    In the half-dozen or so years leading up to the publication of the Principia, Isaac Newton observed the comets of 1680 and 1682 and wrestled with the extent to which his law of gravitation could be applied. In time, he would see the connections between the four possible orbits of a satellite (circular, elliptical, parabolic, and hyperbolic) and the four curves produced by the careful carving of a cone. But if we look a little further into the conic sections, we find some interesting connections among the natural orbit of a satellite, ancient mathematics, and the roots of familiar words. Illuminating these connections for introductory physics students may help them to better understand the role of language and mathematics in the descriptions of science.

  4. Late Pleistocene paleoclimatology of the central equatorial Pacific: Sea surface response to the southeast Trade Winds

    Science.gov (United States)

    Pisias, Nicklas G.; Rea, David K.

    1988-02-01

    Proxy indicators of sea surface temperature and equatorial divergence based on radiolarian assemblage data, and of trade wind intensity based on eolian grain size data show similar aspects of variability during the late Pleistocene: All indicators fluctuate at higher frequencies than the 100,000-year glacial-interglacial cycle, display reduced amplitude variations since 300,000 years ago, exhibit a change in the record character at about 300,000 years ago (the mid-Brunhes climatic event), and have higher amplitude variations in sediments 300,000-850,000 years old. Time series analyses were conducted to determine the spectral character of each record (δ18O of planktonic foraminifer, sea surface temperature values, equatorial divergence indicators, and wind intensity indicators) and to quantify interrecord coherence and phase relationships. The record was divided at the 300,000-year clear change in climatic variability (nonstationarity). The δ18O-based time scale is better lower in the core so our spectral analyses concentrated on the interval from 402,000-774,000 years. The δ18O spectra show 100,000- and 41,000-year power in the younger portion, 0-300,000 years, and 100,000-, 41,000- and 23,000-year power in the older interval, all highly coherent and in phase with the SPECMAP average stacked isotope record. Unlike the isotope record the dominant period in both the eolian grain size and equatorial divergence indicators is 31,000 years. This period is also important in the sea surface temperature signal where the dominant spectral peak is 100,000 years. The 31,000-year spectral component is coherent and in phase between the eolian and divergence records, confirming the link between atmospheric and ocean surface circulation for the first time in the paleoclimate record. Since the 31,000-year power appears in independent data sets within this core and also appears in other equatorial records [J. Imbrie personal communication, 1987], we assume it to be real and

  5. Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.

  6. Equatorial Rossby Solitary Wave Under the External Forcing

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da

    2005-01-01

    A simple shallow-water model with influence of external forcing on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the perturbation method, the extended variable-coefficient KdV equation under an external forcing is derived for large amplitude equatorial Rossby wave in a shear flow. And then various periodic-like structures for these equatorial Rossby waves are obtained with the help of Jacobi elliptic functions.It is shown that the external forcing plays an important role in various periodic-like structures.

  7. Inflammation of the Orbit

    Science.gov (United States)

    ... Diagnosis Treatment Medical Dictionary Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...

  8. The dependence of the stability of hierarchical triple systems on the orbital inclination

    CERN Document Server

    Georgakarakos, Nikolaos

    2013-01-01

    In this paper we study numerically the effect of the initial mutual orbital inclination on the stability of hierarchical triple systems with initially circular orbits. Our aim is to investigate the possibility that the stability boundary may be independent of the orbital inclination for certain mass ratios. We integrate numerically the equations of motion of hierarchical triple systems with initially circular orbits and different orbital configurations. The mass ratios cover the range from 0.000001 to 1000000 and the initial mutual inclination angle varies from 0 to 180 degrees. The results from the numerical simulations show that for hierarchical triple systems with initially circular orbits and for the mass ratios we used, the initial mutual inclination angle does affect the stability boundary.

  9. Equatorial cloud level convection on Venus

    Science.gov (United States)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40–60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however

  10. Brane orbits

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A., E-mail: E.A.Bergshoeff@rug.nl [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Marrani, Alessio, E-mail: Alessio.Marrani@cern.ch [Physics Department, Theory Unit, CERN, CH-1211, Geneva 23 (Switzerland); Riccioni, Fabio, E-mail: Fabio.Riccioni@roma1.infn.it [INFN Sezione di Roma, Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2012-08-01

    We complete the classification of half-supersymmetric branes in toroidally compactified IIA/IIB string theory in terms of representations of the T-duality group. As a by-product we derive a last wrapping rule for the space-filling branes. We find examples of T-duality representations of branes in lower dimensions, suggested by supergravity, of which none of the component branes follow from the reduction of any brane in ten-dimensional IIA/IIB string theory. We discuss the constraints on the charges of half-supersymmetric branes, determining the corresponding T-duality and U-duality orbits.

  11. Jumping Jupiter can explain Mercury's orbit

    CERN Document Server

    Roig, Fernando; DeSouza, Sandro Ricardo

    2016-01-01

    The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury's orbit during the instability related to the migration of the giant planets in the framework of the jumping Jupiter model. We found that some instability models are able to produce the correct values of Mercury's eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury's perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity), and the nodal regression of Uranus (for the inclination).

  12. Tilts of the Master Equatorial Tower

    Science.gov (United States)

    Ahlstrom, H. G., Jr.; Gawronski, W.; Girdner, D.; Noskoff, E.; Sommerville, J. N.

    2000-07-01

    At the center of the DSS-14 antenna, a tower reaches to the focal point of the antenna dish. The master equatorial (ME) instrument is located at the top of the tower. This instrument precisely (with an accuracy that exceeds that of the antenna) follows the commanded trajectory. Through the optical coupling, the antenna focal point follows the ME. One factor of the antenna pointing precision is the movement of the ME base, i.e., the top of the tower. For this reason, measurements of the ME tower tilts have been taken in order to quantify the tilts, to determine possible causes of the tilting, and to update the antenna pointing budget. They were conducted under three antenna operating modes: during tracking, slewing, and antenna stowing. The measurements indicate that the ME tower tilts introduce significant pointing errors that exceed the required 32-GHz (Ka-band) pointing precision (estimated as 0.8 mdeg for a 0.1-dB gain loss). Four different sources of tilt were identified and require verification.

  13. Equatorial electrojet in east Brazil longitudes

    Indian Academy of Sciences (India)

    R G Rastogi; H Chandra; K Yumuto

    2010-08-01

    This paper describes the morphology of the equatorial electrojet (EEJ) along 45°W longitude in east Brazil, where the ground magnetic (dip) equator is associated with the largest declination in the world. Daily range of the horizontal field ( ), as expected, was largest at the station in the chain closest to the dip equator, Sao Luiz (inclination −0.25°S). was largest positive at Eusebio (inclination 9.34°S) and largest negative at Belem (inclination 7.06°N); both near the fringe of EEJ belt. at Sao Luiz during the daytime was unexpectedly large negative in-spite of a small dip and also located south of the dip equator where should be positive. Center of EEJ was found to be shifted southward of the dip equator by about 1° in latitude. During southern summer, started decreasing from 00 h and reached a minimum value in the afternoon, an abnormal feature not discussed for any station so far. The mid-day value of the direction of vector was 22°-24°W compared to the declination of 19°–21°W in the region.

  14. Radiation protection in hospitals of Equatorial Guinea

    International Nuclear Information System (INIS)

    With a population of four hundred thousand (400.000) inhabitants and distributed in a territory of 28 thousand (28.000) km2, the use of ionizing radiations for medical practice in Equatorial Guinea is few and decreasing. It is used for diagnostic practices in the main hospitals of the country, where the work burden is not over 20 patients per day. The political, social and economical embryonic development of the country until recently had a negative influence on indicators and health organisations, so that even now the country does not have any radiological protection law, this shortness, in addition with the old architectural structure that x ray tools is lodging, as well as dosimetrical lack of employed staff, put this staff under risk of electromagnetic energy. This is to show the present survey of medical activities with ionizing radiation and to request technical support for implementing suitably the basic standards of radiation protection which will help us as basis for the elaboration outline law, on radiological protection in accordance with the new guidelines of the International Atomic Energy Agency. (author)

  15. Observational features of equatorial coronal hole jets

    CERN Document Server

    Nistico', G; Patsourakos, S; Zimbardo, G

    2010-01-01

    Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km/s, while the deceleration rate appears to be about 0.11 km/s2, less than solar gravity. The average jet visibility time is about 30 minutes, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and eq...

  16. Plasma instabilities multifrequency study in equatorial electrojet

    International Nuclear Information System (INIS)

    In this thesis, multifrequential HF coherent radar results are presented, in the field plasma instabilities in equatorial electrojet. In a first part, characteristics of the irregularities observed either at the 3 meter wavelength by VHF radars, either at other wavelengths during pinpoint experiments, or in-situ by probe rockets are recalled. Theoretical studies progressed and are presented, at the same time with these experimental observations: instability linear theory, non linear theories, HF radar specificity, and problems associated to HF waves propagation and refraction in ionosphere. Original experimental results from Ethiopia are gathered in the second part. Plasma instability has been studied in different geophysical conditions and Doppler spectra characteristics are presented for each one of them. These characteristics are completely different according to the various cases; they are also different according to wether observations are made during the day in normal conditions (electric field pointed to the east at the equator) or in counter-electrojet conditions (electric field pointed to the west). The last part is concerned with theoretical interpretation of the previous results. A comprehensive view of the instability physical mechanisms, according to the geophysical conditions encountered, has been allowed by our results, VHF radar measurements at Jicamarca, or in situ probe measurements on the whole. Irregularities study has been limited to the E region

  17. Multiple equilibria of cross-equatorial Inertial jets

    Institute of Scientific and Technical Information of China (English)

    CHAO JiPing; LIU Fei

    2007-01-01

    Based on the developed Anderson and Moore's theory about cross-equatorial inertial jets and a nonlinear equivalence shallow water model, new universal functions are determined by the characters of the vortical large-scale air flow (atmosphere) or ocean current (ocean) related to the jet, then the potential vorticity and energy conservation equations along the streamline in the cross-equatorial inertial jets can be obtained. Because the governing equations are nonlinear, some limited multiple equilibria of cross-equatorial inertial jets may exist. According to the character of large-scale air flow or ocean current outside the jets, the existent criterion for multiple eqnilibria in cross-equatorial inertial jets is discussed, and two examples for multiple equilibia of nonlinear governing equations are given.

  18. Multiple equilibria of cross-equatorial Inertial jets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the developed Anderson and Moore’s theory about cross-equatorial inertial jets and a nonlinear equivalence shallow water model, new universal functions are determined by the characters of the vortical large-scale air flow (atmosphere) or ocean current (ocean) related to the jet, then the potential vorticity and energy conservation equations along the streamline in the cross-equatorial in-ertial jets can be obtained. Because the governing equations are nonlinear, some limited multiple equi-libria of cross-equatorial inertial jets may exist. According to the character of large-scale air flow or ocean current outside the jets, the existent criterion for multiple eqnilibria in cross-equatorial inertial jets is discussed, and two examples for multiple equilibia of nonlinear governing equations are given.

  19. Modelling the development of mixing height in near equatorial region

    Energy Technology Data Exchange (ETDEWEB)

    Samah, A.A. [Univ. of Malaya, Air Pollution Research Unit, Kuala Lumpur (Malaysia)

    1997-10-01

    Most current air pollution models were developed for mid-latitude conditions and as such many of the empirical parameters used were based on observations taken in the mid-latitude boundary layer which is physically different from that of the equatorial boundary layer. In the equatorial boundary layer the Coriolis parameter f is small or zero and moisture plays a more important role in the control of stability and the surface energy balance. Therefore air pollution models such as the OMLMULTI or the ADMS which were basically developed for mid-latitude conditions must be applied with some caution and would need some adaptation to properly simulate the properties of equatorial boundary layer. This work elucidates some of the problems of modelling the evolution of mixing height in the equatorial region. The mixing height estimates were compared with routine observations taken during a severe air pollution episodes in Malaysia. (au)

  20. Circularly polarized open-loop antenna

    OpenAIRE

    Li, Rong-Lin; Fusco, Vincent F.; Nakano, Hisamatsu

    2003-01-01

    A printed circular open-loop antenna is introduced as a simple structure for producing circular polarization; the antenna is fed with a coaxial probe. By introducing a gap within the circular loop a traveling-wave current is excited and thus circularly polarized radiation can be achieved. An optimized circularly polarized antenna is designed through numerical analysis using a so-called parametric method of moment technique. Experimental verification of the new antenna is presented. The antenn...

  1. Exotic orbits due to spin-spin coupling around Kerr black holes

    CERN Document Server

    Han, Wen-Bias

    2016-01-01

    We report exotic orbital phenomena for the case of spinning particles orbiting around a Kerr black hole, i.e., some orbits of spinning particles are asymmetrical about the equatorial plane. When a test particle orbits around a Kerr black hole in strong field region, due to the relativistic orbital precessions, the trajectories of this particle are symmetrical about the equatorial plane of the Kerr black hole. However, in some certain orbital configurations and artificially large spins, the trajectories of the spinning particle are no longer symmetrical about the equatorial plane. These asymmetrical motions come from the spin-spin interactions (Papapetrou force) between the spins of particle and black hole. By analyzing a spinning particle locating initially at the polar direction (i.e., z axis) of the Kerr black hole, we find that the spin-spin coupling with the certain spin orientation can produce a repulsive effect comparing with the one produced by mass. In generic orbits, the direction of Papapetrou force...

  2. Republic of Equatorial Guinea; Staff Report 2006 Article IV Consultation

    OpenAIRE

    International Monetary Fund

    2006-01-01

    Equatorial Guinea’s macroeconomic performance in the recent period has been broadly satisfactory. Despite the macroeconomic environment, however, progress in alleviating poverty and meeting the MDGs has been slow. Executive Directors welcome the government’s intention to prepare a National Poverty Reduction Strategy. In the meantime, the budget process needs to be modified. The pegged exchange rate regime has served Equatorial Guinea well, providing an anchor to hold down inflation and a ...

  3. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    Science.gov (United States)

    Quirchmayr, Ronald

    2016-08-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  4. Evidence of remote forcing in the Equatorial Atlantic ocean

    OpenAIRE

    Servain, J.; Picaut, Joël; Merle, Jacques

    1982-01-01

    An analysis of sea-surface temperature (STT) and surface winds in selected areas of the Tropical Atlantic indicates that the nonseasonal variability of SST in the Eastern Equatorial Atlantic (Gulf of Guinea) is highly correlated with the nonseasonal variability of the zonal wind stress in the Western Equatorial Atlantic. A negative (positive) anomaly of the zonal wind stress near the North Brazilian coast is followed by a positive (negative) SST anomaly in the Gulf of Guinea about one month l...

  5. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis.

    Directory of Open Access Journals (Sweden)

    Daishi Kitazawa

    Full Text Available Peripheral microtubules (MTs near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.

  6. Evolution of star clusters on eccentric orbits

    CERN Document Server

    Cai, Maxwell Xu; Heggie, Douglas C; Varri, Anna Lisa

    2015-01-01

    We study the evolution of star clusters on circular and eccentric orbits using direct $N$-body simulations. We model clusters with initially $N=8{\\rm k}$ and $N=16{\\rm k}$ single stars of the same mass, orbiting around a point-mass galaxy. For each orbital eccentricity that we consider, we find the apogalactic radius at which the cluster has the same lifetime as the cluster with the same $N$ on a circular orbit. We show that then, the evolution of bound particle number and half-mass radius is approximately independent of eccentricity. Secondly, when we scale our results to orbits with the same semi-major axis, we find that the lifetimes are, to first order, independent of eccentricity. When the results of Baumgardt and Makino for a singular isothermal halo are scaled in the same way, the lifetime is again independent of eccentricity to first order, suggesting that this result is independent of the Galactic mass profile. From both sets of simulations we empirically derive the higher order dependence of the lif...

  7. Substructure in Dark Halos Orbital Eccentricities and Dynamical Friction

    CERN Document Server

    Van den Bosch, F C; Lake, G; Stadel, J; Bosch, Frank C. van den; Lewis, Geraint F.; Lake, George; Stadel, Joachim

    1999-01-01

    We examine the distributions of eccentricities of orbits within mass distributions like those we see for galaxies and clusters. A comprehensive understanding of these orbital properties is essential to calculate the rates of physical processes relevant to the formation and evolution of galaxies and clusters. We derive the orbital eccentricity distributions for a number of spherical potentials. These distributions depend strongly on the velocity anisotropy, but only slightly on the shape of the potential. We also present high resolution N-body simulations of the orbital decay of satellite systems on eccentric orbits in an isothermal halo. The dynamical friction timescales are found to decrease with increasing orbital eccentricity, but the dependence is weaker than previously suggested. The orbital eccentricity stays remarkably constant throughout the decay; although the eccentricity decreases near pericenter, it increases again near apocenter, such that there is no net circularization. Finally, we discuss a nu...

  8. Multiple Bifurcations in the Periodic Orbit around Eros

    CERN Document Server

    Ni, Yanshuo; Baoyin, Hexi

    2016-01-01

    We investigate the multiple bifurcations in periodic orbit families in the potential field of a highly irregular-shaped celestial body. Topological cases of periodic orbits and four kinds of basic bifurcations in periodic orbit families are studied. Multiple bifurcations in periodic orbit families consist of four kinds of basic bifurcations. We found both binary period-doubling bifurcations and binary tangent bifurcations in periodic orbit families around asteroid 433 Eros. The periodic orbit family with binary period-doubling bifurcations is nearly circular, with almost zero inclination, and is reversed relative to the body of the asteroid 433 Eros. This implies that there are two stable regions separated by one unstable region for the motion around this asteroid. In addition, we found triple bifurcations which consist of two real saddle bifurcations and one period-doubling bifurcation. A periodic orbit family generated from an equilibrium point of asteroid 433 Eros has five bifurcations, which are one real ...

  9. Meridional equatorial electrojet current in the American sector

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available Huancayo is the only equatorial electrojet station where the daytime increase of horizontal geomagnetic field (H is associated with a simultaneous increase of eastward geomagnetic field (Y. It is shown that during the counter electrojet period when ∆H is negative, ∆Y also becomes negative. Thus, the diurnal variation of ∆Y at equatorial latitudes is suggested to be a constituent part of the equatorial electrojet current system. Solar flares are known to increase the H field at an equatorial station during normal electrojet conditions (nej. At Huancayo, situated north of the magnetic equator, the solar flare effect, during nej, consists of positive impulses in H and Y and negative impulse in Z field. During counter electrojet periods (cej, a solar flare produces a negative impulse in H and Y and a positive impulse in Z at Huancayo. It is concluded that both the zonal and meridional components of the equatorial electrojet in American longitudes, as in Indian longitudes, flows in the same, E region of the ionosphere.

    Key words. Geomagnetism and paleomagnetism (dynamo theories · Ionosphere (equatorial ionosphere; ionosphere disturbances

  10. Circular magnetic dichroism of the Fa center adsorption in KCl doped with Li and Na

    International Nuclear Information System (INIS)

    The spin-orbit structure of FA in KCl:Li and KCl:Na have been studied by means of the magnetic circular dichroism. Due to their C4V, symmetry the FA centers have two different spin-orbit parameters, Δ* and Δ*, which only in the KCl:Li case follow the relation: Δ* F A centers have been determined using the method of moment

  11. Undulator radiation carrying spin and orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigemi [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: sasaki@aps.anl.gov; McNulty, Ian; Dejus, Roger [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-11-11

    We show that the radiation from a helical undulator not only carries spin angular momentum (circular polarization) but also orbital angular momentum. This exotic property of the undulator radiation may be useful in coherent X-ray imaging and scattering experiments and to probe electronic transitions in matter by orbital dichroism spectroscopy. Also, we present that a new magnet configuration, similar to the structure of Figure-8 undulator or the PERA undulator, may generate right- and left-hand circularly polarized off-axis radiation simultaneously.

  12. Undulator radiation carrying spin and orbital angular momentum.

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S.; McNulty, I.; Dejus, R.; X-Ray Science Division

    2007-11-11

    We show that the radiation from a helical undulator not only carries spin angular momentum (circular polarization) but also orbital angular momentum. This exotic property of the undulator radiation may be useful in coherent X-ray imaging and scattering experiments and to probe electronic transitions in matter by orbital dichroism spectroscopy. Also, we present that a new magnet configuration, similar to the structure of Figure-8 undulator or the PERA undulator, may generate right- and left-hand circularly polarized off-axis radiation simultaneously.

  13. Lunar ring dikes from orbiter I.

    Science.gov (United States)

    O'keefe, J A; Lowman, P D; Cameron, W S

    1967-01-01

    Orbiter photographs of the wall of a large circular formation on the moon show that the wall is a convex body resembling a flow of viscous lava. The slopes are less than the angle of repose of dry rock; hence an explanation in terms of mass wastage is hard to support. The viscosity is approximately 10(13) centimeter-gram- second units, indicating an acid lava.

  14. Implementing circularity using partial evaluation

    DEFF Research Database (Denmark)

    Lawall, Julia Laetitia

    2001-01-01

    Complex data dependencies can often be expressed concisely by defining a variable in terms of part of its own value. Such a circular reference can be naturally expressed in a lazy functional language or in an attribute grammar. In this paper, we consider circular references in the context...... of an imperative C-like language, by extending the language with a new construct, persistent variables. We show that an extension of partial evaluation can eliminate persistent variables, producing a staged C program. This approach has been implemented in the Tempo specializer for C programs, and has proven useful...

  15. Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia

    Directory of Open Access Journals (Sweden)

    S. Fukao

    2006-07-01

    Full Text Available The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF, probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE.

  16. The Effect of Charon's Tidal Damping on the Orbits of Pluto's Three Moons

    OpenAIRE

    Lithwick, Yoram; Wu, Yanqin

    2008-01-01

    Pluto's recently discovered minor moons, Nix and Hydra, have almost circular orbits, and are nearly coplanar with Charon, Pluto's major moon. This is surprising because tidal interactions with Pluto are too weak to damp their eccentricities. We consider an alternative possibility: that Nix and Hydra circularize their orbits by exciting Charon's eccentricity via secular interactions, and Charon in turn damps its own eccentricity by tidal interaction with Pluto. The timescale for this process c...

  17. Podokinetic circular vection: characteristics and interaction with optokinetic circular vection.

    Science.gov (United States)

    Becker, W; Kliegl, K; Kassubek, J; Jürgens, R

    2016-07-01

    Stabilising horizontal body orientation in space without sight on a rotating platform by holding to a stationary structure and circular 'treadmill' stepping in the opposite direction can elicit an illusion of self-turning in space (Bles and Kapteyn in Agressologie 18:325-328, 1977). Because this illusion is analogous to the well-known illusion of optokinetic circular vection (oCV), we call it 'podokinetic circular vection' (pCV) here. Previous studies using eccentric stepping on a path tangential to the rotation found that pCV was always contraversive relative to platform rotation. In contrast, when our subjects stepped at the centre of rotation about their vertical axis, we observed an inverted, ipsiversive pCV as a reproducible trait in many of our subjects. This ipCV occurred at the same latency as the pCV of subjects reporting the actually expected contraversive direction, but had lower gain. In contrast to pCV, the nystagmus accompanying circular treadmill stepping had the same direction in all individuals (slow phase in the direction of platform motion). The direction of an individual's pCV predicted the characteristics of the CV resulting from combined opto- and podokinetic stimulation (circular treadmill stepping while viewing a pattern rotating together with the platform): in individuals with contraversive pCV, latency shortened and both gain and felt naturalness increased in comparison with pure oCV, whereas the opposite (longer latency, reduced gain and naturalness) occurred in individuals with ipCV. Taken together, the reproducibility of ipCV, the constant direction of nystagmus and the fact that pCV direction predicts the outcome of combined stimulation suggest that ipCV is an individual trait of many subjects during compensatory stepping at the centre of rotation. A hypothetical model is presented of how ipCV possibly could arise. PMID:26965438

  18. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots.

    Science.gov (United States)

    Tohgha, Urice; Deol, Kirandeep K; Porter, Ashlin G; Bartko, Samuel G; Choi, Jung Kyu; Leonard, Brian M; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2013-12-23

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by postsynthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Time Dependent Density Functional Theory (TDDFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The origin of the induced chirality is consistent with the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand.

  19. Orbital evolution of a planet on an inclined orbit interacting with a disc

    CERN Document Server

    Teyssandier, Jean; Papaloizou, John C B

    2012-01-01

    We study the dynamics of a planet on an orbit inclined with respect to a disc. If the initial inclination of the orbit is larger than some critical value, the gravitational force exerted by the disc on the planet leads to a Kozai cycle in which the eccentricity of the orbit is pumped up to large values and oscillates with time in antiphase with the inclination. On the other hand, both the inclination and the eccentricity are damped by the frictional force that the planet is subject to when it crosses the disc. We show that, by maintaining either the inclination or the eccentricity at large values, the Kozai effect provides a way of delaying alignment with the disc and circularization of the orbit. We find the critical value to be characteristically as small as about 20 degrees. Typically, Neptune or lower mass planets would remain on inclined and eccentric orbits over the disc lifetime, whereas orbits of Jupiter or higher mass planets would align and circularize. This could play a significant role in planet f...

  20. Neotectonics in the northern equatorial Brazilian margin

    Science.gov (United States)

    Rossetti, Dilce F.; Souza, Lena S. B.; Prado, Renato; Elis, Vagner R.

    2012-08-01

    An increasing volume of publications has addressed the role of tectonics in inland areas of northern Brazil during the Neogene and Quaternary, despite its location in a passive margin. Hence, northern South America plate in this time interval might have not been as passive as usually regarded. This proposal needs further support, particularly including field data. In this work, we applied an integrated approach to reveal tectonic structures in Miocene and late Quaternary strata in a coastal area of the Amazonas lowland. The investigation, undertaken in Marajó Island, mouth of the Amazonas River, consisted of shallow sub-surface geophysical data including vertical electric sounding and ground penetrating radar. These methods were combined with morphostructural analysis and sedimentological/stratigraphic data from shallow cores and a few outcrops. The results revealed two stratigraphic units, a lower one with Miocene age, and an upper one of Late Pleistocene-Holocene age. An abundance of faults and folds were recorded in the Miocene deposits and, to a minor extent, in overlying Late Pleistocene-Holocene strata. In addition to characterize these structures, we discuss their origin, considering three potential mechanisms: Andean tectonics, gravity tectonics related to sediment loading in the Amazon Fan, and rifting at the continental margin. Amongst these hypotheses, the most likely is that the faults and folds recorded in Marajó Island reflect tectonics associated with the history of continental rifting that gave rise to the South Atlantic Ocean. This study supports sediment deposition influenced by transpression and transtension associated with strike-slip divergence along the northern Equatorial Brazilian margin in the Miocene and Late Pleistocene-Holocene. This work records tectonic evidence only for the uppermost few ten of meters of this sedimentary succession. However, available geological data indicate a thickness of up to 6 km, which is remarkably thick for

  1. Numerical verification of the theory of nonadiabatic tunnel ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    We verify the theory of nonadiabatic ionization of degenerate valence p± orbitals in strong circularly polarized laser fields by numerically solving the two-dimensional time-dependent Schrödinger equation for an effective one-electron potential of neon. The numerically calculated ionization ratios of the p− and p+ orbitals agree well with the theoretical results (i.e., the counter-rotating electron tunnels more easily). However, for strong laser pulses and low laser frequencies, the adiabatic laser-dressed orbitals play an important role. In a Floquet treatment of a three-level model, we find that in this regime the ionization ratio of initial p− and p+ orbitals depends strongly on the orbital energy order of valence s and p± orbitals. We also show that the emission angles of valence p− and p+ electrons are different and should be observable in attoclock experiments. (paper)

  2. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  3. Revisiting elliptical satellite orbits to enhance the O3b constellation

    CERN Document Server

    Wood, Lloyd; Olusola, Opeoluwa

    2014-01-01

    We propose an addition of known elliptical orbits to the new equatorial O3b satellite constellation, extending O3b to cover high latitudes and the Earth's poles. We simulate the O3b constellation and compare this to recent measurement of the first real Internet traffic across the newly deployed O3b network.

  4. Circular RNA expands its territory.

    Science.gov (United States)

    Bao, Chunyang; Lyu, Dongbin; Huang, Shenglin

    2016-03-01

    Circular RNAs (circRNAs) represent a novel class of widespread non-coding RNAs in eukaryotes. They are unusually stable RNA molecules with cell type-specific expression patterns, and are predominantly present in the cytoplasm. We recently demonstrated the existence of abundant circRNAs in exosomes and suggest a potential application of exosomal circRNAs for cancer detection. PMID:27308606

  5. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  6. Development of a campaign to study equatorial ionospheric phenomena over Guam

    Science.gov (United States)

    Habash Krause, L.; Balthazor, R.; McHarg, M. G.; Reinisch, B. W.

    2008-08-01

    The United States Air Force Academy (USAFA) is in the process of developing a series of ground-based and space-based experiments to investigate the equatorial ionosphere over Guam and the southern crest of the Equatorial Appleton Anomaly over New Guinea. On the ground the Digital Ionospheric Sounder (University of Massachusetts, Lowell DPS-4 unit) and a dual-frequency GPS TEC/scintillation monitor will be used to investigate ionospheric phenomena in both campaign and long-term survey modes. In campaign mode, we will combine these observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low Earth orbit satellite missions, which will be active over a period of several years beginning in the first quarter of the 2007 calendar year. Additionally, we will investigate the long-term morphology of key ionospheric characteristics useful for driving the International Reference Ionosphere, such as critical frequencies (f oE, f oF1, f oF2, etc.), the M(3000) F2 parameter (the maximum useable frequency for a signal refracted within the F2 layer and received on the ground at a distance of 3000 km away), and a variety of other characteristics. Specific targets of investigation include: (a) a comparison of TEC observed by the GPS receiver with those calculated by IRI driven by DPS-4 observations, (b) a comparison of plasma turbulence observed on-orbit with ionospheric conditions as measured from the ground, and (c) a comparison between topside ionospheric satellite in situ measurements of plasma density during an overpass of a Digisonde versus the calculated value based on extrapolation of the electron density profiles using Digisonde data and a topside α-Chapman function. This last area of investigation is discussed in detail in this paper.

  7. Updates in Orbital Tumors

    Institute of Scientific and Technical Information of China (English)

    Nila; F.Moeloek

    1993-01-01

    Orbital anatomy, the clinical features of orbital tumors, the recent development of the diagnosis and management of orbital tumors were described. The incidence of orbital tumors in Dr. Cipto Mangunkusumo Hospital in the past years were introduced. The principle of management of orbital tumors and their prognosis were discussed.

  8. Small Orbits

    CERN Document Server

    Borsten, L; Ferrara, S; Marrani, A; Rubens, W

    2012-01-01

    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.

  9. Impact of Orbital Eccentricity on the Detection of Transiting Extrasolar Planets

    CERN Document Server

    Burke, Christopher J

    2008-01-01

    For extrasolar planets with orbital periods, P>10 days, radial velocity surveys find non-circular orbital eccentricities are common, ~0.3. Future surveys for extrasolar planets using the transit technique will also have sensitivity to detect these longer period planets. Orbital eccentricity affects the detection of extrasolar planets using the transit technique in two opposing ways: an enhancement in the probability for the planet to transit near pericenter and a reduction in the detectability of the transit due to a shorter transit duration. For an eccentricity distribution matching the currently known extrasolar planets with P>10 day, the probability for the planet to transit is ~1.25 times higher than the equivalent circular orbit and the average transit duration is ~0.88 times shorter than the equivalent circular orbit. These two opposing effects nearly cancel for an idealized field transit survey with independent photometric measurements that are dominated by Poisson noise. The net effect is a modest ~4%...

  10. Generation and detection of orbital angular momentum via metasurface

    OpenAIRE

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes a...

  11. A Simple Analytical Formulation for Periodic Orbits in Binary Stars

    CERN Document Server

    Nagel, Erick

    2007-01-01

    An analytical approximation to periodic orbits in the circular restricted three-body problem is provided. The formulation given in this work is based in calculations known from classical mechanics, but with the addition of the necessary terms to give a fairly good approximation that we compare with simulations, resulting in a simple set of analytical expressions that solve periodic orbits on discs of binary systems without the need of solving the motion equations by numerical integrations.

  12. Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    OpenAIRE

    Manni, Francesco; Lagoudakis, Konstantinos G.; Paraïso, Taofiq; Cerna, Roland; Léger, Yoan; Liew, Timothy Chi Hin; Shelykh, Ivan; Kavokin, Alexey V.; Morier-Genoud, François; Deveaud-Plédran, Benoît

    2011-01-01

    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems with no structural gyrotropy, semiconductor microcavities, because of the transverse-electric–transverse-magnetic polarization splitting that they feature, allow for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The proce...

  13. Periodic orbits near the particle resonance in galaxies

    CERN Document Server

    Contopoulos, George

    1978-01-01

    Near the particle resonance of a spiral galaxy the almost circular periodic orbits that exist inside the resonance (direct) or outside it (retrograde) are replaced by elongated trapped orbits around the maxima of the potential L/sub 4/ and L/sub 5/. These are the long- period trapped periodic orbits. The long-period orbits shrink to the points L/sub 4/, L/sub 5/ for a critical value of the Hamiltonian h. For still larger h, a family of short-period trapped orbits appears, with continuously growing size. The evolution of the periodic orbits with h is followed, theoretically and numerically, from the untrapped orbits to the long-periodic orbits and then to the short-periodic orbits, mainly in the case of a bar. In a tight spiral case an explanation of the asymmetric periodic and banana orbits is given, and an example of short-period orbits not surrounding L/sub 4/ or L/sub 5/ is provided. Another family of periodic orbits reaching corotation is trapped at the inner Lindblad resonance. (5 refs).

  14. Research on the Propagation Acting of the Equatorial Planetary Waves on the Western Equatorial Pacific Warm Pool Heat

    Institute of Scientific and Technical Information of China (English)

    Shi Qiang; Xu Jianping; Zhu Bokang

    2003-01-01

    Based on the long-term buoy data from the Tropical Atmosphere Ocean ( TAO ) array during the TOGA ( Tropical Ocean and Global Atmosphere) Program (1980-1996), the propagation acting of the Equatorial planetary waves on the Western Equatorial Pacific warm pool heat is analyzed. Results show that the zonal heat transmission in the Western Equatorial Pacific takes palace mainly in the subsurface water and spreads eastwards along the thermocline; while the seasonal westward-spreading heat change structure occurs in the mixed layers in the middle and western Pacific. The standing-form transmission in the western Pacific appears in the thermocline layer, while in the eastern pacific, it exists in the mixed layer as well as in the thermocline layer. The standing-form and eastward-spreading sign of zonal heat transmitting in the upper water is predominant and strong, and the westward sign is weak.The component force of Kelvin Equatorial wave pressure runs through the western and eastern Equatorial pacific, and transmits heat energy eastwards. And the heat transmitted by zonal current component occurs mostly in the western Pacific; The heat transmitted by the component force of Rossby wave pressure mainly appears in the eastern and middle areas of the Pacific, while the zonal current component transmitting occurs mainly in the western Pacific; Mixed-Rossby gravity wave's action on the zonal current is stronger than that of the thermocline layer. In the mean state, the standing wave model of Equatorial Pacific up layer ocean temperature confines the transport of western Pacific warm pool heat to the eastern Pacific. Under abnormal conditions, the standing wave model of Equatorial Pacific up layer ocean temperature weakens, the eastwardly transmitting model enhances, and subsequently the El Ni n o event occurs.

  15. Dynamics of a drop trapped inside a horizontal circular hydraulic jump

    CERN Document Server

    Duchesne, Alexis; Lebon, Luc; Pirat, Christophe; Limat, Laurent

    2013-01-01

    A drop of moderate size deposited inside a horizontal circular hydraulic jump of the same liquid remains trapped at the shock front and does not coalesce. In this situation the drop is moving along the jump and one observes two different motions: a periodic one (it orbitates at constant speed) and an irregular one involving reversals of the orbital motion. Modeling the drop as a rigid sphere exchanging friction with liquid across a thin film of air, we recover the orbital motion and the internal rotation of the drop. This internal rotation is experimentally observed.

  16. Multiple rotations of a drop rolling inside a horizontal circular hydraulic jump

    OpenAIRE

    Duchesne, Alexis; Savaro, Clément; Lebon, Luc; Pirat, Christophe; Limat, Laurent

    2013-01-01

    We explore the complex dynamics of a non-coalescing drop of moderate size inside a circular hydraulic jump of the same liquid formed on a horizontal disk. In this situation the drop is moving along the jump and one observes two different motions: a periodic one (it orbits at constant speed) and an irregular one involving reversals of the orbital motion. Modeling the drop as a rigid sphere exchanging friction with liquid across a thin film of air, we rationalize both the orbital motion and the...

  17. Idiopathic sclerosing orbital inflammation

    NARCIS (Netherlands)

    J.D. Hsuan; D. Selva; A.A. McNab; T.J. Sullivan; P. Saeed; B.A. O'Donnell

    2006-01-01

    Objective: To perform a multicenter review of the clinical features and treatment of 31 patients with idiopathic sclerosing orbital inflammation. Methods: We included all patients with histologically confirmed idiopathic sclerosing orbital inflammation from 5 regional orbital centers. We reviewed th

  18. Convex mappings on some circular domains

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we consider some circular domains.And we give an extension theorem for some normalized biholomorphic convex mapping on some circular domains.Especially,we discover the normalized biholomorphic convex mapping on some circular domains have the form f(z) =(f1(z1),...,fn(zn)),where fj:D → C are normalized biholomorphic convex mapping.

  19. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    CERN Document Server

    Choi, David S; Vasavada, Ashwin R; Simon-Miller, Amy A

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact...

  20. Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Chao-Song Huang

    2011-01-01

    Full Text Available An important issue in low-latitude ionospheric space weather is how magnetic storms affect the generation of equatorial plasma bubbles. In this study, we present the measurements of the ion density and velocity in the evening equatorial ionosphere by the Defense Meteorological Satellite Program (DMSP satellites during 22 intense magnetic storms. The DMSP measurements show that deep ion density depletions (plasma bubbles are generated after the interplanetary magnetic field (IMF turns southward. The time delay between the IMF southward turning and the first DMSP detection of plasma depletions decreases with the minimum value of the IMF Bz, the maximum value of the interplanetary electric field (IEF Ey, and the magnitude of the Dst index. The results of this study provide strong evidence that penetration electric field associated with southward IMF during the main phase of magnetic storms increases the generation of equatorial plasma bubbles in the evening sector.

  1. Formation of Jets and Equatorial Superrotation on Jupiter

    CERN Document Server

    Schneider, Tapio

    2008-01-01

    The zonal flow in Jupiter's upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter's jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter's jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together, and if upper-tropospheric dynamics are linked to a magnetohydrodynamic (MHD) drag that acts deep in the atmosphere. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmos...

  2. Energy dissipation in circular tube

    Directory of Open Access Journals (Sweden)

    A.D. Girgidov

    2012-01-01

    Full Text Available Energy dissipation distribution along the circular tube radius is important in solving such problems as calculation of heat transfer by the air flow through building envelope; calculation of pressure loss in spiral flows; calculation of cyclones with axial and tangential supply of dust-containing gas.Two types of one-dimensional radially axisymmetric flows in circular tube were considered: axial flow and rotation about the axis (Rankine vortex. Relying on two- and four-layer description of axial turbulent flow energy dissipation was calculated in each layer.Similar calculation for Rankine vortex with viscous sublayer at the tube surface was provided. By employing the dissipation minimum principle the boundary radius between rigid rotation and free vortex is calculated. Approximation of the velocity distribution in Rankine vortex is proposed.

  3. Control of a Circular Jet

    CERN Document Server

    Gohil, Trushar B; Muralidhar, K

    2010-01-01

    The present study report direct numerical simulation (DNS) of a circular jet and the effect of a large scale perturbation at the jet inlet. The perturbation is used to control the jet for increased spreading. Dual-mode perturbation is obtained by combining an axisymmetric excitation with the helical. In the fluid dynamics videos, an active control of the circular jet at a Reynolds number of 2000 for various frequency ratios (both integer and non-integer) has been demonstrated. When the frequency ratio is fixed to 2, bifurcation of the jet on a plane is evident. However, for a non-integer frequency ratio, the axisymmetric jet is seen to bloom in all directions.

  4. Capacitance of circular patch resonator

    Energy Technology Data Exchange (ETDEWEB)

    Miano, G.; Verolino, L. [Dip. di Ingegneria Elettrica, Ist. Nazionale di Fisica Nucleare, Naples (Italy); Panariello, G. [Dip. di Ingegneria Elettronica, Naples (Italy); Vaccaro, V.G. [Ist. Nazionale di Fisica Nucleare, Naples (Italy). Dipt. di Scienze Fisiche

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants.

  5. Preliminary results of ITEC over an equatorial station

    International Nuclear Information System (INIS)

    Total electron content (TEC) was obtained from bottomside ionograms recorded at an equatorial station (Ouagadougou, 12.4 deg. N, 358.5 deg. E). Variability in TEC obtained in this way (ITEC) was investigated. Diurnal, seasonal and solar cycle effects were observed. Both absolute and relative variability were considered. The results obtained were compared with those of another equatorial station (Ghana, 5.63 deg. N, 359.8 deg. E) where the TEC was obtained by the Faraday rotation technique. The variations in variability at both stations follow the same trend. (author)

  6. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1

    Science.gov (United States)

    Burke, W. J.; Gentile, L. C.; Huang, C. Y.; Valladares, C. E.; Su, S. Y.

    2004-12-01

    We compare observations of equatorial plasma bubbles (EPBs) by polar-orbiting satellites of the Defense Meteorological Satellite Program (DMSP) with plasma density measurements from the Republic of China Satellite (ROCSAT-1) in a low-inclination orbit. DMSP data were acquired in the evening sector at low magnetic latitudes between 1989 and 2002. ROCSAT-1 plasma densities were measured in March and April of 2000 and 2002. Observations of individual EPBs detected by both ROCSAT-1 and DMSP were well correlated when satellite orbital paths crossed the same longitude within approximately ±15 min. We compiled a statistical database of ROCSAT-1 EPB occurrence rates sorted by magnetic local time (MLT), magnetic latitude, and geographic longitude. The rate of ROCSAT-1 EPB encounters at topside altitudes rose rapidly after 1930 MLT and peaked between 2000 and 2200 MLT, close to the orbital planes of DMSP F12, F14, and F15. EPB encounter rates have Gaussian distributions centered on the magnetic equator with half widths of ˜8°. Longitudinal distributions observed by ROCSAT-1 and DMSP are qualitatively similar, with both showing significantly fewer occurrences than expected near the west coast of South America. A chain of GPS receivers extending from Colombia to Chile measured a west-to-east gradient in S4 indices that independently confirms the existence of a steep longitudinal gradient in EPB occurrence rates. We suggest that precipitation of energetic particles from the inner radiation belt causes the dearth of EPBs. Enhancements in the postsunset ionospheric conductance near the South Atlantic Anomaly cause a decrease in growth rate for the generalized Rayleigh-Taylor instability. Results indicate substantial agreement between ROCSAT-1 and DMSP observations and provide new insights on EPB phenomenology.

  7. Total positive curvature of circular DNA

    DEFF Research Database (Denmark)

    Bohr, Jakob; Olsen, Kasper Wibeck

    2013-01-01

    micro-DNAs longer than the minimum length must be concave, a result that is consistent with typical atomic force microscopy images of plasmids. Predictions for the total positive curvature of circular micro-DNAs are given as a function of length, and comparisons with circular DNAs from the literature...... molecules, e.g., plasmids, it is shown to have implications for the total positive curvature integral. For small circular micro-DNAs it follows as a consequence of Fenchel's inequality that there must exist a minimum length for the circular plasmids to be double stranded. It also follows that all circular...

  8. Circular Polarization in Pulsar Integrated Profiles: Updates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We update the systematic studies of circular polarization in integrated pulse profiles by Han et al. Data of circular polarization profiles are compiled. Sense reversals can occur in core or cone components, or near the intersection between components. The correlation between the sense of circular polarization and the sense of position angle variation for conal-double pulsars is confirmed with a much large database. Circular polarization of some pulsars has clear changes with frequency.Circular polarization of millisecond pulsars is marginally different from that of normal pulsars.

  9. Generation and detection of orbital angular momentum via metasurface

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  10. Generation and detection of orbital angular momentum via metasurface.

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-07

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  11. Generation and detection of orbital angular momentum via metasurface.

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device. PMID:27052796

  12. On Robe's Circular Restricted Problem of Three Variable Mass Bodies

    Directory of Open Access Journals (Sweden)

    Jagadish Singh

    2013-01-01

    Full Text Available This paper investigates the motion of a test particle around the equilibrium points under the setup of the Robe’s circular restricted three-body problem in which the masses of the three bodies vary arbitrarily with time at the same rate. The first primary is assumed to be a fluid in the shape of a sphere whose density also varies with time. The nonautonomous equations are derived and transformed to the autonomized form. Two collinear equilibrium points exist, with one positioned at the center of the fluid while the other exists for the mass ratio and density parameter provided the density parameter assumes value greater than one. Further, circular equilibrium points exist and pairs of out-of-plane equilibrium points forming triangles with the centers of the primaries are found. The out-of-plane points depend on the arbitrary constant , of the motion of the primaries, density ratio, and mass parameter. The linear stability of the equilibrium points is studied and it is seen that the circular and out-of-plane equilibrium points are unstable while the collinear equilibrium points are stable under some conditions. A numerical example regarding out-of-plane points is given in the case of the Earth, Moon, and submarine system. This study may be useful in the investigations of dynamic problem of the “ocean planets” Kepler-62e and Kepler-62f orbiting the star Kepler-62.

  13. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    Wind patterns in the equatorial Pacific and Indian oceans are the factors that regulate the chlorophyll pigment distributions in the equatorial region of these oceans. Trade winds and coastline of the Pacific basin supports wave-guide dynamics...

  14. Tidal heating of Earth-like exoplanets around M stars: Thermal, magnetic, and orbital evolutions

    CERN Document Server

    Driscoll, Peter

    2015-01-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low mass M stars whose radiative habitable zone overlaps with the "tidal zone". We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a visco-elastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within $0.07$ AU circularize before 10 G...

  15. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  16. A global climatology for equatorial plasma bubbles in the topside ionosphere

    Directory of Open Access Journals (Sweden)

    L. C. Gentile

    2006-03-01

    Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.

  17. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.;

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......)] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic “spin energy flow” predicted by the theory...

  18. Equatorial ionospheric electrodynamic perturbations during Southern Hemisphere stratospheric warming events

    DEFF Research Database (Denmark)

    Olson, M. E.; Fejer, B. G.; Stolle, Claudia;

    2013-01-01

    We use ground-based and satellite measurements to examine, for the first time, the characteristics of equatorial electrodynamic perturbations measured during the 2002 major and 2010 minor Southern Hemisphere sudden stratospheric warming (SSW) events. Our data suggest the occurrence of enhanced qu...... that showed the fundamentally important role of lunar semidiurnal tidal effects on low latitude electrodynamic perturbations during arctic SSW events....

  19. Exact Nonlinear Internal Equatorial Waves in the f-plane

    Science.gov (United States)

    Hsu, Hung-Chu

    2016-07-01

    We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.

  20. Evolution of Ion Clouds in the Equatorial Ionosphere

    Science.gov (United States)

    Petrochuk, Yevgeny; Blaunstein, Nathan; Mishin, Evgeny; Pedersen, Todd; Caton, Ron; Viggiano, Al; Schuman, Nick

    2015-11-01

    We report on the results of 2- and 3-dimentional numerical investigations of the evolution of samarium ion clouds injected in the equatorial ionosphere, alike the recent MOSC experiments. The ambient conditions are described by a standard model of the quiet-time equatorial ionosphere from 90 to 350 km. The altitudinal distribution of the transport processes and ambient electric and magnetic fields is taken into account. The fast process of stratification of ion clouds and breaking into small plasmoids occur only during the late stage of the cloud evolution. The role of the background plasma and its depletion zones formed due to the short-circuiting currents is not as evident as in mid latitudes. It is also revealed that the altitudinal dependence of the diffusion and drift plays a minor role in the cloud evolution at the equator. Likewise, the cloud remains stable with respect to the Raleigh-Taylor and gradient-drift instabilities. These two features are defined by the equatorial near-horizontal magnetic field which leads to a strongly-elongated ellipsoid-like plasma cloud. The critical dip angle separating the stable (equatorial) and unstable (mid-latitude) cloud regimes will be defined in future simulation studies, as well as the dependence on the ambient electric field and neutral wind. 2Space Vehicles Directorate, Air Force Research Laboratory

  1. Signatures of strong geomagnetic storms in the equatorial latitude

    Science.gov (United States)

    Olawepo, A. O.; Adeniyi, J. O.

    2014-04-01

    Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height - electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to -12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.

  2. Climate regulation of fire emissions and deforestation in equatorial Asia

    NARCIS (Netherlands)

    Werf, van der G.R.; Dempewolf, J.; Trigg, S.N.; Randerson, J.T.; Peters, W.

    2008-01-01

    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire

  3. Clean advice for oily money : Consulting for Equatorial Guinea

    NARCIS (Netherlands)

    Lachotzki, F.W.I.; Karssing, E.D.

    2011-01-01

    Equatorial Guinea is one of the most extraordinary countries in the world, if also one of the most obscure. Its tremendous yearly revenue from the oil concessions it grants in its Gulf of Guinea territorial waters is little known, but so too is its abysmal record on human rights. The deep-rooted cor

  4. Observations of ULF wave related equatorial electrojet and density fluctuations

    Science.gov (United States)

    Yizengaw, E.; Zesta, E.; Biouele, C. M.; Moldwin, M. B.; Boudouridis, A.; Damtie, B.; Mebrahtu, A.; Anad, F.; Pfaff, R. F.; Hartinger, M.

    2013-10-01

    We report on Pc5 wave related electric field and vertical drift velocity oscillations at the equator as observed by ground magnetometers for an extended period on 9 August 2008. We show that the magnetometer-estimated equatorial E×B drift oscillates with the same frequency as ULF Pc5 waves, creating significant ionospheric density fluctuations. We also show ionospheric density fluctuations during the period when we observed ULF wave activity. At the same time, we detect the ULF activity on the ground using ground-based magnetometer data from the African Meridian B-field Education and Research (AMBER) and the South American Meridional B-field Array (SAMBA). From space, we use magnetic field observations from the GOES 12 and the Communication/Navigation Outage and Forecast System (C/NOFS) satellites. Upstream solar wind conditions are provided by the ACE spacecraft. We find that the wave power observed on the ground also occurs in the upstream solar wind and in the magnetosphere. All these observations demonstrate that Pc5 waves with a likely driver in the solar wind can penetrate to the equatorial ionosphere and modulate the equatorial electrodynamics. While no direct drift measurements from equatorial radars exist for the 9 August 2008 event, we used JULIA 150 km radar drift velocities observed on 2 May 2010 and found similar fluctuations with the period of 5-8 min, as a means of an independent confirmation of our magnetometer derived drift dynamics.

  5. The equatorial electrojet current modelling from SWARM satellite data

    Science.gov (United States)

    Benaissa, Mahfoud

    2016-07-01

    Equatorial ElectroJet (EEJ) is an intense eastward electric current circulating in the ionospheric magnetic equator band between 100 and 130 km of altitude in E region. These currents vary by day, by season, by solar activity, and also with the main magnetic field of internal origin. The irregularity of the ionosphere has a major impact on the performance of communication systems and navigation (GPS), industry.... Then it becomes necessary study the characteristics of EEJ. In this paper, we present a study of the equatorial electrojet (EEJ) phenomenon along one year (2014) period. In addition, the satellite data used in this study are obtained with SWARM satellite scalar magnetometer data respecting magnetically quiet days with KP < 2. In this paper, we process to separate and extract the electrojet intensity signal from other recorded signal-sources interfering with the main signal and reduce considerably the signal to noise ratio during the SWARM measurements. This pre-processing step allows removing all external contributions in regard to EEJ intensity value. Key words: Ionosphere (Equatorial ionosphere; Electric fields and currents; Equatorial electrojet (EEJ)); SWARM.

  6. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Shetye, S.; Maya, M.V.; Mangala, K.R.; PrasannaKumar, S.

    equatorial counter current and a westward flowing north equatorial current apart from the circulations in the northern Indian ocean. During south west monsoon from May to September, equatorial counter current merges with the easterly flowing south... salinity waters from the Australasian Mediterranean waters (AAMW) under the influence of south equatorial counter current (Sharma et al. 1978). The northern higher salinity water mass is a mixture of the Persian Gulf and Red Sea waters which is found...

  7. The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Science.gov (United States)

    Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa; Dreizler, Stefan; Odewahn, Stephen; Welsh, William F.; Kadakia, Shimonee; Vanderbei, Robert J.; Adams, Elisabeth R.; Lockhart, Matthew; Crossfield, Ian J.; Valenti, Jeff A.; Dantowitz, Ronald; Carter, Joshua A.

    2009-01-01

    We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.

  8. Deterministic Circular Self Test Path

    Institute of Scientific and Technical Information of China (English)

    WEN Ke; HU Yu; LI Xiaowei

    2007-01-01

    Circular self test path (CSTP) is an attractive technique for testing digital integrated circuits(IC) in the nanometer era, because it can easily provide at-speed test with small test data volume and short test application time. However, CSTP cannot reliably attain high fault coverage because of difficulty of testing random-pattern-resistant faults. This paper presents a deterministic CSTP (DCSTP) structure that consists of a DCSTP chain and jumping logic, to attain high fault coverage with low area overhead. Experimental results on ISCAS'89 benchmarks show that 100% fault coverage can be obtained with low area overhead and CPU time, especially for large circuits.

  9. Robust, angstrom level circularity profilometry

    Science.gov (United States)

    Glenn, Paul

    1990-01-01

    A noncontacting approach is presented which involves measuring the local circumferential curvature of the test piece by simultaneously measuring its circumferential slope at two slightly displaced locations. A pair of sensing beams is scanned along the circumference, and a profile of curvature is built, from which the circularity profile is deduced. The sensing of curvature makes the approach insensitive to all types of vibration and drift and runout errors in the relative rotation. The special qualities of the approach are summarized which make it well suited to measuring cylindrical optics and enable it to accommodate radii as small as twenty millimeters.

  10. Post-midnight occurrence of equatorial plasma bubbles

    Science.gov (United States)

    Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.

    2016-07-01

    The equatorial plasma bubbles (EPBs)/equatorial spread F (ESF) irregularities are an important topic of space weather interest because of their impact on transionospheric radio communications, satellite-based navigation and augmentation systems. This local plasma depleted structures develop at the bottom side F layer through Rayleigh-Taylor instability and rapidly grow to topside ionosphere via polarization electric fields within them. The steep vertical gradients due to quick loss of bottom side ionization and rapid uplift of equatorial F layer via prereversal enhancement (PRE) of zonal electric field makes the post-sunset hours as the most preferred local time for the formation of EPBs. However, there is a different class of irregularities that occurs during the post-midnight hours of June solstice reported by the previous studies. The occurrence of these post-midnight EPBs maximize during the low solar activity periods. The growth characteristics and the responsible mechanism for the formation of these post-midnight EPBs are not yet understood. Using the rapid beam steering ability of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. The responsible mechanism for the genesis of summer time post-midnight EPBs were discussed in light of growth rate of Rayleigh-Taylor instability using SAMI2 model.

  11. Charged dust dynamics - Orbital resonance due to planetary shadows

    Science.gov (United States)

    Horanyi, M.; Burns, J. A.

    1991-01-01

    The dynamics of a weakly charged dust grain orbiting in the equatorial plane of a planet surrounded by a rigidly corotating magnetospehre is examined. It is shown that an introduction of an effectilve 1D potential causes a perturbation due to electrostatic forces, which induces a motion of the pericenter, similar to the effect of the planetary oblateness. A case is examined where the charge varies periodically due to the modulation of the photoelectron current occurring as the grain enters and leaves the planetary shadow, causing the electromagnetic perturbation to resonate with the orbital period and to modify the size and eccentricity of the orbit. This effect is demonstrated both numerically and analytically for small grains comprising the Jovian ring, showing that their resulting changes are periodic, and their amplitude is much larger than that of the periodic changes due to light-pressure perturbation or the secular changes due to resonant charge variations that develop over a comparable time span.

  12. Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations.

    Science.gov (United States)

    Wang, Xinke; Shi, Jing; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Zhang, Yan

    2016-04-01

    Linearly and circularly polarized terahertz (THz) vortex beams are generated by adopting a THz quarter wave plate and spiral phase plates with topological charges 1 and 2. Taking advantage of a THz digital holographic imaging system, longitudinal components of THz vortices with different polarizations and topological charges are coherently measured and systemically analyzed in a focusing condition. The application potential of circularly polarized THz vortex beams in microscopy is experimentally demonstrated and the transformation between the spin angular momentums and orbital angular momentums of THz waves is also checked. Modified Richards-Wolf vector diffraction integration equations are applied to successfully simulate experimental phenomena. PMID:27137010

  13. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  14. Probable Spin-Orbit Aligned Super-Earth Planet Candidate KOI-2138.01

    CERN Document Server

    Barnes, Jason W; Seubert, Shayne A; Relles, Howard M

    2015-01-01

    We use rotational gravity darkening in the disk of \\emph{Kepler} star KOI-2138 to show that the orbit of $2.1-R_\\oplus$ transiting planet candidate KOI-2138.01 has a low projected spin-orbit alignment of $\\lambda=1^\\circ\\pm13$. KOI-2138.01 is just the second super-Earth with a measured spin-orbit alignment after 55 Cancri e, and the first to be aligned. With a 23.55-day orbital period, KOI-2138.01 may represent the tip of a future iceberg of solar-system-like terrestrial planets having intermediate periods and low-inclination circular orbits.

  15. Physics at Future Circular Colliders

    Science.gov (United States)

    Kotwal, Ashutosh

    2016-03-01

    The Large Hadron Collider has been a grand success with the discovery of the Higgs boson, with bright prospects for additional discoveries since the recent increase in collider energy and the anticipated large datasets. Big open questions such as the nature of dark matter, the origin of the matter-antimatter asymmetry in the Universe, and the theoretical puzzle of the finely-tuned parameters in the Higgs sector, demand new physics principles that extend the established Standard Model paradigm. Future circular colliders in a substantially larger tunnel can house both a high luminosity electron-positron collider for precision measurements of Higgs and electroweak parameters, as well as a very high energy proton-proton collider which can directly manifest particles associated with these new physics principles. We discuss the physics goals of these future circular colliders, and the prospects for elucidating fundamental new laws of nature that will significantly extend our understanding of the Universe. Detailed studies of the discovery potential in specific benchmark models will be presented, with implications for detector design.

  16. Pilot-wave hydrodynamics in a rotating frame: Exotic orbits

    Energy Technology Data Exchange (ETDEWEB)

    Oza, Anand U.; Harris, Daniel M.; Rosales, Rodolfo R.; Bush, John W. M., E-mail: bush@math.mit.edu [Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Wind-Willassen, Øistein [Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2014-08-15

    We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop's trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased, stable circular orbits give way to wobbling orbits, which are succeeded in turn by instabilities of the orbital center characterized by steady drifting then discrete leaping. In the limit of large vibrational forcing, the walker's trajectory becomes chaotic, but its statistical behavior reflects the influence of the unstable orbital solutions. The study results in a complete regime diagram that summarizes the dependence of the walker's behavior on the system parameters. Our predictions compare favorably to the experimental observations of Harris and Bush [“Droplets walking in a rotating frame: from quantized orbits to multimodal statistics,” J. Fluid Mech. 739, 444–464 (2014)].

  17. Pluto and Charon: A Case of Precession-Orbit Resonance?

    Science.gov (United States)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2000-01-01

    Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.

  18. CIRCULAR ECONOMY IN ROMANIA WITHIN EUROPEAN CONTEXT

    OpenAIRE

    Cornelia Marcela Danu; Valentin Nedeff

    2015-01-01

    In the present paper we have approached some conceptual and coordinated marks of the societal reality connected to the circular economy. Generated by „the limits of certainty” regarding the future of the world business, the operationalization of the circular economy has become a part of the EU strategies and started the various stages of implementation as an active process in all countries. We have highlighted the opportunities and the risks related to the circular economy, the European dimen...

  19. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    OpenAIRE

    V. Jebaraj; K.R.S. Ravi Kumar; D. Mohanageetha

    2014-01-01

    Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation techni...

  20. Reconfigurable Monopole Antennas With Circular Polarization

    OpenAIRE

    Panahi, Afshin

    2015-01-01

    This thesis presents research on printed circularly-polarized monopole antennas and their application in reconfigurable monopole antennas. The proposed circularly-polarised monopole antennas benefit from advantages such as small size, low-cost, low-profile and simple designs. The first part of this thesis introduces three printed circularly-polarized monopole antennas for global navigation satellite systems and Wi-Fi applications. The primary focus is on the ground plane which is used as a ra...

  1. Molecular alignment using circularly polarized laser pulses

    CERN Document Server

    Smeenk, C T L

    2013-01-01

    We show that circularly polarized femtosecond laser pulses produce field-free alignment in linear and planar molecules. We study the rotational wavepacket evolution of O$_2$ and benzene created by circularly polarized light. For benzene, we align the molecular plane to the plane of polarization. For O$_2$, we demonstrate that circular polarization yields a net alignment along the laser propagation axis at certain phases of the evolution. Circular polarization gives us the ability to control alignment of linear molecules outside the plane of polarization, providing new capabilities for molecular imaging.

  2. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics

    Science.gov (United States)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.

    2012-01-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation

  3. La raó circular

    OpenAIRE

    Pinyol i Bori, Francesc

    2007-01-01

    És un text epistemològic sobre les qüestions cognitives circulars que apareixen: a) Quan el subjecte forma part de l'objecte estudiat; b) En la recerca de les bases del coneixement; c) Al voler justificar la inducció; d) En algunes interpretacions filosòfiques i científiques. S'hi explica l'estat del punt a) el més problemàtic, i s'aclareixen els altres tres punts: els b) i c) pel fet científic que l'evolució cognitiva humana ha anat acoblada a l'evolució biològica, la qual ha generat els a p...

  4. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  5. Lunar Orbiter Photo Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  6. Interacting Binaries with Eccentric Orbits. III. Orbital Evolution due to Direct Impact and Self-Accretion

    CERN Document Server

    Sepinsky, J F; Kalogera, V; Rasio, F A

    2010-01-01

    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of mass transfer is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semi-major axis an...

  7. Extension of Earth-Moon libration point orbits with solar sail propulsion

    Science.gov (United States)

    Heiligers, Jeannette; Macdonald, Malcolm; Parker, Jeffrey S.

    2016-07-01

    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun's motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of Sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits.

  8. Be discs in binary systems - I. Coplanar orbits

    Science.gov (United States)

    Panoglou, Despina; Carciofi, Alex C.; Vieira, Rodrigo G.; Cyr, Isabelle H.; Jones, Carol E.; Okazaki, Atsuo T.; Rivinius, Thomas

    2016-09-01

    Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio and eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar binaries. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. We find two limiting cases with respect to the effects of eccentricity: in circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc structure appears smaller in size, more elongated and more massive for small viscosity parameter, small orbital separation and/or high mass ratio. In highly eccentric orbits, the effects are more complex, with the disc structure strongly dependent on the orbital phase. We also studied the effects of binarity in the disc continuum emission. Since the infrared and radio SED are sensitive to the disc size and density slope, the truncation and matter accumulation result in considerable modifications in the emergent spectrum. We conclude that binarity can serve as an explanation for the variability exhibited in observations of Be stars, and that our model can be used to detect invisible companions.

  9. Particle swarm optimization applied to impulsive orbital transfers

    Science.gov (United States)

    Pontani, Mauro; Conway, Bruce A.

    2012-05-01

    The particle swarm optimization (PSO) technique is a population-based stochastic method developed in recent years and successfully applied in several fields of research. It mimics the unpredictable motion of bird flocks while searching for food, with the intent of determining the optimal values of the unknown parameters of the problem under consideration. At the end of the process, the best particle (i.e. the best solution with reference to the objective function) is expected to contain the globally optimal values of the unknown parameters. The central idea underlying the method is contained in the formula for velocity updating. This formula includes three terms with stochastic weights. This research applies the particle swarm optimization algorithm to the problem of optimizing impulsive orbital transfers. More specifically, the following problems are considered and solved with the PSO algorithm: (i) determination of the globally optimal two- and three-impulse transfer trajectories between two coplanar circular orbits; (ii) determination of the optimal transfer between two coplanar, elliptic orbits with arbitrary orientation; (iii) determination of the optimal two-impulse transfer between two circular, non-coplanar orbits; (iv) determination of the globally optimal two-impulse transfer between two non-coplanar elliptic orbits. Despite its intuitiveness and simplicity, the particle swarm optimization method proves to be capable of effectively solving the orbital transfer problems of interest with great numerical accuracy.

  10. The dawn enhancement of the equatorial ionospheric vertical plasma drift

    Science.gov (United States)

    Zhang, Ruilong; Liu, Libo; Chen, Yiding; Le, Huijun

    2015-12-01

    Previous studies have reported that a dawn enhancement does not present in the statistical picture of the equatorial ionospheric vertical plasma drift, while it clearly shows in case measurements. In this statistical study, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag.

  11. Explaining Jupiter's magnetic field and equatorial jet dynamic

    CERN Document Server

    Gastine, T; Duarte, L; Heimpel, M; Becker, A

    2014-01-01

    Spacecraft data reveal a very Earth-like Jovian magnetic field. This is surprising since numerical simulations have shown that the vastly different interiors of terrestrial and gas planets can strongly affect the internal dynamo process. Here we present the first numerical dynamo that manages to match the structure and strength of the observed magnetic field by embracing the newest models for Jupiter's interior. Simulated dynamo action primarily occurs in the deep high electrical conductivity region while zonal flows are dynamically constrained to a strong equatorial jet in the outer envelope of low conductivity. Our model reproduces the structure and strength of the observed global magnetic field and predicts that secondary dynamo action associated to the equatorial jet produces banded magnetic features likely observable by the Juno mission. Secular variation in our model scales to about 2000 nT per year and should also be observable during the one year nominal mission duration.

  12. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    Science.gov (United States)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  13. Industrial concessions, fires and air pollution in Equatorial Asia

    Science.gov (United States)

    Spracklen, D. V.; Reddington, C. L.; Gaveau, D. L. A.

    2015-09-01

    Forest and peatland fires in Indonesia emit large quantities of smoke leading to poor air quality across Equatorial Asia. Marlier et al (2015 Environ. Res. Lett. 10 085005) explore the contribution of fires occurring on oil palm, timber (wood pulp and paper) and natural forest logging concessions to smoke emissions and exposure of human populations to the resulting air pollution. They find that one third of the population exposure to smoke across Equatorial Asia is caused by fires in oil palm and timber concessions in Sumatra and Kalimantan. Logging concessions have substantially lower fire emissions, and contribute less to air quality degradation. This represents a compelling justification to prevent reclassification of logging concessions into oil palm or timber concessions after logging. This can be achieved by including logged forests in the Indonesian moratorium on new plantations in forested areas.

  14. Fast-PPP assessment in European and equatorial region near the solar cycle maximum

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume

    2014-05-01

    The Fast Precise Point Positioning (Fast-PPP) is a technique to provide quick high-accuracy navigation with ambiguity fixing capability, thanks to an accurate modelling of the ionosphere. Indeed, once the availability of real-time precise satellite orbits and clocks is granted to users, the next challenge is the accuracy of real-time ionospheric corrections. Several steps had been taken by gAGE/UPC to develop such global system for precise navigation. First Wide-Area Real-Time Kinematics (WARTK) feasibility studies enabled precise relative continental navigation using a few tens of reference stations. Later multi-frequency and multi-constellation assessments in different ionospheric scenarios, including maximum solar-cycle conditions, were focussed on user-domain performance. Recently, a mature evolution of the technique consists on a dual service scheme; a global Precise Point Positioning (PPP) service, together with a continental enhancement to shorten convergence. A end to end performance assessment of the Fast-PPP technique is presented in this work, focussed in Europe and in the equatorial region of South East Asia (SEA), both near the solar cycle maximum. The accuracy of the Central Processing Facility (CPF) real-time precise satellite orbits and clocks is respectively, 4 centimetres and 0.2 nanoseconds, in line with the accuracy of the International GNSS Service (IGS) analysis centres. This global PPP service is enhanced by the Fast-PPP by adding the capability of global undifferenced ambiguity fixing thanks to the fractional part of the ambiguities determination. The core of the Fast-PPP is the capability to compute real-time ionospheric determinations with accuracies at the level or better than 1 Total Electron Content Unit (TECU), improving the widely-accepted Global Ionospheric Maps (GIM), with declared accuracies of 2-8 TECU. This large improvement in the modelling accuracy is achieved thanks to a two-layer description of the ionosphere combined with

  15. Definition of Relative Orbit Elements of Spacecraft Formation Flying for Purpose of Orbit Design

    Science.gov (United States)

    Xiao, Yelun

    Much efforts have been made to the research concerning the dynamical characteristics of spacecraft formation flying, several articles have been published including the authors' IAC papers IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. The problem can be deduced to the issue of relative orbit motion of one satellite called accompany satellite around another called reference or central satellite, the latter being supposed to move in circular or near-circular orbit and to have equal semimajor axis as the former. It has been shown that the trajectory of relative motion is an ellipse constantly fixed to the orbital frame of the central satellite. It is known that the relative motion is completely determined by initial state of relative motion x0, y0, z0, vx0, vy0, vz0 (called parameter set 1). On the other hand the relative motion is caused by difference in eccentricity vectors and by non-coplanarity vector and influenced by the angle btw. the two vectors (called parameter set 2). Now the authors try to define relative orbit elements determining all geometrical and kinematical properties of the relative motion and having clear physical meaning similar to traditional orbit elements. Based on deep study of the dynamical characteristics we decide to define the elements as follows: (1) semimajor axis of the ellipse of relative trajectory; (2 and 3) elevation and azimuth angles of the normal determining the orientation of the relative motion plane wrt the reference orbit frame; (4) argument of latitude at epoch (initial instant) of reference satellite and (5) phase angle of the accompany satellite at epoch. These are minimum-required and independent elements. All others are secondary (or derived) parameters. For example, aspect ratio, i.e., ratio of major axis to minor axis, describing the shape of relative trajectory, is determined by elements 2 and 3, because of the inherent property that the projection of relative trajectory on reference orbit plane must be a 2

  16. Air-sea interaction patterns in the equatorial Pacific

    OpenAIRE

    Kent, John E.

    1993-01-01

    We have investigated air-sea interaction patterns in the equatorial Pacific during the 1991-1992 El Nino/Southern Oscillation (ENSO) event. Our study focused on the identification of spatial and temporal relationships between sea surface temperatures, subsurface temperatures, and winds. These relationships were examined using time series and statistical analyses of atmosphere and ocean data from the moored buoys of the Tropical Oceans-Global Atmosphere (TOGA) program. Our results strongly sug...

  17. Saturn's equatorial jet structure from Cassini/ISS

    Science.gov (United States)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  18. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Science.gov (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  19. Scaling of Off-Equatorial Jets in Giant Planet Atmospheres

    OpenAIRE

    Liu, Junjun; Schneider, Tapio

    2015-01-01

    In the off-equatorial region of Jupiter’s and Saturn’s atmospheres, baroclinic eddies transport angular momentum out of retrograde and into prograde jets. In a statistically steady state, this angular momentum transfer by eddies must be balanced by dissipation, likely produced by magnetohydrodynamic (MHD) drag in the planetary interior. This paper examines systematically how an idealized representation of this drag in a general circulation model (GCM) of the upper atmosphere of giant planets ...

  20. Equatorial wave analysis from SABER and ECMWF temperatures

    Directory of Open Access Journals (Sweden)

    M. Ern

    2008-02-01

    Full Text Available Equatorial planetary scale wave modes such as Kelvin waves or Rossby-gravity waves are excited by convective processes in the troposphere. In this paper an analysis for these and other equatorial wave modes is carried out with special focus on the stratosphere using temperature data from the SABER satellite instrument as well as ECMWF temperatures. Space-time spectra of symmetric and antisymmetric spectral power are derived to separate the different equatorial wave types and the contribution of gravity waves is determined from the spectral background of the space-time spectra.

    Both gravity waves and equatorial planetary scale wave modes are main drivers of the quasi-biennial oscillation (QBO in the stratosphere. Temperature variances attributed to the different wave types are calculated for the period from February 2002 until March 2006 and compared to previous findings. A comparison between SABER and ECMWF wave analyses shows that in the lower stratosphere SABER and ECMWF spectra and temperature variances agree remarkably well while in the upper stratosphere ECMWF tends to overestimate Kelvin wave components. Gravity wave variances are partly reproduced by ECMWF but have a significant low-bias. For the examples of a QBO westerly phase (October–December 2004 and a QBO easterly phase (November/December 2005, period of the SCOUT-O3 tropical aircraft campaign in Darwin/Australia in the lower stratosphere we find qualitatively good agreement between SABER and ECMWF in the longitude-time distribution of Kelvin, Rossby (n=1, and Rossby-gravity waves.

  1. Modelling of the ionosphere by neural network for equatorial SBAS

    OpenAIRE

    Desert, Thibault; Authié, Thierry; Trilles, Sébastien

    2015-01-01

    International audience; The estimation of the ionosphere delay and associated confidence interval constitutes the major issue to reach APV1 availability performance level for single frequency SBAS above the equatorial area.The ionosphere is a complex physical system which dynamics is particularly disturbed at the Geomagnetic Equator while mid-latitude regions are quieter. Classical methods to compute ionosphere delays, such as those implemented in EGNOS and the WAAS, are specific to a smooth ...

  2. Solar cycle signatures in the NCEP equatorial annual oscillation

    OpenAIRE

    H. G. Mayr; Mengel, J. G.; F. T. Huang; Nash, E. R.

    2009-01-01

    Our analysis of temperature and zonal wind data (1958 to 2006) from the National Center for Atmospheric Research (NCAR) reanalysis (Re-1), supplied by the National Centers for Environmental Prediction (NCEP), shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO) contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC). The spectral feat...

  3. Qualitative features of the evolution of some polar satellite orbits

    Science.gov (United States)

    Vashkov'yak, M. A.

    2016-01-01

    Two special cases of the problem of the secular perturbations in the orbital elements of a satellite with a negligible mass produced by the joint influence of the oblateness of the central planet and the attraction by its most massive (or main) satellites and the Sun are considered. These cases are among the integrable ones in the general nonintegrable evolution problem. The first case is realized when the plane of the satellite orbit and the rotation axis of the planet lie in its orbital plane. The second case is realized when the plane of the satellite orbit is orthogonal to the line of intersection between the equatorial and orbital planes of the planet. The corresponding particular solutions correspond to those polar satellite orbits for which the main qualitative features of the evolution of the eccentricity and pericenter argument are described here. Families of integral curves have been constructed in the phase plane of these elements for the satellite systems of Jupiter, Saturn, and Uranus.

  4. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE. PMID:12185675

  5. Productivity control of fine particle transport to equatorial Pacific sediment

    Science.gov (United States)

    Thomas, E.; Turekian, K. K.; Wei, K.-Y.

    2000-09-01

    Accumulation rates of 3He (from cosmic dust), 230Th (produced in the water column), barite (produced in the water column during decay of organic matter), and Fe and Ti (arriving with wind-borne dust) all are positively correlated in an equatorial Pacific core (TT013-PC72; 01.1°N, 139.4°W; water depth 4298 m). These accumulation rates are also positively correlated with the accumulation rates of noncarbonate material. They are not significantly correlated to the mass accumulation rate of carbonate, which makes up the bulk of the sediment. The fluctuations in accumulation rates of these various components from different sources thus must result from variations in some process within the oceans and not from variations in their original sources. Sediment focusing by oceanic bottom currents has been proposed as this process [Marcantonio et al., 1996]. We argue that the variations in the accumulation rates of all these components are dominantly linked to changes in productivity and particle scavenging (3He, 230Th, Fe, Ti) by fresh phytoplankton detritus (which delivers Ba upon its decay) in the equatorial Pacific upwelling region. We speculate that as equatorial Pacific productivity is a major component of global oceanic productivity, its variations over time might be reflected in variations in atmospheric levels of methanesulfonic acid (an atmospheric reaction product of dimethyl sulfide, which is produced by oceanic phytoplankton) and recorded in Antarctic ice cores.

  6. Limits to solar cycle predictability: Cross-equatorial flux plumes

    CERN Document Server

    Cameron, R H; Jiang, J; Iş\\ik, E; Schmitt, D; Schüssler, M

    2013-01-01

    Within the Babcock-Leighton framework for the solar dynamo, the strength of a cycle is expected to depend on the strength of the dipole moment or net hemispheric flux during the preceding minimum, which depends on how much flux was present in each hemisphere at the start of the previous cycle and how much net magnetic flux was transported across the equator during the cycle. Some of this transport is associated with the random walk of magnetic flux tubes subject to granular and supergranular buffeting, some of it is due to the advection caused by systematic cross-equatorial flows such as those associated with the inflows into active regions, and some crosses the equator during the emergence process. We aim to determine how much of the cross-equatorial transport is due to small-scale disorganized motions (treated as diffusion) compared with other processes such as emergence flux across the equator. We measure the cross-equatorial flux transport using Kitt Peak synoptic magnetograms, estimating both the total a...

  7. Long-Term Stability of Horseshoe Orbits

    CERN Document Server

    Ćuk, Matija; Holman, Matthew J

    2012-01-01

    Unlike Trojans, horseshoe coorbitals are not generally considered to be long-term stable (Dermott and Murray, 1981; Murray and Dermott, 1999). As the lifetime of Earth's and Venus's horseshoe coorbitals is expected to be about a Gyr, we investigated the possible contribution of late-escaping inner planet coorbitals to the lunar Late Heavy Bombardment. Contrary to analytical estimates, we do not find many horseshoe objects escaping after first 100 Myr. In order to understand this behaviour, we ran a second set of simulations featuring idealized planets on circular orbits with a range of masses. We find that horseshoe coorbitals are generally long lived (and potentially stable) for systems with primary-to-secondary mass ratios larger than about 1200. This is consistent with results of Laughlin and Chambers (2002) for equal-mass pairs or coorbital planets and the instability of Jupiter's horseshoe companions (Stacey and Connors, 2008). Horseshoe orbits at smaller mass ratios are unstable because they must approa...

  8. Loops in the Sun’s orbit

    Directory of Open Access Journals (Sweden)

    Marjanov Milutin

    2013-01-01

    Full Text Available Besides translation, spin around its axis and rotation around center of the Milky Way, the Sun performs relative motion in the solar system Laplacian plane, also. This motion was anticipated by Newton himself, in his Principia. The form of the Sun’s orbit is substantially different from the other solar system bodies’ orbits. Namely, the Sun moves along the path composed of the chain of large and small loops [1, 2, 6, 9]. This chain is situated within the circular outline with the diameter approximately twice as large as the Sun’s is. Under supposition that the solar system is stable, the Sun is going to move along it, in the same region, for eternity, never reitereiting the same path. It was also shown in this work that velocity and acceleration of the Sun’s center of mass are completely defined by the relative velocities and accelerations of the planets with respect to the Sun.

  9. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera

    OpenAIRE

    Wang, Huiqun; Ingersoll, Andrew P.

    2002-01-01

    We have made daily global maps that cover both polar and equatorial regions of Mars for Ls 135°–360° and 0°–111° using the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red and blue wide-angle swaths taken from May 1999 to January 2001. We study the seasonal distribution of condensate clouds and dust clouds during roughly 1 Martian year using these daily global maps. We present the development and decay of the tropical cloud belt and the polar hoods, the spatial and temporal distributi...

  10. Circular Loudspeaker Array with Controllable Directivity

    DEFF Research Database (Denmark)

    Møller, Martin; Olsen, Martin; Agerkvist, Finn T.;

    2010-01-01

    Specific directivity patterns for circular arrays of loudspeakers can be achieved by utilizing the concept of phase-modes, which expands the directivity pattern into a series of circular harmonics. This paper investigates the applicability of this concept applied on a loudspeaker array on a...

  11. Exon circularization in mammalian nuclear extracts.

    Science.gov (United States)

    Pasman, Z; Been, M D; Garcia-Blanco, M A

    1996-06-01

    Correct ligation of exons in pre-mRNA splicing requires splice site juxtaposition (splice site pairing), usually involving a 5' splice site and a downstream 3' splice site. Splicing of a 5' splice site to an upstream 3' splice site, however, is predicted to result in a circular RNA. This mode of splice site pairing across the axon has been hypothesized to account for rare RNAs containing scrambled exons (Nigro JM et al., 1991, Celt 64:607-613; Cocquerelle C et al., 1992, EMBO J 11:1 095-1098). Additionally, this mode of splice site pairing has been postulated to explain the formation of SRY circular transcripts in mouse testis (Capel B et al., 1993, Celt 73:1019- 1030). Here we show that splice site pairing across the exon can result in exon circularization in vitro. These results indicate that spliceosome-mediated axon circularization indeed can account for the formation of scrambled exons and circular RNAs. Exon circularization efficiency decreased dramatically as the length of the exon was increased from 95 nt to 274 nt. Circularization of this longer exon was restored, however, when intronic complementary sequences were included in the RNA substrate. These complementary sequences could form a stem that served to bring the splice sites into proximity and thereby promote splice site pairing. Therefore, the splicing of this structured RNA recapitulated SRY-like exon circularization in vitro.

  12. Microstrip Antenna Generates Circularly Polarized Beam

    Science.gov (United States)

    Huang, J.

    1986-01-01

    Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.

  13. Birth: A Neutral Beam Deposition Code for Non-Circular Tokamak Plasma

    International Nuclear Information System (INIS)

    A new neutral beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross-section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical CPU time on a KL DEC-10 computer is 10--20 s and 5--10 s with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo beam deposition codes. The power deposition profile calculated by this code is in good agreement with that calculated by the Monte Carlo code which was developed to calculate the complete behaviors of the fast ions in circular plasmas

  14. BIRTH: a beam deposition code for non-circular tokamak plasmas

    International Nuclear Information System (INIS)

    A new beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical cpu time on a DEC-10 computer is 10 - 20 seconds and 5 - 10 seconds with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo codes. The power deposition profile calculated by this code is in good agreement with that calculated by a Monte Carlo code. (author)

  15. CIRCULAR ECONOMY IN ROMANIA WITHIN EUROPEAN CONTEXT

    Directory of Open Access Journals (Sweden)

    Cornelia Marcela Danu

    2015-07-01

    Full Text Available In the present paper we have approached some conceptual and coordinated marks of the societal reality connected to the circular economy. Generated by „the limits of certainty” regarding the future of the world business, the operationalization of the circular economy has become a part of the EU strategies and started the various stages of implementation as an active process in all countries. We have highlighted the opportunities and the risks related to the circular economy, the European dimension and, in particular, the Romanian one of this process, the role of the triad: consumer-company-natural environment, while implementing the circular economy. Circular economy is both a new approach of the societal life, based on changing the mentalities of the individuals having the role of decision makers at the company level and public administration and the decision makers – consumers, as well as a policy meant to be made operational across all entities: governmental, entrepreneurial, individually – human.

  16. Nanofocusing in circular sector-like nanoantennas

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Pors, Anders Lambertus; Han, Zhanghua;

    2014-01-01

    Gold circular sector-like nanoantennas (with a radius of 500 nm and a taper angle of 60°, 90°, and 120°) on glass are investigated in a near-infrared wavelength range (900 - 2100 nm). Amplitude- and phase-resolved near-field images of circular sector-like antenna modes at telecom wavelength feature...... a concentric circular line of phase contrast, demonstrating resonant excitation of a standing wave of counter-propagating surface plasmons, travelling between a tip and opposite circular edge of the antenna. Transmission spectra obtained in the range 900 - 2100 nm are in good agreement with numerical...... circular sector-like nanoantennas very promising for implementing bowtie antennas and attractive for many applications....

  17. Gauge-Invariant Formulation of Circular Dichroism.

    Science.gov (United States)

    Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A

    2016-07-12

    Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment. PMID:27295541

  18. X-ray magnetic circular dichroism spectra and distortions at Fe2+ L(2,3) edges

    NARCIS (Netherlands)

    Wang, X.; de Groot, F.M.F.; Cramer, S.P.

    1996-01-01

    We have shown from ligand field multiplet calculations that the shape of X-ray magnetic circular dichroism (XMCD) spectra changes drastically with the distortion parameter Ds. The temperature dependence study of XMCD makes it possible to determine both Ds and spin-orbit coupling.

  19. Orbit Software Suite

    Science.gov (United States)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  20. Figure "8" Type Solutions for Planar Circular Restricted 3-body Problems

    Institute of Scientific and Technical Information of China (English)

    张世清

    2004-01-01

    @@ We study planar restricted 3-body problems[1]. Suppose point masses m1 and m2 move around their center of mass in circular orbits. Choose units of length, time and mass so that the angular velocity of rotation, the sum of masses of mi and m2, and the gravitational constant are all equal to one. Then for this choice the distance between m1 and m2 is also equal to 1.

  1. Painless orbital myositis

    Directory of Open Access Journals (Sweden)

    Rahul T Chakor

    2012-01-01

    Full Text Available Idiopathic orbital inflammation is the third most common orbital disease, following Graves orbitopathy and lymphoproliferative diseases. We present a 11 year old girl with 15 days history of painless diplopia. There was no history of fluctuation of symptoms, drooping of eye lids or diminished vision. She had near total restricted extra-ocular movements and mild proptosis of the right eye. There was no conjunctival injection, chemosis, or bulb pain. There was no eyelid retraction or lid lag. Rest of the neurological examination was unremarkable.Erythrocyte sedimentation rate was raised with eosinophilia. Antinuclear antibodies were positive. Liver, renal and thyroid functions were normal. Antithyroid, double stranded deoxyribonucleic acid and acetylcholine receptor antibodies were negative. Repetitive nerve stimulation was negative. Magnetic resonance imaging (MRI of the orbit was typical of orbital myositis. The patient responded to oral steroids. Orbital myositis can present as painless diplopia. MRI of orbit is diagnostic in orbital myositis.

  2. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  3. Ionization of hydrogen atoms by circularly polarized microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Gebarowski, R.; Zakrzewski, J. (Instytut Fizyki Uniwersytetu Jagiellonskiego, ulica Reymonta 4, 30-059 Krakow (Poland) Laboratoire Kastler-Brossel, Universite Pierre et Marie Curie, T12, E1, 4 place Jussieu, 75272 Paris Cedex 05 (France))

    1995-02-01

    Ionization of hydrogen Rydberg atoms by [ital circularly] polarized microwaves is studied numerically within the framework of classical mechanics. Both the simplified two-dimensional model (in which the plane of polarization coincides with the orbit plane) and a fully three-dimensional system are considered. It is shown that the ionization proceeds in the diffusive manner for all microwave frequencies except the low-frequency limit. The threshold for diffusive excitation as well as the diffusion speed is strongly dependent on the initial state of the system for smooth pulse excitation. In a high-frequency limit the ionization threshold rises sharply---the atom is much more resistant to the excitation. Two distinct regimes of stabilization windows (regions where the ionization decreases with increasing field amplitude), one in the strong short-laser-pulse domain and the other in the weak microwave domain, are identified and discussed.

  4. Analytic orbit propagation for transiting circumbinary planets

    CERN Document Server

    Georgakarakos, Nikolaos

    2015-01-01

    The herein presented analytical framework fully describes the motion of coplanar systems consisting of a stellar binary and a planet orbiting both stars on orbital as well as secular timescales. Perturbations of the Runge-Lenz vector are used to derive short period evolution of the system, while octupole secular theory is applied to describe its long term behaviour. A post Newtonian correction on the stellar orbit is included. The planetary orbit is initially circular and the theory developed here assumes that the planetary eccentricity remains relatively small (e_2<0.2). Our model is tested against results from numerical integrations of the full equations of motion and is then applied to investigate the dynamical history of some of the circumbinary planetary systems discovered by NASA's Kepler satellite. Our results suggest that the formation history of the systems Kepler-34 and Kepler-413 has most likely been different from the one of Kepler-16, Kepler-35, Kepler-38 and Kepler-64, since the observed plan...

  5. Origin of the Spin-Orbit Interaction

    CERN Document Server

    Spavieri, Gianfranco

    2015-01-01

    We consider a semi-classical model to describe the origin of the spin-orbit interaction in a simple system such as the hydrogen atom. The interaction energy U is calculated in the rest-frame of the nucleus, around which an electron, having linear velocity v and magnetic dipole-moment mu, travels in a circular orbit. The interaction energy U is due to the coupling of the induced electric dipole p=(v/c)x mu with the electric field En of the nucleus. Assuming the radius of the electron's orbit remains constant during a spin-flip transition, our model predicts that the energy of the system changes by Delta_E = U/2, the factor 1/2 emerging naturally as a consequence of equilibrium and the change of the kinetic energy of the electron. The correct 1/2 factor for the spin-orbit coupling energy is thus derived without the need to invoke the well-known Thomas precession in the rest-frame of the electron.

  6. Process engineering in circular economy

    Institute of Scientific and Technical Information of China (English)

    Lothar Reh

    2013-01-01

    Driven by increasing global population and by growing demand for individual wealth,the consumption of energy and raw materials as well as the steadily growing CO2 concentration in atmosphere pose great challenges to process engineering.This complex multi-scale discipline deals with the transformation of mass by energy to manifold products in different industrial fields under economical and ecological sustainable conditions.In growing circular economy,process engineering increasingly plays an important role in recovering valuable components from very diffuse material flows leaving the user stocks following widely variable time periods of use.As well it is engaged in thermal recovery of energy therefrom and in environmentally safe disposal of residual solid wastes whose recovery economically is not feasible.An efficient recovery of materials and energy following the laws of entropy is a must.A complex network of mass,energy,transportation and information flows has to be regarded with growing traded quantities of used goods even on global level.Important constraints in time,however,exist for a necessary realization of innovative new processes and communal mobility and industrial infrastructure on medium and large scale.Based on reasonable long term and highly reliable statistics from industrial organizations representing steel and paper industry,some limits and trends of possible developments in processing of those industries with long recycling experience will be discussed.

  7. Polarimetric investigation of materials with both linear and circular anisotropy

    DEFF Research Database (Denmark)

    Naydenova, I.; Nikolova, L.; Todorov, T.;

    1997-01-01

    We investigate light propagation through materials with both linear and circular anisotropy and find the relation of the amplitude and polarization transfer functions to the four anisotropic characteristics: linear circular birefringence, and linear and circular dichroism. We determine these four...

  8. Ring Orbits from Multiple Occultation Observations

    Science.gov (United States)

    French, Richard G.; McGhee, C. A.; Marouf, E. A.; Rappaport, N.

    2006-09-01

    Planetary rings provide a remarkable laboratory for the investigation of a wide range of dynamical effects, including resonance-driven density and bending waves, satellite wakes, shepherding of narrow ringlets, and non-circular edges of gaps. Careful quantitative examination of these features requires a very accurate absolute radius scale and planetary pole direction, achievable by combining multiple stellar and radio occultation observations. Uncertainty in the location of the spacecraft (at the km level) introduces a fundamental uncertainty into the geometric solution for the ring radius scale, and in the end one must solve for corrections to the spacecraft trajectory as part of the overall determination of the ring orbital model. Using JPL's NAIF toolkit, we have developed accurate algorithms for computing the event time of a ring occultation during an Earth-based or spacecraft occultation, including the effects of spacecraft trajectory errors mapped in two orthogonal directions transverse to the line of sight, based on osculating orbital elements for the instantaneous spacecraft path. These are the fundamental building blocks for a global solution for the pole direction and orbits of the rings of Saturn and Uranus. For Uranus, our new orbit solution includes the full set of digitally recorded occultation data from 1977-2002, yielding a radius scale accurate at the 100 meter level. For Saturn, we explore the potential for highly accurate ring orbit determination as occultation observations from dozens of stellar and radio occultations become publicly available over the course of the ongoing Cassini orbital tour. Saturn's pole precession is also detectable from ring occultation data, and we set limits on the accuracy of the precession rate determination and the implications for our understanding of the mass distribution in Saturn's interior. This work was supported in part by the NASA PGG program.

  9. Jumping Jupiter Can Explain Mercury’s Orbit

    Science.gov (United States)

    Roig, Fernando; Nesvorný, David; DeSouza, Sandro Ricardo

    2016-04-01

    The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury’s orbit during the instability related to the migration of the giant planets in the framework of the jumping-Jupiter model. We found that some instability models are able to produce the correct values of Mercury’s eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury’s perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity) and the nodal regression of Uranus (for the inclination).

  10. 3D periodic orbits in the restricted four body problem

    Science.gov (United States)

    Baltagiannis, A.; Papadakis, K.

    2013-09-01

    One big body (Sun) of mass m1 and two other small bodies of masses m2 and m3 correspondingly, move in circular orbits keeping an equilateral triangle configuration, about the center of mass of the system fixed at the origin of the coordinate system. A massless particle is moving under the Newtonian gravitational attraction of the primaries and does not affect the motion of the three bodies. Using the vertical-critical orbits of planar families of symmetric periodic orbits as starting points, we determine and present in this paper, families of three-dimensional periodic solutions of the problem. Characteristic curves of the 3D-families which emanate from the plane are presented. The stability of every three-dimensional periodic orbit which numerically calculated is also studied.

  11. Valley-contrasting orbital angular momentum in photonic valley crystals

    CERN Document Server

    Chen, Xiaodong; Dong, Jianwen

    2016-01-01

    Valley, as a degree of freedom, has been exploited to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials. On the other hand, orbital angular momentum of light with helical phase distribution has attracted great attention for its unprecedented opportunity to optical communicagtions, atom trapping, and even nontrivial topology engineering. Here, we reveal valley-contrasting orbital angular momentum in all-dielectric photonic valley crystals. Selective excitation of valley chiral bulk states is realized by sources carrying orbital angular momentum with proper chirality. Valley dependent edge states, predictable by nonzero valley Chern number, enable to suppress the inter-valley scattering along zigzag boundary, leading to broadband robust transmission in Z-shape bend without corner morphological optimization. Our work may open up a new door towards the discovery of novel quantum states and the manipulation of spin-orbit interaction of light in nanophotonics.

  12. Simulations of accretion flows crossing the last stable orbit

    CERN Document Server

    Armitage, P J; Chiang, J; Armitage, Philip J.; Reynolds, Christopher S; Chiang, James

    2001-01-01

    We use three dimensional magnetohydrodynamic simulations, in a pseudo-Newtonian potential, to study geometrically thin accretion disc flows crossing the marginally stable circular orbit around black holes. We concentrate on vertically unstratified and isothermal disk models, but also consider a model that includes stratification. In all cases, we find that the sonic point lies just inside the last stable orbit, with modest magnetic field amplification observed interior to this radius. The gradient of the specific angular momentum of the flow, (dl/dr), is close to zero within the last stable orbit, despite the presence of continuing magnetic stress in the plunging region. These results are in general agreement with expectations based on traditional disk models, but differ from recent results obtained from simulations of geometrically thick disks. For thin disks, we find that the use of a zero-torque boundary condition, at the last stable orbit, provides a reasonable approximation to the numerical results.

  13. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  14. Uniformity Tests in Circular Data: Review

    Directory of Open Access Journals (Sweden)

    Ismet DOGAN

    2015-10-01

    Full Text Available Circular data are a large class of directional data, which are interest in many fields. Examples include phenomena that are periodic in time, including those dependent on hours of the day (hospital visits, times of birth, etc. or days of the year (unemployment or sales variations. The elementary but also fundamental property of circular data is that the beginning and end of the scale coincide: for example, 0° = 360°. An immediate implication is that the arithmetic mean is likely to be a poor summary: the mean of 1° and 359° cannot sensibly be 180°. The solution is use the vector mean direction as circular mean. The statistical analysis of angular or circular data differs from the analysis of linear data. Unlike linear distributions, which are often two-tailed and infinite, circular distributions exhibit finite closure because a circular data set comes back on itself, and therefore, 0° and 360° are actually the same point on a circle. Circular statistics is concerned mainly with observations which are unit vectors in the plane. Thus the sample space is typically a circle or a sphere, so that standart methods for analysing univariate or multivariate measurement data can?t be used. Special circular methods are required take into account the structure of these sample spaces. In most circular statistical analyses, the null hypothesis is a uniform distribution in which all directions occur with equal probability. In this study, eight different testing methods improved for uniformity in angular data have been introduced and these methods were compared with each other by using the information obtained from the literature.

  15. Entanglement of quantum circular states of light

    Science.gov (United States)

    Horoshko, D. B.; De Bièvre, S.; Kolobov, M. I.; Patera, G.

    2016-06-01

    We present a general approach to calculating the entanglement of formation for superpositions of two-mode coherent states, placed equidistantly on a circle in phase space. We show that in the particular case of rotationally invariant circular states the Schmidt decomposition of two modes, and therefore the value of their entanglement, are given by analytical expressions. We analyze the dependence of the entanglement on the radius of the circle and number of components in the superposition. We also show that the set of rotationally invariant circular states creates an orthonormal basis in the state space of the harmonic oscillator, and this basis is advantageous for representation of other circular states of light.

  16. Circular polarization memory in polydisperse scattering media

    CERN Document Server

    Macdonald, Callum M; Meglinski, Igor

    2015-01-01

    We investigate the survival of circularly polarized light in random scattering media. The surprising persistence of this form of polarization has a known dependence on the size and refractive index of scattering particles, however a general description regarding polydisperse media is lacking. Through analysis of Mie theory, we present a means of calculating the magnitude of circular polarization memory in complex media, with total generality in the distribution of particle sizes and refractive indices. Quantification of this memory effect enables an alternate pathway towards recovering particle size distribution, based on measurements of diffusing circularly polarized light.

  17. Multisatellite observations of an intensified equatorial ionization anomaly in relation to the northern Sumatra earthquake of March 2005

    Science.gov (United States)

    Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Oyama, K.-I.

    2014-06-01

    Here we report multisatellite observations of ionospheric disturbances in relation to the occurrence of the M8.7 northern Sumatra earthquake of 28 March 2005. The DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) and CHAMP (Challenging Minisatellite Payload) satellite data were investigated to find possible precursory and postevent phenomena. It was found that EIA (equatorial ionization anomaly) strength expressed in the apex height, derived from the CHAMP plasma density profile, was intensified along the orbits whose longitudes were close to the epicenter within about a week before and after occurrence of the earthquake. Increases in electron and O+ density along the orbits close to the epicenter were also observed in the DEMETER measurements. The normalized equatorial plasma density derived from the DEMETER measurements showed intensification about a week before and after the earthquake reaching maximum the day after the shock and afterward disappearing. In addition, similar behavior of the EIA enhancements related to the M8.0 Pisco earthquake of 15 August 2007 was observed. Surveys of space weather and geomagnetic activities excluded the possibility that these fluctuations were caused by changes in space weather or by a geomagnetic storm. Statistical analyses of the longitudinal variation revealed that the EIA was enhanced in the west of the epicenter and reduced in the east of the epicenter, and this fits the "increased conductivity" model. Based on these observations, we proposed a revised view of seismo-ionospheric coupling in the region of the geomagnetic equator, to explain the EIA features observed in this study.

  18. A three-dimensional solution for the orbit of Capella

    Science.gov (United States)

    Barlow, D. J.; Fekel, F. C.; Scarfe, C. D.

    1993-01-01

    We have combined new radial velocities of both components of Capella, obtained at McDonald and Kitt Peak, with those recently published by Batten et al. (1991), and with interferometric observations, to derive a new 3D orbit of the Capella system. Our results agree well with those of Bagnuolo and Hartkopf (1989), and yield masses accurate to +/- 3 percent. The cooler component, which is the fainter star visually but the more luminous one bolometrically, is the more massive. The mass ratio differs from unity by more than four times its uncertainty, and this lends strong support to the hypothesis that the cool component has begun to consume its core helium. If so, it may be possible to reconcile, qualitatively at least, the orbit's circularity and the stars' rotational velocities with theories of synchronization and circularization, such as that of the Tassouls (1992).

  19. Femtosecond dynamics of spin and orbital angular momentum in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, Christian; Pontius, Niko; Holldack, Karsten; Quast, Torsten; Kachel, Torsten; Wietstruk, Marko; Mitzner, Rolf; Duerr, Hermann A. [Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany)

    2009-07-01

    At the BESSY femtoslicing source we measure X-ray magnetic circular dichroism (XMCD) with 100 fs time resolution. By virtue of the XMCD sum rules, we find that the spin and orbital momenta in a thin nickel film are quenched with a time constant of 150 fs upon excitation with a fs laser pulse. This represents the first unambiguous proof that the total electronic angular momentum is transferred to the lattice on the same ultrafast time scale. The quenching of orbital angular momentum also is a serious constraint for models of angular momentum dissipation.

  20. A multi-model approach to the Atlantic Equatorial mode : impact on the West African monsoon

    OpenAIRE

    Losada, T.; Rodriguez-Fonseca, B.; Janicot, Serge; Gervois, S.; Chauvin, F.; Ruti, P.

    2010-01-01

    This paper is focused on the West African anomalous precipitation response to an Atlantic Equatorial mode whose origin, development and damping resembles the observed one during the last decades of the XXth century. In the framework of the AMMA-EU project, this paper analyses the atmospheric response to the Equatorial mode using a multimodel approach with an ensemble of integrations from 4 AGCMs under a time varying Equatorial SST mode. The Guinean Gulf precipitation, which together with the ...

  1. Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo

    2004-01-01

    The cubic nonlinear Schrodinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.

  2. Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing

    Institute of Scientific and Technical Information of China (English)

    FUZun-Tao; LIUShi-Da; LIUShi-Kuo

    2004-01-01

    The cubic nonlinear Schroedinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial cnvelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.

  3. Preseptal and Orbital Cellulitis

    OpenAIRE

    Emine Akçay; Gamze Dereli Can; Nurullah Çağıl

    2014-01-01

    Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epid...

  4. Orbital inflammation: Corticosteroids first.

    Science.gov (United States)

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  5. Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt Matthias

    2015-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...

  6. Pictorial essay: Orbital tuberculosis

    International Nuclear Information System (INIS)

    Tuberculosis of the orbit is rare, even in places where tuberculosis is endemic. The disease may involve soft tissue, the lacrimal gland, or the periosteum or bones of the orbital wall. Intracranial extension, in the form of extradural abscess, and infratemporal fossa extension has been described. This pictorial essay illustrates the imaging findings of nine histopathologically confirmed cases of orbital tuberculosis. All these patients responded to antituberculous treatment

  7. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Khalil M Al-Salem

    2014-01-01

    Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.

  8. Spin-orbit coupling and chaotic rotation for circumbinary bodies. Application to the small satellites of the Pluto-Charon system

    CERN Document Server

    Correia, Alexandre C M; Robutel, Philippe

    2015-01-01

    Circumbinary bodies are objects that orbit around a more massive binary system. Here we show that, contrarily to the classical two-body problem, circumbinary bodies in planar quasi-circular orbits can present stable non-synchronous rotation. Denoting $n_b$ and $n$ the orbital mean motion of the binary and of the circumbinary body, respectively, there is an entirely new family of spin-orbit resonances at the frequencies $n\\pm k\

  9. New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths

    Science.gov (United States)

    Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.

    2010-10-01

    We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  10. Equatorial anisotropy of the Earth's inner-inner core

    Science.gov (United States)

    Song, X.; Wang, T.; Xia, H.

    2015-12-01

    Anisotropy of Earth's inner core is a key to understand its evolution and the generation of the Earth's magnetic field. All the previous inner core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. However, we have recently found that the fast axis in the inner part of the inner core is close to the equator from inner-core waves extracted from earthquake coda. We obtained inner core phases, PKIIKP2 and PKIKP2 (round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner core boundary, respectively), from stackings of autocorrelations of the coda of large earthquakes (10,000~40,000 s after Mw>=7.0 earthquakes) at seismic station clusters around the world. We observed large variation of up to 10 s along equatorial paths in the differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure. The observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. We have obtained more observations using the combination of autocorrelations and cross-correlations at low-latitude station arrays. The results further confirm that the IIC has an equatorial anisotropy and a pattern different from the OIC. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The drastic change in the fast axis and the form of anisotropy from the IIC to the OIC may suggest a phase change of the iron or a major shift in the crystallization and deformation during the formation and growth of the inner core.

  11. Satellite Orbital Precessions Caused by the Octupolar Mass Moment of a Non-Spherical Body Arbitrarily Oriented in Space

    Indian Academy of Sciences (India)

    G. Renzetti

    2013-12-01

    I consider a satellite moving around a non-spherical body of mass and equatorial radius , and calculate its orbital precessions caused by the body’s octupolar mass moment 4. I consider only the effects averaged over one orbital period of the satellite. I give exact formulas, not restricted to any special values of either the eccentricity or the inclination of the satellite’s orbit. I do not assume any preferential orientation for the body’s spin axis $\\hat{\\mathbf{k}}$ because in many cases of potential interest (exoplanets, neutron stars, black holes) it is poorly known or unknown at all.

  12. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ke(

    2001-01-01

    [1]Vogan, D. , Dixmier algebras, sheets and representation theory (in Actes du colloque en I' honneur de Jacques Dixmier),Progress in Math. 92, Boston: Birkhauser Verlag, 1990, 333-397.[2]McGovern, W., Dixmier Algebras and Orbit Method, Operator Algebras, Unitary Representations and Invariant Theory,Boston: Birkhauser, 1990, 397-416.[3]Liang, K. , Parabolic inductions of nilpotent geometric orbit datum, Chinese Science Bulletin (in Chinese) , 1996, 41 (23):2116-2118.[4]Vogan, D., Representations of Real Reductive Lie Groups, Boston-Basel-Stuttgart: Birkhauser, 1981.[5]Lustig, G., Spaltenstein, N., Induced unipotent class, J. London Math. Soc., 1997, 19. 41-52.[6]Collingwood, D. H. , McGovern, W. M. , Nilpotent Orbits in Semisimple Lie Algebras, New York: Van Nostremt Reinhold,1993.

  13. Family of Orbiters

    Science.gov (United States)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.

  14. Mechanical Faraday effect for orbital angular momentum-carrying beams

    OpenAIRE

    Wisniewski-Barker, Emma; Gibson, Graham; Franke-Arnold, Sonja; Boyd, Robert W; Padgett, Miles J.

    2014-01-01

    When linearly polarised light is transmitted through a spinning window, the plane of polarisation is rotated. This rotation arises through a phase change that is applied to the circularly polarised states corresponding to the spin angular momentum (SAM). Here we show an analogous effect for the orbital angular momentum (OAM), where a differential phase between the positive and negative modes (±ℓ) is observed as a rotation of the transmitted image. For normal materials, this rotation is on the...

  15. Transition radiation from electrons with orbital angular momentum

    OpenAIRE

    Konkov, Anatoly S.; Potylitsyn, Alexander P.; Polonskaya, Marina S.

    2013-01-01

    Several experimental groups have recently obtained the so called vortex electrons (electrons with orbital angular momentum (OAM) of l = 100h) with energies of 300 keV. The gyromagnetic ratio of such electrons becomes proportional to the OAM value, which leads to the corresponding increase of the electron magnetic moment. In this paper we investigate the transition radiation from the "charge + magnetic moment" system using the theory of classical electrodynamics. The circular polarization of o...

  16. Variability in equatorial B0 and B1

    International Nuclear Information System (INIS)

    Variability of ionospheric profile parameters B0 and B1, below the F2 peak is investigated for an equatorial station at two levels of solar activities. The whole 24 hours of the day and the four seasons of the year are covered. Absolute and relative variability indices were utilized in the study. Some evidences of correlations of variability index and profiles parameters were observed. Daytime values of relative variability in B1 at solar minimum were found to be greater than those of solar maximum. (author)

  17. Mismo field experiment in the equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Masumoto, Y.; Kuroda, Y.; Katsumata, M.; Mizuno, K.; Takayabu, Y.N.; Yoshizaki, M.; Shareef, A.; Fujiyoshi, Y.; McPhaden, M.J.; Murty, V.S.N.; Shirooka, R.; Yasunaga, K.; Yamada, H.; Sato, N.; Ushiyama, T.; Moteki, Q.; Seiki, A.; Fujita, M.; Ando, K.; Hase, H.; Ueki, I.; Horii, T.; Yokoyama, C.; Miyakawa, T.

    are shown in Fig. 7 with the time series of SST. Daily mean SST increased from a minimum value (28.3°C) on 28 October to the highest value (29.4°C) on 9 November. The diurnal cycle of SST is particu- larly dominant during 30 October–15 November, and skin... sensor (roughly 5-m depth from the sea surface, black line) and IsAr system (skin surface, green line). red line indicates daily mean value of intake sst. 1897december 2008AmerIcAN meTeOrOLOGIcAL SOcIeTY | The relationship between the equatorial Rossby...

  18. Ionospheric scintillations associated with equatorial E-region

    Science.gov (United States)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.

    1978-01-01

    Amplitude scintillations at 40, 140, and 360 MHz recorded at an equatorial station Ootacamund (dip 4 deg N) during the ATS-6 phase II and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for the scintillation activity. Various sporadic E events, but not the Es-q, are associated with intense daytime scintillations. There are no scintillations at times of normal E-layer or cusp type of Es. Scintillations are also present at times of night Es.

  19. Climatology of early night equatorial spread F over Jicamarca

    OpenAIRE

    Chapagain, N. P.; Fejer, Bela G.

    2009-01-01

    [1] We use radar observations from 1996 to 2006 to study the climatology of postsunset equatorial 3-m spread F irregularities over Jicamarca during all seasons. We show that the spread F onset times do not change with solar flux and that their onset heights, which occur near the altitude of the evening F region velocity vortex, increase linearly from about 260 to 400 km from solar minimum to solar maximum. Higher onset heights generally lead to stronger radar echoes. During the equinox, sprea...

  20. Seasonal variability of the bifurcation of the North Equatorial Current

    Institute of Scientific and Technical Information of China (English)

    JU Qiang-chang; JIANG Song; TIAN Ji-wei; KONG Ling-hai; NI Guo-xi

    2013-01-01

    Seasonal variability of the bifurcation of the North Equatorial Current (NEC) is studied by constructing the analytic solution for the time-dependent horizontal linear shallow water quasi-geostrophic equations.Using the Florida State University wind data from 1961 through 1992,we find that the bifurcation latitude of the NEC changes with seasons.Furthermore,it is shown that the NEC bifurcation is at its southernmost latitude (12.7°N) in June and the northernmost latitude (14.4° N) in November.

  1. Dual frequency launcher for circularly polarized antenna

    Science.gov (United States)

    Chen, Ming H.

    1989-10-01

    A dual frequency antenna feed is formed from a central, circular waveguide connected to the flat boundry of circular, disk-shaped resonant cavity. A second circular waveguide is connected one end of a disk-shaped resonant cavity. Energy of one frequency enters and exits the cavity along the common axis of the waveguides. Energy of the second frequency is introduced to the same resonant cavity by way of a plurality of bandpass filters, also connected to the cavity. This energy enters by way of slots in the cylindrical walls of the cavity. The central circular waveguide is propagating at one frequency but cut off at the second frequency. These bandpass filters are at this pass band for the second frequency, but at the rejection band for the first frequency. Therefore, the isolation between these two input ports are obtained.

  2. Angles-Only Initial Relative Orbit Determination Performance Analysis using Cylindrical Coordinates

    Science.gov (United States)

    Geller, David K.; Lovell, T. Alan

    2016-09-01

    The solution of the initial relative orbit determination problem using angles-only measurements is important for orbital proximity operations, satellite inspection and servicing, and the identification of unknown space objects in similar orbits. In this paper, a preliminary relative orbit determination performance analysis is conducted utilizing the linearized relative orbital equations of motion in cylindrical coordinates. The relative orbital equations of motion in cylindrical coordinates are rigorously derived in several forms included the exact nonlinear two-body differential equations of motion, the linear-time-varying differential equations of motion for an elliptical orbit chief, and the linear-time-invariant differential equations of motion for a circular orbit chief. Using the nonlinear angles-only measurement equation in cylindrical coordinates, evidence of full-relative-state observability is found, contrary to the range observability problem exhibited in Cartesian coordinates. Based on these results, a geometric approach to assess initial relative orbit determination performance is formulated. To facilitate a better understanding of the problem, the focus is on the 2-dimensional initial orbit determination problem. The results clearly show the dependence of the relative orbit determination performance on the geometry of the relative motion and on the time-interval between observations. Analysis is conducted for leader-follower orbits and flyby orbits where the deputy passes directly above or below the chief.

  3. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  4. Dual-band Omnidirectional Circularly Polarized Antenna

    OpenAIRE

    Narbudowicz, Adam; Bao, Xiulong; Ammann, Max

    2013-01-01

    A dual-band omnidirectional circularly polarized antenna is proposed. The antenna comprises back-to-back microstrip patches fed by a coplanar waveguide. A very low frequency ratio of 1.182 has been achieved, which can be easily tuned by adjusting four lumped capacitors incorporated into the antenna. An analysis of the omnidirectional circular polarization mechanism as well the dual band operation is provided and confirmed by numerical and experimental data. Key parameters to tune the resonant...

  5. On the circular polarization of pulsar radiation

    OpenAIRE

    Lyubarskii, Y. E.; Petrova, S. A.

    1999-01-01

    We consider the polarization behaviour of radio waves propagating through an ultrarelativistic highly magnetized electron-positron plasma in a pulsar magnetosphere. The rotation of magnetosphere gives rise to the wave mode coupling in the polarization-limiting region. The process is shown to cause considerable circular polarization in the linearly polarized normal waves. Thus, the circular polarization observed for a number of pulsars, despite the linear polarization of the emitted normal wav...

  6. Unleashing the Power of the Circular Economy

    Energy Technology Data Exchange (ETDEWEB)

    Kok, L.; Wurpel, G.; Ten Wolde, A. [IMSA Amsterdam, Amsterdam (Netherlands)

    2013-04-15

    The concept of circular economy is an economic and industrial system that focuses on the reusability of products and raw materials, reduces value destruction in the overall system and aims at value creation within each tier of the system. This report for Circle Economy (CE) outlines the general direction and concrete steps that must be taken to accomplish a breakthrough to a circular economy. It also provides a knowledge base behind the concept, connecting it to sustainability.

  7. Construction of Circular Economy Industrial System

    Institute of Scientific and Technical Information of China (English)

    Cao Man; Ye Wenhu

    2007-01-01

    It is difficult to realize the transformation from traditional economy industrial system to circular economy industrial system.Regarding primary raw materials as the indicators,the industrial system has been specified according to the divergence among the indicators and the circular utilization modes.In comparison with the association among industrial systems,the relationship among industrial sub-systems is named as industrial cross-linking in this paper.The industrial system which could completely utilize and recycle the indicators should be increased and strengthened,and the circular economy industrial system with complete industrial association and industrial cross-linking should also be constructed.Taking the development of circular agricultural system basing on the traditional agricultural system as an example,the traditional agricultural products are regarded as the indicators which have been divided into foodstuff and crop straws which are used to produce food and articlesfor use,like fertilizer,energy and papers etc.The way to construct the circular agricultural industrial system is to increase the industrial systems that could utilize the products generated from crop straws,feces and other castoffs and transform the wastewater and other trucks into environmental friendly products.It has also been pointed out that the construction of circular economy industrial system is conducive to the foundation of circular industrial economics and the establishment of the construction layout of circular economy and the application schemes.Suggestions to the theoretical and practical work of the next step have also been brought forward in this paper.

  8. Broadband circularly polarized planar antenna using partially covered circular wide-slot and L-probe

    OpenAIRE

    Fukusako, Takeshi; Sakami, Ryo; Iwata, Kazuki; フクサコ, タケシ; サカミ, リョウ; イワタ, カズキ; 福迫, 武; 酒見, 遼; 岩田, 一樹

    2008-01-01

    The novel structure of a unique circularly polarized broadband antenna that combines an L-shaped probe with a partially covered circular slot has been presented. A principle that can be used to generate CP using the proposed structure has been presented using an L-shaped probe and a modified circular wide slot. Using the above, a 3 -dB AR bandwidth of 58% and matching bandwidth of 57% were obtained at 3.2 GHz.

  9. Perpendicular magnetic anisotropy at the interface between ultrathin Fe film and MgO studied by angular-dependent x-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, J. [Research Center for Spectrochemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Koo, J. W.; Mitani, S. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Sukegawa, H. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Takagi, Y.; Yokoyama, T. [Institute of Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2014-09-22

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3d{sub z}{sup 2} and O 2p{sub z} states.

  10. PLANAR MOTION OF A SLIGHTLY DISTORTED CIRCULAR CYLINDER AROUND ANOTHER CIRCULAR ONE

    Institute of Scientific and Technical Information of China (English)

    SUN Ren; CHWANG Allen T.

    2004-01-01

    Accurate prediction of the motion of a body moving around another one in an unbounded fluid and determi-nation of the hydrodynamic interaction between them are im-portant in the coastal and offshore engineering. For two-dimensional cases, most of the previous studies were focused on the interaction between circular cylinders without considering the non-circular situation. To break through the limitation of"circular" bodies, in the present paper the boundary perturbation method was employed to investigate the motion of a slightly distorted circular cylinder around a circular one. An approximate complex velocity potential in terms of double infinite series expanded at two singular points was derived using the method of continued fractions. The hydrodynamic interaction between two cylinders was computed by solving the dynamical equations of motion. In a relative coordinate system moving with the uniform stream, the kinetic energy of the fluid was expressed as a function of fifteen added masses. Approximate analytical solutions of added masses in the series form were obtained and applied to determine the trajectories of the slightly distorted circular cylinder around a fixed circular one. Numerical results show that the presence of the circular cylinder affects the planar motion of the slightly distorted cirular cylinder and the initial configuration of the slightly distorted circular cylinder has a decisive influence on the development of its rotational motion.

  11. Check list of the Melastomataceae of Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Geerinck, Daniel

    2003-12-01

    Full Text Available A chec klist of the Melastomataceae of Equatorial Guinea is presented with 57 taxa. Three species were accepted based only on literature records, their distribution área strongly suggests their presence in Equatorial Guinea. Six species are known from Annobón, 23 from Bioko and 49 from Río Muni. Best-represented genera are Memecylon (10, Calvoa (10 and Tristemma (7. Twenty-six taxa are newly recorded for the country. Heterotis obamae Lejoly & Lisowski is set in synonymy with the previously described Heterotis arenaria Jacq.-Fél.Se presenta el catálogo florístico de la familia Melastomataceae en Guinea Ecuatorial. Se recogen un total de 57 táxones. Tres especies fueron aceptadas teniendo en cuenta solamente la literatura. Su distribución sugiere que su presencia en Guinea Ecuatorial es muy probable. En Annobón están presentes 6 especies, 23 en Bioko y 49 en Río Muni. Los géneros mejor representados son Memecylon (10 especies, Calvoa (10 y Tristemma (7.Veintiséis táxones son citados por primera vez en Guinea Ecuatorial. Se propone Heterotis obamae Lejoly & Lisowski como sinónimo de Heterotis arenaria Jacq.-Fél.

  12. Daytime plasma drifts in the equatorial lower ionosphere

    Science.gov (United States)

    Hui, Debrup; Fejer, Bela G.

    2015-11-01

    We have used extensive radar measurements from the Jicamarca Observatory during low solar flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September-October. The day-to-day variability of these drifts does not change with height between 150 and 600 km, but the bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward during the day and have largest values during July-October. The 150 km region zonal drifts have much larger day-to-day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly increase with height up to about 300 km from March through October, and more weakly at higher altitudes. The December solstice zonal drifts have generally weaker altitudinal dependence, except perhaps below 200 km. Current theoretical and general circulation models do not reproduce the observed altitudinal variation of the daytime equatorial zonal drifts.

  13. Artesunate/amodiaquine malaria treatment for Equatorial Guinea (Central Africa).

    Science.gov (United States)

    Charle, Pilar; Berzosa, Pedro; de Lucio, Aida; Raso, José; Nseng Nchama, Gloria; Benito, Agustín

    2013-06-01

    The objectives of this study were: 1) to evaluate the safety and efficacy of combination artesunate (AS)/amodiaquine (AQ) therapy, and 2) to determine the difference between recrudescence and resistance. An in vivo efficacy study was conducted in Equatorial Guinea. A total of 122 children 6-59 months of age from two regional hospitals were randomized and subjected to a 28-day clinical and parasitological follow-up. A blood sample on Whatman paper was taken on Days 0, 7, 14, 21, and 28 or on any day in cases of treatment failure, with the parasite DNA then being extracted for molecular analysis purposes. A total of 4 children were excluded, and 9 cases were lost to follow-up. There were 17 cases of late parasitological failure, 3 cases of late clinical failure, and 89 cases of adequate clinical and parasitological response. The parasitological failure rate was 18.3% (20 of 109) and the success rate 81.70% (95% confidence interval [72.5-87.9%]). After molecular correction, real treatment efficacy stood at 97.3%. Our study showed the good efficacy of combination AS/AQ therapy. This finding enabled this treatment to be recommended to Equatorial Guinea's National Malaria Control Program to change the official treatment policy as of March 2008.

  14. Quasi-periodic modulation of equatorial noise intensity

    Science.gov (United States)

    Nemec, Frantisek; Santolik, Ondrej; Hrbackova, Zuzana; Pickett, Jolene S.; Cornilleau-Wehrlin, Nicole

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed routinely in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field. Although their harmonic structure, which is characteristic of the proton cyclotron frequency in the source region has been known for a couple of decades, they were generally believed to be continuous in time. The analysis of more than 2000 EN events observed by the STAFF-SA and WBD instruments on board the Cluster spacecraft reveals that this is not always the case, with about 5% of events exhibiting a clear quasi-periodic (QP) modulation of the wave intensity. We perform a systematic analysis of these events, and we discuss possible mechanisms of the QP intensity modulation. It is shown that the events occur usually in the noon-to-dawn magnetic local time sector, and their occurrence seems to be related to the periods of increased geomagnetic activity. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN were identified in about half of the events. These ULF pulsations might modulate the EN wave intensity, similarly as they modulate the intensity of formerly reported VLF whistler-mode QP events.

  15. SpIES: The Spitzer IRAC Equatorial Survey

    CERN Document Server

    Timlin, John D; Richards, Gordon T; Lacy, Mark; Ryan, Erin L; Stone, Robert B; Bauer, Franz E; Brandt, W N; Fan, Xiaohui; Glikman, Eilat; Haggard, Daryl; Jiang, Linhua; LaMassa, Stephanie M; Lin, Yen-Ting; Makler, Martin; McGehee, Peregrine; Myers, Adam D; Schneider, Donald P; Urry, C Megan; Wollack, Edward J; Zakamska, Nadia L

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of 115 deg^2 in the Equatorial SDSS Stripe 82 field using Spitzer during its 'warm' mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > 3 to test various models for "feedback" from active galactic nuclei (AGN). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5{\\sigma} depths of 6.13 {\\mu}Jy (21.93 AB magnitude) and 5.75 {\\mu}Jy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively - depths significantly fainter than WISE. We show that the SpIES survey recovers a much larger fraction of spectroscopically-confirmed quasars (98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > 3.5), where SpIES reco...

  16. Orbital phase resolved spectroscopy of GX 301-2 with MAXI

    CERN Document Server

    Islam, Nazma

    2014-01-01

    GX 301-2, a bright HMXB with an orbital period of 41.5 days, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases, invoking accretion via stellar wind, equatorial disk, and accretion stream from the companion star. We present results from exhaustive orbital phase resolved spectroscopic measurements of GX 301-2 using data from the Gas Slit Camera onboard MAXI. Using spectroscopic analysis of the MAXI data with unprecendented orbital coverage for many orbits continuously, we have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.10-0.30 after the periastron passage indicates presence of high density absorbing matter behind the neutron star in these orbital phase range. A low energy excess is also f...

  17. Variations in Titan's dune orientations as a result of orbital forcing

    Science.gov (United States)

    McDonald, George D.; Hayes, Alexander G.; Ewing, Ryan C.; Lora, Juan M.; Newman, Claire E.; Tokano, Tetsuya; Lucas, Antoine; Soto, Alejandro; Chen, Gang

    2016-05-01

    Wind-blown dunes are a record of the climatic history in Titan's equatorial region. Through modeling of the climatic conditions associated with Titan's historical orbital configurations (arising from apsidal precessions of Saturn's orbit), we present evidence that the orientations of the dunes are influenced by orbital forcing. Analysis of 3 Titan general circulation models (GCMs) in conjunction with a sediment transport model provides the first direct intercomparison of results from different Titan GCMs. We report variability in the dune orientations predicted for different orbital epochs of up to 70°. Although the response of the GCMs to orbital forcing varies, the orbital influence on the dune orientations is found to be significant across all models. Furthermore, there is near agreement among the two models run with surface topography, with 3 out of the 5 dune fields matching observation for the most recent orbital cycle. Through comparison with observations by Cassini, we find situations in which the observed dune orientations are in best agreement with those modeled for previous orbital configurations or combinations thereof, representing a larger portion of the cycle. We conclude that orbital forcing could be an important factor in governing the present-day dune orientations observed on Titan and should be considered when modeling dune evolution.

  18. Expected first-order effects of a notional equatorial ring on Earth's night sky: a geometric consideration

    Science.gov (United States)

    Hancock, L. O.

    2013-12-01

    G. Jones (1856) was first to suggest that the Earth might have its own ring, noting that an Earth ring in the ecliptic plane would account for the latitude dependence of the zodiacal light. Jones's proposal was not accepted: it is difficult to see why the ecliptic would accumulate mass within the Earth-Moon system. Very recently, however, this objection has been mitigated by the discovery of Saturn's Phoebe ring: evidently, the plane of a planetary moon's orbit has now been observed as the site of mass accumulation. An adjustment of just a few degrees from ecliptic to the plane of the lunar orbit gives Jones's proposal the boost of an existing Solar System analogue, mysterious though the analogue is. J. O'Keefe (1980) was first to suggest that an Earth ring system could drive climate: a ring in the equatorial plane, waxing and waning in optical depth, could drive the alternation of Ice Age and interglacial climates. This driver would account for the observation that the Ice Age climate was mainly a difference in winter only. Could Earth have a ring system with one or both elements? Even if light and unstable, it would be important to assess, as it could drive climate change. Dust assessments have not discovered a ring system, but they do not cover low orbits well, nor rule out very small particles stringently. Yet tiny particles can be optically important. There are many difficulties with this hypothesis: Why have ground-based observers never identified an equatorial ring, which after all should be the brightest element of a ring system? Why should a ring system be made of very small particles only? The material must be constantly falling to Earth - where is it? Finally, can we believe in the level of lunar geological activity needed to sustain an Earth ring system? This presentation addresses only one issue: Could ground-based observers have seen but misidentified an equatorial ring? To support consideration of that question, herewith a simple geometric exercise

  19. Spectral modeling of circular massive binary systems: Towards an understanding of the Struve--Sahade effect?

    CERN Document Server

    Palate, Matthieu

    2011-01-01

    Context: Some secondary effects are known to introduce variations in spectra of massive binaries. These phenomena (such as the Struve--Sahade effect, difficulties to determine properly the spectral type,...) have been reported and documented in the literature. Aims: We simulate the spectra of circular massive binaries at different phases of the orbital cycle and accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We use the Roche potential to compute the stellar surface, von Zeipel theorem and reflection effects to compute the surface temperature. We then interpolate in a grid of NLTE plan-parallel atmosphere model spectra to obtain the local spectrum at each surface point. We finally sum all the contributions (accounting for the Doppler shift, limb-darkening, ...) to obtain the total spectrum. The computation is done for different orbital phases and for different sets of physical and orbital parameters. Results: Our first mode...

  20. GPS Satellites Orbits: Resonance

    Directory of Open Access Journals (Sweden)

    Luiz Danilo Damasceno Ferreira

    2009-01-01

    Full Text Available The effects of perturbations due to resonant geopotential harmonics on the semimajor axis of GPS satellites are analyzed. For some GPS satellites, secular perturbations of about 4 m/day can be obtained by numerical integration of the Lagrange planetary equations considering in the disturbing potential the main secular resonant coefficients. Amplitudes for long-period terms due to resonant coefficients are also exhibited for some hypothetical satellites orbiting in the neighborhood of the GPS satellites orbits. The results are important to perform orbital maneuvers of GPS satellites such that they stay in their nominal orbits. Also, for the GPS satellites that are not active, the long-period effects due to the resonance must be taken into account in the surveillance of the orbital evolutions of such debris.

  1. Nearly horizon skimming orbits of Kerr black holes

    CERN Document Server

    Hughes, S A

    2001-01-01

    An unusual set of orbits about extreme Kerr black holes resides at the Boyer-Lindquist radius $r = M$, the coordinate of the hole's event horizon. These ``horizon skimming'' orbits have the property that their angular momentum $L_z$ {\\it increases} with inclination angle, opposite to the familiar behavior one encounters at larger radius. In this paper, I show that this behavior is characteristic of a larger family of orbits, the ``nearly horizon skimming'' (NHS) orbits. NHS orbits exist in the very strong field of any black hole with spin $a\\agt 0.952412M$. Their unusual behavior is due to the locking of particle motion near the event horizon to the hole's spin, and is therefore a signature of the Kerr metric's extreme strong field. An observational hallmark of NHS orbits is that a small body spiraling into a Kerr black hole due to gravitational-wave emission will be driven into orbits of progressively smaller inclination angle, toward the equator. This is in contrast to the ``normal'' behavior. For circular ...

  2. Multiple bifurcations in the periodic orbit around Eros

    Science.gov (United States)

    Ni, Yanshuo; Jiang, Yu; Baoyin, Hexi

    2016-05-01

    We investigate the multiple bifurcations in periodic orbit families in the potential field of a highly irregular-shaped celestial body. Topological cases of periodic orbits and four kinds of basic bifurcations in periodic orbit families are studied. Multiple bifurcations in periodic orbit families consist of four kinds of basic bifurcations. We found both binary period-doubling bifurcations and binary tangent bifurcations in periodic orbit families around asteroid 433 Eros. The periodic orbit family with binary period-doubling bifurcations is nearly circular, with almost zero inclination, and is reversed relative to the body of the asteroid 433 Eros. This implies that there are two stable regions separated by one unstable region for the motion around this asteroid. In addition, we found triple bifurcations which consist of two real saddle bifurcations and one period-doubling bifurcation. A periodic orbit family generated from an equilibrium point of asteroid 433 Eros has five bifurcations, which are one real saddle bifurcation, two tangent bifurcations, and two period-doubling bifurcations.

  3. OPERATIONAL CIRCULAR NO 6 - JUNE 2001 'CERN SCIENTIFIC DOCUMENTS'

    CERN Multimedia

    Human Resources Division

    2001-01-01

    This new operational circular has been drawn up. It cancels and replaces Administrative Circular N° 29 entitled "Principles and procedures governing CERN publications and reports and other publications arising from CERN work". Copies are available from Divisional Secretariats. Note : Administrative and operational circulars, as well as the lists of those in force, are available for consultation on WWW : ADMINISTRATIVE CIRCULARSOPERATIONAL CIRCULARS

  4. The Nonlinear Response of the Equatorial Pacific Ocean-Atmosphere System to Periodic Variations in Insolation and its Association with the Abrupt Climate Transitions during the Quaternary.

    Science.gov (United States)

    Lopes, P. G.

    2015-12-01

    The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as

  5. Subwave spikes of the orbital angular momentum of the vortex-beams in a uniaxial crystal

    CERN Document Server

    Fadeyeva, T; Rubass, A; Zinov'ev, A; Konovalenko, V; Volyar, A

    2011-01-01

    We have theoretically predicted the gigantic spikes of the orbital angular momentum caused by the conversion processes of the centered optical vortex in the circularly polarized components of the elliptic vortex beam propagating perpendicular to the crystal optical axis. We have experimentally observed the conversion process inside the subwave deviations of the crystal length. We have found that the total orbital angular momentum of the wave beam is conserved.

  6. Tidal interactions of a Maclaurin spheroid. II: Resonant excitation of modes by a close, misaligned orbit

    OpenAIRE

    Braviner, Harry J.; Ogilvie, Gordon I.

    2014-01-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan (1889). We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calc...

  7. Parallel plate capacitor analogy of equatorial plasma bubble and associated fringe fields with implications to equatorial valley region irregularities

    Science.gov (United States)

    Mukherjee, S.; Patra, A. K.

    2014-08-01

    VHF radar echoes from the valley region plasma irregularities, displaying ascending pattern, are often observed during the active phase of equatorial plasma bubble in the close vicinity of the geomagnetic equator and have been attributed to bubble-related fringe field effect. These irregularities however are not observed at a few degrees away from the equator. In this paper, we attempt to understand this contrasting observational result by comparing fringe field at the geomagnetic equator and low latitudes. We use parallel plate capacitor analogy of equatorial plasma bubble and choose a few capacitor configurations, consistent with commonly observed dimension and magnetic field-aligned property of plasma bubble, for computing fringe field. Results show that fringe field decreases significantly with decreasing altitude as expected. Further, fringe field decreases remarkably with latitude, which clearly indicates the role of magnetic field-aligned property of plasma bubble in reducing the magnitude of fringe field at low latitudes compared to that at the geomagnetic equator. The results are presented and discussed in the light of current understanding of plasma bubble-associated fringe field-induced plasma irregularities in the valley region.

  8. Orbital perturbations due to massive rings

    CERN Document Server

    Iorio, Lorenzo

    2012-01-01

    We analytically work out the long-term orbital perturbations induced by a homogeneous circular ring of radius Rr and mass mr on the motion of a test particle in the cases (I): r > R_r and (II): r < R_r. In order to extend the validity of our analysis to the orbital con?gurations of, e.g., some proposed spacecraftbased mission for fundamental physics like LISA and ASTROD, of possible annuli around the supermassive black hole in Sgr A* coming from tidal disruptions of incoming gas clouds, and to the e?ect of arti?cial space debris belts around the Earth, we do not restrict ourselves to the case in which the ring and the orbit of the perturbed particle lie just in the same plane. From the corrections to the standard secular perihelion precessions, recently determined by a team of astronomers for some planets of the Solar System, we infer upper bounds on mr for various putative and known annular matter distributions of natural origin (close circumsolar ring with R_r = 0.02-0.13 au, dust ring with R_r = 1 au, m...

  9. THE EFFECTS OF EL NINO AND LA NINA ON SEABIRD ASSEMBLAGES IN THE EQUATORIAL PACIFIC MONITORING

    Science.gov (United States)

    Spring and autumn cruises in Equatorial and Subtropical Surface waters were conducted 1984-1989 in the eastern equatorial Pacific. our genera predominated, both the relative contribution of each to species assemblages differed markedly depending on season and water mass. uring au...

  10. Re-imaging the Modernity of Sierra Leone and Equatorial Guinea: Africa past and Africa present

    OpenAIRE

    Codling, Rosetta

    2011-01-01

    This paper engages the concept of the imposed Modernity of Europe upon the African republics of Sierra Leone and Equatorial Guinea. Evidence of the encroachment of a ‘false’ Modernity upon Africa’s Sierra Leone and Equatorial Guinea are chronicled in the works of Donato Ndongo (Shadows of Your Black Memory) and Syl Cheney Coker (The Last Harmattan of Alusine Dunbar).

  11. Researches on Relationship between Circular Agriculture and Industrial Diversity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    First, this paper establishes the conceptual model of circular agriculture, conducts systematic analysis on the circular agriculture on the basis of conceptual model, and discusses the characteristics of closeness and openness of circular agriculture and relationship between closeness and openness of circular agriculture. Second, this paper introduces the industrial diversity related to circular agriculture, defines the concept of industry and the concept of industries related to agriculture, and illustrates the related industries that are conducive to circular agriculture and the related industries that are not conducive to circular agriculture. Finally, this paper analyzes the mutual relationship between circular agriculture and industrial diversity as follows: in the system of circular agriculture, the industrial diversity can transform the wastes in upstream industries into resources in downstream industries; the industrial diversity creates possibility for recycling of agricultural byproducts; the industrial diversity is conducive to the diversification of industries related to circular agriculture.

  12. Imaging of orbital disorders.

    Science.gov (United States)

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  13. Odd gravitational harmonics of Jupiter: Effects of spherical versus nonspherical geometry and mathematical smoothing of the equatorially antisymmetric zonal winds across the equatorial plane

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-10-01

    Unlike the even gravitational coefficients of Jupiter that are caused by both the rotational distortion and the equatorially symmetric zonal winds, the odd jovian gravitational coefficients are directly linked to the depth of the equatorially antisymmetric zonal winds. Accurate estimation of the wind-induced odd coefficients and comparison with measurements of those coefficients would be key to understanding the structure of the zonal winds in the deep interior of Jupiter. We consider two problems in connection with the jovian odd gravitational coefficients. In the first problem, we show, by solving the governing equations for the northern hemisphere of Jupiter subject to an appropriate condition at the equatorial plane, that the effect of non-spherical geometry makes an insignificant contribution to the lowermost-order odd gravitational coefficients. In the second problem, we investigate the effect of the equatorial smoothing used to avoid the discontinuity in the winds across the equatorial plane when the thermal wind equation is adopted to compute the odd gravitational coefficients. We reveal that, because of the dominant effect of the equatorial smoothing, the odd gravitational coefficients so obtained for deep zonal winds do not reflect physically realistic dynamics taking place in the deep interior of Jupiter.

  14. Circular design - A manual on how to integrate circular design in buildings

    NARCIS (Netherlands)

    Mac-lean, M.; Van Splunter, M.; Sun, X.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Innovation and Sustainability Circular design is based on two sustainability concepts: Cradle to Cradle® and circular economy. The former is more dogmatic and specific for the manufacturing and design industry, while the latter presents

  15. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  16. Spread F – an old equatorial aeronomy problem finally resolved?

    Directory of Open Access Journals (Sweden)

    R. F. Woodman

    2009-05-01

    Full Text Available One of the oldest scientific topics in Equatorial Aeronomy is related to Spread-F. It includes all our efforts to understand the physical mechanisms responsible for the existence of ionospheric F-region irregularities, the spread of the traces in a night-time equatorial ionogram – hence its name – and all other manifestations of the same. It was observed for the first time as an abnormal ionogram in Huancayo, about 70 years ago. But only recently are we coming to understand the physical mechanisms responsible for its occurrence and its capricious day to day variability. Several additional techniques have been used to reveal the spatial and temporal characteristics of the F-region irregularities responsible for the phenomenon. Among them we have, in chronological order, radio star scintillations, trans-equatorial radio propagation, satellite scintillations, radar backscatter, satellite and rocket in situ measurements, airglow, total electron content techniques using the propagation of satellite radio signals and, recently, radar imaging techniques. Theoretical efforts are as old as the observations. Nevertheless, 32 years after their discovery, Jicamarca radar observations showed that none of the theories that had been put forward could explain them completely. The observations showed that irregularities were detected at altitudes that were stable according to the mechanisms proposed. A breakthrough came a few years later, again from Jicamarca, by showing that some of the "stable" regions had become unstable by the non-linear propagation of the irregularities from the unstable to the stable region of the ionosphere in the form of bubbles of low density plasma. A problem remained, however; the primary instability mechanism proposed, an extended (generalized Rayleigh-Taylor instability, was too slow to explain the rapid development seen by the observations. Gravity waves in the neutral background have been proposed as a seeding mechanism to

  17. Environmental issues elimination through circular economy

    Science.gov (United States)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-04-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  18. A broadband, circular-polarization selective surface

    Science.gov (United States)

    Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader

    2016-06-01

    We introduce a new technique for designing wideband circular-polarization selective surfaces (CPSSs) based on anisotropic miniaturized element frequency selective surfaces. The proposed structure is a combination of two linear-to-circular polarization converters sandwiching a linear polarizer. This CPSS consists of a number of metallic layers separated from each other by thin dielectric substrates. The metallic layers are in the form of two-dimensional arrays of subwavelength capacitive patches and inductive wire grids with asymmetric dimensions and a wire grid polarizer with sub-wavelength period. The proposed device is designed to offer a wideband circular-polarization selection capability allowing waves with left-hand circular polarization to pass through while rejecting those having right-hand circular polarization. A synthesis procedure is developed that can be used to design the proposed CPSS based on its desired band of operation. Using this procedure, a prototype of the proposed CPSS operating in the 12-18 GHz is designed. Full-wave electromagnetic simulations are used to predict the response of this structure. These simulation results confirm the validity of the proposed design concept and synthesis procedure and show that proposed CPSS operates within a fractional bandwidth of 40% with a co-polarization transmission discrimination of more than 15 dB. Furthermore, the proposed design is shown to be capable of providing an extremely wide field of view of ±60°.

  19. A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    V. Jebaraj

    2014-12-01

    Full Text Available Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation technique with different shapes of slot in the orthogonal direction. A single feed configuration based symmetric slotted microstrip antenna is adapted to realize the compact circularly polarized microstrip antennas. Based on the perimeter, the size of the slot on microstrip slot antenna are studied and compared. The Operating frequency of the antenna is 912MHz that can be tuned by varying the perimeter of the slot while the keeping the circularly polarized radiation unchanged. The schematic and layout are configured by using Advanced Design System (ADS. Return loss, Resonant Frequency, Axial Ratio (AR, and Gain were determined for the proposed system using ADS. A measured 3dB Axial Ratio (AR bandwidth around 6MHz with 16MHz impedance bandwidth has been achieved for the antenna on a RO3004C substrate with dielectric constant 3.38.

  20. Circular Ribbon Flares and Homologous Jets

    CERN Document Server

    Wang, Haimin

    2012-01-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), and this has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a closed circular ribbon have rarely been reported, although it is expected in the fan--spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence \\ha blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory (BBSO). In all the events, a central parasitic magnetic field is encompassed by the opposite magnetic polarity, forming a circular PIL that is also traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons bright...

  1. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  2. Helioseismology with Solar Orbiter

    OpenAIRE

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Rodríguez, Julián Blanco; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2014-01-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21 deg (up to 34 deg by the end of the extended mission) and thus will enable the first local helioseismol...

  3. PLANECHG: Earth orbit to lunar orbit delta V estimation program. User and technical documentation

    Science.gov (United States)

    1988-01-01

    The PLANECNG computer program calculates velocities for Earth-to-Mooon and Moon-to-Earth trajectories. The flight to be analyzed originates in a circular orbit of any inclination and altitude about one of the bodies, and culminates in a circular orbit of any inclination and altitude about the other body. An intermedate delta V and plane change occurs at the Lunar Sphere of Influence (SOI), the region where the vehicle is near its lowest velocity in the trajectory, and therefore where it is able to make the plane change with the lowest delta V. A given flight may penetrate the SOI at a number of points. Each point has associated with it a unique set of delta V's and total velocity. The program displays the velocities, in matrix form, for a representative set of SOI penetration points. An SOI point is identified by projecting Lunar latitude and longitude onto the SOI. The points recorded for a given flight are defined by the user, who provides a starting longitude and latitude, and an increment for each. A matrix is built with 10 longitudes forming the columns and 19 latitudes forming the rows. This matrix is presented in six reports, each containing different velocity or node information in the body of the matrix.

  4. Numerical Study on the Bifurcation of the North Equatorial Current

    Institute of Scientific and Technical Information of China (English)

    LIU Yulong; WANG Qi; SONG Jun; ZHU Xiande; GONG Xiaoqing; WU Fang

    2011-01-01

    A 1.5-layer reduced-gravity model forced by wind stress is used to study the bifurcations of the North Equatorial Current (NEC).The authors found that after removing the Ekman drift,the modelled circulations can serve well as a proxy of the SODA circulations on the σθ=25.0kgm-3 potential density surface based on available long-term reanalysis wind stress data.The modelled results show that the location of the western boundary bifurcation of the NEC depends on both zonal averaged and local zero wind stress curl latitude.The effects of the anomalous wind stress curl added in different areas are also investigated and it is found that they can change the strength of the Mindanao Eddy (ME),and then influence the interior pathway.

  5. Solar Wind Associated with Near Equatorial Coronal Hole

    Indian Academy of Sciences (India)

    M. Hegde; K. M. Hiremath; Vijayakumar H. Doddamani; Shashanka R. Gurumath

    2015-09-01

    Present study probes temporal changes in the area and radiative flux of near equatorial coronal hole associated with solar wind parameters such as wind speed, density, magnetic field and temperature. Using high temporal resolution data from SDO/AIA for the two wave-lengths 193 Å and 211 Å, area and radiative flux of coronal holes are extracted and are examined for the association with high speed solar wind parameters. We find a strong association between different parameters of coronal hole and solar wind. For both the wavelength bands, we also compute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and energy due to solar wind, it is conjectured that solar wind might have originated around the same height where 193 Å line is formed in the corona.

  6. Observations of discrete harmonics emerging from equatorial noise

    Science.gov (United States)

    Balikhin, Michael A.; Shprits, Yuri Y.; Walker, Simon N.; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H.; Weiss, Benjamin

    2015-07-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as `equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes `ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations.

  7. Pelagic microplastics around an archipelago of the Equatorial Atlantic.

    Science.gov (United States)

    Ivar do Sul, Juliana A; Costa, Monica F; Barletta, Mário; Cysneiros, Francisco José A

    2013-10-15

    Plastic marine debris is presently widely recognised as an important environmental pollutant. Such debris is reported in every habitat of the oceans, from urban tourist beaches to remote islands and from the ocean surface to submarine canyons, and is found buried and deposited on sandy and cobble beaches. Plastic marine debris varies from micrometres to several metres in length and is potentially ingested by animals of every level of the marine food web. Here, we show that synthetic polymers are present in subsurface plankton samples around Saint Peter and Saint Paul Archipelago in the Equatorial Atlantic Ocean. To explain the distribution of microplastics around the Archipelago, we proposed a generalised linear model (GLM) that suggests the existence of an outward gradient of mean plastic-particle densities. Plastic items can be autochthonous or transported over large oceanic distances. One probable source is the small but persistent fishing fleet using the area.

  8. Solar cycle signatures in the NCEP equatorial annual oscillation

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2009-08-01

    Full Text Available Our analysis of temperature and zonal wind data (1958 to 2006 from the National Center for Atmospheric Research (NCAR reanalysis (Re-1, supplied by the National Centers for Environmental Prediction (NCEP, shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC. The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  9. Chaotic Motion of Corrugated Circular Plates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Large deflection theory of thin anisotropic circular plates was used to analyze the bifurcation behavior and chaotic phenomena of a corrugated thin circular plate with combined transverse periodic excitation and an in-plane static boundary load. The nonlinear dynamic equation for the corrugated plate was derived by employing Galerkin's technique. The critical conditions for occurrence of the homoclinic and subharmonic bifurcations as well as chaos were studied theoretically using the Melnikov function method. The chaotic motion was also simulated numerically using Maple, with the Poincaré map and phase curve used to evaluate when chaotic motion appears. The results indicate some chaotic motion in the corrugated plate. The method is directly applicable to chaotic analysis of an isotropic circular plate.

  10. Charged Particle Optics in Circular Higgs Factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  11. Response-Adaptive Allocation for Circular Data.

    Science.gov (United States)

    Biswas, Atanu; Dutta, Somak; Laha, Arnab Kumar; Bakshi, Partho K

    2015-01-01

    Response-adaptive designs are used in phase III clinical trials to allocate a larger proportion of patients to the better treatment. Circular data is a natural outcome in many clinical trial setup, e.g., some measurements in opthalmologic studies, degrees of rotation of hand or waist, etc. There is no available work on response-adaptive designs for circular data. With reference to a dataset on cataract surgery we provide some response-adaptive designs where the responses are of circular nature and propose some test statistics for treatment comparison under adaptive data allocation procedure. Detailed simulation study and the analysis of the dataset, including redesigning the cataract surgery data, are carried out.

  12. Circular object recognition based on shape parameters

    Institute of Scientific and Technical Information of China (English)

    Chen Aijun; Li Jinzong; Zhu Bing

    2007-01-01

    To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented.The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique.Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects.The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided.The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming.In addition, the method performs well when some circular objects are little deformed and partly misshapen.

  13. Analytical Optimization of Piezoelectric Circular Diaphragm Generator

    Directory of Open Access Journals (Sweden)

    S. Mohammadi

    2013-01-01

    Full Text Available This paper presents an analytical study of the piezoelectric circular diaphragm microgenerator using strain energy method. Piezoelectrics are the intelligent materials that can be used as transducer to convert mechanical energy into electrical energy and vice versa. The aim of this paper is to optimize produced electrical energy from mechanical pressure. Therefore, the circular metal plate equipped with piezoelectric circular patch has been considered with simply and clamped supports. A comprehensive modeling, parametrical study and the effect of the boundary conditions on the performance of the microgenerator have been investigated. The system is under variable pressure from an oscillating pressure source. Results are presented for PZT and PMN-PT piezoelectric materials with steel and aluminum substrates. An optimal value for the radius and thickness of the piezoelectric layer with a special support condition has been obtained.

  14. Seismic interpretation of circular geological structures

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, S.A. [Amerada Hess Ltd., London (United Kingdom)

    1999-08-01

    3D seismic data provide images of geological features which are approximately circular in plan view but whose shape and origin may be possible to constrain using 2D seismic data. As 3D seismic data become more commonly employed in hydrocarbon exploration, the number of demonstrably 'circular' structures will increase. At least ten different geological processes can result in seismically resolvable 'circular' structures in sedimentary basins. These include salt/shale diapirs, salt withdrawal basins, polygonal fault blocks, dissolution collapse hollows, breccia pipes, calderas, gas pockmarks, bioherms, sand volcanoes, pull-aparts, impact craters and tectonic folds. Geometrical and geological criteria for each are summarized to facilitate identification of such features should they be encountered in the course of a 3D seismic interpretation. Certain types of geological feature have distinctive properties, others are less straightforward to recognize on the basis of individual criteria. (Author)

  15. Envelopes of Cometary Orbits

    Directory of Open Access Journals (Sweden)

    Mijajlović, Ž.

    2008-12-01

    Full Text Available We discuss cometary orbits from the standpoint of Nonstandard (Leibnitz analysis, a relatively new branch of mathematics. In particular, we consider parabolic cometary paths. It appears that, in a sense, every parabola is an ellipse.

  16. Altimetry, Orbits and Tides

    Science.gov (United States)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  17. Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis

    CERN Document Server

    Xie, Ji-Wei; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, P; Fu, J N; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong

    2016-01-01

    The nearly circular (mean eccentricity ~0.06) and coplanar (mean mutual inclination ~3 deg) orbits of the Solar System planets motivated Kant and Laplace to put forth the hypothesis that planets are formed in disks, which has developed into the widely accepted theory of planet formation. Surprisingly, the first several hundred extrasolar planets (mostly Jovian) discovered using the Radial Velocity (RV) technique are commonly on eccentric orbits ( ~ 0.3). This raises a fundamental question: Are the Solar System and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the LAMOST observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), while the other half are multiple-t...

  18. Accelerated orbits in black hole fields: the static case

    CERN Document Server

    Bini, Donato; Geralico, Andrea

    2014-01-01

    We study non-geodesic orbits of test particles endowed with a structure, assuming the Schwarzschild spacetime as background. We develop a formalism which allows one to recognize the geometrical characterization of those orbits in terms of their Frenet-Serret parameters and apply it to explicit cases as those of spatially circular orbits which witness the equilibrium under conflicting types of interactions. In our general analysis we solve the equations of motion offering a detailed picture of the dynamics having in mind a check with a possible astronomical set up. We focus on certain ambiguities which plague the interpretation of the measurements preventing one from identifying the particular structure carried by the particle.

  19. Transfer of orbital angular momentum through sub-wavelength waveguides.

    Science.gov (United States)

    Wang, Yanqin; Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Luo, Xiangang

    2015-02-01

    Data capacity of optical communication is achieving its limit owing to the non-linear effect of optical fiber. As an effective alternative, light carrying orbital angular momentum can greatly increase the capacity for its unprecedented degree of freedom. We demonstrate the propagation of orbital angular momentum with topological charge of 1 and 2 in plasmonic circular waveguide with sub-wavelength diameter with little propagation loss of 2.73 dB/μm, which has never been observed in optical fibers with sub-wavelength diameter. We also confirm that lights carrying orbital angular momentum can be maintained in sharp bended sub-wavelength waveguide. This plasmonic waveguide may serve as a key component in on-chip systems involving OAM.

  20. Handbook of satellite orbits from Kepler to GPS

    CERN Document Server

    Capderou, Michel

    2014-01-01

    Fifty years after Sputnik, artificial satellites have become indispensable monitors in many areas, such as economics, meteorology, telecommunications, navigation and remote sensing. The specific orbits are important for the proper functioning of the satellites. This book discusses the great variety of satellite orbits, both in shape (circular to highly elliptical) and properties (geostationary, Sun-synchronous, etc.). This volume starts with an introduction into geodesy. This is followed by a presentation of the fundamental equations of mechanics to explain and demonstrate the properties for all types of orbits. Numerous examples are included, obtained through IXION software developed by the author. The book also includes an exposition of the historical background that is necessary to help the reader understand the main stages of scientific thought from Kepler to GPS. This book is intended for researchers, teachers and students working in the field of satellite technology. Engineers, geographers and all those...

  1. Partonic orbital angular momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  2. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  3. Rectangular-to-circular groove waveguide junction

    Institute of Scientific and Technical Information of China (English)

    CUI; Licheng; (崔立成); YANG; Hongsheng; (杨鸿生)

    2003-01-01

    Mode matching method is used to analyze the scattering characteristics of the rectangular-to-circular groove waveguide junction. Firstly, the scattering matrix equation is obtained by matching the electromagnetic fields at the boundary of the junction. The scattering coefficients can be obtained from the equation. Secondly the scattering characteristics of the iris with rectangular window positioned in circular groove waveguide are briefly analyzed. Thirdly, the convergent problem is discussed and the numerical results are given. At last experiment is made and good agreement is found between the calculated results and the measured results.

  4. Circularly polarized U-Slot antenna

    OpenAIRE

    Tong, K. F.; Wong, T P

    2007-01-01

    Circularly polarized single-layer U-slot microstrip patch antenna has been proposed. The suggested asymmetrical U-slot can generate the two orthogonal modes for circular polarization without chamfering any corner of the probe-fed square patch microstrip antenna. A parametric study has been carried out to investigate the effects caused by different arm lengths of the U-slot. The thickness of the foam substrate is about 8.5% of the wavelength at the operating frequency. The 3 dB axial ratio ban...

  5. Broadband Suspended Microstrip Antenna For Circular Polarization

    OpenAIRE

    Kasabegoudar, VG; Vinoy, KJ

    2009-01-01

    In this paper we propose a circularly polarized (CP) microstrip antenna on a suspended substrate with a coplanar capacitive feed and a slot within the rectangular patch. The antenna has an axial ratio bandwidth (< 3 dB) of 7.1%. The proposed antenna exhibits a much higher impedance bandwidth of about 49% (S11 < -10 dB) and also yields return loss better than -15 dB in the useful range of circular polarization. Measured characteristics of the antenna are in good agreement with the simulated re...

  6. Circular economy in China and recommendations

    Institute of Scientific and Technical Information of China (English)

    Zhou Hongchun

    2006-01-01

    @@ It is an overall, urgent and long-term strategic task for China to vigorously develop the circular economy and build a resource-saving and environmental-friendly society. China is now at the accelerating stage of industrialization and urbanization.Lower per-capita resource amount and tendency of environmental deterioration has not been fundamentally averted. Therefore a circular economy development is an inevitable choice to realize the goal of building a well-off society, ensure sustainable development of national economy, and coordinate the relationship between mankind and nature.

  7. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  8. Charging El Niño with off-equatorial westerly wind events

    Science.gov (United States)

    McGregor, Shayne; Timmermann, Axel; Jin, Fei-Fei; Kessler, William S.

    2016-08-01

    The buildup of the warm water in the equatorial Pacific prior to an El Niño event is considered a necessary precondition for event development, while the event initiation is thought to be triggered by bursts of westerly wind. However, in contrast to the view that warm water slowly builds up years before an El Niño event, the volume of warm water in the equatorial Pacific doubled in the first few months of 2014 reaching values that were consistent with the warm water buildup prior to the extreme 1997/1998 El Niño. It is notable that this dramatic warm water buildup coincided with a series of westerly wind bursts in the western tropical Pacific. This study uses linear wave theory to determine the effect of equatorial and off-equatorial westerly wind events on the Warm Water Volume (WWV) of the Pacific. It is found that westerly wind events have a significant impact on equatorial WWV with all events initially acting to increase WWV, which highlights why WWEs are so effective at exciting ENSO. In fact, our results suggest that the single westerly wind burst, which peaked in the first few days of March in 2014, was largely responsible for the coincident dramatic observed increase in WWV. How long the equatorial region remains charged, however, depends on the latitude of the westerly wind event. For instance, a single equatorially symmetric westerly wind event ultimately acts to discharge WWV via the reflection of upwelling Rossby waves, which makes it difficult to more gradually build WWV given multiple WWEs. In contrast, when the wind events occur off the equator, the subsequent discharge is significantly damped and in some cases the equatorial region can hold the heat charge for the duration of the simulations (~6 months). As such, off-equatorial WWEs can not only charge equatorial region WWV in the short term, but are also a mechanism to more gradually build equatorial region WWV in the longer term. Given that these off-equatorial WWEs have a relatively small

  9. The Bohr Correspondence Principle: Kepler Orbits of the Electron in a Hydrogen Atom

    Indian Academy of Sciences (India)

    2016-06-01

    We consider the quantum-mechanical non-relativistichydrogen atom. We show that for boundstates with size much larger than the Bohr radius,one can construct a wave packet that is localizedin space corresponding to a classical particlemoving in a circular orbit.

  10. NPCirc: An R Package for Nonparametric Circular Methods

    Directory of Open Access Journals (Sweden)

    María Oliveira

    2014-11-01

    Full Text Available Nonparametric density and regression estimation methods for circular data are included in the R package NPCirc. Specifically, a circular kernel density estimation procedure is provided, jointly with different alternatives for choosing the smoothing parameter. In the regression setting, nonparametric estimation for circular-linear, circular-circular and linear-circular data is also possible via the adaptation of the classical Nadaraya-Watson and local linear estimators. In order to assess the significance of the features observed in the smooth curves, both for density and regression with a circular covariate and a linear response, a SiZer technique is developed for circular data, namely CircSiZer. Some data examples are also included in the package, jointly with a routine that allows generating mixtures of different circular distributions.

  11. Study of lunar gravity assist orbits in the restricted four-body problem

    Science.gov (United States)

    Qi, Yi; Xu, Shijie

    2016-07-01

    In this paper, the lunar gravity assist (LGA) orbits starting from the Earth are investigated in the Sun-Earth-Moon-spacecraft restricted four-body problem (RFBP). First of all, the sphere of influence of the Earth-Moon system (SOIEM) is derived. Numerical calculation displays that inside the SOIEM, the effect of the Sun on the LGA orbits is quite small, but outside the SOIEM, the Sun perturbation can remarkably influence the trend of the LGA orbit. To analyze the effect of the Sun, the RFBP outside the SOIEM is approximately replaced by a planar circular restricted three-body problem, where, in the latter case, the Sun and the Earth-Moon barycenter act as primaries. The stable manifolds associated with the libration point orbit and their Poincaré sections on the SOIEM are applied to investigating the LGA orbit. According to our research, the patched LGA orbits on the Poincaré sections can efficiently distinguish the transit LGA orbits from the non-transit LGA orbits under the RFBP. The former orbits can pass through the region around libration point away from the SOIEM, but the latter orbits will bounce back to the SOIEM. Besides, the stable transit probability is defined and analyzed. According to the variant requirement of the space mission, the results obtained can help us select the LGA orbit and the launch window.

  12. A New Kind of Shift Operators for Infinite Circular and Spherical Wells

    Directory of Open Access Journals (Sweden)

    Guo-Hua Sun

    2014-01-01

    Full Text Available A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2 symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r and ψ(l ± 1(m±1(r.

  13. Helicity sensitive enhancement of strong-field ionization in circularly polarized laser fields.

    Science.gov (United States)

    Zhu, Xiaosong; Lan, Pengfei; Liu, Kunlong; Li, Yang; Liu, Xi; Zhang, Qingbin; Barth, Ingo; Lu, Peixiang

    2016-02-22

    We investigate the strong-field ionization from p± orbitals driven by circularly polarized laser fields by solving the two-dimensional time-dependent Schrödinger equation in polar coordinates with the Lagrange mesh technique. Enhancement of ionization is found in the deep multiphoton ionization regime when the helicity of the laser field is opposite to that of the p electron, while this enhancement is suppressed when the helicities are the same. It is found that the enhancement of ionization is attributed to the multiphoton resonant excitation. The helicity sensitivity of the resonant enhancement is related to the different excitation-ionization channels in left and right circularly polarized laser fields. PMID:26907068

  14. Day-to-day variability of Equatorial Ionization Anomaly over the Indian and Brazilian sectors - the role of Equatorial Electrojet

    Science.gov (United States)

    Kavutarapu, Venkatesh; Gende, Mauricio; Fagundes, Paulo Roberto; De Jesus, Rodolfo; Denardini, Clezio Marcos; De Abreu, Alessandro

    2016-07-01

    The equatorial electrojet (EEJ) is a narrow band of current flowing eastward at the ionospheric E-region altitudes along the dayside dip equator. Mutually perpendicular electric and magnetic fields over the equator results in the formation of Equatorial Ionization Anomaly (EIA) which in turn generates large electron density variabilities. Simultaneous study on the characteristics of EEJ and EIA is necessary to understand the role of EEJ on the EIA variabilities. Present study reports simultaneous variations of EEJ and GPS-TEC over Indian and Brazilian sectors to understand the role of EEJ on the day-to-day characteristics of the EIA. Magnetometer measurements during the low solar activity year 2004 are used to derive the EEJ values over the two different sectors. The characteristics of EIA are studied using two different chains of GPS receivers along the common meridian of 770E (India) and 450W (Brazil). The diurnal, seasonal and day-to-day variations of EEJ and TEC are described simultaneously. Variations of EIA during different seasons are presented along with the variations of the EEJ in the two hemispheres. The role of EEJ variations on the characteristic features of the EIA such as the strength and temporal extent of the EIA crest etc., have also been reported. Further, the time delay between the occurrences of the day maximum EEJ and the well-developed EIA are studied and corresponding results are presented in this paper. Further, the results from a study on the noon time bite-outs at the anomaly crest locations with their absence over the equator in the Indian and Brazilian sector are also discussed in this paper.

  15. Equatorial Energy Accumulation and Emanation Regions: Impacts of a Zonally Varying Basic State.

    Science.gov (United States)

    Webster, Peter J.; Chang, Hai-Ru

    1988-03-01

    Previous studies have suggested that the regions of mean anomalous perturbation kinetic energy which exist in the vicinity of the equatorial upper-tropospheric westerlies are the result of the propagation of extratropical synoptic and low frequency waves through the equatorial `westerly duet' where a subsequent wave energy convergence occurs. The proposition that these perturbed equatorial regions may arise from remote equatorial energy sources is investigated. It is shown that three criteria must be met. The first two, the existence of wave energy sources along the equator and a mechanism to transport that energy longitudinally, are accounted for relatively easily with existing theory of divergent, trapped equatorial modes. The third criterion, the requirement of a mechanism for an accumulation of transient energy in the equatorial stretch flow (i.e., nonzero x), is not immediately obvious and requires exploration to develop new concepts.Using simple WKBJ arguments it is shown that within a realistic parameter range, a combination of longitudinal stretch in the basic state along the equator and the characteristics of the equatorial trapped waves satisfy the third criterion. The equatorial waves must possess a divergent structure which insists on equatorial trapping. It is shown that purely barotropic modes, which cannot be equatorially trapped, do not represent the real atmospheric structure at low latitudes. Regions of negative longitudinal stretch along the equator (i.e., westerlies decreasing, or easterlies increasing, towards the cast) are shown to be wave energy accumulation regions. Regions with positive stretch, on the other hand, are wave energy depletion regions. A free-surface barotropic model with fully nonlinear basic states, containing both stretch and shear, confirm the results of the simpler model, i.e., regardless of the position of the energy source within the tropical atmosphere the wave energy accumulates in the same region; namely, on the

  16. A multi-model approach to the Atlantic Equatorial mode: impact on the West African monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Losada, T.; Rodriguez-Fonseca, B. [Universidad Complutense de Madrid, Madrid (Spain); Janicot, S.; Gervois, S. [LOCEAN/IPSL, CNRS, Universite Pierre et Marie Curie, Paris (France); Chauvin, F. [GAME/CNRM, Meteo-France/CNRS, Toulouse (France); Ruti, P. [Progetto Speciale Clima Globale, Ente Nazionale per le NuoveTecnologie, Rome (Italy)

    2010-07-15

    This paper is focused on the West African anomalous precipitation response to an Atlantic Equatorial mode whose origin, development and damping resembles the observed one during the last decades of the XXth century. In the framework of the AMMA-EU project, this paper analyses the atmospheric response to the Equatorial mode using a multimodel approach with an ensemble of integrations from 4 AGCMs under a time varying Equatorial SST mode. The Guinean Gulf precipitation, which together with the Sahelian mode accounts for most of the summer West African rainfall variability, is highly coupled to this Equatorial Atlantic SST mode or Atlantic Nino. In a previous study, done with the same models under 1958-1997 observed prescribed SSTs, most of the models identify the Equatorial Atlantic SST mode as the one most related to the Guinean Gulf precipitation. The models response to the positive phase of equatorial Atlantic mode (warm SSTs) depicts a direct impact in the equatorial Atlantic, leading to a decrease of the local surface temperature gradient, weakening the West African Monsoon flow and the surface convergence over the Sahel. (orig.)

  17. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.

    Science.gov (United States)

    Winckler, Gisela; Anderson, Robert F; Jaccard, Samuel L; Marcantonio, Franco

    2016-05-31

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity. PMID:27185933

  18. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    Science.gov (United States)

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-05-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.

  19. Self-organization in circular shear layers

    DEFF Research Database (Denmark)

    Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter;

    1996-01-01

    Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...

  20. 77 FR 52116 - Title VI; Final Circular

    Science.gov (United States)

    2012-08-28

    ... Address Environmental Justice in Minority Populations and Low-Income Populations,'' 77 FR 27534, May 10... complying with Title VI of the Civil Rights Act of 1964. The purpose of this Circular is to provide... Ontiveros, Office of Civil Rights, Federal Transit Administration, 1200 New Jersey Ave. SE., Room...