WorldWideScience

Sample records for circuit switched optical

  1. Circuit switched optical networks

    DEFF Research Database (Denmark)

    Kloch, Allan

    2003-01-01

    Some of the most important components required for enabling optical networking are investigated through both experiments and modelling. These all-optical components are the wavelength converter, the regenerator and the space switch. When these devices become "off-the-shelf" products, optical cross...... are often considered as a part of the optical cross-connect, where also optical space switching is performed. Therefore, space switching based on both optical gates and interferometric switches is investigated. Moreover, an experiment including both space switching and wavelength conversion is carried out...

  2. Resource allocation in circuit-switched all-optical networks

    Science.gov (United States)

    Marquis, Douglas; Barry, Richard A.; Finn, Steven G.; Parikh, Salil A.; Swanson, Eric A.; Thomas, Robert E.

    1996-03-01

    We describe an all-optical network testbed deployed in the Boston area, and research surrounding the allocation of optical resources -- frequencies and time slots -- within the network. The network was developed by a consortium of AT&T Bell Laboratories, Digital Equipment Corporation, and Massachusetts Institute of Technology under a grant from ARPA. The network is organized as a hierarchy consisting of local, metropolitan, and wide area nodes tea support optical broadcast and routing modes. Frequencies are shared and reused to enhance network scalability. Electronic access is provided through optical terminals that support multiple services having data rates between 10 Mbps/user and 10 Gbps/user. Of particular interest for this work is the 'B-service,' which simultaneously hops frequency and time slots on each optical terminal to allow frequency sharing within the AON. B-service provides 1.244 Gbps per optical terminal, with bandwidth for individual connections divided in increments as small as 10 Mbps. We have created interfaces between the AON and commercially available electronic circuit-switched and packet-switched networks. The packet switches provide FDDI (datacomm), T3 (telecomm), and ATM/SONET switching at backplane rates of over 3 Gbps. We show results on network applications that dynamically allocate optical bandwidth between electronic packet-switches based on the offered load presented by users. Bandwidth allocation granularity is proportional to B-Service slots (10-1244 Mbps), and switching times are on the order of one second. We have also studied the effects of wavelength changers upon the network capacity and blocking probabilities in wide area all-optical networks. Wavelength changers allow a change in the carrier frequency (within the network) without disturbing the data modulation. The study includes both a theoretical model of blocking probabilities based on network design parameters, and a computer simulation of blocking in networks with and

  3. Performance evaluation of an optical hybrid switch with circuit queued reservations and circuit priority preemption

    Science.gov (United States)

    Wong, Eric W. M.; Zukerman, Moshe

    2006-11-01

    We provide here a new loss model for an optical hybrid switch that can function as an optical burst switch and/or optical circuit switch. Our model is general as it considers an implementation whereby some of the circuits have preemptive priority over bursts and others are allowed to queue their reservations. We first present an analysis based on a 3-dimension state-space Markov chain that provides exact results for the blocking probabilities of bursts and circuits, the proportion of circuits that are delayed and the mean delay of the circuits that are delayed. Because it is difficult to exactly compute the blocking probability in realistic scenarios with a large number of wavelengths, we derive computationally a scalable and accurate approximations based on reducing the 3-dimension state space into a single dimension. These scalable approximations that can produce performance results in a fraction of a second can readily enable switch dimensioning. Extensive numerical results are presented to demonstrate the accuracy and the use of the new approximations.

  4. Compact Hybrid Subsystem of 16 Channel Optical Demultiplexer, 2x2 Switches, Optical Power Monitors and Control Circuit

    Institute of Scientific and Technical Information of China (English)

    Kenichiro Takahashi; Toshihiko Kishimoto; Shintaro Mouri; Youichi Hata; Hideaki Yusa; Mitsuaki Tamura; Kazuhito Saito; Hisao Maki

    2003-01-01

    A compact hybrid subsystem of 16channel optical demultiplexer, 2x2 switches, optical power monitors and control circuit board is developed. The subsystem is able to add or drop arbitrary optical channels and monitor the optical power level by software commands. The size of the subsystem is 170x200x30(mm).

  5. Performance evaluation for an optical hybrid switch with circuit queued reservations

    Science.gov (United States)

    Wong, Eric W. M.; Zukerman, Moshe

    2005-11-01

    We provide here a new loss model for an optical hybrid switch that can function as an optical burst switch or optical circuit switch or both simultaneously. We introduce the feature of circuit queued reservation. That is, if a circuit request arrives and cannot find a free wavelength, and if there are not too many requests queued for reservations, it may join a queue and wait until such wavelength becomes available. We first present an analysis based on a 3-dimension state-space Markov chain that provides exact results for the blocking probabilities of bursts and circuits. We also provide results for the proportion of circuits that are delayed and the mean delay of the circuits that are delay. Because it is difficult to exactly compute the blocking probability in realistic scenarios with a large number of wavelengths, we derive computationally scalable and accurate approximations which are based on reducing the 3-dimension state space into a single dimension. These scalable approximations that can produce performance results in a fraction of a second can readily enable switch dimensioning.

  6. Transistor switching and sequential circuits

    CERN Document Server

    Sparkes, John J

    1969-01-01

    Transistor Switching and Sequential Circuits presents the basic ideas involved in the construction of computers, instrumentation, pulse communication systems, and automation. This book discusses the design procedure for sequential circuits. Organized into two parts encompassing eight chapters, this book begins with an overview of the ways on how to generate the types of waveforms needed in digital circuits, principally ramps, square waves, and delays. This text then considers the behavior of some simple circuits, including the inverter, the emitter follower, and the long-tailed pair. Other cha

  7. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  8. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  9. Accurate Switched-Voltage voltage averaging circuit

    OpenAIRE

    金光, 一幸; 松本, 寛樹

    2006-01-01

    Abstract ###This paper proposes an accurate Switched-Voltage (SV) voltage averaging circuit. It is presented ###to compensated for NMOS missmatch error at MOS differential type voltage averaging circuit. ###The proposed circuit consists of a voltage averaging and a SV sample/hold (S/H) circuit. It can ###operate using nonoverlapping three phase clocks. Performance of this circuit is verified by PSpice ###simulations.

  10. Nonsmooth Modeling and Simulation for Switched Circuits

    CERN Document Server

    Acary, Vincent; Brogliato, Bernard

    2011-01-01

    "Nonsmooth Modeling and Simulation for Switched Circuits" concerns the modeling and the numerical simulation of switched circuits with the nonsmooth dynamical systems (NSDS) approach, using piecewise-linear and multivalued models of electronic devices like diodes, transistors, switches. Numerous examples (ranging from introductory academic circuits to various types of power converters) are analyzed and many simulation results obtained with the INRIA open-source SICONOS software package are presented. Comparisons with SPICE and hybrid methods demonstrate the power of the NSDS approach

  11. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... between the electrical switched layer and the WDM transport layer. Analytical models are implemented to determine the signal quality ghrough the switch blocks in terms of power penalty and to assess the traffic performance of different switch block architectures. Further, a computer simulation model...... is used to investigate the influence on the traffic performance of asynchronous operation of the switch blocks. The signal quality investigation illustrates some of the component requirements in respect to gain saturation in SOA gates and crosstalk in order to obtain high cascadability of the switch...

  12. Optical packet switching

    Science.gov (United States)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  13. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.;

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  14. Optical switching device

    NARCIS (Netherlands)

    Broeder, F.J.A. den; Hanzen, R.M.N.; Duine, P.A.; Jungblut, R.M.; Draijer, C.; Roozeboom, F.; Sluis, P. van der

    2000-01-01

    A description is given of an optical switching device (1) comprising a transparent substrate (3), a switching film (5) of a hydride compound of a trivalent transition or rare earth metal having a thickness of 300 nm, and a palladium capping layer (7) having a thickness of 30 nm. The capping layer is

  15. Theory of circuit block switch-off

    Directory of Open Access Journals (Sweden)

    S. Henzler

    2004-01-01

    Full Text Available Switching-off unused circuit blocks is a promising approach to supress static leakage currents in ultra deep sub-micron CMOS digital systems. Basic performance parameters of Circuit Block Switch-Off (CBSO schemes are defined and their dependence on basic circuit parameters is estimated. Therefore the design trade-off between strong leakage suppression in idle mode and adequate dynamic performance in active mode can be supported by simple analytic investigations. Additionally, a guideline for the estimation of the minimum time for which a block deactivation is useful is derived.

  16. Optical Packet Switching Demostrator

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach; Berger, Michael Stübert

    2002-01-01

    In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set-up and the m......In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set...

  17. Staged circuit switching for network computers

    Energy Technology Data Exchange (ETDEWEB)

    Arango, M.; Gelernter, D.; Badr, H.; Bernstein, A.J.

    1983-03-01

    Staged cricuit switching (SCS) is a message-switching technique which combines a new protocol with new communication hardware. Protocol and hardware are designed specifically for networks which are intended to function as integrated, general-purpose MIMD machines, i.e. for network computers. The SCS protocol is a form of circuit switching which degrades automatically into packet switching when unavailable output lines make further extension of a partial circuit impossible. The SCS hardware uses a front-end crossbar switch to multiplex some small number of communication channels among all of a given node's incident links. Together, hardware and protocol represent an attempt to convert spare bandwidth into lower network delays. They also allow experimentation with networks which reconfigure themselves dynamically in response to measured traffic patterns. SCS is compared with packet switching, circuit switching and the virtual cut-through protocol of P. Kermani and L.Kleinrock (see Comput. Networks, vol.3, p.267, 1979, and IEEE Trans. Comput. C-29,12, p.1052, December 1980), and an SCS implementation designed for the SBN network computer is discussed. 23 references.

  18. 46 CFR 28.365 - Overcurrent protection and switched circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Overcurrent protection and switched circuits. 28.365... switched circuits. (a) Each power source must be protected against overcurrent. Overcurrent devices for... a steering circuit, each circuit must be protected against both overload and short circuit....

  19. Nanoeletromechanical switch and logic circuits formed therefrom

    Science.gov (United States)

    Nordquist, Christopher D.; Czaplewski, David A.

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  20. 49 CFR 236.732 - Controller, circuit; switch.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog....

  1. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  2. 30 CFR 75.519 - Main power circuits; disconnecting switches.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main power circuits; disconnecting switches. 75... § 75.519 Main power circuits; disconnecting switches. In all main power circuits, disconnecting... which main power circuits enter the underground area of the mine and within 500 feet of all other...

  3. Design theory of digital circuits at switch level

    Institute of Scientific and Technical Information of China (English)

    吴训威; F.Prosser

    1996-01-01

    By analysing problems in the traditional design theory of digital circuits it is proposed that both switching variable and signal variable should be adopted for describing the switching state of internal elements and signal in digital circuits respectively.Based on the above viewpoint the switch-signal theory is established.According to the working principle in CMOS circuits,the related design technique at switch level is developed.By using the practical design examples it is shown that the circuits designed at switch level have simpler structures than their counterparts designed at the traditional gate level since the switch transistors are used as construction units in designs.

  4. Hybrid Optical Switching for Data Center Networks

    Directory of Open Access Journals (Sweden)

    Matteo Fiorani

    2014-01-01

    Full Text Available Current data centers networks rely on electronic switching and point-to-point interconnects. When considering future data center requirements, these solutions will raise issues in terms of flexibility, scalability, performance, and energy consumption. For this reason several optical switched interconnects, which make use of optical switches and wavelength division multiplexing (WDM, have been recently proposed. However, the solutions proposed so far suffer from low flexibility and are not able to provide service differentiation. In this paper we introduce a novel data center network based on hybrid optical switching (HOS. HOS combines optical circuit, burst, and packet switching on the same network. In this way different data center applications can be mapped to the optical transport mechanism that best suits their traffic characteristics. Furthermore, the proposed HOS network achieves high transmission efficiency and reduced energy consumption by using two parallel optical switches. We consider the architectures of both a traditional data center network and the proposed HOS network and present a combined analytical and simulation approach for their performance and energy consumption evaluation. We demonstrate that the proposed HOS data center network achieves high performance and flexibility while considerably reducing the energy consumption of current solutions.

  5. 46 CFR 28.860 - Overcurrent protection and switched circuits.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Overcurrent protection and switched circuits. 28.860... circuits. (a) Each power source must be protected against overcurrent. Overcurrent devices for generators... steering circuit, each circuit must be protected against both overload and short circuit. Each...

  6. Analysis of a digital microstrip optical switch: a novel method

    Science.gov (United States)

    Al-Ruwaihi, Khalid M.; Hindy, Moataza A.

    1997-02-01

    A time domain analysis of an optically controlled digital microstrip switch for microwave integrated circuits on Si substrates is studied. A new model for high-frequency pulse propagation on a microstrip optical switch for different optical parameters is presented. A frequency-dependent macromodel for a microstrip line with a gap is implemented in Spice 3, taking into consideration high-frequency pulse dispersion, conductor and dielectric losses, metallization thickness, gap length, and different optical parameters such as optical energy, surface recombination velocities, and diffusion of generated carriers. In addition, the developed model has been used to optimize the switching frequency, gap length, level of optical power, and suitable substrate material parameters.

  7. Analysis of a digital microstrip optical switch: a novel method.

    Science.gov (United States)

    Al-Ruwaihi, K M; Hindy, M A

    1997-02-20

    A time domain analysis of an optically controlled digital microstrip switch for microwave integrated circuits on Si substrates is studied. A new model for high-frequency pulse propagation on a microstrip optical switch for different optical parameters is presented. A frequency-dependent macromodel for a microstrip line with a gap is implemented in Spice 3, taking into consideration high-frequency pulse dispersion, conductor and dielectric losses, metallization thickness, gap length, and different optical parameters such as optical energy, surface recombination velocities, and diffusion of generated carriers. In addition, the developed model has been used to optimize the switching frequency, gap length, level of optical power, and suitable substrate material parameters.

  8. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    CERN Document Server

    Ding, Yunhong; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenlowe, Leif Katsuo

    2016-01-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7x7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing swi...

  9. Recent progress on planar lightwave circuit technology for optical communication

    Science.gov (United States)

    Takahashi, Hiroshi

    2009-11-01

    Silica waveguide planar lightwave circuit (PLC) technology is very useful for fabricating compact and high performance optical devices for optical communication. Wavelength multiplexers and optical switches for ROADM and OXC are still being developed to improve performance further. New devices for an advanced modulation format can also be fabricated with PLC technology.

  10. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    Science.gov (United States)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  11. Key Technologies for Optical Packet Switching

    Institute of Scientific and Technical Information of China (English)

    Akira; Okada

    2003-01-01

    The paper describes our recent progress on key technologies and components for realizing optical packet switching, including an out-of-band optical label switching technique, an optical packet synchronizer and a burst-mode optical receiver.

  12. Key Technologies for Optical Packet Switching

    Institute of Scientific and Technical Information of China (English)

    Akira Okada

    2003-01-01

    The paper describes our recent progress on key technologies and components for realizing optical packet switching,including an out-of-band optical label switching technique, an optical packet synchronizer and a burst-mode optical receiver.

  13. Variable time-period optical switching: a novel OBS implementation

    Institute of Scientific and Technical Information of China (English)

    Jinsong Zhang(张劲松); Mingcui Cao(曹明翠); Fengguang Luo(罗风光); Tao Chen(陈涛)

    2003-01-01

    In this paper, we proposed a novel optical switching method based on optical burst switching (OBS), we call it variable time-period optical switching (VTPOS). It can both support circuit services and other immerged packet services. It has better usability of bandwidth, shorter offset and latency time than others of unidirectional transport signaling mechanisms for OBS. It supports deflection switching for improve blocking performance without the need of schedule buffer. It introduces a time pointer and phase indicator that made synchronous more precisely and requires less guard time, it also classifies the different services classes with a relative QoS model.

  14. Low power all optical switches

    Institute of Scientific and Technical Information of China (English)

    Alireza Bananej; LI Chun-fei 李淳飞

    2004-01-01

    In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.

  15. Node design in optical packet switched networks

    DEFF Research Database (Denmark)

    Nord, Martin

    2006-01-01

    The thesis discusses motivation, realisation and performance of the Optical Packet Switching (OPS) network paradigm. The work includes proposals for designs and methods to efficiently use both the wavelength- and time domain for contention resolution in asynchronous operation. The project has also...... adapting network performance to the different acceptable packet loss rate levels of supported applications, while improving overall bandwidth efficiency. The project has evaluated QoS differentiation methods and proposed schemes with improved efficiency, which also include jitter sensitivity as a Qo...... proposed parallel designs to overcome scalability constraints and to support migration scenarios. Furthermore, it has proposed and demonstrated optical input processing schemes for hybrids networks to simultaneously support OPS and Optical Circuit Switching. Quality of Service (QoS) differentiation enables...

  16. Flexible circuits with integrated switches for robotic shape sensing

    Science.gov (United States)

    Harnett, C. K.

    2016-05-01

    Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.

  17. Design of optical switches by illusion optics

    Science.gov (United States)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  18. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated.

  19. Compact SCR trigger circuit for ignitron switch operates efficiently

    Science.gov (United States)

    Foster, L. E.

    1965-01-01

    Trigger circuit with two series-connected SCR triggers an ignitron switch used to discharge high-energy capacitor banks. It does not require a warmup period and operates at relatively high efficiency.

  20. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  1. A Demonstration of Automatically Switched Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We build an automatically switched optical network (ASON) testbed with four optical cross-connect nodes. Many fundamental ASON features are demonstrated, which is implemented by control protocols based on generalized multi-protocol label switching (GMPLS) framework.

  2. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  3. All-optical high performance graphene-photonic crystal switch

    Science.gov (United States)

    Hoseini, Mehrdad; Malekmohammad, Mohammad

    2017-01-01

    The all-optical switch is realized based on nonlinear transmission changes in Fano resonance of 2D photonic crystals (PhC) which enhances the light intensity on the graphene in PhC; and in this study, the graphene layer is used as the nonlinear material. The refractive index change of graphene layer leads to a shift in the Fano resonance frequency due to the input light intensity through the Kerr nonlinear effect. Through finite-difference time-domain simulation, it is found that the high performance of all-optical switching can be achieved by the designed structure with a threshold pump intensity as low as MW/cm2. This structure is featured by optical bistability. The obtained results are applicable in micro optical integrated circuits for modulators, switches and logic elements for optical computation.

  4. Circuit-Switched Gossiping in the 3-Dimensional Torus Networks

    OpenAIRE

    Delmas, Olivier; Pérennes, Stéphane

    1996-01-01

    In this paper we describe, in the case of short messages, an efficient gossiping algorithm for 3-dimensional torus networks (wrap-around or toroidal meshes) that uses synchronous circuit-switched routing. The algorithm is based on a recursive decomposition of a torus. The algorithm requires an optimal number of rounds and a quasi-optimal number of intermediate switch settings to gossip in an $7^i \\times 7^i \\times 7^i$ torus.

  5. Noise Analysis of Switched-Current Circuits

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur

    1998-01-01

    The understanding of noise in analog sampled data systems is vital for the design of high resolution circuitry. In this paper a general description of sampled and held noise is presented. The noise calculations are verified by measurements on an analog delay line implemented using switched-curren...

  6. Sampled Noise in Switched Current Circuits

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger; Bogason, Gudmundur

    1997-01-01

    The understanding of noise in analog sampled data systems is vital for the design of high resolution circuitry. In this paper a general description of sampled and held noise is presented. The noise calculations are verified by measurements on an analog delay line implemented using switched-current...

  7. Magnonic interferometric switch for multi-valued logic circuits

    Science.gov (United States)

    Balynsky, Michael; Kozhevnikov, Alexander; Khivintsev, Yuri; Bhowmick, Tonmoy; Gutierrez, David; Chiang, Howard; Dudko, Galina; Filimonov, Yuri; Liu, Guanxiong; Jiang, Chenglong; Balandin, Alexander A.; Lake, Roger; Khitun, Alexander

    2017-01-01

    We investigated a possible use of the magnonic interferometric switches in multi-valued logic circuits. The switch is a three-terminal device consisting of two spin channels where input, control, and output signals are spin waves. Signal modulation is achieved via the interference between the source and gate spin waves. We report experimental data on a micrometer scale prototype based on the Y3Fe2(FeO4)3 structure. The output characteristics are measured at different angles of the bias magnetic field. The On/Off ratio of the prototype exceeds 13 dB at room temperature. Experimental data are complemented by the theoretical analysis and the results of micro magnetic simulations showing spin wave propagation in a micrometer size magnetic junction. We also present the results of numerical modeling illustrating the operation of a nanometer-size switch consisting of just 20 spins in the source-drain channel. The utilization of spin wave interference as a switching mechanism makes it possible to build nanometer-scale logic gates, and minimize energy per operation, which is limited only by the noise margin. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. We describe possible implementation of the three-value logic circuits based on the magnonic interferometric switches. The advantages and shortcomings inherent in interferometric switches are also discussed.

  8. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  9. 30 CFR 77.809 - Identification of circuit breakers and disconnecting switches.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of circuit breakers and disconnecting switches. 77.809 Section 77.809 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuit breakers and disconnecting switches. Circuit breakers and disconnecting switches shall be...

  10. Reconfigurable Optical Directed-Logic Circuits

    Science.gov (United States)

    2015-11-20

    switching times do not accumulate as more elements are added to a given logic circuit. This simultaneous switching stands in contrast to electronic...ORGANIZATION. 3. DATES COVERED (From - To) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 11...SPONSOR/MONITOR’S REPORT NUMBER(S) 16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER (Include area code ) The public reporting burden for

  11. Analogue Behavioral Modeling of Switched-Current Building Block Circuits

    Institute of Scientific and Technical Information of China (English)

    ZENG Xuan; WANG Wei; SHI Jianlei; TANG Pushan; D.ZHOU

    2001-01-01

    This paper proposes a behavioral modeling technique for the second-generation switched-current building block circuits. The proposed models are capable of capturing the non-ideal behavior of switched-current circuits, which includes the charge injection effects and device mismatch effects. As a result, system performance degradations due to the building block imperfections can be detected at the early design stage by fast behavioral simulations. To evaluate the accuracy of the proposed models, we developed a time-domain behavioral simulator. Experimental results have shown that compared with SPICE, the behavioral modeling error is less than 2.15%, while behavioral simulation speed up is 4 orders in time-domain.

  12. Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ An electro-optical switch based on a plasmonic T-shaped waveguide structure with a double-teeth-shaped waveguide filled with 4-dimet4ylamino-N-methyl-4stilbazolium tosylate is proposed and numerically investigated.TheFinite-difference time domain simulation results reveal that the structure can operate as a circuit switch by controlling the external voltages V1 and/or V2.The proposed structure can also operate as a variable optical attenuator, which can continuously attenuate the power of a light beam from 6dB to 30dB by an external electrical field.The structure is of small size of a few hundred nanometers.Our results may open a possibility to construct nanoscale high-density photonic integration circuits.

  13. The stochastic behavior of a molecular switching circuit with feedback

    Directory of Open Access Journals (Sweden)

    Smith Eric

    2007-05-01

    Full Text Available Abstract Background Using a statistical physics approach, we study the stochastic switching behavior of a model circuit of multisite phosphorylation and dephosphorylation with feedback. The circuit consists of a kinase and phosphatase acting on multiple sites of a substrate that, contingent on its modification state, catalyzes its own phosphorylation and, in a symmetric scenario, dephosphorylation. The symmetric case is viewed as a cartoon of conflicting feedback that could result from antagonistic pathways impinging on the state of a shared component. Results Multisite phosphorylation is sufficient for bistable behavior under feedback even when catalysis is linear in substrate concentration, which is the case we consider. We compute the phase diagram, fluctuation spectrum and large-deviation properties related to switch memory within a statistical mechanics framework. Bistability occurs as either a first-order or second-order non-equilibrium phase transition, depending on the network symmetries and the ratio of phosphatase to kinase numbers. In the second-order case, the circuit never leaves the bistable regime upon increasing the number of substrate molecules at constant kinase to phosphatase ratio. Conclusion The number of substrate molecules is a key parameter controlling both the onset of the bistable regime, fluctuation intensity, and the residence time in a switched state. The relevance of the concept of memory depends on the degree of switch symmetry, as memory presupposes information to be remembered, which is highest for equal residence times in the switched states. Reviewers This article was reviewed by Artem Novozhilov (nominated by Eugene Koonin, Sergei Maslov, and Ned Wingreen.

  14. MOSFET Switching Circuit Protects Shape Memory Alloy Actuators

    Science.gov (United States)

    Gummin, Mark A.

    2011-01-01

    A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.

  15. Technology development of RF MEMS switches on printed circuit boards

    Science.gov (United States)

    Chang, Hung-Pin

    Today, some engineers have shifted their focus on the micro-electro-mechanical system (MEMS) to pursue better technological advancements. Recent development in RF MEMS technologies have lead to superior switch characteristics, i.e., very low insertion loss, very low power requirements, and high isolation comparing to the conventional semiconductor devices. This success has promised the potential of MEMS to revolutionize RF and microwave system implementation for the next generation of communication applications. However, RF MEMS switches integrated monolithically with various RF functional components on the same substrate to create multifunctional and reconfigurable complete communication systems remains to be a challenge research topic due to the concerns of the high cost of packaging process and the high cost of RF matching requirements in module board implementation. Furthermore, the fabrication of most RF MEMS switches requires thickness control and surface planarization of wide metal lines prior to deposition of a metal membrane bridge, which poses a major challenge to manufacturability. To ease the fabrication of RF MEMS switches and to facilitate their integration with other RF components such as antennas, phase delay lines, tunable filters, it is imperative to develop a manufacturable RF MEMS switch technology on a common substrate housing all essential RF components. Development of a novel RF MEMS technology to build a RF MEMS switch and provide a system-level packaging on microwave laminated printed circuit boards (PCBs) are proposed in this dissertation. Two key processes, high-density inductively coupled plasma chemical vapor deposition (HDICP CVD) for low temperature dielectric deposition, and compressive molding planarization (COMP) for the temporary sacrificial polymer planarization have been developed for fabricating RF MEMS switches on PCBs. Several membrane-type capacitive switches have been fabricated showing excellent RF performance and dynamic

  16. Performance Limits of Nanoelectromechanical Switches (NEMS-Based Adiabatic Logic Circuits

    Directory of Open Access Journals (Sweden)

    Samer Houri

    2013-12-01

    Full Text Available This paper qualitatively explores the performance limits, i.e., energy vs. frequency, of adiabatic logic circuits based on nanoelectromechanical (NEM switches. It is shown that the contact resistance and the electro-mechanical switching behavior of the NEM switches dictate the performance of such circuits. Simplified analytical expressions are derived based on a 1-dimensional reduced order model (ROM of the switch; the results given by this simplified model are compared to classical CMOS-based, and sub-threshold CMOS-based adiabatic logic circuits. NEMS-based circuits and CMOS-based circuits show different optimum operating conditions, depending on the device parameters and circuit operating frequency.

  17. Recent Advances in Optically Controlled Bulk Semiconductor Switches

    Science.gov (United States)

    1985-06-01

    REO!NT AIJifl,NCES IN (FTICALIX ~1Ra.LW IILK SHttiaHlOCIOR swrrams L. Bovino , T. Burke, R. Youmans, M. Weiner, J. Carter U.S. Ar~ Electronics...fabrication of all of our optically activated switches. B.e.fer.enc.es. 1. L. Bovino , R. Youmans, T. Burke, M.Weiner, "Modulator Circuits Using Q...tically Activated Switches", Record of 16th Power Modulator SYJll>o- siurn, pp 235-239, June 1984. 2. M. Weiner, T. Burke, R. Youmans, L. Bovino , J

  18. Switching Surge Analysis of Vacuum Circuit Breaker using EMTP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ik Mo; Kim, Ji Hong [Hyundai Heavy Industry, Mechatronics Research Institute (Korea)

    2000-07-01

    The first objective of this study is to set up the switching surge analysis method in motor driving distribution system. The simplified model which can simulate the motor energization and circuit breaker re-ignitions, and each circuit element model is presented in this paper. The second objective is to calculate the quantity of surge over-voltage in real nuclear power station. And the surge suppressing measures are verified on the simulation basis. It is clarified that most cases are not satisfactory to meet the IEEE standard 522-1992 without using surge suppressing measures. In cases that the surge arrester are installed in distribution board at the load side of circuit breaker. The IEEE specification is fully met. (author). 6 refs., 4 figs., 3 tabs.

  19. Optical packet switching without packet alignment

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave; Danielsen, Søren Lykke; Stubkjær, Kristian

    1998-01-01

    Operation without packet alignment of an all-optical packet switch is proposed and predicted feasible through a detailed traffic analysis. Packet alignment units are eliminated resulting in a simple switch architecture while optimal traffic performance is maintained through the flexibility provided...

  20. Nonlinear interface optical switch structure for dual mode switching revisited

    Science.gov (United States)

    Bussjager, Rebecca J.; Osman, Joseph M.; Chaiken, Joseph

    1998-07-01

    There is a need for devices which will allow integration of photonic/optical computing subsystems into electronic computing architectures. This presentation reviews the nonlinear interface optical switch (NIOS) concept and then describes a new effect, the erasable optical memory (EOM) effect. We evaluate an extension of the NIOS device to allow simultaneous optical/electronic, i.e. dual mode, switching of light utilizing the EOM effect. Specific devices involve the fabrication of thin film tungsten (VI) oxide (WO3) and tungsten (V) oxide (W2O5) on the hypotenuse of glass (BK-7), fused silica (SiO2) and zinc selenide (ZnSe) right angle prisms. Chemical reactions and temporal response tests were performed and are discussed.

  1. Isolation of Integrated Optical Acousto-Optic Switch

    Institute of Scientific and Technical Information of China (English)

    XIAO Li-Feng; LIU Ying; WANG Wei-Peng; GENG Fan

    2006-01-01

    @@ Isolation of a new structured acousto-optic switch based on an integrated optical polarization-independent quasicollinear acousto-optic tunable filter is studied in detail. The factors that influence the isolation of the optical switch are analysed, the expressions of the isolation are educed, and the isolation of the device is measured in experiment. It is found that the isolation mainly depends on the TE/TM mode intensity ratio, the mode-splitter extinction rate, and the conversion efficiency.

  2. Reduction of Switching Surge by Controlled Shunt Reactor Switching of Gas Circuit Breaker

    Science.gov (United States)

    Kohyama, Haruhiko; Ito, Hiroki; Asai, Jun; Hidaka, Mikio; Yonezawa, Takashi

    Controlled switching system (CSS) with a 204kV gas circuit breaker (GCB) demonstrates to reduce an inrush current and to eliminate re-ignitions in shunt reactor switching. Target closing and opening instants for controlled switching are determined by the electrical and mechanical characteristics of GCB. Idle time dependence of the operating time, which gives a sufficient impact on controlling accuracy, is evaluated and successfully compensated by synchronous switching controller (SSC). Field operation of CSS for a year shows an effective suppression of inrush current on closing and prevention of re-ignitions on opening of shunt reactor. The operations also proved that the CSS has a satisfactory performance for electro-magnetic disturbance imposed in practical field.

  3. United assembly algorithm for optical burst switching

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yu(于金辉); Yijun Yang(杨教军); Yuehua Chen(陈月华); Ge Fan(范戈)

    2003-01-01

    Optical burst switching (OBS) is a promising optical switching technology. The burst assembly algorithm controls burst assembly, which significantly impacts performance of OBS network. This paper provides a new assembly algorithm, united assembly algorithm, which has more practicability than conventional algorithms. In addition, some factors impacting selections of parameters of this algorithm are discussed and the performance of this algorithm is studied by computer simulation.

  4. Experimental Demonstration of 7 Tb/s Switching Using Novel Silicon Photonic Integrated Circuit

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld;

    2016-01-01

    We demonstrate BER performance <10^-9 for a 1 Tb/s/core transmission over 7-core fiber and SDM switching using a novel silicon photonic integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers.......We demonstrate BER performance integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers....

  5. 30 CFR 75.809 - Identification of circuit breakers and disconnecting switches.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of circuit breakers and... High-Voltage Distribution § 75.809 Identification of circuit breakers and disconnecting switches. Circuit breakers and disconnecting switches underground shall be marked for identification....

  6. Micro electro mechanical system optical switching

    Science.gov (United States)

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  7. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong; Kim; Sang-Yung; Shin; Doo-Sun; Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than -10 dB.

  8. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong Kim; Sang-Yung Shin; Doo-Sun Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than-10 dB.

  9. 160-Gb/s Silicon All-Optical Packet Switch for Buffer-less Optical Burst Switching

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Pu, Minhao;

    2015-01-01

    We experimentally demonstrate a 160-Gb/s Ethernet packet switch using an 8.6-mm-long silicon nanowire for optical burst switching, based on cross phase modulation in silicon. One of the four packets at the bit rate of 160 Gb/s is switched by an optical control signal using a silicon based 1 × 1 all......-optical packet switch. Error free performance (BER switched packet. The use of optical burst switching protocols could eliminate the need for optical buffering in silicon packet switch based optical burst switching, which might be desirable for high-speed interconnects within a short...

  10. All-optical switching in optically induced nonlinear waveguide couplers

    Energy Technology Data Exchange (ETDEWEB)

    Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-06-30

    We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.

  11. Optical Packet Switching Scheme Using Multi-optical-code Labels

    Institute of Scientific and Technical Information of China (English)

    LI Shu-wen; ZHANG Qi; YU Chong-xiu; XIN Xiang-jun; XIONG Fei

    2009-01-01

    Proposed is a novel optical code(OC) label switching scheme in which an optical label is constructed by multiple parallel optical codes. The performances of splitting loss and BER are simulated and analyzed. Simulation results show that the proposed label can be correctly recognized to perform packet switching. Compared with reported schemes using one OC as a label, the splitting loss in our proposal is lowered.

  12. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    Science.gov (United States)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  13. 160-Gb/s Silicon All-Optical Packet Switch for Buffer-less Optical Burst Switching

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Pu, Minhao

    2015-01-01

    We experimentally demonstrate a 160-Gb/s Ethernet packet switch using an 8.6-mm-long silicon nanowire for optical burst switching, based on cross phase modulation in silicon. One of the four packets at the bit rate of 160 Gb/s is switched by an optical control signal using a silicon based 1 × 1 all-optical...... packet switch. Error free performance (BER optical burst switching protocols could eliminate the need for optical buffering in silicon packet switch based optical burst switching, which might be desirable for high-speed interconnects within a short...

  14. SDN architecture for optical packet and circuit integrated networks

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  15. All-Optical Arithmetic and Combinatorial Logic Circuits with High-Q Bacteriorhodopsin Coated Microcavities

    CERN Document Server

    Roy, Sukhdev; Topolancik, Juraj; Vollmer, Frank

    2010-01-01

    We present designs of all-optical computing circuits, namely, half-full adder/subtractor, de-multiplexer, multiplexer, and an arithmetic unit, based on bacteriorhodopsin (BR) protein coated microcavity switch in a tree architecture. The basic all-optical switch consists of an input infrared (IR) laser beam at 1310 nm in a single mode fiber (SMF-28) switched by a control pulsed laser beam at 532 nm, which triggers the change in the resonance condition on a silica bead coated with BR between two tapered fibers. We show that fast switching of 50 us can be achieved by injecting a blue laser beam at 410 nm that helps in truncating the BR photocycle at the M intermediate state. Realization of all-optical switch with BR coated microcavity switch has been done experimentally. Based on this basic switch configuration, designs of all-optical higher computing circuits have been presented. The design requires 2n-1 switches to realize n bit computation. The proposed designs require less number of switches than terahertz o...

  16. High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

    Directory of Open Access Journals (Sweden)

    C. P. Sai Kiran

    2014-10-01

    Full Text Available This thesis presents High frequency Soft Switching DC-DC boost Converter. The circuit consists of a general Boost Converter with an additional resonant circuit which has a switch, inductor, capacitor and a diode.In general Boost Converter circuits have snubber circuits where switching losses are dissipated in external passive resistors; which is known as hard switching. As the switching frequency of PWM converters is increased its switching losses and conduction losses also increases. This restricts the use of PWM technique. New Zero Voltage Transition-Zero Current Transition (ZVT-ZCT PWM converter equipped with the snubber provides the most desirable features of both ZVT and ZCT converters presented previously. Moreover all semiconductors devices operate with soft switching and hence losses are reduced.

  17. Energy efficiency benefits of introducing optical switching in Data Center Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Zeimpeki, Alexandra; Fagertun, Anna Manolova

    2017-01-01

    In this paper we analyze the impact of WDM-enhanced optical circuit switching on the power consumption of multiple Data Center Network (DCN) architectures. Traditional three-tier Tree, Fat-Tree and a ring-based structure are evaluated and optical switching is selectively introduced on different l...... an optically switched core benefits most the ring-based network. For the latter, the core ring nodes need fewer long-reach transponders at the trunk interfaces and benefit from more efficient traffic grooming in the access part....

  18. Harnessing optical forces in integrated photonic circuits.

    Science.gov (United States)

    Li, Mo; Pernice, W H P; Xiong, C; Baehr-Jones, T; Hochberg, M; Tang, H X

    2008-11-27

    The force exerted by photons is of fundamental importance in light-matter interactions. For example, in free space, optical tweezers have been widely used to manipulate atoms and microscale dielectric particles. This optical force is expected to be greatly enhanced in integrated photonic circuits in which light is highly concentrated at the nanoscale. Harnessing the optical force on a semiconductor chip will allow solid state devices, such as electromechanical systems, to operate under new physical principles. Indeed, recent experiments have elucidated the radiation forces of light in high-finesse optical microcavities, but the large footprint of these devices ultimately prevents scaling down to nanoscale dimensions. Recent theoretical work has predicted that a transverse optical force can be generated and used directly for electromechanical actuation without the need for a high-finesse cavity. However, on-chip exploitation of this force has been a significant challenge, primarily owing to the lack of efficient nanoscale mechanical transducers in the photonics domain. Here we report the direct detection and exploitation of transverse optical forces in an integrated silicon photonic circuit through an embedded nanomechanical resonator. The nanomechanical device, a free-standing waveguide, is driven by the optical force and read out through evanescent coupling of the guided light to the dielectric substrate. This new optical force enables all-optical operation of nanomechanical systems on a CMOS (complementary metal-oxide-semiconductor)-compatible platform, with substantial bandwidth and design flexibility compared to conventional electrical-based schemes.

  19. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  20. Evaluation of laser diode based optical switches for optical processors

    Science.gov (United States)

    Swanson, Paul D.; Parker, Michael A.; Libby, Stuart I.

    1993-07-01

    Three optical switching elements have been designed, fabricated, and tested for use in an integrated, optical signal processor. The first, an optical NOR logic gate, uses gain quenching as a means of allowing one (or more) light beam(s) to control the output light. This technique, along with the use of a two pad bistable output laser, is used in demonstrating the feasibility of the second device, an all optical RS flip flop. The third device consists of a broad area orthogonal model switching laser, whose corollary outputs correspond to the sign of the voltage difference between its two high impedance electrical inputs. This device also has possible memory applications if bistable mode switching within the broad area laser can be achieved.

  1. Design and Simulation of Routing-switching Protocol Based on Optical Switch Array

    Institute of Scientific and Technical Information of China (English)

    HE Wei; MAO You-ju; LIU Jiang

    2004-01-01

    An optical routing- switching technology based on optical switch array is proposed. The characteristics of the blocking and nonblocking networks are analyzed and compared, odd- even sorting network is used to realize optical routing- switching, relative routing- switching protocol is designed.Simulation test under load shows that it can reduce a blocking effectively and enhance an efficiency of switching. Further, it can transfer the processing and switching within parallel computer from electric domain to optical domain. It can make parallel computer coordinating computing and processing at much more higher speed, storing and transmitting even more efficiently.

  2. Two Novel Structures of Optical Packet Switching Nodes

    Institute of Scientific and Technical Information of China (English)

    YIN Hongxi; XU Anshi; WU Deming

    2001-01-01

    All-optical packet switching networkis currently one of the research hotspots of all-opticalcommunication networks and optical packet switchingnodes are the key technique of optical packet switch-ing network. In this paper, two novel structures ofoptical packet switching nodes are put forward, and the switching capacity of the node and the packet con-tention resolution are analyzed. These two switchingarchitectures can realize wavelength routing switchingfunction and broadcast-and-select switching functionrespectively. They are simple but efficient for realizingoptical packet switching network.

  3. Research of high speed optical switch based on compound semiconductor

    Institute of Scientific and Technical Information of China (English)

    WANG MingHua; QI Wei; YU Hui; JIANG XiaoQing; YANG JianYi

    2009-01-01

    High-speed optical switch and its array are the crucial components of all-optical switching system. This paper presents the analytical model of a total-internal-reflection (TIR) optical switch. By employing the carrier injection effect in GaAs and the GaAs/AlGaAs double heterojunction structure, the X-junction TIR switch and the Mach-Zehnder interference (MZI) switch are demonstrated at 1.55 IJm. The measured results show that the extinction ratio of both switches exceeds 20 dB. The switching speed reaches the scale of 10 ns.

  4. Advanced Optical Burst Switched Network Concepts

    Science.gov (United States)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  5. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Science.gov (United States)

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  6. A Novel Crowbar Impulse Current Circuit for Testing the Switch-Type SPD

    Institute of Scientific and Technical Information of China (English)

    YAO Xueling; CHEN Jingliang; SUN Wei

    2008-01-01

    A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseudospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface flashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current wave form of maximum 25 kA was generated with a rise time and time to half peak value of 17.2/μs and 336 μs respectively.

  7. A four-colour optical detector circuit

    Science.gov (United States)

    Yohannes, Israel; Assaad, Maher

    2013-02-01

    In this article, a new architecture for a four-colour optical detector circuit is presented. The proposed detector uses a photodiode as its basic light transducing element and a mixed signal readout circuit for signal processing and decision making. The readout circuit requires only two comparators, two multiplexers and a few logic gates to produce a digital 4 bit output that represents the right colour detected. The proposed detector is advantageous because the number of required components is fixed even if the number of detected colours is increased. The feature of having a fixed number of elements while increasing the number of detected colours is important especially in component count (i.e. low cost) and low power consumption. The proposed detector can be used as an autonomous and portable real-time pH monitoring applications. The objective of this article is to present a validation of a novel four colour sensor architecture using simulation and experiment as a proof of concept for a future implementation as a CMOS integrated circuit using the Austria Microsystems 350 nm technology.

  8. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Directory of Open Access Journals (Sweden)

    Angelo Kuti Lusala

    2012-01-01

    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  9. An all-optical matrix multiplication scheme with non-linear material based switching system

    Institute of Scientific and Technical Information of China (English)

    Archan Kumar Das; Sourangshu Mukhopadhyay

    2005-01-01

    Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.

  10. Optical Recording of Neuronal Circuit Dynamics

    OpenAIRE

    Wolf, Alexander

    2007-01-01

    This work deals with the optical recording of cerebellar circuit dynamics from acute brain slices of the cerebellar surface. This preparation preserves the functional connectivity of the cerebellar cortex. It was used to investigate the function of Kv3 potassium channels in the cerebellar granule cell axon. Double knockout mice lacking both Kv3.1 and Kv3.3 potassium channels display severe motor deficits, while mice lacking only Kv3.1 or Kv3.3 do not. Since granule cells express both Kv3.1 an...

  11. Optimal on/off scheme for all-optical switching

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2012-01-01

    We present a two-pulsed on/off scheme based on coherent control for fast switching of the optical energy in a micro cavity and use calculus of variations to optimize the switching in terms of energy.......We present a two-pulsed on/off scheme based on coherent control for fast switching of the optical energy in a micro cavity and use calculus of variations to optimize the switching in terms of energy....

  12. Model GC1312S Multifunction Integrated Optical Circuit Devices

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Model GC1312S multifunction integrated optical circuit device (MIOC) used in inertial-grade interferometric fiber optics gyroscopes (IFOGs) is fabricated by annealing and proton exchange process (APE). The unique feature of the device is the incorporation of the beat detection circuit besides all the features the conventional single Y-branch multifunction integrated optical circuit devices have. The device structure, operation principle and typical characteristics, etc., are briefly presented in this paper.

  13. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    OpenAIRE

    Ali Asghar Memon; Imtiaz Hussain; Muhammad Aslam Uqaili

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is al...

  14. A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Yanfeng; Wang, Huai;

    2017-01-01

    A voltage doubler circuit is realized to extend the soft-switching range of Dual Active Bridge (DAB) converters. No extra hardware is added to the DAB to form this circuit, since it is composed of the dc blocking capacitor and the low side full bridge converter, which already exist in DAB. With t...

  15. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    Science.gov (United States)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  16. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.;

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  17. Nanofiber-based all-optical switches

    CERN Document Server

    Kien, Fam Le

    2016-01-01

    We study all-optical switches operating on a single four-level atom with the $N$-type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of $20$ mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the $D_2$ line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers ...

  18. A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources

    CERN Document Server

    Shen, Hui; Ji, Hongli; Zhu, Kongjun; Balsi, Marco; Giorgio, Ivan; dell'Isola, Francesco

    2010-01-01

    In the paper, a vibration damping system powered by harvested energy with implementation of the so-called SSDV (synchronized switch damping on voltage source) technique is designed and investigated. In the semi-passive approach, the piezoelectric element is intermittently switched from open-circuit to specific impedance synchronously with the structural vibration. Due to this switching procedure, a phase difference appears between the strain induced by vibration and the resulting voltage, thus creating energy dissipation. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results.

  19. Characterization of optical quantum circuits using resonant phase shifts

    CERN Document Server

    Poot, Menno

    2016-01-01

    We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases are determined as well as the coupling ratios of its directional couplers.

  20. Binary Arithmetic Using Optical Symbolic Substitution and Cascadable Surface-Emitting Laser Logic Devices,

    Science.gov (United States)

    LOGIC DEVICES, *OPTICAL CIRCUITS, *OPTICAL SWITCHING, HETEROJUNCTIONS, PHOTOTRANSISTORS, ELECTROOPTICS, LASER CAVITIES, OPTICAL PROCESSING, PARALLEL PROCESSING, BISTABLE DEVICES, GATES(CIRCUITS), VOLTAGE, BINARY ARITHMETIC .

  1. Performance analysis of a scalable optical packet switching architecture

    Science.gov (United States)

    Wu, Ho-Ting; Tuan, Chia-Wei

    2010-10-01

    We carry out the analysis of a scalable switching architecture for all-optical packet switching networks. The underlying switch is based on a 2×2 two-stage multibuffer switched delay-line-based optical switching node. By incorporating an additional bypass line and employing a novel switch control strategy, the optical packet switching node can effectively resolve packet contentions, thus reducing the packet deflection probability substantially. In this work, we develop an exact queueing model from a discrete time Markov chain (DTMC) to evaluate the system performance under bursty, nonbursty, symmetric, and asymmetric traffic conditions. The accurate deflection probability and mean packet delay are obtained from this analytical model. Furthermore, we derive an approximate analysis to calculate the lower bound of deflection probability without the heavy computational complexities incurred by the exact analytical model. Simulation results are performed to confirm the validity of our analytic models.

  2. Design of multimode interference optical switches with area modulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the self-imaging effect, multimode interference (MMI) optical switches with area modulation were proposed. The field transfer matrix was introduced to analyze the MMI switches. As an example, the phase modulation parameters of a 3 × 3 MMI switch for different switching cases were obtained by solving the field transfer equation. And the finite-difference beam propagation method (FD-BPM) was used to confirm the analytical results.

  3. A Simple Performance Analysis of a Core Node in an Optical Burst Switched Network

    CERN Document Server

    Morsy, Mohamed H S; Shalaby, Hossam M H

    2008-01-01

    A simple mathematical model that considers the performance of an intermediate node having wavelength conversion capability in an OBS network is presented in this paper. The model assumes that the node has variable wavelength conversion capability which means that the node may have no, partial or full conversion capability. Two performance measures are derived from the model; namely, the steady state throughput and the average burst loss probability assuming Poisson traffic arrivals. In addition, a simulation work is performed in order to validate the results of our proposed model. Optimum values for the wavelength conversion capability in the node, which lead to minimum burst loss probability, are reached for different traffic conditions. Keywords: Optical Burst Switching (OBS), Optical Circuit Switching (OCS), Optical Packet Switching (OPS), Just-In-Time (JIT), Just-Enough-Time (JET).

  4. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    Science.gov (United States)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  5. Optimization of the Switch Mechanism in a Circuit Breaker Using MBD Based Simulation

    Directory of Open Access Journals (Sweden)

    Jin-Seok Jang

    2015-01-01

    Full Text Available A circuit breaker is widely used to protect electric power system from fault currents or system errors; in particular, the opening mechanism in a circuit breaker is important to protect current overflow in the electric system. In this paper, multibody dynamic model of a circuit breaker including switch mechanism was developed including the electromagnetic actuator system. Since the opening mechanism operates sequentially, optimization of the switch mechanism was carried out to improve the current breaking time. In the optimization process, design parameters were selected from length and shape of each latch, which changes pivot points of bearings to shorten the breaking time. To validate optimization results, computational results were compared to physical tests with a high speed camera. Opening time of the optimized mechanism was decreased by 2.3 ms, which was proved by experiments. Switch mechanism design process can be improved including contact-latch system by using this process.

  6. Analysis of Sampled Noise in Switched Current Circuits

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger; Bogason, Gudmundur

    1997-01-01

    The understanding of noise in analog sampled data systems is vital for the design of high resolution circuitry. In this paper a general description of sampled and held noise is presented. The noise calculations are verified by measurements on an analog delay line implemented using switched curren...

  7. Ultrafast all-optical switching using signal flow graph for PANDA resonator.

    Science.gov (United States)

    Bahadoran, Mahdi; Ali, Jalil; Yupapin, Preecha P

    2013-04-20

    In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.

  8. Quality of service in optical packet switched networks

    CERN Document Server

    Rahbar, Akbar G

    2015-01-01

    This book is a comprehensive study on OPS networks, its architectures, and developed techniques for improving its quality of switching and managing quality of service.  The book includes: Introduction to OPS networks, OOFDM networks, GMPLS-enabled optical networks, QoS in OPS networks Hybrid contention avoidance/resolution schemes in both long-haul and metro optical networks Hybrid optical switching schemes

  9. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch.

    Science.gov (United States)

    Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2016-04-04

    We demonstrate the compact polarization diversity based on the bidirectional full-port use of a path-independent-insertion-loss (PILOSS) optical switch. A polarization-diversity 4 × 4 strictly non-blocking optical switch is developed using a single thermooptic PILOSS Si-wire switch and fiber-based polarization beam splitters (PBSs) and combiners (PBCs). We measure characteristics of the switch and confirm that the proposed configuration demonstrates the performance in the insertion loss, polarization-dependent loss (PDL), and differential group delay (DGD) comparable with that of a conventional polarization-diversity 4 × 4 PILOSS switch using double switch elements. On the other hand, higher crosstalk is observed. The crosstalk increase is associated with the backward crosstalk at a waveguide intersection based on a directional coupler. The effect of the backward crosstalk on the total crosstalk is estimated, and future prospects are discussed.

  10. An improved switching control law for the optimized synchronous electric charge extraction circuit

    Science.gov (United States)

    Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Liu, Congzhi; Hu, Guangdi

    2015-12-01

    Nonlinear switching interface circuits are considered as an efficient way to improve the performance of vibration energy harvesters. Among the various approaches, OSECE (Optimized Synchronous Electric Charge Extraction) exhibits satisfying properties: simple switching strategy, good performance in low coupling cases and low load dependency. However, the overdamping induced by the voltage inversion at maximal points leads to performance degeneration in high coupling cases. This paper presents an improved switching control law for the OSECE technique. The new OSECE_PT (OSECE with switching Phase Tuning) technique presented here is to let the switches act ahead or after the maximal point with a phase tuning. Theoretical analysis and numerical simulations show that the OSECE_PT technique can improve the power performance effectively and preserves desired load independence properties.

  11. DESIGN OF AN ARRAYED WAVEGUIDE GRATINGS BASED OPTICAL PACKET SWITCH

    Directory of Open Access Journals (Sweden)

    VAIBHAV SHUKLA

    2016-12-01

    Full Text Available Optical packet switching is considered as the future of data transfer technologyin combination with middle-aged electronics. The biggest challenge encountered in optical packet switching is the lack of optical buffers for storing the contending packets. Therefore, for the contention resolution of packets, a temporary storage in terms of fiber delay lines is used. This task is accomplished by an optical packet switch. In this paper, a design modification in the AWGR (Arrayed Waveguide Grating Router is presented for improving the switch performance. The power budget analysis of the switch is also presented to estimate the sufficient power level of the switch. The obtained results clearly reveal that the architecture presented in this paper can be operated in micro-watts in comparison to the earlier optical switch which operates in milli watts regime. Finally, simulation results are presented to obtain packet loss probability and average delay. Even at the higher load of 0.6, the switch presented in this paper provides a very low loss probability (10^6 and delay remain within 2 slots.

  12. Techniques for labeling of optical signals in bust switched networks

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Koonen, A. M. J.; Zhang, Jianfeng

    2003-01-01

    multiplexed (WDM) networks due to its single forwarding algorithm, thus yielding low latency, and it enables scaling to terabit rates. Moreover, LOBS is compatible with the general multiprotocol label switching (GMPLS) framework for a unified control plane. We present a review on techniques for labeling......We present a review of significant issues related to labeled optical burst switched (LOBS) networks and technologies enabling future optical internet networks. Labeled optical burst switching provides a quick and efficient forwarding mechanism of IP packets/bursts over wavelength division...

  13. AN EFFECTIVE MODEL TO EVALUATE BLOCKING PROBABILITY OF TIME-SLOTTED OPTICAL BURST SWITCHED NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Yang Zongkai; Ou Liang; Tan Xiansi

    2006-01-01

    Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slotted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics.The effectiveness of the proposed model is validated by simulation results. The study shows that blocking performance of multi-fiber TS-OBS network is acceptable for future Internet services.

  14. Optical system facilitates inspection of printed circuit boards

    Science.gov (United States)

    Cridlin, M.; Oconnor, J.

    1968-01-01

    Optical comparator method determines the quality and registration of surface features of double-sided printed circuit boards. Color-coded superimposed images of both sides of a printed circuit board are presented to view, clearly showing details and registration of the circuitry.

  15. Bi-directional high-side current sense circuit for switch mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Bruun, Erik; Andersen, Michael A. E.;

    2014-01-01

    and secondary sides of the transformer which is internally implemented inside the transformer. Therefore, curren t must be measured from the high voltage line in the presence of hig h input switching voltage. This paper proposes a resistive current s ensing circuit based on discrete components useful for input...

  16. Power Efficiency of Steam Turbine Generator Switching into Thermal Circuit of Small and Medium Boiler Houses

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2007-01-01

    Full Text Available The paper is devoted to the solution of the problem concerning power saving on the basis of small power-and-heat-supply plants.Power efficiency of power turbine generator switching into thermal circuit of small and medium boiler houses is justified in the paper.

  17. Analysis of AC Switch Machine in Switch Control Circuit%交流转辙机道岔控制电路重点解析

    Institute of Scientific and Technical Information of China (English)

    王渝

    2012-01-01

    This paper systematically sorts out and summarizes the key circuits in the switch control circuits of AC switch machine,including the starting circuit,the cutting off circuit,and the failure button relay circuit.And the author analyzes the key points of related designs,which are instructive to the design of AC switch control circuit in the future.%对交流转辙机道岔控制电路中启动电路、切断电路及故障按钮继电器电路等重点电路进行系统梳理和总结,并对相关的设计要点进行分析,对今后交流转辙机道岔控制电路的设计具有一定的指导意义。

  18. The analysis of linear parametric circuits with switched capacitors by compact modified method of curve fitting

    Directory of Open Access Journals (Sweden)

    M. E. Artemenko

    2011-10-01

    Full Text Available The analytical connections  between the topological resistive element’s connection matrix of ARC-prototype and the topological switched capacitor’s connection matrices of resistor’s switch-capacitor  equivalents   for both phases of SC-circuits were established  that permits to  analyze a switched-capacitor networks on the base of  element’s connection matrix of ARC-prototype. The formal mathematical apparatus of forming the SC-circuits’ difference equations based on element’s connection matrix of ARC-prototype was developed which allows to reduce the dimension of the analyzed model of SC-circuits to the number of prototype’s capacitors.

  19. Design and fabrication of sub-μs silicon-on-insulator thermo-optic 4×4 switch matrix

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4×4 switch matrix with spot size converters (SSCs) and a new driving circuit are designed and fabricated. The introduction of a spot size converter (SSC) has decreased the insertion loss to less than 10dB and the new driving circuit has improved the response speed to less than 1μs.

  20. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  1. Performance improvement for optical packet switch with shared buffers

    Institute of Scientific and Technical Information of China (English)

    Junjie Yang; Qingji Zeng; Jie Li; Tong Ye; Guolong Zhu

    2005-01-01

    @@ In this paper, an inner wavelength method is proposed to enlarge buffering capacity of shared fiber delay line buffers. In addition, an optical packet switch called extended shared buffer type optical packet switch(extended SB-OPS) is proposed to realize the inner wavelength method. In order to further improve performance of extended SB-OPS, a greedy algorithm based on inner wavelength method is introduced.The performance of extended SB-OPS is evaluated by simulation experiments.

  2. On the Highly Stable Performance of Loss-Free Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Milos Kozak

    2016-01-01

    Full Text Available Increase of bandwidth demand in data networks, driven by the continuous growth of the Internet and the increase of bandwidth greedy applications, raise the issue of how to support all the bandwidth requirements in the near future. Three optical switching paradigms have been defined and are being investigated: Optical Circuit Switching (OCS; Optical Packet Switching (OPS; and Optical Burst Switching (OBS. Among these paradigms, OBS is seen as the most appropriate solution today. However, OBS suffers from high burst loss as a result of contention in the bufferless mode of operation. This issue was investigated by Coutelen et al., 2009 who proposed the loss-free CAROBS framework whereby signal convertors of the optical signal to the electrical domain ensure electrical buffering. Convertors increase the network price which must be minimized to reduce the installation and operating costs of the CAROBS framework. An analysis capturing convertor requirements, with respect to the number of merging flows and CAROBS node offered load, was carried out. We demonstrated the convertor location significance, which led to an additional investigation of the shared wavelength convertors scenario. Shared wavelength convertors significantly decrease the number of required convertors and show great promise for CAROBS. Based on this study we can design a CAROBS network to contain a combination of simple and complex nodes that include none or some convertors respectively, a vital feature of network throughput efficiency and cost.

  3. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Memon

    2013-04-01

    Full Text Available This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine.

  4. Potential roles of optical interconnections within broadband switching modules

    Science.gov (United States)

    Lalk, Gail R.; Habiby, Sarry F.; Hartman, Davis H.; Krchnavek, Robert R.; Wilson, Donald K.; Young, Kenneth C., Jr.

    1991-04-01

    An investigation of potential physical design bottlenecks in future broadband telecommunication switches has led to the identification of several areas where optical interconnections may play a role in the practical realization of required system performance. In the model used the speed and interconnection densities as well as requirements for ease-of-access and efficient power utilization challenge conventional partitioning and packaging strategies. Potential areas where optical interconnections may relieve some of the physical design bottlenecks include fiber management at the customer interface to the switch routing and distribution of high-density interconnections within the fabric of the switch and backplane interconnections to increase system throughput.

  5. Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons

    Science.gov (United States)

    Rabinovich, Mikhail; Huerta, Ramón; Bazhenov, Maxim; Kozlov, Alexander K.; Abarbanel, Henry D. I.

    1998-11-01

    We investigate the ability of oscillating neural circuits to switch between different states of oscillation in two basic neural circuits. We model two quite distinct small neural circuits. The first circuit is based on invertebrate central pattern generator (CPG) studies [A. I. Selverston and M. Moulins, The Crustacean Stomatogastric System (Springer-Verlag, Berlin, 1987)] and is composed of two neurons coupled via both gap junction and inhibitory synapses. The second consists of coupled pairs of interconnected thalamocortical relay and thalamic reticular neurons with both inhibitory and excitatory synaptic coupling. The latter is an elementary unit of the thalamic networks passing sensory information to the cerebral cortex [M. Steriade, D. A. McCormick, and T. J. Sejnowski, Science 262, 679 (1993)]. Both circuits have contradictory coupling between symmetric parts. The thalamocortical model has excitatory and inhibitory connections and the CPG has reciprocal inhibitory and electrical coupling. We describe the dynamics of the individual neurons in these circuits by conductance based ordinary differential equations of Hodgkin-Huxley type [J. Physiol. (London) 117, 500 (1952)]. Both model circuits exhibit bistability and hysteresis in a wide region of coupling strengths. The two main modes of behavior are in-phase and out-of-phase oscillations of the symmetric parts of the network. We investigate the response of these circuits, while they are operating in bistable regimes, to externally imposed excitatory spike trains with varying interspike timing and small amplitude pulses. These are meant to represent spike trains received by the basic circuits from sensory neurons. Circuits operating in a bistable region are sensitive to the frequency of these excitatory inputs. Frequency variations lead to changes from in-phase to out-of-phase coordination or vice versa. The signaling information contained in a spike train driving the network can place the circuit into one or

  6. Titanium Oxide Intelligent "Optical Switch" Surface

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Bio-mimic\tsuper-hydrophobic\tand super-hydrophilic switches were highly concerned because of their extensive application perspectives in gene transfers,non-loss liquid transportation,micro fluid,gene chips,and slow released drug.

  7. Diagnosis of inverter switch open circuit faults based on neutral point voltage signal analysis

    Directory of Open Access Journals (Sweden)

    Liwei GUO

    Full Text Available Using the current signal to diagnose inverter faults information is apt to be affected by the load, noise and other factors; besides, it requires long diagnosis period with special algorithms and the diagnosis result is easily to be incorrect with no-load or light-load. Focusing on this issue, the logical analysis method is proposed for correlation logical analysis of leg neutral-point voltage and pulse signal to realize the diagnosis of the open circuit faults of inverter switches. The logical expressions of output signals of inverter power tube open-circuit faults is put forward and interrelated hardware circuit design is also elaborated. Delaying the rising edge of inverter power tube's pulse signal can effectively avoid the diagnosis error caused by the power tube's switching on/off. The experiment results show that the method can effectively diagnose the open-circuit faults of single-phase single power tube inverter in real-time and the hardware circuit cost is low, which shows it is effective and feasible.

  8. A novel high voltage start up circuit for an integrated switched mode power supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu Hao; Chen Xingbi, E-mail: huhao21@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2010-09-15

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions. (semiconductor devices)

  9. SEMICONDUCTOR DEVICES: A novel high voltage start up circuit for an integrated switched mode power supply

    Science.gov (United States)

    Hao, Hu; Xingbi, Chen

    2010-09-01

    A novel high voltage start up circuit for providing an initial bias voltage to an integrated switched mode power supply (SMPS) is presented. An enhanced mode VDMOS transistor, the gate of which is biased by a floating p-island, is used to provide start up current and sustain high voltage. An NMOS transistor having a high source to ground breakdown voltage is included to extend the bias voltage range to the SMPS. Simulation results indicate that the high voltage start up circuit can start and restart as designed. The proposed structure is believed to be more energy saving and cost-effective compared with other solutions.

  10. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.

    2004-01-01

    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude an

  11. Crossbar Switches For Optical Data-Communication Networks

    Science.gov (United States)

    Monacos, Steve P.

    1994-01-01

    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  12. Optical computation based on nonlinear total reflectional optical switch at the interface

    Indian Academy of Sciences (India)

    Jianqi Zhang; Huan Xu

    2009-03-01

    A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.

  13. Design and performance of the beamlet optical switch

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M.A.; Woods, B.W.; DeYoreo, J.J. [and others

    1996-06-01

    High-energy lasers for Inertial Confinement Fusion (ICF) experiments are typically designed with large apertures (>30 cm) to keep the fluence below the damage threshold of the various optical components. Until recently, no optical switch technology could be scaled to the aperture size, aperture shape (square), and switching speed required for the next generation of ICF drivers. This step is critical: The Beamlet multipass amplifier cavity uses a full-aperture optical switch to trap the laser pulse within the cavity and to divert the pulse out of the cavity when it reaches the required energy. By rotating the polarization of the beam, a Pockels cell in the switch controls whether the beam is transmitted through, or reflected from, the polarizer. In this article the authors describe an optical switch technology that does scale to the required aperture size and shape for Beamlet and the porposed National Ignition Facility (NIF) laser, and can employ a thin crystal. This switch consists of a thin-film polarizer and a plasma-electrode Pockels cell (PEPC), the latter originally invented at Lawrence Livermore National Laboratory (LLNL) in the 1980s and under further development since 1991. After discussing the PEPC concept, they present the design and optical performance of a 32 x 32 cm{sup 2} prototype PEPC, including discussions of the crystals, the PEPC assembly, the vacuum and gas system, and the high-voltage pulsers. Then they describe the performance of the 37 x 37 cm{sup 2} PEPC construced specifically for the Beamlet laser. Finally, they discuss important technology issues that arose during PEPC development: cathode sputtering, cathode heating, nonuniformities in the switching profile, switch-pulse leakage current, and an estimate of the plasma density and temperature produced during PEPC operation.

  14. All-semiconductor metamaterial-based optical circuit board at the microscale

    Energy Technology Data Exchange (ETDEWEB)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  15. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    Science.gov (United States)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  16. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching

    Science.gov (United States)

    Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo

    2010-03-01

    In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.

  17. Optical Switching in Silicon Nanowaveguide Ring Resonators Based on Kerr Effect and TPA Effect

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Fei; DOU Na

    2009-01-01

    We analyze theoretically the 1 × 2 low-power all-optical switching in silicon nanowaveguide ring resonators (RR) based on the Kerr effect and two-photon absorption (TPA), and give a comparison between both the all-optical switches. The calculation shows that the switching power of the TPA-RR switch is 3 orders smaller than that of the Kerr-RR switch. The switching time for both the switches is about 100ps.

  18. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  19. All-Optical Switches in Optical Time-Division Multiplexing Technology: Theory,Experience and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Optical time division multiplexing (OTDM) is one of thepromisinig ways for the future high-speed optical fiber communication networks. All-optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time-division demultiplexing, packet switching, all-optical regenerating and so on. This thesis mainly studies various all-optical switch technologies and their utilization in the fields of all-optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.(1) A novel all-optical ultrafast demultiplexing scheme using the soliton self-trapping effect in birefringent fiber is proposed.(2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.(3) The performance analysis and the configuration optimization of the all-optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all-optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach-Zehnder Interferometer configuration.(4) The 8×2\\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.(5) The NOLM switch is used to realize the all-optical 3R regeneration of 2\\^5 Gb/s Return-to-Zero signal.(6) The feasibility and limitation of the all-optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all-optical packet dropping node suitable in the networks with ring or bus configuration and an all-optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all-optical packet switching through combining the all-optical switches and the reasonable logic decisions.

  20. Switching circuits based on comparison operations and multiple-β transistor

    Institute of Scientific and Technical Information of China (English)

    吴训威; 杭国强

    1997-01-01

    By using comparison operations, three basic operations, AND, OR and NOT, in Boolean algebra are re-defined Based on the characteristic that the voltage signals are easy to implement comparison operation, various logic functions realized by connecting emitters of the bipolar transistor are analyzed. Furthermore, a novel multiple-β transistor and the linear AND-OR gate, which is composed of the transistor, are investigated. Super high-speed characteristic and multiple-cascade capability of the linear AND-OR gate are verified by PSPICE simulation. Based on the analysis of high-speed switch, which is compatible with the linear AND-OR gate, a high-speed inverter is proposed, which is composed of multiple-β transistors. The corresponding flip-flop design is also given. Finally, the criterion for using linear AND-OR gate to design high-speed switching circuits are presented. Some combinational and sequential circuits are designed as the practical examples. Discussion indicates that the switching circuits bas

  1. Optical Switching for Dynamic Distribution of Wireless-Over-Fiber Signals in Active Optical Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes, Guillermo; Tafur Monroy, Idelfonso

    2012-01-01

    of a four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch...

  2. High-performance quantitative robust switching control for optical telescopes

    Science.gov (United States)

    Lounsbury, William P.; Garcia-Sanz, Mario

    2014-07-01

    This paper introduces an innovative robust and nonlinear control design methodology for high-performance servosystems in optical telescopes. The dynamics of optical telescopes typically vary according to azimuth and altitude angles, temperature, friction, speed and acceleration, leading to nonlinearities and plant parameter uncertainty. The methodology proposed in this paper combines robust Quantitative Feedback Theory (QFT) techniques with nonlinear switching strategies that achieve simultaneously the best characteristics of a set of very active (fast) robust QFT controllers and very stable (slow) robust QFT controllers. A general dynamic model and a variety of specifications from several different commercially available amateur Newtonian telescopes are used for the controller design as well as the simulation and validation. It is also proven that the nonlinear/switching controller is stable for any switching strategy and switching velocity, according to described frequency conditions based on common quadratic Lyapunov functions (CQLF) and the circle criterion.

  3. Stochastic Pulse Switching in a Degenerate Resonant Optical Medium

    CERN Document Server

    Atkins, Ethan P; Kovacic, Gregor; Gabitov, Ildar R

    2012-01-01

    Using the idealized integrable Maxwell-Bloch model, we describe random optical-pulse polarization switching along an active optical medium in the Lambda-configuration with disordered occupation numbers of its lower energy sub-level pair. The description combines complete integrability and stochastic dynamics. For the single-soliton pulse, we derive the statistics of the electric-field polarization ellipse at a given point along the medium in closed form. If the average initial population difference of the two lower sub-levels vanishes, we show that the pulse polarization will switch intermittently between the two circular polarizations as it travels along the medium. If this difference does not vanish, the pulse will eventually forever remain in the circular polarization determined by which sub-level is more occupied on average. We also derive the exact expressions for the statistics of the polarization-switching dynamics, such as the probability distribution of the distance between two consecutive switches a...

  4. Polymorphic beams and Nature inspired circuits for optical current

    Science.gov (United States)

    Rodrigo, José A.; Alieva, Tatiana

    2016-10-01

    Laser radiation pressure is a basis of numerous applications in science and technology such as atom cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is proportional to the intensity-weighted wavevector known as optical current. The ability to design the optical current according to the considered application brings new promising perspectives to exploit the radiation pressure. However, this is a challenging problem because it often requires confinement of the optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, we present a formalism to handle this problem including its experimental demonstration. It consists of a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies and can be easily extended to electron and x-ray coherent beams.

  5. Note: Printed circuit board based electrically triggered compact rail gap switch.

    Science.gov (United States)

    Saxena, A K; Kaushik, T C; Goswami, M P; Gupta, Satish C

    2010-05-01

    An electrically triggered rail gap switch has been designed over a commercially available copper clad fiberglass sheet commonly used in making printed circuit boards for applications requiring compact design and direct integration to parallel plate transmission lines. Switch performance has been investigated in terms of its inductance, jitter, and gap closing time. With an electrode separation of 9.0 mm, it has been found to have an inductance of 6 nH, gap closing time of 5 ns, and jitter of about 4-10 ns measured at 95% of self-breakdown voltage. An application of this switch has been demonstrated as an electrically exploding foil accelerator developed over the same board and velocities up to 1.6 km/s have been achieved on Kapton flyers with diameter of 3.0 mm and thickness of 125 microm using a compact 1 microF capacitor bank.

  6. Power gating of VLSI circuits using MEMS switches in low power applications

    KAUST Repository

    Shobak, Hosam

    2011-12-01

    Power dissipation poses a great challenge for VLSI designers. With the intense down-scaling of technology, the total power consumption of the chip is made up primarily of leakage power dissipation. This paper proposes combining a custom-designed MEMS switch to power gate VLSI circuits, such that leakage power is efficiently reduced while accounting for performance and reliability. The designed MEMS switch is characterized by an 0.1876 ? ON resistance and requires 4.5 V to switch. As a result of implementing this novel power gating technique, a standby leakage power reduction of 99% and energy savings of 33.3% are achieved. Finally the possible effects of surge currents and ground bounce noise are studied. These findings allow longer operation times for battery-operated systems characterized by long standby periods. © 2011 IEEE.

  7. Advances in Anisotropic Materials for Optical Switching

    Science.gov (United States)

    2010-09-16

    overcome this cha llcnge we have developed a fundamentally new concept of optica ll y switchable clements based 011 dim’active wave plates (OWs). DWs...doped liquid crysta ls," J. Phys. D.: Appl. Phys., 25, 492-499 ( 1992). 17. T . Ikeda, O. Tsutsumi , " Optica l switching and image storage by

  8. Optically initiated silicon carbide high voltage switch

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen E.; Sullivan, James S.; Sanders; David M.

    2011-02-22

    An improved photoconductive switch having a SiC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.

  9. Architectures of electro-optical packet switched networks

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2004-01-01

    , a benchmarking study has been carried out to compare power consumption of electrical and optical packet switches. The basic principles for Traffic Engineering and Quality of Service provisioning are discussed, and a simple scheme for Traffic Engineering in a best effort TCP/IP based nework is proposed. Also......, Constraint Based Routing is examined, and the effect from taking the link load into account is evaluated. It is believed that electrical packet switching will satisfy demands in the coming years, and this work covers several aspects hereof. A new load balancing scheme for multipath packet switches...

  10. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Elisabeth Christiane Maria

    2013-05-29

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work

  11. Optical amplification in photonic integrated circuits

    NARCIS (Netherlands)

    Pollnau, Markus

    2005-01-01

    The recent results in the field of fabrication, characterization, and applications of optical waveguides in doped hard crystalline materials, specifically in Ti-doped sapphire and Yb-doped $KY(WO_4)_2$, are reviewed.

  12. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    Science.gov (United States)

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  13. Optical fiber imaging for high speed plasma motion diagnostics: applied to low voltage circuit breakers.

    Science.gov (United States)

    McBride, J W; Balestrero, A; Ghezzi, L; Tribulato, G; Cross, K J

    2010-05-01

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1 x 10(6) images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  14. Research on performance of multicasting in optical packet switched networks

    Institute of Scientific and Technical Information of China (English)

    Xin Liu; Yuefeng Ji; Lin Bai; Hongxiang Wang; Yongmei Sun

    2009-01-01

    @@ Different multicasting schemes in optical packet switched networks are discussed, including the parallel mode, serial mode, and hybrid mode multicasting schemes.Simulated modeling technique is applied to compare the network-level performance of the three multicasting schemes.A conclusion can be drawn from the results that since the hybrid-mode multicasting scheme can increase the multicast success ratio and reduce the packet retransmission times compared with the other two schemes, it is the best choice for delivering multicasting sessions in the optical packet switched networks.

  15. An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings

    Directory of Open Access Journals (Sweden)

    Yuanmao Ye

    2016-02-01

    Full Text Available In this paper, a novel voltage equalizer is developed for series battery strings based on the two-phase switched capacitor technique. Different from the conventional voltage equalizers which are developed by switched-mode power converters, bulky magnetic components and complex monitoring and control system are avoided in the proposed system. Just a pair of complementary pulse signals with constant switching frequency and fixed duty ratio are required to control all of switches employed in the proposed voltage equalizer, and charge transfers from the higher voltage battery cells to lower voltage ones automatically. The circuit configuration and operation principle are provided in this paper. The model of the proposed voltage equalizer is also derived. Comparison with other works indicates that the proposed method is superior to the conventional switched-capacitor (SC voltage equalizer for the high stack of series battery strings. Experimental results demonstrate that the proposed voltage equalization system is capable of excellent voltage balancing performance with a simple control method.

  16. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent...... optical networks. The factors governing the modulation bandwidth of SOAs are determined, and schemes for reducing detrimental patterning effects are discussed. Three types of SOA-based switches are investigated numerically: so-called standardmode and differential-mode switches, and the filtering assisted...... switch. Differential -mode switches are shown to eliminate one contribution to the patterning effects, referred to as the linear patterning. This enables operation at bitrates far beyond the limit set by the carrier lifetime, but ultimately a saturation-induced patterning effect, nonlinear patterning...

  17. Polyguide polymeric technology for optical interconnect circuits and components

    Science.gov (United States)

    Booth, Bruce L.; Marchegiano, Joseph E.; Chang, Catherine T.; Furmanak, Robert J.; Graham, Douglas M.; Wagner, Richard G.

    1997-04-01

    The expanding information revolution has been made possible by the development of optical communication technology. To meet the escalating demand for information transmitted and processed at high data rates and the need to circumvent the growing electronic circuit bottlenecks, mass deployment of not only optical fiber networks but manufacturable optical interconnect circuits, components and connectors for interfacing fibers and electronics that meet economic and performance constraints are absolutely necessary. Polymeric waveguide optical interconnection are considered increasingly important to meet these market needs. DuPont's polyguide polymeric integrated optic channel waveguide system is thought by many to have considerable potential for a broad range of passive optical interconnect applications. In this paper the recent advances, status, and unique attributes of the technology are reviewed. Product and technology developments currently in progress including parallel optical ink organization and polymer optical interconnect technology developments funded by DARPA are used as examples to describe polyguide breadth and potential for manufacture and deployment of optical interconnection products for single and multimode telecom and datacom waveguide applications.

  18. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... with the OptCom project. The aim of the ESTA project was to investigate issues at 100 Gb/s and beyond, such as architecture and components. The OptCom project had a more tangible purpose; to create a 100 Gb/s optical/electrical transceiver demonstrator. The thesis focuses on the design of VCO, LA and CDR...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...

  19. A Component-Minimized Single-Phase Active Power Decoupling Circuit with Reduced Current Stress to Semiconductor Switches

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2015-01-01

    This letter proposes a novel circuit topology which can realize the power decoupling function without adding additional active switches into the circuit. The dc-link capacitor of a full bridge rectifier is split into two identical parts and the midpoint is connected to one leg through a filter...

  20. Design principles and realization of electro-optical circuit boards

    Science.gov (United States)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  1. Five-port silicon optical router based on Mach—Zehnder optical switches for photonic networks-on-chip

    Science.gov (United States)

    Yunchou, Zhao; Hao, Jia; Jianfeng, Ding; Lei, Zhang; Xin, Fu; Lin, Yang

    2016-11-01

    With the continuous development of integrated circuits, the performance of the processor has been improved steadily. To integrate more cores in one processor is an effective way to improve the performance of the processor, while it is impossible to further improve the property of the processor by only increasing the clock frequency. For a processor with integrated multiple cores, its performance is determined not only by the number of cores, but also by communication efficiency between them. With more processor cores integrated on a chip, larger bandwidths are required to establish the communication among them. The traditional electrical interconnect has gradually become a bottleneck for improving the performance of multiple-core processors due to its limited bandwidth, high power consumption, and long latency. The optical interconnect is considered as a potential way to solve this issue. The optical router is the key device for realizing the optical interconnect. Its basic function is to achieve the data routing and switching between the local node and the multi-node. In this paper we present a five-port optical router for Mesh photonics network-on-chip. A five-port optical router composed of eight thermally tuned silicon Mach—Zehnder optical switches is demonstrated. The experimental spectral responses indicate that the optical signal-to-noise ratios of the optical router are over 13 dB in the wavelength range of 1525-1565 nm for all of its 20 optical links. Each optical link can manipulate 50 wavelength channels with the channel spacing of 100 GHz and the data rate of 32 Gbps for each wavelength channel in the same wavelength range. The lowest energy efficiency of the optical router is 43.4 fJ/bit. Project supported by the National High Technology Research and Development Program of China (Nos. 2015AA010103, 2015AA010901) and the National Natural Science Foundation of China (Nos. 61575187, 61235001, 61505198, 61377067).

  2. Flexible-rate optical packet generation/detection and label swapping for optical label switching networks

    Science.gov (United States)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi

    2017-03-01

    In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.

  3. Vacuum interrupter, high reliability component of distribution switches, circuit breakers and contactors

    Institute of Scientific and Technical Information of China (English)

    SLADE Paul G.; LI Wang-pei; MAYO Stephen; SMITH R.Kirkland; TAYLOR Erik D.

    2007-01-01

    The use of vacuum interrupters (VIs) as the current interruption component for switches, circuit breakers, reclosers and contactors operating at distribution voltages has escalated since their introduction in the mid-1950's. This electrical product has developed a dominating position for switching and protecting distribution circuits. VIs are even being introduced into switching products operating at transmission voltages. Among the reasons for the VI's popularity are its compactness, its range of application, its low cost, its superb electrical and mechanical life and its ease of application. Its major advantage is its well-established reliability. In this paper we show how this reliability has been achieved by design, by mechanical life testing and by electrical performance testing. We introduce the "sealed for life" concept for the VI's integrity. We discuss this in terms of what is meant by a practical leak rate for VIs with a life of over 30 years. We show that a simple high voltage withstand test is an easy and effective method for monitoring the long-term vacuum integrity. Finally we evaluate the need for routine inspection of this electrical product when it is used in adverse ambient environments.

  4. Traffic analysis and signal processing in optical packet switched networks

    DEFF Research Database (Denmark)

    Fjelde, Tina

    2002-01-01

    Gbit/s demultiplexing and 2x10 to 20 Gbit/s multiplexing. Lastly, the IWC’s capabilities as an optical logic gate for enabling more complex signal processing are demonstrated and four applications hereof are discussed. Logic OR and AND are verified in full at 10 Gbit/s using PRBS sequences coupled......This thesis focuses on functionalities that are important for the realisation of future all-optical packet switched networks, and which may be implemented using the interferometric wavelength converter. The European IST research project DAVID, with the aim of demonstrating the feasibility of a Tbit....../s optical packet switched network exploiting the best of optics and electronics, is used as a thread throughout the thesis. An overview of the DAVID network architecture is given, focussing on the MAN and WAN architecture as well as the MPLS-based network hierarchy. Subsequently, the traffic performance...

  5. EIT-based MZ-MMI all-optical switch

    Science.gov (United States)

    Bahrami, A.; Rostami, A.; Nazari, F.; Abbasian, K.

    2010-11-01

    We propose a new control structure for all-optical switching in multimode inference (MMI)-based Mach-Zehnder interferometer (MZI) devices. This structure is composed of an MZI doped by three-level nanocrystals for the realization of electromagnetically induced transparency (EIT) in the lower arm. We use two different intensities of control field for two states of the proposed switch. Using a control field in both of the two switching states is necessary, where the EIT region is transparent. By changing the intensity of the control field, the refractive index of the doped region changes, which makes the phase difference between the two arms of the MZI. Hence, the switching operation takes place. Simulation results show that the extinction ratio of the device is -32dB in the worst case.

  6. Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler

    Science.gov (United States)

    Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui

    2017-03-01

    For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.

  7. 100GHz Integrated All-Optical Switch Enabled by ALD

    CERN Document Server

    Moille, Gregory; Morgenroth, Laurence; Lehoucq, Gaëlle; Neuilly, François; Hu, Bowen; Decoster, Didier; de Rossi, Alfredo

    2015-01-01

    The carrier lifetime of a photonic crystal all-optical switch is optimized by controlling the surface of GaAs by Atomic Layer Deposition. We demonstrate an all optical modulation capability up to 100GHz at Telecom wavelengths, with a contrast as high as 7dB. Wavelength conversion has also been demonstrated at a repetition rate of 2.5GHz with average pump power of about 0.5mW

  8. Q-switched Nd:YAG optical vortex lasers.

    Science.gov (United States)

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-02

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed.

  9. Optical mode switch based on multimode interference couplers

    Science.gov (United States)

    Xiao, Huifu; Deng, Lin; Zhao, Guolin; Liu, Zilong; Meng, Yinghao; Guo, Xiaonan; Liu, Guipeng; Liu, Su; Ding, Jianfeng; Tian, Yonghui

    2017-02-01

    In this paper, we propose an optical mode switch based on two cascaded multimode interference (MMI) couplers. After a fundamental mode divided into two equal-power fundamental modes in the first MMI coupler, the thermo-optic effect is employed to modulate the phase of the two fundamental modes before directed to the next MMI for the purpose of mode switching. By adjusting the electric signals applied to the modulation arms, the proposed device can implement mode switching in three states: (a) one first-order and two fundamental modes simultaneously output, (b) one first-order mode output, and (c) two fundamental modes output. As a result, the simulated excess losses are -0.29 dB, -0.10 dB, and -0.63 dB, respectively.

  10. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits.

    Science.gov (United States)

    Chen, Changming; Niu, Xiaoyan; Han, Chao; Shi, Zuosen; Wang, Xinbin; Sun, Xiaoqiang; Wang, Fei; Cui, Zhanchen; Zhang, Daming

    2014-08-25

    A transparent reconfigurable optical interleaver module composed of cascaded AWGs-based wavelength-channel-selector/interleaver monolithically integrated with multimode interference (MMI) variable optical attenuators (VOAs) and Mach-Zehnder interferometer (MZI) switch arrays was designed and fabricated using polymer photonic lightwave circuits. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and caldding, respectively. Thermo-optic (TO) tunable wavelength transfer matrix (WTM) function of the module can be achieved for optical routing network. The one-chip transmission loss is ~ 6 dB and crosstalk is less than ~25 dB for transverse-magnetic (TM) mode. The crosstalk and extinction ratio of the MMI VOAs were measured as -15.2 dB and 17.5 dB with driving current 8 mA, respectively. The modulation depth of the TO switches is obtained as ~18.2 dB with 2.2 V bias. Proposed novel interleaver module could be well suited for DWDM optical communication systems.

  11. A congestion alleviated scheme in optical burst switching network

    Institute of Scientific and Technical Information of China (English)

    Gang Wang; Hongxiang Wang; Yuefeng Ji

    2008-01-01

    An optical burst switching (OBS) network platform is established with a ring topology of three nodes. A congestion alleviated scheme using advanced token protocol and wavelength tunable receivers is demonstrated to optimize the network platform. Experimental results testify that this scheme can resist collision at the level of 0.1% congestion rate.

  12. Simulation of Optical Packet—Switched Metropolitan Area Network

    Institute of Scientific and Technical Information of China (English)

    朱炳春; 贾潞华; 等

    2002-01-01

    This paper introduces architectures of two types optical packet-switched metropolitan area networks and their media access control protocols.We have designed ralated network simulation systems.With these simulation systems,the characteristics and performanceof the two MANs can be achieved.

  13. Emulating “Chaos + Chaos = Order” in Chen’s Circuit of Fractional Order by Parameter Switching

    Science.gov (United States)

    Tang, Wallace K. S.; Danca, Marius-F.

    2016-06-01

    In this paper, the effect of the parameter switching (PS) algorithm in a fractional order chaotic circuit is investigated both in simulation and experiment. The Chen system of fractional order is focused and realized in an electronic circuit. By designing a switching circuit, the PS algorithm is implemented and it is the first time, the paradoxical “Chaos + Chaos = Order” is presented in an electronic circuit. Both the simulation and experimental results confirm that the obtained attractor under switching approximates the attractor of the time-averaged model. Some important design issues for the circuitry realization of the PS scheme are pointed out. Finally, our work confirms the practical usage of PS algorithm in potential applications such as attractor synthesis and chaos control.

  14. A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment

    Directory of Open Access Journals (Sweden)

    Bhattacharya Ananyo

    2016-12-01

    Full Text Available A novel circuit topology of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment is presented in this paper for efficient induction heating. Recently, induction heating technique is becoming very popular for both domestic and industrial purposes because of its high energy efficiency and controllability. Generally in induction heating, a high frequency alternating magnetic field is required to induce the eddy currents in the work piece. High frequency resonant inverters are incorporated in induction heating equipment which produce a high frequency alternating magnetic field surrounding the coil. Previously this high frequency alternating magnetic field was produced by voltage source inverters. But VSIs have several demerits. So, in this paper, a new scheme of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment has been depicted which enhances the energy efficiency and controllability and the same is validated by PSIM.

  15. Control method of high-speed switched reluctance motor with an asymmetric rotor magnetic circuit

    Directory of Open Access Journals (Sweden)

    Bogusz Piotr

    2016-12-01

    Full Text Available In the paper, the modified (compared to the classical asymmetric half-bridge converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.

  16. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    Science.gov (United States)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  17. Study of switching electric circuits with DC hybrid breaker, one stage

    Science.gov (United States)

    Niculescu, T.; Marcu, M.; Popescu, F. G.

    2016-06-01

    The paper presents a method of extinguishing the electric arc that occurs between the contacts of direct current breakers. The method consists of using an LC type extinguishing group to be optimally sized. From this point of view is presented a theoretical approach to the phenomena that occurs immediately after disconnecting the load and the specific diagrams are drawn. Using these, the elements extinguishing group we can choose. At the second part of the paper there is presented an analyses of the circuit switching process by decomposing the process in particular time sequences. For every time interval there was conceived a numerical simulation model in MATLAB-SIMULINK medium which integrates the characteristic differential equation and plots the capacitor voltage variation diagram and the circuit dumping current diagram.

  18. A Nanostructured Composites Thermal Switch Controls Internal and External Short Circuit in Lithium Ion Batteries

    Science.gov (United States)

    McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.

    2013-01-01

    A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect

  19. Field Experiments on 10 kV Switching Shunt Capacitor Banks Using Ordinary and Phase-Controlled Vacuum Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Wenxia Sima

    2016-01-01

    Full Text Available During the switching on/off of shunt capacitor banks in substations, vacuum circuit breakers (VCBs are required to switch off or to switch on the capacitive current. Therefore, the VCBs have to be operated under a harsh condition to ensure the reliability of the equipment. This study presents a complete comparison study of ordinary and phase-controlled VCBs on switching 10 kV shunt capacitor banks. An analytical analysis for switching 10 kV shunt capacitor banks is presented on the basis of a reduced circuit with an ungrounded neutral. A phase selection strategy for VCBs to switch 10 kV shunt capacitor banks is proposed. Switching on current waveforms and switching off overvoltage waveforms with, and without, phase selection were measured and discussed by field experiments in a 110 kV substation in Chongqing, China. Results show that the operation of phase-controlled VCBs for 10 kV switching shunt capacitor banks is stable, and phase-controlled VCBs can be used to implement the 10 kV switching on/off shunt capacitor banks to limit the transient overvoltage and overcurrent. The values of overvoltage and inrush current using phase-controlled VCBs are all below those with ordinary VCBs.

  20. Optical switching by stimulated thermal Rayleigh scattering

    Science.gov (United States)

    Peterson, Lauren M.

    1986-06-01

    Preliminary experiments were conducted whose ultimate goal is to develop all-optical control functions useful in an all-optical or optical-electronic hybrid digital computer or for optical interconnects. Stimulated thermal Rayleigh scattering (STRS) based upon generator experiments was pursued for scattering angles of 90 deg and 180 deg (backscattering). A pulsed nitrogen laser pumped dye laser served as the radiation source and the interaction medium was a liquid to which an absorbing dye was added. STRS amplifier experiments were successful and gain was observed and studied parametrically using eosine dye in ethanol. The gain was found to increase (although the gain coefficient decreased) with increasing pump power and the gain was found to be a maximum at an absorption coefficient of about 2.6 per cm. The generator experiments did not lead to stimulated scattering due to the limited output power of the laser and its multi-longitudinal spectral mode content. These studies will be continued along with analytical modeling in order to characterize the interaction and to enable the optimization of the scattering process.

  1. Implementation of a Two-Channel Maximally Decimated Filter Bank using Switched Capacitor Circuits

    Directory of Open Access Journals (Sweden)

    J. Nahlik

    2013-04-01

    Full Text Available The aim of this paper is to describe the implementation of a two-channel filter bank (FB using the switched capacitor (SC technique considering real properties of operational amplifiers (OpAmps. The design procedure is presented and key recommendations for the implementation are given. The implementation procedure describes the design of two-channel filter bank using an IIR Cauer filter, conversion of IIR into the SC filters and the final implementation of the SC filters. The whole design and an SC circuit implementation is performed by a PraCAn package in Maple. To verify the whole filter bank, resulting real property circuit structures are completely simulated by WinSpice and ELDO simulators. The results confirm that perfect reconstruction conditions can be almost accepted for the filter bank implemented by the SC circuits. The phase response of the SC filter bank is not strictly linear due to the IIR filters. However, the final ripple of a magnitude frequency response in the passband is almost constant, app. 0.5 dB for a real circuit analysis.

  2. Integrated optical buffers for packet-switched networks

    Science.gov (United States)

    Burmeister, Emily Frances

    Routers form the backbone of the Internet, directing data to the right locations with huge throughput capacity of terabits/second) and very few errors (1 error allowed in 1012 bits). However, as the Internet continues to grow rapidly, so must the capacity of electronic routers, thereby also growing in footprint and power consumption. The energy bill alone has developers looking for an alternate solution. Today's routers can only operate with electrical signals although Internet data is transmitted optically. This requires the data to be converted from the optical domain to the electrical domain and back again. Optical routers have the potential of saving in power by omitting these conversions, but have been held back in part by the lack of a practical optical memory device. This work presents the first integrated optical buffer for next generation optical packet-switched networks. Buffering is required in a router to move packets of data in order to avoid collisions between packets heading to the same destination at the same time. The device presented here uses an InP-based two-by-two switch with a silica waveguide delay to form a recirculating buffer. Packet storage was shown with 98% packet recovery for 5 circulations. Autonomous contention resolution was demonstrated with two buffered channels to show that the technology is a realistic solution for creating multiple element buffers on multiple router ports. This thesis proposes and demonstrates the first integrated optical random access memory, thereby making a great stride toward high capacity optical routers.

  3. A compact plasmonic MOS-based 2x2 electro-optic switch

    CERN Document Server

    Ye, Chenran; Soref, Richard A; Sorger, Volker J

    2015-01-01

    We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS) mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, Indium-Tin-Oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 dB (7) dB for the CROSS (BAR) state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with Siliconon- Insulator platforms to for low-cost manufacturing.

  4. Resonators induced transparency and optical switching assisted by optofluidic pump system

    Science.gov (United States)

    Chen, Fang; Sun, Li-Hui

    2016-12-01

    A tunable plasmonic induced transparency (PIT)-based light switching is proposed and investigated. The proposed structure consists of a bus waveguide, two nanoresonators and an optofluidic pump system for actively tuning the system’s transmission. By using the finite difference time domain method, it is found that the interferences between the dark and bright mode resonators can be controlled by manipulating the fluid filled in the resonator, leading to an actively tunable plasmonic switch, the transmittance can be flexibly tuned from near unity to zero. The structure in our paper has the following advantages, such as ultracompact size and easy fabrication. Our study will provide a possibility for designing the ultrafast devices in highly integrated optical circuits.

  5. A compact plasmonic MOS-based 2×2 electro-optic switch

    Science.gov (United States)

    Ye, Chenran; Liu, Ke; Soref, Richard A.; Sorger, Volker J.

    2015-01-01

    We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS) mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, indium-tin-oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 (7) dB for the CROSS (BAR) state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with silicon-on-insulator platforms for low-cost manufacturing.

  6. A high average power electro-optic switch using KTP

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C.A.; Cook, W.M.; Velsko, S.P.

    1994-04-01

    High damage threshold, high thermal conductivity, and small thermo-optic coefficients make KTiOPO{sub 4} (KTP) an attractive material for use in a high average power Q-switch. However, electro-chromic damage and refractive index homogeneity have prevented the utilization of KTP in such a device in the past. This work shows that electro-chromic damage is effectively suppressed using capacitive coupling, and a KTP crystal can be Q-switched for 1.5 {times} 10{sup 9} shots without any detectable electro-chromic damage. In addition, KTP with the high uniformity and large aperture size needed for a KTP electro-optic Q-switch can be obtained from flux crystals grown at constant temperature. A thermally compensated, dual crystal KTP Q-switch, which successfully produced 50 mJ pulses with a pulse width of 8 ns (FWHM), has been constructed. In addition, in off-line testing the Q-switch showed less than 7% depolarization at an average power loading of 3.2 kW/cm{sup 2}.

  7. Optical Switching and Bit Rates of 40 Gbit/s and above

    DEFF Research Database (Denmark)

    Ackaert, A.; Demester, P.; O'Mahony, M.;

    2003-01-01

    Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed.......Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed....

  8. Fully reconfigurable 2x2 optical cross-connect using tunable wavelength switching modules

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Pedersen, Rune Johan Skullerud;

    2001-01-01

    A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels.......A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels....

  9. Scalable In-Band Optical Notch-Filter Labeling for Ultrahigh Bit Rate Optical Packet Switching

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    with only 0.9-dB power penalty to achieve BER of 1E-9. Using the proposed labeling scheme, optical packet switching of 640 Gb/s data packets is experimentally demonstrated in which two data packets are labeled by making none and one spectral hole using a notch filter and are switched using a LiNbO$_3...

  10. Casimir switch: steering optical transparency with vacuum forces

    CERN Document Server

    Liu, X -f; Jing, H

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  11. Simulation of the Physical Performance of Optical Packet Switching Nodes

    Institute of Scientific and Technical Information of China (English)

    王春华; 李力; 等

    2002-01-01

    A graphical and visual simulation system for the study of optical packet switching(OPS)nodes is accomplished.With the simulation system,the effect on physical performance-bit error rate(BER)due to a variety of factors such as the crosstalk parameters of OPS nodes,number of cascaded OPS nodes,length of optical output buffer,traffic load and fluctuation of amplitude of optical signals are evaluated.Reliability of the simulation system is proved by the analytical results obtained in all the above cases.

  12. Optimizing POF/PCF based optical switch for indoor LAN

    Science.gov (United States)

    Bhuiyan, M. M. I.; Rashid, M. M.; Ahmed, Sayem; Bhuiyan, M.; Kajihara, M.

    2013-12-01

    For indoor local area network (LAN) the Polymer optical fiber (POF) is mostly appropriate, because of its large core diameter and flexible material. A 1×2 optical switch for indoor LAN using POF and a shape memory alloy (SMA) coil actuator with magnetic latches was successfully fabricated and tested. To achieve switching by the movement of a POF, large displacement is necessary because the core diameter is large (e.g., 0.486mm). A SMA coil actuator is used for large displacement and a magnetic latching system is used for fixing the position of the shifted POF. The insertion loss is 0.40 to 0.50dB and crosstalk is more than 50dB without index-matching oil. Switching speed is less than 1s at a driving current of 80mA. A cycling test was performed 1.4 million times. Polymer clad fiber optical (PCF) switch also fabricated and tasted.

  13. Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; LI Qing; GAO DingShan

    2009-01-01

    All-optical switch with the ultrafast optical switching rate is a key device in the next generation optical network. In this article, we propose a polarization switch with ps switching time, which is constructed from one-dimensional resonant photonic crystal (1D RPC). The model of switch operating at 1.5 μm is established based on the optical stark effect (OSE). We calculate the performance indices of the switch and the influences of errors of periods and refractive index on the performance characteristics.

  14. PECASE: All-Optical Photonic Integrated Circuits in Silicon

    Science.gov (United States)

    2011-01-14

    Soltani , and A. Adibi, “High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the Visible Wavelength Range,” Optics...contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500–2502 (2008). [4] B. Momeni, S. Yegnanarayanan, M. Soltani , A. A...lightwave circuits,” J. Lightwave Technol. 17(11), 2032–2038 (1999). [14] B. Momeni, J. Huang, M. Soltani , M. Askari, S. Mohammadi, M. Rakhshandehroo, and

  15. Microscopic model for all optical switching in ferromagnets

    Science.gov (United States)

    Cornelissen, T. D.; Córdoba, R.; Koopmans, B.

    2016-04-01

    The microscopic mechanism behind the all optical switching (AOS) in ferromagnets has triggered intense scientific debate. Here, the microscopic three-temperature model is utilized to describe AOS in a perpendicularly magnetized ferromagnetic Co/Pt system. We demonstrate that AOS in such a ferromagnet can be explained with the Inverse Faraday Effect (IFE). The influence of the strength and lifetime of the IFE induced field pulse on the switching process are investigated. We found that because of strong spin-orbit coupling, the minimal lifetime of the IFE needed to obtain switching is of the order of 0.1 ps, which is shorter than previously assumed. Moreover, spatial images of the domain pattern after AOS in Co/Pt, as well as their dependence on applying an opposite magnetic field, are qualitatively reproduced.

  16. Design and analysis of optical burst-switched networks

    Science.gov (United States)

    Xiong, Yijun; Vandenhoute, Marc; Cankaya, Hakki C.

    1999-08-01

    Optical burst switching (OBS) is a promising solution for building terabit optical routers and realizing IP over D- WDM. In this paper, we describe the basic concept of OBS and a general architecture of optical routers. The key design issues related to the OBS are discussed, notably, burstification, offset-time management and channel scheduling. A simple channel scheduling algorithm called LAUC (Latest Available Unscheduled Channel) algorithm is presented, which is also called Horizon algorithm in the literature. The performance of optical routers under random and self-similar traffic is thoroughly studied via computer simulations. Our study indicates that the distribution of burst length is not exponential any more. For the FDL (fiber delay line) optical buffer, the burst loss ratio is quite sensitive to the traffic characteristic of bursts when using the LAUC algorithm.

  17. Gain-assisted optical bistability and multistability in superconducting phase quantum circuits

    Science.gov (United States)

    Amini Sabegh, Z.; Maleki, M. A.; Mahmoudi, M.

    2017-02-01

    We study the absorption and optical bistability (OB) behavior of the superconducting phase quantum circuits in the four-level cascade and closed-loop configurations. It is shown that the OB is established in both configurations and it can be controlled by the intensity and frequency of applied fluxes. It is also demonstrated that the gain-assisted OB is generated in both configurations and can switch to the gain-assisted optical multistability (OM) only by changing the relative phase of applied fluxes in closed-loop quantum system. It is worth noting that the several significant output fluxes with negligible inputs can be seen in bistable behavior of the closed-loop configuration due to the nonlinear processing.

  18. Atomic physics and quantum optics using superconducting circuits.

    Science.gov (United States)

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  19. Influence of a Circuit Breaker's Grading Capacitor on Controlled Transformer Switching

    Science.gov (United States)

    Corrodi, Yves; Kamei, Kenji; Kohyama, Haruhiko; Ito, Hiroki

    Controlled switching, taking into account the residual flux level within a transformer core, can effectively eliminate inrush currents. Many switching sequences assume the residual flux as a constant value, which can be obtained by a measurement after a transformer de-energization. However, in case of a transformer system that is switched by a circuit breaker equipped with a grading capacitor, the residual flux characteristic cannot be considered as constant. A source voltage will feed the deenergized transformer system through the grading capacitor, which will change the residual flux level and let oscillations appear. It follows that the optimal re-energization targets change and inrush currents might not be optimally minimized. Further, transient voltages based on line failures can influence the residual flux through a grading capacitor as well. At first, this paper evaluates the influence of a grading capacitor on the residual flux characteristic analytically. Further, measurements of two transformer systems at a varied de-energization instant and for different grading capacitors provide actual information for the development of future controller systems.

  20. Brain Circuit for Cognitive Control is Shared by Task and Language Switching.

    Science.gov (United States)

    De Baene, Wouter; Duyck, Wouter; Brass, Marcel; Carreiras, Manuel

    2015-09-01

    Controlling multiple languages during speech production is believed to rely on functional mechanisms that are (at least partly) shared with domain-general cognitive control in early, highly proficient bilinguals. Recent neuroimaging results have indeed suggested a certain degree of neural overlap between language control and nonverbal cognitive control in bilinguals. However, this evidence is only indirect. Direct evidence for neural overlap between language control and nonverbal cognitive control can only be provided if two prerequisites are met: Language control and nonverbal cognitive control should be compared within the same participants, and the task requirements of both conditions should be closely matched. To provide such direct evidence for the first time, we used fMRI to examine the overlap in brain activation between switch-specific activity in a linguistic switching task and a closely matched nonlinguistic switching task, within participants, in early, highly proficient Spanish-Basque bilinguals. The current findings provide direct evidence that, in these bilinguals, highly similar brain circuits are involved in language control and domain-general cognitive control.

  1. Simulation of the switching performance of an optically triggered pseudo-spark thyratron

    Science.gov (United States)

    Pak, Hoyoung; Kushner, Mark J.

    1989-09-01

    The optically triggered pseudo-spark, also known as the back-lit thyratron, is a low-pressure plasma switch having an unheated metallic cathode, which has performance specifications competitive with conventional hot cathode thyratrons. In this paper a computer simulation of the BLT is presented. The simulation consists of a 2 1/2 -dimensional time-dependent continuum model for electron and ion transport using the local field approximation. The model includes an external circuit, and the user may specify the type of gas, pressure, geometry, and electrode materials. Predictions for the anode delay time are compared to experiment as a function of pressure (p), cathode-anode spacing (d), and trigger fluence. We find that switch closure depends critically on the formation of a virtual anode in front of the cathode hole by generation of positive space charge, and that the anode delay time decreases with increasing p, trigger fluence d, and cathode hole diameter. We also find switch performance is not well characterized by the pd product as in other plasma switches. Rather, we find these quantities depend separately on p and d in a manner which is a function of the geometry of the cathode.

  2. Detection of Internal Short Circuit in Lithium Ion Battery Using Model-Based Switching Model Method

    Directory of Open Access Journals (Sweden)

    Minhwan Seo

    2017-01-01

    Full Text Available Early detection of an internal short circuit (ISCr in a Li-ion battery can prevent it from undergoing thermal runaway, and thereby ensure battery safety. In this paper, a model-based switching model method (SMM is proposed to detect the ISCr in the Li-ion battery. The SMM updates the model of the Li-ion battery with ISCr to improve the accuracy of ISCr resistance R I S C f estimates. The open circuit voltage (OCV and the state of charge (SOC are estimated by applying the equivalent circuit model, and by using the recursive least squares algorithm and the relation between OCV and SOC. As a fault index, the R I S C f is estimated from the estimated OCVs and SOCs to detect the ISCr, and used to update the model; this process yields accurate estimates of OCV and R I S C f . Then the next R I S C f is estimated and used to update the model iteratively. Simulation data from a MATLAB/Simulink model and experimental data verify that this algorithm shows high accuracy of R I S C f estimates to detect the ISCr, thereby helping the battery management system to fulfill early detection of the ISCr.

  3. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...... separated. This device was fabricated and characterized by colleagues within the group, and it was shown to perform very well in terms of cross-talk between the signal and pump. Theoretical investigations as well as practical design proposals have resulted from a study of waveguide-cavity structures...... exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical...

  4. High-Resolution Mammography Detector Employing Optical Switching Readout

    Science.gov (United States)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  5. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    Science.gov (United States)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  6. Electro-optical switching by liquid-crystal controlled metasurfaces

    CERN Document Server

    Decker, Manuel; Minovich, Alexander; Staude, Isabelle; Miroshnichenko, Andrey E; Chigrin, Dmitry; Neshev, Dragomir N; Jagadish, Chennupati; Kivshar, Yuri S

    2013-01-01

    We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation.

  7. Atom-loss-induced quantum optical bi-stability switch

    Institute of Scientific and Technical Information of China (English)

    Wu Bao-Jun; Cui Fu-Cheng

    2012-01-01

    We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and errormethod to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.

  8. Novel coherent optical OFDM-based transponder for optical slot switched networks

    DEFF Research Database (Denmark)

    Mestre, Miquel A.; Estaran, Jose M.; Jenneve, Philippe

    2016-01-01

    We report a novel coherent optical OFDM transponder approach capable of recovering microsecond-scale data-burst while adapting to tight filtering constraints present in optical slot switched intradatacenter networks. Filtering effects in such large node-count environments are reviewed. The CO...

  9. Separation and insertion of optical bit-serial label in optical packet switching

    Institute of Scientific and Technical Information of China (English)

    Yun Ling; Kun Qiu; Mian Zheng

    2006-01-01

    @@ The bipolar phase-shift-keying (BPSK) optical orthogonal codes (OOCs) are inserted into the optical packet format of bit-serial label. The ultra-fast separation of the label and payload is performed through the auto-correlation pulses indicating the time position at which the optical switch changes the state.The insertion of the new label can also be realized by detecting the auto-correlation pulse at the line rate. Especially, the scheme can be adapted to the asynchronous separation and insertion and realize the variable-length packet switching. The results of simulation verify the feasibility of the scheme.

  10. All-optical switching and nonlinear optical properties of HBT in ethanol solution

    Institute of Scientific and Technical Information of China (English)

    Zheng Jia-Jin; Zhang Gui-Lan; Guo Yang-Xue; Li Xiang-Ping; Chen Wen-Ju

    2007-01-01

    This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.

  11. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  12. Plasmonic nanopatch array for optical integrated circuit applications

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-01-01

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle. PMID:24201454

  13. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks

    Science.gov (United States)

    Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun

    2008-05-01

    This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.

  14. Photonic gene circuits by optically addressable siRNA-Au nanoantennas.

    Science.gov (United States)

    Lee, Somin Eunice; Sasaki, Darryl Y; Park, Younggeun; Xu, Ren; Brennan, James S; Bissell, Mina J; Lee, Luke P

    2012-09-25

    The precise perturbation of gene circuits and the direct observation of signaling pathways in living cells are essential for both fundamental biology and translational medicine. Current optogenetic technology offers a new paradigm of optical control for cells; however, this technology relies on permanent genomic modifications with light-responsive genes, thus limiting dynamic reconfiguration of gene circuits. Here, we report precise control of perturbation and reconfiguration of gene circuits in living cells by optically addressable siRNA-Au nanoantennas. The siRNA-Au nanoantennas fulfill dual functions as selectively addressable optical receivers and biomolecular emitters of small interfering RNA (siRNA). Using siRNA-Au nanoantennas as optical inputs to existing circuit connections, photonic gene circuits are constructed in living cells. We show that photonic gene circuits are modular, enabling subcircuits to be combined on-demand. Photonic gene circuits open new avenues for engineering functional gene circuits useful for fundamental bioscience, bioengineering, and medical applications.

  15. A novel optical burst switching architecture for high speed networks

    Institute of Scientific and Technical Information of China (English)

    Amit Kumar Garg; R. S. Kaler

    2008-01-01

    A novel optical burst switching (OBS) high speed network architecture has been proposed. To verify its feasibility and evaluate its performance, just-enough-time (JET) signaling has been considered as a high performance protocol. In the proposed architecture, to avoid burst losses, firstly, a short-priorconfirrnation-packet (SPCP) is sent over the control channel that simulates the events that the actual packet will experience. Once SPCP detects a drop at any of the intermediate nodes, the actual packet is not sent but the process repeats. In order to increase network utilization, cost effectiveness and to overcome some limitations of conventional OBS, inherent codes (e.g., orthogonal optical codes (OOC)),which are codified only in intensity, has been used. Through simulations, it shows that a decrease in burst loss probability, cost effectiveness and a gain in processing time are obtained when optical label processing is used as compared with electronic processing.

  16. Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit.

    Science.gov (United States)

    Gardini, Laura; Fournier-Prunaret, Danièle; Chargé, Pascal

    2011-06-01

    In recent years, the study of chaotic and complex phenomena in electronic circuits has been widely developed due to the increasing number of applications. In these studies, associated with the use of chaotic sequences, chaos is required to be robust (not occurring only in a set of zero measure and persistent to perturbations of the system). These properties are not easy to be proved, and numerical simulations are often used. In this work, we consider a simple electronic switching circuit, proposed as chaos generator. The object of our study is to determine the ranges of the parameters at which the dynamics are chaotic, rigorously proving that chaos is robust. This is obtained showing that the model can be studied via a two-dimensional piecewise smooth map in triangular form and associated with a one-dimensional piecewise linear map. The bifurcations in the parameter space are determined analytically. These are the border collision bifurcation curves, the degenerate flip bifurcations, which only are allowed to occur to destabilize the stable cycles, and the homoclinic bifurcations occurring in cyclical chaotic regions leading to chaos in 1-piece.

  17. 160 Gbit/s optical packet switching using a silicon chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael;

    2012-01-01

    We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet....

  18. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed optical device is a fiber-based multi-channel switch to quickly switch a fiber-coupled laser among many possible output channels to create a fiber-based...

  19. Optical switching of nuclear spin-spin couplings in semiconductors.

    Science.gov (United States)

    Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi

    2011-07-05

    Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.

  20. Diarylethene-modified nucleotides for switching optical properties in DNA

    Directory of Open Access Journals (Sweden)

    Sebastian Barrois

    2012-06-01

    Full Text Available Diarylethenes were attached to the 5-position of 2’-deoxyuridine in order to yield three different photochromic nucleosides. All nucleosides were characterized with respect to their absorption and photochromic properties. Based on these results, the most promising photochromic DNA base modification was incorporated into representative oligonucleotides by using automated phosphoramidite chemistry. The switching of optical properties in DNA can be achieved selectively at 310 nm (forward and 450 nm (backward; both wavelengths are outside the normal nucleic acid absorption range. Moreover, this nucleoside was proven to be photochemically stable and allows switching back and forth several times. These results open the way for the use of diarylethenes as photochromic compounds in DNA-based architectures.

  1. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches.

    Science.gov (United States)

    Yang, Lin; Xia, Yuhao; Zhang, Fanfan; Chen, Qiaoshan; Ding, Jianfeng; Zhou, Ping; Zhang, Lei

    2015-04-01

    We demonstrate a reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches. For all optical links in its 9 routing states, the optical signal-to-noise ratios are larger than 15 dB in the wavelength range from 1525 to 1565 nm. Each optical link of the optical router can manipulate 50 wavelength-division-multiplexing channels with the data rate of 32 Gbps for each channel in the same wavelength range. Its average energy efficiency is about 16.3 fJ/bit, and its response time is about 19 μs.

  2. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    Science.gov (United States)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping; Li, Mo

    2015-09-01

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  3. International standards for optical circuit board fabrication, assembly and measurement

    Science.gov (United States)

    Pitwon, Richard; Immonen, Marika; Wang, Kai; Itoh, Hideo; Shioda, Tsuyoshi; Wu, Jinhua; Zhu, Long Xiu; Yan, Hui Juan; Worrall, Alex

    2016-03-01

    The commercial adoption of electro-optical printed circuit board (EOCB) technology will be accelerated by the development of industrial and conformity standards for high volume fabrication, connector assembly and waveguide measurement. In this paper, we introduce international standardisation activities surrounding EOCBs and report on industrial processes developed for the high volume fabrication of complex EOCBs with embedded multimode polymer waveguides including a first connector standard for polymer waveguide termination. We focus on solving a serious historic problem with the measurement of optical waveguide systems, namely the lack of harmonised measurement conditions for optical waveguides, which to this day gives rise to strong inconsistencies in the results of measurements by different parties on the same waveguide. We report on the development of a standard to ensure repeatable measurement of optical waveguides, whereby we demonstrate how the application of a measurement identification system and proposed reference measurement conditions can bring variation in measurement results to within 5%, thereby serving as the basis for a formal reliable optical waveguide measurement methodology.

  4. Optimization of all-optical EDFA-based Sagnac-interferometer switch.

    Science.gov (United States)

    Wang, Fei; Li, Chunfei

    2007-10-17

    We perform optimization of all-optical EDFA-based Sagnac - interferometer switch through an analytical model and numerical simulations by solving nonlinear Schrödinger equations. The effects of the performance of EDFA on the bit rate and the switching power are investigated for all-optical switch based on self-phase or cross-phase modulation. The simulated results show that ultra-low switching power (EDFA.

  5. Micro Electro Mechanical Systems (MEMS) Micro-Switches for Use in DC, RF, and Optical Applications

    Science.gov (United States)

    Suzuki, Kenichiro

    2002-06-01

    Micromachined micro-switches have stimulated the development of the core infrastructure technology for the next generation communication systems because of their superior performance. They are fabricated by similar silicon micromachined processes, but the switch structure and its characteristics depend on each application. Micro electro mechanical systems (MEMS) technology has been applied to micro relays, RF switches, and optical switches; as a result, optical and mechanical performance has been improved.

  6. Low-Power Circuit Techniques for Low-Voltage Pipelined ADCs Based on Switched-Opamp Architecture

    Science.gov (United States)

    Ou, Hsin-Hung; Chang, Soon-Jyh; Liu, Bin-Da

    This paper proposes useful circuit structures for achieving a low-voltage/low-power pipelined ADC based on switched-opamp architecture. First, a novel unity-feedback-factor sample-and-hold which manipulates the features of switched-opamp technique is presented. Second, opamp-sharing is merged into switched-opamp structure with a proposed dual-output opamp configuration. A 0.8-V, 9-bit, 10-Msample/s pipelined ADC is designed to verify the proposed circuit. Simulation results using a 0.18-μm CMOS 1P6M process demonstrate the figure-of-merit of this pipelined ADC is only 0.71pJ/step.

  7. Electro-optical circuit board with single-mode glass waveguide optical interconnects

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Pernthaler, Dominik; Weber, Daniel; Sirbu, Bogdan; Herbst, Christian; Frey, Christopher; Queisser, Marco; Wöhrmann, Markus; Manessis, Dionysios; Schild, Beatrice; Oppermann, Hermann; Eichhammer, Yann; Schröder, Henning; Hâkansson, Andreas; Tekin, Tolga

    2016-03-01

    A glass optical waveguide process has been developed for fabrication of electro-optical circuit boards (EOCB). Very thin glass panels with planar integrated single-mode waveguides can be embedded as a core layer in printed circuit boards for high-speed board-level chip-to-chip and board-to-board optical interconnects over an optical backplane. Such singlemode EOCBs will be needed in upcoming high performance computers and data storage network environments in case single-mode operating silicon photonic ICs generate high-bandwidth signals [1]. The paper will describe some project results of the ongoing PhoxTroT project, in which a development of glass based single-mode on-board and board-to-board interconnection platform is successfully in progress. The optical design comprises a 500 μm thin glass panel (Schott D263Teco) with purely optical layers for single-mode glass waveguides. The board size is accommodated to the mask size limitations of the fabrication (200 mm wafer level process, being later transferred also to larger panel size). Our concept consists of directly assembling of silicon photonic ICs on cut-out areas in glass-based optical waveguide panels. A part of the electrical wiring is patterned by thin film technology directly on the glass wafer surface. A coupling element will be assembled on bottom side of the glass-based waveguide panel for 3D coupling between board-level glass waveguides and chip-level silicon waveguides. The laminate has a defined window for direct glass access for assembling of the photonic integrated circuit chip and optical coupling element. The paper describes the design, fabrication and characterization of glass-based electro-optical circuit board with format of (228 x 305) mm2.

  8. Optimum design of phase opposition disposition pulse width modulation logic circuit for switching seven level cascaded half bridge inverter

    Directory of Open Access Journals (Sweden)

    Nentawe Y. Goshwe

    2016-06-01

    Full Text Available Theevolution of multilevel inverters (MLIs has made it possible to extract power from direct current (DC sources to alternating current (AC power. This paper presents the design of a novel phase opposition disposition pulse width modulation scheme (PODPWM logic circuit for a conventional single phase seven level cascaded H-Bridge (CHB inverter using Matlab/Simulink. The minimum switching logic circuit for the single phase seven level CHB inverter was obtained by modeling the logic equations that could be used with any number of levels depending on the number of modulating and carrier signals involved. The reduction in total harmonic distortion (THD of the output voltage for the MLI using low switching frequency at different modulation indixes is also investigated. The logic equations have made it easier to design a PODPWM circuit for any CHB inverter and the logic gates designed gave an optimum THD value of 16.73 % at modulation index of 0.20.

  9. Performance analysis of multiple optical orthogonal codes sequences-based optical labels for optical packet switching networks

    Science.gov (United States)

    Zhang, Chongfu; Ma, Chunli; Wang, Zhengsuan; Qiu, Kun

    2011-09-01

    Multiple optical orthogonal codes sequences (MOOCS)-based optical labels for optical packet switching (MOOCS-OPS) were proposed and studied in our previous works. In order to evaluate the performances of the MOOCS-OPS networks resulting from interference of the MOOCS-based optical labels, we utilize a new study method that applies the independent case of multiple optical orthogonal codes to derive the probability function of the MOOCS-OPS networks for the first time. Additionally, the optical label processing time, the utilization efficiency, and the packet loss rate in the MOOCS-OPS networks are also considered. We discuss the performance and efficiency characteristics with a variety of parameters, and compare some characteristics of the system employed by a single optical orthogonal code or MOOCS-based optical labels. The performances of the system are also calculated, and our results verify that the method and the networks are effective. Moreover, it is found that performances of the MOOCS-OPS networks would, negatively, be worsened, compared with the single optical orthogonal code-based optical label for optical packet switching; however, the MOOCS-OPS networks can greatly enlarge the scalability of the optical packet switching networks.

  10. Novel Folding Large-Scale Optical Switch Matrix with Total Internal Reflection Mirrors on Silicon-on-Insulator by Anisotropy Chemical Etching

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Wei; YU Jin-Zhong; CHEN Shao-Wu

    2005-01-01

    A compact optical switch matrix was designed, in which light circuits were folded by total internal reflective (TIR) mirrors. Two key elements, 2 × 2 switch and TIR mirror, have been fabricated on silicon-on-insulator wafer by anisotropy chemical etching. The 2 × 2 switch showed very low power consumption of 140mW and avery high speed of 8 ± 1 μs. An improved design for the TIR mirror was developed, and the fabricated mirror with smooth and vertical reflective facet showed low excess loss of 0.7 ± 0.3 dB at 1.55μm.

  11. Electro-optical switching of liquid crystals of graphene oxide

    Science.gov (United States)

    Song, Jang-Kun

    Electric field effects on aqueous graphene-oxide (GO) dispersions are reviewed in this chapter. In isotropic and biphasic regimes of GO dispersions, in which the inter-particle friction is low, GO particles sensitively respond to the application of electric field, producing field-induced optical birefringence. The electro-optical sensitivity dramatically decreases as the phase transits to the nematic phase; the increasing inter-particle friction hinders the rotational switching of GO particles. The corresponding Kerr coefficient reaches the maximum near the isotropic to biphasic transition concentration, at which the Kerr coefficient is found be c.a. 1:8 · 10-5 mV-2, the highest value ever reported in all Kerr materials. The exceptionally large Kerr effect arises from the Maxwell- Wagner polarization of GO particles with an extremely large aspect ratio and a thick electrical double layer (EDL). The polarization sensitively depends on the ratio of surface and bulk conductivities in dispersions. As a result, low ion concentration in bulk solvent is highly required to achieve a quality electro-optical switching in GO dispersions. Spontaneous vinylogous carboxylic reaction in GO particles produces H+ ions, resulting in spontaneous degradation of electro-optical response with time, hence the removal of residual ions by using a centrifuge cleaning process significantly improves the electro-optical sensitivity. GO particle size is another important parameter for the Kerr coefficient and the response time. The best performance is observed in a GO dispersion with c.a. 0.5 μm mean size. Dielectrophoretic migration of GO particles can be also used to manipulate GO particles in solution. Using these unique features of GO dispersions, one can fabricate GO liquid crystal devices similar to conventional liquid crystal displays; the large Kerr effect allows fabricating a low power device working at extremely low electric fields.

  12. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

    CERN Document Server

    Pelc, Jason S; Vo, Sonny; Santori, Charles; Fattal, David A; Beausoleil, Raymond G

    2014-01-01

    We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

  13. Optical switch phenomenon in a self-defocusing medium

    Institute of Scientific and Technical Information of China (English)

    Huagang Li; Zhihua Luo

    2009-01-01

    A spatial optical switch phenomenon caused by the induced focusing of a weak probe beam occurring in self-defocusing nonlinear media is discussed theoretically.A weak beam is induced to focus when it copropagates with an intense pump beam under the conditions that the probe and pump beams peak at different positions and propagate in different directions.Due to the effect of cross-phase modulation,the weak beam can not only be focused but also be deflected.The phenomenon is discussed by numerically solving the coupled amplitude equations.

  14. Study of Crosstalk propoerty in an Optical Packet Switching Node

    Institute of Scientific and Technical Information of China (English)

    王春华; 李力; 等

    2002-01-01

    The effect of queuing delay of output buffer on the crosstalk property in optical packel switching nodes in investigated.The relationship between crosstalk and buffer length is obtained.From the calculation and simulation results,it is concluded that the corsstalk power penalty predominantly depends on the buffer length,the longer the buffer,the greater the penalty,as well as the random range of the penalty.While comparing with the effect of queuing delay,the effect of random routing path delay takes very little proportion in the total power penalty.

  15. A 10-bit 50-MS/s sample-and-hold circuit with low distortion sampling switches

    Institute of Scientific and Technical Information of China (English)

    Zhu Xubin; Ni Weining; Shi Yin

    2009-01-01

    A fully-differential switched-capacitor sample-and-hold (S/H) circuit used in a 10-bit 50-MS/s pipeline analog-to-digital converter (ADC) was designed and fabricated using a 0.35-μm CMOS process. Capacitor fliparound architecture was used in the S/H circuit to lower the power consumption. In addition, a gain-boosted operational transconductance amplifier (OTA) was designed with a DC gain of 94 dB and a unit gain bandwidth of 460 MHz at a phase margin of 63 degree, which matches the S/H circuit. A novel double-side bootstrapped switch was used, improving the precision of the whole circuit. The measured results have shown that the S/H circuit reaches a spurious free dynamic range (SFDR) of 67 dB and a signal-to-noise ratio (SNR) of 62.1 dB for a 2.5 MHz input signal with 50 MS/s sampling rate. The 0.12 mm2 S/H circuit operates from a 3.3 V supply and consumes 13.6 mW.

  16. Fast and low power Michelson interferometer thermo-optical switch on SOI.

    Science.gov (United States)

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L

    2008-09-29

    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  17. Optically controlled photonic bandgap structures for microstrip circuits

    CERN Document Server

    Cadman, D A

    2003-01-01

    This thesis is concerned with the optical control of microwave photonic bandgap circuits using high resistivity silicon. Photoconducting processes that occur within silicon are investigated. The influence of excess carrier density on carrier mobility and lifetime is examined. In addition, electron-hole pair recombination mechanisms (Shockley-Read-Hall, Auger, radiative and surface) are investigated. The microwave properties of silicon are examined, in particular the variation of silicon reflectivity with excess carrier density. Filtering properties of microstrip photonic bandgap structures and how they may be controlled optically are studied. A proof-of-concept microstrip photonic bandgap structure with optical control is designed, simulated and measured. With no optical illumination incident upon the silicon, the microstrip photonic bandgap structure's filtering properties are well-defined; a 3dB stopband width of 2.6GHz, a 6dB bandwidth of 2GHz and stopband depth of -11.6dB at the centre frequency of 9.9GHz...

  18. Experimental demonstration of optical switching and routing via four-wave mixing spatial shift.

    Science.gov (United States)

    Nie, Zhiqiang; Zheng, Huaibin; Zhang, Yanpeng; Zhao, Yan; Zuo, Cuicui; Li, Changbiao; Chang, Hong; Xiao, Min

    2010-01-18

    We demonstrate the shift characteristics of four-wave mixing (FWM) beam spots which are controlled by the strong laser fields via the large cross-Kerr nonlinearity. The shift distances and directions are determined by the nonlinear dispersions. Based on such spatial displacements of the FWM beams, as well as the probe beam, we experimentally demonstrate spatial optical switching for one beam or multiple optical beams, which can be used for all-optical switching, switching arrays and routers.

  19. A single-stage optical load-balanced switch for data centers.

    Science.gov (United States)

    Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying

    2012-10-22

    Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.

  20. Optically implemented broadband blueshift switch in the terahertz regime.

    Science.gov (United States)

    Shen, Nian-Hai; Massaouti, Maria; Gokkavas, Mutlu; Manceau, Jean-Michel; Ozbay, Ekmel; Kafesaki, Maria; Koschny, Thomas; Tzortzakis, Stelios; Soukoulis, Costas M

    2011-01-21

    We experimentally demonstrate, for the first time, an optically implemented blueshift tunable metamaterial in the terahertz (THz) regime. The design implies two potential resonance states, and the photoconductive semiconductor (silicon) settled in the critical region plays the role of intermediary for switching the resonator from mode 1 to mode 2. The observed tuning range of the fabricated device is as high as 26% (from 0.76 THz to 0.96 THz) through optical control to silicon. The realization of broadband blueshift tunable metamaterial offers opportunities for achieving switchable metamaterials with simultaneous redshift and blueshift tunability and cascade tunable devices. Our experimental approach is compatible with semiconductor technologies and can be used for other applications in the THz regime.

  1. Optically controlled multiple switching operations of DNA biopolymer devices

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  2. Properties of Controllable Soliton Switching in Optical Lattices with Longitudinal Exponential-Asymptotic Modulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    The properties of controllable soliton switching in Kerr-type optical lattices with different modulation are investigated theoretically and simulated numerically. The results show that the optical lattices can be available for all-optical soliton switching through utilization for length-scale competition effects. And through longitudinal exponential-asymptotic modulation for the linear refractive index, the properties of soliton switching in the optical lattices can be improved. The number of output channels of soliton switching can be controlled by the parameters such as incident angle, asymptotic rate of longitudinal modulation, guiding parameter and form factor.

  3. Technology of optical switch in all optical communication%全光通信中的光开关技术

    Institute of Scientific and Technical Information of China (English)

    李红春; 赵巧霞; 陶晓燕; 王豆豆

    2011-01-01

    Optical switch is the kernel device of all optical switchingCurrently the study on optical switch has become the focus of all optical communication. This paper summarized the principle of optical switch, analyzed the application of optical switch. The traditional mechanical, micro electro-mechanical system (MEMS) and thermo-optic switch were further divided, and their characteristics were pointed out. Then an evaluation system was put forward for optical switch assessment, by comparing the qualitative and quantitative of the four common optical switches,the advatnges and inadequacics of different types of optical switches were pointed out. Finauy,according to the trend of all optical communication, the large-scale array, high speed, transparent and low loss optical switch is the key development of direction.%光开关是实现全光交换的核心器件,光开关的研究已成为全光通信领域研究的焦点.本文首先对光开关的原理进行归纳,总结光开关的应用范围.对传统机械式光开关、微电子机械式光开关、热光开关进行了进一步地划分,分析了它们的结构形式和性能特点.设计了光开关性能评价指标体系,对常见的4种光开关进行了定性与定量对比,指出不同类型光开关的优点和不足之处.最后依据全光通信网的发展趋势,指出大容童、高速、透明、低损耗是光开关的重点发展方向.

  4. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    Science.gov (United States)

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-01

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  5. Modeling of all-optical even and odd parity generator circuits using metal-insulator-metal plasmonic waveguides

    Science.gov (United States)

    Singh, Lokendra; Bedi, Amna; Kumar, Santosh

    2017-01-01

    Plasmonic metal-insulator-metal (MIM) waveguides sustain excellent property of confining the surface plasmons up to a deep subwavelength scale. In this paper, linear and S-shaped MIM waveguides are cascaded together to design the model of Mach-Zehnder interferometer (MZI). Nonlinear material has been used for switching of light across its output ports. The structures of even and odd parity generators are projected by cascading the MZIs. Parity generator and checker circuit are used for error correction and detection in an optical communication system. Study and analysis of proposed designs are carried out by using the MATLAB simulation and finite-differencetime-domain (FDTD) method.

  6. Temperature control of molecular circuit switch responsible for virulent phenotype expression in uropathogenic Escherichia coli

    Science.gov (United States)

    Samoilov, Michael

    2010-03-01

    The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.

  7. Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch.

    Science.gov (United States)

    Hirooka, Toshihiko; Seya, Daiki; Harako, Koudai; Suzuki, Daiki; Nakazawa, Masataka

    2015-08-10

    We propose the ultrahigh-speed demultiplexing of Nyquist OTDM signals using an optical Nyquist pulse as both a signal and a sampling pulse in an all-optical nonlinear switch. The narrow spectral width of the Nyquist pulses means that the spectral overlap between data and control pulses is greatly reduced, and the control pulse itself can be made more tolerant to dispersion and nonlinear distortions inside the nonlinear switch. We apply the Nyquist control pulse to the 640 to 40 Gbaud demultiplexing of DPSK and DQPSK signals using a nonlinear optical loop mirror (NOLM), and demonstrate a large performance improvement compared with conventional Gaussian control pulses. We also show that the optimum spectral profile of the Nyquist control pulse depends on the walk-off property of the NOLM.

  8. Research progresses of SOI optical waveguide devices and integrated optical switch matrix

    Institute of Scientific and Technical Information of China (English)

    YU Jinzhong; CHEN Shaowu; XIA Jinsong; WANG Zhangtao; FAN Zhongchao; LI Yanping; LIU Jingwei; YANG Di; CHEN Yuanyuan

    2005-01-01

    SOI (silicon-on-insulator) is a new material with a lot of important perform- ances such as large index difference, low transmission loss. Fabrication processes for SOI based optoelectronic devices are compatible with conventional IC processes. Having the potential of OEIC monolithic integration, SOI based optoelectronic devices have shown many good characteristics and become more and more attractive recently. In this paper, the recent progresses of SOI waveguide devices in our research group are presented. By highly effective numerical simulation, the single mode conditions for SOI rib waveguides with rectangular and trapezoidal cross-section were accurately investigated. Using both chemical anisotropic wet etching and plasma dry etching techniques, SOI single mode rib waveguide, MMI coupler, VOA (variable optical attenuator), 2×2 thermal-optical switch were successfully designed and fabricated. Based on these, 4×4 and 8×8 SOI optical waveguide integrated switch matrixes are demonstrated for the first time.

  9. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  10. Optimization of Waveguide Structure for Tunable Optical Switch in Si/SiGe System

    Institute of Scientific and Technical Information of China (English)

    Seongjae Boo; Won-Taek Han

    2003-01-01

    A new electro-optical device using Si/SiGe-system with two parallel ridge waveguides is proposed for optical switching and the optimization of the structure for a single mode operation is investigated.

  11. MEMS Torsion-Mirror Actuators for Optical Switching or Attenuating Applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Novel MEMS torsion-mirror actuators with monolithically integrated fiber self-holding structures are fabricated, and investigated experimentally and theoretically. Their electromechanical and optical characteristics are acceptable for optical switching or attenuating applications.

  12. Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    DEFF Research Database (Denmark)

    Nord, Martin

    2005-01-01

    Increased data traffic in the metropolitan area network calls for new network architectures. This paper evaluates optical ring architectures based on optical packet switching, wavelength routing, and hybrid combinations of the two concepts. The evaluation includes overall throughput and fairness...

  13. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II effort will develop a 1 x 10 prototype non-mechanical fiber optic switch for use with high power lasers. The proposed optical device is a...

  14. Preparation, thermo-optic property and simulation of optical switch based on azo benzothiazole polymer

    Science.gov (United States)

    Cao, Zhijuan; Qiu, Fengxian; Wang, Qing; Cao, Guorong; Guan, Yijun; Zhuang, Lin; Xu, Xiaolong; Wang, Jie; Chen, Qian; Yang, Dongya

    2013-04-01

    An azo chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the chromophore molecule BTPD was polymerized with NJ-210 and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polymer (BTPU). The structures of BTPD and BTPU were characterized using the Fourier transform infrared, UV-visible spectroscopy, DSC and TGA. The physical properties of the obtained BTPU were investigated. The refractive index ( n) of BTPU was demonstrated at different temperature and wavelength (532, 650 and 850 nm) using attenuated total reflection technique. The transmission loss and dispersion characteristic of BTPU film were investigated using the CCD digital imaging devices and Sellmeyer equation. A Y-branch and 2 × 2 Mach-Zehnder interferometer (MZI) polymeric thermo-optic switches based on the thermo-optic effect of prepared BTPU were proposed and the performance of switches was simulated. The results indicated that the power consumption of the Y-branch thermo-optic switch could be only 0.6 mW. The Y-branch and MZI switching rising and falling times obtained were 8.0 and 1.8 ms.

  15. High-speed 2×2 silicon-based electro-optic switch with nanosecond switch time

    Institute of Scientific and Technical Information of China (English)

    Xu Xue-Jun; Chen Shao-Wu; Xu Hai-Hua; Sun Yang; Yu Yu-De; Yu Jin-Zhong; Wang Qi-Ming

    2009-01-01

    A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a VπLπ figure of merit of 0.145 V.cm and the extinction ratios of two output ports and cross talk are 40 dB,28 dB and -28 dB,respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge axe also demonstrated.

  16. SOI-Based 16×16 Thermo-Optic Waveguide Switch Matrix

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan-Yuan; LI Yan-Ping; SUN Fei; YANG Di; CHEN Shao-Wu; YU Jin-Zhong

    2006-01-01

    @@ A 16 × 16 thermo-optic waveguide switch matrix has been designed and fabricated on silicon-on-insulator wafer.For reducing device length, blocking switch matrix configuration is chosen. The building block of the matrix is a 2 × 2 switch cell with a Mach-Zehnder interferometer configuration, where a multi-mode interferometer serves as splitter/combiners. Spot size converters and isolating grooves are integrated on the same chip to reduce loss and power consumption. Average power consumption of the switch cell is 220mW. The switching time of a switch cell is less than 3 μs.

  17. Coherent all-optical switching in a bistable waveguide-cavity-waveguide system

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2011-01-01

    All optical switching based on non-linear material effects is a promising technique for use in future optical communication systems. Promising advances in the field has been achieved using optical microcavities in photonic crystals to increase the optical field strength and hence reduce...... the required power of the input field [1]. In this work we consider an alternative method of switching, in which the input power is kept constant and only the phase of the input field is varied....

  18. High bandwidth all-optical 3×3 switch based on multimode interference structures

    Science.gov (United States)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  19. Proposal for all-optical controllable switch using dipole induced transparency (DIT)

    Science.gov (United States)

    Eftekhari, K.; Abbasian, K.; Rostami, A.

    2010-05-01

    We propose a novel all-optical controllable switch using photonic crystal cavity. For doing this work, the dipole induced transparency phenomenon realized through interaction of light with multilevel nanocrystals is used. Multilevel nanocrystals are doped to photonic crystal rods. Using the proposed structure and applying the control field, the absorbing medium converts to transparent one and switching operation is obtained. Analytical relation for evaluation of the proposed device considering quantum optical effects is presented and studied by investigation of effects of parameters on switching characteristics. We show that high quality all-optical switching operation can be obtained.

  20. Cascaded transformerless DC-DC voltage amplifier with optically isolated switching devices

    Science.gov (United States)

    Sridharan, Govind (Inventor)

    1993-01-01

    A very high voltage amplifier is provided in which plural cascaded banks of capacitors are switched by optically isolated control switches so as to be charged in parallel from the preceding stage or capacitor bank and to discharge in series to the succeeding stage or capacitor bank in alternating control cycles. The optically isolated control switches are controlled by a logic controller whose power supply is virtually immune to interference from the very high voltage output of the amplifier by the optical isolation provided by the switches, so that a very high voltage amplification ratio may be attained using many capacitor banks in cascade.

  1. A Novel Model of Resolving Contention in Optical Burst Switched Networks

    Institute of Scientific and Technical Information of China (English)

    Huang Anpeng(黄安鹏); Xie Linzhen; Li Jingcong; Li Zhengbin; Xu Anshi

    2004-01-01

    A Novel segmentation and feedback model (SFM) applied to resolve collision has been proposed. The SFM is featured with Burst Segmentation and Prioritized Feedback (BSPF) that are used to provide quality of service (QoS) and realize high throughput and faster switching in the optical burst switched networks. Simulation and performance analyses show that the SFM effectively avoid collision in optical burst switching (OBS). Long delay time of deflection routing and immature technology of wavelength converter and optical buffer are not employed in the SFM. The SFM not only realizes quick switching but also allows preemption for higher priority bursts.

  2. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip.

    Science.gov (United States)

    Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin

    2014-05-19

    We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router.

  3. Performance analysis of optical multicast in a new switching structure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The emergence of new services demands multicast function in optical network.Because of the high cost and complex architecture of multicast capable (MC) node, splitter-sharing switch structure is introduced in which the light splitters are shared by all input signals.To accommodate to this situation, by extending resource ReSerVation protocol-traffic engineering (RSVP-TE) and open shortest path first-traffic engineering (OSPF-TE), a new optical multicast mechanism is provided and the signaling flow and its finite state machine model are given.At the same time, a multicast routing algorithm in splitter-sharing optical network and a changing link weight policy to balance network traffic are proposed.Simulations in NSFNET show no matter with or without wavelength converters, when the number of splitters is 25% of that demanded by traditional MC nodes, the multicast performance has been close to the ideal circumstance.Wavelength converters and changing link weight help much in improving the traffic performance when the number of splitters is adequate.

  4. Magnetostrictive Micro Mirrors for an Optical Switch Matrix

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-10-01

    Full Text Available We have developed a wireless-controlled compact optical switch by siliconmicromachining techniques with DC magnetron sputtering. For the optical switchingoperation, micro mirror is designed as cantilever shape size of 5mm×800μm×50μm.TbDyFe film is sputter-deposited on the upper side of the mirror with the condition as: Argas pressure below 1.2×10-9 torr, DC input power of 180W and heating temperature of up to250°C for the wireless control of each component. Mirrors are actuated by externallyapplied magnetic fields for the micro application. Applied beam path can be changedaccording to the direction and the magnitude of applied magnetic field. Reflectivity changes,M-H curves and X-ray diffractions of sputtered mirrors are measured to determine magneto-optical, magneto-elastic properties with variation in sputtered film thickness. The deflectedangle-magnetic field characteristics of the fabricated mirror are measured.

  5. BiCMOS operational amplifier with precise and stable dc gain for high-frequency switched capacitor circuits

    Science.gov (United States)

    Baschirotto, A.; Alini, R.; Castello, R.

    1991-07-01

    A novel approach in the design of high-frequency switched capacitor (SC) circuits is presented. It is based on the use of simple and fast amplifiers with low but precisely controlled gain value. The effect of the precisely known and stable opamp gain is compensated for by changing the capacitor values during the synthesis of the SC cell. An example of an opamp with these features and the synthesis of a biquadratic filter based on this approach are given.

  6. SIMPLIFIED METHOD FOR CALCULATING CLOSING IN OF SWITCH-GEAR FLEXIBLE BUSES AT SHORT CIRCUIT BY IMPULSE OF ELECTRODYNAMIC FORCES

    OpenAIRE

    I. I. Sergey; E. G. Ponomarenko; W. M. Sammur; P. I. Klimkovich

    2005-01-01

    The paper contains description of a simplified method for calculating closing-in of switch-gear flexible buses at short circuit. The developed method is based on integral and energy principles of  mechanics. In order to increase accuracy of the calculation corrections factors are introduced in an explicit formula for calculation of maximum horizontal deviations. These factors have been obtained with the help of a computer program that realized numerical method for calculating closing-in of wi...

  7. An electrical model of VCSEL as optical transmitter for optical printed circuit board

    Science.gov (United States)

    Kim, Do-Kyoon; Yoon, Young-Seol; Choi, Jin-Ho; Kim, Kyung-Min; Choi, Young-Wan; Lee, Seok

    2005-03-01

    Optical interconnection is recent issue for high-speed data transmission. The limitation of high-speed electrical data transmission is caused by impedance mismatching, electric field coupling, microwave loss, and different length of the electrical signal lines. To overcome these limitations, the electrical signal in the current electrical system has to be changed by the optical signal. The most suitable optical source in the OPCB (Optical Printed Circuit Board) is VCSEL (Vertical Cavity Surface Emitting Lasers) that is low-priced and has the characteristic of vertical surface emitting. In this paper, we propose an electrical model of the VCSEL as E/O converting devices for the OPCB. The equivalent circuit of the VCSEL based on the rate equations includes carrier dynamics and material properties. The rate equation parameters are obtained by full analysis based on rate equation and experiment results. The electrical model of the VCSEL has the series resistance determined by I-V characteristic curve, and the parallel capacitance by the parasitic response of the VCSEL chip. The bandwidth of the optical interconnection is analyzed considering those parameters. We design and fabricate the optical transmitter for OPCB considering proposed electrical model of VCSEL.

  8. Demonstration of Optically Controlled re-Routing in a Photonic Crystal Three-Port Switch

    DEFF Research Database (Denmark)

    Combrié, S.; Heuck, Mikkel; Xavier, S.

    2012-01-01

    We present an experimental demonstration of optically controlled re-routing of a signal in a photonic crystal cavity-waveguide structure with 3 ports. This represents a key functionality of integrated all-optical signal processing circuits....

  9. Research of Asymmetric Y-Branching Total Internal Reflection All-Optical Switch

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Y-branching TIR all-optical switch have been fabricated. When the switching optical intensity is 149.9W/mm2, the extinction ratio is 18dB. A theoretical model was also proposed which provided a good fit to the experimental data.

  10. A Novel All-Optical Switch in a Double-Loop Sagnac Ring Coupled with a Nonlinear Ring Resonator

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Qing; LI Li; ZHAO Jia-Qun; LI Chun-Fei

    2004-01-01

    @@ We propose a novel configuration of all-optical switch based on a double-loop Sagnac ring coupled with a nonlinear ring resonator. In the case of self-phase modulation, the reducing switching threshold power down to mW is predicted, which is the improvement of earlier works on all-optical switches. The switch optimization is analysed.A way to increase the response speed of all-optical switches is suggested.

  11. Laser Trimming for Adjustment of Grating Offset in Phase-Shifted Fiber Grating Coupler for All-Optical Switching Application

    Institute of Scientific and Technical Information of China (English)

    Hirohisa; Yokota; Yutaka; Sasaki

    2003-01-01

    We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.

  12. Thermo-optically tunable switching in an electro-microtube ring resonator

    Science.gov (United States)

    Zeng, Jing; Zhu, Tao; Deng, Ming

    2015-07-01

    We propose a tunable optical switching based on thermo-optic nonlinear effect in an electro-microtube ring resonator (EMRR) made by a capillary embedded with a heating wire. The significant modes shift in the EMRR for nonlinear switching are attributed to a huge joule heat generated by the heating wire, leading to the resonant wavelength shifts over 0.9nm when using 250mA current. In our viewpoints, with such a significant performance, the EMRR may be practically applied to switching, optical filter, sensing and optical network process.

  13. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-01

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  14. A vertically-coupled liquid-crystal long-range plasmonic optical switch

    CERN Document Server

    Zografopoulos, Dimitrios C

    2012-01-01

    An optical switch based on liquid-crystal tunable long-range metal stripe waveguides is proposed and theoretically investigated. A nematic liquid crystal layer placed between a vertical configuration consisting of two gold stripes is shown to allow for the extensive electro-optic tuning of the coupler's waveguiding characteristics. Rigorous liquid-crystal switching studies are coupled with the investigation of the optical properties of the proposed plasmonic structure, taking into account different excitation conditions and the impact of LC-scattering losses. A directional coupler optical switch is demonstrated, which combines low power consumption, low cross-talk, short coupling lengths, along with sufficiently reduced insertion losses.

  15. Optical Switching for Dynamic Distribution of Wireless-over-Fiber Signals

    DEFF Research Database (Denmark)

    Rodes Lopez, Guillermo Arturo; Vegas Olmos, Juan José; Karinou, Fotini;

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical...

  16. All optical contention detection and resolution for asynchronous variable length optical packets switching

    Science.gov (United States)

    Farhat, Rim; Farhat, Amel; Menif, Mourad

    2016-04-01

    We proposed a novel 2×2 all optical packet switching router architecture supporting asynchronous, labelled and variablelength packet. A proof of concept through Matlab Simulink simulation is validated. Then we discussed the three possible scenarios to demonstrate the contention resolution technique based on deflection routing. We have showing that the contending packet is detected and forwarded according FIFO (First In First Out) strategy to another output.

  17. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    Science.gov (United States)

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed.

  18. Assessment and modelling of switching technologies for application in HVDC-circuit breakers

    OpenAIRE

    Lund, Johan

    2011-01-01

    A key element for future DC-grids is a DC circuit breaker that in case of a short circuit fault reliably can turn off a short circuit current. AC circuit breakers are well known components that has been in use for a long time in AC-grids. The AC circuit breaker is designed to interrupt the current at its natural current zero crossings. In DC grids such does not exists, therefore AC breakers can not be directly applied in DC grids. Different concepts and technologies to solve this problem is a...

  19. Patterning Effects in Ultrafast All-Optical Photonic Crystal Nanocavity Switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    All-optical switches are expected to play a key role in increasing the bandwidth of future communication networks by replacing slower electronic components for certain signal processing tasks. Previous work has demonstrated the possibility of switching a single pulse [1,2]. However, a more...... realistic investigation of the switching performance requires longer random pulse sequences, since detrimental effects may accumulate over time scales longer than one pulse duration. This has been investigated for switches based on semiconductor optical amplifiers [3], but in this work the focus...

  20. Field trial of 160 Gb/s all-optical packet switching

    Science.gov (United States)

    Liu, Y.; Herrera, J.; Raz, O.; Tangdiongga, E.; Marti, J.; Ramos, F.; Maxwell, G.; Poustie, A.; Mulvad, H. C. H.; Hill, M. T.; de Waardt, H.; Khoe, G. D.; Koonen, A. M. J.; Dorren, H. J. S.

    2007-11-01

    We present the results of a transmission experiment, over 110 km of field installed fiber, for an all-optical 160 Gb/s packet switching system. The system uses in-band optical labels which are processed entirely in the optical domain using a narrow-band all-optical filter. The label decision information is stored by an optical flip-flop, which output controls a high-speed wavelength converter based on ultra-fast cross-phase modulation in a single semiconductor optical amplifier. The packet switched node is located in between two different fiber sections, each having a length of 54.3-km. The field installed fibers are located around the city of Eindhoven in the Netherlands. The results show how the all-optical switch can effectively route the packets based on the optical information and that such packets may be transmitted across the fiber with an acceptable penalty level.

  1. Performance and cost analysis of all-optical switching: OBS and OCS

    Directory of Open Access Journals (Sweden)

    Ekularn Dhavarudha

    2011-08-01

    Full Text Available This paper presents a study of performance and cost analysis of optical circuit switching (OCS and optical burstswitching (OBS by proposing the clear images of their node architectures and cost formulations. Then, we apply servicelevel agreement (SLA of the high quality of service application in the terms of network blocking probability and averagenetwork delay to demonstrate OCS and OBS performances, their investment costs, and network dimensioning methodology.Applying SLA to our studies can illustrate the impact of contention resolution and blocking resolution schemes to theperformances and costs of OBS and OCS, accordingly. The simulations illustrate that OBS applying WC gives the bestperformance among all architectures deploying the same offered bandwidth. The investigations also show that WC is a majortechnique contributing high performance gain to both OCS and OBS. Especially for OBS, WC is an important scheme allowingOBS high data grooming property as its performance gain contributing to OBS is much higher than those of OCS. For thecost analysis, OCS is the most economic among all architectures. BA provides the most cost effectiveness among all OBScontention resolution schemes. Lastly, FDL is the least cost effective scheme as it gives little performance enhancement butadds more cost to the network.

  2. Subcortical volume analysis in traumatic brain injury: the importance of the fronto-striato-thalamic circuit in task switching.

    Science.gov (United States)

    Leunissen, Inge; Coxon, James P; Caeyenberghs, Karen; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2014-02-01

    Traumatic brain injury (TBI) is associated with neuronal loss, diffuse axonal injury and executive dysfunction. Whereas executive dysfunction has traditionally been associated with prefrontal lesions, ample evidence suggests that those functions requiring behavioral flexibility critically depend on the interaction between frontal cortex, basal ganglia and thalamus. To test whether structural integrity of this fronto-striato-thalamic circuit can account for executive impairments in TBI we automatically segmented the thalamus, putamen and caudate of 25 patients and 21 healthy controls and obtained diffusion weighted images. We assessed components of executive function using the local-global task, which requires inhibition, updating and switching between actions. Shape analysis revealed localized atrophy of the limbic, executive and rostral-motor zones of the basal ganglia, whereas atrophy of the thalami was more global in TBI. This subcortical atrophy was related to white matter microstructural organization in TBI, suggesting that axonal injuries possibly contribute to subcortical volume loss. Global volume of the nuclei showed no clear relationship with task performance. However, the shape analysis revealed that participants with smaller volume of those subregions that have connections with the prefrontal cortex and rostral motor areas showed higher switch costs and mixing costs, and made more errors while switching. These results support the idea that flexible cognitive control over action depends on interactions within the fronto-striato-thalamic circuit.

  3. Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila

    Science.gov (United States)

    Moeller, Morten E.; Danielsen, E. Thomas; Herder, Rachel; O’Connor, Michael B.; Rewitz, Kim F.

    2013-01-01

    Steroid hormones trigger the onset of sexual maturation in animals by initiating genetic response programs that are determined by steroid pulse frequency, amplitude and duration. Although steroid pulses coordinate growth and timing of maturation during development, the mechanisms generating these pulses are not known. Here we show that the ecdysone steroid pulse that drives the juvenile-adult transition in Drosophila is determined by feedback circuits in the prothoracic gland (PG), the major steroid-producing tissue of insect larvae. These circuits coordinate the activation and repression of hormone synthesis, the two key parameters determining pulse shape (amplitude and duration). We show that ecdysone has a positive-feedback effect on the PG, rapidly amplifying its own synthesis to trigger pupariation as the onset of maturation. During the prepupal stage, a negative-feedback signal ensures the decline in ecdysone levels required to produce a temporal steroid pulse that drives developmental progression to adulthood. The feedback circuits rely on a developmental switch in the expression of Broad isoforms that transcriptionally activate or silence components in the ecdysone biosynthetic pathway. Remarkably, our study shows that the same well-defined genetic program that stimulates a systemic downstream response to ecdysone is also utilized upstream to set the duration and amplitude of the ecdysone pulse. Activation of this switch-like mechanism ensures a rapid, self-limiting PG response that functions in producing steroid oscillations that can guide the decision to terminate growth and promote maturation. PMID:24173800

  4. Multi-functional optical signal processing using optical spectrum control circuit

    Science.gov (United States)

    Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2015-02-01

    Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.

  5. Continuous wave terahertz spectroscopy system with stably tunable beat source using optical switch

    Science.gov (United States)

    Eom, Joo Beom; Kim, Chihoon; Ahn, Jaesung

    2017-01-01

    A tunable beat source has been made using an optical switch module. A stably-tunable beat source for continuous wave terahertz spectroscopy system was implemented by simply connecting 16 coaxial distributed feedback laser diodes to an optical switch. The terahertz frequency was rapidly changed without frequency drifts by changing the optical path. The continuous wave terahertz frequency was tuned from 0.05 to 0.8 THz in steps of 50 GHz or 0.4 nm. We measured continuous wave terahertz waveforms emitted from the photomixers using the switched optical beat source. We also calculated the terahertz frequency peaks by taking fast Fourier transforms of the measured terahertz waveforms. By equipping the implemented tunable beat source with an optical switch, a continuous wave terahertz spectroscopy system was constructed and used to demonstrate the feasibility of continuous wave terahertz spectroscopy for nondestructive tests using the spectra of two type of Si wafers with different resistivity.

  6. Improved optical packet switching structure with recirculation buffer and feedback tunable wavelength converter

    Institute of Scientific and Technical Information of China (English)

    Cheng Wu; Shilin Xiao

    2009-01-01

    The performance of an optical switching network is mainly determined by its core node structure.An improved optical packet switching(OPS)node structure based on recirculation optical fiber delay line(FDL)and feedback tunable wavelength converter(TWC),and a specific scheduling algorithm for the node structure are presented.This switching structure supports both point-to-point and point-to-multi-points broadcasting transmission with superior capacity expansion performance.Its superiority in packet loss probability is proved by simulation.

  7. New Remote Gas Sensor Using Rapid Electro-Optical Path Switching

    Science.gov (United States)

    Sachse, G. W.; Lebel, P. J.; Wallio, H. A.; Vay, S. A.; Wang, L. G.

    1994-01-01

    Innovative gas filter correlation radiometer (GFCR) features nonmechanical switching of internal optical paths. Incoming radiation switched electro-optically, by means of polarization, between two optical paths, one of which contains correlation gas cell while other does not. Advantages include switching speed, 2 to 3 orders of magnitude faster than mechanical techniques, and high reliability. Applications include regional studies of atmospheric chemistry from either manned or unmanned aircraft as well as satellite studies of global distributions, sources and sink mechanisms for key species involved in chemistry of troposphere. Commercial applications: ability to survey many miles of natural gas pipelines rapidly from aircraft, pinpointing gas leaks by measuring methane at 2.3 micrometers.

  8. Numerical investigation of high-contrast ultrafast all-optical switching in low-refractive-index polymeric photonic crystal nanobeam microcavities

    Science.gov (United States)

    Meng, Zi-Ming; Zhong, Xiao-Lan; Wang, Chen; Li, Zhi-Yuan

    2012-06-01

    With the development of micro- or nano-fabrication technologies, great interest has been aroused in exploiting photonic crystal nanobeam structures. In this article the design of high-quality-factor (Q) polymeric photonic crystal nanobeam microcavities suitable for realizing ultrafast all-optical switching is presented based on the three-dimensional finite-difference time-domain method. Adopting the pump-probe technique, the ultrafast dynamic response of the all-optical switching in a nanobeam microcavity with a quality factor of 1000 and modal volume of 1.22 (λ/n)3 is numerically studied and a switching time as fast as 3.6 picoseconds is obtained. Our results indicate the great promise of applying photonic crystal nanobeam microcavities to construct integrated ultrafast tunable photonic devices or circuits incorporating polymer materials with large Kerr nonlinearity and ultrafast response speed.

  9. A Sparsity-based Framework for Resolution Enhancement in Optical Fault Analysis of Integrated Circuits

    Science.gov (United States)

    2015-01-01

    CIRCUITS by T. BERKİN ÇİLİNGİROĞLU B.S., Koç University, 2006 M.S., Koç University, 2008 Submitted in partial fulfillment of the requirements...Framework for Resolution Enhancement in Optical Fault Analysis of Integrated Circuits 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...13. SUPPLEMENTARY NOTES 14. ABSTRACT The increasing density and smaller length scales in integrated circuits (ICs) create resolution challenges for

  10. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.;

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate...... and a high-speed optical switch. In the experiment, WDM 10-Gb/s data packets are successfully routed with 1-dB power penalty at a bit-error rate of 10(-9)....

  11. Optical switches based on CdS single nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Yi [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Hu, Chenguo, E-mail: hucg@cqu.edu.cn [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Zheng, Chunhua; Zhang, Hulin [Department of Applied Physics, Chongqing University, 174 Shapingba Street, Chongqing 400044 (China); Yang, Rusen [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Tian, Yongshu [Chongqing Communication College, Chongqing 400035 (China)

    2010-10-15

    CdS nanowires have been synthesized by a composite-hydroxide-mediated approach. The characterization of the nanowire with X-ray diffraction, scanning electron microscopy, and transmission electron microscopy indicated a single-crystalline hexagonal structure growing along [21-bar 1-bar 0] direction with length up to 100 {mu}m. The UV-visible reflection spectrum demonstrated a band gap of 2.36 eV. A strong light emission centered at 543 nm was observed under different excitation wavelengths of 300, 320, 360 and 400 nm, which was further confirmed by a bright fluorescent imaging of a single CdS nanowire. The photocurrent response based on a single CdS nanowire showed distinct optical switch under the intermittent illumination of white light. The rise and decay time were less than 1.0 and 0.2 s, respectively, indicating high crystallization with fewer trap centers in the CdS nanowires. It is possible that the undesirable trapping effects on grain-boundaries for photoconductors could be avoided thanks to the single-crystalline nature of the CdS nanowires.

  12. Optimizing Fiber Topologies for WDM Optical Networks Based on Multi-Granularity Optical Switching Technology

    Institute of Scientific and Technical Information of China (English)

    LI Junjie; ZHOU Bingkun; ZHANG Hanyi; LI Yanhe

    2006-01-01

    For the quality of service (QoS) and fairness considerations, the hop counts of various lightpaths in a wavelength division multiplexing (WDM) optical network should be short and compact. The development of multi-granularity optical switching technology has made it possible to construct various fiber topologies over a fixed physical topology. This paper describes a fiber topology design (FTD) problem, which minimizes the maximum number of required fibers in the physical links for a maximum lightpath hop count in the fiber topology. After the formular description for the FTD problem, a method was given to obtain the lower bound on the maximum number of required fibers. For large or moderate scale networks, three heuristic algorithms are given to efficiently solve the FTD problem. This study gives a new way to optimize the resource configuration performance in WDM optical networks at the topology level and proves its effectiveness via both analyses and numerical experiments.

  13. Investigation of patterning effects in ultrafast SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Zhang, Xinliang; Mørk, Jesper

    2010-01-01

    Ultrafast optical switching employing semiconductor optical amplifier (SOA) based optical switches has been demonstrated at bitrates up to 640 Gbit/s. However, patterning effects caused by relatively slow recovery processes in semiconductor structures remain as an important deteriorating factor...... that limits the ultimate speed at which SOA-based switches can be operated. In this paper, we investigate the patterning effects of SOA-based switches using a systematic approach. A simple condition for the lower bound limit of the bit pattern length that should be adopted in the performance evaluations...... of the switches is derived. It is shown that the minimum bit pattern length scales linearly with the bitrate and the recovery time of the SOA. To overcome the excessive computation time needed for numerical analysis at long pseudorandom binary sequence (PRBS) lengths, an effective method, i.e., periodic method...

  14. Recurrent state-switching of a two-state quantum dot laser by optical feedback

    Science.gov (United States)

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2016-04-01

    In this contribution, we experimentally report recurrent switching between ground and excited state emission in a quantum dot laser controlled by optical feedback. We demonstrate that changing the phase of the optical feedback can efficiently induce switching between the two emission processes of the laser. Experimentally, by using an external mirror placed on a piezo-actuator, we were able to achieve incomplete switching between ground and excited state emission, i.e. without complete extinction of the modes. The switching takes place for variations of the external cavity length at the wavelength scale, i.e. around 1.2 um. Theoretically, we successfully link this switching behaviour with the evolution of the modal gain difference between the two modes induced by the variations of the optical feedback phase.

  15. Transient reconfigurable subangstrom-precise photonic circuits at the optical fiber surface

    CERN Document Server

    Dmitriev, A; Sumetsky, M

    2015-01-01

    Transient fully reconfigurable photonic circuits can be introduced at the optical fiber surface with subangstrom precision. A building block of these circuits, a 0.7 angstrom-precise nano-bottle resonator, is experimentally created by local heating, translated, and annihilated.

  16. Analysis on optical bistability parameters in photonic switching devices

    Science.gov (United States)

    Sarafraz, Hossein; Sayeh, Mohammad R.

    2016-06-01

    An investigation has been done on the parameters of a hysteretic bistable optical Schmitt trigger device. From a design point of view, it is important to know the regions where this bistability occurs and is fully functional with respect to its subsystem parameters. Otherwise experimentally reaching such behavior will be very time-consuming and frustrating, especially with multiple devices employed in a single photonic circuit. A photonic Schmitt trigger consisting of two feedbacked inverting amplifiers, each characterized by -m (slope), A (y-intercept), and B (constant base) parameters is considered. This system is investigated dynamically with a varying input to find its stable and unstable states both mathematically and with simulation. In addition to a complete mathematical analysis of the system, we also describe how m, A, and B can be properly chosen in order to satisfy certain system conditions that result in bistability. More restrictions are also imposed to these absolute conditions by the system conditions as will be discussed. Finally, all results are verified in a more realistic photonic simulation.

  17. An Easily Operating Polymer 1×4 Optical Waveguide Switch Matrix Based on Vertical Couplers

    Institute of Scientific and Technical Information of China (English)

    Kaixin Chen; Pak L Chu; Hau Ping Chan; Kin S. Chiang

    2007-01-01

    A three-dimensional (3D) polymer thermo-optic (TO) 1×4 waveguide switch matrix based on vertical couplers is demonstrated. It consists of four basic 3D switch units and because of its 3D structure, its construction is compact, only 9mm in length; moreover, the control logic of the entire switch is very simple, the light signal can be easily switched to any output port by operating only a single switch unit. The finished devices exhibit a switching extinction ratio greater than 21 dB for all of four output ports and the crosstalk between two adjacent output ports is lower than n for all switching units is about 50 mW.

  18. Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch:an ab initio Study

    Institute of Scientific and Technical Information of China (English)

    XIA Cai-Juan; LIU De-Sheng; ZHANG Ying-Tang

    2011-01-01

    The electronic transport properties of a. Naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's Function formalism combined with first-principles density functional theory. The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation. Theoretical results show that the current through the open form is significantly larger than that through the closed form, which is different from other optical switches based on ring-opening reactions of the molecular bridge. The maximum on-off ratio (about 90) can be obtained at 1.4 V. The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap. Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.%@@ ronic transport properties of a naphthopyran-based molecular optical switch are investigated by using the nonequilibrium Green's function formalism combined with first-principles density functional theory.The molecule that comprises the switch can convert between its open and closed forms upon photoexcitation.Theoretical results show that the current through the open form is significantly larger than that through the closed form,which is different from other optical switches based on ring-opening reactions of the molecular bridge.The maximum on-off ratio(about 90)can be obtained at 1.4 V.The physical origin of the switching behavior is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap.Our result shows that the naphthopyran-based molecule is a good candidate for optical molecular switches and will be useful in the near future.

  19. Synchronization in a Random Length Ring Network for SDN-Controlled Optical TDM Switching

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco;

    2016-01-01

    . In addition, we propose a novel synchronization algorithm that enables automatic synchronization of software defined networking controlled all-optical TDM switching nodes connected in a ring network. Besides providing synchronization, the algorithm also can facilitate dynamic slot size change and failure...... multiplexing transmission and switching of data bursts when using the proposed algorithm to provide synchronization....

  20. All-Optical Switching Using Fabry-Perot Laser Diodes(Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P. K. A. Wai; L. Y. Chan; H. Y. Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  1. All-Optical Switching Using Fabry-Perot Laser Diodes (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P.; K.; A.; Wai; L.; Y.; Chan; H.; Y.; Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  2. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  3. 640 Gbit/s Optical Packet Switching using a Novel In-Band Optical Notch-Filter Labeling Scheme

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved.......Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved....

  4. Mode-selective optical packet switching in mode-division multiplexing networks.

    Science.gov (United States)

    Diamantopoulos, N P; Hayashi, M; Yoshida, Y; Maruta, A; Maruyama, R; Kuwaki, N; Takenaga, K; Uemura, H; Matsuo, S; Kitayama, K

    2015-09-07

    A novel mode-selective optical packet switching, based on mode-multiplexers/demultiplexers and multi-port optical micro-electro-mechanical systems (MEMS) switches, has been proposed and experimentally demonstrated. The experimental demonstration was performed using the LP(01), LP(11a) and LP(11b) modes of a 30-km long mode-division multiplexed few-mode fiber link, utilizing 40 Gb/s, 16-QAM signals.

  5. 1×N rotary vertical micromirror for optical switching applications

    Science.gov (United States)

    Tu, Ching-Chen; Fanchiang, Kuohao; Liu, Cheng-Hsien

    2005-01-01

    We report a 1xN rotary optical switching mirror actuated by an electrostatic comb-driver for the optical networking. A variety of MEMS optical switching mirrors have been recently proposed. Some of these devices utilize surface micromachined films as reflection micromirrors and result in optical degradation. Some of these devices fabricated by bulk micromachining highly rely on delicate assembly for the micromirrors to the top of the actuators. In this paper, we focus on developing a rotary optical switching micromirror with no need of delicate assembly. The rotary actuator and the switching micromirror are both fabricated by deep RIE in our design. We use the Spin-On-Glass (SOG), which is used as the intermediated layer in the low temperature boning, to fabricate a rotary MEMS optical switching mirror with self-assembly. We successfully assemble the micromirror on top of the rotor stage of the rotary actuator. Experimental results show that our rotary vertical micromirror rotates about 1.5° under 150 volts. The first vibration mode of this rotary switching MEMS mirror is a rotary mode and appears around 3.4 kHz, which is measured via a Polytec laser doppler vibrometer.

  6. A novel offset cancellation based on parasitic-insensitive switched-capacitor sensing circuit for the out-of-plane single-Gimbaled decoupled CMOS-MEMS gyroscope.

    Science.gov (United States)

    Chang, Ming-Hui; Huang, Han-Pang

    2013-03-14

    This paper presents a novel parasitic-insensitive switched-capacitor (PISC) sensing circuit design in order to obtain high sensitivity and ultra linearity and reduce the parasitic effect for the out-of-plane single-gimbaled decoupled CMOS-MEMS gyroscope (SGDG). According to the simulation results, the proposed PISC circuit has better sensitivity and high linearity in a wide dynamic range. Experimental results also show a better performance. In addition, the PISC circuit can use signal processing to cancel the offset and noise. Thus, this circuit is very suitable for gyroscope measurement.

  7. A Novel Offset Cancellation Based on Parasitic-Insensitive Switched-Capacitor Sensing Circuit for the Out-of-Plane Single-Gimbaled Decoupled CMOS-MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Han-Pang Huang

    2013-03-01

    Full Text Available This paper presents a novel parasitic-insensitive switched-capacitor (PISC sensing circuit design in order to obtain high sensitivity and ultra linearity and reduce the parasitic effect for the out-of-plane single-gimbaled decoupled CMOS-MEMS gyroscope (SGDG. According to the simulation results, the proposed PISC circuit has better sensitivity and high linearity in a wide dynamic range. Experimental results also show a better performance. In addition, the PISC circuit can use signal processing to cancel the offset and noise. Thus, this circuit is very suitable for gyroscope measurement.

  8. Single-photon all-optical switching using coupled microring resonators

    Indian Academy of Sciences (India)

    Wenge Yang; Amitabh Joshi; Min Xiao

    2007-08-01

    We study the nonlinear phase response of a microring resonator coupled to a bus waveguide and the use of this nonlinear phase shift to store information in the microring resonator and enhance the switching characteristics of a Mach–Zehnder interferometer (MZI). By introducing coupling between adjacent microring resonators, the switching characteristics of the MZI can be exponentially enhanced as a function of the number of microring resonators, when compared to the linear enhancement for uncoupled resonators. With only a few moderate-finesse microring resonators, the switching power can be reduced to attowatt level, allowing for photonic switching devices that operate at single-photon level in ordinary optical waveguides.

  9. A 4 × 4 Strictly Nonblocking Silicon-on-Insulator Thermo-Optic Switch Matrix

    Institute of Scientific and Technical Information of China (English)

    YANG Di; LI Yan-Ping; CHEN Shao-Wu; YU Jin-Zhong

    2005-01-01

    @@ A 4 × 4 strictly nonblocking thermo-optic switch matrix implemented with a 2 × 2 Mach-Zehnder switch unit was fabricated in silicon-on-insulator wafer. Insertion losses of the shortest and the longest path in the device are about 14.8dB and 19.2dB, respectively. The device presents a very low loss dependent on wavelength. For one switch unit, the power consumption needed for operation is measured to be 0.270 W-0.288 W and the switching time is about 13 ± 1μs.

  10. Fabrication of Thermo-Optic Switch in Silicon-on-Insulator

    Institute of Scientific and Technical Information of China (English)

    王章涛; 夏金松; 樊中朝; 陈少武; 余金中

    2003-01-01

    Silicon-on-insulator technology has been used to fabricate 2 × 2 thermo-optic switches. The switch shows crosstalk of-23.4 dB and extinction ratio of 18.1 dB in the bar-state. The switching speed is less than 30 μs and the power consumption is about 420mW. The measured excess loss is 1.8 dB. These merits make the switch more attractive for applications in wavelength division multiplexing.

  11. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    Science.gov (United States)

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-07-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  12. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael

    2011-01-01

    nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2, 3, 4, 5, 6, 9, 10, 11, 12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full...... transmission to full absorption of a single photon probe field are achieved within unprecedentedly narrow EIT windows of a few tens of kilohertz. By applying a weak switching field, this allows us to demonstrate nearly perfect switching of the transmission of the probe field. The results represent important...

  13. Compact all-optical switches based on photon-induced suppression of mode interference

    Institute of Scientific and Technical Information of China (English)

    Longzhi Li; Yi Tang; Jianyi Yang; Minghua Wang; Xiaoqing Jiang

    2006-01-01

    @@ An optically activated optical switch based on suppression of mode interference (SMI) is presented. The imaging properties of multi-mode interference (MMI) section in the switch with Y-branch can be modified by a controlling light injection. The switch was simulated by finite difference beam propagation method(FD-BPM) and fabricated on GaAIAs/GaAs epitaxial materials. At the wavelength of 1.31 μm, the primary experiment showed an extinction ratio of about 8 dB with controlling light power density of 73.5W/mm2.

  14. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    CERN Document Server

    Colman, Pierre; Yu, Yi; Mørk, Jesper

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse. The measurements are in good agreement with a theoretical model that allows us to ascribe the observation to oscillations of the free carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  15. Equivalent Circuit for Cavity Discharges Including Controlled Current Source and Controlled Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Weigen; CHEN Xi; XIE Bo; LIU Jun

    2013-01-01

    Numerous equivalent circuits for cavity discharges have been developed,yet most of these models cannot provide simulated signals that precisely reveal the variability of the discharge's characteristic parameters,such as repetition rate,magnitude and phase of discharges,which makes them not suitable for intensive studies of discharge process.Therefore,using Simulink code,we theoretically analyzed and studied the classical equivalent circuits of cavity discharges,as well as the influence of circuit components on simulation results,and then proposed a novel equivalent circuit,the key parameters of which were determined according to the physical behavior of cavity discharges.In the novel equivalent circuit,the repetition rate can be changed by discharge resistance,inception and residual voltages;meanwhile the phase of discharge can be controlled by adjusting the parameters of shunt resistance.Furthermore,a controlled current source as a function of space charge is introduced in the equivalent circuit.Compared with the former ones,the simulated signals obtained by this novel model are better approximation of real signals.This work could be referred by latter studies of the characteristics and the mechanisms of cavity discharge in oil-paper insulation.

  16. Synthesis, physical properties and simulation of thermo-optic switch based on azo benzothiazole heterocyclic polymer

    Science.gov (United States)

    Qiu, Fengxian; Chen, Caihong; Zhou, Qiaolan; Cao, Zhijuan; Cao, Guorong; Guan, Yijun; Yang, Dongya

    2014-05-01

    A chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the BTPD was polymerized with polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polyurethane-urea (BTPUU). The chemical structures of BTPD and BTPUU were characterized by FT-IR and UV-visible spectroscopy. The thermal and mechanical properties of BTPUU film were investigated. The refractive index and transmission loss of BTPUU film were measured at different temperatures and different laser wavelengths (532 nm, 650 nm and 850 nm) by an attenuated total reflection (ATR) technique and CCD digital imaging devices. The thermo-optic coefficients of BTPUU are -4.7086 × 10-4 °C-1 (532 nm), -6.5257 × 10-4 °C-1 (650 nm) and -5.1029 × 10-4 °C-1 (850 nm), respectively. A Y-branch switch and Mach-Zehnder interferometer (MZI) thermo-optic switches based on thermo-optic effect were proposed and the performances of the switches were simulated, respectively. The results show that the power consumption of the Y-branch thermo-optic switch is only 3.28 mW. The response times of Y-branch and MZI switches are 8.0 ms and 2.0 ms, respectively. The results indicate that the prepared BTPUU has high potential for the applications of the Y-branch digital optical switch (DOS), MZI thermo-optic switch, directional coupler (DC) switch and optical modulators.

  17. Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    The performance of all-optical switches is a compromise between the achievable bandwidth of the switched signal and the energy requirement of the switching operation. In this work we consider a system consisting of a photonic crystal cavity coupled to two input and two output waveguides....... As a specific example of a switching application, we investigate the demultiplexing of an optical time division multiplexed signal. To quantify the energy-bandwidth trade-off, we introduce a figure of merit for the detection of the demultiplexed signal. In such investigations it is crucial to consider...... patterning effects, which occur on time scales that are longer than the bit period. Our analysis is based on a coupled mode theory, which allows for an extensive investigation of the influence of the system parameters on the switching dynamics. The analysis is shown to provide new insights into the ultrafast...

  18. Optimization of silicon-on-insulator based optical switch using tapered waveguides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Optimiz ed 2×2 switches based on silicon-on-insulator (SOI) were demonstrated. In the design, single mode rib waveguides and multimode interferences (MMIs) are connected by tapered waveguides to reduce the mode coupling loss between the two types of waveguides. The average insertion loss of the switches is about -16.9 dB and the excess loss of one is measured of -1.3 dB. The worst crosstalk is larger than 25 dB. Experimental results indicate that some of the main characteristics of optical switches are improved in the modified design, which is according with theoretic analysis. The novel design can be used to improve the characteristics of optical switch matrixes based on 2×2 switch units.

  19. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  20. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  1. Optical True Time Delay for Phased Array Antennas Composed of 2×2 Optical MEMS Switches and Fiber Delay Lines

    Institute of Scientific and Technical Information of China (English)

    Back-Song; Lee; Jong-Dug; Shin; Boo-Gyoun; Kim

    2003-01-01

    We proposed an optical true time delay (TTD) for phased array antennas (PAAs) composed of 2×2 optical MEMS switches, single-mode fiber delay lines, and a fixed wavelength laser diode. A 3-bit TTD for 10 GHz PAAs was implemented with a time delay error less than ± 0.2 ps.

  2. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell

    Science.gov (United States)

    Sotiropoulou, Georgia; Pampalakis, Georgios; Lianidou, Evi; Mourelatos, Zissimos

    2009-01-01

    Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches. PMID:19561119

  3. Optically controlled microwave devices and circuits: Emerging applications in space communications systems

    Science.gov (United States)

    Bhasin, Kul B.; Simons, Rainee N.

    1987-01-01

    Optical control of microwave devices and circuits by an optical fiber has the potential to simplify signal distribution networks in high frequency communications systems. The optical response of two terminal and three terminal (GaAs MESFET, HEMT, PBT) microwave devices are compared and several schemes for controlling such devices by modulated optical signals examined. Monolithic integration of optical and microwave functions on a single semiconductor substrate is considered to provide low power, low loss, and reliable digital and analog optical links for signal distribution.

  4. Analysis of S-SEED's characteristics in optical switch

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This article introduces the basic structure of a symmetric self-electrooptic effect device (S-SEED), and applies the Kirchoff's current law and a purely equivalent capacitive model, to analyze S-SEED's switch characteristics. Linear approximation and N-segment approximation are utilized to obtain S-SEED's voltage-time (V-T) and characteristics. Theoretical analysis is verified by simulations, and the results demonstrate that the precision of S-SEED's switch time can satisfy the requirement in applications with linear approximation. Moreover, the simulations compare S-SEED's switch characteristics with different input powers and input contrast ratios, which reveal that increasing input contrast ratio is an effective way to improve S-SEED's switch characteristics.

  5. Ultra-Fast All-Optical Self-Aware Protection Switching Based on a Bistable Laser Diode

    DEFF Research Database (Denmark)

    An, Yi; Vukovic, Dragana; Lorences Riesgo, Abel;

    2014-01-01

    We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps.......We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps....

  6. Printed Circuit Board Embedded Inductors for Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.;

    2013-01-01

    The paper describes the design of three different structures for printed circuit board embedded inductors. Direct comparison of spirals, solenoids and toroids are made with regard to inductance, dc and ac resistance, electromagnetic field and design flexibility. First the equations for the impeda......The paper describes the design of three different structures for printed circuit board embedded inductors. Direct comparison of spirals, solenoids and toroids are made with regard to inductance, dc and ac resistance, electromagnetic field and design flexibility. First the equations...

  7. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    Science.gov (United States)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  8. Efficient all-optical switch using a Λ atom in a cavity QED system

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Kerckhoff, Joseph

    2011-01-01

    We propose an all-optical switch constructed from a two-mode optical resonator containing a strongly coupled, three-state system. The coupling allows a weak, continuous wave laser drive to incoherently control the transmission of a much stronger, continuous wave signal laser into (and through) th...

  9. Optical Waveguide Switches Employing Total-Internal-Reflection (TIR) Effect (Invited Paper)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, our recent research work on the total-internal-reflection optical switch is presented. The thermo-optic effect of polymeric materials and the photon-induced carrier effect of GaAlAs/GaAs are used in our devices.

  10. Nonlinear all-optical switch based on a white-light cavity

    Science.gov (United States)

    Li, Na; Xu, Jingping; Song, Ge; Zhu, Chengjie; Xie, Shuangyuan; Yang, Yaping; Zubairy, M. Suhail; Zhu, Shi-Yao

    2016-04-01

    It is well known that there is a bottleneck for nonlinear all-optical switching, namely, the switching power and the switching time cannot be lowered simultaneously. A lower switching power requires a resonator with a high quality (Q ) factor, but leads to a longer switching time. We propose to overcome this bottleneck by replacing the nonlinear cavity in such an all-optical switch by a white-light cavity. This can be done by doping three-level atoms in the ring resonator and applying incoherent pump and coherent driving fields on it. The white-light cavity possesses broadband resonance in a linear region. Therefore, for the incident pulse, a broad range of frequency components can take part in the nonlinear process, and so it requires lower power to achieve switching compared to the conventional ring resonator. On the other hand, the refractive index of a white-light cavity has negative dispersion, leading to a fast group velocity. This results in a shorter time to build up the resonant response, yielding a short switching time.

  11. In-line task 57: Component evaluation. [of circuit breakers, panel switches, etc. for space shuttle

    Science.gov (United States)

    Boykin, J. C.

    1974-01-01

    Design analysis tests were performed on selected power switching components to determine the possible applicability of off-the-shelf hardware to space shuttles. Various characteristics were also evaluated in those devices to determine the most desirable properties for the space shuttle.

  12. INSTITUCIONALIZAÇÃO E DESINSTITUCIONALIZAÇÃO DE PRÁTICAS SOCIAIS: O CASO DAS TECNOLOGIAS VOIP E CIRCUIT SWITCHED INSTITUTIONALIZATION AND DEINSTITUTIONALIZATION OF SOCIAL PRACTICES: THE CASE OF VOIP AND CIRCUIT SWITCHED TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    João Armênio Neto

    2009-12-01

    Full Text Available O objetivo do presente estudo foi verificar o processo de institucionalização da tecnologia VoIP e a correspondente desinstitucionalização da tecnologia circuit switched na estratégia de produtos da Organização Alfa, no âmbito global e no contexto brasileiro, no período compreendido entre 1993 e 2008. Com base no quadro teórico de referência da teoria institucional, as tipologias de Oliver (1991, 1992 foram utilizadas para analisar pressões ambientais (políticas, sociais e instrumentais e respostas estratégicas (aquiescência, compromisso, esquivança, desafio e manipulação. A perspectiva da pesquisa é longitudinal, com uso do método de estudo de caso e procedimentos qualitativos para coleta, tratamento e análise dos dados. A coleta de dados realizou-se mediante acesso a fontes secundárias e por meio de entrevistas semi-estruturadas com empregados da Organização Alfa. Os dados demonstram a ocorrência de um processo de substituição da tecnologia circuit switched pela tecnologia VoIP em combinação com práticas associadas a vendas, marketing, P&D e serviços. Verificou-se que a mudança vem ocorrendo de forma gradual, passando por respostas de desafio, esquivança, compromisso e aquiescência, também com certas nuances de manipulação. A situação no final do período estudado demonstra que o processo de institucionalização da tecnologia VoIP na Organização Alfa encontra-se em estágio mais avançado do que no âmbito do mercado em que ela atua. The purpose of this study was to analyze the process of institutionalization of VoIP and deinstitutionalization of circuit switched technologies in Organization Alpha's product strategy, both in the global and the Brazilian context, from 1993 to 2008. Based on the institutional theory's theoretical framework, Oliver's typologies (1991, 1992 were used to understand the environmental (politics, social and instrumental pressures and the organization's strategic responses

  13. Realization of an analog predistortion circuit for RF optical fiber links

    Institute of Scientific and Technical Information of China (English)

    Tian Xuenong; Wang Zhigong; Li Wei

    2009-01-01

    This paper presents an analog predistortion circuit for RF optical fiber links. The circuit consists of two source-coupled differential transconductance amplifiers which could provide linear and nonlinear transfer charac-teristics by adjusting the bias voltage and the transistor sizes. The circuit was designed and realized in a standard 0.18-μm CMOS technology of SMIC. The chip occupies 0.48 × 0.24 mm~2. The DC supply is 3.3 V. Using this circuit, the third-order intermodulation distortion (IMD) suppression of a directly modulated RF optical fiber link can be improved by 9-16 dBc at relatively low cost.

  14. Dynamics of all-optically switched micropillar resonances

    CERN Document Server

    Thyrrestrup, Henri; Ctistis, Georgios; Claudon, Julien; Vos, Willem L

    2014-01-01

    Here we do frequency and time resolved switching of a single GaAs/AlGa micropillar cavity with a pillar diameter of 6 mu using a ultrafast pump-probe setup. The switching is achieved by two-photon excitation of free carriers by an femtosecond pump pulse. We observe a simultaneously frequency shift of the first two transverse micropillar modes and obtain high resolution frequency traces of the two resonances in time. A difference in the the maximum switching magnitude of 12% point is caused by spatial inhomogeneous excitation of carriers in the pillar. The relaxation dynamic of the two resonances show a strongly non-exponential decay. We interpret the non-exponential dynamics in term of a second order decay model for the spontaneous recombination of electron and hole for the free carriers and a slow free carrier trapping time of ~300 ps.

  15. A New All-Optical Switching Node Including Virtual Memory and Synchronizer

    Directory of Open Access Journals (Sweden)

    Selma Batti

    2010-02-01

    Full Text Available This paper presents an architecture for an all optical switching node. The architecture is suitable for optical packet and optical burst switching and provides appropriate contention resolution schemes and QoS guarantees. A concept, called virtual memory, is developed to allow controllable and reasonable periods for delaying optical traffics. Related to its implementation, several engineering issues are discussed, including the use of loopbased optical delay lines, fiber Bragg gratings, and limited number of signal amplifications. In particular, two implementations using optical flip-flop and laser neuron network based control units are analyzed. This paper also discusses the implementation and performance of an alloptical synchronizer that is able to synchronize arriving data units to be aligned on the clock signal associated with the beginning time of slots, in the node, with an acceptable error.

  16. NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems

    CERN Document Server

    Bányai, L

    1989-01-01

    This book contains all the papers presented at the NATO workshop on "Optical Switching in Low Dimensional Systems" held in Marbella, Spain from October 6th to 8th, 1988. Optical switching is a basic function for optical data processing, which is of technological interest because of its potential parallelism and its potential speed. Semiconductors which exhibit resonance enhanced optical nonlinearities in the frequency range close to the band edge are the most intensively studied materials for optical bistability and fast gate operation. Modern crystal growth techniques, particularly molecular beam epitaxy, allow the manufacture of semiconductor microstructures such as quantum wells, quantum wires and quantum dots in which the electrons are only free to move in two, one or zero dimensions, of the optically excited electron-hole pairs in these low respectively. The spatial confinement dimensional structures gives rise to an enhancement of the excitonic nonlinearities. Furthermore, the variations of the microstr...

  17. Analog CMOS circuit design and characterization for optical coherence tomography signal processing.

    Science.gov (United States)

    Kariya, Rajesh; Mathine, David L; Barton, Jennifer K

    2004-12-01

    We have developed a custom analog CMOS circuit to perform the signal processing for an optical coherence tomography imaging system. The circuit is realized in a 1.5 microm low-noise analog CMOS technology. The circuitry extracts the Doppler frequency from the signal and electrically mixes this with the original signal to provide a filtered A-scan. The circuitry was used to produce a two-dimensional image of an onion.

  18. Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors

    Science.gov (United States)

    Grichener, Alexander

    The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel

  19. Optimized design and fabrication of nanosecond response electro optic switch based on ultraviolet-curable polymers

    Institute of Scientific and Technical Information of China (English)

    赵旭亮; 岳远斌; 刘通; 孙健; 王希斌; 孙小强; 陈长鸣; 张大明

    2015-01-01

    A nanosecond response waveguide electro-optic (EO) switch based on ultraviolet (UV) sensitive polymers of Norland optical adhesive (NOA73) and Dispersed Red 1 (DR1) doped SU-8 (DR1/SU-8) is designed and fabricated. The absorption properties, refractive indexes, and surface morphologies of NOA73 film are characterized. The single-mode transmission condition is computed by the effective index method, and the percentage of optical field distributed in EO layer is optimized to be 93.78%. By means of spin-coating, thermal evaporation, photolithography, and inductively coupled plasma etching, a Mach–Zehnder inverted-rib waveguide EO switch with micro-strip line electrode is fabricated on a silicon substrate. Scanning electron microscope characterization proves the physic-chemical compatibility between NOA73 cladding and DR1/SU-8 core material. The optical transmission loss of the fabricated switch is measured to be 2.5 dB/cm. The rise time and fall time of switching are 3.199 ns and 2.559 ns, respectively. These results indicate that the inverted-rib wave-guide based on UV-curable polymers can effectively reduce the optical transmission loss and improve the time response performance of an EO switch.

  20. RETRACTED — Preparation of helical biphenyl polyurethane and its low power consumption thermo-optic switch

    Science.gov (United States)

    Wang, Qing; Qiu, Fengxian; Yang, Dongya; Cao, Guorong; Guan, Yijun; Shen, Qiang; Zhuang, Lin; Cao, Zhijuan; Ye, Feiyan

    2013-04-01

    Azo chromophore molecule (NDPD) and helical biphenyl polyurethane (HBPU) were prepared. The chemical structures of NDPD and HBPU were characterized by FTIR and UV-vis spectroscopy. The measurements of refractive index, thermo-optic coefficient (dn/dT), transmission loss, refractive index dispersions and Sellmeyer coefficients of HBPU were measured using ATR technique, CCD digital imaging devices and Sellmeyer equation. The results showed that HBPU would be useful for the design of high performance digital optical switch. The prepared HBPU was utilized as core material to propose a Y-branch thermo-optic switch, which was based on thermo-optic effect of HBPU at the infrared communication wavelength of 1.55 μm. With branching angle of 0.143° and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The simulation results indicated that the device has a low switching power of 1.68 mW and a switching response time of 7.0 ms.

  1. Design of Optically Path Length Matched, Three-Dimensional Photonic Circuits Comprising Uniquely Routed Waveguides

    CERN Document Server

    Charles, Ned; Gross, Simon; Stewart, Paul; Norris, Barnaby; O'Byrne, John; Lawrence, Jon S; Withford, Michael J; Tuthill, Peter G

    2012-01-01

    A method for designing physically path length matched, three-dimensional photonic circuits is described. We focus specifically on the case where all the waveguides are uniquely routed from the input to output; a problem which has not been addressed to date and allows for the waveguides to be used in interferometric measurements. Circuit elements were fabricated via the femtosecond laser direct-write technique. We demonstrate via interferometric methods that the fabricated circuits were indeed optically path length matched to within 45 um which is within the coherence length required for many applications.

  2. A scalable silicon photonic chip-scale optical switch for high performance computing systems.

    Science.gov (United States)

    Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B

    2013-12-30

    This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME.

  3. General Analysis of Vacuum Circuit Breaker Switching Overvoltages in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Ghafourian, S. M.; Arana, I.; Holbøll, Joachim

    2016-01-01

    Understanding mechanisms of switching transient overvoltages in modern electrical power systems is a necessity to ensure a proper design of power plants and switchgear and the required level of reliable and secure system operation. High fidelity plant modelling and accurate transient analysis...... is a prerequisite for understanding the mechanisms of how overvoltages are created and whether or not the voltage withstand capabilities of system components will be exceeded. This research is focused on switching overvoltages typical for an offshore wind farm power collection grid configuration that comprises...... on the transformer terminal voltage during closing operation was studied. A wind farm power collection system was modelled in ATP-EMTP environment. To validate the results obtained through computer simulation, field measurements from an actual system were used....

  4. Comments on: Optical computation based on nonlinear total reflectional optical switch at the interface

    Indian Academy of Sciences (India)

    Y A Zaghloul

    2015-12-01

    As we read the paper by Jianqi Zhang and Huan Xu, Pramana – J. Phys. 72, 547 (2009), two issues became clear, that warranted writing this comment. First, the switch, which is the main building block of the devices, and which is used to route the signal, does not work as explained in Section 4.1. Accordingly, the optical router does not work as explained, either. In addition, the half adder does not work as explained and a completely different Truth Table is obtained. The full adder is left to the reader as an exercise. Secondly, the previously published work, which is closely related to the work reported, was not referenced or discussed. In the following paragraphs we discuss each issue in some detail to give the authors the opportunity to better explain their work and clear such issues.

  5. SIMPLIFIED METHOD FOR CALCULATING CLOSING IN OF SWITCH-GEAR FLEXIBLE BUSES AT SHORT CIRCUIT BY IMPULSE OF ELECTRODYNAMIC FORCES

    Directory of Open Access Journals (Sweden)

    I. I. Sergey

    2005-01-01

    Full Text Available The paper contains description of a simplified method for calculating closing-in of switch-gear flexible buses at short circuit. The developed method is based on integral and energy principles of  mechanics. In order to increase accuracy of the calculation corrections factors are introduced in an explicit formula for calculation of maximum horizontal deviations. These factors have been obtained with the help of a computer program that realized numerical method for calculating closing-in of wires by flexible thread levels.Diagrams are constructed with the purpose to find ymax and criteria of electro-dynamic resistance of flexible buses (permissible impulse of electro-dynamic forces and current of electro-dynamic resistance is determined.

  6. Implementation of a Two-Channel Maximally Decimated Filter Bank using Switched Capacitor Circuits

    OpenAIRE

    Nahlik, J.; Hospodka, J.; P. Sovka; B. Psenicka

    2013-01-01

    The aim of this paper is to describe the implementation of a two-channel filter bank (FB) using the switched capacitor (SC) technique considering real properties of operational amplifiers (OpAmps). The design procedure is presented and key recommendations for the implementation are given. The implementation procedure describes the design of two-channel filter bank using an IIR Cauer filter, conversion of IIR into the SC filters and the final implementation of the SC filters. The whole design ...

  7. A novel graphene oxide-polyimide as optical waveguide material: Synthesis and thermo-optic switch properties

    Science.gov (United States)

    Cao, Tianlin; Zhao, Fanyu; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong; Zhao, Zerun; Li, Jiaxin; Guo, Xiaotong

    2016-10-01

    In this work, a novel graphene oxide-polyimide (GOPI) as optical waveguide material was prepared. The structure, mechanical, thermal property and morphology of the GOPI was characterized by using fourier transform infrared, UV-visible spectroscopy, near-infrared spectrum, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscope and transmission electron microscopy. The thermo-optic coefficients (dn/dT) are -9.16 × 10-4 (532 nm), -7.56 × 10-4 (650 nm) and -4.82 × 10-4 (850 nm) °C-1, respectively. Based on the thermo-optic effect of prepared GOPI as waveguide material, a Y-branch with branching angle of 0.143° and Mach-Zehnder thermo-optic switches were designed. Using finite difference beam propagation method (FD-BPM) method, the simulation results such as power consumptions and response times of two different thermo-optic switches were obtained.

  8. From Boolean logic to switching circuits and automata. Towards modern information technology

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Radomir S. [Nis Univ. (RS). Dept. of Computer Science; Astola, Jaakko [Tampere Univ. of Technology (Finland). Dept. of Signal Processing

    2011-07-01

    Logic networks and automata are facets of digital systems. The change of the design of logic networks from skills and art into a scientific discipline was possible by the development of the underlying mathematical theory called the Switching Theory. The fundamentals of this theory come from the attempts towards an algebraic description of laws of thoughts presented in the works by George J. Boole and the works on logic by Augustus De Morgan. As often the case in engineering, when the importance of a problem and the need for solving it reach certain limits, the solutions are searched by many scholars in different parts of the word, simultaneously or at about the same time, however, quite independently and often unaware of the work by other scholars. The formulation and rise of Switching Theory is such an example. This book presents a brief account of the developments of Switching Theory and highlights some less known facts in the history of it. The readers will find the book a fresh look into the development of the field revealing how difficult it has been to arrive at many of the concepts that we now consider obvious. Researchers in the history or philosophy of computing will find this book a valuable source of information that complements the standard presentations of the topic. (orig.)

  9. Experimental Demonstration of Optical Switching of Tbit/s Data Packets for High Capacity Short-Range Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Hu, Hao;

    2015-01-01

    Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated.......Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated....

  10. An all-optical spatial light modulator for field-programmable silicon photonic circuits

    CERN Document Server

    Bruck, Roman; Lalanne, Philippe; Mills, Ben; Thomson, David J; Mashanovich, Goran Z; Reed, Graham T; Muskens, Otto L

    2016-01-01

    Reconfigurable photonic devices capable of routing the flow of light enable flexible integrated-optic circuits that are not hard-wired but can be externally controlled. Analogous to free-space spatial light modulators, we demonstrate all-optical wavefront shaping in integrated silicon-on-insulator photonic devices by modifying the spatial refractive index profile of the device employing ultraviolet pulsed laser excitation. Applying appropriate excitation patterns grants us full control over the optical transfer function of telecommunication-wavelength light travelling through the device, thus allowing us to redefine its functionalities. As a proof-of-concept, we experimentally demonstrate routing of light between the ports of a multimode interference power splitter with more than 97% total efficiency and negligible losses. Wavefront shaping in integrated photonic circuits provides a conceptually new approach toward achieving highly adaptable and field-programmable photonic circuits with applications in optica...

  11. Optical readout of coupling between a nanomembrane and an LC circuit at room temperature

    DEFF Research Database (Denmark)

    Bagci, T.; Simonsen, A.; Zeuthen, E.

    2013-01-01

    to optical excitations in a high finesse cavity.In this work, we have experimentally realized both optical and electrical detection of coupling in a roomtemperature electromechanical system composed of an LC circuit and a 100-nm thick SiN nanomembrane coated by 50 nm Aluminum. We follow an approach similar...... via a mechanical interface is of potential interest, as it would allow for low noise optical detection and laser cooling of weak electrical excitations. In a recent paper [4], a scheme was proposed for room temperature applications where a membrane converts rf electrical excitations in an LC circuit...... to the one described in [4] (cf. Fig 1a): The displacement of the high Q membrane is capacitively coupled to a plate capacitor that is connected in parallel to a ferrite inductor. A change in capacitance alters the LC resonance frequency, thereby creating coupling between the membrane and the LC circuit...

  12. Design of buffer structure at core nodes in optical burst switching

    Institute of Scientific and Technical Information of China (English)

    LI Lei; ZHANG Min-gde; SUN Xiao-han

    2006-01-01

    Reasonable and effective buffer structures are proposed in core routers /nodes of optical burst switching.Based on the model of burst traffics and their contentions,the basic qualifications for the design of buffer structures are concluded.With these qualifications,buffer and switch integrated structures are proposed;and by conclusion and expansion,the classification rules of buffer structures are also proposed from different angles.The schemes to integrate structures are analyzed and simulated.

  13. Optimum design of a polymer electro-optic microring resonator switch

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Novel transfer functions are presented for a polymer electro-optic microring resonator switches. The resonating process of the light in the microring is simulated using the formulas. Then the optimization of the structural parameters is performed,and the characteristics are analyzed, such as the resonance time, output spectrum, operation voltage, insertion loss and crosstalk were analyzed. The simulation results show that the designed device exhibits favorable switching functions.

  14. Platforms for integrated nonlinear optics compatible with silicon integrated circuits

    CERN Document Server

    Moss, David J

    2014-01-01

    Nonlinear photonic chips are capable of generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review recent progress in CMOS-compatible platforms for nonlinear optics, focusing on Hydex glass and silicon nitride and briefly discuss the promising new platform of amorphous silicon. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.

  15. Optical switching of cross intensity correlation in cavity electromagnetically induced transparency

    Science.gov (United States)

    Rao, Shi; Hu, Xiangming; Xu, Jun; Li, Lingchao

    2017-03-01

    We present optical switching of cross intensity correlation in the context of cavity electromagnetically induced transparency configuration. For symmetrical parameters, the cross intensity correlation switches from negative to positive as the atom–pump detunings change symmetrically from one case to the other. In terms of the dressed atomic states and the Bogoliubov modes we analyze the atom–photon interaction mechanism for the switching behavior, and present a numerical verification. As a by-product, we show noise squeezing of the sum or difference intensity in a limited region of parameters.

  16. Performance Trade-Offs for Wavelength Striping Optical Switching Using a Novel Star Architecture

    Directory of Open Access Journals (Sweden)

    Enrique Rodriguez-Colina

    2016-01-01

    Full Text Available This work describes various performance trade-offs that arise from the use of a technique for optical switching under various network topologies. Such switching operation can be summarized as follows: (a user data are divided into fixed-length fragments, (b each fragment is assigned to a different wavelength, and (c all wavelengths are simultaneously switched to the egress links. This concept of dividing user data into several wavelengths to be simultaneously switched is called wavelength striping and its purpose is to reduce latency and increase throughput for short distance interconnects. We depart from previous work where a building block implementing this basic switching function has been built around semiconductor optical amplifiers (SOAs. In this paper, we investigate diverse trade-offs that arise from the use of this switching approach in different network topologies. One of the main issues addressed in this paper is the relation between cascadability and bit error rate (BER. In this case, our results indicate that a switch fabric can cascade up to five stages without exceeding a BER of 10−9 and without incurring in power budget problems. We also show that the performance degradation, introduced by cascading SOAs, can be compensated with a star interconnect architecture that is introduced. Other issues addressed in this paper are the effect of scalability on cost and the effect of latency on TCP performance and reliability.

  17. 三相绕组切换电路分析与设计%Analysis and Design of Thiphase Winding Switching Circuit

    Institute of Scientific and Technical Information of China (English)

    罗宏浩; 王福兴; 姜红军

    2012-01-01

    Under the circumstances that volume and power are limited in armored vehicles, raising low speed large torque and widening flux-weakening range become conflict inevitably in permanent magnet motors. The motor winding switching method is adopted to resolve this problem. A switching circuit design is proposed and the dynamic process of switching circuit is analyzed with Muhisim software. What' s more, a switching control system is constructed based on zero current switching to fulfill triphase winding switching and observe the current waveforms. The experimental results show that the switching between serial and parallel connection in the circuit is very rapid and the voltage impulsion is eliminated during the switching process.%针对在装甲车辆中体积、功率受限条件下,永磁电动机提升低速转矩与拓宽弱磁工作范围难以兼顾的问题,提出了采用电动机绕组换接的方法。提出了一种切换电路的设计方案,采用电路仿真软件Muhisim分析了切换电路的动态工作过程。在此基础上,构建了一套适用于三相绕组切换的零电流切换控制系统,可通过上位机观测电路中的电流波形,并实现对绕组的串、并联结构进行切换控制。试验结果表明:该电路可快速实现绕组的串/并联切换,而且基本上不会产生电压冲击。

  18. 5.8kV SiC PiN Diode for Switching of High-Efficiency Inductive Pulsed Plasma Thruster Circuits

    Science.gov (United States)

    Toftul, Alexandra; Polzin, Kurt A.; Hudgins, Jerry L.

    2014-01-01

    Inductive Pulsed Plasma Thruster (IPPT) pulse circuits, such as those needed to operate the Pulsed Inductive Thruster (PIT), are required to quickly switch capacitor banks operating at a period of µs while conducting current at levels on the order of at least 10 kA. [1,2] For all iterations of the PIT to date, spark gaps have been used to discharge the capacitor bank through an inductive coil. Recent availability of fast, high-power solid state switching devices makes it possible to consider the use of semiconductor switches in modern IPPTs. In addition, novel pre-ionization schemes have led to a reduction in discharge energy per pulse for electric thrusters of this type, relaxing the switching requirements for these thrusters. [3,4] Solid state switches offer the advantage of greater controllability and reliability, as well as decreased drive circuit dimensions and mass relative to spark gap switches. The use of solid state devices such as Integrated Gate Bipolar Transistors (IGBTs), Gate Turn-off Thyristors (GTOs) and Silicon-Controlled Rectifiers (SCRs) often involves the use of power diodes. These semiconductor devices may be connected antiparallel to the switch for protection from reverse current, or used to reduce power loss in a circuit by clamping off current ringing. In each case, higher circuit efficiency may be achieved by using a diode that is able to transition, or 'switch,' from the forward conducting state ('on' state) to the reverse blocking state ('off' state) in the shortest amount of time, thereby minimizing current ringing and switching losses. Silicon Carbide (SiC) PiN diodes offer significant advantages to conventional fast-switching Silicon (Si) diodes for high power and fast switching applications. A wider band gap results in a breakdown voltage 10 times that of Si, so that a SiC device may have a thinner drift region for a given blocking voltage. [5] This leads to smaller, lighter devices for high voltage applications, as well as reduced

  19. Countermeasures for Electromagnetic Interference of LED Switch Type Drive Circuit%切换式LED驱动电路电磁干扰对策

    Institute of Scientific and Technical Information of China (English)

    徐华

    2014-01-01

    The paper discussed measuring method of EMI, analyzed the cause of LED switch type drive circuit and offered strate-gies of restraining EMI.%讨论了EMI测量方法,分析了切换式LED驱动电路的EMI成因,给出了抑制EMI的对策。

  20. Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides

    Directory of Open Access Journals (Sweden)

    Kelvin J. A. Ooi

    2016-07-01

    Full Text Available Graphene plasmonics provides a unique and excellent platform for nonlinear all-optical switching, owing to its high nonlinear conductivity and tight optical confinement. In this paper, we show that impressive switching performance on graphene plasmonic waveguides could be obtained for both phase and extinction modulations at sub-MW/cm2 optical pump intensities. Additionally, we find that the large surface-induced nonlinearity enhancement that comes from the tight confinement effect can potentially drive the propagating plasmon pump power down to the pW range. The graphene plasmonic waveguides have highly configurable Fermi-levels through electrostatic-gating, allowing for versatility in device design and a broadband optical response. The high capabilities of nonlinear graphene plasmonics would eventually pave the way for the adoption of the graphene plasmonics platform in future all-optical nanocircuitry.

  1. Flexible low-voltage organic integrated circuits with megahertz switching frequencies (Presentation Recording)

    Science.gov (United States)

    Zschieschang, Ute; Takimiya, Kazuo; Zaki, Tarek; Letzkus, Florian; Richter, Harald; Burghartz, Joachim N.; Klauk, Hagen

    2015-09-01

    A process for the fabrication of integrated circuits based on bottom-gate, top-contact organic thin-film transistors (TFTs) with channel lengths as short as 1 µm on flexible plastic substrates has been developed. In this process, all TFT layers (gate electrodes, organic semiconductors, source/drain contacts) are patterned with the help of high-resolution silicon stencil masks, thus eliminating the need for subtractive patterning and avoiding the exposure of the organic semiconductors to potentially harmful organic solvents or resists. The TFTs employ a low-temperature-processed gate dielectric that is sufficiently thin to allow the TFTs and circuits to operate with voltages of about 3 V. Using the vacuum-deposited small-molecule organic semiconductor 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10 DNTT), TFTs with an effective field-effect mobility of 1.2 cm2/Vs, an on/off current ratio of 107, a width-normalized transconductance of 1.2 S/m (with a standard deviation of 6%), and a signal propagation delay (measured in 11-stage ring oscillators) of 420 nsec per stage at a supply voltage of 3 V have been obtained. To our knowledge, this is the first time that megahertz operation has been achieved in flexible organic transistors at supply voltages of less than 10 V. In addition to flexible ring oscillators, we have also demonstrated a 6-bit digital-to-analog converter (DAC) in a binary-weighted current-steering architecture, based on TFTs with a channel length of 4 µm and fabricated on a glass substrate. This DAC has a supply voltage of 3.3 V, a circuit area of 2.6 × 4.6 mm2, and a maximum sampling rate of 100 kS/s.

  2. An all-optical method of developing data communication system with error detection circuit

    Science.gov (United States)

    Mandal, Sumana; Mandal, Dhoumendra; Garai, Sisir Kumar

    2014-03-01

    The basic criterion of data communication is that received data should exactly be the replica of the transmitting data. If any error is introduced in the received data, then data transmission should be stopped immediately. In this article the authors have developed an all-optical method of data communication system with error detection mechanism that works with frequency encoded data. Basic building blocks of the proposed data communication scheme are parity generator and parity checker which are developed from all optical XOR logic gates. Simulation results testify the feasibility of the proposed scheme. These logic gates are developed exploiting nonlinear polarization rotation based frequency conversion and switching character of semiconductor optical amplifiers. The scheme with frequency encoded data, high speed of frequency conversion and polarization switching action of semiconductor optical amplifier offers secure, error free, faster data communication network.

  3. Sub-picosecond optical switching with a negative index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Dani, Keshav M [Los Alamos National Laboratory; Upadhya, Prashant C [Los Alamos National Laboratory; Zahyum, Ku [CHTM-UNM

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  4. Optical switching of electron transport in a waveguide-QED system

    Science.gov (United States)

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2016-10-01

    Electron switching in waveguides coupled to a photon cavity is found to be strongly influenced by the photon energy and polarization. Therefore, the charge dynamics in the system is investigated in two different regimes, for off-resonant and resonant photon fields. In the off-resonant photon field, the photon energy is smaller than the energy spacing between the first two lowest subbands of the waveguide system, the charge splits between the waveguides implementing a √{ NOT }-quantum logic gate action. In the resonant photon field, the charge is totally switched from one waveguide to the other due to the appearance of photon replica states of the first subband in the second subband region instigating a quantum-NOT transition. In addition, the importance of the photon polarization to control the charge motion in the waveguide system is demonstrated. The idea of charge switching in electronic circuits may serve to built quantum bits.

  5. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi;

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  6. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction.

    Science.gov (United States)

    Li, Xianyao; Xu, Hao; Xiao, Xi; Li, Zhiyong; Yu, Yude; Yu, Jinzhong

    2014-02-15

    We propose and demonstrate a fast and efficient silicon thermo-optic switch based on reverse breakdown of the pn junction. Benefiting from the direct heating of silicon waveguide by embedding the pn junction into the waveguide center, fast switching with on/off time of 330 and 450 ns and efficient thermal tuning of 0.12  nm/mW for a 20 μm radius microring resonator are achieved, indicating a high figure of merit of only 8.8  mW·μs. The results here show great potential for application in the future optical interconnects.

  7. Harnessing the polariton drag effect to design an electrically controlled optical switch.

    Science.gov (United States)

    Berman, Oleg L; Kezerashvili, Roman Ya; Kolmakov, German V

    2014-10-28

    We propose a design of a Y-shaped electrically controlled optical switch based on the studies of propagation of an exciton-polariton condensate in a patterned optical microcavity with an embedded quantum well. The polaritons are driven by a time-independent force due to the microcavity wedge shape and by a time-dependent drag force owing to the interaction of excitons in a quantum well and the electric current running in a neighboring quantum well. It is demonstrated that by applying the drag force one can direct more than 90% of the polariton flow toward the desired branch of the switch with no hysteresis. By considering the transient dynamics of the polariton condensate, we estimate the response speed of the switch as 9.1 GHz. We also propose a design of the polariton switch in a flat microcavity based on the geometrically identical Y-shaped quantum wells where the polariton flow is only induced by the drag force. The latter setup enables one to design a multiway switch that can act as an electrically controlled optical transistor with on and off functions. Finally, we performed the simulations for a microcavity with an embedded gapped graphene layer and demonstrated that in this case the response speed of the switch can be increased up to 14 GHz for the same switch size. The simulations also show that the energy gap in the quasiparticle spectrum in graphene can be utilized as an additional parameter that controls the propagation of the signals in the switch.

  8. Switching between optical bistability and multistability in plasmonic multilayer nanoparticles

    Science.gov (United States)

    Daneshfar, Nader; Naseri, Tayebeh

    2017-01-01

    We study the nonlinear optical response of multilayer metallic nanoparticles driven by an electromagnetic wave, which can show large field enhancement, hence significantly enhancing optical processes. In addition to optical bistability (OB), we find that optical multistability (OM), which plays a more important role in some applications than OB, is achievable and can be obtained in a multilayer plasmonic nanoparticle. Our results demonstrate that owing to strong localized fields created in the core and each layer of multilayer nanoshells, which occurs in the particles at frequencies close to the surface plasmon resonance, multilayer nanoparticles are promising systems with unique optical characteristics to control the light by light at the nanometer scale. It is demonstrated that OB can be converted to OM via adjusting the wavelength of the applied field and the size of the nanoshell, and the system can manifest optical hysteresis. It is found that the optical bistable or multistable threshold and the shape of hysteresis loops are strongly dependent on the thickness of shells, the incident wavelength, the permittivity of the surrounding medium, and the composition of the core and the inner/outer layers. We also give a discussion on the impact of the exciton-plasmon interaction and the intrinsic size effect on the nonlinear optical response of multilayer spherical nanoparticles.

  9. High-speed operation of optical exclusive OR circuit based on balanced detection and intensity modulation

    Directory of Open Access Journals (Sweden)

    Koichi Takiguchi

    2015-12-01

    Full Text Available We report the evaluated results of an optical exclusive OR (XOR circuit for high-speed binary signals, which operates based on balanced detection and intensity modulation. This circuit partly adopts simple electronics in order to achieve simple configuration and operation. Two input optical binary signals into a balanced photo detector produce an electrical signal for directly driving a modulator. The modulator modulates the lightwave from a laser diode and generates optical XOR output of the two input optical signals. After briefly explaining its configuration and operating principle, We demonstrate some experimental results to show its potential. We show its successful operation at 40 Gbit/s binary signals including bit error rate measurement.

  10. Acousto-Optic Modulation and Optoacoustic Gating in Piezo-Optomechanical Circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-02-01

    Acoustic-wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (rf) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4-GHz rf waves to 194-THz (1550 nm) optical waves, through coupling to propagating and localized 2.4-GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the rf carrier are mapped to the optical field. We also show optoacoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed rf and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modeled through the coupled mode equations of cavity optomechanics.

  11. Acousto-optic and opto-acoustic modulation in piezo-optomechanical circuits

    CERN Document Server

    Balram, Krishna C; Ilic, B Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic modulation, in which the application of optical pulses gates the transmission of propagating acoustic waves. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modeled through the coupled mode equations of cavity optomechanics.

  12. Whispering-gallery microcavity semiconductor lasers suitable for photonic integrated circuits and optical interconnects

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The characteristics of whispering-gallery-like modes in the equilateral triangle and square microresonators are introduced,including directional emission triangle and square microlasers connected to an output waveguide.We propose a photonic interconnect scheme by connecting two directional emission microlasers with an optical waveguide on silicon integrated circuit chip.The measurement indicates that the triangle microlasers can work as a resonance enhanced photodetector for optical interconnect.

  13. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  14. C-share: Optical circuits sharing for software-defined data-centers [arXiv

    DEFF Research Database (Denmark)

    Ben-Itzhak, Yaniv; Caba, Cosmin Marius; Schour, Liran

    2016-01-01

    for each flow, which raise scalability issues. In this paper, we present C-Share - a practical, scalable SDN-based circuit sharing solution for data center networks. C-Share inherently enable elephant flows to share optical circuits by exploiting a flat upper tier network topology. C-Share is based...... on a scalable and decoupled SDN-based elephant flow rerouting method comprised of elephant flow detection, tagging and identification, which is utilized by using a prevalent network sampling method (e.g., sFlow). C-Share requires only a single OpenFlow rule for each optical circuit, and therefore significantly...... reduces the required OpenFlow rule entry footprint and setup rule rate. It also mitigates the OpenFlow outbound latency for subsequent elephant flows. We implement a proof-ofconcept system for C-Share based on Mininet, and test the scalability of C-Share by using an event driven simulation. Our results...

  15. All-optical switching in a symmetric three-waveguide coupler with phase-mismatched absorptive central waveguide.

    Science.gov (United States)

    Chen, Yijing; Ho, Seng-Tiong; Krishnamurthy, Vivek

    2013-12-20

    All-optical switching operation based on manipulation of absorption in a three-waveguide directional coupler is theoretically investigated. The proposed structure consists of one absorptive central waveguide and two identical passive side waveguides. Optically induced absorption change in the central waveguide effectively controls the coupling of light between the two side waveguides, leading to optical switching action. The proposed architecture alleviates the fabrication challenges and waveguide index matching conditions that limit previous demonstrations of similar switching schemes based on a two-waveguide directional coupler. The proposed device accommodates large modal index difference between absorptive and passive waveguides without compromising the switching extinction ratio.

  16. Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks

    DEFF Research Database (Denmark)

    Overby, H.; Stol, N.; Nord, Martin

    2006-01-01

    Existing quality of service differentiation schemes for today's IP over point-to-point optical WDM networks take advantage of electronic RAM to implement traffic management algorithms in order to isolate the service classes. Since practical optical RAM is not available, these techniques...... are not suitable for a future all-optical network. Hence, new schemes are needed to support QoS differentiation in optical packet-switched (OPS) networks. In this article we first present an overview of existing QoS differentiation mechanisms suitable for asynchronous bufferless OPS. We then compare...

  17. Continuous or discrete attractors in neural circuits? A self-organized switch at maximal entropy

    CERN Document Server

    Bernacchia, Alberto

    2007-01-01

    A recent experiment suggests that neural circuits may alternatively implement continuous or discrete attractors, depending on the training set up. In recurrent neural network models, continuous and discrete attractors are separately modeled by distinct forms of synaptic prescriptions (learning rules). Here, we report a solvable network model, endowed with Hebbian synaptic plasticity, which is able to learn either discrete or continuous attractors, depending on the frequency of presentation of stimuli and on the structure of sensory coding. A continuous attractor is learned when experience matches sensory coding, i.e. when the distribution of experienced stimuli matches the distribution of preferred stimuli of neurons. In that case, there is no processing of sensory information and neural activity displays maximal entropy. If experience goes beyond sensory coding, processing is initiated and the continuous attractor is destabilized into a set of discrete attractors.

  18. Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses

    Science.gov (United States)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Bergeard, N.; Petit-Watelot, S.; Hehn, M.; Malinowski, G.; Montaigne, F.; Quessab, Y.; Medapalli, R.; Fullerton, E. E.; Mangin, S.

    2016-02-01

    We present an experimental study of all-optical helicity-dependent switching (AO-HDS) of ferromagnetic Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy. The sample is patterned into a Hall cross and the AO-HDS is measured via the anomalous Hall effect. This all-electrical probing of the magnetization during AO-HDS enables a statistical quantification of the switching ratio for different laser parameters, such as the threshold power to achieve AO-HDS and the exposure time needed to reach complete switching at a given laser power. We find that the AO-HDS is a cumulative process, a certain number of optical pulses is needed to obtain a full and reproducible helicity-dependent switching. The deterministic switching of the ferromagnetic Pt/Co/Pt Hall cross provides a full "opto-spintronic device," where the remanent magnetization can be all-optically and reproducibly written and erased without the need of an external magnetic field.

  19. ASE suppression of XeCl excimer laser MOPA system using UV electro-optical switch

    Science.gov (United States)

    Hu, Yun; Zhao, Xue-qing; Xue, Quan-xi; Wang, Da-hui; Zheng, Guo-xin; Hua, Heng-qi; Zhang, Yongsheng; Zhu, Yong-xiang; Xiao, Wei-wei; Wang, Li

    2013-05-01

    In high power eximer laser system, amplified spontaneous emission (ASE) decreases the signal contrast ratio severely, leads to waveform broadening and distortion, and impacts on accurate physical experiments. In this article, based on principle of short pulse generation by electro-optical (E-O) switch, a method for ASE suppression of laser amplifiers chain was established. A series of studies on UV electro-optical switches were carried out, and electro-optical (E-O) switches with high extinction ratio were developed. In the waveform clipping experiments of the first pre-amplifier, the extinction ratio of the single and cascaded dual E-O switch reaches 103 and 104 order of magnitude, the laser pulse signal contrast ratio was promoted to 105 and 106 level, respectively. In the experiments of single channel MOPA (Master Oscillator Power Amplifier system), the cascaded dual E-O switch was adopted to suppress ASE of the whole system, and a fine narrow pulse was obtained on the target surface, which gives out one effective solution to the problem of waveform amplification of the high power eximer laser system.

  20. Transparent ceramic photo-optical semiconductor high power switches

    Science.gov (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  1. Experimental study on an all-optical switching based on MF-NOLM

    Institute of Scientific and Technical Information of China (English)

    SONG Xue-peng; REN Xiao-min; ZHANG Xia; YANG Guang-qiang; HUANG Yong-qing

    2006-01-01

    In this paper,the experiment on an all-optical switching is reported based on a microstructure fiber(MF)-nonlinear optical loop mirror(NOLM).In the experiment,a 25-meter-long MF(γ=36W-1km-1@1 550 nm) is used as a nonlinear medium of the nonlinear optical loop mirror and the input signal is generated by a 10 GHz tunable picosecond laser source,with a full-width at half-maximum (FWHM) of 2 ps and centered at 1 550 nm.With the increase of input power,a π nonlinear phase shift is obtained by a 40/60 coupler in the experiment,but the same result can not be found by a 48/52 coupler.Additionally,the switching devices can also be used as an all-optical regeneration.

  2. All-optical switching in a continuously operated and strongly coupled atom-cavity system

    CERN Document Server

    Dutta, Sourav

    2016-01-01

    We experimentally demonstrate collective strong coupling, optical bi-stability (OB) and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.

  3. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  4. Photocurrent switching method based on photoisomerization of diarylethene layer for nondestructive readout of photochromic optical memory.

    Science.gov (United States)

    Tsujioka, Tsuyoshi; Onishi, Itaru; Natsume, Daisuke

    2010-07-10

    We report on photocurrent switching based on photoisomerization for the nondestructive readout of photochromic optical memory. The photoisomerization of a diarylethene (DAE) memory layer switched the photocurrent generated in a light-absorbing phthalocyanine layer upon irradiation of a laser light. This switching is based on the ionization potential change of the DAE molecules. Switching characteristics of the photocurrent were investigated for the laser light with a wavelength of 410 nm, 630 nm, or 780 nm. Excellent on-off ratios of the photocurrent were achieved by irradiation at 630 nm and 780 nm. When the pulsed laser light with a wavelength of 780 nm was repeatedly irradiated to the colored and uncolored memory devices, no change of the photocurrent signal levels was observed, even after 8 x 10(5) cycles, indicating a successful demonstration of the nondestructive readout.

  5. Ultra-thin and low-power optical interconnect module based on a flexible optical printed circuit board

    Science.gov (United States)

    Hwang, Sung Hwan; Lee, Woo-Jin; Kim, Myoung Jin; Jung, Eun Joo; Kim, Gye Won; An, Jong Bae; Jung, Ki Young; Cha, Kyung Soon; Rho, Byung Sup

    2012-07-01

    We describe an ultra-thin and low-power optical interconnect module for mobile electronic devices such as mobile phones and notebooks. The module was fabricated by directly packaging optic and electronic components onto a thin and flexible optical printed circuit board having a size of 70×8×0.25 mm. The completed active module has features of thinness (0.5 mm), small size (7×5 mm), very low total power consumption (15.88 mW), and high data rate transmissions (2.5 Gbps).

  6. A Bidirectional “Y” Type OXC Structure Using the Least Optical Switches

    Institute of Scientific and Technical Information of China (English)

    TAO Zhenning; WU Deming; XU Anshi

    2000-01-01

    In this paper, a bidirectional Y type optical cross-connect structure is introduced. It minimizes the number of 2 × 2 optical switches by utilizing the route characteristic of a bidirectional Y type OTN node. The method to satisfy this route request by our OXC is demonstrated. The wavelength utilizing efficiency between our structure and the nonblocking bidirectional Y type OTN node has also compared. The blocking, complexity, loss, loss uniformity and cross-talk characteristics are also demonstrated.

  7. Modeling and performance analysis of IP access interface in optical transmission networks with packet switching

    OpenAIRE

    Lackovic, Marko; Bungarzeanu, Cristian

    2006-01-01

    The article analyzes the influence of the Internet Protocol (IP) access interface on the packet loss probability and delay times in the optical packet switched network. The network and node model have been proposed, and the structure of the IP access interface, including assembler and holder, have been included in the analysis. It has been shown that the increase of the maximum optical packet sizes, as well as use of the holding feature as contention resolution mechanism, decrease the packet ...

  8. Minimizing the Switch and Link Conflicts in an Optical Multi-stage Interconnection Network

    Directory of Open Access Journals (Sweden)

    Ved Prakash Bhardwaj

    2011-07-01

    Full Text Available Multistage Interconnection Networks (MINs are very popular in switching and communication applications. A MIN connects N inputs to N outputs and is referred as an N andamp;times; N MIN; having size N. Optical Multistage Interconnection Network (OMIN represents an important class of Interconnection networks. Crosstalk is the basic problem of OMIN. Switch Conflict and Link Conflict are the two main reason of crosstalk. In this paper, we are considering both problems. A number of techniques like Optical window, Improved Window, Heuristic, Genetic, and Zero have been proposed earlier in this research domain. In this paper, we have proposed two algorithms called Address Selection Algorithm and Route Selection Algorithm (RSA. RSA is based on Improved Window Method. We have applied the proposed algorithms on existing Omega network, having shuffleexchange connection pattern. The main functionality of ASA and RSA is to minimize the number of switch and link conflicts in the network and to provide conflict free routes.

  9. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router.

    Science.gov (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios

    2008-11-05

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  10. Minimizing the Switch and Link Conflicts in an Optical Multi-stage Interconnection Network

    CERN Document Server

    Bhardwaj, Ved Prakash; Tyagi, Vipin

    2012-01-01

    Multistage Interconnection Networks (MINs) are very popular in switching and communication applications. A MIN connects N inputs to N outputs and is referred as an N \\times N MIN; having size N. Optical Multistage Interconnection Network (OMIN) represents an important class of Interconnection networks. Crosstalk is the basic problem of OMIN. Switch Conflict and Link Conflict are the two main reason of crosstalk. In this paper, we are considering both problems. A number of techniques like Optical window, Improved Window, Heuristic, Genetic, and Zero have been proposed earlier in this research domain. In this paper, we have proposed two algorithms called Address Selection Algorithm and Route Selection Algorithm (RSA). RSA is based on Improved Window Method. We have applied the proposed algorithms on existing Omega network, having shuffle-exchange connection pattern. The main functionality of ASA and RSA is to minimize the number of switch and link conflicts in the network and to provide conflict free routes.

  11. Reversible, electrical and optical switching on silver 3-phenyl-1-ureidonitrile complex thin films

    Institute of Scientific and Technical Information of China (English)

    张昊旭; 时东霞; 宋延林; 刘虹雯; 侯士敏; 薛增泉; 高鸿钧

    2002-01-01

    We report on the reversible, electrical and optical switching on silver 3-phenyl-l-ureidonitrile complex thin films.The films can switch from a high impedance state to a low impedance state with an applied electric field at the thresholdof 3.5 × 107V/m. Furthermore, the films can be switched back to the original state by treating the samples at about80℃. The optical recording is fulfilled using a semiconductor laser with a wavelength of 780nm. Erasure can beaccomplished by bulk heating or by the laser working with the power beneath the threshold. No loss of the organic wasfound in the experiments. This material may have a potential application in ultrahigh data density storage.

  12. Preparation, optical properties and 1 Multiplication-Sign 2 polymeric thermo-optic switch of polyurethane-urea

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Fengxian, E-mail: fxqiuchem@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Zhijuan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Cao, Guorong; Guan, Yijun; Shen, Qiang [Department of Physics, Jiangsu University, Zhenjiang 212013 (China); Wang, Qing; Yang, Dongya [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-08-15

    A polyurethane-urea (PUU) containing azo chromophore, polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) was prepared. The structure, thermal property and mechanical properties of obtained PUU were characterized and measured by the UV-visible spectroscopy, Fourier transform infrared, Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The refractive index (n) of PUU was determined at different temperature and wavelength (532 nm, 650 nm and 850 nm) using attenuated total reflection (ATR) technique, and the thermo-optic coefficients (dn/dT) were -5.3643 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, -5.2500 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1} and -4.6071 Multiplication-Sign 10{sup -4} Degree-Sign C{sup -1}, respectively. Using the Charge Coupled Device (CCD) digital imaging devices, transmission loss of PUU was measured and the value was 0.659 dB cm{sup -1}. A 1 Multiplication-Sign 2 polymeric thermo-optic switch based on the thermo-optic effect of PUU film was proposed. With branching angle of 0.143 Degree-Sign and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The result showed that the power consumption of the thermo-optic switch could be only 0.72 mW, and the response time of the switch was about 3.0 ms. The obtained PUU has a significant improvement in reducing the power consumption and response time compared with those of the normal polymeric thermo-optic switches. -- Highlights: Black-Right-Pointing-Pointer Preparation and structural characterization of a novel azo polyurethane-urea (PUU). Black-Right-Pointing-Pointer The mechanical performance and thermal property of PUU film. Black-Right-Pointing-Pointer The thermo-optic property, transmission loss and dispersion property of PUU. Black-Right-Pointing-Pointer Proposed a new 1 Multiplication-Sign 2 polymeric thermo-optic switch.

  13. An optical and theoretical investigation of the ultrafast dynamics of a bisthienylethene-based photochromic switch

    NARCIS (Netherlands)

    Hania, P.R.; Telesca, R.; Lucas, L.N.; Pugzlys, A; van Esch, J. H; Feringa, B.L.; Snijders, J.G.; Duppen, K.

    2002-01-01

    The switching behavior of 1,2-bis(5-phenyl-2-methylthien-3-yl)cyclopentene is studied by means of polarization selective nonlinear optical spectroscopy and time-dependent density functional theory. The combined information from the observed population and orientational dynamics together with the res

  14. Design and Fabrication of Micromechanical Optical Switches Based on the Low Applied Voltage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A micromechanical optical switch driven by electrostatic was fabricated with (100) silicon and tilted 2.5° (111) silicon. The pull-in voltage is 13.2V, the insertion loss is less than 1.4dB, the crosstalk is less than -50 dB.

  15. Femtosecond all-optical switching in AlGaAs waveguides using a time division interferometer

    Science.gov (United States)

    Lagasse, M. J.; Anderson, K. K.; Haus, H. A.; Fujimoto, J. G.

    1989-05-01

    All-optical switching of femtosecond pulses in AlGaAs waveguides is investigated using a novel time division interferometric technique which eliminates thermal imbalances. In addition to an instantaneous refractive index nonlinearity, free-carrier generation via two-photon absorption produces a response of several hundred picoseconds.

  16. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    DEFF Research Database (Denmark)

    Colman, Pierre; Hansen, Per Lunnemann; Yu, Yi

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report...

  17. Feasibility of Optical Packet Switched WDM Networks without Packet Synchronisation Under Bursty Traffic Conditions

    DEFF Research Database (Denmark)

    Fjelde, Tina; Hansen, Peter Bukhave; Kloch, Allan;

    1999-01-01

    We show that complex packet synchronisation may be avoided in optical packetswitched networks. Detailed traffic analysis demonstrates that packet lossratios of 1e-10 are feasible under bursty traffic conditions for a highcapacity network consisting of asynchronously operated add-drop switch...

  18. 开关电源的过载保护电路设计%Design of Over Load Protection Circuit for Switching Mode Power Supply

    Institute of Scientific and Technical Information of China (English)

    刘雪山; 杨静; 张鸿儒

    2009-01-01

    基于UC3842的反激式开关电源,文中从原理和实验两方面分析了恒功率控制和恒电流控制的过载保护电路,阐述了各自的特点,并提出了一种适用于短暂过载场合的延时锁定关断过载保护电路,实验证明此电路工作于保护模式时开关元件无开关应力,为高峰值负载电源过载保护电路的设计提供了一种有效的方法.%Based on fly-hack converter with UC3842 controlled, overload protection circuits of constant power control and constant current control are analyzed from principle and experiment result. The characteristics of these two overload protection circuits are presented. A kind of timer latch protection circuit used for transient overload is proposed. Experi-ment results verify that switching components do not have switching stress in protection mode, which provides an effective method to design protection circuit for switching mode power supply with high peak load.

  19. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ru; Liao, Yuhui; Zhou, Xiaoming, E-mail: zhouxm@scnu.edu.cn; Xing, Da, E-mail: xingda@scnu.edu.cn

    2015-08-12

    A novel graphene oxide (GO) fluorescence switch-based homogenous system has been developed to solve two problems that are commonly encountered in conventional GO-based biosensors. First, with the assistance of toehold-mediated nonenzymatic amplification (TMNA), the sensitivity of this system greatly surpasses that of previously described GO-based biosensors, which are always limited to the nM range due to the lack of efficient signal amplification. Second, without enzymatic participation in amplification, the unreliability of detection resulting from nonspecific desorption of DNA probes on the GO surface by enzymatic protein can be avoided. Moreover, the interaction mechanism of the double-stranded TMNA products contains several single-stranded toeholds at two ends and GO has also been explored with combinations of atomic force microscopy imaging, zeta potential detection, and fluorescence assays. It has been shown that the hybrids can be anchored to the surface of GO through the end with more unpaired bases, and that the other end, which has weaker interaction with GO, can escape GO adsorption due to the robustness of the central dsDNA structures. We verified this GO fluorescence switch-based detection system by detecting microRNA 21, an overexpressed non-encoding gene in a variety of malignant cells. Rational design of the probes allowed the isothermal nonenzymatic reaction to achieve more than 100-fold amplification efficiency. The detection results showed that our strategy has a detection limit of 10 pM and a detection range of four orders of magnitude. - Highlights: • This paper explored the interaction mechanism of TMNA products with GO surface. • This homogeneous and isothermal system permits a detection limit of 10 pM for microRNA. • This nonenzymatic strategy can avoid nonspecific desorption caused by enzyme protein. • The interaction model can be used to explore the application ability of nonenzymatic circuit.

  20. Performance of electronic switching circuits based on bipolar power transistors at low temperature

    Science.gov (United States)

    El-Ghanam, S. M.; Abdel Basit, W.

    2011-03-01

    In this paper, the performance of the bipolar power transistor of the type MJE13007 was evaluated under very low temperature levels. The investigation was carried out to establish a baseline on functionality and to determine suitability of this device for use in space applications under cryogenic temperatures. The static and dynamic electrical characteristics of the proposed transistor were studied at low temperature levels ranging from room level (300 K) down to 100 K. From which, it is clear that, several electrical parameters were affected due to operation on such very low temperature range, e.g. the threshold voltage ( V γ) increasing from 0.62 up to 1.05 V; while the current gain h FE decreases significantly from 26 down to 0.54. Also, the capacitance-voltage relationships ( C- V) of the collector-base and emitter-base junctions were studied at cryogenic temperatures, where a pronounced decrease was observed in the capacitances value due to temperature decrease. For example, at F = 50 kHz; CCB and CBE decreased from 2.33 nF down to 0.07 nF and from 36.2 down to 12 nF, respectively due to decreasing of temperature level from 300 down to 100 K. Finally the study was extended to include the dynamic characteristics and switching properties of the tested high power transistor. The dependency of both the rise and fall times ( t r, t f) on the temperature shows great variations with temperature.

  1. Laser cooling and optical detection of excitations in a LC electrical circuit

    DEFF Research Database (Denmark)

    Taylor, J. M.; Sørensen, Anders Søndberg; Marcus, Charles Masamed;

    2011-01-01

    We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively...... coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an “optical loud speaker” are outlined....

  2. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  3. Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach

    2006-01-01

    to the inter arrival rate at the individual VOQs. The remaining thresholds applies to the optical slot level inter arrival rate at the input and output line cards. If any measurements are beyond a given threshold, the higher timeout value is used. The proposed method can be used to make a trade-off between...... either because the timer reaches a specific timeout value, or because the optical packet is completely filled with segments. Only two distinct values of the timeout value are used. Which of the two timeout values to use, is selected by 3 different control thresholds. The first threshold level applies...

  4. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Chou, H.-H.; Shiau, Yhi; Cheng, Shu-Ying

    2016-07-01

    A non-blocking optical Ethernet switching architecture with liquid crystal on a silicon-based beam-steering switch and optical output buffer strategies are proposed. For preserving service packet sequencing and fairness of routing sequence, priority and round-robin algorithms are adopted at the optical output buffer in this research. Four methods were used to implement tunable fiber delay modules for the optical output buffers to handle Ethernet packets with variable bit-rates. The results reported are based on the simulations performed to evaluate the proposed switching architecture with traffic analysis under a traffic model captured from a real-core network.

  5. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  6. Optical Switching Impact on TCP Throughput Limited by TCP Buffers

    NARCIS (Netherlands)

    Moura, Giovane C.M.; Fioreze, Tiago; Boer, de Pieter-Tjerk; Pras, Aiko; Nunzi, G.; Scoglio, C.; Li, X.

    2009-01-01

    In this paper, we observe the performance of TCP throughput when self-management is employed to automatically move flows from the IP level to established connections at the optical level. This move can result in many packets arriving out of order at the receiver and even being discarded, since some

  7. Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches

    Energy Technology Data Exchange (ETDEWEB)

    Pärs, Martti; Köhler, Jürgen, E-mail: juergen.koehler@uni-bayreuth.de [Experimental Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Gräf, Katja; Bauer, Peter; Thelakkat, Mukundan [Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth (Germany)

    2013-11-25

    The emission of millions of fluorescence photons from a chromophore is controlled by the absorption of a few tens of photons in a photochromic molecule. The parameters that determine the efficiency of this process are investigated, providing insights for the development of an all-optical gate.

  8. Space radiation effect on fibre optical gyroscope control circuit and compensation algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhang Chun-Xi; Tian Hai-Ting; Li Min; Jin Jing; Song Ning-Fang

    2008-01-01

    The process of a γ-irradiation experiment of fibre optical gyroscope (FOG) control circuit was described,in which it is demonstrated that the FOG control circuit,except for D/A converter,could endure the dose of 10krad with the protection of cabin material.The distortion and drift in D/A converter due to radiation,which affect the performance of FOG seriously,was indicated based on the elemental analysis.Finally,a compensation network based on adaptive neuro-fuzzy inference system is proposed and its function is verified by simulation.

  9. Research and Design of Monolithic Decision Circuit for Optical Communication System①②

    Institute of Scientific and Technical Information of China (English)

    ZHANGYaqi; ZHAOJie

    1997-01-01

    In this paper,the cause of bit-error is analyzed when data are decided in the optical receiver.A monolithic D-ff decision circuit is designed.It can work effectively at 622 Mb/s.Moreover,a decision method of parallel processing to improve thd decision speed is presented,through which the parallel circuit can work up to 1 Gb/s using the same model.With the technique,higher-speed data can be decided by using lower speed device.

  10. Switching Arithmetic for DC to DC Converters Using Delta Sigma Modulator Based Control Circuit

    Directory of Open Access Journals (Sweden)

    K.Diwakar

    2016-02-01

    Full Text Available In the proposed arithmetic unit for dc to dc converters using delta sigma modulator, a new technique is proposed for addition and multiplication of sampled analog signals. The output is in digital form to drive the converters. The conventional method has input signal limitation whereas in the proposed method the inputs can vary to full-scale. The addition of two discrete signals is done by sampling the two signals at a period called update period and feeding each signal to the input of signal dependant delta sigma modulator for half of the update period and combining the outputs for the update period. The extension of three discrete data addition can be carried out by using the same technique. For the multiplication of two discrete signals different method is adopted. One analog signal is fed to the input of first delta-sigma modulator (DSM1 after sampling. The sampled output of the second analog signal is negated or not negated depending on the bit state at the output of DSM1 and is fed to the input of second DSM(DSM2. The resulting bit stream at the output of DSM2 is the digital representation of the product of the sampled data of the two analog signals. In order to multiply three discrete data, the sampled output of third data is negated or not negated depending on the bit state at the output of DSM2 and is fed to the input of third DSM(DSM3. The resulting bit stream at the output of DSM3 is the digital representation of the product of the sampled data of the three analog signals. Using the proposed adder and multiplier circuits any expressions can be evaluated such that the average value of the digital output of the arithmetic unit over the update period gives the value of expressions during that period. The digital output of the arithmetic unit is used to drive the dc-dc converters.

  11. Efficient IP Traffic over Optical Network Based on Wavelength Translation Switching

    DEFF Research Database (Denmark)

    Jha, Vikas; Kalia, Kartik; Chowdhary, Bhawani Shankar;

    2016-01-01

    With the advent of TCP/IP protocol suite the overall era of communication technologies had been redefined. Now, we can’t ignore the presence of huge amount of IP traffic; data, voice or video increasing day by day creating more pressure on existing communicating media and supporting back bone....... With the humongous popularity of Internet the overall traffic on Internet has the same story. Focusing on transmission of IP traffic in an optical network with signals remaining in their optical nature generated at particular wavelength, proposed is the switching of optically generated IP packets through optical...... cross connects based on translation of wavelength when an IP packet is crossing the optical cross connect. Adding the concepts of layer 3 routing protocols along with the wavelength translation scheme, will help in spanning the overall optical network for a larger area....

  12. A Multi-Functional Planar Lightwave Circuit for Optical Signal Processing Applications

    Science.gov (United States)

    Samadi, Payman

    Ultrafast optical signal processing is now a necessary tool in several domains of science and technology such as high-speed telecommunication, biomedicine, microscopy and radar systems. Optical arbitrary waveform generation is an optical signal processing function which has applications in optical telecommunication networks, sampling, and photonically-assisted RF waveform generation. Furthermore, performing optical signal processing in photonic integrated circuits is crucial for system integration and overcoming the speed limitations in electrical to optical conversion. In this thesis, we introduce a silica-based planar lightwave circuit which performs several optical signal processing functions. We start by reviewing the material system used to fabricate the device. We justify the choice of the material for our application and explain the fabrication process and the experiments to characterize the device. Then we introduce the fundamental theory of our device which is based on pulse repetition rate multiplication (PRRM) and shaping. We review the theory of direct time-domain approach to perform the PRRM and shaping. Experiments to measure the impulse response of the device, perform PRRM and polarization dependence characterization is shown as well. Three main applications of our device is presented next. First we use the PLC device with non-linear optics to generate multiple pulse trains at different wavelengths and different repetition rates. Second, we use the fundamental of the previous application to perform demultiplexing of optical time division multiplexed signals. Our approach is flexible in a sense that it can demultiplex any tributary channel of lower rate data, also it works for both amplitude and phase modulated data. Finally, using the second generation of our PLC device, we photonically generate radio frequency waveforms. We are able to generate various pulse shapes which are generally hard to generate using electronics at frequencies up to 80 GHz

  13. Modelling a nonlinear optical switching in a standard photonic crystal fiber infiltrated with carbon disulfide

    Science.gov (United States)

    Munera, Natalia; Acuna Herrera, Rodrigo

    2016-06-01

    In this letter, a numerical analysis is developed for the propagation of ultrafast optical pulses through a standard photonic crystal fiber (PCF) consisting of two infiltrated holes using carbon disulfide (CS2). This material is a good choice since it has highly nonlinear properties, what makes it a good candidate for optical switching and broadband source at low power compared to traditional nonlinear fiber coupler. Based on supermodes theory, a set of generalized nonlinear equations is presented in order to study the propagation characteristics. It is shown in this letter that it is possible to get optical switching behavior at low power and how the dispersion, as well as, the two infiltrated holes separation influence this effect. Finally, we see that supercontinuum generation can be induced equally in both infiltrated holes despite no initial excitation at one hole.

  14. Passively Q -Switched 1.57- m Intracavity Optical Parametric Oscillator

    Science.gov (United States)

    Yashkir, Yuri; van Driel, Henry M.

    1999-04-01

    We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q -switched by a Cr 4 :YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr 4 :YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 0.1-ns pulses in a single transverse mode. For a Cr 4 :YAG Q -switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is 45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.

  15. Passively Q-switched 1.57-microm intracavity optical parametric oscillator.

    Science.gov (United States)

    Yashkir, Y; van Driel, H M

    1999-04-20

    We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q-switched by a Cr4+:YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr4+:YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 +/- 0.1-ns pulses in a single transverse mode. For a Cr4+:YAG Q-switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is approximately 45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.

  16. Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning.

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2011-03-01

    Full Text Available The basal ganglia (BG are thought to play a crucial role in reinforcement learning. Central to the learning mechanism are dopamine D1 and D2 receptors located in the cortico-striatal synapses. However, it is still unclear how this dopamine-mediated synaptic plasticity is deployed and coordinated during reward-contingent behavioral changes. Here we propose a computational model of reinforcement learning that uses different thresholds of D1- and D2-mediated synaptic plasticity which are antagonized by dopamine-independent synaptic plasticity. A phasic increase in dopamine release caused by a larger-than-expected reward induces long-term potentiation (LTP in the direct pathway, whereas a phasic decrease in dopamine release caused by a smaller-than-expected reward induces a cessation of long-term depression (LTD, leading to LTP in the indirect pathway. This learning mechanism can explain the robust behavioral adaptation observed in a location-reward-value-association task where the animal makes shorter latency saccades to rewarding locations. The changes in saccade latency become quicker as the monkey becomes more experienced. This behavior can be explained by a switching mechanism which activates the cortico-striatal circuit selectively. Our model can also simulate the effects of D1 and D2 receptor blockade, and behavioral changes in Parkinson’s disease.

  17. Performance evaluation of 10GBASE optical transceivers for Cisco 10-gigabit Ethernet switching architecture

    Science.gov (United States)

    Zhang, Xiaojing; Cain, Jeff C.

    2002-09-01

    This paper presents the process and methodology employed to perform evaluation and analyses for the optical interface that delivers and receives 10Gb/s Ethernet traffic on Cisco's industrial leading switching architecture. Especially, we examined in detail the optical properties for commercially available 10GBASE-LR transceiver modules, with respect to IEEE 802.3ae specifications. The sampled results under room temperature are listed for comparison. Eye diagrams were recorded as a function of transmission distance, as well as temperature variation. System stability issues are also studied following a brief introduction to Cisco standard ODVT (Optical Design Verification Test) procedure.

  18. Optical switching and detection of 640 Gbits/s optical time-division multiplexed data packets transmitted over 50 km of fiber

    DEFF Research Database (Denmark)

    Gomez-Agis, F.; Hu, Hao; Luo, J.

    2011-01-01

    We demonstrate 1 × 4 optical-packet switching with error-free transmission of 640 Gbits/s single-wavelength optical time-division multiplexed data packets including clock distribution and short pulse generation for optical time demultiplexing based on a cavityless pulse source. © 2011 Optical...

  19. Data Transparent and Polarization Insensitive All-Optical Switch based on Fibers with Enhanced Nonlinearity

    Directory of Open Access Journals (Sweden)

    M. Komanec

    2014-09-01

    Full Text Available We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion.

  20. Burst switched optical networks supporting legacy and future service types

    DEFF Research Database (Denmark)

    Franzl, Gerald; Hayat, Faisal; Holynski, Tomasz

    2011-01-01

    Focusing on the principles and the paradigm of OBS an overview addressing expectable performance and application issues is presented. Proposals on OBS were published over a decade and the presented techniques spread into many directions. The paper comprises discussions of several challenges that ...... and found capable to overcome shortcomings of recent proposals. In conclusion, an OBS that offers different connection types may support most client demands within a sole optical network layer....

  1. Realization of rapid debugging for detection circuit of optical fiber gas sensor: Using an analog signal source

    Science.gov (United States)

    Tian, Changbin; Chang, Jun; Wang, Qiang; Wei, Wei; Zhu, Cunguang

    2015-03-01

    An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.

  2. Syudy of Token Generation for Burst Traffic Shaping in Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    Tang Wan; So Won-ho; Lu Ji-guang; Kim Young-chon

    2004-01-01

    Traffic shaping is one of important control operation to guarantee the Quality of Service (QoS) in optical burst switching (OBS) networks. The efficiency of traffic shaping is mainly determined by token generation method. In this paper, token generation methods of traffic shaping are evaluated by using three kinds of probability distribution, and are analyzed in terms of burst blocking probability, throughput and correlation by simulation. The simulation results show that the token generation methods decrease the burst correlation of Label Switched Paths (LSPs), and solve traffic congestion as well. The different burst arrival processes have small impact on the blocking probability for OBS networks.

  3. Optical Switching in VO2 films by below-gap excitation

    Energy Technology Data Exchange (ETDEWEB)

    Dipartimento di Fisica, Universita?di Brescia, Italy; Universite du Quebec, INRS energie et materiaux, Varennes, Quebec; Department of Physics. Clarendon Laboratory, University of Oxford, UK; Department of Physics, University of Tokyo; Institute of Physics, University of Tsukuba, Ibaraki, Japan; Cavalleri, Andrea; Rini, Matteo; Giannetti, Claudio; Fourmaux, Sylvain; Wall, Simon; Hao, Zhao; Parmigiani, Fulvio; Fujimori, Atsushi; Onoda, Masashige; Kieffer, Jean-Claude; Schoenlein, Robert W.; Cavalleri, Andrea

    2008-03-14

    We study the photo-induced insulator-metal transition in VO2, correlating threshold and dynamic evolution with excitation wavelength. In high-quality single crystal samples, we find that switching can only be induced with photon energies above the 670-meV gap. This contrasts with the case of polycrystalline films, where formation of the metallic state can also be triggered with photon energies as low as 180 meV, well below the bandgap. Perfection of this process may be conducive to novel schemes for optical switches, limiters and detectors, operating at room temperature in the mid-IR.

  4. Information Model for Connection Management in Automatic Switched Optical Network

    Institute of Scientific and Technical Information of China (English)

    Xu Yunbin(徐云斌); Song Hongsheng; Gui Xuan; Zhang Jie; Gu Wanyi

    2004-01-01

    The three types of connections (Permanent Connection, Soft Permanent Connection and Switched Connection) provided by ASON can adapt the requirement of different network services. Management and maintenance of these three connections are the most important aspect of ASON management. The information models proposed in this paper are used for the purpose of ASON connection management. Firstly a new information model is proposed to meet the requirement for the control plane introduced by ASON. In this model, a new class ControlNE is given, and the relationship between the ControlNE and the transport NE (network element) is also defined. Then this paper proposes information models for the three types of connections for the first time, and analyzes the relationship between the three kinds of connections and the basic network transport entities. Finally, the paper defines some CORBA interfaces for the management of the three connections. In these interfaces, some operations such as create or release a connection are defined, and some other operations can manage the performance of the three kinds of connections, which is necessary for a distributed management system.

  5. Optical imaging as a link between cellular neurophysiology and circuit modeling

    Directory of Open Access Journals (Sweden)

    Walther Akemann

    2009-07-01

    Full Text Available The relatively simple and highly modular circuitry of the cerebellum raised expectations decades ago that a realistic computational model of cerebellar circuit operations would be feasible, and prove insightful for unraveling cerebellar information processing. To this end, the biophysical properties of most cerebellar cell types and their synaptic connections have been well characterized and integrated into realistic single cell models. Furthermore, large scale models of cerebellar circuits that extrapolate from single cell properties to circuit dynamics have been constructed. While the development of single cell models have been constrained by microelectrode recordings, guidance and validation as these models are scaled up to study network interactions requires an experimental methodology capable of monitoring cerebellar dynamics at the population level. Here we review the potential of optical imaging techniques to serve this purpose.

  6. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    Science.gov (United States)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  7. Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.

    2005-01-01

    We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....

  8. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    Science.gov (United States)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  9. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    Science.gov (United States)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  10. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael;

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  11. Performance optimization of optical switches in ferroelectric liquid crystals and polymers operating at 1550 nm

    Science.gov (United States)

    Asquini, Rita; Gizzi, Claudio; Beccherelli, Romeo; d'Alessandro, Antonio

    2004-01-01

    A multilayer structure realizing an optical switch with ferroelectric liquid crystal, polymeric buffers and waveguides has been analyzed at the wavelength of 1550 nm, focusing on fabrication and design tolerances. The used liquid crystal FELIX-M4851-025 from Clariant is aligned by Nylon6 and embedded between two polymeric waveguides. ITO is deposited on quartz substrates to apply voltage to the cell and polymeric buffers are employed to reduce ITO absorption losses. The polymers consisted of poly(pentafluorostyrene-co-glycidyl methacrylate). Light is switched between the optical waveguides by reorienting the liquid crystal. Optimization in terms of optical losses and extinction ratios was carried out by varying layer thicknesses, refractive indices of waveguides and buffers, and the angle α between the normal to the smectic layers and the propagation direction. An optimized device with α = 51°, refractive indices of 1.475 and 1.462, thicknesses of 3 and 6 μm for waveguides and buffer, respectively and 4.4 μm for the liquid crystal layer, exhibits an extinction ratio of 59.6 dB with losses as low as 0.8 dB for a length of only 174 μm. A device design using single mode channel waveguides for optical switching matrices has been also carried out.

  12. High-contrast fluorescence imaging in fixed and living cells using optimized optical switches.

    Directory of Open Access Journals (Sweden)

    Liangxing Wu

    Full Text Available We present the design, synthesis and characterization of new functionalized fluorescent optical switches for rapid, all-visible light-mediated manipulation of fluorescence signals from labelled structures within living cells, and as probes for high-contrast optical lock-in detection (OLID imaging microscopy. A triazole-substituted BIPS (TzBIPS is identified from a rational synthetic design strategy that undergoes robust, rapid and reversible, visible light-driven transitions between a colorless spiro- (SP and a far-red absorbing merocyanine (MC state within living cells. The excited MC-state of TzBIPS may also decay to the MC-ground state emitting near infra-red fluorescence, which is used as a sensitive and quantitative read-out of the state of the optical switch in living cells. The SP to MC transition for a membrane-targeted TzBIPS probe (C₁₂-TzBIPS is triggered at 405 nm at an energy level compatible with studies in living cells, while the action spectrum of the reverse transition (MC to SP has a maximum at 650 nm. The SP to MC transition is complete within the 790 ns pixel dwell time of the confocal microscope, while a single cycle of optical switching between the SP and MC states in a region of interest is complete within 8 ms (125 Hz within living cells, the fastest rate attained for any optical switch probe in a biological sample. This property can be exploited for real-time correction of background signals in living cells. A reactive form of TzBIPS is linked to secondary antibodies and used, in conjunction with an enhanced scope-based analysis of the modulated MC-fluorescence in immuno-stained cells, for high-contrast immunofluorescence microscopic analysis of the actin cytoskeleton.

  13. VO(2) based waveguide-mode plasmonic nano-gratings for optical switching.

    Science.gov (United States)

    Sharma, Yashna; Tiruveedhula, Veeranjaneya A; Muth, John F; Dhawan, Anuj

    2015-03-09

    In this paper, we present one dimensional plasmonic narrow groove nano-gratings, covered with a thin film of VO(2) (Vanadium Dioxide), as novel optical switches. These narrow groove gratings couple the incident optical radiation to plasmonic waveguide modes leading to high electromagnetic fields in the gaps between the nano-gratings. Since VO(2) changes from its semiconductor to its metallic phase on heating, on exposure to infra-red light, or on application of voltage, the optical properties of the underlying plasmonic grating also get altered during this phase transition, thereby resulting in significant switchability of the reflectance spectra. Moreover, as the phase transition in VO(2) can occur at femto-second time-scales, the VO(2)-coated plasmonic optical switch described in this paper can potentially be employed for ultrafast optical switching. We aim at maximizing this switchability, i.e., maximizing the differential reflectance (DR) between the two states (metallic and semiconductor) of this VO(2) coated nano-grating. Rigorous Coupled Wave Analysis (RCWA) reveals that the switching wavelengths - i.e., the wavelengths at which the values of the differential reflectance between VO(2) (S) and VO(2) (M) phases are maximum - can be tuned over a large spectral regime by varying the nano-grating parameters such as groove width, depth of the narrow groove, grating width, and thickness of the VO(2) layer. A comparison of the proposed ideal nano-gratings with various types of non-ideal nano-gratings - i.e., nano-gratings with non-parallel sidewalls - has also been carried out. It is found that significant switchability is also present for these non-ideal gratings that are easy to fabricate. Thus, we propose highly switchable and wide-spectra VO(2) based narrow groove nano-gratings that do not have a complex structure and can be easily fabricated.

  14. A 0.8-V 250-MSample/s Double-Sampled Inverse-Flip-Around Sample-and-Hold Circuit Based on Switched-Opamp Architecture

    Science.gov (United States)

    Ou, Hsin-Hung; Liu, Bin-Da; Chang, Soon-Jyh

    This paper proposes a low-voltage high-speed sample-and-hold (S/H) structure with excellent power efficiency. Based on the switched-opamp technique, an inverse-flip-around architecture which maximizes the feedback factor is employed in the proposed S/H. A skew-insensitive double-sampling mechanism is presented to increase the throughput by a factor of two while eliminating the timing mismatch associated with double-sampling circuits. Furthermore, a dual-input dual-output opamp is proposed to incorporate double-sampling into the switched-opamp based S/H. This opamp also removes the memory effect in double-sampling circuitry and features fast turn-on time to improve the speed performance in switched-opamp circuits. Simulation results using a 0.13-μm CMOS process model demonstrates the proposed S/H circuit has a total-harmonic-distortion of -67.3dB up to 250MSample/s and a 0.8VPP input range at 0.8V supply. The power consumption is 3.5mW and the figure-of-merit is only 7.4fJ/step.

  15. Localization and Imaging of Integrated Circuit Defect Using Simple Optical Feedback Detection

    Directory of Open Access Journals (Sweden)

    Vernon Julius Cemine

    2004-12-01

    Full Text Available High-contrast microscopy of semiconductor and metal edifices in integrated circuits is demonstrated by combining laser-scanning confocal reflectance microscopy, one-photon optical-beam-induced current (1P-OBIC imaging, and optical feedback detection via a commercially available semiconductor laser that also serves as the excitation source. The confocal microscope has a compact in-line arrangement with no external photodetector. Confocal and 1P-OBIC images are obtained simultaneously from the same focused beam that is scanned across the sample plane. Image pairs are processed to generate exclusive high-contrast distributions of the semiconductor, metal, and dielectric sites in a GaAs photodiode array sample. The method is then utilized to demonstrate defect localization and imaging in an integrated circuit.

  16. 光梯度力驱动的纳米硅基光开关∗%A nano-silicon-photonic switch driven by an optical gradient force

    Institute of Scientific and Technical Information of China (English)

    林建潇; 吴九汇; 刘爱群; 陈喆; 雷浩

    2015-01-01

    通过一道光改变另一道光的传输路线是光子集成网络中重要而长远的目标,然而,由于硅材料的光学非线性较弱,在硅材料上实现开关的全光控制难以实现.因此本文提出了一种由光梯度力驱动的纳米硅基光开关,实现了硅基光开关的全光控制.该光开关由一个部分悬空的微环谐振器和一个交叉波导结构构成,当通入一道控制光时,悬空的微环谐振器在光梯度力的作用下发生弯曲,微环谐振器的谐振波长随之发生变化,从而实现光信号的传输路线发生改变.该光开关利用纳米光子制造技术在标准绝缘体上硅晶圆上制造,实验数据得出其最小消光比为10.67 dB,最大串扰为−11.01 dB,开关时间分别为180 ns和170 ns.该光开关具有尺寸小,响应速度快,低损耗和可拓展等优点,在片上集成光路、高速信号处理以及下一代光纤通信网络中具有潜在应用.%Using light to dynamically and stably redirect the flow of another beam of light is a long-term goal for photonic-integrated circuits. However, it is challenging to realize a practically all-optical switching device in silicon owing to its weak optical nonlinearity. Major published work on all-optical switches were using single-photon absorption and two-photon absorption, which requires ultrahigh switching energy. This paper presents a nano-silicon-photonic all-optical switch driven by an optical gradient force, in which a fast switching speed with low power consumption is obtained. Each switching element is composed of a waveguide crossing connection and a micro-ring resonator. The ring resonator is side-coupled to a double-etched waveguide crossing, while the micro-ring resonator is partially released from the substrate and becomes free-standing. When the“drop”port is in“OFF”state, the wavelength of the signal light from the“input”port does not satisfy the resonant condition in the micro-ring. Therefore, light is

  17. Effect of switching time on timer-based burst assembly and its effect on voice-over-Internet protocol quality of service over optical burst switching networks

    Science.gov (United States)

    Tachibana, Takuji; Kurita, Kaori; Kasahara, Shoji

    2006-07-01

    It is well known that performance, such as burst loss probability and transmission delay, for optical burst switching (OBS) networks greatly depends on the switching time of the OBS switch. We analyze the switching-time effect on the burst loss probability using a continuous-time Markov chain. In our analysis, the transmission time of a burst is characterized with both the burst size and the switching time, and the burst loss probability, burst throughput, and data throughput are explicitly derived using the Geo,M/M/c/c queueing model. Numerical examples show that our analysis is quite useful for investigating the effect of the switching time on the timer-based burst assembly. We also consider voice-over-Internet Protocol (VoIP) service as a delay-sensitive application, and we investigate the switching time on the VoIP service. From our performance analysis, we derive an appropriate switching time and a burst processing time of the VoIP service in terms of the transmission distance.

  18. Multicast contention resolution based on time-frequency joint scheduling in elastic optical switching networks

    Science.gov (United States)

    Liu, Huanlin; Li, Yuan; Peng, Han; Huang, Jun; Kong, Deqian

    2017-01-01

    Resolving the optical multicast contention in optical switch node is an effective approach to improve the performance of elastic optical multicast switch. An optical node architecture integrating with output shared all-optical Orthogonal Frequency Division Multiplexing (OFDM) network coding technology and shared feedback fiber delay lines (FDLs) buffer is designed. And a time-frequency joint scheduling strategy (TFJSS) is proposed. In TFJSS, the maximal weighted independent set algorithm is used to select the output packets with no overlapping spectrum among the contending multicast packets. The remaining contention packets are compressed by OFDM network coding with all-optical XOR operation. Hence, the contention is avoided in spectrum domain by encoding the contending unicast/multicast packets and changing the carrier frequency of encoded packets. If the network coding cannot successfully resolve the contending packets, the shared feedback FDLs are called to address the contention in time domain. Compared with the existing node architecture and scheduling algorithm, the simulation results show that the proposed architecture and the TFJSS can reduce the packet loss probability with low delay largely.

  19. Nonlinear Companding Circuits With Thermal Compensation to Enhance Input Dynamic Range in Analog Optical Fiber Links

    Directory of Open Access Journals (Sweden)

    J. Rodríguez-Rodriguez

    2011-04-01

    Full Text Available Measuring systems based on a pair of optical fiber transmitter-receivers are used in medium-voltage testinglaboratories wherein the environment of high electromagnetic interference (EMI is a limitation for using conventionalcabling. Nonlinear compensation techniques have been used to limit the voltage range at the input of optical fiberlinks. However, nonlinear compensation introduces gain and linearity errors caused by thermal drift. This paperpresents a method of thermal compensation for the nonlinear circuit used to improve transient signal handlingcapabilities in measuring system while maintaining low errors in gain and linearity caused by thermal drift.

  20. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  1. Compact silica-on-silicon planar lightwave circuits for high speed optical signal processing

    Science.gov (United States)

    Callender, C. L.; Dumais, P.; Blanchetiere, C.; Jacob, S.; Ledderhof, C.; Smelser, C. W.; Yadav, K.; Albert, J.

    2012-02-01

    Silica-on-silicon planar lightwave circuit (PLC) technology is well established and provides a low loss and stable photonic device platform. However, limitations in size and integration of active components remain. Engineering of the layer structure in silica PLCs to achieve high-index contrast, compact device architectures and monolithically integrated optical nonlinearities is described. Modeling of properties of doped-silica layers provides a design strategy for optimization of waveguide loss and birefringence. Optical nonlinearities in poled silica layers have been demonstrated, and recent work to incorporate these into functional device structures and exploit them for high speed modulation is reported.

  2. 一种快速有效的NQR探头恢复方法%NQR Probe Recovery Time Reduction with a Novel Active Q-Switching Circuit

    Institute of Scientific and Technical Information of China (English)

    陈星; 徐更光

    2008-01-01

    介绍了一种用于主动减小NQR探头恢复时间的Q值变换电路,它利用MOEFET控制变Q电路与探头电路的耦合,并通过变压器增加与电感线圈串联的阻抗值以达到改变Q值的目的.此电路不会产生新的振铃也不会对接收NQR的分辨率造成损失.实验结果表明,电路能有效缩短探头的恢复时间,同时还可以提高信噪比.%An active Q-switching circuit using a transformer is described for reducing the recovery time of NQR probes. A MOSFET was used to control the coupling and decoupling states of the Q-switching circuit to the probe so that it did not operate during the reception of NQR signals. The performance of the circuits was demonstrated by experimental results. It was shown that the circuit did not create new ringing, and caused no loss in sensitivity.

  3. Total internal reflection optical switch using the reverse breakdown of a pn junction in silicon.

    Science.gov (United States)

    Kim, Jong-Hun; Park, Hyo-Hoon

    2015-11-01

    We demonstrate a new type of silicon total-internal-reflection optical switch with a simple pn junction functioning both as a reflector and a heater. The reflector is placed between asymmetrically y-branched multimode waveguides with an inclination angle corresponding to half of the branch angle. When the reflector is at rest, incident light is reflected in accordance to the refractive index difference due to the plasma dispersion effect of the pre-doped carriers. Switching to the transmission state is attained under a reverse breakdown of the pn junction by the thermo-optic effect which smears the refractive index difference. From this switching scheme, we confirmed the switching operation with a shallow total-internal-reflection region of 1 μm width. At a 6° branch angle, an extinction ratio of 12 dB and an insertion loss of -4.2  dB are achieved along with a thermal heating power of 151.5 mW.

  4. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  5. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  6. Symmetric two dimensional photonic crystal coupled waveguide with point defect for optical switch application

    CERN Document Server

    Hardhienata, Hendradi

    2012-01-01

    Two dimensional (2D) photonic crystals are well known for its ability to manipulate the propagation of electromagnetic wave inside the crystal. 1D and 2D photonic crystals are relatively easier to fabricate than 3D because the former work in the microwave and far infrared regions whereas the later work in the visible region and requires smaller lattice constants. In this paper, simulation for a modified 2D PC with two symmetric waveguide channels where a defect is located inside one of the channel is performed. The simulation results show that optical switching is possible by modifying the refractive index of the defect. If more than one structure is applied this feature can potentially be applied to produce a cascade optical switch.

  7. All-optical ultrafast switching of Si woodpile photonic band gap crystals

    CERN Document Server

    Euser, T G; Fleming, J G; Gralak, B; Polman, Albert; Vos, W L; Euser, Tijmen G.; Molenaar, Adriaan J.; Gralak, Boris; Polman, Albert; Vos, Willem L.

    2006-01-01

    We present ultrafast all-optical switching measurements of Si woodpile photonic band gap crystals at telecom frequencies. The crystals are homogeneously excited by a two-photon process. We probe the switching by measuring reflectivity over broad frequency ranges as a function of time. At short delay times, we observe that the photonic gap becomes narrower than in the unswitched case. After 1 ps, the complete gap has shifted to higher frequencies. This intricate behavior is the result of competing refractive index changes due to the electronic Kerr effect and to optically excited free carriers. The frequency shift of the band gap as a function of pump intensity agrees well with Fourier modal method calculations with no freely adjustable parameters.

  8. Investigation on TCP/IP Congestion Control in Optical Burst Switched (OBS Network

    Directory of Open Access Journals (Sweden)

    Ms. Payal Daryani

    2012-03-01

    Full Text Available Transport Control Protocol (TCP is the dominant protocol in modern communication networks, in which the issues of reliability, flow, and congestion control must be handled efficiently. In this review paper an analytical switching is used to exploit the huge bandwidth of optical fibers for future high speed internet backbone. It carries multiple packets, in their turn. Different aggregation schemes have been considered and evaluated.TCP performance greatly depends on the TCP congestion window behavior that is related to loss events occurring in the optical burst switched network, there is a special term called traffic shaping by which we control over the network according to the network load .that means we increase or decrease the send rate according to the network demand.

  9. Passive all-optical polarization switch, binary logic gates, and digital processor.

    Science.gov (United States)

    Zaghloul, Y A; Zaghloul, A R M; Adibi, A

    2011-10-10

    We introduce the passive all-optical polarization switch, which modulates light with light. That switch is used to construct all the binary logic gates of two or more inputs. We discuss the design concepts and the operation of the AND, OR, NAND, and NOR gates as examples. The rest of the 16 logic gates are similarly designed. Cascading of such gates is straightforward as we show and discuss. Cascading in itself does not require a power source, but feedback at this stage of development does. The design and operation of an SR Latch is presented as one of the popular basic sequential devices used for memory cells. That completes the essential components of an all-optical polarization digital processor. The speed of such devices is well above 10 GHz for bulk implementations and is much higher for chip-size implementations. In addition, the presented devices do have the four essential characteristics previously thought unique to the microelectronic ones.

  10. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    CERN Document Server

    Tetsumoto, Tomohiro

    2014-01-01

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 6.0x10^4 and an effective mode volume Vmode of 0.66{\\lambda}^3 when the gap between two cavities is 34 nm. We found that this Q/V_mode value is five times higher than can be obtained with a single nanocavity design. The mechanical Q (Q_m) is determined by thermo-elastic damping and is 2.0x10^6 in a vacuum at room temperature. The opto-mechanical coupling rate g_OM is as high as 100 GHz/nm, which allows us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.

  11. Optical Orthogonal Code Construction Using Rejected Delays Reuse for Increasing SubWavelength-Switching Capacity

    Science.gov (United States)

    Khattab, Tamer M. S.; Alnuweiri, Hussein M.

    2006-09-01

    Using a mathematical proof, the authors establish that in element-by-element greedy algorithms based on extended set representation of optical orthogonal codes (OOCs), smaller delay elements rejected during a construction step can be accepted in later steps. They design a novel algorithm that exploits this property and call it the rejected delays reuse (RDR) greedy algorithm. They show that employing the RDR method leads to code lengths that are shorter than those achieved for OOCs constructed using the classical greedy algorithm for the same code weight and the same number of simultaneous codes constraints. They then define a quantitative measure (factor) for OOCs efficiency based on its ability to expand subwavelength-switching capacity. They call this factor the expansion efficiency factor. They use this factor to show that reducing the code length, for the same code constraints, enhances the capacity of subwavelength optical code switched networks.

  12. A new prediction method at the edge of optical burst switching network

    Institute of Scientific and Technical Information of China (English)

    Zhicheng Sui; Qingji Zeng; Shilin Xiao

    2005-01-01

    To achieve lower assembly delay at optical burst switching edge node, this paper proposes an approach called current weight length prediction (CWLP) to improve existing estimate mechanism in burst assembly.is introduced to make a dynamic tradeoff between the current and past traffic under different offset time.Simulation results show that CWLP can achieve a significant improvement in terms of traffic estimation in various offset time and offered load.

  13. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  14. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates

    Science.gov (United States)

    Dreismann, Alexander; Ohadi, Hamid; Del Valle-Inclan Redondo, Yago; Balili, Ryan; Rubo, Yuri G.; Tsintzos, Simeon I.; Deligeorgis, George; Hatzopoulos, Zacharias; Savvidis, Pavlos G.; Baumberg, Jeremy J.

    2016-10-01

    Practical challenges to extrapolating Moore’s law favour alternatives to electrons as information carriers. Two promising candidates are spin-based and all-optical architectures, the former offering lower energy consumption, the latter superior signal transfer down to the level of chip-interconnects. Polaritons--spinor quasi-particles composed of semiconductor excitons and microcavity photons--directly couple exciton spins and photon polarizations, combining the advantages of both approaches. However, their implementation for spintronics has been hindered because polariton spins can be manipulated only optically or by strong magnetic fields. Here we use an external electric field to directly control the spin of a polariton condensate, bias-tuning the emission polarization. The nonlinear spin dynamics offers an alternative route to switching, allowing us to realize an electrical spin-switch exhibiting ultralow switching energies below 0.5 fJ. Our results lay the foundation for development of devices based on the electro-optical control of coherent spin ensembles on a chip.

  15. Synthesis and characterization of azo-containing organometallic thin films for all optical switching applications

    Science.gov (United States)

    Gatri, R.; Fillaut, J.-L.; Mysliwiec, J.; Szukalski, A.; Bartkiewicz, S.; El-Ouazzani, H.; Guezguez, I.; Khammar, F.; Sahraoui, B.

    2012-05-01

    Novel photoresponsive materials based on azo-containing bifunctional ruthenium-acetylides have been synthesized. All optical switching based on the Optical Kerr Effect in the organometallic thin films based on ruthenium(II) acetylides containing an azobenzene moiety as a photochromic unit in the main pi-conjugated system dispersed in a poly(methyl methacrylate) matrix has been observed. The excitation beam was delivered from a picosecond laser at wavelength 532 nm while dynamics of induced sample birefringence was probed by a non-absorbed linearly polarized beam of cw He-Ne laser (632.8 nm). The influence of ruthenium part on dynamics of molecular motions has been shown.

  16. All-optical switching in an open V-type atomic system

    Science.gov (United States)

    Jafarzadeh, H.

    2017-02-01

    In this paper, the optical bistability (OB) and absorption properties of a weak probe field in an open V-type three-level atomic system have been investigated. We found that the OB threshold could be reduced via spontaneously generated coherence (SGC), coherent and incoherent pump fields, atomic injection, and exit rates. We also found that the threshold intensity of OB in an open system was less than that in the closed system. The all-optical switching due to the OB has also been discussed.

  17. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  18. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  19. High-performance and power-efficient 2${\\times}$2 optical switch on Silicon-on-Insulator

    CERN Document Server

    Han, Zheng; Checoury, Xavier; Bourderionnet, Jérôme; Boucaud, Philippe; De Rossi, Alfredo; Combrié, Sylvain

    2015-01-01

    A compact (15{\\mu}m${\\times}${\\mu}m) and highly-optimized 2${\\times}$2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1dB, static and dynamic contrast are 40dB and >20dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 {\\mu}s.

  20. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  1. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar

    Science.gov (United States)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle

    2011-01-01

    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  2. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  3. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    CERN Document Server

    Balram, Krishna C; Song, Jin Dong; Srinivasan, Kartik

    2015-01-01

    The interaction of optical and mechanical modes in nanoscale optomechanical systems has been widely studied for applications ranging from sensing to quantum information science. Here, we develop a platform for cavity optomechanical circuits in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency field through the piezo-electric effect, or optically through the strong photoelastic effect. We use this to demonstrate a novel acoustic wave interference effect, analogous to coherent population trapping in atomic systems, in which the coherent mechanical motion induced by the electrical drive can be completely cancelled out by the optically-driven motion. The ability to manipulate cavity optomechanical systems with equal facility through either photonic or phononic channels enables new device and system architectures for signal transduction betwee...

  4. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.

    Science.gov (United States)

    Balram, Krishna C; Davanço, Marcelo I; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains.

  5. Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: I. Experiment.

    Science.gov (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1993-11-20

    A technique for the external frequency translation of light waves is reported. The technique permits the stepwise sweeping of an optical frequency over a wide range with high linearity with respect to time. The frequency translator is composed of an optical pulse modulator and an optical ring circuit containing an acousto-optic frequency shifter and an optical amplifier. The pulse launched into the ring circuit undergoes a constant frequency shift for each circulation around the circuit and the frequency can be translated to a considerable degree from that of the original input pulse. We report a stepwise frequency translation over approximately 68 GHz for a 1.5-µm light wave with a strictly constant frequency-sweep rate and an approximately constant intensity.

  6. Reversible optical switching of antiferromagnetism in TbMnO3

    Science.gov (United States)

    Manz, Sebastian; Matsubara, Masakazu; Lottermoser, Thomas; Büchi, Jonathan; Iyama, Ayato; Kimura, Tsuyoshi; Meier, Dennis; Fiebig, Manfred

    2016-10-01

    Lasers can be used to control the magnetization of a ferromagnet via optically driven thermal and electronic excitation. Transfer of this concept to antiferromagnets is appealing because of the increasing technological interest in antiferromagnetism. Controlling spin structures in antiferromagnets is challenging, however, because of their zero magnetization. In a proof-of-principle experiment we demonstrate that optical control of antiferromagnetic domains is nevertheless possible. We reverse the antiferromagnetic order parameter in multiferroic TbMnO3 repeatedly, using light pulses of two different colours. Switching depends on a unique relation between the wavelength of the light, its optical absorption and the electric polarization field induced by the antiferromagnetic order of TbMnO3. We then demonstrate sequential laser-controlled writing and erasure of antiferromagnetic domains. The universality of reversible optical antiferromagnetic switching is derived by Monte Carlo simulations. Opto-magnetism is thus complemented by an important degree of freedom, namely local control of antiferromagnetism by means of light.

  7. Probing the electrical switching of a memristive optical antenna by STEM EELS

    Science.gov (United States)

    Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.

    2016-07-01

    The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ~10-6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope.

  8. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection.

    Science.gov (United States)

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-08-01

    We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.

  9. Demonstration of all-optical MDM/WDM switching for short-reach networks.

    Science.gov (United States)

    Wu, Zhongying; Li, Juhao; Ge, Dawei; Ren, Fang; Zhu, Paikun; Mo, Qi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi

    2016-09-19

    Mode division multiplexing (MDM) has been widely investigated in optical transmission systems and networks to improve network capacity. However, the MDM receiver is always expensive and complex because coherent detection and multiplex-input-and-multiplex-output (MIMO) digital signal processing (DSP) are required to demultiplex each spatial mode. In this paper, we investigate the application of MDM in short-reach scenarios such as datacenter networking. Two-dimensional MDM and wavelength division multiplexing node structure based on low modal-crosstalk few-mode fiber (FMF) and components is proposed, in which signal in each mode or wavelength can be independently switched. We experimentally demonstrate independent adding, dropping and switching functionalities with two linearly polarized modes and four wavelength channels over a total 11.8-km 2-mode low modal-crosstalk FMFs. The structure is simple without coherent detection or MIMO DSP. Only slight penalties of receiver sensitivity are observed for all switching operations. The influence of modal-crosstalk accumulation for cascaded switching nodes is also investigated.

  10. Optical node for fast packet-switching networks in the KEOPS project: structure and performance aspects

    Science.gov (United States)

    Chiaroni, Dominique; Lavigne, Bruno; Tran, Tri; Hamon, Laure; Jourdan, Amaury

    1998-10-01

    The future telecommunication network will have to face the dramatic increase of subscribers as well as the increase of the user bandwidth through new services. All-optical packet switching techniques can become a strategic objective to offer on an unique technology a service-transparent network. In this paper, we will describe in detail the structure of an optical packet switching node developed in the framework of the ACTS 043 KEOPS project. An analysis of the key functions will be reported to fulfill system requirements including cascadability. In particular the input synchronization, the Broadcast-and-select switching matrix and the output regenerative interface will be described and physical performance will be assessed through theoretical analysis: quality of the signal, packet jitter and packet power fluctuation. The electronic circuitry for the control of the components of each sub-block will be described. Finally, experimental validations of a 160 Gbit/s throughput node will be reported. In order to complete the analysis, the logical performance in a Bernoulli-type traffic will be regarded. In particular an optimized buffer including a recirculation loop will be studied. Logical performance exhibiting a packet loss rate lower than 10-9 for a 0.8 load and mean packet delay as low as 3 packet slots will be illustrated, thereby demonstrating full compatibility with ATM constraints. Finally, new perspectives in terms of throughput potential through cascading will be drawn.

  11. Electrically controlled optical-mode switch for fundamental mode and first order mode

    Science.gov (United States)

    Imansyah, Ryan; Tanaka, Tatsushi; Himbele, Luke; Jiang, Haisong; Hamamoto, Kiichi

    2016-08-01

    We have proposed an optical mode switch, the principle of which is based on the partial phase shift of injected light; therefore, one important issue is to clarify the proper design criteria for the mode combiner section. We focused on the bending radius of the S-bend waveguide issue that is connected to the multi mode waveguide in the Y-junction section that acts as mode combiner. Long radius leads to undesired mode coupling before the Y-junction section, whereas a short radius causes radiation loss. Thus, we simulated this mode combiner by the beam-propagation method to obtain the proper radius. In addition, we used a trench pin structure to simplify the fabrication process into a single-step dry-etching process. As a result, we successfully fabricated an optical-mode switch with the bending radius R = 610 µm. It showed the successful electrical mode switching and the achieved mode crosstalk was approximately -10 dB for 1550 nm wavelength with the injection current of 60 mA (5.7 V).

  12. Laser ablated coupling structures for stacked optical interconnections on printed circuit boards

    Science.gov (United States)

    Hendrickx, Nina; Van Steenberge, Geert; Geerinck, Peter; Van Erps, Jürgen; Thienpont, Hugo; Van Daele, Peter

    2006-04-01

    Laser ablation is presented as a versatile technology that can be used for the definition of arrays of multimode waveguides and coupling structures in a stacked two layer optical structure, integrated on a printed circuit board (PCB). The optical material, Truemode Backplane TM Polymer, is fully compatible with standard PCB manufacturing and shows excellent ablation properties. A KrF excimer laser is used for the ablation of both waveguides and coupling structures into the optical layer. The stacking of individual optical layers containing waveguides, that guide the light in the plane of the optical layer, and coupling structures, that provide out-of-plane coupling and coupling between different optical layers, is very interesting since it allows us to increase the integration density and routing possibilities and limit the number of passive components that imply a certain loss. Experimental results are presented, and surface roughness and profile measurements are performed on the structured elements for further characterization. Numerical simulations are presented on the tolerance on the angle of the coupling structures and the influence of tapering on the coupling efficiency of the waveguides.

  13. All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering.

    Science.gov (United States)

    Hsieh, Bao-Yu; Chen, Sung-Liang; Ling, Tao; Guo, L Jay; Li, Pai-Chi

    2014-03-01

    Ultrasound (US) and photoacoustic (PA) multimodality imaging has the advantage of combining good acoustic resolution with high optical contrast. The use of an all-optical scanhead for both imaging modalities can simplify integration of the two systems and miniaturize the imaging scanhead. Herein we propose and demonstrate an all-optical US/PA scanhead using a thin plate for optoacoustic generation in US imaging, a polymer microring resonator for acoustic detection, and a dichroic filter to switch between the two imaging modes by changing the laser wavelength. A synthetic-aperture focusing technique is used to improve the resolution and contrast. Phantom images demonstrate the feasibility of this design, and show that axial and lateral resolutions of 125 μm and 2.52°, respectively, are possible.

  14. High Speed Switches for Reconfigurable Optical Logic Arrays and Optical Interconnections

    Science.gov (United States)

    2007-11-02

    faster electronic drive circuits (by using silicon npn - transistors ) or for optoelectronic integration), see fig. 4. 2.2. A Spatially-Multiplexed...vertical- cavity surface-emitting lasers (VCSELs) with other photonic and electronic technologies, including heterojunction photo- transistors (HPTs) and...photothyristors (PNPNs), PIN and MSM photodiodes, and heterojunction bipolar transistors (HBTs). During the four years of this program, we have played

  15. N-port strictly non-blocking optical router based on Mach-Zehnder optical switch for photonic networks-on-chip

    Science.gov (United States)

    Geng, Minming; Tang, Zhenhua; Chang, Kan; Huang, Xufang; Zheng, Jiali

    2017-01-01

    A universal method for constructing an N-port strictly non-blocking optical router based on 2×2 Mach-Zehnder optical switch for photonic networks-on-chip is proposed. By analyzing the routing table of the N-port optical router, the relationship between the optical links of port m→port n and port m→port n-1 is indicated, as well as the relationships between the block matrices of the N-port optical router. The strictly non-blocking property of the N-port optical router is proved by the contradiction method. The scale of the N-port optical router can be increased with the improvement of the performance of the Mach-Zehnder optical switch.

  16. Correlations between switching of conductivity and optical radiation observed in thin graphite-like films

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, S.G. [Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation)], E-mail: lebedev@inr.ru; Yants, V.E. [Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation); Lebedev, A.S. [Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics GSP-2, Vorobievy Gory, 119992 Moscow (Russian Federation)

    2008-06-01

    The satisfactory explanation of anomalous electromagnetics in thin graphite-like carbon films till now is absent. The most comprehensible explanation may be the high-temperature superconductivity (HTSC). The pulse widths of spasmodic switching of electrical conductivity measured in this work in the graphite-like nanostructured carbon films, produced by methods of the carbon arc (CA) and chemical vapor deposition (CVD), are 1 and 2 ns correspondingly. Such fast switching completely excludes the thermal mechanism of the process. According to HTSC logic, in the time vicinity close to jump of electroresistance, it is necessary to expect the generation of optical radiation in the infrared (IR) range. This work presents the first results on registration of IR radiation caused by the sharp change of conductivity in thin graphite-like carbon films.

  17. Strictly non-blocking 4×4 silicon electro-optic switch matrix

    Science.gov (United States)

    Zhou, Pei-Ji; Xing, Jie-Jiang; Li, Xian-Yao; Li, Zhi-Yong; Yu, Jin-Zhong; Yu, Yu-De

    2015-12-01

    The first path-independent insertion-loss (PILOSS) strictly non-blocking 4×4 silicon electro-optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is -13 dB˜ -27 dB. And a maximum crosstalk deterioration of 6dB caused by two-path interference is also found. Project supported by the National Basic Research Program of China (Grant No. 2011CB301701), the National High Technology Research and Development Program of China (Grant Nos. 2013AA014402, 2012AA012202, and 2015AA016904), and the National Natural Science Foundation of China (Grant Nos. 61275065 and 61107048).

  18. Double layers liquid-crystal microlens arrays used in optical switches

    Science.gov (United States)

    Wang, Cheng; Fan, Di; Zhang, Bo; Tong, Qing; Luo, Jun; Lei, Yu; Zhang, Xinyu; Xie, Changsheng

    2015-12-01

    Based on our previous works in liquid-crystal microlens arrays (LCMAs), a new kind of optical switches using the 24×24 fiber arrays coupled with the LCMAs, which have a key dual-mode function of the switches about on and off state and work in visible and infrared range, is proposed and fabricated in this paper. Different with other common LCMAs, this new kind of dual-mode LCMAs includes two layers of control electrodes deposited directly over the surface of the top glass substrate in LC microcavity fabricated. The first layer is the patterned electrode, which is designed into basic circular holes with suitable diameter, and the second is the planar electrode. Both layered electrodes are effectively separated by a thin SiO2 film with a typical thickness of about several micrometers, and then the dual-mode microlenses are driven by applied electrical signals with different root mean square (rms) voltage.

  19. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    Science.gov (United States)

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  20. Assumption or Fact? Line-to-Neutral Voltage Expression in an Unbalanced 3-Phase Circuit during Inverter Switching

    Science.gov (United States)

    Masrur, M. A.

    2009-01-01

    This paper discusses the situation in a 3-phase motor or any other 3-phase system operating under unbalanced operating conditions caused by an open fault in an inverter switch. A dc voltage source is assumed as the input to the inverter, and under faulty conditions of the inverter switch, the actual voltage applied between the line to neutral…

  1. Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas.

    Science.gov (United States)

    Paulillo, B; Manceau, J M; Degiron, A; Zerounian, N; Beaudoin, G; Sagnes, I; Colombelli, R

    2014-09-08

    We demonstrate subwavelength electromagnetic resonators operating in the THz spectral range, whose spectral properties and spatial/angular patterns can be engineered in a similar way to an electronic circuit. We discuss the device concept, and we experimentally study the tuning of the resonant frequency as a function of variable capacitances and inductances. We then elucidate the optical coupling properties. The radiation pattern, obtained by angle-resolved reflectance, reveals that the system mainly couples to the outside world via a magnetic dipolar interaction.

  2. Enhanced pluggable out-of-plane coupling components for printed circuit board-level optical interconnections

    Science.gov (United States)

    Van Erps, J.; Heyvaert, S.; Debaes, C.; Van Giel, B.; Hendrickx, N.; Van Daele, P.; Thienpont, H.

    2008-04-01

    We present an enhanced out-of-plane coupling component for Printed Circuit Board-level optical interconnections. Rather than using a standard 45° micro-mirror to turn the light path over 90° we introduce a curvature in the mirror profile and incorporate an extra cylindrical micro-lens for beam collimation. Both modifications enable an increase in coupling efficiency and are extensively investigated using non-sequential ray tracing simulations in combination with Matlab optimization algorithms. The resulting design is fabricated using Deep Proton Writing and experimental characterization of the geometrical properties and measured coupling efficiencies are presented.

  3. Typical Circuit of Switching Power Supply and Common Fault Analysis%开关电源典型电路及常见故障分析

    Institute of Scientific and Technical Information of China (English)

    黄金萍

    2014-01-01

    Switching power supply is known as high efficiency and energy conservation.It is of high efficency because of its less power consumption.Therefore,it has become the main product for voltage stabilization.In this paper,typical functional circuit of switching power supply,to-gether with its fault is expounded.%开关电源被誉为高效节能型电源,由于自身消耗功率小,因而效率高,目前成为稳压电源的主流产品。本文主要阐述开关电源中的典型功能电路及常见故障分析。

  4. Problem of Channel Utilization and Merging Flows in Buffered Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Milos Kozak

    2013-01-01

    Full Text Available In the paper authors verify two problems of methods of operational research in optical burst switching. The first problem is at edge node, related to the medium access delay. The second problem is at an intermediate node related to buffering delay. A correction coefficient K of transmission speed is obtained from the first analysis. It is used in to provide a full-featured link of nominal data rate. Simulations of the second problem reveal interesting results. It is not viable to prepare routing and wavelength assignment based on end-to-end delay, i.e. link's length or number of hops, as commonly used in other frameworks (OCS, Ethernet, IP, etc. nowadays. Other parameters such as buffering probability must be taken into consideration as well. Based on the buffering probability an estimation of the number of optical/electrical converters can be made. This paper concentrates important traffic constraints of buffered optical burst switching. It allows authors to prepare optimization algorithms for regenerators placement in CAROBS networks using methods of operational research.

  5. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    Science.gov (United States)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  6. A Theoretical Study on an Optical Switch Using Interfered Evanescent Light

    CERN Document Server

    Kitsunezaki, Naofumi; Kitsunezaki, Akio

    2009-01-01

    In an optical configuration consisting of a flat plate of vacuum between upper and lower spaces of uniform dielectric regions of n>1, we have calculated two output light intensities for two input lights from the Maxwell's equations as functions of the incision angle, a light intensity ratio, a phase difference of the two input lights, and a thickness of the vacuum layer, where the two input lights come from upper and lower dielectric regions with the same incision angles, and one of the output light goes into upper dielectric and the other goes into lower dielectric. We have found that, when evanescent lights exist at the upper and lower boundary and interfere each other, there is one set of incision angles and phase differences for any combination of an input light ratio and a thickness of the vacuum layer where one of output lights becomes zero. This finding will possibly lead to an innovative optical switch with which an optical output light can be switched on and off with a control light with an intensity...

  7. Optical Switching and Detection of 640 Gb/s OTDM Data Packets Transmitted over 50 km of fibre

    DEFF Research Database (Denmark)

    Gomez-Agis, Fausto; Hu, Hao; Luo, Jun;

    2011-01-01

    We demonstrate 1X4 optical-packet switching with error-free transmission of 640 Gb/s single-wavelength OTDM data-packets including instantaneous clock extraction and short pulse generation for optical time-demultiplexing based on a cavity-less pulse source....

  8. Surface plasmon polariton assisted optical switching in noble bimetallic nanoparticle system

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Sandip, E-mail: dhara@igcar.gov.in, E-mail: chenkh@pub.iams.sinica.edu.tw [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lu, C.-Y.; Tu, W.-S. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Magudapathy, P. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Huang, Y.-F.; Chen, K.-H., E-mail: dhara@igcar.gov.in, E-mail: chenkh@pub.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Center for Condensed Matter Science, National Taiwan University, Taipei 106, Taiwan (China)

    2015-01-12

    Photoresponse of bimetallic Au-Ag nanoparticle embedded soda glass (Au-Ag@SG) substrate is reported for surface plasmon assisted optical switching using 808 nm excitation. Au-Ag@SG system is made by an ion beam technique where Ag{sup +} is introduced first in the soda glass matrix by ion exchange technique. Subsequently, 400 keV Au{sup +} is implanted in the sample for different fluences, which is followed by an ion beam annealing process using 1 MeV Si{sup +} at a fixed fluence of 2 × 10{sup 16} ions·cm{sup −2}. Characteristic surface plasmon resonance (SPR) peaks around 400 and 550 nm provided evidence for the presence of Au and Ag nanoparticles. An optical switching in the Au-Ag@SG system with 808 nm, which is away from the characteristic SPR peaks of Ag and Au nanoparticles, suggests the possible role of two photon absorption (TPA) owing to the presence of interacting electric dipole in these systems. The role of surface plasmon polariton is emphasized for the propagation of electronic carrier belonging to the conduction electron of Au-Ag system in understanding the observed photoresponse. Unique excitation dependent photoresponse measurements confirm the possible role of TPA process. A competitive interband and intraband transitions in the bimetallic system of Au and Ag, which may be primarily responsible for the observation, are validated qualitatively using finite difference time domain calculations where inter-particle separation of Au and Ag plays an important role. Thus, a smart way of optical switching can be envisaged in noble bimetallic nanocluster system where long wavelength with higher skin depth can be used for communication purpose.

  9. ZnO nanowire-based all-optical switch with Reset-Set flip-flop function

    Science.gov (United States)

    Mu, L. X.; Shi, W. S.; Zhang, T. P.; Zhang, H. Y.; Wang, Y.; She, G. W.; Gao, Y. H.; Wang, P. F.; Chang, J. C.; Lee, S. T.

    2011-04-01

    An all-optical switch with Reset-Set (RS) flip-flop function has been developed by attaching a derivative of spiropyran on the surface of zinc oxide (ZnO) Nanowire. Using UV/visible irradiation and the fluorescence of spiropyran-modified ZnO nanowire as inputs—set/reset and output, RS flip-flop function can be performed on a single ZnO nanowire or a nanowire array. The configuration of the current all-optical switch represents a potential for developing small-sized all-optical devices, which could be further exploited at higher level of integration.

  10. Sun-tracking optical element realized using thermally activated transparency-switching material.

    Science.gov (United States)

    Apostoleris, Harry; Stefancich, Marco; Lilliu, Samuele; Chiesa, Matteo

    2015-07-27

    We present a proof of concept demonstration of a novel optical element: a light-responsive aperture that can track a moving light beam. The element is created using a thermally-activated transparency-switching material composed of paraffin wax and polydimethylsiloxane (PDMS). Illumination of the material with a focused beam causes the formation of a localized transparency at the focal spot location, due to local heating caused by absorption of a portion of the incident light. An application is proposed in a new design for a self-tracking solar collector.

  11. Impact of Bimodal Traffic on Latency in Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Yuhua Chen

    2008-01-01

    Full Text Available This paper analyzes the impact of bimodal traffic composition on latency in optical burst switching networks. In particular, it studies the performance degradation to short-length packets caused by longer packets, both of which are part of a heterogeneous traffic model. The paper defines a customer satisfaction index for each of the classes of traffic, and a composite satisfaction index. The impact of higher overall utilization of the network as well as that of the ratio of the traffic mix on each of the customer satisfaction indices is specifically addressed.

  12. Field-effect active plasmonics for ultracompact electro-optic switching

    OpenAIRE

    Müstecaplıoğlu, Özgür E.; Çetin, Arif E.; Yanık, Ahmet A.; Mertiri, Alket; Erramilli, Shyamsunder; Altuğ, Hatice

    2012-01-01

    Field-effect active plasmonics for ultracompact electro-optic switching Arif E. Çetin, Ahmet A. Yanik, Alket Mertiri, Shyamsunder Erramilli, Özgür E. Müstecaplolu, and Hatice Altug Citation: Applied Physics Letters 101, 121113 (2012); doi: 10.1063/1.4754139 View online: http://dx.doi.org/10.1063/1.4754139 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/101/12?ver=pdfcov Published by the AIP Publishing Articles you may be interested in A proposal f...

  13. A novel scheme based on minimum delay at the edges for optical burst switching networks

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yu(于金辉); Yijun Yang(杨毅军); Yuehua Chen(陈月华); Ge Fan(范戈)

    2003-01-01

    This paper proposes a novel scheme based on minimum delay at the edges (MDE) for optical burst switching(OBS) networks. This scheme is designed to overcome the long delay at the edge nodes of OBS networks.The MDE scheme features simultaneous burst assembly, channel scheduling, and pre-transmission of controlpacket. It also features estimated setup and explicit release (ESXR) signaling protocol. The MDE schemecan minimize the delay at the edge nodes for data packets, and improve the end-to-end latency performancefor OBS networks. In addition, comparing with the conventional scheme, the performances of the MDEscheme are analyzed in this paper.

  14. Femtosecond studies of nonlinear optical switching in GaAs waveguides using time-domain interferometry

    Science.gov (United States)

    Anderson, Kristin K.; LaGasse, Michael J.; Haus, Hermann A.; Fujimoto, James G.

    1990-05-01

    We describe the application of a new femtosecond measurement technique, time division interferometry, for investigating the transient nonlinear index in waveguides. This technique performs an interferometric measurement using a time division multiplexed reference pulse and achieves high sensitivity with increased immunity to acoustic and thermal parasitics. Using a tunable femtosecond laser source, direct measurements of the wavelength dependent nonresonant nonlinear index have been performed in A1GaAs waveguides. In addition, conventional pump and probe absorption measurements permit the investigation of carrier dynamics, band filling, and two photon absorption effects. Two photon absorption is found to be a potentially serious limiting effect for obtaining all optical switching.

  15. Special requisites for ground switch operation of parallel circuits of strongly connected transmission lines; Requisitos especiais de manobra para chaves de terra de circuitos paralelos de linhas de transmissao fortemente acoplados

    Energy Technology Data Exchange (ETDEWEB)

    Amon Filho, J.; Kastrup Filho, O.; Franca, W.J. [FURNAS, Rio de Janeiro, RJ (Brazil)

    1993-12-31

    This work aims to present results of a qualitative and quantitative analysis of the problem concerning the ground switch turn off operation of transmission lines parallel circuits involving computer simulations and field tests, being such tests compared to standards and constant criteria of the technical specifications of such ground switches. The so far achieved conclusions indicate that the arc resistors installed in the ground switches have been satisfactory solving the problem of the interruption of induced currents by those ground switches. 7 refs., 2 figs., 3 tabs.

  16. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    Science.gov (United States)

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  17. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    Science.gov (United States)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  18. Performance Evaluation of the Loop Buffer Switch Under Prioritized Traffic and Optical Regeneration

    Directory of Open Access Journals (Sweden)

    Devesh Pratap Singh

    2012-12-01

    Full Text Available In this paper, an all-optical regenerator based, photonic packet switch architecture, which consists of the fiber loop for the storage of the contending packets, is considered. In the loop buffer, the available buffer space may not be fully utilized due to the limited re-circulation count of the data placed on buffer. This limit can be counteracted by placing a pool of regenerators inside the buffer. As optical regenerators are costly devices, hence they should be placed optimally in the buffer. The simulations results are presented by consider Prioritized and non – prioritized traffic. It is shown in the results that regeneration of data is essential if prioritized traffic has to be considered.

  19. Magneto-optical switching of Bloch surface waves in magnetophotonic crystals

    Science.gov (United States)

    Romodina, M. N.; Soboleva, I. V.; Fedyanin, A. A.

    2016-10-01

    Bloch-surface-wave (BSW) excitation controlled by Faraday rotation in one-dimensional magnetophotonic crystals is presented. Dispersion curves of the Bloch surface wave and waveguide modes of magnetophotonic crystals consisting of silicon dioxide and bismuth-substituted yttrium-iron-garnet (Bi:YIG) quarter-wavelength-thick layers are calculated using Berreman's 4×4 transfer matrix method. Enhanced Faraday rotation observed in the magnetophotonic crystals in the spectral vicinity of the BSW resonance enables the magneto-optical switching of BSWs. The excitation of the BSWs at the magnetophotonic crystal surface for p-polarized incident light is induced by magneto-optical activity in the Bi:YIG layers.

  20. Femtosecond investigations of optical switching and χ(3) in GaAs waveguides

    Science.gov (United States)

    LaGasse, Michael J.; Anderson, Kristin K.; Wang, Christine A.; Haus, Hermann A.; Fujimoto, James G.

    1990-08-01

    We describe a new technique for performing femtosecond transient measurements of nonlinear index and absorption in waveguide devices. Using a time division interferometry technique in conjunction with a tunable femtosecond laser source we have performed the first measurement of the wavelength dependent nonresonant nonlinear index in A1GaAs. Contributions to nonlinear index arise from both virtual as well as real population mediated processes depending on the wavelength detuning from resonance. Complementary pump-probe measurements of transient absorption provide information on excited state population as well as two-photon induced absorption processes. These measurements provide imformation on the mechanism and dynamics of fundamental nonlinear optical processes below the band edge in semiconductors and are relevant to possible all optical switching applications in waveguide devices.