Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels
2014-10-17
For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem. PMID:25361245
Tether radiation in Juno-type and circular-equatorial Jovian orbits
Sánchez-Torres, Antonio; Sanmartín Losada, Juan Ramón
2011-01-01
Wave radiation by a conductor carrying a steady current in both a polar, highly eccentric, low perijove orbit, as in NASA's planned Juno mission, and an equatorial low Jovian orbit (LJO) mission below the intense radiation belts, is considered. Both missions will need electric power generation for scientific instruments and communication systems. Tethers generate power more efficiently than solar panels or radioisotope power systems (RPS). The radiation impedance is required to determin...
Ori, A; Ori, Amos; Thorne, Kip S.
2000-01-01
There are three regimes of gravitational-radiation-reaction-induced inspiralfor a compact body with mass mu, in a circular, equatorial orbit around a Kerrblack hole with mass M>>mu: (i) The "adiabatic inspiral regime", in which thebody gradually descends through a sequence of circular, geodesic orbits. (ii) A"transition regime", near the innermost stable circular orbit (isco). (iii) The"plunge regime", in which the body travels on a geodesic from slightly belowthe isco into the hole's horizon. This paper gives an analytic treatment of thetransition regime and shows that, with some luck, gravitational waves from thetransition might be measurable by the space-based LISA mission.
Energy Technology Data Exchange (ETDEWEB)
Ramos-Caro, Javier; Letelier, Patricio S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Pedraza, Juan F. [University of Texas at Austin, TX (United States)
2011-07-01
Full text: We study the motion of test particles around a center of attraction represented by a monopole (with and without spheroidal deformation) surrounded by a ring, given as a superposition of Morgan and Morgan discs. We deal with two kinds of bounded orbits: (i) Equatorial circular orbits and (ii) general three-dimensional orbits. The first case provides a method to perform a linear stability analysis of these structures by studying the behavior of vertical and epicyclical frequencies as functions of the mass ratio, the size of the ring and/or the quadrupolar deformation. In the second case, we study the influence of these parameters in the regularity or chaoticity of motion. We find that there is a close connection between linear stability (or un- stability) of structures and regularity (or chaoticity) of the three-dimensional motion. This result suggests, in a very first approximation, an explanation for the stability of some known structures of the solar system which can be described as a monopole plus a ring with axial symmetry. (author)
Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro
2015-01-01
We present a new computation of the asymptotic gravitational wave energy fluxes emitted by a {\\it spinning} particle in circular equatorial orbits about a Kerr black hole. The particle dynamics is computed in the pole-dipole approximation, solving the Mathisson-Papapetrou equations with the Tulczyjew spin-supplementary-condition. The fluxes are computed, for the first time, by solving the 2+1 Teukolsky equation in the time-domain using hyperboloidal and horizon-penetrating coordinates. Denoting by $M$ the black hole mass and by $\\mu$ the particle mass, we cover dimensionless background spins $a/M=(0,\\pm0.9)$ and dimensionless particle spins $-0.9\\leq S/\\mu^2 \\leq +0.9$. Our results span orbits of Boyer-Lindquist coordinate radii $4\\leq r/M \\leq 30$; notably, we investigate the strong-field regime, in some cases even beyond the last-stable-orbit. We confirm, numerically, the Tanaka {\\it et al.} [Phys.\\ Rev.\\ D 54, 3762] 2.5th order accurate Post-Newtonian (PN) predictions for the gravitational wave fluxes of a...
Finn, L S; Finn, Lee Samuel; Thorne, Kip S.
2000-01-01
Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco)---more particularly, on orbits for which the angular velocity Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the Teukolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for representative values of the hole's mass M and spin a and the inspiraling object's mass \\mu, ...
International Nuclear Information System (INIS)
Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco) -- more particularly, on orbits for which the angular velocity Ω is 0.03∼isco≤1.0. The computations are based on the Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representative values of the hole's mass M and spin a and the inspiraling object's mass μ, with the distance to Earth chosen to be ro=1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and μ. Graphs are presented showing the range of the {M,a,μ} parameter space, for which S/N>10 at r0=1 Gpc during the last year of inspiral. The hole's spin a has a factor of ∼10 influence on the range of M (at fixed μ) for which S/N>10, and the presence or absence of a white-dwarf--binary background has a factor of ∼3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed waves
Energy Technology Data Exchange (ETDEWEB)
Finn, Lee Samuel; Thorne, Kip S.
2000-12-15
Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco) -- more particularly, on orbits for which the angular velocity {Omega} is 0.03{approx}<{Omega}/{Omega}{sub isco}{<=}1.0. The computations are based on the Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representative values of the hole's mass M and spin a and the inspiraling object's mass {mu}, with the distance to Earth chosen to be r{sub o}=1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and {mu}. Graphs are presented showing the range of the {l_brace}M,a,{mu}{r_brace} parameter space, for which S/N>10 at r{sub 0}=1 Gpc during the last year of inspiral. The hole's spin a has a factor of {approx}10 influence on the range of M (at fixed {mu}) for which S/N>10, and the presence or absence of a white-dwarf--binary background has a factor of {approx}3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed waves.
The effect of J{sub 2} on equatorial and halo orbits around a magnetic planet
Energy Technology Data Exchange (ETDEWEB)
Inarrea, Manuel [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Lanchares, Victor [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain)], E-mail: vlancha@unirioja.es; Palacian, Jesus F. [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain); Pascual, Ana I. [Dpto. de Matematicas y Computacion, CIEMUR: Centro de Investigacion en Informatica, Estadistica y Matematicas, Universidad de la Rioja, 26004 Logrono (Spain); Pablo Salas, J. [Universidad de la Rioja, Area de Fisica, 26006 Logrono (Spain); Yanguas, Patricia [Universidad Publica de Navarra, Departamento de Ingenieria Matematica e Informatica, 31006 Pamplona (Spain)
2009-10-15
We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.
The effect of J2 on equatorial and halo orbits around a magnetic planet
International Nuclear Information System (INIS)
We calculate equatorial and halo orbits around a non-spherical (both oblate and prolate) magnetic planet. It is known that circular equatorial and halo orbits exist for a dust grain orbiting a spherical magnetic planet. However, the frequency of the orbit is constrained by the charge-mass ratio of the particle. If the non-sphericity of the planet is taken into account this constraint is modified or, in some cases, it disappears.
Fourier Series Approximations to J2-Bounded Equatorial Orbits
Directory of Open Access Journals (Sweden)
Wei Wang
2014-01-01
Full Text Available The current paper offers a comprehensive dynamical analysis and Fourier series approximations of J2-bounded equatorial orbits. The initial conditions of heterogeneous families of J2-perturbed equatorial orbits are determined first. Then the characteristics of two types of J2-bounded orbits, namely, pseudo-elliptic orbit and critical circular orbit, are studied. Due to the ambiguity of the closed-form solutions which comprise the elliptic integrals and Jacobian elliptic functions, showing little physical insight into the problem, a new scheme, termed Fourier series expansion, is adopted for approximation herein. Based on least-squares fitting to the coefficients, the solutions are expressed with arbitrary high-order Fourier series, since the radius and the flight time vary periodically as a function of the polar angle. As a consequence, the solutions can be written in terms of elementary functions such as cosines, rather than complex mathematical functions. Simulations enhance the proposed approximation method, showing bounded and negligible deviations. The approximation results show a promising prospect in preliminary orbits design, determination, and transfers for low-altitude spacecrafts.
The Marginally Stable Circular Orbit of the Fluid Disk around a Black Hole
Qian, Lei; Wu, Xue-Bing; Li, Li-Xin
2016-01-01
The inner boundary of a black hole accretion disk is often set to the marginally stable circular orbit (or the innermost stable circular orbit, ISCO) around the black hole. It is important for the theories of black hole accretion disks and their applications to astrophysical black hole systems. Traditionally, the marginally stable circular orbit is obtained by considering the equatorial motion of a test particle around a black hole. However, in reality the accretion flow around black holes co...
Transition from inspiral to plunge for eccentric equatorial Kerr orbits
O'Shaughnessy, R
2003-01-01
Ori and Thorne have discussed the duration and observability (with LISA) of the transition from circular, equatorial inspiral to plunge for stellar-mass objects into supermassive ($10^{5}-10^{8}M_{\\odot}$) Kerr black holes. We extend their computation to eccentric Kerr equatorial orbits. Even with orbital parameters near-exactly determined, we find that there is no universal length for the transition; rather, the length of the transition depends sensitively -- essentially randomly -- on initial conditions. Still, Ori and Thorne's zero-eccentricity results are essentially an upper bound on the length of eccentric transitions involving similar bodies (e.g., $a$ fixed). Hence the implications for observations are no better: if the massive body is $M=10^{6}M_{\\odot}$, the captured body has mass $m$, and the process occurs at distance $d$ from LISA, then $S/N \\lesssim (m/10 M_{\\odot})(1\\text{Gpc}/d)\\times O(1)$, with the precise constant depending on the black hole spin. For low-mass bodies ($m \\lesssim 7 M_\\odot$...
Equatorial Circular Geodesics in the Hartle-Thorne Spacetime
Bini, Donato; Ruffini, Remo; Siutsou, Ivan
2013-01-01
We investigate the influence of the quadrupole moment of a rotating source on the motion of a test particle in the strong field regime. For this purpose the Hartle-Thorne metric, that is an approximate solution of vacuum Einstein field equations that describes the exterior of any slowly rotating, stationary and axially symmetric body, is used. The metric is given with accuracy up to the second order terms in the body's angular momentum, and first order terms in its quadrupole moment. We give, with the same accuracy, analytic equations for equatorial circular geodesics in the Hartle-Thorne spacetime and integrate them numerically.
Velandia, Nelson
2016-01-01
This paper formulates, via the Mathisson - Papapetrou - Dixon equations, the system of equations for a test particle with spin when it is orbiting a weak Kerr metric. We shall restrict ourselves to the case of circular orbits with the purpose of comparing our results with the results of the literature. In particular, we solve the set of equations of motion for the case of circular trajectories both spinless and spinning test particles around rotating bodies in equatorial plane. The results obtained are an important guideline for the study of the effects of the particles with spin in rotating gravitational fields such as Gravitomagnetics Effects or gravitational waves.
Tursunov, Arman; Kološ, Martin
2016-01-01
We study motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasi-circular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyse the circular orbits using the so called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum and specific energy of the circular orbits in dependence on the black hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with outward oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged parti...
Circular orbits on a warped spandex fabric
Middleton, Chad A
2013-01-01
We present a theoretical and experimental analysis of circular-like orbits made by a marble rolling on a warped spandex fabric. We show that the mass of the fabric interior to the orbital path influences the motion of the marble in a nontrivial way, and can even dominate the orbital characteristics. We also compare a Kepler-like expression for such orbits to similar expressions for orbits about a spherically-symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.
Tursunov, Arman; Stuchlík, Zdeněk; Kološ, Martin
2016-04-01
We study the motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with an outward-oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ, frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr˜ωθ≫ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We demonstrate that for the rapidly rotating black holes the role of the "Wald induced charge" can be relevant.
The ergoregion in the Kerr spacetime: properties of the equatorial circular motion
Energy Technology Data Exchange (ETDEWEB)
Pugliese, D. [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic); Queen Mary University of London, School of Mathematical Sciences, London (United Kingdom); Quevedo, H. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, AP 70543, Mexico, DF (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Roma (Italy)
2015-05-15
We investigate in detail the circular motion of test particles in the equatorial plane of the ergoregion in the Kerr spacetime. We consider all the regions where circular motion is allowed, and we analyze the stability properties and the energy and angular momentum of the test particles. We show that the structure of the stability regions has definite features that make it possible to distinguish between black holes and naked singularities. The naked singularity case presents a very structured non-connected set of regions of orbital stability, where the presence of counterrotating particles and zero angular momentum particles for a specific class of naked singularities is interpreted as due to the presence of a repulsive field generated by the central source of gravity. In particular, we analyze the effects of the dynamical structure of the ergoregion (the union of the orbital regions for different attractor spins) on the behavior of accretion disks around the central source. The properties of the circular motion turn out to be so distinctive that they allow for the introduction of a complete classification of Kerr spacetimes, each class of which is characterized by different physical effects that could be of especial relevance in observational astrophysics. We also identify some special black-hole spacetimes where these effects could be relevant. (orig.)
Circular orbits in the extreme Reissner-Nordstr{\\o}m dihole metric
Wünsch, Andreas; Weiskopf, Daniel; Wunner, Günter; 10.1103/PhysRevD.87.024007
2013-01-01
We study the motion of neutral test particles in the gravitational field of two charged black holes described by the extreme Reissner-Nordstr{\\o}m dihole metric where the masses and charges of the black holes are chosen such that the gravitational attraction is compensated by the electrostatic repulsion. We investigate circular orbits in the equatorial plane between the two black holes with equal masses as well as the case of circular orbits outside this symmetry plane. We show that the first case reduces to an effective two-body problem with a behavior similar to a system described by the Reissner-Nordstr{\\o}m spacetime. The main focus is directed to the second case with circular orbits outside the equatorial plane.
Nonradial stability of marginal stable circular orbits in stationary axisymmetric spacetimes
Ono, Toshiaki; Asada, Hideki
2016-01-01
We study linear nonradial perturbations and stability of a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a test particle in stationary axisymmetric spacetimes which possess a reflection symmetry with respect to the equatorial plane. The proposed approach is applied to Kerr solution and Majumdar-Papapetrou solution to Einstein equation. Finally, we reexamine MSCOs for a modified metric of a rapidly spinning black hole that has been recently proposed by Johannsen and Psaltis [PRD, 83, 124015 (2011)]. We show that, for the Johannsen and Psaltis's model, circular orbits that are stable against radial perturbations for some parameter region become unstable against vertical perturbations. This suggests that the last circular orbit for this model may be larger than the ISCO.
Tsupko, O. Yu.; Bisnovatyi-Kogan, G S; Jefremov, P. I.
2016-01-01
The motion of classical spinning test particles in the equatorial plane of a Kerr black hole is considered for the case where the particle spin is perpendicular to the equatorial plane. We review some results of our recent research of the innermost stable circular orbits (ISCO) [P.I. Jefremov, O.Yu. Tsupko and G.S. Bisnovatyi-Kogan, Phys.Rev. D 91 124030 (2015)] and present some new calculations. The ISCO radius, total angular momentum, energy, and orbital angular frequency are considered. We...
The Marginally Stable Circular Orbit of the Fluid Disk around a Black Hole
Qian, Lei; Li, Li-Xin
2016-01-01
The inner boundary of a black hole accretion disk is often set to the marginally stable circular orbit (or the innermost stable circular orbit, ISCO) around the black hole. It is important for the theories of black hole accretion disks and their applications to astrophysical black hole systems. Traditionally, the marginally stable circular orbit is obtained by considering the equatorial motion of a test particle around a black hole. However, in reality the accretion flow around black holes consists of fluid, in which the pressure often plays an important role. Here we consider the influence of fluid pressure on the location of marginally stable circular orbit around black holes. It is found that when the temperature of the fluid is so low that the thermal energy of a particle is much smaller than its rest energy, the location of marginally stable circular orbit is almost the same as that in the test particle case. However, we demonstrate that in some special cases the marginally stable circular orbit can be d...
An analysis of near-circular lunar mapping orbits
Indian Academy of Sciences (India)
R V Ramanan; V Adimurthy
2005-12-01
Numerical investigations have been carried out to analyse the evolution of lunar circular orbits and the inﬂuence of the higher order harmonics of the lunar gravity ﬁeld.The aim is to select the appropriate near-circular orbit characteristics,which extend orbit life through passive orbit maintenance.The spherical harmonic terms that make major contributions to the orbital behaviour are identiﬁed through many case studies.It is found that for low circular orbits,the 7th and the 9th zonal harmonics have predominant effect in the case of orbits for which the evolution is stable and the life is longer,and also in the case of orbits for which the evolution is unstable and a crash takes place in a short duration.By analysing the contribution of the harmonic terms to the orbit behaviour,the appropriate near-circular orbit characteristics are identiﬁed.
Modeling a circular equatorial test-particle in a Kerr spacetime
Carré, Jérôme
2012-01-01
Extreme Mass Ratio Inspirals (EMRIs) are one of the main gravitational wave (GW) sources for a future space detector, such as eLISA/NGO, and third generation ground-based detectors, like the Einstein Telescope. These systems present an interest both in astrophysics and fundamental physics. In order to make a high precision determination of their physical parameters, we need very accurate theoretical waveform models or templates. In the case of a circular equatorial orbit, the key stumbling block to the creation of these templates is the flux function of the GW. This function can be modeled either via very expensive numerical simulations, which then make the templates unusable for GW astronomy, or via some analytic approximation method such as a post-Newtonian approximation. This approximation is known to be asymptotically divergent and is only known up to 5.5PN order for the Schwarzschild case and to 4PN order for the Kerr case. A way to improve the convergence of the flux is to use re-summation methods. In t...
Circular orbits in extremal Reissner-Nordstrom spacetime
Energy Technology Data Exchange (ETDEWEB)
Pradhan, Parthapratim, E-mail: pppradhan77@gmail.co [Department of Physics, Vivekananda Satabarshiki Mahavidyalaya, Manikpara, Paschim Medinipur, WestBengal 721513 (India); Majumdar, Parthasarathi, E-mail: parthasarathi.majumdar@saha.ac.i [Saha Institute of Nuclear Physics, Kolkata 700 064 (India)
2011-01-17
Circular null geodesic orbits, in extremal Reissner-Nordstrom spacetime, are examined with regard to their stability, and compared with similar orbits in the near-extremal situation. Extremization of the effective potential for null circular orbits shows the existence of a stable circular geodesic in the extremal spacetime, precisely on the event horizon which coincides with the null geodesic generator. Such a null orbit on the horizon is also indicated by the global minimum of the effective potential for circular timelike orbits. This type of geodesic is of course absent in the corresponding near-extremal spacetime, as we show here, testifying to differences between the extremal limit of a generic RN spacetime and the exactly extremal geometry.
Possible potentials responsible for stable circular relativistic orbits
Kumar, Prashant; Bhattacharya, Kaushik
2011-01-01
Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In the present article an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic systems. The stability criterion for potentials which can produce stable, circular orbits in the relativistic central force problem has been deduc...
Analysis of optimal and near-optimal continuous-thrust transfer problems in general circular orbit
Kéchichian, Jean A.
2009-09-01
A pair of practical problems in optimal continuous-thrust transfer in general circular orbit is analyzed within the context of analytic averaging for rapid computations leading to near-optimal solutions. The first problem addresses the minimum-time transfer between inclined circular orbits by proposing an analytic solution based on a split-sequence strategy in which the equatorial inclination and node controls are done separately by optimally selecting the intermediate orbit size at the sequence switch point that results in the minimum-time transfer. The consideration of the equatorial inclination and node state variables besides the orbital velocity variable is needed to further account for the important J2 perturbation that precesses the orbit plane during the transfer, unlike the thrust-only case in which it is sufficient to consider the relative inclination and velocity variables thus reducing the dimensionality of the system equations. Further extensions of the split-sequence strategy with analytic J2 effect are thus possible for equal computational ease. The second problem addresses the maximization of the equatorial inclination in fixed time by adopting a particular thrust-averaging scheme that controls only the inclination and velocity variables, leaving the node at the mercy of the J2 precession, providing robust fast-converging codes that lead to efficient near-optimal solutions. Example transfers for both sets of problems are solved showing near-optimal features as far as transfer time is concerned, by directly comparing the solutions to "exact" purely numerical counterparts that rely on precision integration of the raw unaveraged system dynamics with continuously varying thrust vector orientation in three-dimensional space.
Near-horizon circular orbits and extremal limit for dirty rotating black holes
Zaslavskii, O. B.
2015-08-01
We consider generic rotating axially symmetric "dirty" (surrounded by matter) black holes. Near-horizon circular equatorial orbits are examined in two different cases of near-extremal (small surface gravity κ ) and exactly extremal black holes. This has a number of qualitative distinctions. In the first case, it is shown that such orbits can lie as close to the horizon as one wishes on suitably chosen slices of space-time when κ →0 . This generalizes the observation of T. Jacobson [Classical Quantum Gravity 28, 187001 (2011), 10.1088/0264-9381/28/18/187001] made for the Kerr metric. If a black hole is extremal (κ =0 ), circular on-horizon orbits are impossible for massive particles but, in general, are possible in its vicinity. The corresponding black hole parameters determine also the rate with which a fine-tuned particle on the noncircular near-horizon orbit asymptotically approaches the horizon. Properties of orbits under discussion are also related to the Bañados-Silk-West effect of high energy collisions near black holes. Impossibility of the on-horizon orbits in question is manifestation of kinematic censorship that forbids infinite energies in collisions.
Spin-orbit coupling for quasi-circular coorbital bodies
Correia, Alexandre C M
2013-01-01
Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies $n\\pm k\
Possible potentials responsible for stable circular relativistic orbits
Energy Technology Data Exchange (ETDEWEB)
Kumar, Prashant; Bhattacharya, Kaushik, E-mail: kprash@iitk.ac.in, E-mail: kaushikb@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)
2011-07-15
Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In this paper an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic systems. The stability criterion for potentials which can produce stable, circular orbits in the relativistic central force problem has been deduced and a general solution of it is presented. It is seen that the inverse square law passes the relativistic test but the kind of force required for simple harmonic motion does not. Special relativistic effects do not allow stable, circular orbits in the presence of a force which is proportional to the negative of the displacement of the particle from the potential centre.
Near-horizon circular orbits and extremal limit for dirty rotating black holes
Zaslavskii, O B
2015-01-01
We consider generic rotating axially symmetric "dirty" (surrounded by matter) black holes. Near-horizon circular equatorial orbits are examined in two different cases of near-extremal (small surface gravity $\\kappa $) and exactly extremal black holes. This has a number of qualitative distinctions. In the first case, it is shown that such orbits can lie as close to the horizon as one wishes on suitably chosen slices of space-time when $\\kappa \\rightarrow 0$. This generalizes observation of T.\\ Jacobson Class. Quantum Grav. 28 187001 (2011) made for the Kerr metric. If a black hole is extremal ($\\kappa =0$), circular on-horizon orbits are impossible for massive particles but, in general, are possible in its vicinity. The corresponding black hole parameters determine also the rate with which a fine-tuned particle on the noncircular near-horizon orbit asymptotically approaches the horizon. Properties of orbits under discussion are also related to the Ba% \\~{n}ados-Silk-West effect of high energy collisions near b...
Kikuchi, A; Ida, S
2014-01-01
Recently, gas giant planets in nearly circular orbits with large semimajor axes ($a \\sim$ 30--1000AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on core accretion model: i) Icy cores accrete from planetesimals at $\\lesssim$ 30AU, ii) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and iii) their orbits are circularized through accretion of disk gas in outer regions, where they spend most of time. We analytically derived equations to describe the orbital circularization through the gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 during the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by $\\sim$ 10--300, the orbits are sufficiently circularized. On the other hand, $a$ is reduced at most only by a factor of 2, leaving the planets in outer regions. If the relativ...
Binary black hole circular orbits computed with COCAL
Tsokaros, Antonios
2012-01-01
In this work we present our first results of binary black hole circular orbits using {\\sc cocal}, the Compact Object CALculator. Using the 3+1 decomposition five equations are being solved under the assumptions of conformal flatness and maximal slicing. Excision is used and the appropriate apparent horizon boundary conditions are applied. The orbital velocity is determined by imposing a Schwarzschild behaviour at infinity. A sequence of equal mass black holes is obtained and its main physical characteristics are calculated.
Tsupko, O Yu; Jefremov, P I
2016-01-01
The motion of classical spinning test particles in the equatorial plane of a Kerr black hole is considered for the case where the particle spin is perpendicular to the equatorial plane. We review some results of our recent research of the innermost stable circular orbits (ISCO) [P.I. Jefremov, O.Yu. Tsupko and G.S. Bisnovatyi-Kogan, Phys.Rev. D 91 124030 (2015)] and present some new calculations. The ISCO radius, total angular momentum, energy, and orbital angular frequency are considered. We calculate the ISCO parameters numerically for different values of the Kerr parameter $a$ and investigate their dependence on both black hole and test particle spins. Then we describe in details how to calculate analytically small-spin corrections to the ISCO parameters for an arbitrary values of $a$. The cases of Schwarzschild, slowly rotating Kerr and extreme Kerr black hole are considered. The use of the orbital angular momentum is discussed. We also consider the ISCO binding energy. It is shown that the efficiency of ...
Detecting Chiral Orbital Angular Momentum by Circular Dichroism ARPES
Park, Jin-Hong; Kim, Choong H.; Rhim, Jun Won; Han, Jung Hoon
2011-01-01
We show, by way of tight-binding and first-principles calculations, that a one-to-one correspondence between electron's crystal momentum k and non-zero orbital angular momentum (OAM) is a generic feature of surface bands. The OAM forms a chiral structure in momentum space much as its spin counterpart in Rashba model does, as a consequence of the inherent inversion symmetry breaking at the surface but not of spin-orbit interaction. Circular dichroism (CD) angle-resolved photoemission (ARPES) e...
Forced circular seam welding of tubes automated with orbital heads
Energy Technology Data Exchange (ETDEWEB)
Boullion, R.; Weskott, D.
1984-06-01
The MG process with pulse width modulated current and cold wire filler is suitable mainly for the production of high-quality welded joints. Three orbital welding heads adapted to requirements of the nuclear power station constructor have been designed for the mechanized forced circular seam welding of tubes. They differ in respect of their scope, in the structural height and in the number of the motor - controllable functions and the maximal values of the parameters defined by the functions.
Forced circular seam welding of tubes automated with orbital heads
International Nuclear Information System (INIS)
The MG process with pulse width modulated current and cold wire filler is suitable mainly for the production of high-quality welded joints. Three orbital welding heads adapted to requirements of the nuclear power station constructor have been designed for the mechanized forced circular seam welding of tubes. They differ in respect of their scope, in the structural height and in the number of the motor - controllable functions and the maximal values of the parameters defined by the functions. (orig.)
Gyroscope precession along bound equatorial plane orbits around a Kerr black hole
Bini, Donato; Jantzen, Robert T
2016-01-01
The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed and the precession angular velocity of the gyro's parallel transported spin vector and the increment in precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.
Circular Orbits in the Taub-NUT and mass-less Taub-NUT Space-time
Pradhan, Parthapratim
2016-01-01
In this work we study the equatorial causal geodesics of the Taub-NUT(TN) space-time in comparison with \\emph{mass-less} TN space-time. We emphasized both on the null circular geodesics and time-like circular geodesics. From the effective potential diagram of null and time-like geodesics, we differentiate the geodesics structure between TN spacetime and mass-less TN space-time. It has been shown that there is a key role of the NUT parameter to changes the shape of pattern of the potential well in the NUT spacetime in comparison with mass-less NUT space-time. We compared the ISCO (innermost stable circular orbit), MBCO (marginally bound circular orbit) and CPO (circular photon orbit) of the said space-time with graphically in comparison with mass-less cases. Moreover, we compute the radius of ISCO, MBCO and CPO for \\emph{extreme} TN black hole. Interestingly, we show that these \\emph{three radii} coincides with the Killing horizon i.e. the null geodesic generators of the horizon. Finally in Appendix, we comput...
Inner-most stable circular orbits in extremal and non-extremal Kerr-Taub-NUT spacetimes
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Chandrachur [Saha Institute of Nuclear Physics, Kolkata (India)
2014-02-15
We study causal geodesics in the equatorial plane of the extremal Kerr-Taub-NUT spacetime, focusing on the inner-most stable circular orbit (ISCO), and we compare its behavior with extant results for the ISCO in the extremal Kerr spacetime. Calculations of the radii of the direct ISCO, its Kepler frequency, and the rotational velocity show that the ISCO coincides with the horizon in the exactly extremal situation. We also study geodesics in the strong non-extremal limit, i.e., in the limit of a vanishing Kerr parameter (i.e., for Taub-NUT and massless Taub-NUT spacetimes as special cases of this spacetime). It is shown that the radius of the direct ISCO increases with NUT charge in Taub-NUT spacetime. As a corollary, it is shown that there is no stable circular orbit in massless NUT spacetimes for timelike geodesics. (orig.)
Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits
Energy Technology Data Exchange (ETDEWEB)
Correia, Alexandre C. M. [Departamento de Física, I3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Robutel, Philippe [Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, F-75014 Paris (France)
2013-12-10
Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n ± kν/2, where n is the orbital mean motion, ν the orbital libration frequency, and k an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ, has the same magnitude as ν, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ν << σ, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.
Shah, Abhay G; Friedman, John L.; Keidl, Tobias S.
2012-01-01
This is the first of two papers on computing the self-force in a radiation gauge for a particle moving in circular, equatorial orbit about a Kerr black hole. In the EMRI (extreme-mass-ratio inspiral) framework, with mode-sum renormalization, we compute the renormalized value of the quantity $h_{\\alpha\\beta}u^\\alpha u^\\beta$, gauge-invariant under gauge transformations generated by a helically symmetric gauge vector; and we find the related order $\\frak{m}$ correction to the particle's angular...
Orbit classification in the planar circular Pluto-Charon system
Zotos, Euaggelos E
2015-01-01
We numerically investigate the orbital dynamics of a spacecraft, or a comet, or an asteroid in the Pluto-Charon system in a scattering region around Charon using the planar circular restricted three-body problem. The test particle can move in bounded orbits around Charon or escape through the necks around the Lagrangian points $L_1$ and $L_2$ or even collide with the surface of Charon. We explore four of the five possible Hill's regions configurations depending on the value of the Jacobi constant which is of course related with the total orbital energy. We conduct a thorough numerical analysis on the phase space mixing by classifying initial conditions of orbits and distinguishing between three types of motion: (i) bounded, (ii) escaping and (iii) collisional. In particular, we locate the different basins and we relate them with the corresponding spatial distributions of the escape and collision times. Our results reveal the high complexity of this planetary system. Furthermore, the numerical analysis shows a...
A New Approach to Impulsive Rendezvous near Circular Orbit
Carter, Thomas
2012-01-01
A new approach is presented for the problem of optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of th...
International Nuclear Information System (INIS)
In this paper, the quasi-Keplerian parameterization for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin–orbit, next-to-next-to-leading order spin(1)–spin(2) and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity-type variable x. (paper)
Tessmer, Manuel; Schäfer, Gerhard
2012-01-01
In this article the quasi-Keplerian parameterisation for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin-orbit, next-to-next-to-leading order spin(1)-spin(2), and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity type variable $x$.
Innermost Stable Circular Orbits and Epicyclic Frequencies Around a Magnetized Neutron Star
Gutierrez-Ruiz, Andres F; Pachon, Leonardo A
2013-01-01
A full-relativistic approach is used to compute the radius of the innermost stable circular orbit (ISCO), the Keplerian, frame-dragging, precession and oscillation frequencies of the radial and vertical motions of neutral test particles orbiting the equatorial plane of a magnetized neutron star. The space-time around the star is modelled by the six parametric solution derived by Pachon et al. It is shown that the inclusion of an intense magnetic field, such as the one of a neutron star, have non-negligible effects on the above physical quantities, and therefore, its inclusion is necessary in order to obtain a more accurate and realistic description of the physical processes occurring in the neighbourhood of this kind of objects such as the dynamics of accretion disk. The results discussed here also suggest that the consideration of strong magnetic fields may introduce non-negligible corrections in, e.g., the relativistic precession model and therefore on the predictions made on the mass of neutron stars.
Energy Technology Data Exchange (ETDEWEB)
Kikuchi, Akihiro; Higuchi, Arika [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan)
2014-12-10
Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.
International Nuclear Information System (INIS)
Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.
Gravitational self-force on eccentric equatorial orbits around a Kerr black hole
van de Meent, Maarten
2016-01-01
This paper presents the first calculation of the gravitational self-force on a small compact object on an eccentric equatorial orbit around a Kerr black hole to first order in the mass-ratio. That is the pointwise correction to the object's equations of motion (both conservative and dissipative) due to its own gravitational field treated as a linear perturbation to the background Kerr spacetime generated by the much larger spinning black hole. The calculation builds on recent advances on constructing the local metric and self-force from solutions of the Teukolsky equation, which led to the calculation of the Detweiler-Barack-Sago redshift invariant on eccentric equatorial orbits around a Kerr black hole in a previous paper. After deriving the necessary expression to obtain the self-force from the Weyl scalar $\\psi_4$, we perform several consistency checks of the method and numerical implementation, including a check of the balance law relating orbital average of the self-force to average flux of energy and an...
Pimnoo, Ammarin
2016-07-01
Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.
An Orbital Beat in the Equatorial Atlantic (~18-27 Ma): Reliable Chronometer or Wishful Thinking?
Meyers, S. R.; Hinnov, L. A.
2011-12-01
Orbital-climate theory provides a vital framework for the fields of paleoclimatology and geochronology, having spawned advances in our understanding of climate system components, feedbacks, and thresholds, while also leading to a major revision of the geologic time scale. The numerous successes of Pleistocene cyclostratigraphy have motivated the search for orbital influence in strata spanning the Phanerozoic, culminating in the generation of both "anchored" (site that has been instrumental in the development of astrochronologies for the Miocene and Oligocene time scale, and has also provided constraints on the theoretical astronomical solutions. Our cyclostratigraphic evaluation employs a method for astrochronologic testing applied to "un-tuned" proxy data, termed Average Spectral Misfit (Meyers and Sageman, 2007). This inverse method explicitly evaluates time scale uncertainty, and provides a formal statistical test of the null hypothesis (no orbital influence), without the requirement of rigorous independent time control. Following several improvements and extensions of the original method, its application to Ceara Rise sediments objectively identifies a strong orbital signature that is consistent with that proposed by Paelike et al. (2006), but also indicates substantial distortion of the orbital periods as preserved in portions of the un-tuned stratigraphic record. Construction of new chronologies that are not anchored to theoretical orbital insolation solutions, using time-frequency approaches, provides an opportunity to independently test the linkages between climate and orbit that have been previously proposed. Meyers, S.R., and Sageman, B.B. (2007), Quantification of Deep-Time Orbital Forcing by Average Spectral Misfit: American Journal of Science, v. 307, p. 773-792. Paelike, H., Frazier, J., and Zachos, J.C. (2006), Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise: Quaternary Science Reviews, v. 25, p. 3138-3149.
Expectation maximization reconstruction for circular orbit cone-beam CT
Dong, Baoyu
2008-03-01
Cone-beam computed tomography (CBCT) is a technique for imaging cross-sections of an object using a series of X-ray measurements taken from different angles around the object. It has been widely applied in diagnostic medicine and industrial non-destructive testing. Traditional CT reconstructions are limited by many kinds of artifacts, and they give dissatisfactory image. To reduce image noise and artifacts, we propose a statistical iterative approach for cone-beam CT reconstruction. First the theory of maximum likelihood estimation is extended to X-ray scan, and an expectation-maximization (EM) formula is deduced for direct reconstruction of circular orbit cone-beam CT. Then the EM formula is implemented in cone-beam geometry for artifact reduction. EM algorithm is a feasible iterative method, which is based on the statistical properties of Poisson distribution. It can provide good quality reconstructions after a few iterations for cone-beam CT. In the end, experimental results with computer simulated data and real CT data are presented to verify our method is effective.
Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes
Zalesky, L.; Chartas, G.
2016-06-01
We present a promising new technique (g-distribution method) for measuring the innermost stable circular orbit (ISCO), the inclination angle (i), and the spin of a supermassive black hole. The g-distribution method involves measurements of the distribution of the energy shifts of the relativistic iron line emitted from the accretion disk of a supermassive black hole that is microlensed by stars in a foreground galaxy and a comparison of the measured g-distribution with microlensing caustic simulations. The method has been applied to the gravitationally lensed quasars RX J1131-1231 (z_{s} = 0.658, z_{l} = 0.295), QJ 0158-4325 (z_{s} = 1.29, z_{l} = 0.317), and SDSS 1004+4112 (z_{s} = 1.73, z_{l} = 0.68). For RX J1131-1231 our initial results indicate an ISCO radius of < 5 gravitational radii and i < 65 degrees. Further monitoring of lensed quasars will provide tighter constraints on their inclination angles, ISCO radii, and spins.
The curiously circular orbit of Kepler-16b
Dunhill, Alex
2013-01-01
The recent discovery of a number of circumbinary planets lends a new tool to astrophysicists seeking to understand how and where planet formation takes place. Of the increasingly numerous circumbinary systems, Kepler-16 is arguably the most dynamically interesting: it consists of a planet on an almost perfectly circular orbit (e = 0.0069) around a moderately eccentric binary (e = 0.16). We present high-resolution 3D smoothed-particle hydrodynamics simulations of a Kepler-16 analogue embedded in a circumbinary disc, and show that the planet's eccentricity is damped by its interaction with the protoplanetary disc. We use this to place a lower limit on the gas surface density in the real disc through which Kepler-16b migrated of \\Sigma_min ~ 10 g cm^-2. This suggests that Kepler-16b, and other circumbinary planets, formed and migrated in relatively massive discs. We argue that secular evolution of circumbinary discs requires that these planets likely formed early on in the lifetime of the disc and migrated inwar...
Off-equatorial orbits in strong gravitational fields near compact objects
International Nuclear Information System (INIS)
Near a black hole or an ultracompact star, the motion of particles is governed by a strong gravitational field. Electrically charged particles also feel the electromagnetic force arising due to currents inside the star or plasma circling around. We study the possibility that the interplay between gravitational and electromagnetic actions may allow for the stable, energetically bound off-equatorial motion of charged particles. This would represent the well-known generalized Stoermer's 'halo orbits', which have been discussed in connection with the motion of dust grains in planetary magnetospheres. We demonstrate that such orbits exist and can be astrophysically relevant when a compact star or a black hole is endowed with a dipole-type magnetic field. In the case of the Kerr-Newman solution, numerical analysis shows that the mutually connected gravitational and electromagnetic fields do not allow the existence of stable halo orbits above the outer horizon of black holes. Such orbits are either hidden under the inner black-hole horizon, or they require the presence of a naked singularity
Stability in sense of Lyapunov of circular orbits in Manev potential
Blaga, Cristina
2015-01-01
In this article we consider the motion of two bodies under the action of a Manev central force. We obtain the radius of the circular orbit and analyze its stability in sense of Lyapunov. Drawn on the first integrals of angular momentum and energy, we build a positive definite function which satisfies the Lyapunov's theorem of stability. The existence of the Lyapunov function prove that the circular orbits in Manev two body problem are stable at any perturbation. In the end we compare these results with those valid for the circular orbits in the Newtonian gravitational field.
International Nuclear Information System (INIS)
We present a prescription to compute the time-domain gravitational wave (GW) polarization states associated with spinning compact binaries inspiraling along quasi-circular orbits. We invoke the orbital angular momentum L rather than its Newtonian counterpart LN to describe the binary orbits while the two spin vectors are freely specified in an inertial frame associated with the initial direction of the total angular momentum. We show that the use of L to describe the orbits leads to additional 1.5PN order amplitude contributions to the two GW polarization states compared to the LN-based approach and discuss few implications of our approach. Furthermore, we provide a plausible prescription for GW phasing based on certain theoretical considerations and which may be treated as the natural circular limit to GW phasing for spinning compact binaries in inspiraling eccentric orbits (Gopakumar A and Schäfer G 2011 Phys. Rev. D 84 124007). (paper)
Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries
DEFF Research Database (Denmark)
Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon
2016-01-01
. Here we seek evidence for the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure...
Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa
Directory of Open Access Journals (Sweden)
J. P. S. Carvalho
2014-01-01
Full Text Available Space missions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, because missions to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time, evaluated by the integral of those forces over the time. This value depends on the dynamical model and on the orbit of the spacecraft. The perturbing forces considered are the third-body perturbation that comes from Jupiter and the J2, J3, and C22 terms of the gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital elements.
Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru
2014-12-01
Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ~ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.
Circular dichroism of cholesteric polymers and the orbital angular momentum of light
International Nuclear Information System (INIS)
We explore experimentally if light's orbital angular momentum (OAM) interacts with chiral nematic polymer films. Specifically, we measure the circular dichroism of such a material using light beams with different OAM. We investigate the case of strongly focused, nonparaxial light beams, where the spatial and polarization degrees of freedom are coupled. Within the experimental accuracy, we cannot find any influence of the OAM on the circular dichroism of cholesteric polymers.
Wang, Zhi-Yong; Qiu, Qi; Wang, Yun-Xiang; Shi, Shuang-Jin
2016-01-01
The (1, 0)+(0, 1) representation of the group SL(2, C) provides a six-component spinor equivalent to the electromagnetic field tensor. By means of the (1, 0)+(0, 1) description, one can treat the photon field in curved spacetime via spin connection and the tetrad formalism, which is of great advantage to study the gravitational spin-orbit coupling of photons. Once the gravitational spin-orbit coupling is taken into account, the traditional radius of the circular photon orbit in the Schwarzschild geometry should be replaced with two different radiuses corresponding to the photons with the helicities of +1 and -1, respectively. Owing to the splitting of energy levels induced by the spin-orbit coupling, photons (from Hawking radiations, say) escaping from a Schwarzschild black hole are partially polarized, provided that their initial velocities possess nonzero tangential components.
Off-equatorial circular orbits in magnetic fields of compact objects
Czech Academy of Sciences Publication Activity Database
Stuchlík, Z.; Kovář, J.; Karas, Vladimír
Cambridge : Cambridge University Press, 2009 - (Strassmeier, K.; Kosovichev, A.; Beckman, J.), s. 125-126 ISBN 978 0521-88990-2. ISSN 1743-9213. - (IAU Symposium Proceeding Series. 259). [Symposium of the International Astronomical Union /259./. Puerto Santiago, Tenerife (ES), 03.11.2008-07.11.2008] Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * magnetic fields * neutron stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Park, Jin-Hong; Kim, Choong H.; Rhim, Jun-Won; Han, Jung Hoon
2012-05-01
We show, by way of tight-binding and first-principles calculations, that a one-to-one correspondence between an electron's crystal momentum k and nonzero orbital angular momentum (OAM) is a generic feature of surface bands. The OAM forms a chiral structure in momentum space much as its spin counterpart in Rashba model does, as a consequence of the inherent inversion symmetry breaking at the surface but not of spin-orbit interaction. This is the orbital counterpart of conventional Rashba effect and may be called the “orbital Rashba effect.” The circular dichroism (CD) angle-resolved photoemission (ARPES) method is an efficient way to detect this new order, and we derive formulas explicitly relating the CD-ARPES signal to the existence of OAM in the band structure. The cases of degenerate p- and d-orbital bands are considered.
Shah, Abhay G; Keidl, Tobias S
2012-01-01
This is the first of two papers on computing the self-force in a radiation gauge for a particle moving in circular, equatorial orbit about a Kerr black hole. In the EMRI (extreme-mass-ratio inspiral) framework, with mode-sum renormalization, we compute the renormalized value of the quantity $h_{\\alpha\\beta}u^\\alpha u^\\beta$, gauge-invariant under gauge transformations generated by a helically symmetric gauge vector; and we find the related order $\\frak{m}$ correction to the particle's angular velocity at fixed renormalized redshift (and to its redshift at fixed angular velocity). The radiative part of the perturbed metric is constructed from the Hertz potential which is extracted from the Weyl scalar by an algebraic inversion\\cite{sf2}. We then write the spin-weighted spheroidal harmonics as a sum over spin-weighted spherical harmonics and use mode-sum renormalization to find the renormalization coefficients by matching a series in $L=\\ell+1/2$ to the large-$L$ behavior of the expression for $H := \\frac12 h_{...
The final spin from binary black holes in quasi-circular orbits
Hofmann, Fabian; Barausse, Enrico; Rezzolla, Luciano
2016-01-01
We revisit the problem of predicting the spin magnitude and direction of the black hole resulting from the merger of two black holes with arbitrary masses and spins inspiralling in quasi-circular orbits. We do this by analyzing a catalog of 641 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit and perturbative calculations, we imp...
Diffraction of orbital angular momentum carrying optical beams by a circular aperture.
Ambuj, A; Vyas, R; Singh, S
2014-10-01
Far field diffraction of Laguerre-Gauss vortex (LGV) beams of different angular momentum index by a circular aperture placed at different locations with respect to incident beam waist is studied experimentally. The experiments reveal a surprisingly simple structure for the diffraction pattern and its dependence on the orbital angular momentum index of the incident beam when the aperture size is small compared to the beam radius. PMID:25360906
Nonlinear Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium
Kim, Woong-Tae
2010-01-01
We use three-dimensional hydrodynamic simulations to investigate the nonlinear gravitational responses of gas to, and the resulting drag forces on, very massive perturbers moving on circular orbits. This work extends our previous studies that explored the cases of low-mass perturbers on circular orbits and massive perturbers on straight-line trajectories. The background medium is assumed to be non-rotating, adiabatic with index 5/3, and uniform with density rho0 and sound speed a0. We model the gravitating perturber using a Plummer sphere with mass Mp and softening radius rs in a uniform circular motion at speed Vp and orbital radius Rp, and run various models with differing R=rs/Rp, Mach=Vp/a0, and B=G*Mp/(a0^2*Rp). A quasi-steady density wake of a supersonic model consists of a hydrostatic envelope surrounding the perturber, an upstream bow shock, and a trailing low-density region. The continuous change in the direction of the perturber motion makes the detached shock distance reduced compared to the linear...
A Substellar Companion in a 1.3 yr Nearly-circular Orbit of HD 16760
Sato, Bunei; Ida, Shigeru; Harakawa, Hiroki; Omiya, Masashi; Johnson, John A; Marcy, Geoffrey W; Toyota, Eri; Hori, Yasunori; Isaacson, Howard; Howard, Andrew W; Peek, Kathryn M G
2009-01-01
We report the detection of a substellar companion orbiting the G5 dwarf HD 16760 from the N2K sample. Precise Doppler measurements of the star from Subaru and Keck revealed a Keplerian velocity variation with a period of 466.47+-0.35 d, a semiamplitude of 407.71+-0.84 m/s, and an eccentricity of 0.084+-0.003. Adopting a stellar mass of 0.78+-0.05 M_Sun, we obtain a minimum mass for the companion of 13.13+-0.56 M_JUP, which is close to the planet/brown-dwarf transition, and the semimajor axis of 1.084+-0.023 AU. The nearly circular orbit despite the large mass and intermediate orbital period makes this companion unique among known substellar companions.
Ono, Toshiaki; Fushimi, Naomasa; Yamada, Kei; Asada, Hideki
2015-01-01
In terms of Sturm's theorem, we reexamine a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. MSCOs for some of exact solutions to the Einstein's equation are discussed. Strum's theorem is explicitly applied to the Kottler (often called Schwarzschild-de Sitter) spacetime. Moreover, we analyze MSCOs for a spherically symmetric, static and vacuum solution in Weyl conformal gravity.
Morbidelli, Alessandro; Tsiganis, Kleomenis; Batygin, Konstantin; Crida, Aurelien; Gomes, Rodney
2012-01-01
We show that the existence of prograde equatorial satellites is consistent with a collisional tilting scenario for Uranus. In fact, if the planet was surrounded by a proto-satellite disk at the time of the tilting and a massive ring of material was temporarily placed inside the Roche radius of the planet by the collision, the proto-satellite disk would have started to precess incoherently around the equator of the planet, up to a distance greater than that of Oberon. Collisional damping would...
Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Orbits
DEFF Research Database (Denmark)
Larsen, Martin Birkelund; Blanke, Mogens
2007-01-01
This paper applies different control design methods to a tethered satellite system (TSS) to investigate essential control properties of this under-actuated and nonlinear system. When the tether position in the orbit plane is controlled by the tether current, out of orbit plane motions occur as an...
International Nuclear Information System (INIS)
Complete text of publication follows. Space-based geomagnetic observations are usually made on board low altitude near polar orbiting satellites. These satellites sweep all longitude sectors and provide quasi regular and homogenous global scale dataset. Especially, for the study of the equatorial electrojet (EEJ) features including its longitude dependence, only satellite magnetic measurements are capable of providing such global coverage. However, the orbit along-track methods of extracting the EEJ signature from satellite observations do not allow an accurate estimate of its peak current density in certain longitude sectors. By comparing ground-based and satellite observations, we show that satellite orbit along-track methods fit well the latitude profiles of the EEJ magnetic effect when the satellite paths are perpendicular to the dip-equator, as in most part of the longitude sectors of Asia and Africa. Otherwise, the EEJ latitude profiles are biased, which leads to poor estimate of the EEJ features (magnetic signature, peak-current density, position of the EEJ center, etc.), as in the Atlantic Ocean and most of South American sectors, where the dip-equator is strongly tilted from the East-West direction.
Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Orbits
Larsen, Martin Birkelund; Blanke, Mogens
2007-01-01
This paper applies different control design methods to a tethered satellite system (TSS) to investigate essential control properties of this under-actuated and nonlinear system. When the tether position in the orbit plane is controlled by the tether current, out of orbit plane motions occur as an unwanted side effect, due to nonlinear interaction with the Earth’s magnetic field. This paper focus on the uncontrollable out-of-plane motions and the robustness against B-field uncertainty associat...
Self-Force on a Scalar Charge in Circular Orbit around a Schwarzschild Black Hole
Nakano, Hiroyuki; Mino, Yasushi; Sasaki, Misao
2001-01-01
In an accompanying paper, we have formulated two types of regulariz_ation methods to calculate the scalar self-force on a particle of charge $q$ moving around a black hole of mass $M$, one of which is called the ``power expansion regularization''. In this paper, we analytically evaluate the self-force (which we also call the reaction force) to the third post-Newtonian (3PN) order on the scalar particle in circular orbit around a Schwarzschild black hole by using the power expansion regulariza...
2.5PN kick from black-hole binaries in circular orbit: Nonspinning case
Mishra, Chandra Kant; Iyer, Bala R
2013-01-01
Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.
The final spin from binary black holes in quasi-circular orbits
Hofmann, Fabian; Rezzolla, Luciano
2016-01-01
We revisit the problem of predicting the spin magnitude and direction of the black hole resulting from the merger of two black holes with arbitrary masses and spins inspiralling in quasi-circular orbits. We do this by analyzing a catalog of 641 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum, but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins...
Institute of Scientific and Technical Information of China (English)
Ren Xiang-He; Wu Yan; Zhang Jing-Tao; Ma Hui; Xu Yu-Long
2013-01-01
We theoretically investigate the strong-field ionization of H2+ molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields.We find that the structure of photoelectron angular distribution depends on the molecular orbital as well as the energy of the photoelectron.The location of main lobes changes with the symmetric property of the molecular orbital.Generally,for molecules with bonding electronic states,the photoelectron's angular distribution shows a rotation of π/2 with respect to the molecular axis,while for molecules with antibonding electronic states,no rotation occurs.We use an interference scenario to interpret these phenomena.We also find that,due to the interference effect,a new pair of jets appears in the waist of the main lobes,and the main lobes or jets of the photoelectron's angular distribution are split into two parts if the photoelectron energy is sufficiently high.
Genova, Anthony L; Perez, Andres Dono; Galal, Ken F; Faber, Nicolas T; Mitchell, Scott; Landin, Brett; Datta, Abhirup; Burns, Jack O
2015-01-01
The trajectory design for the Dark Ages Radio Explorer (DARE) mission con-cept involves launching the DARE spacecraft into a geosynchronous transfer orbit (GTO) as a secondary payload. From GTO, the spacecraft then transfers to a lunar orbit that is stable (i.e., no station-keeping maneuvers are required with minimum perilune altitude always above 40 km) and allows for more than 1,000 cumulative hours for science measurements in the radio-quiet region located on the lunar farside.
Cloud and Wind Variability in Saturn's Equatorial Jet prior to the Cassini orbital tour
Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.
2004-11-01
We use ground-based observations (going back to 1876), Pioneer-11 data (1979), Voyager 1 and 2 encounter images in 1980 and 1981, and HST 1990-2004 images, to study the changes that occurred in the vertical cloud structure and morphology and motions, in Saturn's Equatorial Region (approximately the band between latitudes 40 deg North and South). We compare ``calm periods" with ``stormy periods" i. e. those that occur during the development of the phenomenon known as the ``Great White Spots." We discuss different interpretations of the mechanisms that can be involved in the observed changes: vertical wind shears, waves, storm - mean flow interaction and changes in atmospheric angular momentum. Acknowledgements: This work was supported by the Spanish MCYT AYA 2003-03216. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.
Bhardwaj, R.; Bhatnagar, K. B.
1995-12-01
The rotational motion of a satellite in a circular orbit under the influence of magnetic torque is being studied. The present paper deals with the non-resonance and resonance cases. By using Melnikov's method, the authors have shown that the equation of motion is non-integrable. Taking the magnetic torque perturbation to be small (ɛ ≪ 1) and using BKM method, it is observed that the amplitude of the oscillation remains constant up to the second order of approximation. The main resonance has been shown to exist. The analysis regarding the stability near the resonance frequency shows that discontinuity occurs in the amplitude of the oscillation at a frequency of the external periodic force which is less than the frequency of the natural oscillation.
Liu, Ai-Ping; Xiong, Xiao; Ren, Xi-Feng; Cai, Yong-Jing; Rui, Guang-Hao; Zhan, Qi-Wen; Guo, Guang-Can; Guo, Guo-Ping
2013-01-01
We demonstrate a novel detection scheme for the orbital angular momentum (OAM) of light using circular plasmonic lens. Owing to a division-of-amplitude interference phenomenon between the surface plasmon waves and directly transmitted light, specific intensity distributions are formed near the plasmonic lens surface under different OAM excitations. Due to different phase behaviors of the evanescent surface plasmon wave and the direct transmission, interference patterns rotate as the observation plane moves away from the lens surface. The rotation direction is a direct measure of the sign of OAM, while the amount of rotation is linked to the absolute value of the OAM. This OAM detection scheme is validated experimentally and numerically. Analytical expressions are derived to provide insights and explanations of this detection scheme. This work forms the basis for the realization of a compact and integrated OAM detection architect that may significantly benefit optical information processing with OAM states. PMID:23929189
Liu, Ai-Ping; Ren, Xi-Feng; Cai, Yong-Jing; Rui, Guang-Hao; Zhan, Qi-Wen; Guo, Guang-Can; Guo, Guo-Ping
2013-01-01
We demonstrate a novel detection scheme for the orbital angular momentum (OAM) of light using circular plasmonic lens. Owing to a division-of-amplitude interference phenomenon between the surface plasmon waves and directly transmitted light, specific intensity distributions are formed near the plasmonic lens surface under different OAM excitations. Due to different phase behaviors of the evanescent surface plasmon wave and the direct transmission, interference patterns rotate as the observation plane moves away from the lens surface. The rotation direction is a direct measure of the sign of OAM, while the amount of rotation is linked to the absolute value of the OAM. This OAM detection scheme is validated experimentally and numerically. Analytical expressions are derived to provide insights and explanations of this detection scheme. This work forms the basis for the realization of a compact and integrated OAM detection architect that may significantly benefit optical information processing with OAM states.
HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit
Brahm, R; Bakos, G Á; Penev, K; Espinoza, N; Rabus, M; Hartman, J D; Bayliss, D; Ciceri, S; Zhou, G; Mancini, L; Tan, T G; de Val-Borro, M; Bhatti, W; Csubry, Z; Bento, J; Henning, T; Schmidt, B; Suc, V; Lázár, J; Papp, I; Sári, P
2015-01-01
We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M$_{\\star}$=1.131 $\\pm$ 0.030 M$_{\\odot}$, R$_{\\star}$=1.091$^{+0.070}_{-0.046}$ R$_{\\star}$) metal-rich ([Fe/H]=+0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 $\\pm$ 0.056 R$_J$ given its Jupiter-like mass of 1.338 $\\pm$ 0.065 M$_J$. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.
The Final Spin from Binary Black Holes in Quasi-circular Orbits
Hofmann, Fabian; Barausse, Enrico; Rezzolla, Luciano
2016-07-01
We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.
Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro
2016-01-01
We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary-condition (SSC), the Pirani SSC and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of [Phys.~Rev.~D.90,~044018(2014)]. We analyze the four different dynamics in terms of the ISCO shifts and in terms of the coordinate invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational wave fluxes produced by the spinning body are computed by solving the inhomogeneous $(2+1)D$ Teukolsky equation and contrasted for the different cases. For small orbital frequencies $\\Omega$, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, ${x \\equiv (M \\Omega)^{2/3} >0.1 }$, where $M$ is the black hole mass, and ...
Shah, Abhay G.; Friedman, John L.; Keidl, Tobias S.
2012-10-01
This is the first of two papers on computing the self-force in a radiation gauge for a particle of mass m moving in circular, equatorial orbit about a Kerr black hole. In the extreme-mass-ratio inspiral (EMRI) framework, with mode-sum renormalization, we compute the renormalized value of the quantity H≔(1)/(2)hαβuαuβ, gauge-invariant under gauge transformations generated by a helically symmetric gauge vector; here, hαβ is the metric perturbation, uα the particle’s 4-velocity. We find the related order m correction to the particle’s angular velocity at fixed renormalized redshift (and to its redshift at fixed angular velocity), each of which can be written in terms of H. The radiative part of the metric perturbation is constructed from a Hertz potential that is extracted from the Weyl scalar by an algebraic inversion T. S. Keidl , Phys. Rev. D 82, 124012 (2010). We then write the spin-weighted spheroidal harmonics as a sum over spin-weighted spherical harmonics Yℓms and use mode-sum renormalization to find the renormalization coefficients by matching a series in L=ℓ+1/2 to the large-L behavior of the expression for H. The nonradiative parts of the perturbed metric associated with changes in mass and angular momentum are calculated in the Kerr gauge.
Analysis of stability boundaries of satellite's equilibrium attitude in a circular orbit
Novikov, M. A.
2016-03-01
An asymmetric satellite equipped with control momentum gyroscopes (CMGs) with the center of mass of the system moving uniformly in a circular orbit was considered. The stability of a relative equilibrium attitude of the satellite was analyzed using Lyapunov's direct method. The Lyapunov function V is a positive definite integral of the total energy of the perturbed motion of the system. The asymptotic stability analysis of the stationary motion of the conservative system was based on the Barbashin-Krasovskii theorem on the nonexistence of integer trajectories of the set dot V, which was obtained using the differential equations of motion of the satellite with CMGs. By analyzing the sign definiteness of the quadratic part of V, it was found earlier by V.V. Sazonov that the stability region is described by four strict inequalities. The asymptotic stability at the stability boundary was analyzed by sequentially turning these inequalities into equalities with terms of orders higher than the second taken into account in V. The sign definiteness analysis of the inhomogeneous function V at the stability boundary involved a huge amount of computations related to the multiplication, expansion, substitution, and factorization of symbolic expressions. The computations were performed by applying a computer algebra system on a personal computer.
Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S J; Chatterjee, S; Cordes, J M; Demorest, P B; Deng, X; Dolch, T; Ellis, J A; Ferdman, R D; Finn, L S; Garver-Daniels, N; Jenet, F; Jones, G; Kaspi, V M; Koop, M; Lam, M; Lazio, T J W; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D R; McLaughlin, M; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Sesana, A; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W W
2014-01-01
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of $h_0\\lesssim 3.8\\times 10^{-14}$ at a frequency of 10 nHz. Furthermore, we place 95% ...
HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Day Circular Orbit
Brahm, R.; Jordán, A.; Bakos, G. Á.; Penev, K.; Espinoza, N.; Rabus, M.; Hartman, J. D.; Bayliss, D.; Ciceri, S.; Zhou, G.; Mancini, L.; Tan, T. G.; de Val-Borro, M.; Bhatti, W.; Csubry, Z.; Bento, J.; Henning, T.; Schmidt, B.; Rojas, F.; Suc, V.; Lázár, J.; Papp, I.; Sári, P.
2016-04-01
We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V = 12.4) G-type ({M}\\star = 1.131+/- 0.030 {M}⊙ , {R}\\star = {1.091}-0.046+0.070 {R}⊙ ) metal-rich ([Fe/H] = +0.3 dex) host star in a circular orbit with a period of P = 16.2546 days. HATS-17b has a very compact radius of 0.777+/- 0.056 {R}{{J}} given its Jupiter-like mass of 1.338+/- 0.065 {M}{{J}}. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17 will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m telescope at the ESO Observatory in La Silla and with the 3.9 m AAT in Siding Spring Observatory. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope. Based on observations taken with the HARPS spectrograph (ESO 3.6 m telescope at La Silla) under programme 097.C-0571.
A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets
Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar
2014-01-01
A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…
Kim, Hyosun
2011-01-01
An orbiting object in a gas rich environment creates a gravitational density wake containing information about the object and its orbit. Using linear perturbation theory, we analyze the observable properties of the gravitational wake due to the object circularly moving in a static homogeneous gaseous medium, in order to derive the Bondi accretion radius $r_B$, the orbital distance $r_p$, and the Mach number of the object. Supersonic motion, producing a wake of spiral-onion shell structure, exhibits a single-armed Archimedes spiral and two-centered circular arcs with respect to the line of sight. The pitch angle, arm width, and spacing of the spiral pattern are entirely determined by the orbital distance $r_p$ and Mach number of the object. The arm-interarm density contrast is proportional to the Bondi accretion radius, decreasing as a function of distance with a power index of -1. The background density distribution is globally changed from initially uniform to centrally concentrated. The vertical structure o...
Topex orbit sustenance maneuver design. [Ocean Topography Experiment spacecraft
Kechichian, J. A.
1982-01-01
A trade-off analysis between maneuver period, execution errors, and orbit determination uncertainties is carried out for the Ocean Topography Experiment spacecraft for a given nodal equatorial constraint. Semimajor axis and eccentricity are controlled with minimum impulse using the linear theory of optimal transfer between close coplanar near-circular orbits. Ellipses of equal minimum and average maneuver periods are presented in the (3 execution error, 3 orbit determination uncertainty) space for different nodal equatorial constraints enabling the determination of the appropriate combination of execution errors and orbit determination uncertainties that guarantees a mission required minimum maneuver period for a given nodal deadband.
Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits
Labousse, M.; Oza, A. U.; Perrard, S.; Bush, J. W. M.
2016-03-01
We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.
Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits
Labousse, Matthieu; Perrard, Stéhane; Bush, John W M
2016-01-01
We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.
Barutello, Vivina; Jadanza, Riccardo D.; Portaluri, Alessandro
2016-01-01
It is well known that the linear stability of the Lagrangian elliptic solutions in the classical planar three-body problem depends on a mass parameter β and on the eccentricity e of the orbit. We consider only the circular case ( e = 0) but under the action of a broader family of singular potentials: α-homogeneous potentials, for α in (0, 2), and the logarithmic one. It turns out indeed that the Lagrangian circular orbit persists also in this more general setting. We discover a region of linear stability expressed in terms of the homogeneity parameter α and the mass parameter β, then we compute the Morse index of this orbit and of its iterates and we find that the boundary of the stability region is the envelope of a family of curves on which the Morse indices of the iterates jump. In order to conduct our analysis we rely on a Maslov-type index theory devised and developed by Y. Long, X. Hu and S. Sun; a key role is played by an appropriate index theorem and by some precise computations of suitable Maslov-type indices.
Bini, Donato
2016-01-01
We consider Detweiler's redshift variable $z$ for a nonspinning mass $m_1$ in circular motion (with orbital frequency $\\Omega$) around a nonspinning mass $m_2$. We show how the combination of effective-one-body (EOB) theory with the first law of binary dynamics allows one to derive a simple, exact expression for the functional dependence of $z$ on the (gauge-invariant) EOB gravitational potential $u=(m_1+m_2)/R$. We then use the recently obtained high-post-Newtonian(PN)-order knowledge of the main EOB radial potential $A(u ; \
Tessmer, Manuel; Schäfer, Gerhard
2013-01-01
This publication will deal with an explicit determination of the time evolution of the spin orientation axes and the evolution of the orbital phase in the case of circular orbits under next-to-leading order spin-orbit interactions. We modify the method of Schneider and Cui proposed in ["Theoreme \\"uber Bewegungsintegrale und ihre Anwendungen in Bahntheorien", Verlag der Bayerischen Akademie der Wissenschaften, volume 212, 2005.] to iteratively remove oscillatory terms in the equations of motion for different masses that were not present in the case of equal masses. Our smallness parameter is chosen to be the difference of the symmetric mass ratio to the value 1/4. Before the first Lie transformation, the set of conserved quantities consists of the total angular momentum, the amplitudes of the orbital angular momentum and of the spins, $L, S_1,$ and $S_2$. In contrary, the magnitude of the total spin $S=|S_1+S_2|$ is not conserved and we wish to shift its non-conservation to higher orders of the smallness para...
Iorio, Lorenzo
2014-01-01
In the weak-field and slow-motion approximation of general relativity, the rotation of a body discriminates between the opposite directions of motion of a pair of counter-revolving tests particles orbiting it along geometrically identical trajectories: it is the so-called gravitomagnetic clock effect. In this paper, we analytically calculate the gravitomagnetic corrections to both the draconitic and to the anomalistic periods of arbitrarily inclined, quasi-circular orbits for a generic orientation of the spin axis of the primary. While the anomalistic period is left unchanged, the draconitic one experiences a generally non-vanishing correction which, to zero order in the eccentricity, gains a minus sign if the velocity of the test particle is reversed. As a result, a gravitomagnetic draconitic clock effect arises since a generally non-zero difference of the draconitic periods of a pair of counter-orbiting test particles arises. Remarkably, it is independent of their initial conditions, with some advantages fr...
Comparison Between Self-Force and Post-Newtonian Dynamics: Beyond Circular Orbits
Akcay, Sarp; Barack, Leor; Sago, Norichika; Warburton, Niels
2015-01-01
The gravitational self-force (GSF) and post-Newtonian (PN) schemes are complementary approximation methods for modelling the dynamics of compact binary systems. Comparison of their results in an overlapping domain of validity provides a crucial test for both methods, and can be used to enhance their accuracy, e.g.\\ via the determination of previously unknown PN parameters. Here, for the first time, we extend such comparisons to noncircular orbits---specifically, to a system of two nonspinning objects in a bound (eccentric) orbit. To enable the comparison we use a certain orbital-averaged quantity $\\langle U \\rangle $ that generalizes Detweiler's redshift invariant. The functional relationship $\\langle U \\rangle(\\Omr,\\Omph)$, where $\\Omr$ and $\\Omph$ are the frequencies of the radial and azimuthal motions, is an invariant characteristic of the conservative dynamics. We compute $\\langle U \\rangle(\\Omr,\\Omph)$ numerically through linear order in the mass ratio $q$, using a GSF code which is based on a frequency-...
MACSAT - A Near Equatorial Earth Observation Mission
Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.
MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.
Baerends, Evert; Neugebauer, Johannes; Nicu, Valentin; Wolff, Stephen
2008-01-01
We describe the implementation of the rotational strengths for vibrational circular dichroism (VCD) in the Slater-type orbital based Amsterdam Density Functional (ADF) package. We show that our implementation, which makes use of analytical derivative techniques and London atomic orbitals, yields origin independent rotational strengths. The basis set dependence in the particular case of Slater-type basis functions is also discussed. It turns out that the triple zeta STO basis sets with one set...
Noo, Frédéric; Clackdoyle, Rolf; Wagner, Jean-Marc
2002-08-01
This work presents new mathematical results on the inversion of the exponential x-ray transform. It is shown that a reconstruction formula can be obtained for any dataset whose projection directions consist of a union of half great circles on the unit sphere. A basic example of such a dataset is the semi-equatorial band. The discussion in the paper is mostly focused on this example. The reconstruction formula takes the form of a Neumann (geometric) series and is both exact and stable. The exponential x-ray transform has been mainly studied in SPECT imaging. In this context, our results demonstrate mathematically that fully 3D image reconstruction in SPECT with non-zero attenuation does not always require symmetric datasets (opposing views). PMID:12200935
International Nuclear Information System (INIS)
This work presents new mathematical results on the inversion of the exponential x-ray transform. It is shown that a reconstruction formula can be obtained for any dataset whose projection directions consist of a union of half great circles on the unit sphere. A basic example of such a dataset is the semi-equatorial band. The discussion in the paper is mostly focused on this example. The reconstruction formula takes the form of a Neumann (geometric) series and is both exact and stable. The exponential x-ray transform has been mainly studied in SPECT imaging. In this context, our results demonstrate mathematically that fully 3D image reconstruction in SPECT with non-zero attenuation does not always require symmetric datasets (opposing views). (author)
Energy Technology Data Exchange (ETDEWEB)
Noo, Frederic [Department of Radiology, University of Utah, CAMT Building, Salt Lake City, UT (United States)]. E-mail: noo@doug.med.utah.edu; Clackdoyle, Rolf [Department of Radiology, University of Utah, CAMT Building, Salt Lake City, UT (United States); Wagner, Jean-Marc [Department of Telecommunications, University of Liege, Liege (Belgium)
2002-08-07
This work presents new mathematical results on the inversion of the exponential x-ray transform. It is shown that a reconstruction formula can be obtained for any dataset whose projection directions consist of a union of half great circles on the unit sphere. A basic example of such a dataset is the semi-equatorial band. The discussion in the paper is mostly focused on this example. The reconstruction formula takes the form of a Neumann (geometric) series and is both exact and stable. The exponential x-ray transform has been mainly studied in SPECT imaging. In this context, our results demonstrate mathematically that fully 3D image reconstruction in SPECT with non-zero attenuation does not always require symmetric datasets (opposing views). (author)
The Geometry of Halo and Lissajous Orbits in Circular Restricted Three Body Problem with Drag Forces
Pal, Ashok Kumar
2014-01-01
In this article we determine the effect of radiation pressure, Poynting-Robertson drag and solar wind drag on the Sun-(Earth-Moon) restricted three body problem. Here, we take the bigger body Sun as a bigger primary, and Earth+Moon as a smaller primary. With the help of perturbation technique we find the Lagrangian points, and see that the collinear points deviate from the axis joining the primaries, whereas the triangular points remain unchanged in their configuration. It is also found that Lagrangian points move toward the Sun when radiation pressure increases. We have also analyzed the stability of the triangular equilibrium points and found that they are unstable due drag forces. Moreover, we have computed the halo orbits in the third-order approximation using Lindstedt-Poincar$\\acute{e}$ method and found the effect of the drag forces. According to this prevalence, the Sun-(Earth-Moon) model is used to design the trajectory for spacecraft traveling under the drag forces. keywords:Restricted three body pro...
Investigating orbital magnetic moments in spinel-type MnV2O4 using X-ray magnetic circular dichroism
International Nuclear Information System (INIS)
Element-specific magnetic structures, particularly orbital magnetic moments, of spinel-type MnV2O4 were investigated using X-ray magnetic circular dichroism (XMCD). X-ray absorption and XMCD spectra clearly reveal that the Mn2+ (d5) and V3+ (d2) states are coupled antiferromagnetically. Analyses of XMCD spectra using magneto optical sum rules revealed that small but finite orbital magnetic moments remain in both V and Mn 3d states, which accounts for the antiferro-type orbital ordering in the V sites of MnV2O4 with coexisting complex and real orbital states. Additionally, the Cr doping effect in MnV2O4 was examined. The XMCD spectra of Cr3+ (d3) L-edges exhibited the substitution of Cr ions to the V sites ferromagnetically, with low conductivity through the suppression of the orbital ordering. (author)
Bini, Donato; Damour, Thibault
2016-05-01
We consider Detweiler's redshift variable z for a nonspinning mass m1 in circular motion (with orbital frequency Ω ) around a nonspinning mass m2. We show how the combination of effective-one-body (EOB) theory with the first law of binary dynamics allows one to derive a simple, exact expression for the functional dependence of z on the (gauge-invariant) EOB gravitational potential u =(m1+m2)/R . We then use the recently obtained high-post-Newtonian(PN)-order knowledge of the main EOB radial potential A (u ;ν ) [where ν =m1m2/(m1+m2)2] to decompose the second-self-force-order contribution to the function z (m2Ω ,m1/m2) into a known part (which goes beyond the 4PN level in including the 5PN logarithmic term and the 5.5PN contribution) and an unknown one [depending on the yet unknown, 5PN, 6 PN ,… , contributions to the O (ν2) contribution to the EOB radial potential A (u ;ν )]. We apply our results to the second-self-force-order contribution to the frequency shift of the last stable orbit. We indicate the expected singular behaviors, near the lightring, of the second-self-force-order contributions to both the redshift and the EOB A potential. Our results should help both in extracting information of direct dynamical significance from ongoing second-self-force-order computations and in parametrizing their global strong-field behaviors. We also advocate computing second-self-force-order conservative quantities by iterating the time-symmetric Green-function in the background spacetime.
DEFF Research Database (Denmark)
Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer
2010-01-01
We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures of....... Furthermore, we show that ionization by a circularly polarized pulse completely maps out the angular nodal structure of the initial state, thus providing a potential tool for studying orbital symmetry in individual systems or during chemical reactions....
International Nuclear Information System (INIS)
We consider the behavior of the innermost stable circular orbit (ISCO) in the magnetic field near ''dirty'' (surrounded by matter) axially symmetric black holes. The cases of near-extremal, extremal, and nonextremal black holes are analyzed. For nonrotating black holes, in the strong magnetic field ISCO approaches the horizon (when backreaction of the field on the geometry is neglected). Rotation destroys this phenomenon. The angular momentum and radius of ISCO look model-independent in the main approximation. We also study the collisions between two particles that results in the ultra-high energy Ec.m. in the center-of-mass frame. Two scenarios are considered - when one particle moves on the near-horizon ISCO or when collision occurs on the horizon, one particle having the energy and angular momentum typical of ISCO. If the magnetic field is strong enough and a black hole is slowly rotating, Ec.m. can become arbitrarily large. The kinematics of the high-energy collision is discussed. As an example, we consider the magnetized Schwarzschild black hole for an arbitrary strength of the field (the Ernst solution). It is shown that backreaction of the magnetic field on the geometry can bound the growth of Ec.m. (orig.)
Goings, Joshua J.; Li, Xiaosong
2016-06-01
One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.
Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji
2013-09-01
Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.
LF equatorial emissions recorded by DEMETER/ICE experiment
Boudjada, Mohammed; Parrot, Michel; Schwingenschuh, Konrad; Eichelberger, Hans; Lammer, Helmut; Sawas, Sami; Denisenko, Valery; Besser, Bruno
2016-07-01
We report on electric field observations recorded on the Earth's night-side by DEMETER/ICE experiment. DEMETER is a low-altitude satellite with polar and circular orbits. Observations were recorded at invariant latitudes less than 65° and an altitude of about 650 km. The sun-synchronous night-side orbits correspond to up-going half-orbits with a local time equal to 22:30. We consider in our analysis the low frequency emissions observed at frequencies less than 500 kHz. We show the occurrence of multiple spaced frequency bands between 30 kHz and 500 kHz, and occasionally harmonic components appear in the upper frequency of the instrument (i.e. between 3 MHz - 3.5 MHz,). Those bands are recorded close to the equatorial plane, when the satellite latitudes are between -05° and +05°, and particular enhancements occur at two geographical longitudes, i.e. 130°E and 160°W. We assume that those low frequency radio waves may be associated to density irregularities in the equatorial region. Probably these irregularities are localized along ray paths between the emission source regions and the satellite. We discuss the source locations of such frequency bands, and we show that the observed spectral features may be linked to the plasmasphere dynamic.
Xiang-Gruess, M
2015-01-01
In order to study the origin of the architectures of low mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range $(1-4)\\ \\rmn{M}_{\\oplus}.$ These evolve for up to $2\\times10^7 \\rmn{yr}$ under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow ircularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few $\\%$ terminating in second order resonances. Both planetary eccentricities were small $< 0.1$ and all resonant angles liberated. This type of survey produced o...
Fujita, Ryuichi
2014-01-01
We compute the energy flux of the gravitational waves radiated by a particle of mass $\\m$ in circular orbits around a rotating black hole of mass $M$ up to the 11th post-Newtonian order (11PN), i.e. $v^{22}$ beyond the leading Newtonian approximation where $v$ is the orbital velocity of the particle. By comparing the PN results for the energy flux with high precision numerical results in black hole perturbation theory, we find the region of validity in the PN approximation becomes larger with increasing PN orders. If one requires the relative error of the energy flux in the PN approximation to be less than $10^{-5}$, the energy flux at 11PN (4PN) can be used for $v\\lessapprox 0.33$ ($v\\lessapprox 0.13$). The region of validity can be further extended to $v\\lessapprox 0.4$ if one applies a resummation method to the energy flux at 11PN. We then compare the orbital phase during two-year inspiral from the PN results with the high precision numerical results. We find that for late (early) inspirals when $q\\le 0.3$...
Halford, Sarah Juliette
2013-01-01
I always knew I was from another planet. Earth was my home, yes, I liked hamburgers and roller coasters, but there was still an orbit in me that seemed out of place. My imaginative orbit felt like it didn't to spin the "normal" way. As a performer I spent more time alienating myself and judging how different I felt, rather than owning the creative space I lived in and applying it to my craft. My past three years at UC San Diego have been the perfect atmosphere for my artist self. I have been ...
Lin, Hou-Yuan; Zhao, Chang-Yin; Zhang, Ming-Jiang
2016-03-01
The non-principal-axis rotational motion of uniaxial space debris can be decomposed into periodic motions associated with two frequencies: the polhode frequency of the space debris rotating around the symmetry axis, and the tumbling frequency of the symmetry axis rotating around the angular momentum. To determine from optical measurements the rotational motion of upper rocket stages in circular orbits subjected to gravity-gradient torque, the evolutions of these two frequencies need to be analyzed. Taking into account only the long-term changes in the long-period variables, the differential equations of the non-principal axis rotational motion of the uniaxial space debris are averaged and reduced, from which the evolutions of the polhode and tumbling frequencies are then obtained analytically. The theoretical results are verified by numerical simulations of the diffuse reflection model. The frequencies in the variation of the reflected light intensity in the simulation are analyzed using the frequency map analysis (FMA) method. Errors of these results are found to be less than 1%. Based on the theoretical expressions, the rotational state of the uniaxial space debris can be estimated in the simulation without any prior information except the orbital parameters. A series of state variables are estimated, including the ratio of the moments of inertia about the transverse axis and the symmetry axis, the instantaneous rotation velocity, the orientation of the angular momentum, and the precession cone of the symmetry axis.
Third-Body Perturbation in the Case of Elliptic Orbits for the Disturbing Body
Directory of Open Access Journals (Sweden)
R. C. Domingos
2008-01-01
Full Text Available This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed.
Département des Ressources humaines
2004-01-01
Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...
Timelike and null equatorial geodesics in the Bonnor-Sackfield relativistic disk
Directory of Open Access Journals (Sweden)
Guillermo A. González
2011-06-01
Full Text Available A study of timelike and null equatorial geodesics in the BonnorSackfield relativistic thin disk is presented. The motion of test particles in the equatorial plane is analyzed, both for the newtonian thin disk model as for the corresponding relativistic disk. The nature of the possible orbits is studied by means of a qualitative analysis of the effective potential and by numerically solving the motion equation for radial and non-radial equatorial trajectories. The existence of stable, unstable and marginally stable circular orbits is analyzed, both for the newtonian and relativistic case. Examples of the numerical results, obtained with some simple values of the parameters, are presented. Resumen. En este trabajo se presenta un estudio de las geodésicas temporales y nulas en el disco delgado relativista y newtoniano de Bonnor-Sackfield. Se analiza el movimiento de las partículas de prueba en el plano ecuatorial, tanto para el modelo newtoniano del disco delgado como para el disco relativista correspondiente. La naturaleza de las órbitas posibles se estudia por medio de un análisis cualitativo del potencial efectivo, y numéricamente mediante la solución de la ecuación de movimiento de las trayectorias ecuatorial radial y no radial: Se analiza la existencia de órbitas estables, circulares inestables y estables marginalmente, tanto para el caso newtoniano, como el relativista. Se presentan ejemplos de los resultados numéricos obtenidos con algunos valores de los parámetros simples.
Directory of Open Access Journals (Sweden)
Sandro da Silva Fernandes
2012-01-01
Full Text Available A numerical study of optimal low-thrust limited power trajectories for simple transfer (no rendezvous between circular coplanar orbits in an inverse-square force field is performed by two different classes of algorithms in optimization of trajectories. This study is carried out by means of a direct method based on gradient techniques and by an indirect method based on the second variation theory. The direct approach of the trajectory optimization problem combines the main positive characteristics of two well-known direct methods in optimization of trajectories: the steepest-descent (first-order gradient method and a direct second variation (second-order gradient method. On the other hand, the indirect approach of the trajectory optimization problem involves two different algorithms of the well-known neighboring extremals method. Several radius ratios and transfer durations are considered, and the fuel consumption is taken as the performance criterion. For small-amplitude transfers, the results are compared to the ones provided by a linear analytical theory.
Barret, Didier; Miller, M Coleman; 10.1111/j.1365-2966.2007.11491.x
2008-01-01
Analysis of archival RXTE data on neutron stars binaries has shown that for several sources the quality factor (Q) of the lower kilohertz Quasi-Periodic Oscillations (QPO) drops sharply beyond a certain frequency. This is one possible signature of the approach to the general relativistic innermost stable circular orbit (ISCO), but the implications of such an interpretation for strong gravity and dense matter are important enough that it is essential to explore alternate explanations. In this spirit, Mendez has recently proposed that Q depends fundamentally on mass accretion rate (as measured by spectral hardness) rather than the frequency of the QPO. We test this hypothesis for 4U1636-536 by measuring precisely spectral colors simultaneously with the lower QPO frequency and Q after correction for the frequency drift, over a data set spanning eight years of RXTE observations. We find that in this source there is no correlation between Q and spectral hardness. In particular, no apparent changes in hardness are ...
Vallé, Francesca; Westerhold, Thomas; Dupont, Lydie M.
2016-06-01
Palaeorecords from tropical environments are important to explore the linkages between precipitation, atmospheric circulation and orbital forcing. In this study, new high-resolution XRF data from ODP Site 959 (3°37'N, 2°44'W) have been used to investigate the relationship between palaeoenvironmental changes in West Africa and sedimentation in the tropical East Atlantic Ocean. Iron intensity data have been used to build a 91-m composite depth record that has been astronomically tuned allowing the development of a detailed age model from 6.2 to 1.8 Ma. Based on this new stratigraphy, we studied the variations of Ti/Al, Ti/Ca and Al/Si ratios, proxies for aeolian versus fluvial supply, as dust indicator and fine versus coarse grain size, respectively. We discuss sedimentation patterns at ODP Site 959 associated with the environmental changes from the late Miocene until the early Pleistocene. During the interval corresponding to the earlier stages of the Messinian Salinity Crisis, our proxy records indicate enhanced run-off from the West African continent and major supply of fine material at ODP Site 959, suggesting a stronger monsoon and increased precipitation during eccentricity minima. A long-term decrease of river supply is documented after 5.4 Ma until the end of the Pliocene. From the increased values and variability of Ti/Al and Ti/Ca ratios, we suggest that after 3.5 Ma dust started to reach the study site probably as a result of the southward shift of the Intertropical Convergence Zone during winter. Between 3.2 and 2.9 Ma, ODP Site 959 Ti/Ca ratios exhibit three maxima corresponding to eccentricity maxima similarly to other dust records of northern Africa. This suggests continent-wide aridity or larger climate variability during that interval. Eccentricity forcing (405 and 100 kyr) and precession frequencies are found in the entire studied interval. The variations of Ti/Al ratio suggest stronger seasonality between 5.8 and 5.5 Ma and after 3.2 Ma.
Intermonsoonal equatorial jets
Digital Repository Service at National Institute of Oceanography (India)
Muraleedharan, P.M.
, respectively. Hydrographic features and transport computations favour a well developed equatorial jet during both seasons. The net surface eastward and subsurface westward flows are well balanced during the premonsoon transition period and appear...
Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model
Michtchenko, Tatiana A; Barros, Douglas A; Lépine, Jacques R D
2016-01-01
Context: Resonances in the stellar orbital motion under perturbations from spiral arms structure play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (for nearly circular orbits), but is not suitable in general. Aims: To expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped profiles, without any restriction on the stellar orbital configurations, and expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes are constructed numerically, in order to characterize the phase-space structure and identify the precise location of the resonances. The study is complemented by the construction of dynamical power spectra, which provide the identif...
Czech Academy of Sciences Publication Activity Database
Štěpánek, Petr; Bouř, Petr
2015-01-01
Roč. 36, č. 10 (2015), s. 723-730. ISSN 0192-8651 R&D Projects: GA ČR GA13-03978S; GA ČR GAP208/11/0105 Grant ostatní: GA AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : density functional theory * electronic circular dichroism * magnetic circular dichroism * origin-dependence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.589, year: 2014
Zamudio-Bayer, V; Langenberg, A; Lawicki, A; Terasaki, A; Issendorff, B v; Lau, J T
2015-01-01
The $^6\\Delta$ electronic ground state of the Co$_2^+$ diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, $^6\\Phi$, $^6\\Gamma$, and $^8\\Gamma$, for the electronic ground state of Fe$_2^+$ have been identified. These states carry sizable ground-state orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of $3d$ elements cannot be assumed to be connected by a one-electron process.
International Nuclear Information System (INIS)
Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.
Didwischus, Sven-Helge; Brandt, Peter; Greatbatch, Richard John
2012-01-01
The Equatorial Deep Jets (EDJ) are a dominant signal in the deep Atlantic at the equator. EDJs are vertical alternating zonal currents with a vertical wavelength of only a few hundred meters. They are found from below the Equatorial Undercurrent down to about 2500m. They were also observed in the Pacific and Indian Ocean. The EDJs are focused on the equator and have a meridional extent of about 1.5°S to 1.5°N. In the Atlantic, EDJs oscillate at a period of about 4.5 years as could be shown by...
International Nuclear Information System (INIS)
Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex
International Nuclear Information System (INIS)
The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex
International Nuclear Information System (INIS)
The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to the end of May 1999, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex
International Nuclear Information System (INIS)
Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.
International Nuclear Information System (INIS)
The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to February 1997, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex
International Nuclear Information System (INIS)
Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to the end of April 2002. A complete numerical list of information circulars is reproduced with their titles in the Annex
Equatorial MST radars: Further consideration
Lagos, P.
1983-01-01
The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.
Indian Academy of Sciences (India)
O P N Calla; Shubhra Mathur; Monika Jangid
2014-03-01
The Lunar Reconnaissance Orbiter (LRO) has a miniature radio-frequency (Mini-RF) payload, i.e., the Synthetic Aperture Radar (SAR) that has provided very fundamental information about the lunar surface and subsurface which was not known inspite of many manned and unmanned missions. Microwave sensors are used for analyzing the equatorial region of the Moon (60°N to 60°S) which is covered with many well-known craters like Kopff, Taylor, Maunder, Descartes, Jackson and Santos Dumont, each having different topography. The LRO data in terms of the scattering coefficient (°LH and °LV) with incidence angle of 49° has been used for computing physical and electrical parameter of lunar surface and to learn more about the impact cratering process. Most of the lunar surface shows small Circular Polarization Ratio (CPR), i.e., the reversal of polarization is normal, but some targets have high CPR. In this paper we have discussed the scattering behaviour of lunar equatorial region where the value of CPR < 1. Studies say that the LV intensity is always greater than LH but from the data obtained from LRO, it is observed that it varies at each pixel depending upon the target properties under radar view.
Vemuru, Krishnamurthy; Rosenberg, Richard; Mankey, Gary
Nanostructured FeCo thin films are interesting for magnetic recording applications due to their high saturation magnetization, high Curie temperature and low magnetocrystalline anisotropy. It is desirable to know how the magnetism is modified by the nanostructrure. We report Fe L 2 , 3 edge and Co L2 , 3 edge x-ray magnetic circular dichroism (XMCD) investigations of element specific spin and orbital magnetism of Fe and Co in two multilayer samples: (S1) Si/SiO2/[Co 0.8 nm/Fe 1.6 nm]x32/W (2nm) and (S2) Si/SiO2/[Co 1.6 nm/Fe 0.8 nm]x32/W (2nm) thin films at room temperature. Sum rule analysis of XMCD at Fe L2 , 3 edge in sample S1 shows that the orbital moment of Fe is strongly enhanced and the spin moment is strongly reduced as compared to the values found in bulk Fe. Details of sum rule analysis will be presented to compare and contrast spin magnetic moments and orbital magnetic moments of Fe and Co in the two multilayer samples. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...
International Nuclear Information System (INIS)
The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex
Detection of gravitational frame dragging using orbiting qubits
Lanzagorta, Marco; Salgado, Marcelo
2016-05-01
In this paper we propose information theoretic and interferometric techniques to detect the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-\\tfrac{1}{2} qubits moving in equatorial circular orbits. We ignore the { O }({\\hslash }) order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-\\tfrac{1}{2} particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle’s trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose’s cosmic censorship hypothesis. Finally we propose how the Wigner rotation strictly due to frame dragging could be observed using interferometry and other quantum metrology techniques.
Stable photon orbits in stationary axisymmetric electrovacuum spacetimes
Dolan, Sam R
2016-01-01
We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we classify the equatorial circular photon orbits of Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordstr\\"om di-holes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a torus around a di-hole, via a selection of Poincar\\'e sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electrovacuum; but not in pure vacuum.
A refined orbit for the satellite of asteroid (107) Camilla
Pajuelo, Myriam Virginia; Carry, Benoit; Vachier, Frederic; Berthier, Jerome; Descamp, Pascal; Merline, William J.; Tamblyn, Peter M.; Conrad, Al; Storrs, Alex; Margot, Jean-Luc; Marchis, Frank; Kervella, Pierre; Girard, Julien H.
2015-11-01
The satellite of the Cybele asteroid (107) Camilla was discovered in March 2001 using the Hubble Space Telescope (Storrs et al., 2001, IAUC 7599). From a set of 23 positions derived from adaptive optics observations obtained over three years with the ESO VLT, Keck-II and Gemini-North telescopes, Marchis et al. (2008, Icarus 196) determined its orbit to be nearly circular.In the new work reported here, we compiled, reduced, and analyzed observations at 39 epochs (including the 23 positions previously analyzed) by adding additional observations taken from data archives: HST in 2001; Keck in 2002, 2003, and 2009; Gemini in 2010; and VLT in 2011. The present dataset hence contains twice as many epochs as the prior analysis and covers a time span that is three times longer (more than a decade).We use our orbit determination algorithm Genoid (GENetic Orbit IDentification), a genetic based algorithm that relies on a metaheuristic method and a dynamical model of the Solar System (Vachier et al., 2012, A&A 543). The method uses two models: a simple Keplerian model to minimize the search-time for an orbital solution, exploring a wide space of solutions; and a full N-body problem that includes the gravitational field of the primary asteroid up to 4th order.The orbit we derive fits all 39 observed positions of the satellite with an RMS residual of only milli-arcseconds, which corresponds to sub-pixel accuracy. We found the orbit of the satellite to be circular and roughly aligned with the equatorial plane of Camilla. The refined mass of the system is (12 ± 1) x 10^18 kg, for an orbital period of 3.71 days.We will present this improved orbital solution of the satellite of Camilla, as well as predictions for upcoming stellar occultation events.
Sato, Bun'ei; Liu, Yu-Juan; Zhao, Gang; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Wittenmyer, Robert A; Butler, Paul; Song, Nan; He, Wei; Zhao, Fei; Kambe, Eiji; Noguchi, Kunio; Ando, Hiroyasu; Izumiura, Hideyuki; Okada, Norio; Yoshida, Michitoshi; Takeda, Yoichi; Itoh, Yoichi; Kokubo, Eiichiro; Ida, Shigeru
2016-01-01
We report the detection of a double planetary system around the evolved intermediate-mass star HD 47366 from precise radial-velocity measurements at Okayama Astrophysical Observatory, Xinglong Station, and Australian Astronomical Observatory. The star is a K1 giant with a mass of 1.81+-0.13M_sun, a radius of 7.30+-0.33R_sun, and solar metallicity. The planetary system is composed of two giant planets with minimum mass of 1.75^{+0.20}_{-0.17}Mjup and 1.86^{+0.16}_{-0.15}Mjup, orbital period of 363.3^{+2.5}_{-2.4} d and 684.7^{+5.0}_{-4.9} d, and eccentricity of 0.089^{+0.079}_{-0.060} and 0.278^{+0.067}_{-0.094}, respectively, which are derived by a double Keplerian orbital fit to the radial-velocity data. The system adds to the population of multi-giant-planet systems with relatively small orbital separations, which are preferentially found around evolved intermediate-mass stars. Dynamical stability analysis for the system revealed, however, that the best-fit orbits are unstable in the case of a prograde conf...
2003-01-01
Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...
Equatorial oceanography. [review of research
Cane, M. A.; Sarachik, E. S.
1983-01-01
United States progress in equatorial oceanography is reviewed, focusing on the low frequency response of upper equatorial oceans to forcing by the wind. Variations of thermocline depth, midocean currents, and boundary currents are discussed. The factors which determine sea surface temperature (SST) variability in equatorial oceans are reviewed, and the status of understanding of the most spectacular manifestation of SST variability, the El Nino-Southern Oscillation phenomenon, is discussed. The problem of observing surface winds, regarded as a fundamental factor limiting understanding of the equatorial oceans, is addressed. Finally, an attempt is made to identify those current trends which are expected to bear fruit in the near and distant future.
The quantum spectra analysis of the circular billiards in wells
Institute of Scientific and Technical Information of China (English)
Zhang Yan-Hui; Zhang Li-Qin; Xu Xue-You; Ge Mei-Hua; Lin Sheng-Lu; Du Meng-Li
2006-01-01
We use a recently defined quantum spectral function and apply the method of closed-orbit theory to the 2D circular billiard system. The quantum spectra contain rich information of all classical orbits connecting two arbitrary points in the well. We study the correspondence between quantum spectra and classical orbits in the circular, 1/2 circular and 1/4 circular wells using the analytic and numerical methods. We find that the peak positions in the Fourier-transformed quantum spectra match accurately with the lengths of the classical orbits. These examples show evidently that semi-classical method provides a bridge between quantum and classical mechanics.
International Nuclear Information System (INIS)
The document summarizes the Information Circulars published by the IAEA under the symbol INFCIRC/ for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A complete list of INFCIRCs in numerical order with their titles is given in the Annex
Division des ressources humaines
2000-01-01
N° 2 (Rev. 1) - March 2000Guidelines and procedures concerning recruitment and probation period of staff membersN° 9 (Rev. 2) - March 2000Staff members contractsN° 16 (Rev. 2) - January 2000TrainingN° 30 (Rev. 1) - January 2000Indemnities and reimbursements upon taking up appointment and termination of contractN° 32 - February 2000Principles and procedures governing complaints of harassmentThese circular have been amended (No 2, N° 9, N° 16 and N° 30) or drawn up (N° 32).Copies are available in the Divisional Secretariats.Note:\tAdministrative and operational circulars, as well as the lists of those in force, are available for consultation in the server SRV4_Home in the Appletalk zone NOVELL (as GUEST or using your Novell username and password), volume PE Division Data Disk.The Word files are available in the folder COM, folder Public, folder ADM.CIRC.docHuman Resources DivisionTel. 74128
The equations of relative motion in the orbital reference frame
Casotto, Stefano
2016-03-01
The analysis of relative motion of two spacecraft in Earth-bound orbits is usually carried out on the basis of simplifying assumptions. In particular, the reference spacecraft is assumed to follow a circular orbit, in which case the equations of relative motion are governed by the well-known Hill-Clohessy-Wiltshire equations. Circular motion is not, however, a solution when the Earth's flattening is accounted for, except for equatorial orbits, where in any case the acceleration term is not Newtonian. Several attempts have been made to account for the J_2 effects, either by ingeniously taking advantage of their differential effects, or by cleverly introducing ad-hoc terms in the equations of motion on the basis of geometrical analysis of the J_2 perturbing effects. Analysis of relative motion about an unperturbed elliptical orbit is the next step in complexity. Relative motion about a J_2-perturbed elliptic reference trajectory is clearly a challenging problem, which has received little attention. All these problems are based on either the Hill-Clohessy-Wiltshire equations for circular reference motion, or the de Vries/Tschauner-Hempel equations for elliptical reference motion, which are both approximate versions of the exact equations of relative motion. The main difference between the exact and approximate forms of these equations consists in the expression for the angular velocity and the angular acceleration of the rotating reference frame with respect to an inertial reference frame. The rotating reference frame is invariably taken as the local orbital frame, i.e., the RTN frame generated by the radial, the transverse, and the normal directions along the primary spacecraft orbit. Some authors have tried to account for the non-constant nature of the angular velocity vector, but have limited their correction to a mean motion value consistent with the J_2 perturbation terms. However, the angular velocity vector is also affected in direction, which causes precession
Marcotte, Florence; Soward, Andrew
2016-01-01
The steady incompressible viscous flow in the wide gap between spheres rotating about a common axis at slightly different rates (small Ekman number E) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the limit E<<1, was undertaken by Stewartson (J. Fluid Mech. 1966, vol. 26, pp. 131-144). The mainstream flow, exterior to the E^{1/2} Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder C, is geostrophic. Stewartson identified a complicated nested layer structure on C, which comprises relatively thick quasi-geostrophic E^{2/7} (inside C) and E^{1/4} (outside C) layers. They embed a thinner E^{1/3} ageostrophic shear layer (on C), which merges with the inner sphere Ekman layer to form the E^{2/5} Equatorial Ekman layer of axial length E^{...
Johnson-McDaniel, Nathan K
2014-01-01
(Abridged) High-order terms in the post-Newtonian (PN) expansions of various quantities for compact binaries exhibit a combinatorial increase in complexity, including ever-increasing numbers of transcendentals. Here we consider the gravitational wave energy flux at infinity from a point particle in a circular orbit around a Schwarzschild black hole, which is known to 22PN beyond the lowest-order Newtonian prediction, at which point each order has over 1000 terms. We introduce a factorization that considerably simplifies the spherical harmonic modes of the energy flux (and thus also the amplitudes of the spherical harmonic modes of the gravitational waves); it is likely that much of the complexity this factorization removes is due to curved-space wave propagation (e.g., tail effects). For the modes with azimuthal number l of 7 or greater, this factorization reduces the expressions for the modes that enter the 22PN total energy flux to pure integer PN series with rational coefficients, which amounts to a reduct...
Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft
Genova, A. L.
2014-01-01
This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.
Equatorial Oscillations in Jupiter's and Saturn's Atmospheres
Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.
2011-01-01
Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind
Utilizing Solar Power Technologies for On-Orbit Propellant Production
Fikes, John C.; Howell, Joe T.; Henley, Mark W.
2006-01-01
The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight
Equatorial enhancement of the nighttime OH mesospheric infrared airglow
Baker, D. J.; Thurgood, B. K.; Harrison, W. K.; Mlynczak, M. G.; Russell, J. M.
2007-05-01
Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (Δv=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings.
Equatorial enhancement of the nighttime OH mesospheric infrared airglow
Energy Technology Data Exchange (ETDEWEB)
Baker, D J [Utah State University, EL-302, Logan, UT 84322-4140 (United States); Thurgood, B K [Utah State University, EL-302, Logan, UT 84322-4140 (United States); Harrison, W K [Utah State University, EL-302, Logan, UT 84322-4140 (United States); Mlynczak, M G [NASA Langley Research Center, Mail Stop 401-B, Hampton, VA 23665-5225 (United States); Russell, J M [Center for Atmospheric Sciences, Hampton University, 23 Tyler Street Hampton, VA 23668 (United States)
2007-05-15
Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH ({delta}v=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O{sub 3} is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings.
Calculation of radiation reaction effect on orbital parameters in Kerr spacetime
Sago, Norichika
2015-01-01
We calculate the secular changes of the orbital parameters of a point particle orbiting a Kerr black hole, due to the gravitational radiation reaction. For this purpose, we use the post-Newtonian (PN) approximation in the first order black hole perturbation theory, with the expansion with respect to the orbital eccentricity. In this work, the calculation is done up to the fourth post-Newtonian (4PN) order and to the sixth order of the eccentricity, including the effect of the absorption of gravitational waves by the black hole. We confirm that, in the Kerr case, the effect of the absorption appears at the 2.5PN order beyond the leading order in the secular change of the particle's energy and may induce a superradiance, as known previously for circular orbits. In addition, we find that the superradiance may be suppressed when the orbital plane inclines with respect to the equatorial plane of the central black hole. We also investigate the accuracy of the 4PN formulae by comparing to numerical results. If we re...
Directory of Open Access Journals (Sweden)
R. C. Domingos
2013-01-01
Full Text Available The equations for the variations of the Keplerian elements of the orbit of a spacecraft perturbed by a third body are developed using a single average over the motion of the spacecraft, considering an elliptic orbit for the disturbing body. A comparison is made between this approach and the more used double averaged technique, as well as with the full elliptic restricted three-body problem. The disturbing function is expanded in Legendre polynomials up to the second order in both cases. The equations of motion are obtained from the planetary equations, and several numerical simulations are made to show the evolution of the orbit of the spacecraft. Some characteristics known from the circular perturbing body are studied: circular, elliptic equatorial, and frozen orbits. Different initial eccentricities for the perturbed body are considered, since the effect of this variable is one of the goals of the present study. The results show the impact of this parameter as well as the differences between both models compared to the full elliptic restricted three-body problem. Regions below, near, and above the critical angle of the third-body perturbation are considered, as well as different altitudes for the orbit of the spacecraft.
Circularity and Lambda Abstraction
DEFF Research Database (Denmark)
Danvy, Olivier; Thiemann, Peter; Zerny, Ian
2013-01-01
In this tribute to Doaitse Swierstra, we present the rst transformation between lazy circular programs a la Bird and strict cir- cular programs a la Pettorossi. Circular programs a la Bird rely on lazy recursive binding: they involve circular unknowns and make sense equa- tionally. Circular...... unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...
LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation
1988-01-01
The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.
Satellites orbits and missions
Capderou, Michel
2006-01-01
Introduction Keplerian motion 1.1 Preamble 1.2 Acceleration 1.3 Central acceleration 1.4 Newtonian acceleration 1.5 Keplerian motion : trajectory and period 1.6 The three anomalies 1.7 Representation of the anomalies 1.8 Integrals of motion 1.9 Historical note on universal attraction 1.10 Annex : Ellipses Satellites on keplerian orbit 2.1 Gravitational field 2.2 The N-body and the two-body problem 2.3 Orbital parameters 2.4 Case of quasi-circular orbits 2.5 Keplerian period Satellites on real o
ORBITS, MASSES, AND EVOLUTION OF MAIN BELT TRIPLE (87) SYLVIA
Energy Technology Data Exchange (ETDEWEB)
Fang, Julia; Margot, Jean-Luc [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Rojo, Patricio [Departamento de Astronomia, Universidad de Chile, Santiago (Chile)
2012-08-15
Sylvia is a triple asteroid system located in the main belt. We report new adaptive optics observations of this system that extend the baseline of existing astrometric observations to a decade. We present the first fully dynamical three-body model for this system by fitting to all available astrometric measurements. This model simultaneously fits for individual masses, orbits, and primary oblateness. We find that Sylvia is composed of a dominant central mass surrounded by two satellites orbiting at 706.5 {+-} 2.5 km and 1357 {+-} 4.0 km, i.e., about 5 and nearly 10 primary radii. We derive individual masses of 1.484{sup +0.016}{sub -0.014} Multiplication-Sign 10{sup 19} kg for the primary (corresponding to a density of 1.29 {+-} 0.39 g cm{sup -3}), 7.33{sup +4.7}{sub -2.3} Multiplication-Sign 10{sup 14} kg for the inner satellite, and 9.32{sup +20.7}{sub -8.3} Multiplication-Sign 10{sup 14} kg for the outer satellite. The oblateness of the primary induces substantial precession and the J{sub 2} value can be constrained to the range of 0.0985-0.1. The orbits of the satellites are relatively circular with eccentricities less than 0.04. The spin axis of the primary body and the orbital poles of both satellites are all aligned within about 2 deg of each other, indicating a nearly coplanar configuration and suggestive of satellite formation in or near the equatorial plane of the primary. We also investigate the past orbital evolution of the system by simulating the effects of a recent passage through 3:1 mean-motion eccentricity-type resonances. In some scenarios this allow us to place constraints on interior structure and past eccentricities.
Institute of Scientific and Technical Information of China (English)
SHEN Guo-quan; XIAO Yuan-chun
2003-01-01
@@ "Mo" literally means "rubbing between two things"and "eliminating". Circular-rubbing is one of the earliest manipulations used in clinical practice. Circular-rubbing differs from pressing actually. Pressing is a static manipulation and acts to inhibit motion; circular-rubbing is a movable manipulation and serves to eliminate stationary. Circular-rubbing can be performed by either the palm or the finger.
Optimal Broadcasting of Mixed Equatorial Qubits
International Nuclear Information System (INIS)
We derive an optimal 2 → M phase-covariant quantum broadcasting of mixed equatorial qubits. This quantum broadcasting is optimal in the sense that the shrinking factor between the input and the output single qubit achieves the upper bound. The result shows that we can copy two identical mixed equatorial qubits with the same quality as those of two identical pure equatorial states. (general)
Optimal Broadcasting of Mixed Equatorial Qubits
Institute of Scientific and Technical Information of China (English)
YU Zong-Wen
2009-01-01
We derive an optimal 2→M phase-covariant quantum broadcasting of mixed equatorial qubits.This quantum broadcasting is optimal in the sense that the shrinking factor between the input and the output single qubit achieves the upper bound.The result shows that we can copy two identical mixed equatorial qubits with the same quality as those of two identical pure equatorial states.
Aerosol Transport Over Equatorial Africa
Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.
1999-01-01
Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El
Orbital maneuvers and space rendezvous
Butikov, Eugene I.
2015-12-01
Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.
Radio wave scintillations at equatorial regions
Poularikas, A. D.
1972-01-01
Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.
Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes
Hayasaki, Kimitake; Loeb, Abraham
2015-01-01
We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precurso...
Quantum cloning machines for equatorial qubits
Fan, Heng; Matsumoto, Keiji; Wang, Xiang-Bin; Wadati, Miki
2001-01-01
Quantum cloning machines for equatorial qubits are studied. For the case of 1 to 2 phase-covariant quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion. The optimal 1 to M phase-covariant quantum cloning transformations are given.
PUBLICATION OF ADMINISTRATIVE CIRCULAR
HR Department
2008-01-01
ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003
Publication of administrative circular
HR Department
2009-01-01
ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003
Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.
2016-07-01
We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.
Orbit selection for a Mars geoscience/climatology orbiter
Uphoff, C.
1984-01-01
This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.
Stable Bound Orbits around Black Rings
Energy Technology Data Exchange (ETDEWEB)
Igata, Takahisa; Ishihara, Hideki; Takamori, Yohsuke, E-mail: igata@sci.osaka-cu.ac.jp [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan)
2011-09-22
We study stable bound orbits of a free particle around a black ring. Unlike the higher-dimensional black hole case, we find that there exist stable bound orbits in toroidal spiral shape near the ring axis and stable circular orbits on the axis. In addition, radii of stable bound orbits can be infinitely large if the ring thickness is less than a critical value.
DEFF Research Database (Denmark)
Hansen, Lennard Højbjerg
2014-01-01
It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...
Vertical cloud structure of Jupiter's equatorial plumes
Stoker, C. R.; Hord, C.
1985-01-01
Multiple-scattering radiative transfer calculations were used to deduce the vertical cloud structure (VCS) of Jupiter's equatorial region. The VCS model of the equatorial plumes is obtained through an analysis of Voyager images of the 6190-A methane band and the 6000-A continuum, and ground-based 8900-A methane band images. The VCS of the equatorial plumes is found to be consistent with the hypothesis that the plumes are caused by upwelling at the ammonia condensation level produced by buoyancy due to latent heat release from the condensation of water clouds nearly three scale heights below the plumes.
Circularly symmetric light scattering from nanoplasmonic spirals.
Trevino, Jacob; Cao, Hui; Dal Negro, Luca
2011-05-11
In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors. PMID:21466155
Perfect Circular Dichroic Metamirrors
Wang, Zuojia; Liu, Yongmin
2015-01-01
In nature, the beetle Chrysina gloriosa derives its iridescence by selectively reflecting left-handed circularly polarized light only. Here, for the first time, we introduce and demonstrate the optical analogue based on an ultrathin metamaterial, which we term circular dichroic metamirror. A general method to design the circular dichroic metasmirror is presented under the framework of Jones calculus. It is analytically shown that the metamirror can be realized by two layers of anisotropic metamaterial structures, in order to satisfy the required simultaneous breakings of n-fold rotational (n>2) and mirror symmetries. We design an infrared metamirror, which shows perfect reflectance for left-handed circularly polarized light without reversing its handedness, while almost completely absorbs right-handed circularly polarized light. These findings offer new methodology to realize novel chiral optical devices for a variety of applications, including polarimetric imaging, molecular spectroscopy, as well as quantum ...
Circular features with predictable size on Xanadu region of Titan
Kochemasov, G. G.
2008-09-01
first time the larger modulated granules were reported in pre-Cassini era in the Hubble ST images [5] (Fig. 2, 3). Titan rather extensively studied by imaging systems and radar presents now a good example of the wave modulations. It has two orbiting frequencies: around Sun -1/30 years, around Saturn -1/16 days. The corresponding main granule sizes are 7.5πR and πR/91, or 60641 and 88 km, the former size is too large to be directly observed (its wave probably influences only the whole shape of the satellite) and the latter is visible in the near IR image PIA06154 as chains and grids of hollows (about 70 to 100 km across) at intersections of crosscutting tight lineations covering the whole Titan's surface. This mode of granulation is also clearly presented in PIA03567. The modulated side frequencies give granules 662 and 12 km across (πR/12 and πR/667). Both sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [5]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10- 20 km covering mainly smooth dark equatorial parts of the satellite. Thus, three granule sizes (662, 88, 12 km) are detected on Titan's surface by imaging from various distances and using different wave diapasons. The Xanadu water ice mountaneous equatorial area was imaged by radar on May 12, 2008 (Fig. 4, PIA10654). Three prominent ridges trending west-to-east are spaced about 25 km apart. In many places of the image are seen not very clear but discernable roundish spots about 10 to 20 km in diameter. Sometimes they are arranged in a row touching each other as in the area between two upper ridges. The best visible darkest spot at bottom center is about 20 km in diameter and shows polygonal outlines as do some other circular spots. Such structures could be interpreted as a
THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF HOT JUPITERS ON HIGHLY ECCENTRIC ORBITS
Energy Technology Data Exchange (ETDEWEB)
Kataria, T.; Showman, A. P.; Lewis, N. K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, M. S.; Freedman, R. S., E-mail: tkataria@lpl.arizona.edu [NASA Ames Research Center 245-3, Moffett Field, CA 94035 (United States)
2013-04-10
Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has major implications for the planet's atmospheric dynamical regime. However, little is known about the fundamental dynamical regime of such planetary atmospheres, and how it may influence the observations of these planets. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model (the MITgcm) with a plane-parallel, two-stream, non-gray radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. As in Showman and Polvani, we show that the day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. We find that as the eccentricity and/or stellar flux is increased (corresponding to shorter orbital periods), the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit light curves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) light curves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large temperature differences from dayside to nightside and rapid rotation rates, we find that the light curves can exhibit 'ringing' as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric
Importance of Large-Scale Wave Structure to Equatorial Spread F
Tsunoda, R. T.
2008-12-01
There is mounting evidence that large-scale wave structure (LSWS) is a more direct precursor of equatorial spread F (ESF) than the post-sunset rise (PSSR) of the equatorial F layer. Unambiguous experimental evidence, though limited, come from measurements by ALTAIR, a fully steerable incoherent-scatter radar, in situ measurements by low-altitude satellites in low-inclination orbits (AE-E, San Marco D), and total electron content measurements using satellites in low-inclination orbits. Less direct evidence is contained in seemingly extraneous traces in equatorial ionograms, which appear to be associated with LSWS and ESF. Clearly, a demonstration that these traces are indeed a direct consequence of LSWS is pivotal because such a demonstration would allow use of the extensive database of equatorial ionograms that exists to argue conclusively that LSWS is a central player in ESF generation. A demonstration of this kind will be presented, together with a description of experiments proposed for the Pacific sector, which involve the C/NOFS satellite, and how they will increase substantially our understanding of LSWS and ESF.
Lux in obscuro: Photon Orbits of Extremal Black Holes Revisited
Khoo, Fech Scen
2016-01-01
It has been shown in the literature that the event horizon of an asymptotically flat extremal Reissner-Nordstr\\"om black hole is also a stable photon sphere. We further clarify this statement and give a general proof that this holds for a large class of static spherically symmetric black hole spacetimes with an extremal horizon. In contrast, an asymptotically flat extremal Kerr black hole has an unstable photon orbit on the equatorial plane of its horizon. In addition, we show that an asymptotically flat extremal Kerr-Newman black hole exhibits two equatorial photon orbits if $a M/2$, there is only one equatorial photon orbit, located on the extremal horizon, and it is unstable. There can be no photon orbit on the horizon of a non-extremal Kerr-Newman black hole.
Harmonically excited orbital variations
International Nuclear Information System (INIS)
Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs
Pewsey, Arthur; Ruxton, Graeme D
2013-01-01
Circular Statistics in R provides the most comprehensive guide to the analysis of circular data in over a decade. Circular data arise in many scientific contexts whether it be angular directions such as: observed compass directions of departure of radio-collared migratory birds from a release point; bond angles measured in different molecules; wind directions at different times of year at a wind farm; direction of stress-fractures in concretebridge supports; longitudes of earthquake epicentres or seasonal and daily activity patterns, for example: data on the times of day at which animals are c
Optical and photometric studies of Earth orbiting small space objects
Selim, I. M.; El-Hameed, Afaf M. Abd; Bakhtigaraev, N. S.; Attia, Gamal F.
2016-03-01
Variations of light curves for space objects are investigated. Optical observations and photometric measurements for small space debris on highly elliptical orbits (HEO) and geostationary orbits (GEO) are used to determine their orbital parameters. Light curves of small space debris with various area-to-mass ratios and orbital characteristics are discussed. Tracking of some objects shows very rapid brightness variations related to perturbations of the orbital parameters. Changes in brightness and equatorial coordinates of the studied objects are found in observational data. Our results allow improving the accuracy of space debris orbital elements.
The effect of non-migrating tides on the equatorial electrojet
Hermann Lühr; Martin Rother; Häusler, K.; Alken, P.; Maus, S.
2008-01-01
The climatological model of the equatorial electrojet, EEJM-1, derived from Ørsted, CHAMP and SAC-C satellite measurements [Alken and Maus, 2007] provides the opportunity to investigate the longitudinal variation of the current strength in detail. Special emphasis is put in this paper on the effect of non-migrating tides. We have found that the influence of the diurnal eastward propagating mode with wavenumber 3, DE3, is particularly strong. In polar orbiting satellite observations the DE3 ti...
Onset of chaos in orbital pilot-wave dynamics
Tambasco, Lucas; Harris, Daniel; Oza, Anand; Rosales, Rodolfo; Bush, John
2015-11-01
We examine the orbital dynamics of droplets self-propelling along the surface of a vibrating bath. Circular orbital motion may arise when the walking droplet is subjected to one of three external force fields, the Coriolis force, a simple harmonic force, and a Coulomb force. Particular attention is given to a theoretical characterization of the onset of chaos that accompanies the destabilization of such circular orbits.
Compact waveguide circular polarizer
Energy Technology Data Exchange (ETDEWEB)
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
Application of circular polarized synchrotron radiation
International Nuclear Information System (INIS)
The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)
Application of two special orbits in the orbit determination of lunar satellites
International Nuclear Information System (INIS)
Using inter-satellite range data, the combined autonomous orbit determination problem of a lunar satellite and a probe on some special orbits is studied in this paper. The problem is firstly studied in the circular restricted three-body problem, and then generalized to the real force model of the Earth-Moon system. Two kinds of special orbits are discussed: collinear libration point orbits and distant retrograde orbits. Studies show that the orbit determination accuracy in both cases can reach that of the observations. Some important properties of the system are carefully studied. These findings should be useful in the future engineering implementation of this conceptual study
Equatorially coordinated lanthanide single ion magnets.
Zhang, Peng; Zhang, Li; Wang, Chao; Xue, Shufang; Lin, Shuang-Yan; Tang, Jinkui
2014-03-26
The magnetic relaxation dynamics of low-coordinate Dy(III) and Er(III) complexes, namely three-coordinate ones with an equatorially coordinated triangle geometry and five-coordinate ones with a trigonal bipyramidal geometry, have been exploited for the first time. The three-coordinate Er-based complex is the first equatorially coordinated mononuclear Er-based single-molecule magnet (SMM) corroborating that simple models can effectively direct the design of target SMMs incorporating 4f-elements. PMID:24625001
The orbital evolution of planets in disks
Kley, Wilhelm
2000-01-01
The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about ...
A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn
Meeks, Zachary; Simon, Sven; Kabanovic, Slawa
2016-09-01
We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.
Wiimote Experiments: Circular Motion
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-01-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…
Equatorial Guinea : Public Investment Management Review
Munoz Moreno, Rafael
2009-01-01
The chapter offers concise diagnostics of the public investment management (PIM) system in Equatorial Guinea. It provides specific examples of how underperforming institutions throughout the investment process raise the risk of selecting white elephants, reducing the value for money of investment projects and undermining the quality of completed projects. Politically compatible recommendat...
Variability in equatorial foF2
International Nuclear Information System (INIS)
Investigation on the variability of foF2 at an equatorial station in the African continent was undertaken. The analysis included diurnal, seasonal and solar cycle effects on both absolute and relative variability. The trends in the behavior of absolute variability are different from those of relative variability. (author)
Variability of TEC over an equatorial station
International Nuclear Information System (INIS)
Variability in TEC obtained by the Faraday rotation technique at an equatorial station is investigated. Diurnal, seasonal and solar cycle effects were observed. Both absolute and relative variability were considered. The trend of variations in absolute variability is completely different from those of relative variability. (author)
Coccolithophores in the equatorial Atlantic Ocean
DEFF Research Database (Denmark)
Kinkel, Hanno; Baumann, K.-H.; Cepek, M.
2000-01-01
The present study was initiated to ascertain the significance of coccolithophores as a proxy for paleoceanographic and paleoproductivity studies in the equatorial Atlantic. Data from a range of different samples, from the plankton, surface sediments as well as sediment cores are shown and compare...
Rapid Calculation of Equatorial Rotation Curves
Kochanek, C. S.
2001-01-01
We derive a simple, fast one-dimensional integral for the equatorial rotation curve of a thin disk with surface density Sigma(R) modeled as a spheroid with axis ratio q. The result is simpler than standard expressions even in the limit of an infinitely thin disk (q-->0).
The Apsidal Precession for Low Earth Sun Synchronized Orbits
Directory of Open Access Journals (Sweden)
Shkelzen Cakaj
2015-09-01
Full Text Available By nodal regression and apsidal precession, the Earth flattering at satellite low Earth orbits (LEO is manifested. Nodal regression refers to the shift of the orbit’s line of nodes over time as Earth revolves around the Sun. Nodal regression is orbit feature utilized for circular orbits to be Sun synchronized. A sun¬-synchronized orbit lies in a plane that maintains a fixed angle with respect to the Earth-Sun direction. In the low Earth Sun synchronized circular orbits are suited the satellites that accomplish their photo imagery missions. Nodal regression depends on orbital altitude and orbital inclination angle. For the respective orbital altitudes the inclination window for the Sun synchronization to be attained is determined. The apsidal precession represents major axis shift, respectively the argument of perigee deviation. The apsidal precession simulation, for inclination window of sun synchronized orbital altitudes, is provided through this paper.
Equatorial scintillations: advances since ISEA-6
Basu, Sunanda; Basu, Santimay
1985-10-01
Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities. The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope ( p1
Fukao, S.; Yokoyama, T; T. Tayama; Yamamoto, M.; Maruyama, T.; Saito, S.
2006-01-01
The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam obs...
Fukao, S.; Yokoyama, T; T. Tayama; Yamamoto, M.; Maruyama, T.; Saito, S.
2006-01-01
The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with t...
OH Airglow and Equatorial Variations Observed by ISUAL Instrument on Board the FORMOSAT 2 Satellite
Directory of Open Access Journals (Sweden)
Jan-Bai Nee
2010-01-01
Full Text Available OH airglow observed by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning instrument on board the FORMOSAT 2 satellite is reported in this paper. The satellite is sun-synchronous and it returns to the same orbit at the same local time daily. By using this property, we can study the upper atmosphere in detail. With a CCD camera, ISUAL has measured the emission layers of OH Meinel band at 630 nm for several two-week periods in 2004 and 2007 in equatorial regions. ISUAL images are snapshots of the atmosphere 250 km (height _ 1200 km (horizontal distance. These images of OH airglow are analyzed to derive its peak height and latitudinal variations. ISUAL observation is unique in its capability of continuous observation of the upper atmosphere as the satellite travels from south to north along a specific orbit. However, 630 nm filter also measured O(1D at 200 km, and there are interferences between O(1D and OH airglows as as observed from a distance in space. We have studied the overlap of two airglows by simulations, and our final analyses show that OH airglow can be correctly derived with its average peak height of 89 _ 2.1 km usually lying within _ latitude about the equator. ISUAL data reveal detailed structures of equatorial OH airglow such as the existences of a few secondary maxima within the equatorial regions, and the oscillations of the peak latitudes. These results are discussed and compared with previous reports.
... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duaneâ€™s ...
Nagasawa, M; Ida, S.; Bessho, T
2008-01-01
We have investigated the formation of close-in extrasolar giant planets through a coupling effect of mutual scattering, Kozai mechanism, and tidal circularization, by orbital integrations. We have carried out orbital integrations of three planets with Jupiter-mass, directly including the effect of tidal circularization. We have found that in about 30% runs close-in planets are formed, which is much higher than suggested by previous studies. We have found that Kozai mechanism by outer planets ...
Seasonal-longitudinal variability of equatorial plasma bubbles
Directory of Open Access Journals (Sweden)
W. J. Burke
2004-09-01
Full Text Available We compare seasonal and longitudinal distributions of more than 8300 equatorial plasma bubbles (EPBs observed during a full solar cycle from 1989-2000 with predictions of two simple models. Both models are based on considerations of parameters that influence the linear growth rate, γ_{RT}, of the generalized Rayleigh-Taylor instability in the context of finite windows of opportunity available during the prereversal enhancement near sunset. These parameters are the strength of the equatorial magnetic field, B_{eq}, and the angle, α, it makes with the dusk terminator line. The independence of α and B_{eq} from the solar cycle phase justifies our comparisons.
We have sorted data acquired during more than 75000 equatorial evening-sector passes of polar-orbiting Defense Meteorological Satellite Program (DMSP satellites into 24 longitude and 12 one-month bins, each containing ~250 samples. We show that: (1 in 44 out of 48 month-longitude bins EPB rates are largest within 30 days of when α=0°; (2 unpredicted phase shifts and asymmetries appear in occurrence rates at the two times per year when α≈0°; (3 While EPB occurrence rates vary inversely with B_{eq}, the relationships are very different in regions where B_{eq} is increasing and decreasing with longitude. Results (2 and (3 indicate that systematic forces not considered by the two models can become important. Damping by interhemispheric winds appears to be responsible for phase shifts in maximum rates of EPB occurrence from days when α=0°. Low EPB occurrence rates found at eastern Pacific longitudes suggest that radiation belt electrons in the drift loss cone reduce γ_{RT} by enhancing E-layer Pedersen conductances. Finally, we analyze an EPB event observed during a magnetic storm at a time and place where α≈-27°, to illustrate how electric-field penetration from
WHIPPO. WALTER B.; Rohrkaste, G. R.; Miller, John E.
1989-01-01
Shape gauge and associated computer constitute system measuring deviations of large cylinders from roundness. Shaped and held somewhat like crossbow, measures relative locations of three points on surface of large, round object. By making connected series of measurements around periphery technician using gauge determines deviation of object from perfect circularity. Used to measure straightness, roundness, or complicated shapes of such large geometrical objects as surfaces of aircraft and hulls of ships.
Bo, Pengbo
2011-07-01
The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.
Switchable circular beam deflectors
Shang, Xiaobing; Joshi, Pankaj; Tan, Jin-Yi; De Smet, Jelle; Cuypers, Dieter; Baghdasaryan, Tigran; Vervaeke, Michael; Thienpont, Hugo; De Smet, Herbert
2016-04-01
In this work, we report two types of electrically tunable photonic devices with circularly symmetric polarization independent beam steering performance (beam condensing resp. beam broadening). The devices consist of circular micro grating structures combined with nematic liquid crystal (LC) layers with anti-parallel alignment. A single beam deflector converts a polarized and monochromatic green laser beam (λ =543.5 nm) into a diffraction pattern, with the peak intensity appearing at the third order when 0~{{V}\\text{pp}} is applied and at the zeroth order (no deflection) for voltages above 30~{{V}\\text{pp}} . Depending on the shape of the grating structure (non-inverted or inverted), the deflection is inwards or outwards. Both grating types can be made starting from the same diamond-tooled master mold. A polarized white light beam is symmetrically condensed resp. broadened over 2° in the off state and is passed through unchanged in the on state. By stacking two such devices with mutually orthogonal LC alignment layers, polarization independent switchable circular beam deflectors are realized with a high transmittance (>80%), and with the same beam steering performance as the polarization dependent single devices.
Recollision with circular polarization
Mauger, Francois; Kamor, Adam; Bandrauk, Andre; Chandre, Cristel; Uzer, Turgay
2013-05-01
Since its identification in the 90s, the recollision scenario has revealed to be very helpful in explaining many phenomena in atomic and molecular systems subjected to strong and short laser pulses, and it is now at the core of the strong field physics and attosecond science. For linearly polarized laser fields, the recollision scenario has been able to explain nonsequential double ionization (NSDI), high harmonic generation (HHG) and laser induced diffraction (LIED), just to cite them. The same scenario also predicts the absence of recollision when the field is circularly polarized, therefore leading to the absence of NSDI, HHG or LIED. Recently, the influence of the ellipticity of the laser has drawn an increasing level of interest in the strong field community as it is seen as a way to control the electronic dynamics and, for instance, HHG. Using classical models, the common belief of the absence of recollision with circularly polarized laser fields has been proven wrong. In my talk I will present classical and quantum evidence of the presence of recollision with circular polarization. I will discuss the conditions under which such recollisions happen and what they imply.
Modelling a Circular Equatorial Test-particle in a Kerr Spacetime
Carré, J.; Porter, E. K.
2013-01-01
Extreme mass ratio inspirals are one of the principal sources of gravitational waves for future space-based detectors. They are interesting sources as they allow us to better understand the spacetime around a black hole. In order to measure the system parameters with high accuracy we need to have a very good model of the gravitational wave (GW) flux. For a test-pariticle, we use a post-newtonian (PN) approximation of the GW flux which is known up to 4 PN for the Kerr case, and up to 5.5 PN for the Schwarzschild case. The problem is that the PN series is asymptotically divergent. To improve the convergence of the series, re-summation methods such as Padé and Chebyshev approximations have been proposed. In this work we investigate to use a more complete post-newtonian flux, where we add the 5.5 PN Schwarzschild terms to the 4 PN Kerr terms. We also take into account the absorption of gravitational waves by the central black hole up to 5.5PN. We then compare this new flux with numerical fluxes using different re-summation methods for different spins and PN orders.
Earth orbiting technologies for understanding global change
Harris, Leonard A.; Johnston, Gordon I.; Hudson, Wayne R.; Couch, Lana M.
1989-01-01
This paper considers the technology requirements needed to support the Mission to Planet Earth concept, which will consist of several sun synchronous polar platforms; a series of low-earth orbit equatorial missions, such as Space Shuttle payloads, Space-Station-attached payloads, and the Explorer-class Earth Probes; and five geostationary platforms. In particular, the technology requirements in the areas of space-based observation, data/information, and spacecraft operation are examined.
Observational features of equatorial coronal hole jets
Nisticò, G.; V. Bothmer; S. Patsourakos; Zimbardo, G.
2010-01-01
Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet e...
Lageos orbit and solar eclipses
Rubincam, D. P.
1984-01-01
The objective was to assess the importance of solar eclipses on Lageos' orbit. Solar radiation pressure perturbs the orbit of the Lageos satellite. The GEODYN orbit determination computer program includes solar radiation pressure as one of the forces operating on the satellite as it integrates the orbit. GEODYN also takes into account the extinction of sunlight when Lageos moves into the Earth's shadow. The effect of solar eclipses on the semimajor axis of Lageos' orbit was computed analytically by assuming Lageos to be in a circular orbit, the Sun and the Moon to be in the plane of the orbit, and the Moon to be stationary in the sky in front of the Sun. Also, the magnitude of the radiation pressure is assumed to be linearly related to the angular separation of the Sun and Moon, and that Lageos is a perfect absorber of radiation. The computation indicates that an eclipse of the Sun by the Moon as seen by Lageos can affect the semimajor axis at the 1 centimeter (1 cm) level. Such a change is significant enough to include in GEODYN, in order to get an accurate orbit for Lageos.
Sunrise enhancement of equatorial vertical plasma drift
Liu, Libo; Zhang, Ruilong; Le, Huijun
2016-04-01
Sunrise enhancement in vertical plasma drift over equatorial regions is not discernible in the statistical picture compared with the significant enhancement during dusk hours. In this report, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag. Moreover, we will report the effects of the sunrise enhancement of vertical plasma drift on the equatorial ionosphere as indicated from the observations and model simulations. We thanks National Central University of Taiwan providing the ROCSAT-1 data. The Ap and F107 indices are obtained from the National Geophysical Data Center (http://spidr.ngdc.noaa.gov/spidr/). This research is supported by National Natural Science Foundation of China (41231065), the Chinese Academy of Sciences project (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604) and National Natural Science Foundation of China (41321003).
Maneuver Design Using Relative Orbital Elements
Spencer, David A.; Lovell, Thomas A.
2015-12-01
Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.
Orbit and spin evolution of synchronous binary stars on the main sequence
Institute of Scientific and Technical Information of China (English)
Lin-Sen Li
2012-01-01
A set of synchronous equations are derived from a set of non-synchronous equations.The analytical solutions are given by solving the set of differential equations.The results of the evolutionary trend of the spin-orbit interaction are that the semi-major axis gradually shrinks with time; the orbital eccentricity gradually decreases with time until orbital circularization occurs; the orbital period gradually shortens with time and the rotational angular velocity of the primary component gradually speeds up with time before the orbit achieves circularization.The theoretical results are applied to evolution of the orbit and spin of synchronous binary stars Algol A and B that are on the main sequence.The circularization time,lifetime and the evolutionary numerical solutions of orbit and spin when circularization time occurs are estimated for Algol A and B.
Gao, Steven; Zhu, Fuguo
2013-01-01
This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva
Antennas on circular cylinders
DEFF Research Database (Denmark)
Knudsen, H. L.
1959-01-01
antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...
Wang, Yue; Xu, Shijie
2016-07-01
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit-attitude coupling of the spacecraft. This gravitational orbit-attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.
Displaced geostationary orbit design using hybrid sail propulsion
Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.; Biggs, James D.
2011-01-01
Because of an increase in the number of geostationary spacecraft and the limits imposed by east–west spacing requirements, the geostationary orbit is becoming congested. To increase its capacity, this paper proposes to create new geostationary slots by displacing the geostationary orbit either out of or in the equatorial plane by means of hybrid solar sail and solar electric propulsion. To minimize propellant consumption, optimal steering laws for the solar sail and solar-electric...
Observations of the generation of eastward equatorial electric fields near dawn
Kelley, M. C.; Rodrigues, F. S.; Pfaff, R. F.; Klenzing, J.
2014-09-01
We report and discuss interesting observations of the variability of electric fields and ionospheric densities near sunrise in the equatorial ionosphere made by instruments onboard the Communications/Navigation Outage Forecasting System (C/NOFS) satellite over six consecutive orbits. Electric field measurements were made by the Vector Electric Field Instrument (VEFI), and ionospheric plasma densities were measured by Planar Langmuir Probe (PLP). The data were obtained on 17 June 2008, a period of solar minimum conditions. Deep depletions in the equatorial plasma density were observed just before sunrise on three orbits, for which one of these depletions was accompanied by a very large eastward electric field associated with the density depletion, as previously described by de La Beaujardière et al. (2009), Su et al. (2009) and Burke et al. (2009). The origin of this large eastward field (positive upward/meridional drift), which occurred when that component of the field is usually small and westward, is thought to be due to a large-scale Rayleigh-Taylor process. On three subsequent orbits, however, a distinctly different, second type of relationship between the electric field and plasma density near dawn was observed. Enhancements of the eastward electric field were also detected, one of them peaking around 3 mV m-1, but they were found to the east (later local time) of pre-dawn density perturbations. These observations represent sunrise enhancements of vertical drifts accompanied by eastward drifts such as those observed by the San Marco satellite (Aggson et al., 1995). Like the San Marco measurements, the enhancements occurred during winter solstice and low solar flux conditions in the Pacific longitude sector. While the evening equatorial ionosphere is believed to present the most dramatic examples of variability, our observations exemplify that the dawn sector can be highly variable as well.
Observations of the Geopause at the Equatorial Magnetopause: Density and Temperature
Chandler, M. O.; Moore, T. E.
2003-01-01
Magnetic flux tubes containing plasmaspheric ion density and composition have been observed in the region between the classical plasmapause and the magnetopause. New observations show that these ion distributions exist at the equatorial, post-noon magnetopause. Comparison to observations of similar distributions at geosynchronous orbit and to simulations leads to the conclusion that these ions are convected from these regions to the magnetopause. This represents an extension of the geopause to the outer edge of the magnetosphere on the dayside. The presence of ion densities > 10 cu cm in this region must have profound impact on the nature of plasma processes that occur there.
Modestino, Giuseppina
2016-01-01
The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.
Pi, Archimedes and circular splines
Sablonnière, Paul
2013-01-01
In the present paper, we give approximate values of $\\pi$ deduced from the areas of inscribed and circumscribed quadratic and cubic circular splines. Similar results on circular splines of higher degrees and higher approximation orders can be obtained in the same way. We compare these values to those obtained by computing the {\\em perimeters} of those circular splines. We observe that the former are much easier to compute than the latter and give results of the same order. It also appears tha...
Analysis of the Day Side Equatorial Anomaly
Shankar, Jayaprabha
2007-01-01
Equatorial Ionization Anomaly (EIA) is a region of peak plasma density found at ± 10 ◦ to 20 ◦ magnetic latitudes at F-region altitudes. In 2002, NASA launched the Global Ultra Violet Imager (GUVI), which can observe the EIA at various local times, longitudes, and seasons by the glow of the recombining electrons and ions in the plasma. This thesis presents the observations of the geomagnetic quiet time EIA and its global behavior at all local times using 1356 ˚A radiance data from high altitu...
An equatorial coronal hole at solar minimum
Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.
1997-01-01
The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.
Testing a class of non-Kerr metrics with hot spots orbiting SgrA*
Energy Technology Data Exchange (ETDEWEB)
Liu, Dan; Li, Zilong; Bambi, Cosimo, E-mail: danliu12@fudan.edu.cn, E-mail: zilongli@fudan.edu.cn, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China)
2015-01-01
SgrA*, the supermassive black hole candidate at the Galactic Center, exhibits flares in the X-ray, NIR, and sub-mm bands that may be interpreted within a hot spot model. Light curves and images of hot spots orbiting a black hole are affected by a number of special and general relativistic effects, and they can be potentially used to check whether the object is a Kerr black hole of general relativity. However, in a previous study we have shown that the relativistic features are usually subdominant with respect to the background noise and the model-dependent properties of the hot spot, and eventually it is at most possible to estimate the frequency of the innermost stable circular orbit. In this case, tests of the Kerr metric are only possible in combination with other measurements. In the present work, we consider a class of non-Kerr spacetimes in which the hot spot orbit may be outside the equatorial plane. These metrics are difficult to constrain from the study of accretion disks and indeed current X-ray observations of stellar-mass and supermassive black hole candidates cannot put interesting bounds. Here we show that near future observations of SgrA* may do it. If the hot spot is sufficiently close to the massive object, the image affected by Doppler blueshift is brighter than the other one and this provides a specific observational signature in the hot spot's centroid track. We conclude that accurate astrometric observations of SgrA* with an instrument like GRAVITY should be able to test this class of metrics, except in the more unlikely case of a small viewing angle.
Circular PVDF Airborne Transducer
Institute of Scientific and Technical Information of China (English)
JIAO Li-hua; XU Li-mei; HONG Hu
2007-01-01
With the required increased audio pressure of the parametric ultrasonic transducer array and the difficulty to theoretically analyse the complex ultrasonic structure in audio beam application, an computafionally efficient model is desired to describe the characteristic of the parametric ultrasonic transducer array for the system design and optimization. By applying the symmetry boundary conditions at the mid-plane in the thickness direction, a finite element model based on the half thickness simplification is presented to analyze the parametric circular transducer which is designed by gluing the poly Vinylidene fluoride film (PVDF). The validity of the proposed model is confirmed by a comparison of finite element aalysis results with the theoretical value and experimental data, which show that they are making a good agreement with each other.
Operational circular No. 1 (Rev. 1) – Operational circulars
HR Department
2011-01-01
Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office
Gravity Wave Seeding of Equatorial Plasma Bubbles
Singh, Sardul; Johnson, F. S.; Power, R. A.
1997-01-01
Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.
LF radio wave propagation at equatorial regions
Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick H. M.; Eichelberger, Hans; Schwingenschuh, Konrad
2016-04-01
We analyse night-side electric field observations recorded by the ICE experiment onboard the DEMETER micro-satellite. We show the presence of multiple spaced frequency bands between 30 kHz and 500 kHz, and sometimes in the range 3 MHz - 3.5 MHz, the upper frequency of the instrument. The frequency bandwidth is found to be less than 5 kHz and the time duration about several minutes. The frequency bands are recorded close to the equatorial plane, when the satellite latitudes extend between -05° and +05°. Particular enhancements occur at two geographical longitudes: 130°E and 160°W. Those LF radio waves may be associated to density irregularities in the equatorial region. These irregularities are occurring along the ray path between the emission source region and the satellite. We discuss in this study the locations where such frequency bands are generated, and we show that the observed spectral features may be comparable to the kilometric continuum radiation which is considered as a non-thermal radio emission.
Equatorial circulation and EUC variability during TACE
Brandt, P.; Hormann, V.; Fischer, J.; Bourlès, B.; Funk, A.
2009-04-01
The Tropical Atlantic Climate Experiment (TACE) envisioned by Fritz Schott and coauthors in their white paper represents a focused observational and modeling effort to enhance our understanding of Tropical Atlantic Climate Variability. During recent years, intense shipboard and moored observations were carried out within different national and international initiatives contributing to TACE. The current availability of a large number of cross-equatorial ship sections allows quantifying the mean flow structure in the equatorial Atlantic. Using these shipboard sections a mean westward weakening of the EUC and a westward strengthening of the SEUC from the western boundary toward the central Atlantic were found suggesting substantial recirculations between eastward and westward current bands. Such recirculations are confirmed by subsurface float trajectories. Velocity data from moored Acoustic Doppler current profilers that are deployed on the equator at 23°W between December 2001 and December 2002 as well as between February 2004 and February 2008 allow addressing the seasonal to interannual variability of the flow field along the equator. During the last mooring period from July 2006 to February 2008 additional moorings at 0.75°S and N were successfully deployed. The interannual EUC variability is discussed with respect to the interannual boreal summer cold tongue variability showing substantial variations of the sea surface temperature during recent years.
Fading of Jupiter's South Equatorial Belt
Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma
2011-01-01
One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.
Midday reversal of equatorial ionospheric electric field
Directory of Open Access Journals (Sweden)
R. G. Rastogi
Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.
Observational features of equatorial coronal hole jets
Directory of Open Access Journals (Sweden)
G. Zimbardo
2010-03-01
Full Text Available Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s^{−1}, while the deceleration rate appears to be about 0.11 km s^{−2}, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.
Implementing circularity using partial evaluation
DEFF Research Database (Denmark)
Lawall, Julia Laetitia
2001-01-01
Complex data dependencies can often be expressed concisely by defining a variable in terms of part of its own value. Such a circular reference can be naturally expressed in a lazy functional language or in an attribute grammar. In this paper, we consider circular references in the context of an...
DEFF Research Database (Denmark)
Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.;
2001-01-01
Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...
Circular chemiresistors for microchemical sensors
Ho, Clifford K.
2007-03-13
A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.
International Nuclear Information System (INIS)
Cross-sections for total and Compton scattering of circularly polarized photons by magnetic materials are presented. The expressions include scattering from both the spin and orbital magnetization densities, together with inelasticity corrections. (author)
Splitting of levels in a circular dielectric waveguide
Petrov, Nikolai I
2013-01-01
A splitting of modes in a circular graded-index optical fiber is demonstrated by solving the full Maxwell equations using the perturbation analysis. It is shown that the degeneracy of vortex Laguerre-Gauss modes with distinct orbital angular momentum (OAM) and polarization (spin) but the same total angular momentum is lifted due to the spin-orbit (vector) and tensor forces. Numerical estimations of group delays of modes in optical fiber and frequency splitting in Fabry-Perot and ring resonators are presented.
Photodetachment of hydrogen negative ion inside a circular microcavity
Institute of Scientific and Technical Information of China (English)
Wang De-Hua; Liu Sheng; Li Shao-Sheng; Wang Yi-Hao
2013-01-01
The photodetachment of a hydrogen negative ion inside a circular microcavity is studied based on the semiclassical closed orbit theory.The closed orbit of the photo-detached electron in a circular microcavity is investigated and the photodetachment cross section of this system is calculated.The calculation result suggests that oscillating structure appears in the photodetachment cross section,which is caused by the interference effects of the returning electron waves with the outgoing waves traveling along the closed orbits.Besides,our study suggests that the photodetachment cross section of the negative ions depends on the laser polarization sensitively.In order to show the correspondence between the cross section and the closed orbits of the detached electron clearly,we calculate the Fourier transformation of the cross section and find that each peak corresponds to the length of one closed orbit.We hope that our results will be useful for understanding the photodetachment process of negative ions or the electron transport in a microcavity.
Small Mercury Relativity Orbiter
Bender, Peter L.; Vincent, Mark A.
1989-01-01
The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.
The orbital evolution of planets in disks
Kley, W
2000-01-01
The orbital parameters of the observed extrasolar planets differ strongly from those of our own solar system. The differences include planets with high masses, small semi-major axis and large eccentricities. We performed numerical computations of embedded planets in disks and follow their mass growth and orbital evolution over several thousand periods. We find that planets do migrate inwards on timescales of about $10^5$ years on nearly circular orbits, during which they may grow up to about 5 Jupiter masses. The interaction of the disk with several planets may halt the migration process and lead to a system similar to the solar planetary system.
Adiabatic chaos in the spin orbit problem
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
AUTHOR|(CDS)2108454; Zimmermann, Frank
2015-01-01
In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...
AUTHOR|(CDS)2108454; Zimmermann, Frank
2015-01-01
In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...
Towards Future Circular Colliders
AUTHOR|(CDS)2108454; Zimmermann, Frank
2015-01-01
The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...
The equatorial electrojet during geomagnetic storms and substorms
Yamazaki, Yosuke; Kosch, Michael J.
2015-03-01
The climatology of the equatorial electrojet during periods of enhanced geomagnetic activity is examined using long-term records of ground-based magnetometers in the Indian and Peruvian regions. Equatorial electrojet perturbations due to geomagnetic storms and substorms are evaluated using the disturbance storm time (Dst) index and auroral electrojet (AE) index, respectively. The response of the equatorial electrojet to rapid changes in the AE index indicates effects of both prompt penetration electric field and disturbance dynamo electric field, consistent with previous studies based on F region equatorial vertical plasma drift measurements at Jicamarca. The average response of the equatorial electrojet to geomagnetic storms (Dststorm" effect is found to depend on the magnitude of the storm, solar EUV activity, season, and longitude.
Be discs in binary systems I. Coplanar orbits
Panoglou, Despina; Vieira, Rodrigo G; Cyr, Isabelle H; Jones, Carol E; Okazaki, Atsuo T; Rivinius, Thomas
2016-01-01
Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio, eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phas...
Oryema, B.; Jurua, E.; D'ujanga, F. M.; Ssebiyonga, N.
2015-11-01
This paper presents the annual, seasonal and diurnal variations in ionospheric TEC along the African equatorial region. The study also investigated the effects of a geomagnetic storm on ionospheric TEC values. Dual-frequency GPS derived TEC data obtained from four stations within the African equatorial region for the high solar activity year 2012 were used in this study. Annual variations showed TEC having two peaks in the equinoctial months, while minima values were observed in the summer and winter solstices. The diurnal pattern showed a pre-dawn minimum, a steady increase from about sunrise to an afternoon maximum and then a gradual fall after sunset to attain a minimum just before sunrise. Nighttime enhancements of TEC were observed mostly in the equinoctial months. There was comparably higher percentage TEC variability during nighttime than daytime and highest during equinoxes, moderate in winter and least during summer solstice. TEC was observed to exhibit a good correlation with geomagnetic storm indices.
Interior models of Mercury with equatorial ellipticity
Dumberry, M.
2012-09-01
The combination of planetary rotation observations and gravity field measurements by the MESSENGER spacecraft can be used to constrain the internal structure of Mercury. A recently published model suggests a mean mantle density of ρm = 3650 ± 225 kg m-3, substantially larger than that expected of a silicate mantle (3300 kg m-3) and possibly hinting at the presence of an FeS-rich layer at the base of the mantle. Here, we show that a large ρm is only required if the core-mantle boundary (CMB) of the planet is assumed axially-symmetric. An equatorial ellipticity of CMB of the order of 2 · 10-5 allows to satisfy gravity and rotation constraints with a mean mantle density typical of silicate material. Possible origin of such topography include past mantle convection, aspherical planetary shrinking, remnant tidal deformation, or a combination thereof.
Long wavelength irregularities in the equatorial electrojet
International Nuclear Information System (INIS)
We have used the radar interferometer technique at Jicamarca to study in detail irregularities with wavelengths of a few kilometers generated in the unstable equatorial electrojet plasma during strong type 1 conditions. In-situ rocket observations of the same instability process are discussed in a companion paper. These large scale primary waves travel essentially horizontally and have large amplitudes. The vertical electron drift velocities driven by the horizontal wave electric fields reach or exceed the ion-acoustic velocity even though the horizontal phase velocity of the wave is considerably smaller. A straightforward extension to the long wavelength regime of the usual linear theory of the electrojet instability explains this and several other observed features of these dominant primary waves
Equatorial trench at the magnetopause under saturation
Dmitriev, A; 10.1029/2012JA017834
2013-01-01
Magnetic data from GOES geosynchronous satellites were applied for statistical study of the low-latitude dayside magnetopause under a strong interplanetary magnetic field of southward orientation when the reconnection at the magnetopause was saturated. From minimum variance analysis, we determined the magnetopause orientation and compared it with predictions of a reference model. The magnetopause shape was found to be substantially distorted by a duskward shifting such that the nose region appeared in the postnoon sector. At equatorial latitudes, the shape of magnetopause was characterized by a prominent bluntness and by a trench formed in the postnoon sector. The origin of distortions was regarded in the context of the storm-time magnetospheric currents and the large-scale quasi-state reconnection at the dayside magnetopause.
Comparing Gaseous and Stellar Orbits in a Spiral Potential
Gómez, Gilberto C; Martos, Marco A
2013-01-01
It is generally assumed that gas in a galactic disk follows closely non self-intersecting periodic stellar orbits. In order to test this common assumption, we have performed MHD simulations of a galactic-like disk under the influence of a spiral galactic potential. We also have calculated the actual orbit of a gas parcel and compared it to stable periodic stellar orbits in the same galactic potential and position. We found that the gaseous orbits approach periodic stellar orbits far from the major orbital resonances only. Gas orbits initialized at a given galactocentric distance but at different azimuths can be different, and scattering is conspicuous at certain galactocentric radii. Also, in contrast to the stellar behaviour, near the 4:1 (or higher order) resonance the gas follows nearly circular orbits, with much shorter radial excursions than the stars. Also, since the gas does not settle into a steady state, the gaseous orbits do not necessarily close on themselves.
Dynamical variability in Saturn Equatorial Atmosphere
Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.; Grupo Ciencias Planetarias Team
2003-05-01
Historical ground-based and recent HST observations show that Saturn's Equatorial Atmosphere is the region where the most intense large-scale dynamical variability took place at cloud level in the planet. Large-scale convective storms (nicknamed the ``Great White Spots") occurred in 1876, 1933 and 1990. The best studied case (the 1990 storm), produced a dramatic change in the cloud aspect in the years following the outburst of September 1990. Subsequently, a new large storm formed in 1994 and from 1996 to 2002 our HST observations showed periods of unusual cloud activity in the southern part of the Equator. This contrast with the aspect observed during the Voyager 1 and 2 encounters in 1980 and 1981 when the Equator was calm, except for some mid-scale plume-like features seen in 1981. Cloud-tracking of the features have revealed a dramatic slow down in the equatorial winds from maximum velocities of ˜ 475 m/s in 1980-1981 to ˜ 275 m/s during 1996-2002, as we have recently reported in Nature, Vol. 423, 623 (2003). We discuss the possibility that seasonal and ring-shadowing effects are involved in generating this activity and variability. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.
Digital ionosonde observations during equatorial spread F
International Nuclear Information System (INIS)
In this paper we present and discuss equatorial spread F data taken with a digital ionosonde/HF radar located at Huancayo, Peru. A modified phenomenology is developed which uses the system's ability to do echo location. The onset of irregularities is seen to occur in the east and to move westward, while inside this large-scale structure the plasma is found to drift eastward. A very curious difference has been identified between spread F observations with the ionosonde and with the VHF radar at Jicamarca. At VHF, spread F onset often occurs when the ionosphere is rising, whereas in all five examples presented here, the digital ionosonde detected onset when the apparent ionosphere motion was downward. The result even held on the one night of common data taking. The effect could be instrumental but may be related to the considerable orographic differences in the two sites. Isolated scattering patches are observed and are tentatively identified as detached or ''fossil'' plumes. At frequencies above the nominal f0F2 the system (and other ionosondes) may in fact function as a coherent radar. During one night, data were obtained simultaneously with the HF radar, a rocket, and the Jicamarca VHF radar. Comparisons of these data are discussed in detail. Finally, additional evidence is presented that acoustic gravity waves play a role in the development of equatorial spread F and in the formation of detached plumes. To be self-consistent, the gravity waves must come from nearby sources such as the tropical rain forest to the east of Jicamarca
Pilot-wave hydrodynamics in a rotating frame: Exotic orbits
DEFF Research Database (Denmark)
Oza, Anand U.; Wind-Willassen, Øistein; Harris, Daniel M.;
2014-01-01
, stable circular orbits give way to wobbling orbits, which are succeeded in turn by instabilities of the orbital center characterized by steady drifting then discrete leaping. In the limit of large vibrational forcing, the walker’s trajectory becomes chaotic, but its statistical behavior reflects the...... influence of the unstable orbital solutions. The study results in a complete regime diagram that summarizes the dependence of the walker’s behavior on the system parameters. Our predictions compare favorably to the experimental observations of Harris and Bush [“Droplets walking in a rotating frame: from...... quantized orbits to multi-modal statistics,” J. Fluid Mech. 739, 444–464 (2014)]....
Circularly-Polarized Microstrip Antenna
Stanton, P. H.
1985-01-01
Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.
Magnetospheric conditions near the equatorial footpoints of proton isotropy boundaries
Sergeev, V. A.; Chernyaev, I. A.; Angelopoulos, V.; Ganushkina, N. Y.
2015-12-01
Data from a cluster of three THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft during February-March 2009 frequently provide an opportunity to construct local data-adaptive magnetospheric models, which are suitable for the accurate mapping along the magnetic field lines at distances of 6-9 Re in the nightside magnetosphere. This allows us to map the isotropy boundaries (IBs) of 30 and 80 keV protons observed by low-altitude NOAA POES (Polar Orbiting Environmental Satellites) to the equatorial magnetosphere (to find the projected isotropy boundary, PIB) and study the magnetospheric conditions, particularly to evaluate the ratio KIB (Rc/rc; the magnetic field curvature radius to the particle gyroradius) in the neutral sheet at that point. Special care is taken to control the factors which influence the accuracy of the adaptive models and mapping. Data indicate that better accuracy of an adaptive model is achieved when the PIB distance from the closest spacecraft is as small as 1-2 Re. For this group of most accurate predictions, the spread of KIB values is still large (from 4 to 32), with the median value KIB ~13 being larger than the critical value Kcr ~ 8 expected at the inner boundary of nonadiabatic angular scattering in the current sheet. It appears that two different mechanisms may contribute to form the isotropy boundary. The group with K ~ [4,12] is most likely formed by current sheet scattering, whereas the group having KIB ~ [12,32] could be formed by the resonant scattering of low-energy protons by the electromagnetic ion-cyclotron (EMIC) waves. The energy dependence of the upper K limit and close proximity of the latter event to the plasmapause locations support this conclusion. We also discuss other reasons why the K ~ 8 criterion for isotropization may fail to work, as well as a possible relationship between the two scattering mechanisms.
Coloring fuzzy circular interval graphs
Eisenbrand, Friedrich; Niemeier, Martin
2012-01-01
Computing the weighted coloring number of graphs is a classical topic in combinatorics and graph theory. Recently these problems have again attracted a lot of attention for the class of quasi-line graphs and more specifically fuzzy circular interval graphs. The problem is NP-complete for quasi-line graphs. For the subclass of fuzzy circular interval graphs however, one can compute the weighted coloring number in polynomial time using recent results of Chudnovsky and Ovetsky and of King and Re...
Energy dissipation in circular tube
A.D. Girgidov
2012-01-01
Energy dissipation distribution along the circular tube radius is important in solving such problems as calculation of heat transfer by the air flow through building envelope; calculation of pressure loss in spiral flows; calculation of cyclones with axial and tangential supply of dust-containing gas.Two types of one-dimensional radially axisymmetric flows in circular tube were considered: axial flow and rotation about the axis (Rankine vortex). Relying on two- and four-layer description of a...
Proton flux under radiation belts: near-equatorial zone
International Nuclear Information System (INIS)
In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter Lth the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)
Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region
Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto
2016-06-01
Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.
Equatorial Rossby Solitary Wave Under the External Forcing
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da
2005-01-01
A simple shallow-water model with influence of external forcing on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the perturbation method, the extended variable-coefficient KdV equation under an external forcing is derived for large amplitude equatorial Rossby wave in a shear flow. And then various periodic-like structures for these equatorial Rossby waves are obtained with the help of Jacobi elliptic functions.It is shown that the external forcing plays an important role in various periodic-like structures.
Geometric orbit datum and orbit covers
Institute of Scientific and Technical Information of China (English)
梁科; 侯自新
2001-01-01
Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.
Equatorial airglow depletions induced by thermospheric winds
Energy Technology Data Exchange (ETDEWEB)
Meriwether J.W. Jr.; Biondi, M.A.; Anderson, D.N.
1985-08-01
Interferometric observations of the 630.0 nm nightglow brightness at the equatorial station of Arequipa. Peru (16.2/sup 0/S, 71.4/sup 0/W geographic, 3.2/sup 0/S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridonal wind reached a velocity of 100 m/s near 22/sup h/ LT lasting for 1 or 2 hours. The temperature increases of 10 K or more existed only in the poleward (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge.
Equatorial airglow depletions induced by thermospheric winds
Energy Technology Data Exchange (ETDEWEB)
Meriwether, J.W.; Biondi, M.A.; Anderson, D.N.
1985-08-01
Interferometric observations on the 630.0 nm nightglow brightness at the equatorial station at Arequipa, Peru (16.2 S, 71.4 W geographic, 3.2 S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridional wind reached a velocity of 100 m/s near 22h LT lasting for 1 to 2 hours. The temperature increases of 100K or more existed only in the poleware (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge. (Author)
Equatorial electrojet in east Brazil longitudes
Indian Academy of Sciences (India)
R G Rastogi; H Chandra; K Yumuto
2010-08-01
This paper describes the morphology of the equatorial electrojet (EEJ) along 45°W longitude in east Brazil, where the ground magnetic (dip) equator is associated with the largest declination in the world. Daily range of the horizontal field ( ), as expected, was largest at the station in the chain closest to the dip equator, Sao Luiz (inclination −0.25°S). was largest positive at Eusebio (inclination 9.34°S) and largest negative at Belem (inclination 7.06°N); both near the fringe of EEJ belt. at Sao Luiz during the daytime was unexpectedly large negative in-spite of a small dip and also located south of the dip equator where should be positive. Center of EEJ was found to be shifted southward of the dip equator by about 1° in latitude. During southern summer, started decreasing from 00 h and reached a minimum value in the afternoon, an abnormal feature not discussed for any station so far. The mid-day value of the direction of vector was 22°-24°W compared to the declination of 19°–21°W in the region.
Plasma turbulence in the equatorial electrojet
International Nuclear Information System (INIS)
Plasma turbulence in the daytime and nighttime equatorial electrojet is studied with a highly sophisticated radar interferometer technique. It is shown that the outer scale of the plasma turbulence scales with the zero order plasma density gradient length, and is smaller during the day because of increased recombinational damping. Observations indicate that the horizontally propagating coherent waves at the other scale dominate the electrojet turbulence and give rise to vertically propagating type 1 waves during strong electrojet conditions. According to the linear theory extended to the long wavelength regime the large scale primary modes are dispersive and have phase velocities considerably smaller than the mean driving electron velocity, in agreement with the interferometer observations. Vertical electron transport, a quasi-linear effect due to large scale wave action, is shown to give rise to a vertical dc current which has the right direction and magnitude to explain the up-down and possibly the east-west asymmetries observed at Jicamarca. These quasi-linear considerations also show that the first order perturbed vertical electron velocity associated with the primary mode is limited to a maximum value on the order of the mean horizontal electron velocity, which might explain why vertically propagating type 1 waves are only observed during strong electrojet conditions
Radiation protection in hospitals of Equatorial Guinea
International Nuclear Information System (INIS)
With a population of four hundred thousand (400.000) inhabitants and distributed in a territory of 28 thousand (28.000) km2, the use of ionizing radiations for medical practice in Equatorial Guinea is few and decreasing. It is used for diagnostic practices in the main hospitals of the country, where the work burden is not over 20 patients per day. The political, social and economical embryonic development of the country until recently had a negative influence on indicators and health organisations, so that even now the country does not have any radiological protection law, this shortness, in addition with the old architectural structure that x ray tools is lodging, as well as dosimetrical lack of employed staff, put this staff under risk of electromagnetic energy. This is to show the present survey of medical activities with ionizing radiation and to request technical support for implementing suitably the basic standards of radiation protection which will help us as basis for the elaboration outline law, on radiological protection in accordance with the new guidelines of the International Atomic Energy Agency. (author)
Catastrophic ape decline in western equatorial Africa.
Walsh, Peter D; Abernethy, Kate A; Bermejo, Magdalena; Beyers, Rene; De Wachter, Pauwel; Akou, Marc Ella; Huijbregts, Bas; Mambounga, Daniel Idiata; Toham, Andre Kamdem; Kilbourn, Annelisa M; Lahm, Sally A; Latour, Stefanie; Maisels, Fiona; Mbina, Christian; Mihindou, Yves; Obiang, Sosthène Ndong; Effa, Ernestine Ntsame; Starkey, Malcolm P; Telfer, Paul; Thibault, Marc; Tutin, Caroline E G; White, Lee J T; Wilkie, David S
2003-04-10
Because rapidly expanding human populations have devastated gorilla (Gorilla gorilla) and common chimpanzee (Pan troglodytes) habitats in East and West Africa, the relatively intact forests of western equatorial Africa have been viewed as the last stronghold of African apes. Gabon and the Republic of Congo alone are thought to hold roughly 80% of the world's gorillas and most of the common chimpanzees. Here we present survey results conservatively indicating that ape populations in Gabon declined by more than half between 1983 and 2000. The primary cause of the decline in ape numbers during this period was commercial hunting, facilitated by the rapid expansion of mechanized logging. Furthermore, Ebola haemorrhagic fever is currently spreading through ape populations in Gabon and Congo and now rivals hunting as a threat to apes. Gorillas and common chimpanzees should be elevated immediately to 'critically endangered' status. Without aggressive investments in law enforcement, protected area management and Ebola prevention, the next decade will see our closest relatives pushed to the brink of extinction. PMID:12679788
Observational features of equatorial coronal hole jets
Nistico', G; Patsourakos, S; Zimbardo, G
2010-01-01
Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km/s, while the deceleration rate appears to be about 0.11 km/s2, less than solar gravity. The average jet visibility time is about 30 minutes, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and eq...
Plasma instabilities multifrequency study in equatorial electrojet
International Nuclear Information System (INIS)
In this thesis, multifrequential HF coherent radar results are presented, in the field plasma instabilities in equatorial electrojet. In a first part, characteristics of the irregularities observed either at the 3 meter wavelength by VHF radars, either at other wavelengths during pinpoint experiments, or in-situ by probe rockets are recalled. Theoretical studies progressed and are presented, at the same time with these experimental observations: instability linear theory, non linear theories, HF radar specificity, and problems associated to HF waves propagation and refraction in ionosphere. Original experimental results from Ethiopia are gathered in the second part. Plasma instability has been studied in different geophysical conditions and Doppler spectra characteristics are presented for each one of them. These characteristics are completely different according to the various cases; they are also different according to wether observations are made during the day in normal conditions (electric field pointed to the east at the equator) or in counter-electrojet conditions (electric field pointed to the west). The last part is concerned with theoretical interpretation of the previous results. A comprehensive view of the instability physical mechanisms, according to the geophysical conditions encountered, has been allowed by our results, VHF radar measurements at Jicamarca, or in situ probe measurements on the whole. Irregularities study has been limited to the E region
ITER L 6 equatorial maintenance duct remote handling study
International Nuclear Information System (INIS)
The status and conclusions of a preliminary study of equatorial maintenance duct remote handling is reported. Due to issues with the original duct design a significant portion of the study had to be refocused on equatorial duct layout studies. The study gives an overview of some of the options for design of these ducts and the impact of the design on the equipment to work in the duct. To develop a remote handling concept for creating access through the ducts the following design tasks should be performed: define the operations sequences for equatorial maintenance duct opening and closing; review the remote handling requirements for equatorial maintenance duct opening and closing; design concept for door and pipe handling equipment and to propose preliminary procedures for material handling outsides the duct. 35 figs
Climate Prediction Center Equatorial Southern Oscillation Index (1949-present)
National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It contains Equatorial Southern Oscillation Index (standardized sea level pressure differences between...
Modelling the development of mixing height in near equatorial region
Energy Technology Data Exchange (ETDEWEB)
Samah, A.A. [Univ. of Malaya, Air Pollution Research Unit, Kuala Lumpur (Malaysia)
1997-10-01
Most current air pollution models were developed for mid-latitude conditions and as such many of the empirical parameters used were based on observations taken in the mid-latitude boundary layer which is physically different from that of the equatorial boundary layer. In the equatorial boundary layer the Coriolis parameter f is small or zero and moisture plays a more important role in the control of stability and the surface energy balance. Therefore air pollution models such as the OMLMULTI or the ADMS which were basically developed for mid-latitude conditions must be applied with some caution and would need some adaptation to properly simulate the properties of equatorial boundary layer. This work elucidates some of the problems of modelling the evolution of mixing height in the equatorial region. The mixing height estimates were compared with routine observations taken during a severe air pollution episodes in Malaysia. (au)
Multiple equilibria of cross-equatorial Inertial jets
Institute of Scientific and Technical Information of China (English)
CHAO JiPing; LIU Fei
2007-01-01
Based on the developed Anderson and Moore's theory about cross-equatorial inertial jets and a nonlinear equivalence shallow water model, new universal functions are determined by the characters of the vortical large-scale air flow (atmosphere) or ocean current (ocean) related to the jet, then the potential vorticity and energy conservation equations along the streamline in the cross-equatorial inertial jets can be obtained. Because the governing equations are nonlinear, some limited multiple equilibria of cross-equatorial inertial jets may exist. According to the character of large-scale air flow or ocean current outside the jets, the existent criterion for multiple eqnilibria in cross-equatorial inertial jets is discussed, and two examples for multiple equilibia of nonlinear governing equations are given.
Multiple equilibria of cross-equatorial Inertial jets
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the developed Anderson and Moore’s theory about cross-equatorial inertial jets and a nonlinear equivalence shallow water model, new universal functions are determined by the characters of the vortical large-scale air flow (atmosphere) or ocean current (ocean) related to the jet, then the potential vorticity and energy conservation equations along the streamline in the cross-equatorial in-ertial jets can be obtained. Because the governing equations are nonlinear, some limited multiple equi-libria of cross-equatorial inertial jets may exist. According to the character of large-scale air flow or ocean current outside the jets, the existent criterion for multiple eqnilibria in cross-equatorial inertial jets is discussed, and two examples for multiple equilibia of nonlinear governing equations are given.
Atlantic Equatorial Deep Jets: Space–Time Structure and Cross-Equatorial Fluxes
Send, Uwe; Eden, Carsten; Schott, Friedrich
2002-01-01
The so-called equatorial stacked jets are analyzed with ship-board observations and moored time series from the Atlantic Ocean. The features are identified and isolated by comparing vertical wavenumber spectra at the equator with those a few degrees from the equator. Mode-filtering gives clear views of the jets in meridional sections, the typical extent being ±1° in latitude. The vertical structure can be well described (explaining 82% of the variance) by N−1-stretched cosines, with a Gaussia...
Circularly polarized open-loop antenna
Li, Rong-Lin; Fusco, Vincent F.; Nakano, Hisamatsu
2003-01-01
A printed circular open-loop antenna is introduced as a simple structure for producing circular polarization; the antenna is fed with a coaxial probe. By introducing a gap within the circular loop a traveling-wave current is excited and thus circularly polarized radiation can be achieved. An optimized circularly polarized antenna is designed through numerical analysis using a so-called parametric method of moment technique. Experimental verification of the new antenna is presented. The antenn...
Claw-free circular-perfect graphs
Pecher, Arnaud; Zhu, Xuding
2007-01-01
The circular chromatic number of a graph is a well studied refinement of the chromatic number. Circular perfect graphs is a superclass of perfect graphs defined by means of this more general coloring concept. This paper studies claw free circular perfect graphs. A consequence of the strong perfect graph theorem is that minimal circular perfect graphs G. In contrast to this result, it is shown in that minimal circular imperfect graphs G can have arbitrarily large independence number and arbitr...
Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...
On Irrotational Flows Beneath Periodic Traveling Equatorial Waves
Quirchmayr, Ronald
2016-08-01
We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.
EQUATORIAL ZONAL JETS AND JUPITER's GRAVITY
International Nuclear Information System (INIS)
The depth of penetration of Jupiter's zonal winds into the planet's interior is unknown. A possible way to determine the depth is to measure the effects of the winds on the planet's high-order zonal gravitational coefficients, a task to be undertaken by the Juno spacecraft. It is shown here that the equatorial winds alone largely determine these coefficients which are nearly independent of the depth of the non-equatorial winds
Evidence of remote forcing in the Equatorial Atlantic ocean
Servain, J.; Picaut, Joël; Merle, Jacques
1982-01-01
An analysis of sea-surface temperature (STT) and surface winds in selected areas of the Tropical Atlantic indicates that the nonseasonal variability of SST in the Eastern Equatorial Atlantic (Gulf of Guinea) is highly correlated with the nonseasonal variability of the zonal wind stress in the Western Equatorial Atlantic. A negative (positive) anomaly of the zonal wind stress near the North Brazilian coast is followed by a positive (negative) SST anomaly in the Gulf of Guinea about one month l...
Low-thrust transfer to Backflip orbits
Pergola, P.
2010-11-01
The aim of the work is to design a low-thrust transfer from a Low Earth Orbit to a "useful" periodic orbit in the Earth-Moon Circular Restricted Three Body Model (CR3BP). A useful periodic orbit is here intended as one that moves both in the Earth-Moon plane and out of this plane without any requirements of propellant mass. This is achieved by exploiting a particular class of periodic orbits named Backflip orbits, enabled by the CR3BP. The unique characteristics of this class of periodic solutions allow the design of an almost planar transfer from a geocentric orbit and the use of the Backflip intrinsic characteristics to explore the geospace out of the Earth-Moon plane. The main advantage of this approach is that periodic plane changes can be obtained by performing an almost planar transfer. In order to save propellant mass, so as to increase the scientific payload of the mission, a low-powered transfer is considered. This foresees a thrusting phase to gain energy from a departing circular geocentric orbit and a second thrusting phase to match the state of the target Backflip orbit, separated by an intermediate ballistic phase. This results in a combined application of a low-thrust manoeuvre and of a periodical solution in the CR3BP to realize a new class of missions to explore the Earth-Moon neighbourhoods in a quite inexpensive way. In addition, a low-thrust transit between two different Backflip orbits is analyzed and considered as a possible extension of the proposed mission. Thus, also a Backflip-to-Backflip transfer is addressed where a low-powered probe is able to experience periodic excursions above and below the Earth-Moon plane only performing almost planar and very short transfers.
Meridional equatorial electrojet current in the American sector
Directory of Open Access Journals (Sweden)
R. G. Rastogi
Full Text Available Huancayo is the only equatorial electrojet station where the daytime increase of horizontal geomagnetic field (H is associated with a simultaneous increase of eastward geomagnetic field (Y. It is shown that during the counter electrojet period when ∆H is negative, ∆Y also becomes negative. Thus, the diurnal variation of ∆Y at equatorial latitudes is suggested to be a constituent part of the equatorial electrojet current system. Solar flares are known to increase the H field at an equatorial station during normal electrojet conditions (nej. At Huancayo, situated north of the magnetic equator, the solar flare effect, during nej, consists of positive impulses in H and Y and negative impulse in Z field. During counter electrojet periods (cej, a solar flare produces a negative impulse in H and Y and a positive impulse in Z at Huancayo. It is concluded that both the zonal and meridional components of the equatorial electrojet in American longitudes, as in Indian longitudes, flows in the same, E region of the ionosphere.
Key words. Geomagnetism and paleomagnetism (dynamo theories · Ionosphere (equatorial ionosphere; ionosphere disturbances
Directory of Open Access Journals (Sweden)
S. Fukao
2006-07-01
Full Text Available The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF, probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE.
Fukao, S.; Yokoyama, T.; Tayama, T.; Yamamoto, M.; Maruyama, T.; Saito, S.
2006-07-01
The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE) is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE.
Circular magnetic dichroism of the Fa center adsorption in KCl doped with Li and Na
International Nuclear Information System (INIS)
The spin-orbit structure of FA in KCl:Li and KCl:Na have been studied by means of the magnetic circular dichroism. Due to their C4V, symmetry the FA centers have two different spin-orbit parameters, Δ* and Δ*, which only in the KCl:Li case follow the relation: Δ* F A centers have been determined using the method of moment
Neotectonics in the northern equatorial Brazilian margin
Rossetti, Dilce F.; Souza, Lena S. B.; Prado, Renato; Elis, Vagner R.
2012-08-01
An increasing volume of publications has addressed the role of tectonics in inland areas of northern Brazil during the Neogene and Quaternary, despite its location in a passive margin. Hence, northern South America plate in this time interval might have not been as passive as usually regarded. This proposal needs further support, particularly including field data. In this work, we applied an integrated approach to reveal tectonic structures in Miocene and late Quaternary strata in a coastal area of the Amazonas lowland. The investigation, undertaken in Marajó Island, mouth of the Amazonas River, consisted of shallow sub-surface geophysical data including vertical electric sounding and ground penetrating radar. These methods were combined with morphostructural analysis and sedimentological/stratigraphic data from shallow cores and a few outcrops. The results revealed two stratigraphic units, a lower one with Miocene age, and an upper one of Late Pleistocene-Holocene age. An abundance of faults and folds were recorded in the Miocene deposits and, to a minor extent, in overlying Late Pleistocene-Holocene strata. In addition to characterize these structures, we discuss their origin, considering three potential mechanisms: Andean tectonics, gravity tectonics related to sediment loading in the Amazon Fan, and rifting at the continental margin. Amongst these hypotheses, the most likely is that the faults and folds recorded in Marajó Island reflect tectonics associated with the history of continental rifting that gave rise to the South Atlantic Ocean. This study supports sediment deposition influenced by transpression and transtension associated with strike-slip divergence along the northern Equatorial Brazilian margin in the Miocene and Late Pleistocene-Holocene. This work records tectonic evidence only for the uppermost few ten of meters of this sedimentary succession. However, available geological data indicate a thickness of up to 6 km, which is remarkably thick for
... Diagnosis Treatment Medical Dictionary Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...
Podokinetic circular vection: characteristics and interaction with optokinetic circular vection.
Becker, W; Kliegl, K; Kassubek, J; Jürgens, R
2016-07-01
Stabilising horizontal body orientation in space without sight on a rotating platform by holding to a stationary structure and circular 'treadmill' stepping in the opposite direction can elicit an illusion of self-turning in space (Bles and Kapteyn in Agressologie 18:325-328, 1977). Because this illusion is analogous to the well-known illusion of optokinetic circular vection (oCV), we call it 'podokinetic circular vection' (pCV) here. Previous studies using eccentric stepping on a path tangential to the rotation found that pCV was always contraversive relative to platform rotation. In contrast, when our subjects stepped at the centre of rotation about their vertical axis, we observed an inverted, ipsiversive pCV as a reproducible trait in many of our subjects. This ipCV occurred at the same latency as the pCV of subjects reporting the actually expected contraversive direction, but had lower gain. In contrast to pCV, the nystagmus accompanying circular treadmill stepping had the same direction in all individuals (slow phase in the direction of platform motion). The direction of an individual's pCV predicted the characteristics of the CV resulting from combined opto- and podokinetic stimulation (circular treadmill stepping while viewing a pattern rotating together with the platform): in individuals with contraversive pCV, latency shortened and both gain and felt naturalness increased in comparison with pure oCV, whereas the opposite (longer latency, reduced gain and naturalness) occurred in individuals with ipCV. Taken together, the reproducibility of ipCV, the constant direction of nystagmus and the fact that pCV direction predicts the outcome of combined stimulation suggest that ipCV is an individual trait of many subjects during compensatory stepping at the centre of rotation. A hypothetical model is presented of how ipCV possibly could arise. PMID:26965438
International Nuclear Information System (INIS)
The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators
Energy Technology Data Exchange (ETDEWEB)
Michelotti, L.
1995-01-01
The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric A., E-mail: E.A.Bergshoeff@rug.nl [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Marrani, Alessio, E-mail: Alessio.Marrani@cern.ch [Physics Department, Theory Unit, CERN, CH-1211, Geneva 23 (Switzerland); Riccioni, Fabio, E-mail: Fabio.Riccioni@roma1.infn.it [INFN Sezione di Roma, Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Roma (Italy)
2012-08-01
We complete the classification of half-supersymmetric branes in toroidally compactified IIA/IIB string theory in terms of representations of the T-duality group. As a by-product we derive a last wrapping rule for the space-filling branes. We find examples of T-duality representations of branes in lower dimensions, suggested by supergravity, of which none of the component branes follow from the reduction of any brane in ten-dimensional IIA/IIB string theory. We discuss the constraints on the charges of half-supersymmetric branes, determining the corresponding T-duality and U-duality orbits.
Jumping Jupiter can explain Mercury's orbit
Roig, Fernando; DeSouza, Sandro Ricardo
2016-01-01
The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury's orbit during the instability related to the migration of the giant planets in the framework of the jumping Jupiter model. We found that some instability models are able to produce the correct values of Mercury's eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury's perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity), and the nodal regression of Uranus (for the inclination).
Kamiński, Maciej; Cukras, Janusz; Pecul, Magdalena; Rizzo, Antonio; Coriani, Sonia
2015-07-15
We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n → π* and n ← π* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the β,γ-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign. PMID:26126575
Synchrotron radiation at close distances to the orbital ring
International Nuclear Information System (INIS)
The variation in the power radiated by electrons in a circular orbit through an aperture was investigated numerically as a function of the distance along a tangent to the orbital ring. For electron energies above 0.1 GeV, the power radiated into a rectangular aperture, placed at a distance greater than the radius of curvature of the orbit, does not differ by more than 4 parts in 106 from the power radiated into a similarly sized rectangular aperture (subtending the same solid angle) placed at a large distance from the orbital ring. Our conclusion is that, within the limits considered, synchrotron radiation can be calculated accurately for practical radiometric calibrations
Circular RNA expands its territory.
Bao, Chunyang; Lyu, Dongbin; Huang, Shenglin
2016-03-01
Circular RNAs (circRNAs) represent a novel class of widespread non-coding RNAs in eukaryotes. They are unusually stable RNA molecules with cell type-specific expression patterns, and are predominantly present in the cytoplasm. We recently demonstrated the existence of abundant circRNAs in exosomes and suggest a potential application of exosomal circRNAs for cancer detection. PMID:27308606
High intensity circular proton accelerators
International Nuclear Information System (INIS)
Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs
Circular polarization observed in bioluminescence
Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.
1980-01-01
While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and
Application of circular filter inserts
International Nuclear Information System (INIS)
High efficiency particulate air (HEPA) filters are used in the ventilation of nuclear plant as passive clean-up devices. Traditionally, the work-horse of the industry has been the rectangular HEPA filter. An assessment of the problems associated with remote handling, changing, and disposal of these rectangular filters suggested that significant advantages to filtration systems could be obtained by the adoption of HEPA filters with circular geometry for both new and existing ventilation plants. This paper covers the development of circular geometry filters and highlights the advantages of this design over their rectangular counterparts. The work has resulted in a range of commercially available filters for flows from 45 m3/h up to 3400 m3/h. This paper also covers the development of a range of sizes and types of housings that employ simple change techniques which take advantage of the circular geometry. The systems considered here have been designed in response to the requirements for shielded (remote filter change) and for unshielded facilities (potentially for bag changing of filters). Additionally the designs have allowed for the possibility of retrofitting circular geometry HEPA filters in place of the rectangular geometry filter
Cosmic censorship, black holes, and particle orbits
International Nuclear Information System (INIS)
One of the main reasons for believing in the cosmic censorship hypothesis is the disquieting nature of the alternative: the existence of naked singularities, and hence loss of predictability, the possibility of closed timelike lines and so forth. The consequences of assuming the cosmic hypothesis can also be somewhat strange and unexpected. In particular, Hawking's black hole area theorem is applied to the study of particle orbits near a Schwarzschild black hole. If the cosmic censorship hypothesis (and hence the area theorem) is true, then there exist stable near-circular orbits arbitrarily close to the horizon at r = 2M. (author)
Evolution of star clusters on eccentric orbits
Cai, Maxwell Xu; Heggie, Douglas C; Varri, Anna Lisa
2015-01-01
We study the evolution of star clusters on circular and eccentric orbits using direct $N$-body simulations. We model clusters with initially $N=8{\\rm k}$ and $N=16{\\rm k}$ single stars of the same mass, orbiting around a point-mass galaxy. For each orbital eccentricity that we consider, we find the apogalactic radius at which the cluster has the same lifetime as the cluster with the same $N$ on a circular orbit. We show that then, the evolution of bound particle number and half-mass radius is approximately independent of eccentricity. Secondly, when we scale our results to orbits with the same semi-major axis, we find that the lifetimes are, to first order, independent of eccentricity. When the results of Baumgardt and Makino for a singular isothermal halo are scaled in the same way, the lifetime is again independent of eccentricity to first order, suggesting that this result is independent of the Galactic mass profile. From both sets of simulations we empirically derive the higher order dependence of the lif...
Undulator radiation carrying spin and orbital angular momentum
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Shigemi [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: sasaki@aps.anl.gov; McNulty, Ian; Dejus, Roger [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)
2007-11-11
We show that the radiation from a helical undulator not only carries spin angular momentum (circular polarization) but also orbital angular momentum. This exotic property of the undulator radiation may be useful in coherent X-ray imaging and scattering experiments and to probe electronic transitions in matter by orbital dichroism spectroscopy. Also, we present that a new magnet configuration, similar to the structure of Figure-8 undulator or the PERA undulator, may generate right- and left-hand circularly polarized off-axis radiation simultaneously.
Undulator radiation carrying spin and orbital angular momentum.
Energy Technology Data Exchange (ETDEWEB)
Sasaki, S.; McNulty, I.; Dejus, R.; X-Ray Science Division
2007-11-11
We show that the radiation from a helical undulator not only carries spin angular momentum (circular polarization) but also orbital angular momentum. This exotic property of the undulator radiation may be useful in coherent X-ray imaging and scattering experiments and to probe electronic transitions in matter by orbital dichroism spectroscopy. Also, we present that a new magnet configuration, similar to the structure of Figure-8 undulator or the PERA undulator, may generate right- and left-hand circularly polarized off-axis radiation simultaneously.
Multiple Bifurcations in the Periodic Orbit around Eros
Ni, Yanshuo; Baoyin, Hexi
2016-01-01
We investigate the multiple bifurcations in periodic orbit families in the potential field of a highly irregular-shaped celestial body. Topological cases of periodic orbits and four kinds of basic bifurcations in periodic orbit families are studied. Multiple bifurcations in periodic orbit families consist of four kinds of basic bifurcations. We found both binary period-doubling bifurcations and binary tangent bifurcations in periodic orbit families around asteroid 433 Eros. The periodic orbit family with binary period-doubling bifurcations is nearly circular, with almost zero inclination, and is reversed relative to the body of the asteroid 433 Eros. This implies that there are two stable regions separated by one unstable region for the motion around this asteroid. In addition, we found triple bifurcations which consist of two real saddle bifurcations and one period-doubling bifurcation. A periodic orbit family generated from an equilibrium point of asteroid 433 Eros has five bifurcations, which are one real ...
International Nuclear Information System (INIS)
We verify the theory of nonadiabatic ionization of degenerate valence p± orbitals in strong circularly polarized laser fields by numerically solving the two-dimensional time-dependent Schrödinger equation for an effective one-electron potential of neon. The numerically calculated ionization ratios of the p− and p+ orbitals agree well with the theoretical results (i.e., the counter-rotating electron tunnels more easily). However, for strong laser pulses and low laser frequencies, the adiabatic laser-dressed orbitals play an important role. In a Floquet treatment of a three-level model, we find that in this regime the ionization ratio of initial p− and p+ orbitals depends strongly on the orbital energy order of valence s and p± orbitals. We also show that the emission angles of valence p− and p+ electrons are different and should be observable in attoclock experiments. (paper)
DEFF Research Database (Denmark)
Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena;
2015-01-01
We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...... chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin–orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet...... excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the b,g-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign....
The Effect of Charon's Tidal Damping on the Orbits of Pluto's Three Moons
Lithwick, Yoram; Wu, Yanqin
2008-01-01
Pluto's recently discovered minor moons, Nix and Hydra, have almost circular orbits, and are nearly coplanar with Charon, Pluto's major moon. This is surprising because tidal interactions with Pluto are too weak to damp their eccentricities. We consider an alternative possibility: that Nix and Hydra circularize their orbits by exciting Charon's eccentricity via secular interactions, and Charon in turn damps its own eccentricity by tidal interaction with Pluto. The timescale for this process c...
Szarek, P; Grochala, W
2015-09-01
The relationship between equatorial ligands structures and magnetic response of [Ni3]6+ extended metal atom chain core has been investigated. The distances between metal ions in Ni metal strings are largely predefined by framework provided through equatorial ligands. The equatorial ligands thus have primary influence on the magnitude of magnetic coupling between terminal high spin centers. Since the σ channel has greatest contribution to J, the variations in Ni–Ni bond lengths have immediate and strong effect on magnetic properties. The secondary, yet important role is played by ligand field strength and nucleophilicity. It has been shown that energy difference between singly occupied σ-type MOs composed of d(z2) of terminal ions and doubly occupied σ-type MO evolved from d(z2) of the central ion in antiferromagnetic state solution is inversely proportional to magnitude of J. Hence, the alignment between energies of d(z2) orbitals on HS and LS centers directly affected by ligand field strength governs the magnetic response. Moreover, the greater basicity of lone pairs coordinating terminal metal atoms correlates with the larger absolute value of magnetic coupling constant. PMID:26266326
Institute of Scientific and Technical Information of China (English)
Shi Qiang; Xu Jianping; Zhu Bokang
2003-01-01
Based on the long-term buoy data from the Tropical Atmosphere Ocean ( TAO ) array during the TOGA ( Tropical Ocean and Global Atmosphere) Program (1980-1996), the propagation acting of the Equatorial planetary waves on the Western Equatorial Pacific warm pool heat is analyzed. Results show that the zonal heat transmission in the Western Equatorial Pacific takes palace mainly in the subsurface water and spreads eastwards along the thermocline; while the seasonal westward-spreading heat change structure occurs in the mixed layers in the middle and western Pacific. The standing-form transmission in the western Pacific appears in the thermocline layer, while in the eastern pacific, it exists in the mixed layer as well as in the thermocline layer. The standing-form and eastward-spreading sign of zonal heat transmitting in the upper water is predominant and strong, and the westward sign is weak.The component force of Kelvin Equatorial wave pressure runs through the western and eastern Equatorial pacific, and transmits heat energy eastwards. And the heat transmitted by zonal current component occurs mostly in the western Pacific; The heat transmitted by the component force of Rossby wave pressure mainly appears in the eastern and middle areas of the Pacific, while the zonal current component transmitting occurs mainly in the western Pacific; Mixed-Rossby gravity wave's action on the zonal current is stronger than that of the thermocline layer. In the mean state, the standing wave model of Equatorial Pacific up layer ocean temperature confines the transport of western Pacific warm pool heat to the eastern Pacific. Under abnormal conditions, the standing wave model of Equatorial Pacific up layer ocean temperature weakens, the eastwardly transmitting model enhances, and subsequently the El Ni n o event occurs.
Revisiting elliptical satellite orbits to enhance the O3b constellation
Wood, Lloyd; Olusola, Opeoluwa
2014-01-01
We propose an addition of known elliptical orbits to the new equatorial O3b satellite constellation, extending O3b to cover high latitudes and the Earth's poles. We simulate the O3b constellation and compare this to recent measurement of the first real Internet traffic across the newly deployed O3b network.
Effects of solar radiation on the orbits of small particles
Lyttleton, R. A.
1976-01-01
A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.
Convex mappings on some circular domains
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper,we consider some circular domains.And we give an extension theorem for some normalized biholomorphic convex mapping on some circular domains.Especially,we discover the normalized biholomorphic convex mapping on some circular domains have the form f(z) =(f1(z1),...,fn(zn)),where fj:D → C are normalized biholomorphic convex mapping.
Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms
Directory of Open Access Journals (Sweden)
Chao-Song Huang
2011-01-01
Full Text Available An important issue in low-latitude ionospheric space weather is how magnetic storms affect the generation of equatorial plasma bubbles. In this study, we present the measurements of the ion density and velocity in the evening equatorial ionosphere by the Defense Meteorological Satellite Program (DMSP satellites during 22 intense magnetic storms. The DMSP measurements show that deep ion density depletions (plasma bubbles are generated after the interplanetary magnetic field (IMF turns southward. The time delay between the IMF southward turning and the first DMSP detection of plasma depletions decreases with the minimum value of the IMF Bz, the maximum value of the interplanetary electric field (IEF Ey, and the magnitude of the Dst index. The results of this study provide strong evidence that penetration electric field associated with southward IMF during the main phase of magnetic storms increases the generation of equatorial plasma bubbles in the evening sector.
Min, Kyungguk; Bortnik, Jacob; Denton, Richard E.; Takahashi, Kazue; Lee, Jeongwoo; Singer, Howard J.
2013-10-01
An inversion technique for estimating the properties of the magnetospheric plasma from the harmonic frequencies of the toroidal standing Alfvén waves has been used to derive the global equatorial mass density covering radial distances from 4 to 9 Earth radii (RE), within the local time sector spanning from 0300 to 1900 h. This broad range of L shell extending to the outer magnetosphere allows us to examine the local time and radial dependence of the quiet time equatorial mass density during solar minimum and thereby construct a global distribution of the equatorial mass density. The toroidal Alfvén waves were detected with magnetometers on the Active Magnetospheric Particle Tracer Explorers (AMPTE)/Charge Composition Explorer (CCE) during the nearly 5 year interval from August 1984 to January 1989 and on the Geostationary Operational Environmental Satellites (GOES) (10, 11, and 12) for 2 years from 2007 to 2008, both of which were operating during solar minimum years. The derived equatorial mass density, ρeq, at geosynchronous orbit (GEO) monotonically increases with increasing magnetic local time (MLT) from the nightside toward the dusk sector. At other radial distances, ρeq has the same MLT variation as that of GEO, while the magnitude logarithmically decreases with increasing L value. An investigation of the Dst and Kp dependence shows that the median value of ρeq varies little in the daytime sector during moderately disturbed times, which agrees with previous studies. ρeq calculated from the F10.7 dependent empirical model shows good agreement with that of CCE but overestimates that of GOES probably due to the extreme solar cycle minimum in years 2007-2008.
Energy dissipation in circular tube
Directory of Open Access Journals (Sweden)
A.D. Girgidov
2012-01-01
Full Text Available Energy dissipation distribution along the circular tube radius is important in solving such problems as calculation of heat transfer by the air flow through building envelope; calculation of pressure loss in spiral flows; calculation of cyclones with axial and tangential supply of dust-containing gas.Two types of one-dimensional radially axisymmetric flows in circular tube were considered: axial flow and rotation about the axis (Rankine vortex. Relying on two- and four-layer description of axial turbulent flow energy dissipation was calculated in each layer.Similar calculation for Rankine vortex with viscous sublayer at the tube surface was provided. By employing the dissipation minimum principle the boundary radius between rigid rotation and free vortex is calculated. Approximation of the velocity distribution in Rankine vortex is proposed.
Impact of Orbital Eccentricity on the Detection of Transiting Extrasolar Planets
Burke, Christopher J
2008-01-01
For extrasolar planets with orbital periods, P>10 days, radial velocity surveys find non-circular orbital eccentricities are common, ~0.3. Future surveys for extrasolar planets using the transit technique will also have sensitivity to detect these longer period planets. Orbital eccentricity affects the detection of extrasolar planets using the transit technique in two opposing ways: an enhancement in the probability for the planet to transit near pericenter and a reduction in the detectability of the transit due to a shorter transit duration. For an eccentricity distribution matching the currently known extrasolar planets with P>10 day, the probability for the planet to transit is ~1.25 times higher than the equivalent circular orbit and the average transit duration is ~0.88 times shorter than the equivalent circular orbit. These two opposing effects nearly cancel for an idealized field transit survey with independent photometric measurements that are dominated by Poisson noise. The net effect is a modest ~4%...
Capacitance of circular patch resonator
International Nuclear Information System (INIS)
In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants
Capacitance of circular patch resonator
Energy Technology Data Exchange (ETDEWEB)
Miano, G.; Verolino, L. [Dip. di Ingegneria Elettrica, Ist. Nazionale di Fisica Nucleare, Naples (Italy); Panariello, G. [Dip. di Ingegneria Elettronica, Naples (Italy); Vaccaro, V.G. [Ist. Nazionale di Fisica Nucleare, Naples (Italy). Dipt. di Scienze Fisiche
1995-11-01
In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants.
Longitudinal motion in circular accelerators
International Nuclear Information System (INIS)
A general description is given of the longitudinal motion of an idealized synchronous particle, exactly in step with the radiofrequency field of a circular accelerator, and a domain in phase and energy, called a bucket, around this particle within which particles are focused around the synchronous particle. This general picture is then made more precise and quantitative. The equations of longitudinal motion and their solutions and the resulting motion are discussed, followed by applications and amplication of the theory. 7 refs., 8 figs
Off-equatorial orbits in strong gravitational fields near compact objects - II
Czech Academy of Sciences Publication Activity Database
Kovář, J.; Kopáček, Ondřej; Karas, Vladimír; Stuchlík, Z.
2010-01-01
Roč. 27, - (2010), 135006/1-135006/21. ISSN 0264-9381 R&D Projects: GA ČR GA205/07/0052; GA ČR GD205/09/H033 Institutional research plan: CEZ:AV0Z10030501 Keywords : astrophysics * black holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.098, year: 2010
Generation and detection of orbital angular momentum via metasurface
Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang
2016-01-01
Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes a...
Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities
Manni, Francesco; Lagoudakis, Konstantinos G.; Paraïso, Taofiq; Cerna, Roland; Léger, Yoan; Liew, Timothy Chi Hin; Shelykh, Ivan; Kavokin, Alexey V.; Morier-Genoud, François; Deveaud-Plédran, Benoît
2011-01-01
We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems with no structural gyrotropy, semiconductor microcavities, because of the transverse-electric–transverse-magnetic polarization splitting that they feature, allow for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The proce...
Preliminary results of ITEC over an equatorial station
International Nuclear Information System (INIS)
Total electron content (TEC) was obtained from bottomside ionograms recorded at an equatorial station (Ouagadougou, 12.4 deg. N, 358.5 deg. E). Variability in TEC obtained in this way (ITEC) was investigated. Diurnal, seasonal and solar cycle effects were observed. Both absolute and relative variability were considered. The results obtained were compared with those of another equatorial station (Ghana, 5.63 deg. N, 359.8 deg. E) where the TEC was obtained by the Faraday rotation technique. The variations in variability at both stations follow the same trend. (author)
Institute of Scientific and Technical Information of China (English)
Nila; F.Moeloek
1993-01-01
Orbital anatomy, the clinical features of orbital tumors, the recent development of the diagnosis and management of orbital tumors were described. The incidence of orbital tumors in Dr. Cipto Mangunkusumo Hospital in the past years were introduced. The principle of management of orbital tumors and their prognosis were discussed.
Periodic orbits near the particle resonance in galaxies
Contopoulos, George
1978-01-01
Near the particle resonance of a spiral galaxy the almost circular periodic orbits that exist inside the resonance (direct) or outside it (retrograde) are replaced by elongated trapped orbits around the maxima of the potential L/sub 4/ and L/sub 5/. These are the long- period trapped periodic orbits. The long-period orbits shrink to the points L/sub 4/, L/sub 5/ for a critical value of the Hamiltonian h. For still larger h, a family of short-period trapped orbits appears, with continuously growing size. The evolution of the periodic orbits with h is followed, theoretically and numerically, from the untrapped orbits to the long-periodic orbits and then to the short-periodic orbits, mainly in the case of a bar. In a tight spiral case an explanation of the asymmetric periodic and banana orbits is given, and an example of short-period orbits not surrounding L/sub 4/ or L/sub 5/ is provided. Another family of periodic orbits reaching corotation is trapped at the inner Lindblad resonance. (5 refs).
Circular Polarization in Pulsar Integrated Profiles: Updates
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We update the systematic studies of circular polarization in integrated pulse profiles by Han et al. Data of circular polarization profiles are compiled. Sense reversals can occur in core or cone components, or near the intersection between components. The correlation between the sense of circular polarization and the sense of position angle variation for conal-double pulsars is confirmed with a much large database. Circular polarization of some pulsars has clear changes with frequency.Circular polarization of millisecond pulsars is marginally different from that of normal pulsars.
Total positive curvature of circular DNA
DEFF Research Database (Denmark)
Bohr, Jakob; Olsen, Kasper Wibeck
2013-01-01
micro-DNAs longer than the minimum length must be concave, a result that is consistent with typical atomic force microscopy images of plasmids. Predictions for the total positive curvature of circular micro-DNAs are given as a function of length, and comparisons with circular DNAs from the literature...... molecules, e.g., plasmids, it is shown to have implications for the total positive curvature integral. For small circular micro-DNAs it follows as a consequence of Fenchel's inequality that there must exist a minimum length for the circular plasmids to be double stranded. It also follows that all circular...
Xu, F; J. Hu; Li, Y.; Zou, J.; Xu, Y; Shang, J.
2013-01-01
Orbital Friction Vibration Actuator (OFVA) is a core component of Orbital Friction Welding (OFW), which is a novel apertureless welding technology utilizing friction heat to implement solid-state joining. In this paper, topology and operational principle of OFVA are introduced, the analytical formulas of the electromagnetic force for the x and y directions, which can drive the mover to generate a circular motion trajectory, are derived, and the characteristic of static electromagnetic fo...
Directory of Open Access Journals (Sweden)
Seyed Hassan Mostafavi
2010-05-01
Full Text Available Preseptal and orbital cellulitis occur more commonly in children than adults. The history and physical examination are crucial in distinguishing between preseptal and orbital cellulitis. The orbital septum delineates the anterior eyelid soft tissues from the orbital soft tissue. Infections anterior to the orbital septum are classified as preseptal cellulitis and those posterior to the orbital septum are termed orbital cellulitis. "nRecognition of orbital involvement is important not only because of the threatened vision loss associated with orbital cellulitis but also because of the potential for central nervous system complications including cavernous sinus thrombosis, meningitis, and death. "nOrbital imaging should be obtained in all patients suspected of having orbital cellulitis. CT is preferred to MR imaging, as the orbital tissues have high con-trast and the bone can be well visualized. Orbital CT scanning allows localization of the disease process to the preseptal area, the extraconal or intraconal fat, or the subperiosteal space. Axial CT views allow evaluation of the medial orbit and ethmoid sinuses, whereas coronal scans image the orbital roof and floor and the frontal and maxillary sinuses. If direct coronal imaging is not possible, reconstruction of thin axial cuts may help the assessment of the orbital roof and floor. Potential sources of orbital cellulitis such as sinusitis, dental infection, and facial cellulitis are often detectable on CT imaging. "nIn this presentation, the imaging considerations of the orbital infections; including imaging differentiation criteria of all types of orbital infections are reviewed.
Femtosecond Magnetism When the Orbital Angular Momentum is Quenched
Si, M. S.; Yang, D. Z.; Xue, D. S.; Zhang, G. P.
2015-11-01
In femtosecond magnetism, a femtosecond laser pulse affects the spin moment only indirectly through the orbital angular momentum and the spin-orbit coupling. A long-standing puzzle is what happens if the orbital angular momentum itself is quenched. Here, we employ a four-level system to resolve this puzzle. The results show that the quenching of the orbital angular moment in the ground state has no direct relation to the spin moment change. By contrast, the orbital moment can be restored partially after the pulsed optical excitation and can affect the demagnetization. Importantly, this study confirms that the orbital moment indeed responds to the laser field faster than spin if the pulse duration is short, consistent with the recent time-resolved X-ray magnetic circular dichroism experiment. Therefore, our finding shines new light on femtosecond magnetism.
High-speed circular polarimetry of AM Herculis
International Nuclear Information System (INIS)
The magnetic variable AM Her shows synchronous 3.09 hr variations in its optical flux and polarization, its spectral features, and its two-component X-ray flux. Similar optical behavior is seen in AN UMa and VV Pup. While most theories for these systems assume that the accreting, magnetic white dwarf is rotating with the orbital period, a ''fast rotator'' model has been suggested by Fabian et al. Their model predicts strong modulation of the optical circular polarization with a period of approx.1 minute. We have measured the circular polarization in Am Her for 6 hours with 2 s resolution and obtain an upper limit of 0.2% on the semiamplitude of any steady oscillation in the polarization with a period less than 2 minutes. Such a low limit essentially eliminates fast-rotator models for AM Her. However, the circular polarization is found to show strong flickering with time scales greater than 10 s. This is correlated with the varying optical flux, proving that the optical flickering occurs near the surface of the white dwarf where the field is strong enough for optical cyclotron emission. The lack of significant flickering with time scales less than 10 s and a 30 s delay between flickers in the flux and in polarization suggest that the optical emission region is more extended than ''thin shock'' models predict
Signatures of strong geomagnetic storms in the equatorial latitude
Olawepo, A. O.; Adeniyi, J. O.
2014-04-01
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height - electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to -12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.
Equatorial noise emissions with quasiperiodic modulation of wave intensity
Czech Academy of Sciences Publication Activity Database
Němec, F.; Santolík, Ondřej; Hrbáčková, Zuzana; Pickett, J. S.; Cornilleau-Wehrlin, N.
2015-01-01
Roč. 120, č. 4 (2015), s. 2649-2661. ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH11122 Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves * quasiperiodic modulation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020816/full
Equatorial Noise Emissions and Their Quasi-Periodic Modulation
Czech Academy of Sciences Publication Activity Database
Němec, F.; Santolík, Ondřej; Hrbáčková, Zuzana; Pickett, J.; Cornilleau-Wehrlin, N.; Parrot, M.; Hayosh, Mykhaylo
San Francisco: American Geophysical Union, 2015. SM51F-03. [AGU Fall Meeting 2015. 14.12.2015-18.12.2015, San Francisco] Institutional support: RVO:68378289 Keywords : equatorial noise * magnetosonic waves * quasiperiodic modulation Subject RIV: BL - Plasma and Gas Discharge Physics https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/59251
Climate regulation of fire emissions and deforestation in equatorial Asia
van der Werf, G. R.; Dempewolf, J.; Trigg, S. N.; Randerson, J. T.; Kasibhatla, P. S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D. C.; Collatz, G. J.; Dolman, A. J.; Defries, R. S.
2008-01-01
Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire
The equatorial electrojet current modelling from SWARM satellite data
Benaissa, Mahfoud
2016-07-01
Equatorial ElectroJet (EEJ) is an intense eastward electric current circulating in the ionospheric magnetic equator band between 100 and 130 km of altitude in E region. These currents vary by day, by season, by solar activity, and also with the main magnetic field of internal origin. The irregularity of the ionosphere has a major impact on the performance of communication systems and navigation (GPS), industry.... Then it becomes necessary study the characteristics of EEJ. In this paper, we present a study of the equatorial electrojet (EEJ) phenomenon along one year (2014) period. In addition, the satellite data used in this study are obtained with SWARM satellite scalar magnetometer data respecting magnetically quiet days with KP < 2. In this paper, we process to separate and extract the electrojet intensity signal from other recorded signal-sources interfering with the main signal and reduce considerably the signal to noise ratio during the SWARM measurements. This pre-processing step allows removing all external contributions in regard to EEJ intensity value. Key words: Ionosphere (Equatorial ionosphere; Electric fields and currents; Equatorial electrojet (EEJ)); SWARM.
DEFF Research Database (Denmark)
Olson, M. E.; Fejer, B. G.; Stolle, Claudia;
2013-01-01
We use ground-based and satellite measurements to examine, for the first time, the characteristics of equatorial electrodynamic perturbations measured during the 2002 major and 2010 minor Southern Hemisphere sudden stratospheric warming (SSW) events. Our data suggest the occurrence of enhanced qu...
The Spectral Geometry of the Equatorial Podles Sphere
Dabrowski, Ludwik; Landi, Giovanni; Paschke, Mario; Sitarz, Andrzej
2004-01-01
We propose a slight modification of the properties of a spectral geometry a la Connes, which allows for some of the algebraic relations to be satisfied only modulo compact operators. On the equatorial Podles sphere we construct suq2-equivariant Dirac operator and real structure which satisfy these modified properties.
Yanai waves in the western equatorial Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
Chatterjee, A.; Shankar, D.; McCreary, J.P.; Vinayachandran, P.N.
Observations and models have shown the presence of intraseasonal fluctuations in 20-30-day and 10-20-day bands in the equatorial Indian Ocean west of 60 degrees E (WEIO). Their spatial and temporal structures characterize them as Yanai waves, which...
Using the orbital TIG welding process with a narrow bevel
International Nuclear Information System (INIS)
The orbital TIG with a narrow bevel was developed for primary circuit pipes welding of PWR boilers. Materials are austenitic stainless steels with end to end circular weldings of pipe and elbows with tubular nipples. Results of production and simulation welds are presented in industrial environment. (A.B.). 7 figs., 6 tabs
A global climatology for equatorial plasma bubbles in the topside ionosphere
Directory of Open Access Journals (Sweden)
L. C. Gentile
2006-03-01
Full Text Available We have developed a global climatology of equatorial plasma bubble (EPB occurrence based on evening sector plasma density measurements from polar-orbiting Defense Meteorological Satellite Program (DMSP spacecraft during 1989-2004. EPBs are irregular plasma density depletions in the post-sunset ionosphere that degrade communication and navigation signals. More than 14400 EPBs were identified in ~134000 DMSP orbits. DMSP observations basically agree with Tsunoda's (1985 hypothesis that EPB rates peak when the terminator is aligned with the Earth's magnetic field, but there are also unpredicted offsets in many longitude sectors. We present an updated climatology for the full database from 1989-2004 along with new plots for specific phases of the solar cycle: maximum 1989-1992 and 1999-2002, minimum 1994-1997, and transition years 1993, 1998, and 2003. As expected, there are significant differences between the climatologies for solar maximum and minimum and between the two solar maximum phases as well. We also compare DMSP F12, F14, F15, and F16 observations at slightly different local times during 2000-2004 to examine local time effects on EPB rates. The global climatologies developed using the DMSP EPB database provide an environmental context for the long-range prediction tools under development for the Communication/Navigation Outage Forecasting System (C/NOFS mission.
Deterministic Circular Self Test Path
Institute of Scientific and Technical Information of China (English)
WEN Ke; HU Yu; LI Xiaowei
2007-01-01
Circular self test path (CSTP) is an attractive technique for testing digital integrated circuits(IC) in the nanometer era, because it can easily provide at-speed test with small test data volume and short test application time. However, CSTP cannot reliably attain high fault coverage because of difficulty of testing random-pattern-resistant faults. This paper presents a deterministic CSTP (DCSTP) structure that consists of a DCSTP chain and jumping logic, to attain high fault coverage with low area overhead. Experimental results on ISCAS'89 benchmarks show that 100% fault coverage can be obtained with low area overhead and CPU time, especially for large circuits.
Lagrangian mixed layer modeling of the western equatorial Pacific
Shinoda, Toshiaki; Lukas, Roger
1995-01-01
Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.
Post-midnight occurrence of equatorial plasma bubbles
Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.
2016-07-01
The equatorial plasma bubbles (EPBs)/equatorial spread F (ESF) irregularities are an important topic of space weather interest because of their impact on transionospheric radio communications, satellite-based navigation and augmentation systems. This local plasma depleted structures develop at the bottom side F layer through Rayleigh-Taylor instability and rapidly grow to topside ionosphere via polarization electric fields within them. The steep vertical gradients due to quick loss of bottom side ionization and rapid uplift of equatorial F layer via prereversal enhancement (PRE) of zonal electric field makes the post-sunset hours as the most preferred local time for the formation of EPBs. However, there is a different class of irregularities that occurs during the post-midnight hours of June solstice reported by the previous studies. The occurrence of these post-midnight EPBs maximize during the low solar activity periods. The growth characteristics and the responsible mechanism for the formation of these post-midnight EPBs are not yet understood. Using the rapid beam steering ability of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. The responsible mechanism for the genesis of summer time post-midnight EPBs were discussed in light of growth rate of Rayleigh-Taylor instability using SAMI2 model.
DEFF Research Database (Denmark)
Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.;
2012-01-01
switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......)] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic “spin energy flow” predicted by the...
Generation and detection of orbital angular momentum via metasurface
Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang
2016-04-01
Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.
Physics at Future Circular Colliders
Kotwal, Ashutosh
2016-03-01
The Large Hadron Collider has been a grand success with the discovery of the Higgs boson, with bright prospects for additional discoveries since the recent increase in collider energy and the anticipated large datasets. Big open questions such as the nature of dark matter, the origin of the matter-antimatter asymmetry in the Universe, and the theoretical puzzle of the finely-tuned parameters in the Higgs sector, demand new physics principles that extend the established Standard Model paradigm. Future circular colliders in a substantially larger tunnel can house both a high luminosity electron-positron collider for precision measurements of Higgs and electroweak parameters, as well as a very high energy proton-proton collider which can directly manifest particles associated with these new physics principles. We discuss the physics goals of these future circular colliders, and the prospects for elucidating fundamental new laws of nature that will significantly extend our understanding of the Universe. Detailed studies of the discovery potential in specific benchmark models will be presented, with implications for detector design.
Energy Technology Data Exchange (ETDEWEB)
Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-04-01
Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.
Wang, Xinke; Shi, Jing; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Zhang, Yan
2016-04-01
Linearly and circularly polarized terahertz (THz) vortex beams are generated by adopting a THz quarter wave plate and spiral phase plates with topological charges 1 and 2. Taking advantage of a THz digital holographic imaging system, longitudinal components of THz vortices with different polarizations and topological charges are coherently measured and systemically analyzed in a focusing condition. The application potential of circularly polarized THz vortex beams in microscopy is experimentally demonstrated and the transformation between the spin angular momentums and orbital angular momentums of THz waves is also checked. Modified Richards-Wolf vector diffraction integration equations are applied to successfully simulate experimental phenomena. PMID:27137010
Tidal heating of Earth-like exoplanets around M stars: Thermal, magnetic, and orbital evolutions
Driscoll, Peter
2015-01-01
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low mass M stars whose radiative habitable zone overlaps with the "tidal zone". We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a visco-elastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within $0.07$ AU circularize before 10 G...
Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP
Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar
2009-01-01
A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.
Mixing in Circular and Non-circular Jets in Crossflow
DEFF Research Database (Denmark)
Salewski, Mirko; Stankovic, D.; Fuchs, L.
2008-01-01
are compared for circular, elliptic, and square nozzles. For the latter configurations, effects of orientation are considered. The computations reveal that the distribution of a passive scalar in a cross-sectional plane can be single- or double-peaked, depending on the nozzle shape and orientation. A proper...... orthogonal decomposition of the transverse velocity indicates that coherent structures may be responsible for this phenomenon. Nozzles which have a single-peaked distribution have stronger modes in transverse direction. The global mixing performance is superior for these nozzle types. This is the case...... for the blunt square nozzle and for the elliptic nozzle with high aspect ratio. It is further demonstrated that the flow field contains large regions in which a passive scalar is transported up the mean gradient (counter-gradient transport) which implies failure of the gradient diffusion hypothesis....
CIRCULAR ECONOMY IN ROMANIA WITHIN EUROPEAN CONTEXT
Cornelia Marcela Danu; Valentin Nedeff
2015-01-01
In the present paper we have approached some conceptual and coordinated marks of the societal reality connected to the circular economy. Generated by „the limits of certainty” regarding the future of the world business, the operationalization of the circular economy has become a part of the EU strategies and started the various stages of implementation as an active process in all countries. We have highlighted the opportunities and the risks related to the circular economy, the European dimen...
A COMPACT CIRCULARLY POLARIZED SLOTTED MICROSTRIP ANTENNA
V. Jebaraj; K.R.S. Ravi Kumar; D. Mohanageetha
2014-01-01
Slot antennas are often used at UHF and microwave frequencies. In slot antenna for RFID reader applications the frequency ranges from 902-923MHz to achieve circular polarization. The shapes and size of the slot, as well as the driving frequency, determine the radiation distribution pattern. The proposed compact size circularly polarized slotted microstrip antenna are summarized with design rules. The circularly polarized radiation in square patch antenna can be obtained by perturbation techni...
Reconfigurable Monopole Antennas With Circular Polarization
Panahi, Afshin
2015-01-01
This thesis presents research on printed circularly-polarized monopole antennas and their application in reconfigurable monopole antennas. The proposed circularly-polarised monopole antennas benefit from advantages such as small size, low-cost, low-profile and simple designs. The first part of this thesis introduces three printed circularly-polarized monopole antennas for global navigation satellite systems and Wi-Fi applications. The primary focus is on the ground plane which is used as a ra...
Analysis on high-altitude earth Orbit Satellite Determination
He, J.; Hou, Y. W.; Yang, L.
2016-02-01
The difference is introduced between approx circular apogee orbit and approx circular perigee one by error transmitting at first. Then the characteristic of secant compensation is analysed when radar tracking object with high elevation. And two kinds of orbit force be pressed to, their perturbation influence and their earth-core angles are explained. And then the series of emulation results are shown including error data emulated with Monte Carlo method, the influence of the velocity increment from the ejecting force of spring while satellite-rocket separating and their perturbation influence and the length of influence of the data arc. Then decision analysis of Wald method and Bayesian statistics rule and the results from the two rule are introduced. So the suitable orbit determination decision is put forward from the decision method. Finally the result is tested reasonable and feasible via the real data. In the end it is useful to reference to make orbit decision in short injection of circular orbit far from the earth for calculating concurrently precise and timely.
Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics
Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.
2012-01-01
Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation
Molecular alignment using circularly polarized laser pulses
Smeenk, C T L
2013-01-01
We show that circularly polarized femtosecond laser pulses produce field-free alignment in linear and planar molecules. We study the rotational wavepacket evolution of O$_2$ and benzene created by circularly polarized light. For benzene, we align the molecular plane to the plane of polarization. For O$_2$, we demonstrate that circular polarization yields a net alignment along the laser propagation axis at certain phases of the evolution. Circular polarization gives us the ability to control alignment of linear molecules outside the plane of polarization, providing new capabilities for molecular imaging.
Generation of Orbital Angular Momentum Carrying Beams in Semiconductor Microcavities
International Nuclear Information System (INIS)
Full text: It is notable that all techniques for the creation of beams with orbital angular momentum, to the best of our knowledge, require an optically inhomogeneous and/or anisotropic material or strong focusing. In this work, we demonstrate that the spin-to-orbital angular momentum (SOAM) conversion can also be achieved in a planar semiconductor microcavity. Despite being an isotropic system, microcavities exhibit a polarization splitting between transverse electric - transverse magnetic (TE-TM) modes, which induces the appearance of an L = +2 orbital angular momentum in one of the circular polarizations, under excitation in the cross-circular polarization [1]. The vertical entities resulting from this conversion process can be regarded as the optical equivalent of a pair of half-quantum vortices. We provide a theoretical model which rigorously derives the principle of the SOAM conversion and quantitatively reproduces the experimental observations. (author)
Effectiveness of the de-orbiting practices in the MEO region
Rossi, Alessandro; Anselmo, Luciano; Pardini, Carmen; Jehn, Ruediger
2009-01-01
The Medium Earth Orbit (MEO) region is becoming increasingly exploited as the number of navigation constellations grows with the advent of the European GALILEO and the Chinese COMPASS systems. There is the need for an effective disposal strategy of satellites at end-of- life able to prevent any possible damage of operational satellites. This strategy has to take into account the known instability of nearly circular disposal orbits in MEO. These orbits show an increase of the eccentricity that...
Charged dust dynamics - Orbital resonance due to planetary shadows
Horanyi, M.; Burns, J. A.
1991-01-01
The dynamics of a weakly charged dust grain orbiting in the equatorial plane of a planet surrounded by a rigidly corotating magnetospehre is examined. It is shown that an introduction of an effectilve 1D potential causes a perturbation due to electrostatic forces, which induces a motion of the pericenter, similar to the effect of the planetary oblateness. A case is examined where the charge varies periodically due to the modulation of the photoelectron current occurring as the grain enters and leaves the planetary shadow, causing the electromagnetic perturbation to resonate with the orbital period and to modify the size and eccentricity of the orbit. This effect is demonstrated both numerically and analytically for small grains comprising the Jovian ring, showing that their resulting changes are periodic, and their amplitude is much larger than that of the periodic changes due to light-pressure perturbation or the secular changes due to resonant charge variations that develop over a comparable time span.
Probable Spin-Orbit Aligned Super-Earth Planet Candidate KOI-2138.01
Barnes, Jason W; Seubert, Shayne A; Relles, Howard M
2015-01-01
We use rotational gravity darkening in the disk of \\emph{Kepler} star KOI-2138 to show that the orbit of $2.1-R_\\oplus$ transiting planet candidate KOI-2138.01 has a low projected spin-orbit alignment of $\\lambda=1^\\circ\\pm13$. KOI-2138.01 is just the second super-Earth with a measured spin-orbit alignment after 55 Cancri e, and the first to be aligned. With a 23.55-day orbital period, KOI-2138.01 may represent the tip of a future iceberg of solar-system-like terrestrial planets having intermediate periods and low-inclination circular orbits.
Pinyol i Bori, Francesc
2007-01-01
És un text epistemològic sobre les qüestions cognitives circulars que apareixen: a) Quan el subjecte forma part de l'objecte estudiat; b) En la recerca de les bases del coneixement; c) Al voler justificar la inducció; d) En algunes interpretacions filosòfiques i científiques. S'hi explica l'estat del punt a) el més problemàtic, i s'aclareixen els altres tres punts: els b) i c) pel fet científic que l'evolució cognitiva humana ha anat acoblada a l'evolució biològica, la qual ha generat els a p...
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.
Driscoll, P E; Barnes, R
2015-09-01
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. PMID:26393398
The dawn enhancement of the equatorial ionospheric vertical plasma drift
Zhang, Ruilong; Liu, Libo; Chen, Yiding; Le, Huijun
2015-12-01
Previous studies have reported that a dawn enhancement does not present in the statistical picture of the equatorial ionospheric vertical plasma drift, while it clearly shows in case measurements. In this statistical study, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag.
Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini
Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.
2012-01-01
We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.
Explaining Jupiter's magnetic field and equatorial jet dynamic
Gastine, T; Duarte, L; Heimpel, M; Becker, A
2014-01-01
Spacecraft data reveal a very Earth-like Jovian magnetic field. This is surprising since numerical simulations have shown that the vastly different interiors of terrestrial and gas planets can strongly affect the internal dynamo process. Here we present the first numerical dynamo that manages to match the structure and strength of the observed magnetic field by embracing the newest models for Jupiter's interior. Simulated dynamo action primarily occurs in the deep high electrical conductivity region while zonal flows are dynamically constrained to a strong equatorial jet in the outer envelope of low conductivity. Our model reproduces the structure and strength of the observed global magnetic field and predicts that secondary dynamo action associated to the equatorial jet produces banded magnetic features likely observable by the Juno mission. Secular variation in our model scales to about 2000 nT per year and should also be observable during the one year nominal mission duration.
Occurrence of equatorial spread F during intense geomagnetic storms
Ray, S.; Roy, B.; Das, A.
2015-07-01
Equatorial spread F (ESF) has been observed in response to the prompt penetration of magnetospheric electric field to equatorial latitudes during intense (minimum Dst ≤ -100 nT; Bz ≤ -10 nT for at least 3 h) magnetic storms using global ion density plots of Defense Meteorological Satellite Program (DMSP) over nearly one solar cycle (1996-2005). Geostationary amplitude scintillation observations from Calcutta at VHF and L band for 1996-2005 and GPS amplitude scintillation measurements during 2004-2005 from the Indian Satellite Based Augmentation System Geostationary and GPS Navigation Outlay (GPS Aided GEO Augmented Navigation) network of stations all over India have been used to corroborate the DMSP observations. Subsequent to the time of southward interplanetary magnetic field Bz crossing -10 nT for an intense storm, it has been observed that within 4 h, ESF is generated at a longitude where the local time is dusk.
Industrial concessions, fires and air pollution in Equatorial Asia
Spracklen, D. V.; Reddington, C. L.; Gaveau, D. L. A.
2015-09-01
Forest and peatland fires in Indonesia emit large quantities of smoke leading to poor air quality across Equatorial Asia. Marlier et al (2015 Environ. Res. Lett. 10 085005) explore the contribution of fires occurring on oil palm, timber (wood pulp and paper) and natural forest logging concessions to smoke emissions and exposure of human populations to the resulting air pollution. They find that one third of the population exposure to smoke across Equatorial Asia is caused by fires in oil palm and timber concessions in Sumatra and Kalimantan. Logging concessions have substantially lower fire emissions, and contribute less to air quality degradation. This represents a compelling justification to prevent reclassification of logging concessions into oil palm or timber concessions after logging. This can be achieved by including logged forests in the Indonesian moratorium on new plantations in forested areas.
Saturn's equatorial jet structure from Cassini/ISS
García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo
2010-05-01
Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.
Equatorial wave analysis from SABER and ECMWF temperatures
Directory of Open Access Journals (Sweden)
M. Ern
2008-02-01
Full Text Available Equatorial planetary scale wave modes such as Kelvin waves or Rossby-gravity waves are excited by convective processes in the troposphere. In this paper an analysis for these and other equatorial wave modes is carried out with special focus on the stratosphere using temperature data from the SABER satellite instrument as well as ECMWF temperatures. Space-time spectra of symmetric and antisymmetric spectral power are derived to separate the different equatorial wave types and the contribution of gravity waves is determined from the spectral background of the space-time spectra.
Both gravity waves and equatorial planetary scale wave modes are main drivers of the quasi-biennial oscillation (QBO in the stratosphere. Temperature variances attributed to the different wave types are calculated for the period from February 2002 until March 2006 and compared to previous findings. A comparison between SABER and ECMWF wave analyses shows that in the lower stratosphere SABER and ECMWF spectra and temperature variances agree remarkably well while in the upper stratosphere ECMWF tends to overestimate Kelvin wave components. Gravity wave variances are partly reproduced by ECMWF but have a significant low-bias. For the examples of a QBO westerly phase (October–December 2004 and a QBO easterly phase (November/December 2005, period of the SCOUT-O3 tropical aircraft campaign in Darwin/Australia in the lower stratosphere we find qualitatively good agreement between SABER and ECMWF in the longitude-time distribution of Kelvin, Rossby (n=1, and Rossby-gravity waves.
Neutronics for equatorial and upper ports in ITER
International Nuclear Information System (INIS)
Highlights: • ITER neutronics calculations for Diagnostic Equatorial Port Plug (EPP) and Electron Cyclotron Heating Upper Launcher (ECHUL). • Activation and radiation shielding calculations have been performed using the MCNP5, FISPACT-2007, and R2Smesh codes. • Dominant effect of radiation streaming along the port plug gaps was recognized. • An optimized double labyrinth was recommended for the current EPP design. • Neutronics modelling assumptions significantly affect fluxes and doses inside the ITER port interspaces. -- Abstract: Specific neutronics features of the ITER equatorial and upper ports are discussed in this paper as related to the design development of Diagnostic Equatorial Port Plug (EPP) and Electron Cyclotron Heating Upper Launcher (ECHUL). The focus is on the EPP analysis. Neutronics analyses are based on new calculation results of neutron/photon fluxes, nuclear heating, neutron damage and shutdown dose rates. The results were obtained with the radiation transport code MCNP5, the activation code FISPACT-2007, and the Rigorous 2 Step mesh-based (R2Smesh) interface code which allows to provide shutdown dose rate distributions with high spatial resolution. It was revealed that neutron flux levels in the port access areas, the resulting activation of the port materials and the equivalent radiation doses imposed to work personnel after ITER shutdown are strongly dependent on the openings in the port shielding blocks. For the ECHUL in the upper port, neutron fluxes have been calculated for an updated ITER model and compared with previous results. This work reveals substantial radiation cross-talk effects between the lower, the equatorial and the upper ITER ports and provides fundamental results which can be utilized for further investigations of suitable design options of ITER ports
Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini
Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.
2013-01-01
We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.
Solar cycle signatures in the NCEP equatorial annual oscillation
H. G. Mayr; Mengel, J. G.; F. T. Huang; Nash, E. R.
2009-01-01
Our analysis of temperature and zonal wind data (1958 to 2006) from the National Center for Atmospheric Research (NCAR) reanalysis (Re-1), supplied by the National Centers for Environmental Prediction (NCEP), shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO) contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC). The spectral feat...
Equatorial Superrotation on Earth Induced by Optically Thick Dust Clouds
Zhu, X.; Oman, L. D.; Waugh, D. W.; Lloyd, S. A.
2008-12-01
How does the Earth's atmosphere respond to exceptional aerosol events, and what is the mechanism leading to consequent past and possible future climate shifts? One possible mechanism leading to aerosol-induced climate shifts is the striking atmospheric dynamics phenomenon of equatorial superrotation, such as that found on Venus and Saturn's moon Titan, with its enhanced meridional transport. Recently, a significant breakthrough has been made in our theoretical understanding of atmospheric superrotation on Venus and Titan. Extending this result regarding superrotation in planetary atmospheres to the concept of superrotation in Earth's atmosphere serves not only to shed insight into long-standing and seemingly disparate questions of Earth's climate (such as the mechanism of mass extinction and geo-engineering mitigation of global warming) but also to develop a common theoretical framework to address the impacts of profound changes of atmospheric aerosols and their consequences. The three-dimensional Goddard Institute for Space Studies (GISS) modelE GCM and Johns Hopkins University Applied Physics Laboratory (JHU/APL) two-dimensional radiative-dynamical model are used to investigate the induction of equatorial superrotation in Earth's stratosphere, as well as its effect on meridional transport of dust and aerosols in association with the supervolcano eruptions. Preliminary results show that an equatorial superrotational wind in the upper troposphere was initiated and lasted for more than two years following the Mt Toba eruption near the equator about 71,000 years ago. The circulation structure at mid-latitude was also altered, indicating a global impact of an equatorial injection of an aerosol layer.
Scaling of Off-Equatorial Jets in Giant Planet Atmospheres
Liu, Junjun; Schneider, Tapio
2015-01-01
In the off-equatorial region of Jupiter’s and Saturn’s atmospheres, baroclinic eddies transport angular momentum out of retrograde and into prograde jets. In a statistically steady state, this angular momentum transfer by eddies must be balanced by dissipation, likely produced by magnetohydrodynamic (MHD) drag in the planetary interior. This paper examines systematically how an idealized representation of this drag in a general circulation model (GCM) of the upper atmosphere of giant planets ...
Air-sea interaction patterns in the equatorial Pacific
Kent, John E.
1993-01-01
We have investigated air-sea interaction patterns in the equatorial Pacific during the 1991-1992 El Nino/Southern Oscillation (ENSO) event. Our study focused on the identification of spatial and temporal relationships between sea surface temperatures, subsurface temperatures, and winds. These relationships were examined using time series and statistical analyses of atmosphere and ocean data from the moored buoys of the Tropical Oceans-Global Atmosphere (TOGA) program. Our results strongly sug...
Air-Sea Coupling Over The Equatorial Indian Ocean
Digital Repository Service at National Institute of Oceanography (India)
Gopika, N.
subcontinent and adjoining areas of Southeast Asia. Recurrence of these summer monsoon rains is critical to agricultural production that provides life-sustaining support for a billion people in the region. The reversing monsoon winds also generate a unique... with latitude makes the equatorial areas a special region. This makes the equator as a wave-guide within which the signal of atmospheric forcing could be transferred over long distances without much energy loss. For 13 example, the zonal momentum...
Transformed variables and hodographs in impulsive orbit transfer
Carter, Thomas; Humi, Mayer
2016-06-01
Recently a transformation of variables has been used for an object in a Newtonian gravitational field that linearizes the equations of motion. This transformation has been found useful for unconstrained orbital rendezvous and transfer problems. This paper examines the geometry of these transformed variables for planar orbital transfer problems. The transformed initial, final, and transfer orbits are either points or circles with centers on a horizontal axis. Applied velocity impulses cause horizontal jumps between these points or centers and vertical jumps between points on the circular arcs. These transformed orbits are shown to have an equivalence to the well-known classical hodographs. Because of this equivalence the orbit equation can be represented by another set of linear equations in terms of the radial velocity, transverse velocity, and the reciprocal of the angular momentum.
Pilot-wave hydrodynamics in a rotating frame: Exotic orbits
Energy Technology Data Exchange (ETDEWEB)
Oza, Anand U.; Harris, Daniel M.; Rosales, Rodolfo R.; Bush, John W. M., E-mail: bush@math.mit.edu [Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Wind-Willassen, Øistein [Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)
2014-08-15
We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop's trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased, stable circular orbits give way to wobbling orbits, which are succeeded in turn by instabilities of the orbital center characterized by steady drifting then discrete leaping. In the limit of large vibrational forcing, the walker's trajectory becomes chaotic, but its statistical behavior reflects the influence of the unstable orbital solutions. The study results in a complete regime diagram that summarizes the dependence of the walker's behavior on the system parameters. Our predictions compare favorably to the experimental observations of Harris and Bush [“Droplets walking in a rotating frame: from quantized orbits to multimodal statistics,” J. Fluid Mech. 739, 444–464 (2014)].
Pluto and Charon: A Case of Precession-Orbit Resonance?
Rubincam, David Parry; Smith, David E. (Technical Monitor)
2000-01-01
Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.
Productivity control of fine particle transport to equatorial Pacific sediment
Thomas, E.; Turekian, K. K.; Wei, K.-Y.
2000-09-01
Accumulation rates of 3He (from cosmic dust), 230Th (produced in the water column), barite (produced in the water column during decay of organic matter), and Fe and Ti (arriving with wind-borne dust) all are positively correlated in an equatorial Pacific core (TT013-PC72; 01.1°N, 139.4°W; water depth 4298 m). These accumulation rates are also positively correlated with the accumulation rates of noncarbonate material. They are not significantly correlated to the mass accumulation rate of carbonate, which makes up the bulk of the sediment. The fluctuations in accumulation rates of these various components from different sources thus must result from variations in some process within the oceans and not from variations in their original sources. Sediment focusing by oceanic bottom currents has been proposed as this process [Marcantonio et al., 1996]. We argue that the variations in the accumulation rates of all these components are dominantly linked to changes in productivity and particle scavenging (3He, 230Th, Fe, Ti) by fresh phytoplankton detritus (which delivers Ba upon its decay) in the equatorial Pacific upwelling region. We speculate that as equatorial Pacific productivity is a major component of global oceanic productivity, its variations over time might be reflected in variations in atmospheric levels of methanesulfonic acid (an atmospheric reaction product of dimethyl sulfide, which is produced by oceanic phytoplankton) and recorded in Antarctic ice cores.
Impacts of the Atlantic Equatorial Mode in a warmer climate
Mohino, Elsa; Losada, Teresa
2015-10-01
The main source of sea surface temperature (SST) variability in the Tropical Atlantic at interannual time scales is the Equatorial Mode or Atlantic El Niño. It has been shown to affect the adjacent continents and also remote regions, leading to a weakened Indian Monsoon and promoting La Niña-type anomalies over the Pacific. However, its effects in a warmer climate are unknown. This work analyses the impact of the Equatorial Mode at the end of the twenty first century by means of sensitivity experiments with an atmosphere general circulation model. The prescribed boundary conditions for the future climate are based on the outputs from models participating in the coupled model intercomparison project—phase V. Our results suggest that even if the characteristics of the Equatorial Mode at the end of the twenty first century remained equal to those of the twentieth century, there will be an eastward shift of the main rainfall positive anomalies in the Tropical Atlantic and a weakening of the negative rainfall anomalies over the Asian monsoon due to the change in climatological SSTs. We also show that extratropical surface temperature anomalies over land related to the mode will change in regions like Southwestern Europe, East Australia, Asia or North America due to the eastward shift of the sea level pressure systems and related surface winds.
Fast-PPP assessment in European and equatorial region near the solar cycle maximum
Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume
2014-05-01
The Fast Precise Point Positioning (Fast-PPP) is a technique to provide quick high-accuracy navigation with ambiguity fixing capability, thanks to an accurate modelling of the ionosphere. Indeed, once the availability of real-time precise satellite orbits and clocks is granted to users, the next challenge is the accuracy of real-time ionospheric corrections. Several steps had been taken by gAGE/UPC to develop such global system for precise navigation. First Wide-Area Real-Time Kinematics (WARTK) feasibility studies enabled precise relative continental navigation using a few tens of reference stations. Later multi-frequency and multi-constellation assessments in different ionospheric scenarios, including maximum solar-cycle conditions, were focussed on user-domain performance. Recently, a mature evolution of the technique consists on a dual service scheme; a global Precise Point Positioning (PPP) service, together with a continental enhancement to shorten convergence. A end to end performance assessment of the Fast-PPP technique is presented in this work, focussed in Europe and in the equatorial region of South East Asia (SEA), both near the solar cycle maximum. The accuracy of the Central Processing Facility (CPF) real-time precise satellite orbits and clocks is respectively, 4 centimetres and 0.2 nanoseconds, in line with the accuracy of the International GNSS Service (IGS) analysis centres. This global PPP service is enhanced by the Fast-PPP by adding the capability of global undifferenced ambiguity fixing thanks to the fractional part of the ambiguities determination. The core of the Fast-PPP is the capability to compute real-time ionospheric determinations with accuracies at the level or better than 1 Total Electron Content Unit (TECU), improving the widely-accepted Global Ionospheric Maps (GIM), with declared accuracies of 2-8 TECU. This large improvement in the modelling accuracy is achieved thanks to a two-layer description of the ionosphere combined with
International Nuclear Information System (INIS)
The authors present a method called ''Radiovolumetry of the orbit'' that permits the evaluation of the orbital volume from anteroposterior skull X-Rays (CALDWELL 300 position). The research was based in the determination of the orbital volume with lead spheres, in 1010 orbits of 505 dry skulls of Anatomy Museums. After the dry skulls was X-rayed six frontal orbital diameters were made, with care to correct the radiographic amplification. PEARSON correlation coeficient test was applied between the mean orbital diameter and the orbital volume. The result was r = 0,8 with P < 0,001. A table was made that permit the determination of the approximate orbital volume from the frontal orbital radiographic diameters. (author)
Microstrip Antenna Generates Circularly Polarized Beam
Huang, J.
1986-01-01
Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.
Circular Loudspeaker Array with Controllable Directivity
DEFF Research Database (Denmark)
Møller, Martin; Olsen, Martin; Agerkvist, Finn T.;
2010-01-01
Specific directivity patterns for circular arrays of loudspeakers can be achieved by utilizing the concept of phase-modes, which expands the directivity pattern into a series of circular harmonics. This paper investigates the applicability of this concept applied on a loudspeaker array on a...
Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.
Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray
2002-04-01
Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE. PMID:12185675
CIRCULAR ECONOMY IN ROMANIA WITHIN EUROPEAN CONTEXT
Directory of Open Access Journals (Sweden)
Cornelia Marcela Danu
2015-07-01
Full Text Available In the present paper we have approached some conceptual and coordinated marks of the societal reality connected to the circular economy. Generated by „the limits of certainty” regarding the future of the world business, the operationalization of the circular economy has become a part of the EU strategies and started the various stages of implementation as an active process in all countries. We have highlighted the opportunities and the risks related to the circular economy, the European dimension and, in particular, the Romanian one of this process, the role of the triad: consumer-company-natural environment, while implementing the circular economy. Circular economy is both a new approach of the societal life, based on changing the mentalities of the individuals having the role of decision makers at the company level and public administration and the decision makers – consumers, as well as a policy meant to be made operational across all entities: governmental, entrepreneurial, individually – human.
Gauge-Invariant Formulation of Circular Dichroism.
Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A
2016-07-12
Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment. PMID:27295541
Nanofocusing in circular sector-like nanoantennas
DEFF Research Database (Denmark)
Zenin, Volodymyr; Pors, Anders Lambertus; Han, Zhanghua;
2014-01-01
Gold circular sector-like nanoantennas (with a radius of 500 nm and a taper angle of 60°, 90°, and 120°) on glass are investigated in a near-infrared wavelength range (900 - 2100 nm). Amplitude- and phase-resolved near-field images of circular sector-like antenna modes at telecom wavelength feature...... a concentric circular line of phase contrast, demonstrating resonant excitation of a standing wave of counter-propagating surface plasmons, travelling between a tip and opposite circular edge of the antenna. Transmission spectra obtained in the range 900 - 2100 nm are in good agreement with...... makes circular sector-like nanoantennas very promising for implementing bowtie antennas and attractive for many applications....
Birth: A Neutral Beam Deposition Code for Non-Circular Tokamak Plasma
International Nuclear Information System (INIS)
A new neutral beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross-section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical CPU time on a KL DEC-10 computer is 10--20 s and 5--10 s with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo beam deposition codes. The power deposition profile calculated by this code is in good agreement with that calculated by the Monte Carlo code which was developed to calculate the complete behaviors of the fast ions in circular plasmas
Planets orbiting Quark Nova compact remnants
Keränen, P.; Ouyed, R.
2003-01-01
We explore planet formation in the Quark Nova scenario. If a millisecond pulsar explodes as a Quark Nova, a protoplanetary disk can be formed out of the metal rich fall-back material. The propeller mechanism transfers angular momentum from the born quark star to the disk that will go through viscous evolution with later plausible grain condensation and planet formation. As a result, earth-size planets on circular orbits may form within short radii from the central quark star. The planets in t...
BIRTH: a beam deposition code for non-circular tokamak plasmas
International Nuclear Information System (INIS)
A new beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical cpu time on a DEC-10 computer is 10 - 20 seconds and 5 - 10 seconds with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo codes. The power deposition profile calculated by this code is in good agreement with that calculated by a Monte Carlo code. (author)
Equatorial scintillations in relation to the development of ionization anomaly
Directory of Open Access Journals (Sweden)
S. Ray
2006-07-01
Full Text Available The irregularities in the electron density distribution of the ionosphere over the equatorial region frequently disrupt space-based communication and navigation links by causing severe amplitude and phase scintillations of signals. Development of a specification and forecast system for scintillations is needed in view of the increased reliance on space-based communication and navigation systems, which are vulnerable to ionospheric scintillations. It has been suggested in recent years that a developed equatorial anomaly in the afternoon hours, with a steep gradient of the F-region ionization or Total Electron Content (TEC in the region between the crest and the trough, may be taken as a precursor to scintillations on transionospheric links. Latitudinal gradient of TEC measured using Faraday Rotation technique from LEO NOAA 12/14 transmissions during the afternoon hours at Calcutta shows a highly significant association with L-band scintillations recorded on the INMARSAT link, also from Calcutta, during the equinoxes, August through October 2000, and February through April 2001.
The daytime equatorial electrojet is believed to control the development of the equatorial anomaly and plays a crucial role in the subsequent development of F-region irregularities in the post-sunset hours. The diurnal maximum and integrated value (integrated from the time of onset of plasma influx to off-equatorial latitudes till local sunset of the strength of the electrojet in the Indian longitude sector shows a significant association with post-sunset L-band scintillations recorded at Calcutta during the two equinoxes mentioned earlier.
Generation of equatorial irregularities over the magnetic equator in the post-sunset hours is intimately related to the variation of the height of the F-layer around sunset. Ionosonde data from Kodaikanal, a station situated close to the magnetic equator, has been utilized
Energy Technology Data Exchange (ETDEWEB)
Jin, Yao; Hu, Jiawei [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China)
2014-05-15
We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent.
Sepinsky, J F; Kalogera, V; Rasio, F A
2010-01-01
The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of mass transfer is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semi-major axis an...
Extension of Earth-Moon libration point orbits with solar sail propulsion
Heiligers, Jeannette; Macdonald, Malcolm; Parker, Jeffrey S.
2016-07-01
This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun's motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of Sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits.
National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...
DEFF Research Database (Denmark)
Riis, Troels; Jørgensen, John Leif
1999-01-01
This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....
Lux in obscuro: Photon Orbits of Extremal Black Holes Revisited
Khoo, Fech Scen(Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan, ROC); Ong, Yen Chin
2016-01-01
It has been shown in the literature that the event horizon of an asymptotically flat extremal Reissner-Nordstr\\"om black hole is also a stable photon sphere. We further clarify this statement and give a general proof that this holds for a large class of static spherically symmetric black hole spacetimes with an extremal horizon. In contrast, an asymptotically flat extremal Kerr black hole has an unstable photon orbit on the equatorial plane of its horizon. In addition, we show that an asympto...
Definition of Relative Orbit Elements of Spacecraft Formation Flying for Purpose of Orbit Design
Xiao, Yelun
Much efforts have been made to the research concerning the dynamical characteristics of spacecraft formation flying, several articles have been published including the authors' IAC papers IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. The problem can be deduced to the issue of relative orbit motion of one satellite called accompany satellite around another called reference or central satellite, the latter being supposed to move in circular or near-circular orbit and to have equal semimajor axis as the former. It has been shown that the trajectory of relative motion is an ellipse constantly fixed to the orbital frame of the central satellite. It is known that the relative motion is completely determined by initial state of relative motion x0, y0, z0, vx0, vy0, vz0 (called parameter set 1). On the other hand the relative motion is caused by difference in eccentricity vectors and by non-coplanarity vector and influenced by the angle btw. the two vectors (called parameter set 2). Now the authors try to define relative orbit elements determining all geometrical and kinematical properties of the relative motion and having clear physical meaning similar to traditional orbit elements. Based on deep study of the dynamical characteristics we decide to define the elements as follows: (1) semimajor axis of the ellipse of relative trajectory; (2 and 3) elevation and azimuth angles of the normal determining the orientation of the relative motion plane wrt the reference orbit frame; (4) argument of latitude at epoch (initial instant) of reference satellite and (5) phase angle of the accompany satellite at epoch. These are minimum-required and independent elements. All others are secondary (or derived) parameters. For example, aspect ratio, i.e., ratio of major axis to minor axis, describing the shape of relative trajectory, is determined by elements 2 and 3, because of the inherent property that the projection of relative trajectory on reference orbit plane must be a 2
Qualitative features of the evolution of some polar satellite orbits
Vashkov'yak, M. A.
2016-01-01
Two special cases of the problem of the secular perturbations in the orbital elements of a satellite with a negligible mass produced by the joint influence of the oblateness of the central planet and the attraction by its most massive (or main) satellites and the Sun are considered. These cases are among the integrable ones in the general nonintegrable evolution problem. The first case is realized when the plane of the satellite orbit and the rotation axis of the planet lie in its orbital plane. The second case is realized when the plane of the satellite orbit is orthogonal to the line of intersection between the equatorial and orbital planes of the planet. The corresponding particular solutions correspond to those polar satellite orbits for which the main qualitative features of the evolution of the eccentricity and pericenter argument are described here. Families of integral curves have been constructed in the phase plane of these elements for the satellite systems of Jupiter, Saturn, and Uranus.
Orbital Tumors and Pseudotumors
Talan-Hranilović, Jasna; Tomas, Davor
2004-01-01
Twenty-four orbital tumors and 4 pseudotumors diagnosed in biopsy material among 596 ophthalmic tumors examined during the 1998-2003 period are presented according to patient age and sex, tumor histology and immunohistochemistry. The most common orbital tumors were lipomas, meningiomas and lymphomas, with a peak incidence in the seventh decade of life. Most orbital tumors of childhood are distinguished from those occurring in adults. Most pediatric orbital tumors are benign (developmental cys...
Endoscopic orbital decompression
Balasubramanian Thiagarajan
2014-01-01
Orbital decompression surgery has been indicated in patients with compressive optic neuropathy, severe corneal exposure, cosmetic deformity due to proptosis. Traditional orbital decompression approaches were fraught with complications. With the advent of nasal endoscopes decompression is being carried out transnasally under endoscopic guidance. The entire medial wall of orbit can be taken down transnasally using nasal endoscope, and the inferior wall of orbit can be removed using the...
Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization
Directory of Open Access Journals (Sweden)
Kai-Jun Yuan
2015-01-01
Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.
Ionization of hydrogen atoms by circularly polarized microwaves
Energy Technology Data Exchange (ETDEWEB)
Gebarowski, R.; Zakrzewski, J. (Instytut Fizyki Uniwersytetu Jagiellonskiego, ulica Reymonta 4, 30-059 Krakow (Poland) Laboratoire Kastler-Brossel, Universite Pierre et Marie Curie, T12, E1, 4 place Jussieu, 75272 Paris Cedex 05 (France))
1995-02-01
Ionization of hydrogen Rydberg atoms by [ital circularly] polarized microwaves is studied numerically within the framework of classical mechanics. Both the simplified two-dimensional model (in which the plane of polarization coincides with the orbit plane) and a fully three-dimensional system are considered. It is shown that the ionization proceeds in the diffusive manner for all microwave frequencies except the low-frequency limit. The threshold for diffusive excitation as well as the diffusion speed is strongly dependent on the initial state of the system for smooth pulse excitation. In a high-frequency limit the ionization threshold rises sharply---the atom is much more resistant to the excitation. Two distinct regimes of stabilization windows (regions where the ionization decreases with increasing field amplitude), one in the strong short-laser-pulse domain and the other in the weak microwave domain, are identified and discussed.
Directory of Open Access Journals (Sweden)
Marjanov Milutin
2013-01-01
Full Text Available Besides translation, spin around its axis and rotation around center of the Milky Way, the Sun performs relative motion in the solar system Laplacian plane, also. This motion was anticipated by Newton himself, in his Principia. The form of the Sun’s orbit is substantially different from the other solar system bodies’ orbits. Namely, the Sun moves along the path composed of the chain of large and small loops [1, 2, 6, 9]. This chain is situated within the circular outline with the diameter approximately twice as large as the Sun’s is. Under supposition that the solar system is stable, the Sun is going to move along it, in the same region, for eternity, never reitereiting the same path. It was also shown in this work that velocity and acceleration of the Sun’s center of mass are completely defined by the relative velocities and accelerations of the planets with respect to the Sun.
Long-Term Stability of Horseshoe Orbits
Ćuk, Matija; Holman, Matthew J
2012-01-01
Unlike Trojans, horseshoe coorbitals are not generally considered to be long-term stable (Dermott and Murray, 1981; Murray and Dermott, 1999). As the lifetime of Earth's and Venus's horseshoe coorbitals is expected to be about a Gyr, we investigated the possible contribution of late-escaping inner planet coorbitals to the lunar Late Heavy Bombardment. Contrary to analytical estimates, we do not find many horseshoe objects escaping after first 100 Myr. In order to understand this behaviour, we ran a second set of simulations featuring idealized planets on circular orbits with a range of masses. We find that horseshoe coorbitals are generally long lived (and potentially stable) for systems with primary-to-secondary mass ratios larger than about 1200. This is consistent with results of Laughlin and Chambers (2002) for equal-mass pairs or coorbital planets and the instability of Jupiter's horseshoe companions (Stacey and Connors, 2008). Horseshoe orbits at smaller mass ratios are unstable because they must approa...
International Nuclear Information System (INIS)
Radioanatomy of eyes and orbit is described. Diseases of the orbit (developmental anomalies, inflammatory diseases, lacrimal apparatus deseases, toxoplasmosis, tumors and cysts et al.), methods of foreign body localization in the eye are considered. Roentgenograms of the orbit and calculation table for foreign body localization in spherical eyes of dissimilar diameter are presented
Spin dynamics of electron beams in circular accelerators
International Nuclear Information System (INIS)
Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.
Iorio, Lorenzo
2016-01-01
By using the most recently published Doppler tomography measurements and accurate theoretical modeling of the oblateness-driven orbital precessions, we tightly constrain some of the physical and orbital parameters of the planetary system hosted by the fast rotating star WASP-33. In particular, the measurements of the orbital inclination $i_{\\rm p}$ to the plane of the sky and of the sky-projected spin-orbit misalignment $\\lambda$ at two epochs six years apart allowed for the determination of the longitude of the ascending node $\\Omega$ and of the orbital inclination $I$ to the apparent equatorial plane at the same epochs. As a consequence, average rates of change $\\dot\\Omega_{\\rm exp},~\\dot I_{\\rm exp}$ of this two orbital elements, accurate to a $\\approx 10^{-2}~\\textrm{deg}~\\textrm{yr}^{-1}$ level, were calculated as well. By comparing them to general theoretical expressions $\\dot\\Omega_{J_2},~\\dot I_{J_2}$ for their precessions induced by an arbitrarily oriented quadrupole mass moment, we were able to dete...
Breaking the fault tree circular logic
International Nuclear Information System (INIS)
Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)
Entanglement of quantum circular states of light
Horoshko, D. B.; De Bièvre, S.; Kolobov, M. I.; Patera, G.
2016-06-01
We present a general approach to calculating the entanglement of formation for superpositions of two-mode coherent states, placed equidistantly on a circle in phase space. We show that in the particular case of rotationally invariant circular states the Schmidt decomposition of two modes, and therefore the value of their entanglement, are given by analytical expressions. We analyze the dependence of the entanglement on the radius of the circle and number of components in the superposition. We also show that the set of rotationally invariant circular states creates an orthonormal basis in the state space of the harmonic oscillator, and this basis is advantageous for representation of other circular states of light.
Symmetric Circular Matchings and RNA Folding
DEFF Research Database (Denmark)
Hofacker, Ivo L.; Reidys, Christian; Stadler, Peter F.
2012-01-01
RNA secondary structures can be computed as optimal solutions of certain circular matching problems. An accurate treatment of this energy minimization problem has to account for the small --- but non-negligible --- entropic destabilization of secondary structures with non-trivial automorphisms....... Such intrinsic symmetries are typically excluded from algorithmic approaches, however, because the effects are small, they play a role only for RNAs with symmetries at sequence level, and they appear only in particular settings that are less frequently used in practical application, such as circular...... asymptotic results for both the circular and the co-folding version are derived....
Circular polarization memory in polydisperse scattering media
Macdonald, Callum M; Meglinski, Igor
2015-01-01
We investigate the survival of circularly polarized light in random scattering media. The surprising persistence of this form of polarization has a known dependence on the size and refractive index of scattering particles, however a general description regarding polydisperse media is lacking. Through analysis of Mie theory, we present a means of calculating the magnitude of circular polarization memory in complex media, with total generality in the distribution of particle sizes and refractive indices. Quantification of this memory effect enables an alternate pathway towards recovering particle size distribution, based on measurements of diffusing circularly polarized light.
Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing
Institute of Scientific and Technical Information of China (English)
FUZun-Tao; LIUShi-Da; LIUShi-Kuo
2004-01-01
The cubic nonlinear Schroedinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial cnvelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.
Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2004-01-01
The cubic nonlinear Schrodinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.
A multi-model approach to the Atlantic Equatorial mode : impact on the West African monsoon
Losada, T.; Rodriguez-Fonseca, B.; Janicot, Serge; Gervois, S.; Chauvin, F.; Ruti, P.
2010-01-01
This paper is focused on the West African anomalous precipitation response to an Atlantic Equatorial mode whose origin, development and damping resembles the observed one during the last decades of the XXth century. In the framework of the AMMA-EU project, this paper analyses the atmospheric response to the Equatorial mode using a multimodel approach with an ensemble of integrations from 4 AGCMs under a time varying Equatorial SST mode. The Guinean Gulf precipitation, which together with the ...
Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim
2012-01-01
Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.
New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths
Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.
2010-10-01
We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.
Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Oyama, K.-I.
2014-06-01
Here we report multisatellite observations of ionospheric disturbances in relation to the occurrence of the M8.7 northern Sumatra earthquake of 28 March 2005. The DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) and CHAMP (Challenging Minisatellite Payload) satellite data were investigated to find possible precursory and postevent phenomena. It was found that EIA (equatorial ionization anomaly) strength expressed in the apex height, derived from the CHAMP plasma density profile, was intensified along the orbits whose longitudes were close to the epicenter within about a week before and after occurrence of the earthquake. Increases in electron and O+ density along the orbits close to the epicenter were also observed in the DEMETER measurements. The normalized equatorial plasma density derived from the DEMETER measurements showed intensification about a week before and after the earthquake reaching maximum the day after the shock and afterward disappearing. In addition, similar behavior of the EIA enhancements related to the M8.0 Pisco earthquake of 15 August 2007 was observed. Surveys of space weather and geomagnetic activities excluded the possibility that these fluctuations were caused by changes in space weather or by a geomagnetic storm. Statistical analyses of the longitudinal variation revealed that the EIA was enhanced in the west of the epicenter and reduced in the east of the epicenter, and this fits the "increased conductivity" model. Based on these observations, we proposed a revised view of seismo-ionospheric coupling in the region of the geomagnetic equator, to explain the EIA features observed in this study.
Satellite orbit considerations for a global change technology architecture trade study
Harrison, Edwin F.; Gibson, Gary G.; Suttles, John T.; Buglia, James J.; Taback, Israel
1991-01-01
A study was conducted to determine satellite orbits for Earth observation missions aimed at obtaining data for assessing global climate change. A multisatellite system is required to meet the scientific requirements for temporal coverage over the globe. The best system consists of four Sun-synchronous satellites equally spaced in local time of equatorial crossing. This system can obtain data every three hours for all regions. Several other satellite systems consisting of combinations of Sun-synchronous orbits and either the Space Station Freedom or a mid-latitude equatorial satellite can provide three to six hour temporal coverage, which is sufficient for measuring many of the parameters required for the global change monitoring mission. Geosynchronous satellites are required to study atmospheric and surface processes involving variations on the order of a few minutes to an hour. Two or more geosynchronous satellites can be relocated in longitude to study processes over selected regions of Earth.
Variability in equatorial B0 and B1
International Nuclear Information System (INIS)
Variability of ionospheric profile parameters B0 and B1, below the F2 peak is investigated for an equatorial station at two levels of solar activities. The whole 24 hours of the day and the four seasons of the year are covered. Absolute and relative variability indices were utilized in the study. Some evidences of correlations of variability index and profiles parameters were observed. Daytime values of relative variability in B1 at solar minimum were found to be greater than those of solar maximum. (author)
Ionospheric scintillations associated with equatorial E-region
Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.
1978-01-01
Amplitude scintillations at 40, 140, and 360 MHz recorded at an equatorial station Ootacamund (dip 4 deg N) during the ATS-6 phase II and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for the scintillation activity. Various sporadic E events, but not the Es-q, are associated with intense daytime scintillations. There are no scintillations at times of normal E-layer or cusp type of Es. Scintillations are also present at times of night Es.
Database of Whistler-mode Chorus in the Equatorial Plane
Czech Academy of Sciences Publication Activity Database
Macúšová, E.; Santolík, Ondřej
Vol. 2. Prague: MATFYZPRESS, Prague, 2009 - (Šafránková, J.; Pavlů, J.), s. 56-61 ISBN 978-80-7378-102-6. [WDS 2009 - Annual Conference of Doctoral Students /18./. Praha (CZ), 02.06.2009-05.06.2009] R&D Projects: GA AV ČR IAA301120601 Grant ostatní: GA MŠk(CZ) ME 842 Institutional support: RVO:68378289 Keywords : Database * Whistler-mode * Chorus * Equatorial * Plane Subject RIV: BL - Plasma and Gas Discharge Physics
Shielding analysis for ITER equatorial bio-shield plug
International Nuclear Information System (INIS)
ITER equatorial port cell outside bio-shield plug is a place for allowing free personnel access after shutdown which accommodates various sensitive equipment and pipes. To ensure the personnel safety in port cell after shutdown, the distribution of dose rate in port cell was studied. Based on VisualBUS (CAD-Based Multi-Functional 4D Neutronics Simulation System), dose rate calculations were completed in port cell after shutdown. The result showed that dose rates in port cell are still 2 orders of magnitude more than desired limit (10 μSv/h) after one day shutdown. The optimization of bio-shield was needed. (authors)
Spatiotemporal variability and propagation of equatorial noise observed by Cluster
Czech Academy of Sciences Publication Activity Database
Santolík, Ondřej; Pickett, J. S.; Gurnett, D. A.; Maksimovic, M.; Cornilleau-Wehrlin, N.
2002-01-01
Roč. 107, A12, 1495 (2002), s. SMP 43-1-43-8, doi: 10.1029/2001JA009159. ISSN 0148-0227 R&D Projects: GA ČR GA205/01/1064 Grant ostatní: NASA (US) NAG5-9974 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : outer plasmasphere * proton-cyclotron frequency * electromagnetic equatorial noise Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.245, year: 2002
Equatorial electron densities - seasonal and solar cycle changes
International Nuclear Information System (INIS)
The effect of season and Solar cycle on equatorial electron density distributions is examined in terms of the presently-understood dynamics of the ionosphere. While many of the features fit in well with the dynamics, the role of neutral winds seems to merit more importance than it has been given so far. The absence of a clear 'noon-time bite-out' in total electron content in the bottomside is rather puzzling in view of the fact that the E x B upward drift of ionization commences from altitudes of 180 km itself. (author)
Climatology of early night equatorial spread F over Jicamarca
Chapagain, N. P.; Fejer, Bela G.
2009-01-01
[1] We use radar observations from 1996 to 2006 to study the climatology of postsunset equatorial 3-m spread F irregularities over Jicamarca during all seasons. We show that the spread F onset times do not change with solar flux and that their onset heights, which occur near the altitude of the evening F region velocity vortex, increase linearly from about 260 to 400 km from solar minimum to solar maximum. Higher onset heights generally lead to stronger radar echoes. During the equinox, sprea...
Orbit Determination for Mars Global Surveyor During Mapping
Lemoine, F. G.; Rowlands, D. D.; Smith, D. E.; Pavlis, D. E.; Chinn, D. S.; Luthcke, S. B.; Neumann, G. A.
1999-01-01
The Mars Global Surveyor (MGS) spacecraft reached a low-altitude circular orbit on February 4, 1999, after the termination of the second phase of aerobraking. The MGS spacecraft carries the Mars Orbiter Laser Altimeter (MOLA) whose primary goal is to derive a global, geodetically referenced 0.2 deg x 0.2 deg topographic grid of Mars with a vertical accuracy of better than 30 meters. During the interim science orbits in the' Hiatus mission phase (October - November 1997), and the Science Phasing Orbits (March - April, 1998, and June - July 1998) 208 passes of altimeter data were collected by the MOLA instrument. On March 1, 1999 the first ten orbits of MOLA altimeter data from the near-circular orbit were successfully returned from MGS by the Deep Space Network (DSN). Data will be collected from MOLA throughout the Mapping phase of the MCS mission, or for at least one Mars year (687 days). Whereas the interim orbits of Hiatus and SPO were highly eccentric, and altimeter data were only collected near periapsis when the spacecraft was below 785 km, the Mapping orbit of MGS is near circular, and altimeter data will be collected continuously at a rate of 10 Hz. The proper analysis of the altimeter data requires that the orbit of the MGS spacecraft be known to an accuracy comparable to that of the quality of the altimeter data. The altimeter has an ultimate precision of 30 cm on mostly flat surfaces, so ideally the orbits of the MGS spacecraft should be known to this level. This is a stringent requirement, and more realistic goals of orbit error for MGS are ten to thirty meters. In this paper we will discuss the force and measurement modelling required to achieve this objective. Issues in force modelling include the proper modelling of the gravity field of Mars, and the modelling of non-conservatives forces, including the development of a 'macro-model', in a similar fashion to TOPEX/POSEIDON and TDRSS. During Cruise and Aerobraking, the high gain antenna (HGA) was stowed
High resolution 2-D maps of OI 630.0 nm thermospheric dayglow from equatorial latitudes
Directory of Open Access Journals (Sweden)
D. Pallam Raju
Full Text Available The first-ever high resolution 2-D maps of OI 630.0 nm dayglow obtained from equatorial latitudes clearly reveal the movement as a large-scale feature of the equatorial ionization anomaly (EIA. These also show the presence of wave-like features classified as gravity waves presumably originating at the crest of the EIA, similar to the equatorial electrojet acting as a source of these waves. These results are presented and discussed.
Key words. Atmospheric composition and structure (Airglow and aurora · Ionosphere (Equatorial ionosphere; Instruments and techniques.
Directory of Open Access Journals (Sweden)
Jeffrey M Joseph
2011-01-01
Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures
77 FR 42077 - Environmental Justice: Final Circular
2012-07-17
... social service providers to identify transportation challenges and mitigation strategies. FTA is... Register notice (76 FR 60590). II. Chapter-by-Chapter Analysis A. General Comments This section addresses... Circular does not contain any new responsibilities for recipients. Recipients' responsibilities...
Dual frequency launcher for circularly polarized antenna
Chen, Ming H.
1989-10-01
A dual frequency antenna feed is formed from a central, circular waveguide connected to the flat boundry of circular, disk-shaped resonant cavity. A second circular waveguide is connected one end of a disk-shaped resonant cavity. Energy of one frequency enters and exits the cavity along the common axis of the waveguides. Energy of the second frequency is introduced to the same resonant cavity by way of a plurality of bandpass filters, also connected to the cavity. This energy enters by way of slots in the cylindrical walls of the cavity. The central circular waveguide is propagating at one frequency but cut off at the second frequency. These bandpass filters are at this pass band for the second frequency, but at the rejection band for the first frequency. Therefore, the isolation between these two input ports are obtained.
Origin of the Spin-Orbit Interaction
Spavieri, Gianfranco
2015-01-01
We consider a semi-classical model to describe the origin of the spin-orbit interaction in a simple system such as the hydrogen atom. The interaction energy U is calculated in the rest-frame of the nucleus, around which an electron, having linear velocity v and magnetic dipole-moment mu, travels in a circular orbit. The interaction energy U is due to the coupling of the induced electric dipole p=(v/c)x mu with the electric field En of the nucleus. Assuming the radius of the electron's orbit remains constant during a spin-flip transition, our model predicts that the energy of the system changes by Delta_E = U/2, the factor 1/2 emerging naturally as a consequence of equilibrium and the change of the kinetic energy of the electron. The correct 1/2 factor for the spin-orbit coupling energy is thus derived without the need to invoke the well-known Thomas precession in the rest-frame of the electron.
Unleashing the Power of the Circular Economy
Energy Technology Data Exchange (ETDEWEB)
Kok, L.; Wurpel, G.; Ten Wolde, A. [IMSA Amsterdam, Amsterdam (Netherlands)
2013-04-15
The concept of circular economy is an economic and industrial system that focuses on the reusability of products and raw materials, reduces value destruction in the overall system and aims at value creation within each tier of the system. This report for Circle Economy (CE) outlines the general direction and concrete steps that must be taken to accomplish a breakthrough to a circular economy. It also provides a knowledge base behind the concept, connecting it to sustainability.
Construction of Circular Economy Industrial System
Institute of Scientific and Technical Information of China (English)
Cao Man; Ye Wenhu
2007-01-01
It is difficult to realize the transformation from traditional economy industrial system to circular economy industrial system.Regarding primary raw materials as the indicators,the industrial system has been specified according to the divergence among the indicators and the circular utilization modes.In comparison with the association among industrial systems,the relationship among industrial sub-systems is named as industrial cross-linking in this paper.The industrial system which could completely utilize and recycle the indicators should be increased and strengthened,and the circular economy industrial system with complete industrial association and industrial cross-linking should also be constructed.Taking the development of circular agricultural system basing on the traditional agricultural system as an example,the traditional agricultural products are regarded as the indicators which have been divided into foodstuff and crop straws which are used to produce food and articlesfor use,like fertilizer,energy and papers etc.The way to construct the circular agricultural industrial system is to increase the industrial systems that could utilize the products generated from crop straws,feces and other castoffs and transform the wastewater and other trucks into environmental friendly products.It has also been pointed out that the construction of circular economy industrial system is conducive to the foundation of circular industrial economics and the establishment of the construction layout of circular economy and the application schemes.Suggestions to the theoretical and practical work of the next step have also been brought forward in this paper.
A Conceptual Framework for Circular Design
Directory of Open Access Journals (Sweden)
Mariale Moreno
2016-09-01
Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.
Dual-band Omnidirectional Circularly Polarized Antenna
Narbudowicz, Adam; Bao, Xiulong; Ammann, Max
2013-01-01
A dual-band omnidirectional circularly polarized antenna is proposed. The antenna comprises back-to-back microstrip patches fed by a coplanar waveguide. A very low frequency ratio of 1.182 has been achieved, which can be easily tuned by adjusting four lumped capacitors incorporated into the antenna. An analysis of the omnidirectional circular polarization mechanism as well the dual band operation is provided and confirmed by numerical and experimental data. Key parameters to tune the resonant...
Single particle dynamics in circular accelerators
Energy Technology Data Exchange (ETDEWEB)
Ruth, R.D.
1986-10-01
The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)
CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS
International Nuclear Information System (INIS)
Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence Hα blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.
On the circular polarization of pulsar radiation
Lyubarskii, Y. E.; Petrova, S. A.
1999-01-01
We consider the polarization behaviour of radio waves propagating through an ultrarelativistic highly magnetized electron-positron plasma in a pulsar magnetosphere. The rotation of magnetosphere gives rise to the wave mode coupling in the polarization-limiting region. The process is shown to cause considerable circular polarization in the linearly polarized normal waves. Thus, the circular polarization observed for a number of pulsars, despite the linear polarization of the emitted normal wav...
Angle-resolved x-ray circular and magnetic circular dichroisms: Definitions and applications
Tong, DSY; X Guo; Tobin, JG; Waddill, GD
1996-01-01
We introduce definitions of angle-resolved x-ray circular dichroism (ARXCD) and magnetic x-ray circular dichroism (ARMXCD). As defined, the much larger effect of circular dichroism (ARXCD) is separated from the smaller magnetic (ARMXCD) effect. In all materials, ARXCD is zero along mirror planes while nonzero elsewhere. ARMXCD is nonzero only in magnetic materials. The measurement and analysis of ARMXCD allow element specific surface magnetism and surface structure as well as their inter-rela...
Broadband circularly polarized planar antenna using partially covered circular wide-slot and L-probe
Fukusako, Takeshi; Sakami, Ryo; Iwata, Kazuki; フクサコ, タケシ; サカミ, リョウ; イワタ, カズキ; 福迫, 武; 酒見, 遼; 岩田, 一樹
2008-01-01
The novel structure of a unique circularly polarized broadband antenna that combines an L-shaped probe with a partially covered circular slot has been presented. A principle that can be used to generate CP using the proposed structure has been presented using an L-shaped probe and a modified circular wide slot. Using the above, a 3 -dB AR bandwidth of 58% and matching bandwidth of 57% were obtained at 3.2 GHz.
Searching sequences of resonant orbits between a spacecraft and Jupiter
International Nuclear Information System (INIS)
This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface
Simulations of accretion flows crossing the last stable orbit
Armitage, P J; Chiang, J; Armitage, Philip J.; Reynolds, Christopher S; Chiang, James
2001-01-01
We use three dimensional magnetohydrodynamic simulations, in a pseudo-Newtonian potential, to study geometrically thin accretion disc flows crossing the marginally stable circular orbit around black holes. We concentrate on vertically unstratified and isothermal disk models, but also consider a model that includes stratification. In all cases, we find that the sonic point lies just inside the last stable orbit, with modest magnetic field amplification observed interior to this radius. The gradient of the specific angular momentum of the flow, (dl/dr), is close to zero within the last stable orbit, despite the presence of continuing magnetic stress in the plunging region. These results are in general agreement with expectations based on traditional disk models, but differ from recent results obtained from simulations of geometrically thick disks. For thin disks, we find that the use of a zero-torque boundary condition, at the last stable orbit, provides a reasonable approximation to the numerical results.
Valley-contrasting orbital angular momentum in photonic valley crystals
Chen, Xiaodong; Dong, Jianwen
2016-01-01
Valley, as a degree of freedom, has been exploited to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials. On the other hand, orbital angular momentum of light with helical phase distribution has attracted great attention for its unprecedented opportunity to optical communicagtions, atom trapping, and even nontrivial topology engineering. Here, we reveal valley-contrasting orbital angular momentum in all-dielectric photonic valley crystals. Selective excitation of valley chiral bulk states is realized by sources carrying orbital angular momentum with proper chirality. Valley dependent edge states, predictable by nonzero valley Chern number, enable to suppress the inter-valley scattering along zigzag boundary, leading to broadband robust transmission in Z-shape bend without corner morphological optimization. Our work may open up a new door towards the discovery of novel quantum states and the manipulation of spin-orbit interaction of light in nanophotonics.
Jumping Jupiter Can Explain Mercury’s Orbit
Roig, Fernando; Nesvorný, David; DeSouza, Sandro Ricardo
2016-04-01
The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury’s orbit during the instability related to the migration of the giant planets in the framework of the jumping-Jupiter model. We found that some instability models are able to produce the correct values of Mercury’s eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury’s perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity) and the nodal regression of Uranus (for the inclination).
Ring Orbits from Multiple Occultation Observations
French, Richard G.; McGhee, C. A.; Marouf, E. A.; Rappaport, N.
2006-09-01
Planetary rings provide a remarkable laboratory for the investigation of a wide range of dynamical effects, including resonance-driven density and bending waves, satellite wakes, shepherding of narrow ringlets, and non-circular edges of gaps. Careful quantitative examination of these features requires a very accurate absolute radius scale and planetary pole direction, achievable by combining multiple stellar and radio occultation observations. Uncertainty in the location of the spacecraft (at the km level) introduces a fundamental uncertainty into the geometric solution for the ring radius scale, and in the end one must solve for corrections to the spacecraft trajectory as part of the overall determination of the ring orbital model. Using JPL's NAIF toolkit, we have developed accurate algorithms for computing the event time of a ring occultation during an Earth-based or spacecraft occultation, including the effects of spacecraft trajectory errors mapped in two orthogonal directions transverse to the line of sight, based on osculating orbital elements for the instantaneous spacecraft path. These are the fundamental building blocks for a global solution for the pole direction and orbits of the rings of Saturn and Uranus. For Uranus, our new orbit solution includes the full set of digitally recorded occultation data from 1977-2002, yielding a radius scale accurate at the 100 meter level. For Saturn, we explore the potential for highly accurate ring orbit determination as occultation observations from dozens of stellar and radio occultations become publicly available over the course of the ongoing Cassini orbital tour. Saturn's pole precession is also detectable from ring occultation data, and we set limits on the accuracy of the precession rate determination and the implications for our understanding of the mass distribution in Saturn's interior. This work was supported in part by the NASA PGG program.
Exciton circular dichroism in channelrhodopsin.
Pescitelli, Gennaro; Kato, Hideaki E; Oishi, Satomi; Ito, Jumpei; Maturana, Andrés Daniel; Nureki, Osamu; Woody, Robert W
2014-10-16
Channelrhodopsins (ChRs) are of great interest currently because of their important applications in optogenetics, the photostimulation of neurons. The absorption and circular dichroism (CD) spectra of C1C2, a chimera of ChR1 and ChR2 of Chlamydomonas reinhardtii, have been studied experimentally and theoretically. The visible absorption spectrum of C1C2 shows vibronic fine structure in the 470 nm band, consistent with the relatively nonpolar binding site. The CD spectrum has a negative band at 492 nm (Δε(max) = -6.17 M(-1) cm(-1)) and a positive band at 434 nm (Δε(max) = +6.65 M(-1) cm(-1)), indicating exciton coupling within the C1C2 dimer. Time-dependent density functional theory (TDDFT) calculations are reported for three models of the C1C2 chromophore: (1) the isolated protonated retinal Schiff base (retPSB); (2) an ion pair, including the retPSB chromophore, two carboxylate side chains (Asp 292, Glu 162), modeled by acetate, and a water molecule; and (3) a hybrid quantum mechanical/molecular mechanical (QM/MM) model depicting the binding pocket, in which the QM part consists of the same ion pair as that in (2) and the MM part consists of the protein residues surrounding the ion pair within 10 Å. For each of these models, the CD of both the monomer and the dimer was calculated with TDDFT. For the dimer, DeVoe polarizability theory and exciton calculations were also performed. The exciton calculations were supplemented by calculations of the coupling of the retinal transition with aromatic and peptide group transitions. For the dimer, all three methods and three models give a long-wavelength C2-axis-polarized band, negative in CD, and a short-wavelength band polarized perpendicular to the C2 axis with positive CD, differing in wavelength by 1-5 nm. Only the retPSB model gives an exciton couplet that agrees qualitatively with experiment. The other two models give a predominantly or solely positive band. We further analyze an N-terminal truncated mutant
PLANAR MOTION OF A SLIGHTLY DISTORTED CIRCULAR CYLINDER AROUND ANOTHER CIRCULAR ONE
Institute of Scientific and Technical Information of China (English)
SUN Ren; CHWANG Allen T.
2004-01-01
Accurate prediction of the motion of a body moving around another one in an unbounded fluid and determi-nation of the hydrodynamic interaction between them are im-portant in the coastal and offshore engineering. For two-dimensional cases, most of the previous studies were focused on the interaction between circular cylinders without considering the non-circular situation. To break through the limitation of"circular" bodies, in the present paper the boundary perturbation method was employed to investigate the motion of a slightly distorted circular cylinder around a circular one. An approximate complex velocity potential in terms of double infinite series expanded at two singular points was derived using the method of continued fractions. The hydrodynamic interaction between two cylinders was computed by solving the dynamical equations of motion. In a relative coordinate system moving with the uniform stream, the kinetic energy of the fluid was expressed as a function of fifteen added masses. Approximate analytical solutions of added masses in the series form were obtained and applied to determine the trajectories of the slightly distorted circular cylinder around a fixed circular one. Numerical results show that the presence of the circular cylinder affects the planar motion of the slightly distorted cirular cylinder and the initial configuration of the slightly distorted circular cylinder has a decisive influence on the development of its rotational motion.
Daytime plasma drifts in the equatorial lower ionosphere
Hui, Debrup; Fejer, Bela G.
2015-11-01
We have used extensive radar measurements from the Jicamarca Observatory during low solar flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September-October. The day-to-day variability of these drifts does not change with height between 150 and 600 km, but the bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward during the day and have largest values during July-October. The 150 km region zonal drifts have much larger day-to-day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly increase with height up to about 300 km from March through October, and more weakly at higher altitudes. The December solstice zonal drifts have generally weaker altitudinal dependence, except perhaps below 200 km. Current theoretical and general circulation models do not reproduce the observed altitudinal variation of the daytime equatorial zonal drifts.
SpIES: The Spitzer IRAC Equatorial Survey
Timlin, John; Ross, Nicholas; Richards, Gordon T.; Lacy, Mark; Bauer, Franz E.; Brandt, W. Niel; Fan, Xiaohui; Haggard, Daryl; Makler, Martin; Myers, Adam D.; Schneider, Donald P.; Strauss, Michael A.; Urry, C. Megan; Zakamska, Nadia L.; SpIES Team
2016-01-01
We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of the Equatorial SDSS Stripe 82 field using Warm Spitzer. SpIES was designed to probe enough volume to perform measurements of the z>3 quasar clustering and luminosity function in order to test various "AGN feedback'' models. Additionally, the wide range of multi-wavelength, multi-epoch ancillary data makes SpIES a prime location to identify both high-redshift (z>6) quasars as well as obscured quasars missed by optical surveys. SpIES maps ~115deg2 of Stripe 82 to depths of 6.3 uJy (21.9 AB Magnitudes) and 5.75 uJy (22.0 AB Magnitudes) at [3.6] and [4.5] microns respectively; depths significantly greater than WISE. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. Amongst our preliminary science results, we show high significance detections of spectroscopically confirmed, z~5 quasars in the SpIES data. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.
SpIES: The Spitzer IRAC Equatorial Survey
Timlin, John D; Richards, Gordon T; Lacy, Mark; Ryan, Erin L; Stone, Robert B; Bauer, Franz E; Brandt, W N; Fan, Xiaohui; Glikman, Eilat; Haggard, Daryl; Jiang, Linhua; LaMassa, Stephanie M; Lin, Yen-Ting; Makler, Martin; McGehee, Peregrine; Myers, Adam D; Schneider, Donald P; Urry, C Megan; Wollack, Edward J; Zakamska, Nadia L
2016-01-01
We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of 115 deg^2 in the Equatorial SDSS Stripe 82 field using Spitzer during its 'warm' mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > 3 to test various models for "feedback" from active galactic nuclei (AGN). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5{\\sigma} depths of 6.13 {\\mu}Jy (21.93 AB magnitude) and 5.75 {\\mu}Jy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively - depths significantly fainter than WISE. We show that the SpIES survey recovers a much larger fraction of spectroscopically-confirmed quasars (98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > 3.5), where SpIES reco...
Analysis of longitude variations in the equatorial spectrum of Saturn
International Nuclear Information System (INIS)
Ground-based and Voyager observations in and out of methane and ammonia bands are analyzed to search for longitudinal variations in Saturn's equatorial region. A model with reflecting layer at 2.1 bars, an extended haze to 170 mb, and an overlying thin stratospheric haze is adopted. Two sets of data are analyzed, a set of ground-based observations covering the 6000-66000 A spectral region and a set of Voyager 1 images obtained with the orange and methane filters. The spectral variations are not consistent with a variation in the height of the reflecting layer. They are modeled by variations in the single scattering albedo of the haze and in the specific abundance of gas in the haze. A methane mixing ratio of 2.2 (/sub -0.2//sup +0.8/) x 10-3 is derived, representing a CH ratio which is enhanced by a factor of 2.3 over the solar value. Estimate of the ammonia mixing ratio, 4.5 x 10-4, is a lower limit due to our assumption that ammonia exists at its saturation vapor pressure everywhere above the reflecting layer. There is no conclusive evidence that there are longitudinal variations in the structure of the Saturnian atmosphere in the Equatorial Region on a scale greater than 600 km
Quasi-periodic modulation of equatorial noise intensity
Nemec, Frantisek; Santolik, Ondrej; Hrbackova, Zuzana; Pickett, Jolene S.; Cornilleau-Wehrlin, Nicole
2015-04-01
Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed routinely in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field. Although their harmonic structure, which is characteristic of the proton cyclotron frequency in the source region has been known for a couple of decades, they were generally believed to be continuous in time. The analysis of more than 2000 EN events observed by the STAFF-SA and WBD instruments on board the Cluster spacecraft reveals that this is not always the case, with about 5% of events exhibiting a clear quasi-periodic (QP) modulation of the wave intensity. We perform a systematic analysis of these events, and we discuss possible mechanisms of the QP intensity modulation. It is shown that the events occur usually in the noon-to-dawn magnetic local time sector, and their occurrence seems to be related to the periods of increased geomagnetic activity. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN were identified in about half of the events. These ULF pulsations might modulate the EN wave intensity, similarly as they modulate the intensity of formerly reported VLF whistler-mode QP events.
A three-dimensional solution for the orbit of Capella
Barlow, D. J.; Fekel, F. C.; Scarfe, C. D.
1993-01-01
We have combined new radial velocities of both components of Capella, obtained at McDonald and Kitt Peak, with those recently published by Batten et al. (1991), and with interferometric observations, to derive a new 3D orbit of the Capella system. Our results agree well with those of Bagnuolo and Hartkopf (1989), and yield masses accurate to +/- 3 percent. The cooler component, which is the fainter star visually but the more luminous one bolometrically, is the more massive. The mass ratio differs from unity by more than four times its uncertainty, and this lends strong support to the hypothesis that the cool component has begun to consume its core helium. If so, it may be possible to reconcile, qualitatively at least, the orbit's circularity and the stars' rotational velocities with theories of synchronization and circularization, such as that of the Tassouls (1992).
Magnetism in the light of circular polarized x-rays
International Nuclear Information System (INIS)
Modern synchrotron X-ray sources providing highly intense X-rays of well-defined polarization led to the development of powerful techniques to get new insights into magnetic aspects of the electronic, crystallographic and geometric structure of solids. These methods are based on the X-ray magnetic circular dichroism (XMCD) resulting from the dependence of the X-ray absorption on the magnetization relative to the photon helicity. These effects which can be larger than 50 % occur at inner-shell absorption edges and reflect the spin and orbital polarization of the empty density of state allowing a quantitative determination of local magnetic spin and orbital moments with a high sensitivity up to 0.001 Bohr magnetons. The experimental aspects are outlined, a simple model for the origin of XMCD is presented and typical results are discussed. The unique possibility of using x-ray microscopy in combination with XMCD, which can combine lateral resolution of 15 nm and time resolution of 10 psec, is described and its potential to study magnetization dynamics in nanostructures demonstrated. (author)
Optimal low-thrust transfers between libration point orbits
Ren, Yuan; Pergola, Pierpaolo; Fantino, Elena; Thiere, B.
2012-01-01
Over the past three decades, ballistic and impulsive trajectories between libration point orbits (LPOs) in the Sun–Earth–Moon system have been investigated to a large extent. It is known that coupling invariant manifolds of LPOs of two different circular restricted three-body problems (i.e., the Sun–Earth and the Earth–Moon systems) can lead to significant mass savings in specific transfers, such as from a low Earth orbit to the Moon’s vicinity. Previous investigations on this ...
Femtosecond dynamics of spin and orbital angular momentum in nickel
Energy Technology Data Exchange (ETDEWEB)
Stamm, Christian; Pontius, Niko; Holldack, Karsten; Quast, Torsten; Kachel, Torsten; Wietstruk, Marko; Mitzner, Rolf; Duerr, Hermann A. [Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany)
2009-07-01
At the BESSY femtoslicing source we measure X-ray magnetic circular dichroism (XMCD) with 100 fs time resolution. By virtue of the XMCD sum rules, we find that the spin and orbital momenta in a thin nickel film are quenched with a time constant of 150 fs upon excitation with a fs laser pulse. This represents the first unambiguous proof that the total electronic angular momentum is transferred to the lattice on the same ultrafast time scale. The quenching of orbital angular momentum also is a serious constraint for models of angular momentum dissipation.
Transition radiation from electrons with orbital angular momentum
Konkov, Anatoly S; Polonskaya, Marina S
2013-01-01
Several experimental groups have recently obtained the so called vortex electrons (electrons with orbital angular momentum (OAM) of l = 100h) with energies of 300 keV. The gyromagnetic ratio of such electrons becomes proportional to the OAM value, which leads to the corresponding increase of the electron magnetic moment. In this paper we investigate the transition radiation from the "charge + magnetic moment" system using the theory of classical electrodynamics. The circular polarization of optical transition radiation amounts up to 70%, which allows to use this effect for the independent measurement of the electron orbital momentum value.
Correia, Alexandre C M; Robutel, Philippe
2015-01-01
Circumbinary bodies are objects that orbit around a more massive binary system. Here we show that, contrarily to the classical two-body problem, circumbinary bodies in planar quasi-circular orbits can present stable non-synchronous rotation. Denoting $n_b$ and $n$ the orbital mean motion of the binary and of the circumbinary body, respectively, there is an entirely new family of spin-orbit resonances at the frequencies $n\\pm k\
Indian Academy of Sciences (India)
G. Renzetti
2013-12-01
I consider a satellite moving around a non-spherical body of mass and equatorial radius , and calculate its orbital precessions caused by the body’s octupolar mass moment 4. I consider only the effects averaged over one orbital period of the satellite. I give exact formulas, not restricted to any special values of either the eccentricity or the inclination of the satellite’s orbit. I do not assume any preferential orientation for the body’s spin axis $\\hat{\\mathbf{k}}$ because in many cases of potential interest (exoplanets, neutron stars, black holes) it is poorly known or unknown at all.
Polarization and molecular-orbital dependence of strong-field enhanced ionization
Lai, Wei; Guo, Chunlei
2016-04-01
In this work we perform a polarization dependence study of enhanced ionization (EI) in diatomic molecules. We find that EI exists when the field polarization is parallel to the molecular axis but disappears when polarization is perpendicular. We further study EI with circular polarization and find that EI exists with circular polarization indicating that rescattering does not play a significant role for EI. Furthermore, we study molecular orbital effect on EI. We find that EI exists in σ type but not π type outmost molecular orbitals.
International Nuclear Information System (INIS)
Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3dz2 and O 2pz states.
Energy Technology Data Exchange (ETDEWEB)
Okabayashi, J. [Research Center for Spectrochemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Koo, J. W.; Mitani, S. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Sukegawa, H. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Takagi, Y.; Yokoyama, T. [Institute of Molecular Science, Okazaki, Aichi 444-8585 (Japan)
2014-09-22
Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3d{sub z}{sup 2} and O 2p{sub z} states.
The improvement of the Pluto orbit using additional new data
Girdiuk, A.
2015-08-01
Observational series of the Pluto dwarf planet have started since 1913. At this moment observations have covered only a third of the Pluto orbit, therefore, the Pluto orbital elements are defined with insufficient accuracy. A growing number of observations leads to the improvement of the accuracy of the orbit determination. The database of the Pluto's observations was expanded with the help of about 350 observations during 1930-1996 obtained at the Pulkovo Observatory, and about 5500 observations (1995-2013) including occultation data from Brazilian colleagues obtained at the European Southern Observatory and the Pico dos Dias Observatory, and the new analyzed 469 historical photographic observations archived at Lowell Observatory. The new cross-platform software ERA-8 has been developed in IAA RAS and has been used for implementation of all mathematical procedures for constructing Pluto orbit. The modern ephemerides (EPM2011, EPM2013, DE430, DE432, INPOP13c) are chosen for comparison of the ephemeris positions: equatorial coordinates and heliocentric distance. The main result of the work - construction of ephemerides EPM2014a is a significant improvement of the Pluto's orbit using additional observations.
Kochemasov, G. G.
2008-09-01
Widely circulating opinion that titanian methane lowlands in a broad equatorial region are covered with eolian formations needs to be carefully checked. Of coarse, all three solid bodies with atmospheres in the inner solar system have dunes. Why do not have them on Titan? Most probably they do exist but discovered by radar up to now cross-cutting rippling features cannot be taken for them. For this there are several reasons. How it can be that prevailing "dune" strike coincides with prevailing wind direction? Normally (with some African exceptions) one sees real terrestrial dunes stretching across winds. And this is understandable from a point of view eolian dunes formation. This formation gives particular cross profile to dunes. Asymmetric profile - one slope is long and gentle and another one short and abrupt. But titanian "dunes" are mostly uniform and symmetric. And this characteristic is preserved for many hundreds of kilometers of very straight features. Then, the finest solid particles precipitation from the thick atmosphere of Titan should be distributed on the satellite surface more uniformly and cover dark lowlands and light icy highlands of the wide equatorial belt more or less evenly. But "dunes" are strictly associated with dark lowlands and tend to turn round light icy obstacles. Cindering smoggy particles to produce sands for making dunes is a pure imagination. Then, radar preferably sees one direction but nevertheless one or more crossing directions of rippling are distinguished (Fig.3, 4) They mean two wind directions at the same time or another wind direction at another time? If so, the earlier "dunes" should be more or less obliterated by the later ones. Nothing of the kind! Both crossing ripples directions are fresh. Then, eolian action is not seen at the higher latitudes (Fig. 5). There are no winds there? Probably it is not so. Only a liquid state of methane can help (but liquid should be disturbed by winds). Solid methane there is also
Mechanical Faraday effect for orbital angular momentum-carrying beams
Wisniewski-Barker, Emma; Gibson, Graham; Franke-Arnold, Sonja; Boyd, Robert W; Padgett, Miles J.
2014-01-01
When linearly polarised light is transmitted through a spinning window, the plane of polarisation is rotated. This rotation arises through a phase change that is applied to the circularly polarised states corresponding to the spin angular momentum (SAM). Here we show an analogous effect for the orbital angular momentum (OAM), where a differential phase between the positive and negative modes (±ℓ) is observed as a rotation of the transmitted image. For normal materials, this rotation is on the...
Transition radiation from electrons with orbital angular momentum
Konkov, Anatoly S.; Potylitsyn, Alexander P.; Polonskaya, Marina S.
2013-01-01
Several experimental groups have recently obtained the so called vortex electrons (electrons with orbital angular momentum (OAM) of l = 100h) with energies of 300 keV. The gyromagnetic ratio of such electrons becomes proportional to the OAM value, which leads to the corresponding increase of the electron magnetic moment. In this paper we investigate the transition radiation from the "charge + magnetic moment" system using the theory of classical electrodynamics. The circular polarization of o...
Rashba Spin Orbit Interaction and Birefringent Electron Optics in Graphene
Asmar, Mahmoud M.; Ulloa, Sergio E.
2012-01-01
Electron optics exploits the analogies between rays in geometrical optics and electron trajectories, leading to interesting insights and potential applications. Graphene, with its two-dimensionality and photon-like behavior of its charge carriers, is the perfect candidate for the exploitation of electron optics. We show that a circular gate-controlled region in the presence of Rashba spin-orbit interaction in graphene may indeed behave as a Veselago electronic lens but with two different indi...
Oscillatory orbits in the restricted elliptic planar three body problem
Guardia, Marcel; Mart\\'\\in, Pau; Sabbagh, Lara; Seara, Tere M.
2015-01-01
The restricted planar elliptic three body problem models the motion of a massless body under the Newtonian gravitational force of the two other bodies, the primaries, which evolve in Keplerian ellipses. A trajectory is called oscillatory if it leaves every bounded region but returns infinitely often to some fixed bounded region. We prove the existence of such type of trajectories for any values for the masses of the primaries provided they make almost circular orbits.
Tunnelling of orbital angular momentum in parallel optical waveguides
International Nuclear Information System (INIS)
We study the evolution of circularly polarized optical vortices (OVs) in the system of two coupled few-mode optical fibres. We demonstrate that upon propagation OVs tunnel into the adjacent fibre as a complex superposition of OVs that comprise also OVs of opposite polarization and topological charge. The initial OV may tunnel into the other fibre as the same vortex state of lesser energy. The evolution of the orbital angular momentum in coupled fibres is studied
Molecular chirality and the orbital angular momentum of light
Andrews, David L; Romero, Luciana C. Davila; Babiker, Mohamed
2003-01-01
Optical beams with a new and distinctive type of helicity have become the subject of much recent interest. While circularly polarised light comprises photons with spin angular momentum, these optically engineered 'twisted beams' (optical vortices) are endowed with orbital angular momentum. Here, the wave- front surface of the electromagnetic fields assumes helical form. To date, optical vortices have generally been studied only in their interactions with achiral matter. This study assesses wh...
Solar Radiation Pressure and Deviations from Keplerian Orbits
Kezerashvili, Roman Ya.; Vazquez-Poritz, Justin F.
2009-01-01
Newtonian gravity and general relativity give exactly the same expression for the period of an object in circular orbit around a static central mass. However, when the effects of the curvature of spacetime and solar radiation pressure are considered simultaneously for a solar sail propelled satellite, there is a deviation from Kepler's third law. It is shown that solar radiation pressure affects the period of this satellite in two ways: by effectively decreasing the solar mass, thereby increa...
On the spacecraft attitude stabilization in the orbital frame
Antipov Kirill A.; Tikhonov Alexey A.
2012-01-01
The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to...
OPERATIONAL CIRCULAR NO 6 - JUNE 2001 'CERN SCIENTIFIC DOCUMENTS'
Human Resources Division
2001-01-01
This new operational circular has been drawn up. It cancels and replaces Administrative Circular N° 29 entitled "Principles and procedures governing CERN publications and reports and other publications arising from CERN work". Copies are available from Divisional Secretariats. Note : Administrative and operational circulars, as well as the lists of those in force, are available for consultation on WWW : ADMINISTRATIVE CIRCULARSOPERATIONAL CIRCULARS
Directory of Open Access Journals (Sweden)
Khalil M Al-Salem
2014-01-01
Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.
Quark Orbital Angular Momentum
Burkardt Matthias
2015-01-01
Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...
Pictorial essay: Orbital tuberculosis
International Nuclear Information System (INIS)
Tuberculosis of the orbit is rare, even in places where tuberculosis is endemic. The disease may involve soft tissue, the lacrimal gland, or the periosteum or bones of the orbital wall. Intracranial extension, in the form of extradural abscess, and infratemporal fossa extension has been described. This pictorial essay illustrates the imaging findings of nine histopathologically confirmed cases of orbital tuberculosis. All these patients responded to antituberculous treatment
Preseptal and Orbital Cellulitis
Emine Akçay; Gamze Dereli Can; Nurullah Çağıl
2014-01-01
Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epid...
Symmetry breaking and bifurcations in the periodic orbit theory. 2. Spheroidal cavity
International Nuclear Information System (INIS)
We derive a semiclassical trace formula for the level density of a three-dimensional spheroidal cavity. To overcome the divergences and discontinuities occurring at bifurcation points and in the spherical limit, the trace integrals over the action-angle variables are performed using an improved stationary phase method. The resulting semiclassical level density oscillations and shell energies are in good agreement with quantum-mechanical results. We find that the births of three-dimensional orbits through the bifurcations of planar orbits in the equatorial plane lead to considerable enhancement of the shell effect for superdeformed shapes. (author)
Geometric orbit datum and orbit covers
Institute of Scientific and Technical Information of China (English)
LIANG; Ke(
2001-01-01
［1］Vogan, D. , Dixmier algebras, sheets and representation theory (in Actes du colloque en I' honneur de Jacques Dixmier),Progress in Math. 92, Boston: Birkhauser Verlag, 1990, 333－397.［2］McGovern, W., Dixmier Algebras and Orbit Method, Operator Algebras, Unitary Representations and Invariant Theory,Boston: Birkhauser, 1990, 397－416.［3］Liang, K. , Parabolic inductions of nilpotent geometric orbit datum, Chinese Science Bulletin (in Chinese) , 1996, 41 (23):2116－2118.［4］Vogan, D., Representations of Real Reductive Lie Groups, Boston-Basel-Stuttgart: Birkhauser, 1981.［5］Lustig, G., Spaltenstein, N., Induced unipotent class, J. London Math. Soc., 1997, 19. 41－52.［6］Collingwood, D. H. , McGovern, W. M. , Nilpotent Orbits in Semisimple Lie Algebras, New York: Van Nostremt Reinhold,1993.
2008-01-01
This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.
THE EFFECTS OF EL NINO AND LA NINA ON SEABIRD ASSEMBLAGES IN THE EQUATORIAL PACIFIC MONITORING
Spring and autumn cruises in Equatorial and Subtropical Surface waters were conducted 1984-1989 in the eastern equatorial Pacific. our genera predominated, both the relative contribution of each to species assemblages differed markedly depending on season and water mass. uring au...
Lopes, P. G.
2015-12-01
The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as
Researches on Relationship between Circular Agriculture and Industrial Diversity
Institute of Scientific and Technical Information of China (English)
2011-01-01
First, this paper establishes the conceptual model of circular agriculture, conducts systematic analysis on the circular agriculture on the basis of conceptual model, and discusses the characteristics of closeness and openness of circular agriculture and relationship between closeness and openness of circular agriculture. Second, this paper introduces the industrial diversity related to circular agriculture, defines the concept of industry and the concept of industries related to agriculture, and illustrates the related industries that are conducive to circular agriculture and the related industries that are not conducive to circular agriculture. Finally, this paper analyzes the mutual relationship between circular agriculture and industrial diversity as follows: in the system of circular agriculture, the industrial diversity can transform the wastes in upstream industries into resources in downstream industries; the industrial diversity creates possibility for recycling of agricultural byproducts; the industrial diversity is conducive to the diversification of industries related to circular agriculture.
Spread F – an old equatorial aeronomy problem finally resolved?
Directory of Open Access Journals (Sweden)
R. F. Woodman
2009-05-01
Full Text Available One of the oldest scientific topics in Equatorial Aeronomy is related to Spread-F. It includes all our efforts to understand the physical mechanisms responsible for the existence of ionospheric F-region irregularities, the spread of the traces in a night-time equatorial ionogram – hence its name – and all other manifestations of the same. It was observed for the first time as an abnormal ionogram in Huancayo, about 70 years ago. But only recently are we coming to understand the physical mechanisms responsible for its occurrence and its capricious day to day variability. Several additional techniques have been used to reveal the spatial and temporal characteristics of the F-region irregularities responsible for the phenomenon. Among them we have, in chronological order, radio star scintillations, trans-equatorial radio propagation, satellite scintillations, radar backscatter, satellite and rocket in situ measurements, airglow, total electron content techniques using the propagation of satellite radio signals and, recently, radar imaging techniques. Theoretical efforts are as old as the observations. Nevertheless, 32 years after their discovery, Jicamarca radar observations showed that none of the theories that had been put forward could explain them completely. The observations showed that irregularities were detected at altitudes that were stable according to the mechanisms proposed. A breakthrough came a few years later, again from Jicamarca, by showing that some of the "stable" regions had become unstable by the non-linear propagation of the irregularities from the unstable to the stable region of the ionosphere in the form of bubbles of low density plasma. A problem remained, however; the primary instability mechanism proposed, an extended (generalized Rayleigh-Taylor instability, was too slow to explain the rapid development seen by the observations. Gravity waves in the neutral background have been proposed as a seeding mechanism to
Energy Technology Data Exchange (ETDEWEB)
Guigon, J.P.; Lambs, R.; Peigney, A. (Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Courbevoie (France))
1993-03-01
The orbital TIG with a narrow bevel was developed for primary circuit pipes welding of PWR boilers. Materials are austenitic stainless steels with end to end circular weldings of pipe and elbows with tubular nipples. Results of production and simulation welds are presented in industrial environment. (A.B.). 7 figs., 6 tabs.