Circuit Quantum Electrodynamics
Bishop, Lev S
2010-01-01
Circuit Quantum Electrodynamics (cQED), the study of the interaction between superconducting circuits behaving as artificial atoms and 1-dimensional transmission-line resonators, has shown much promise for quantum information processing tasks. For the purposes of quantum computing it is usual to approximate the artificial atoms as 2-level qubits, and much effort has been expended on attempts to isolate these qubits from the environment and to invent ever more sophisticated control and measurement schemes. Rather than focussing on these technological aspects of the field, this thesis investigates the opportunities for using these carefully engineered systems for answering questions of fundamental physics.
Minimal resonator loss for circuit quantum electrodynamics
Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.
2010-01-01
We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the cru
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Circuit quantum electrodynamics with a superconducting quantum point contact
Romero G; Lizuain I.; Shumeiko V.S.; Solano E.; Bergeret F.S.
2012-01-01
We consider a superconducting quantum point contact in a circuit quantum electrodynamics setup. We study three different configurations, attainable with current technology, where a quantum point contact is coupled galvanically to a coplanar waveguide resonator. Furthermore, we demonstrate that the strong and ultrastrong coupling regimes can be achieved with realistic parameters, allowing the coherent exchange between a superconducting quantum point contact and a quantized intracavity field. ©...
Multi-qubit circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Viehmann, Oliver
2013-09-03
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Multi-qubit circuit quantum electrodynamics
International Nuclear Information System (INIS)
Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a
Entanglement distillation in circuit quantum electrodynamics
Oppliger, Markus; Heinsoo, Johannes; Salathe, Yves; Potocnik, Anton; Mondal, Mintu; Wallraff, Andreas; Paraoanu, Gheorghe Sorin
Entanglement is an essential resource for quantum information processing, such as quantum error correction, quantum teleportation and quantum communication. Such algorithms perform optimally with maximally entangled states. In practice entangled quantum states are very fragile due to a wide range of decoherence mechanisms. When two parties share degraded entangled states they are still able to generate an entangled state with higher fidelity using local operations and classical communication. This process is commonly referred to as entanglement distillation. Here we demonstrate distillation of highly entangled Bell states from two copies of less entangled states on a four transmon qubit device realized in the circuit-QED architecture. We characterize the output state for different degrees of entanglement at the input with quantum state tomography. A clear improvement of the entanglement measures is observed at the output.
Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics
Holland, Eric T.
Engineered quantum systems are poised to revolutionize information science in the near future. A persistent challenge in applied quantum technology is creating controllable, quantum interactions while preventing information loss to the environment, decoherence. In this thesis, we realize mesoscopic superconducting circuits whose macroscopic collective degrees of freedom, such as voltages and currents, behave quantum mechanically. We couple these mesoscopic devices to microwave cavities forming a cavity quantum electrodynamics (QED) architecture comprised entirely of circuit elements. This application of cavity QED is dubbed Circuit QED and is an interdisciplinary field seated at the intersection of electrical engineering, superconductivity, quantum optics, and quantum information science. Two popular methods for taming active quantum systems in the presence of decoherence are discrete feedback conditioned on an ancillary system or quantum reservoir engineering. Quantum reservoir engineering maintains a desired subset of a Hilbert space through a combination of drives and designed entropy evacuation. Circuit QED provides a favorable platform for investigating quantum reservoir engineering proposals. A major advancement of this thesis is the development of a quantum reservoir engineering protocol which maintains the quantum state of a microwave cavity in the presence of decoherence. This thesis synthesizes strongly coupled, coherent devices whose solutions to its driven, dissipative Hamiltonian are predicted a priori. This work lays the foundation for future advancements in cavity centered quantum reservoir engineering protocols realizing hardware efficient circuit QED designs.
Entangling distant resonant exchange qubits via circuit quantum electrodynamics
Srinivasa, Vanita; Taylor, Jacob M.; Tahan, Charles
Enabling modularity within a quantum information processing device relies on robust entanglement of coherent qubits at macroscopic distances. To address this challenge, we investigate theoretically a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. By analyzing three specific approaches drawn from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes, we show that methods for entangling superconducting qubits map directly to resonant exchange qubits. We also calculate the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well-suited to achieving the strong coupling regime. Our approach combines the robustness of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.
Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.
Pirkkalainen, J-M; Cho, S U; Li, Jian; Paraoanu, G S; Hakonen, P J; Sillanpää, M A
2013-02-14
Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.
Lasing without inversion in circuit quantum electrodynamics.
Marthaler, M; Utsumi, Y; Golubev, D S; Shnirman, A; Schön, Gerd
2011-08-26
We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit can lead to a lasing state of the oscillator. Here we show that the circuit can also exhibit the effect of "lasing without inversion." It arises since the coupling to the dissipative environment enhances photon emission as compared to absorption, similar to the recoil effect predicted for atomic systems. While the recoil effect is very weak, and so far elusive, the effect described here should be observable with realistic circuits. We analyze the requirements for system parameters and environment.
Giant Kerr Nonlinearities in Circuit Quantum Electrodynamics
Rebic, Stojan; Twamley, Jason; Milburn, Gerard J.
2009-01-01
The very small size of optical nonlinearities places wide ranging restrictions on the types of novel physics one can explore. For an ensemble of multi-level systems one can synthesize a large effective optical nonlinearity using quantum coherence effects but such non-linearities are technically extremely challenging to demonstrate at the single atom level. In this work we describe how a single artificial multi-level Cooper Pair Box molecule, interacting with a superconducting microwave coplan...
Single-photon transistor in circuit quantum electrodynamics.
Neumeier, Lukas; Leib, Martin; Hartmann, Michael J
2013-08-01
We introduce a circuit quantum electrodynamical setup for a "single-photon" transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are exchanged between the two transmission lines but a single photon in one line can completely block or enable the propagation of photons in the other line. High on-off ratios can be achieved for feasible experimental parameters. Our approach is inherently scalable as all photon pulses can have the same pulse shape and carrier frequency such that output signals of one transistor can be input signals for a consecutive transistor.
Dressed Zeno effect in circuit quantum electrodynamics
Li, Hai-Chao; Ge, Guo-Qin; Feng, Shun-Bin
2014-06-01
We present a theoretical study of the quantum Zeno effect in a driven superconducting charge qubit strongly and ultrastrongly coupled to a transmission line resonator. Using the dressed-state approach, we predict the different dynamics behaviors of the dressed qubit subjected to two opposite projection measurements. We show that, for very frequent measurements, the survival probability of the initial state is of exponential form and the Zeno time of the dressed qubit can be several orders of magnitude longer than that of the bare qubit. For slowly repeated measurements, the detuning of the driving field has significant impact on the measurement dynamics, and by choosing appropriate parameters for the dressed qubit, the Zeno effect can occur in the nonresonant coupling case. Such a Zeno effect is excluded from a usual two-level system.
Interacting Electrodynamics of Short Coherent Conductors in Quantum Circuits
Altimiras, C.; Portier, F.; Joyez, P.
2016-07-01
When combining lumped mesoscopic electronic components to form a circuit, quantum fluctuations of electrical quantities lead to a nonlinear electromagnetic interaction between the components, which is generally not understood. The Landauer-Büttiker formalism that is frequently used to describe noninteracting coherent mesoscopic components is not directly suited to describe such circuits since it assumes perfect voltage bias, i.e., the absence of fluctuations. Here, we show that for short coherent conductors of arbitrary transmission, the Landauer-Büttiker formalism can be extended to take into account quantum voltage fluctuations similarly to what is done for tunnel junctions. The electrodynamics of the whole circuit is then formally worked out disregarding the non-Gaussianity of fluctuations. This reveals how the aforementioned nonlinear interaction operates in short coherent conductors: Voltage fluctuations induce a reduction of conductance through the phenomenon of dynamical Coulomb blockade, but they also modify their internal density of states, leading to an additional electrostatic modification of the transmission. Using this approach, we can quantitatively account for conductance measurements performed on quantum point contacts in series with impedances of the order of RK=h /e2 . Our work should enable a better engineering of quantum circuits with targeted properties.
Two-resonator circuit quantum electrodynamics: A superconducting quantum switch
Mariantoni, Matteo; Deppe, Frank; Marx, A.; Gross, R.; Wilhelm, F. K.; Solano, E.
2008-09-01
We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch between the two resonators, which are assumed to be originally independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus permitting to switch on and off the interaction between the two resonators via a qubit population inversion or a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction, which constitutes a fundamental property characteristic of superconducting quantum circuits without a counterpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the robustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related parameters. In this manner, we show that this setup can be used to implement a superconducting quantum switch with available technology.
Implementing phase-covariant cloning in circuit quantum electrodynamics
Zhu, Meng-Zheng; Ye, Liu
2016-10-01
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC) transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.
Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics
Slichter, D. H.; Müller, C.; Vijay, R.; Weber, S. J.; Blais, A.; Siddiqi, I.
2016-05-01
We observe the quantum Zeno effect—where the act of measurement slows the rate of quantum state transitions—in a superconducting qubit using linear circuit quantum electrodynamics readout and a near-quantum-limited following amplifier. Under simultaneous strong measurement and qubit drive, the qubit undergoes a series of quantum jumps between states. These jumps are visible in the experimental measurement record and are analyzed using maximum likelihood estimation to determine qubit transition rates. The observed rates agree with both analytical predictions and numerical simulations. The analysis methods are suitable for processing general noisy random telegraph signals.
Tunable coupling and ultrastrong interaction in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Baust, Alexander Theodor
2015-06-09
For future quantum information and quantum simulation architectures with superconducting circuits, a profound understanding of the coupling mechanisms between the individual building blocks is essential. In our work, we investigate galvanically coupled qubit-resonator systems, demonstrate the phenomenon of ultrastrong coupling and realize qubit mediated tunable and switchable coupling between two frequency-degenerate coplanar microwave resonators.
Tunable coupling and ultrastrong interaction in circuit quantum electrodynamics
International Nuclear Information System (INIS)
For future quantum information and quantum simulation architectures with superconducting circuits, a profound understanding of the coupling mechanisms between the individual building blocks is essential. In our work, we investigate galvanically coupled qubit-resonator systems, demonstrate the phenomenon of ultrastrong coupling and realize qubit mediated tunable and switchable coupling between two frequency-degenerate coplanar microwave resonators.
Multimode circuit quantum electrodynamics with hybrid metamaterial transmission lines.
Egger, D J; Wilhelm, F K
2013-10-18
Quantum transmission lines are central to superconducting and hybrid quantum computing. In this work we show how coupling them to a left-handed transmission line allows circuit QED to reach a new regime: multimode ultrastrong coupling. Out of the many potential applications of this novel device, we discuss the preparation of multipartite entangled states and the simulation of the spin-boson model where a quantum phase transition is reached up to finite size effects.
A scanning transmon qubit for strong coupling circuit quantum electrodynamics.
Shanks, W E; Underwood, D L; Houck, A A
2013-01-01
Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.
Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch
Energy Technology Data Exchange (ETDEWEB)
Hoffmann, Elisabeth Christiane Maria
2013-05-29
The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work
Applications of the Fokker-Planck equation in circuit quantum electrodynamics
Elliott, Matthew; Ginossar, Eran
2016-01-01
We study exact solutions of the steady state behaviour of several non-linear open quantum systems which can be applied to the field of circuit quantum electrodynamics. Using Fokker-Planck equations in the generalised P-representation we investigate the analytical solutions of two fundamental models. First, we solve for the steady-state response of a linear cavity that is coupled to an approximate transmon qubit and use this solution to study both the weak and strong driving regimes, using ana...
Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics.
Navarrete-Benlloch, Carlos; García-Ripoll, Juan José; Porras, Diego
2014-11-01
We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions.
Mesoscopic entangled coherent states implemented with a circuit quantum electrodynamics system
Institute of Scientific and Technical Information of China (English)
Zhao Ying-Yan; Jiang Nian-Quan
2013-01-01
We show a scheme to generate entangled coherent states in a circuit quantum electrodynamics system,which consists of a nanomechanical resonator,a superconducting Cooper-pair box (CPB),and a superconducting transmission line resonator.In the system,the CPB plays the role of a nonlinear medium and can be conveniently controlled by a gate voltage including direct-current and alternating-current components.The scheme provides a powerful tool for preparing the multipartite mesoscopic entangled coherent states.
Controllable cross-Kerr interaction between microwave photons in circuit quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Wu Qin-Qin; Liao Jie-Qiao; Kuang Le-Man
2011-01-01
We propose a scheme to enable a controllable cross-Kerr interaction between microwave photons in a circuit quantum electrodynamics (QED) system. In this scheme we use two transmission-line resonators (TLRs) and one superconducting quantum interference device (SQUID) type charge qubit, which acts as an artificial atom. It is shown that in the dispersive regime of the circuit-QED system, a controllable cross-Kerr interaction can be obtained by properly preparing the initial state of the qubit, and a large cross-phase shift between two microwave fields in the two TLRs can then be reached. Based on this cross-Kerr interaction, we show how to create a macroscopic entangled state between the two TLRs.
Lasing in circuit quantum electrodynamics with strong noise
Marthaler, M.; Utsumi, Y.; Golubev, D. S.
2015-05-01
We study a model which can describe a superconducting single-electron transistor or a double quantum dot coupled to a transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cutoff frequency, a structured environment peaked at a specific frequency, and 1 /f noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear.
International Nuclear Information System (INIS)
This document consists of translations of the following original papers: (A) the fluctuations of charge connected with the formation of matter from radiation, by W. Heisenberg, Sachsiche Akademie der Wissenschaften; 86:(1934) 317-322; (B) theory of the positron, by P.A.M. Dirac, Report to 7th Solvay Physics Conference, structure and properties of Atomic Nuclei (1934) 203-212; (C) comments on the Dirac theory of the positron, by W. Heisenberg, Zeitschrift fur Physik; 90:(1934) 209-231; and (D) the electrodynamics of the vacuum on the basis of the quantum theory of the electron, by V. Weisskopf, Kongelige Danske Videnskabernes Selskab, Mathematiskfysiske Meddelelser XIV, no. 6 (1936) 3-39. (U.K.)
Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics
Neilinger, P.; Shevchenko, S. N.; Bogár, J.; Rehák, M.; Oelsner, G.; Karpov, D. S.; Hübner, U.; Astafiev, O.; Grajcar, M.; Il'ichev, E.
2016-09-01
We demonstrate amplification (and attenuation) of a probe signal by a driven two-level quantum system in the Landau-Zener-Stückelberg-Majorana regime by means of an experiment, in which a superconducting qubit was strongly coupled to a microwave cavity, in a conventional arrangement of circuit quantum electrodynamics. Two different types of flux qubit, specifically a conventional Josephson junctions qubit and a phase-slip qubit, show similar results, namely, lasing at the working points where amplification takes place. The experimental data are explained by the interaction of the probe signal with Rabi-like oscillations. The latter are created by constructive interference of Landau-Zener-Stückelberg-Majorana (LZSM) transitions during the driving period of the qubit. A detailed description of the occurrence of these oscillations and a comparison of obtained data with both analytic and numerical calculations are given.
Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice
Yang, Zi-He; Wang, Yan-Pu; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Gao, Jin-Hua; Wu, Ying
2016-06-01
The concept of flat band plays an important role in strongly correlated many-body physics. However, the demonstration of the flat band physics is highly nontrivial due to intrinsic limitations in conventional condensed-matter materials. Here we propose a circuit quantum electrodynamics simulator of the two-dimensional (2D) Lieb lattice exhibiting a flat middle band. By exploiting the parametric conversion method, we design a photonic Lieb lattice with in situ tunable hopping strengths in a 2D array of coupled superconducting transmissionline resonators. Moreover, the flexibility of our proposal enables the incorporation of both the artificial gauge field and the strong photon-photon interaction in a time- and site-resolved manner. To unambiguously demonstrate the synthesized flat band, we further investigate the observation of the flat band localization of microwave photons through the pumping and the steady-state measurements of only a few sites on the lattice. Requiring only current level of technique and being robust against imperfections in realistic circuits, our scheme can be readily tested in experiment and may pave a new way towards the realization of exotic photonic quantum Hall fluids including anomalous quantum Hall effect and bosonic fractional quantum Hall effect without magnetic field.
Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D
2016-04-22
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume. PMID:27152820
Sarabi, B.; Ramanayaka, A. N.; Burin, A. L.; Wellstood, F. C.; Osborn, K. D.
2016-04-01
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual pz , dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 pz . We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p =p1=2.8 ±0.2 D and p =p2=8.3 ±0.4 D . For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with pz and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.
Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D
2016-04-22
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.
Directory of Open Access Journals (Sweden)
Guilherme Tosi
2014-08-01
Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.
Molecular quantum electrodynamics
Craig, D P
1998-01-01
This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat
Asymptotic algebra of quantum electrodynamics
Herdegen, Andrzej
2004-01-01
The Staruszkiewicz quantum model of the long-range structure in electrodynamics is reviewed in the form of a Weyl algebra. This is followed by a personal view on the asymptotic structure of quantum electrodynamics.
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Joo, Jaewoo; Ginossar, Eran
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775
International Nuclear Information System (INIS)
We present a theoretical study of electromagnetically induced transparency (EIT) in a superconducting quantum circuit with a tunable V-shaped energy spectrum derived from two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. Using the density matrix formalism and the steady-state approximation, we obtain the analytical expressions of the first-order matrix element associated with the absorption and dispersion of the probe field for two different V-type schemes. Our results show that, for this superconducting quantum system, it is possible to realize a remarkable phenomenon that dynamic conversion between EIT and EIT with amplification without population inversion. Such a unique optical feature has potential applications in quantum optical devices and quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
International Nuclear Information System (INIS)
We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10−5 e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10−6 e2/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system
Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.
Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping
2015-12-01
Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.
Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.
Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping
2015-12-01
Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators. PMID:26625061
Ginossar, E.; J Joo
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mod...
Jaewoo Joo; Eran Ginossar
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mod...
No drama quantum electrodynamics?
Energy Technology Data Exchange (ETDEWEB)
Akhmeteli, Andrey [LTASolid Inc, Houston, TX (United States)
2013-04-15
This article builds on recent work (Akhmeteli in Int. J. Quantum Inf. 9(Supp01):17, 2011; J. Math. Phys. 52:082303, 2011), providing a theory that is based on spinor electrodynamics, is described by a system of partial differential equations in 3+1 dimensions, but reproduces unitary evolution of a quantum field theory in the Fock space. To this end, after introduction of a complex four-potential of electromagnetic field, which generates the same electromagnetic fields as the initial real four-potential, the spinor field is algebraically eliminated from the equations of spinor electrodynamics. It is proven that the resulting equations for electromagnetic field describe independent evolution of the latter and can be embedded into a quantum field theory using a generalized Carleman linearization procedure. The theory provides a simple and at least reasonably realistic model, valuable for interpretation of quantum theory. The issues related to the Bell theorem are discussed. (orig.)
Institute of Scientific and Technical Information of China (English)
LIU YiMin; JIN WuYin; YOU JiaBin
2014-01-01
A hybrid quantum architecture was proposed to engineer a localization-delocalization phase transition of light in a two-dimension square lattices of superconducting coplanar waveguide resonators,which are interconnected by current-biased Josephson junction phase qubits.We find that the competition between the on-site repulsion and the nonlocal photonic hopping leads to the Mott insulator-superfluid transition.By using the mean-field approach and the quantum master equation,the phase boundary between these two different phases could be obtained when the dissipative effects of superconducting resonators and phase qubit are considered.The good tunability of the effective on-site repulsion and photon-hopping strengths enable quantum simulation on condensed matter physics and many-body models using such a superconducting resonator lattice system.The experimental feasibility is discussed using the currently available technology in the circuit QED.
Cross Kerr Effect Induced by Coupled Josephson Qubits in Circuit Quantum Electrodynamics
Hu, Yong; Chen, Shi; Yang, Xiao-Fei; Chen, You-Ling
2010-01-01
We propose a scheme for implementing cross Kerr nonlinearity between two superconducting transmission line resonators (TLR) via their interaction with a coupler which is constructed by two superconducting charge qubits connected to each other via a superconducting quantum interference device. When suitably driven, the coupler can induce very strong cross phase modulation (XPM) between the two TLRs due to its N-type level structure and the consequent electromagnetically induced transparency in its lowest states. The flexibility of our design can lead to various inter-TLR coupling configurations. The obtained cross Kerr coefficient is large enough to allow many important quantum operations in which only few photons are involved. We further show that this scheme is very robust against the fluctuations in solid state circuits. Our numerical calculations imply that the absorption and dispersion resulted from the decoherence of the coupler are very small compared with the strength of the proposed XPM.
Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace
Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying
2015-02-01
Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized.
Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace.
Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying
2015-02-10
Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized.
Quantum electrodynamics in a classical approximation, 1
International Nuclear Information System (INIS)
Quantum electrodynamics is formulated in a classical approximation. A quantum mechanical proper-time is employed as a useful parameter, which enables us to elucidate the relationship between quantum electrodynamics and classical electrodynamics. The classical motion of a charged particle is realized as an asymptotic limit of quantum electrodynamics. (author)
The relation between classical and quantum electrodynamics
Mario Bacelar Valente
2012-01-01
Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an ex...
Hwang, Myung-Joong; Kim, M S; Choi, Mahn-Soo
2016-04-15
We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked.
Hwang, Myung-Joong; Kim, M S; Choi, Mahn-Soo
2016-04-15
We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked. PMID:27127967
Timelike Momenta In Quantum Electrodynamics
Brodsky, S. J.; Ting, S. C. C.
1965-12-01
In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.
Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)
2015-10-26
The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.
Ancillary qubit spectroscopy of vacua in cavity and circuit quantum electrodynamics.
Lolli, Jared; Baksic, Alexandre; Nagy, David; Manucharyan, Vladimir E; Ciuti, Cristiano
2015-05-01
We investigate theoretically how the spectroscopy of an ancillary qubit can probe cavity (circuit) QED ground states containing photons. We consider three classes of systems (Dicke, Tavis-Cummings, and Hopfield-like models), where nontrivial vacua are the result of ultrastrong coupling between N two-level systems and a single-mode bosonic field. An ancillary qubit detuned with respect to the boson frequency is shown to reveal distinct spectral signatures depending on the type of vacua. In particular, the Lamb shift of the ancilla is sensitive to both ground state photon population and correlations. Backaction of the ancilla on the cavity ground state is investigated, taking into account the dissipation via a consistent master equation for the ultrastrong coupling regime. The conditions for high-fidelity measurements are determined.
The Relation between Classical and Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Mario Bacelar Valente
2011-01-01
Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.
Quantum gravitational contributions to quantum electrodynamics.
Toms, David J
2010-11-01
Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. However, that claim has been very controversial and the matter has not been settled. Here I report an analysis (free from the earlier controversies) demonstrating that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the electric charge vanishing at high energies, a result known as asymptotic freedom.
Renormalizability of generalized quantum electrodynamics
Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.
2012-01-01
In this work we present the study of the renormalizability of the Generalized Quantum Electrodynamics ($GQED_{4}$). We begin the article by reviewing the on-shell renormalization scheme applied to $GQED_{4}$. Thereafter, we calculate the explicit expressions for all the counter-terms at one-loop approximation and discuss the infrared behavior of the theory as well. Next, we explore some properties of the effective coupling of the theory which would give an indictment of the validity regime of...
Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots
Childress, L I; Lukin, M D
2003-01-01
We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.
Quantum Electrodynamics of Nanosystems
Masood, Samina S
2012-01-01
Quantum description of mulitiparticle nano-systems is studied in a hot and dense electromagnetic medium. We use renormalization techniques of quantum field theory to show that the electromagnetic properties like electric permittivity and magnetic permeability depend on the temperature and density of the media. Casimir force also depends upon the physical properties of the medium and becomes a function of these parameters within the nano-systems. We discuss the effect of the Casimir force on the nanosystems in terms of temperature and density of the system. We present carbon nanotubes and biomolecules as examples.
Relativistic Geometry and Quantum Electrodynamics
González-Martin, G R
2000-01-01
Excitations of a relativistic geometry are used to represent the theory of quantum electrodynamics. The connection excitations and the frame excitations reduce, respectively, to the electromagnetic field operator and electron field operator. Because of the inherent geometric algebraic structure these operators obey the standard commutation rules of QED. If we work with excitations, we need to use statistical theory when considering the evolution of microscopic subsystems. The use of classical statistics, in particular techniques of irreversible thermodynamics, determine that the probability of absorption or emission of a geometric excitation is a function of the classical energy density. Emission and absorption of geometric excitations imply discrete changes of certain physical variables, but with a probability determined by its wave energy density. Hence, this geometric theory, without contradicting the fundamental aspects of quantum physics, provides a geometric foundation for the theory.
Potentialities of Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2013-10-01
Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.
Renormalizability of generalized quantum electrodynamics
Bufalo, R; Zambrano, G E R; 10.1103/PhysRevD.86.125023
2012-01-01
In this work we present the study of the renormalizability of the Generalized Quantum Electrodynamics ($GQED_{4}$). We begin the article by reviewing the on-shell renormalization scheme applied to $GQED_{4}$. Thereafter, we calculate the explicit expressions for all the counter-terms at one-loop approximation and discuss the infrared behavior of the theory as well. Next, we explore some properties of the effective coupling of the theory which would give an indictment of the validity regime of theory: $m^{2} \\leq k^{2} < m_{P}^{2}$. Afterwards, we make use of experimental data from the electron anomalous magnetic moment to set possible values for the theory free parameter through the one-loop contribution of Podolsky mass-dependent term to Pauli's form factor $F_{2}(q^{2})$.
On higher order estimates in quantum electrodynamics
Matte, Oliver
2009-01-01
We propose a new method to derive certain higher order estimates in quantum electrodynamics. Our method is particularly convenient in the application to the non-local semi-relativistic models of quantum electrodynamics as it avoids the use of iterated commutator expansions. We re-derive higher order estimates obtained earlier by Fr\\"ohlich, Griesemer, and Schlein and prove new estimates for a non-local molecular no-pair operator.
Nanofriction in Cavity Quantum Electrodynamics.
Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Nanofriction in Cavity Quantum Electrodynamics.
Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. PMID:26684118
Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A
2011-02-25
We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.
Quantum Electrodynamics on background external fields
Marecki, P
2003-01-01
The quantum electrodynamics in presence of background external fields is developed. Modern methods of local quantum physics allow to formulate the theory on arbitrarily strong possibly time-dependent external fields. Non-linear observables which depend only locally on the external field are constructed. The tools necessary for this formulation, the parametrices of the Dirac operator, are investigated.
Quantum Electrodynamics in Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Nielsen, Henri Thyrrestrup
In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...
On Calculation of Amplitudes in Quantum Electrodynamics
Karplyuk, Kostyantyn; Zhmudsky, Oleksandr
2012-01-01
A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.
Quantum electrodynamics with complex fermion mass
Energy Technology Data Exchange (ETDEWEB)
McKellar, B.J.H. (Melbourne Univ., Parkville (Australia). School of Physics); Wu, D.D. (Melbourne Univ., Parkville (Australia). School of Physics Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics Superconducting Super Collider Lab., Dallas, TX (United States))
1991-08-01
The quantum electrodynamics (QED) with a complex fermion mass -- that is, a fermion mass with a chiral phase -- is restudied, together with its chirally rotated version. We show how fake electric dipole moment can be obtained and how to avoid it. 10 refs.
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Quantum electrodynamic perspective on multiphoton ionization
International Nuclear Information System (INIS)
A fully quantum nonperturbative method is developed to describe multiphoton ionization in intense fields. It is shown that, treating the radiation field with quantum electrodynamic (QED) theory enables the authors to obtain the above-threshold ionization energy distribution spectrum in analytical form firstly. Moreover, in addition to the well-known semiclassical theory, the framework presented here, derived from a QED perspective, provides a new picture of the multiphoton ionization
Foundations of classical and quantum electrodynamics
Toptygin, Igor N
2014-01-01
This advanced textbook covers many fundamental, traditional and new branches of electrodynamics, as well as the related fields of special relativity, quantum mechanics and quantum electrodynamics. The book introduces the material at different levels, oriented towards 3rd–4th year bachelor, master, and PhD students. This is so as to describe the whole complexity of physical phenomena. The required mathematical background is collated in Chapter 1, while the necessary physical background is included in the main text of the corresponding chapters and also given in appendices. It contains approximately 800 examples and problems, many of which are described in detail. Some of these problems are designed for students to work on their own with only the answers and descriptions of results, and may be solved selectively. Equally suitable as a reference for researchers specialized in science and engineering.
Soliton-like solution in quantum electrodynamics
Skoromnik, O D; Keitel, C H
2016-01-01
A novel soliton-like solution in quantum electrodynamics is obtained via a self-consistent field method. By writing the Hamiltonian of quantum electrodynamics in the Coulomb gauge, we separate out a classical component in the density operator of the electron-positron field. Then, by modeling the state vector in analogy with the theory of superconductivity, we minimize the functional for the energy of the system. This results in the equations of the self-consistent field, where the solutions are associated with the collective excitation of the electron-positron field---the soliton-like solution. In addition, the canonical transformation of the variables allowed us to separate out the total momentum of the system and, consequently, to find the relativistic energy dispersion relation for the moving soliton.
Test of quantum electrodynamics at PETRA
International Nuclear Information System (INIS)
Differential cross sections for the reactions e+e → e+e- and e+e- → γγ are given for energies between 27.7 and 31.6 GeV. The results agree with the predictions of standard quantum electrodynamics and set lower limits to the usual cut off parameters of up to 104 GeV. A limit on the Weinberg angle, sin2theta sub(W) 2. (orig.)
Quantum secure circuit evaluation
Institute of Scientific and Technical Information of China (English)
CHEN Huanhuan; LI Bin; ZHUANG Zhenquan
2004-01-01
In order to solve the problem of classical secure circuit evaluation, this paper proposes a quantum approach. In this approach, the method of inserting redundant entangled particles and quantum signature has been employed to strengthen the security of the system. Theoretical analysis shows that our solution is secure against classical and quantum attacks.
Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics
Shebeko, Alexander
2016-03-01
The notion of clothing in quantum field theory (QFT), put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED) and quantum chromodynamics (QCD). Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR). In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3)) when drawing parallels between QCD and QED.
Clothed Particles in Quantum Electrodynamics and Quantum Chromodynamics
Directory of Open Access Journals (Sweden)
Shebeko Alexander
2016-01-01
Full Text Available The notion of clothing in quantum field theory (QFT, put forward by Greenberg and Schweber and developed by M. Shirokov, is applied in quantum electrodynamics (QED and quantum chromodynamics (QCD. Along the guideline we have derived a novel analytic expression for the QED Hamiltonian in the clothed particle representation (CPR. In addition, we are trying to realize this notion in QCD (to be definite for the gauge group SU(3 when drawing parallels between QCD and QED.
Investigation on regulators in quantum electrodynamics
Stora, Raymond Félix
We present in this work three models which are able to suppress the divergences of approximate versions of Quantum Electrodynamics.It is indeed argued that, in view of the smallness of the fine structure constant, not only the first terms of a perturbation expansion, or of an expansion according to the number of particles involved in intermediate states, gives a fair approximattonbut furthermore, that it is in these terms that a breakdown of electrodynamics should be sought. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. The first model assumes the existence of a photon cut off, whose observable consequences are clearly stated, and of a fermion out off which, although unable to give a satisfactory ...
New Approach to Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Sze Kui Ng
2008-04-01
Full Text Available It is shown that a photon with a specific frequency can be identified with the Dirac magnetic monopole. When a Dirac-Wilson line forms a Dirac-Wilson loop, it is a photon. This loop model of photon is exactly solvable. From the winding numbers of this loop-form of photon, we derive the quantization properties of energy and electric charge. A new QED theory is presented that is free of ultravioletdivergences. The Dirac-Wilson line is as the quantum photon propagator of the new QED theory from which we can derive known QED effects such as the anomalous magnetic moment and the Lamb shift. The one-loop computation of these effects is simpler and is more accurate than that in the conventional QED theory. Furthermore, from the new QED theory, we have derived a new QED effect. A new formulation of the Bethe-Salpeter (BS equation solves the difficulties of the BS equation and gives a modified ground state of the positronium. By the mentioned new QED effect and by the new formulation of the BS equation, a term in the orthopositronium decay rate that is missing in the conventional QED is found, resolving the orthopositronium lifetime puzzle completely. It is also shown that the graviton can be constructed from the photon, yielding a theory of quantum gravity that unifies gravitation and electromagnetism.
New Approach to Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Sze Kui Ng
2008-04-01
Full Text Available It is shown that a photon with a specific frequency can be identified with the Dirac mag- netic monopole. When a Dirac-Wilson line forms a Dirac-Wilson loop, it is a photon. This loop model of photon is exactly solvable. From the winding numbers of this loop- form of photon, we derive the quantization properties of energy and electric charge. A new QED theory is presented that is free of ultraviolet divergences. The Dirac-Wilson line is as the quantum photon propagator of the new QED theory from which we can derive known QED e ects such as the anomalous magnetic moment and the Lamb shift. The one-loop computation of these e ects is simpler and is more accurate than that in the conventional QED theory. Furthermore, from the new QED theory, we have derived a new QED e ect. A new formulation of the Bethe-Salpeter (BS equation solves the di culties of the BS equation and gives a modified ground state of the positronium. By the mentioned new QED e ect and by the new formulation of the BS equation, a term in the orthopositronium decay rate that is missing in the conventional QED is found, resolving the orthopositronium lifetime puzzle completely. It is also shown that the graviton can be constructed from the photon, yielding a theory of quantum gravity that unifies gravitation and electromagnetism.
Gauge independence of transition amplitudes in quantum electrodynamics
International Nuclear Information System (INIS)
Gauge independence of transition amplitudes in quantum electrodynamics is proved in the framework of covariant quantum electrodynamics exploited by Yokoyama. A systematic law of gauge transformation is given for general Green functions in QED. Gauge independence of the wave-function renormalization constant Z2 is also discussed to some extent. (author)
Quantum electrodynamics with arbitrary charge on a noncommutative space
Institute of Scientific and Technical Information of China (English)
ZHOU Wan-Ping; CAI Shao-Hong; LONG Zheng-Wen
2009-01-01
Using the Seiberg-Witten map,we obtain a quantum electrodynamics on a noncommutative space,which has arbitrary charge and keep the gauge invariance to at the leading order in theta.The one-loop divergence and Compton scattering are reinvestigated.The uoncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics.
Quantum Electrodynamics Theory of Laser Assisted Recombination
Institute of Scientific and Technical Information of China (English)
敖淑艳; 程太旺; 李晓峰; 潘守甫; 傅盘铭
2003-01-01
Using a formal scattering theoretical approach, we develop a nonperturbative quantum electrodynamics theory to describe laser assisted recombination (LAR), in which an electron initially in the quantized Volkov state recombines with an ion and emits a high-energy photon with frequency defined by energy conservation laws.The transition probability is expressed as an analytic closed form and the spectrum of LAR reflects mainly the properties of general Bessel functions. For the case of a fast electron the LAR spectrum is confined in a well-defined range, while for a slow electron, the LAR spectrum exhibits a double-plateau structure.
Quantum Electrodynamics vacuum polarization solver
Carneiro, Pedro; Fonseca, Ricardo; Silva, Luís
2016-01-01
The self-consistent modeling of vacuum polarization due to virtual electron-positron fluctuations is of relevance for many near term experiments associated with high intensity radiation sources and represents a milestone in describing scenarios of extreme energy density. We present a generalized finite-difference time-domain solver that can incorporate the modifications to Maxwells equations due to virtual vacuum polarization. Our multidimensional solver reproduced in one dimensional configurations the results for which an analytic treatment is possible, yielding vacuum harmonic generation and birefringence. The solver has also been tested for two-dimensional scenarios where finite laser beam spot sizes must be taken into account. We employ this solver to explore different types of counter-propagating configurations that can be relevant for future planned experiments aiming to detect quantum vacuum dynamics at ultra-high electromagnetic field intensities.
PT-symmetric quantum electrodynamics and unitarity.
Milton, Kimball A; Abalo, E K; Parashar, Prachi; Pourtolami, Nima; Wagner, J
2013-04-28
More than 15 years ago, a new approach to quantum mechanics was suggested, in which Hermiticity of the Hamiltonian was to be replaced by invariance under a discrete symmetry, the product of parity and time-reversal symmetry, PT. It was shown that, if PT is unbroken, energies were, in fact, positive, and unitarity was satisfied. Since quantum mechanics is quantum field theory in one dimension--time--it was natural to extend this idea to higher-dimensional field theory, and in fact an apparently viable version of PT-invariant quantum electrodynamics (QED) was proposed. However, it has proved difficult to establish that the unitarity of the scattering matrix, for example, the Källén spectral representation for the photon propagator, can be maintained in this theory. This has led to questions of whether, in fact, even quantum mechanical systems are consistent with probability conservation when Green's functions are examined, since the latter have to possess physical requirements of analyticity. The status of PT QED will be reviewed in this paper, as well as the general issue of unitarity.
Ultrafast Quantum Gates in Circuit QED
Romero, G; Wang, Y M; Scarani, V; Solano, E
2011-01-01
We present a method of implementing ultrafast two-qubit gates valid for the ultrastrong coupling (USC) and deep strong coupling (DSC) regimes of light-matter interaction, considering state-of-the-art circuit quantum electrodynamics (QED) technology. Our proposal includes a suitable qubit architecture and is based on a four-step sequential displacement of an intracavity mode, operating at a time proportional to the inverse of the resonator frequency. Through ab initio calculations, we show that these quantum gates can be performed at subnanosecond time scales, while keeping the fidelity above 99%.
Macroscopic Quantum Criticality in a Circuit QED
Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco
2006-01-01
Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.
Quantum-to-classical transition in cavity quantum electrodynamics.
Fink, J M; Steffen, L; Studer, P; Bishop, Lev S; Baur, M; Bianchetti, R; Bozyigit, D; Lang, C; Filipp, S; Leek, P J; Wallraff, A
2010-10-15
The quantum properties of electromagnetic, mechanical or other harmonic oscillators can be revealed by investigating their strong coherent coupling to a single quantum two level system in an approach known as cavity quantum electrodynamics (QED). At temperatures much lower than the characteristic energy level spacing the observation of vacuum Rabi oscillations or mode splittings with one or a few quanta asserts the quantum nature of the oscillator. Here, we study how the classical response of a cavity QED system emerges from the quantum one when its thermal occupation-or effective temperature-is raised gradually over 5 orders of magnitude. In this way we explore in detail the continuous quantum-to-classical crossover and demonstrate how to extract effective cavity field temperatures from both spectroscopic and time-resolved vacuum Rabi measurements.
Does quantum electrodynamics have an arrow of time?
Atkinson, David
2006-01-01
Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial stat
A new view on quantum electrodynamics
Golovko, V A
2016-01-01
We analyze the equations of quantum electrodynamics and establish that the electron must be described by two bispinors that satisfy two mutually connected Dirac equations. The equations of the electronic and electromagnetic fields are reformulated in terms of c-numbers, which enables one to elucidate the structure of the electron. Although the equations obtained allow only for numerical solution, some characteristics of the electron, in particular its size, can be found at this stage. It is shown also that the Dirac equation should, instead of the mass of the electron, contain a combination involving the electron Compton wavelength. In this case the equations obtained can be used not only for the description of the electron but also for the description of other leptons, which will allow one to find the mass spectrum of leptons.
Large payload quantum steganography based on cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Ye Tian-Yu; Jiang Li-Zhen
2013-01-01
A large payload quantum steganography protocol based on cavity quantum electrodynamics (QED) is presented in this paper,which effectively uses the evolutionary law of atoms in cavity QED.The protocol builds up a hidden channel to transmit secret messages using entanglement swapping between one GHZ state and one Bell state in cavity QED together with the Hadamard operation.The quantum steganography protocol is insensitive to cavity decay and the thermal field.The capacity,imperceptibility and security against eavesdropping are analyzed in detail in the protocol.It turns out that the protocol not only has good imperceptibility but also possesses good security against eavesdropping.In addition,its capacity for a hidden channel achieves five bits,larger than most of the previous quantum steganography protocols.
Plimak, L. I.; Ivanov, Misha; Aiello, A.; Stenholm, S.
2015-01-01
Quantum electrodynamics under conditions of distinguishability of interacting matter entities, and of controlled actions and back-actions between them, is considered. Such "mesoscopic quantum electrodynamics" is shown to share its dynamical structure with the classical stochastic electrodynamics. In formal terms, we demonstrate that all general relations of the mesoscopic quantum electrodynamics may be recast in a form lacking Planck's constant. Mesoscopic quantum electrodynamics is therefore...
Vacuum-Induced Abelian and Non-Abelian Gauge Potentials in Cavity Quantum Electrodynamics
Institute of Scientific and Technical Information of China (English)
张海龙; 梁奇锋; 俞立先; 陈刚
2011-01-01
Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems. In this paper, we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiabatically controlling the degenerate Dicke model in cavity quantum electrodynamics. It is shown that a non-Abelian gauge potential is achieved only for a single atom, whereas an Abelianizen diagonal gauge potential is realized for the atomic ensemble. More importantly, two interesting quantum phenomena such as the geometric phase and the magnetic monopole induced by our created gauge potentials are also predicted. The possible physical realization is presented in the macroscopic circuit quantum electrodynamics with the Cooper pair boxes, which act as the artificial two-level atoms controlled by the gate voltage and the external magnetic flux.
A Way to Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2012-04-01
Full Text Available In conventional theoretical physics and its Standard Model the guiding principle is that the equations are symmetrical. This limitation leads to a number of difficulties, because it does not permit masses for leptons and quarks, the electron tends to “explode” un- der the action of its self-charge, a corresponding photon model has no spin, and such a model cannot account for the “needle radiation” proposed by Einstein and observed in the photoelectric e ff ect and in two-slit experiments. This paper summarizes a revised Lorentz and gauge invariant quantum electrodynamic theory based on a nonzero electric field divergence in the vacuum and characterized by linear intrinsic broken symmetry. It thus provides an alternative to the Higgs concept of nonlinear spontaneous broken sym- metry, for solving the difficulties of the Standard Model. New results are obtained, such as nonzero and finite lepton rest masses, a point-charge-like behavior of the electron due to a revised renormalization procedure, a magnetic volume force which counteracts the electrostatic eigen-force of the electron, a nonzero spin of the photon and of light beams, needle radiation, and an improved understanding of the photoelectric effect, two-slit ex- periments, electron-positron pair formation, and cork-screw-shaped light beams.
Quantum electrodynamics of inhomogeneous anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)
An Experiment on the Limits of Quantum Electro-dynamics
Barber, W. C.; Richter, B.; Panofsky, W. K. H.; O'Neill, G. K.; Gittelman, B.
1959-06-01
The limitations of previously performed or suggested electrodynamic cutoff experiments are reviewed, and an electron-electron scattering experiment to be performed with storage rings to investigate further the limits of the validity of quantum electrodynamics is described. The foreseen experimental problems are discussed, and the results of the associated calculations are given. The parameters and status of the equipment are summarized. (D.C.W.)
Quantum electrodynamics with 1D arti cial atoms
DEFF Research Database (Denmark)
Javadi, Alisa
A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... as expected from the theory. The value of g(2)(0) is around 1.08. The results con_rm the observation of an on-chip giant optical nonlinearity and the 1D atom behavior. Another direction in this thesis has been to investigate the e_ect of Anderson localization on the electrodynamics of QDs in PCWs. A large...
A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions
Boozer, A. D.
2008-01-01
We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…
Cavity quantum electrodynamics with Anderson-localized modes
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;
2010-01-01
by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices....
Quantum Circuits with Mixed States
Aharonov, Dorit; Kitaev, Alexei; Nisan, Noam
1998-01-01
We define the model of quantum circuits with density matrices, where non-unitary gates are allowed. Measurements in the middle of the computation, noise and decoherence are implemented in a natural way in this model, which is shown to be equivalent in computational power to standard quantum circuits. The main result in this paper is a solution for the subroutine problem: The general function that a quantum circuit outputs is a probabilistic function, but using pure state language, such a func...
Hybrid quantum circuit with implanted erbium ions
Energy Technology Data Exchange (ETDEWEB)
Probst, S.; Rotzinger, H.; Tkalčec, A. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Kukharchyk, N.; Wieck, A. D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Wünsch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, D-76189 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Laboratory of Superconducting Metamaterials, National University of Science and Technology “MISIS,” Moscow 119049 (Russian Federation); Bushev, P. A. [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany)
2014-10-20
We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.
Chapter 12: Trapped Electrons as Electrical (Quantum) Circuits
Verdú, José
2014-01-01
In this chapter, we present a detailed model of the equivalent electric circuit of a single trapped particle in a coplanar-waveguide (CPW) Penning trap. The CPW-trap, which is essentially a section of coplanar-waveguide transmission-line, is designed to make it compatible with circuit-quantum electrodynamic architectures. This will enable a single trapped electron, or geonium atom, as a potential building block of microwave quantum circuits. The model of the trapped electron as an electric circuit was first introduced by Hans Dehmelt in the 1960s. It is essential for the description of the electronic detection using resonant tank circuits. It is also the basis for the description of the interaction of a geonium atom with other distant quantum systems through electrical (microwave) signals.
Bochao Chen; Xiangjun Meng; Yanqin Liu; Zhigao Wang; Bin Feng; Shuhong Wang
2013-01-01
This study presents the calculation method for short-circuit electrodynamic force of power transformer winding and development of electrodynamic force analysis software package. Finite element method is used to achieve the leakage magnetic field of transformer winding under short circuit operation. Electromagnetic force is calculated by using Lorentz force formula. Based on mechanical properties of kraft-manila paper and press-board, which are used as insulation and reinforcement materials, c...
Quantum State Transfer between Charge and Flux Qubits in Circuit-QED
Institute of Scientific and Technical Information of China (English)
WU Qin-Qin; LIAO Jie-Qiao; KUANG Le-Man
2008-01-01
@@ We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynamics (QED)system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR).It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.
Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering
Haeringen, W. van
1960-01-01
The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between
A Parity Invariant Regularization in 3-D Quantum Electrodynamics
Kimura, Tadahiko
1994-01-01
We regularize the 3-D quantum electrodynamics by a parity invariant Pauli-Villars regularization method. We find that in the perturbation theory the Chern-Simons term is not induced in the massless fermion case and induced in the massive fermion case.
Nonperturbative approach to circuit quantum electrodynamics.
Jonasson, Olafur; Tang, Chi-Shung; Goan, Hsi-Sheng; Manolescu, Andrei; Gudmundsson, Vidar
2012-10-01
We outline a rigorous method which can be used to solve the many-body Schrödinger equation for a Coulomb interacting electronic system in an external classical magnetic field as well as a quantized electromagnetic field. Effects of the geometry of the electronic system as well as the polarization of the quantized electromagnetic field are explicitly taken into account. We accomplish this by performing repeated truncations of many-body spaces in order to keep the size of the many particle basis on a manageable level. The electron-electron and electron-photon interactions are treated in a nonperturbative manner using "exact numerical diagonalization." Our results demonstrate that including the diamagnetic term in the photon-electron interaction Hamiltonian drastically improves numerical convergence. Additionally, convergence with respect to the number of photon states in the joint photon-electron Fock space basis is fast. However, the convergence with respect to the number of electronic states is slow and is the main bottleneck in calculations.
Dimensional regularization and infrared divergences in quantum electrodynamics
International Nuclear Information System (INIS)
Dimensional continuation was devised as a powerful regularization method for ultraviolet divergences in quantum field theories. Recently it was clear, at least for quantum electrodynamics, that such a method could be employed for factorizing out infrared divergences from the on-shell S-matrix elements. This provides a renormalization scheme on the electron mass-shell without using a gauge violating ''photon mass''. (author)
K\\"all\\'en-Lehmann representation of noncommutative quantum electrodynamics
Bufalo, R.; Cardoso, T. R.; Pimentel, B. M.
2014-01-01
Noncommutative (NC) quantum field theory is the subject of many analyses on formal and general aspects looking for deviations and, therefore, potential noncommutative spacetime effects. Within of this large class, we may now pay some attention to the quantization of NC field theory on lower dimensions and look closely at the issue of dynamical mass generation to the gauge field. This work encompasses the quantization of the two-dimensional massive quantum electrodynamics and three-dimensional...
Institute of Scientific and Technical Information of China (English)
孟建宇; 王培月; 冯伟; 杨国建; 李新奇
2012-01-01
The solid-state superconducting circuit-QED (quantum electrodynamics) system is a promising candidate for quantum computing and quantum information processing, which serves also as an ideal platform for quantum measurement and quantum control studies. In this context, a large number of cavity photons may be involved in the quantum dynamics and will degrade the simulation efficiency. To avoid this difficulty, it is helpful to eliminate the degrees of freedom of the cavity photons, and obtain an effective master-equation description which contains only the qubit states. In this work, we examine two such schemes, the adiabatic elimination (AE) and the more recently proposed polaron transformation (PT) approaches, by comparing their results with exact numerical simulations. We find that in the absence of qubit-flip, which is a specific quantum nondemolition (QND) measurement, the PT scheme is superior to the AE method. Actually, in this case the PT scheme catches the measurement dynamics exactly. However, in the presence of qubit-flip such as for qubit oscillation measurement, the PT scheme is no longer better than the AE approach. We conclude that both schemes, in the weak measurement regime, can work almost equally well. This corresponds to strong cavity damping or weak coupling between the qubit and cavity photons. Out of this regime, unfortunately, one has to include the cavity photons into numerical simulations and more advanced methods/techniques are waiting for their exploration in this field.%基于超导传输线和超导量子比特相互耦合的电路量子电动力学（quantumElectrodynamics，QED）系统，是目前固态量子信息领域的一个倍受关注的物理系统，也是研究量子测量和量子控制的理想实验平台．由于其中涉及的驱动场和超导传输线谐振腔支持的光子频率都在微波区，在量子测量和量子控制研究中往往遇到大量光子数引起的状态空间维数过大带来的数值模拟
Path Integral Quantization of Generalized Quantum Electrodynamics
Bufalo, Rodrigo; Pimentel, Bruto Max; Zambrano, German Enrique Ramos
2010-01-01
In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the hamiltonian structure of system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an expl...
K\\"all\\'en-Lehmann representation of noncommutative quantum electrodynamics
Bufalo, R; Pimentel, B M
2014-01-01
Noncommutative (NC) quantum field theory is the subject of many analyses on formal and general aspects looking for deviations and, therefore, potential noncommutative spacetime effects. Within of this large class, we may now pay some attention to the quantization of NC field theory on lower dimensions and look closely at the issue of dynamical mass generation to the gauge field. This work encompasses the quantization of the two-dimensional massive quantum electrodynamics and three-dimensional topologically massive quantum electrodynamics. We begin by addressing the problem on a general dimensionality making use of the perturbative Seiberg-Witten map to, thus, construct a general action, to only then specify the problem to two and three dimensions. The quantization takes place through the K\\"all\\'en-Lehmann spectral representation and Yang-Feldman-K\\"all\\'en formulation, where we calculate the respective spectral density function to the gauge field. Furthermore, regarding the photon two-point function, we disc...
Path integral quantization of generalized quantum electrodynamics
International Nuclear Information System (INIS)
In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.
Path Integral Quantization of Generalized Quantum Electrodynamics
Bufalo, Rodrigo; Zambrano, German Enrique Ramos
2010-01-01
It is shown in this paper a complete covariant quantization of Generalized Electrodynamics by path integral approach. To this goal we first studied the hamiltonian structure of system following Dirac's methodology, and then we follow the Faddeev-Senjanovic procedure to attain the amplitude transition. The complete propagators (Schwinger-Dyson-Fradkin equations) on correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation on one-loop approximation of all Green's functions and a discussion about the obtained results are presented.
Cavity quantum electrodynamics with Anderson-localized modes.
Sapienza, Luca; Thyrrestrup, Henri; Stobbe, Søren; Garcia, Pedro David; Smolka, Stephan; Lodahl, Peter
2010-03-12
A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.
An Interpreter for Quantum Circuits
Lucas Helms; Ruben Gamboa
2013-01-01
This paper describes an ACL2 interpreter for "netlists" describing quantum circuits. Several quantum gates are implemented, including the Hadamard gate H, which rotates vectors by 45 degrees, necessitating the use of irrational numbers, at least at the logical level. Quantum measurement presents an especially difficult challenge, because it requires precise comparisons of irrational numbers and the use of random numbers. This paper does not address computation with irrational numbers or the g...
Landau-Khalatnikov-Fradkin transformations in Reduced Quantum Electrodynamics
Ahmad, A; Concha-Sánchez, Y; Raya, A
2016-01-01
We derive the Landau-Khalatnikov-Frandkin transformation (LKFT) for the fermion propagator in quantum electrodynamics (QED) described within a brane-world inspired framework where photons are allowed to move in $d_\\gamma$ space-time (bulk) dimensions while electrons remain confined to a $d_e$-dimensional brane, with $d_e < d_\\gamma$, referred to in the literature as Reduced Quantum Electrodynamics, RQED$_{d_\\gamma,d_e}$. Specializing to the case of graphene, namely RQED$_{4,3}$ with massless fermions, we derive the non-perturbative form of the fermion propagator starting from its bare counterpart and then compare its weak coupling expansion to known one- and two-loop perturbative results. The agreement of the gauge dependent terms at order $\\alpha$ and $\\alpha^{2}$ is reminiscent from the structure of LKFT in ordinary QED in arbitrary space-time dimensions and provides strong constraints for the multiplicative renormalizability of RQED$_{d_\\gamma,d_e}$.
Progress in quantum electrodynamics theory of highly charged ions
Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.
2013-01-01
Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...
The Adler-Bardeen theorem in quantum electrodynamics
International Nuclear Information System (INIS)
A new proof of the Adler-Bardeen theorem in quantum electrodynamics is presented on the basis of three kinds of Ward-Takahashi identities. Among them one is new and essential to the proof. By examining the consistency of these identities with the renormalization group we find three equations for the anomalous dimensions of the operators appearing in the Ward-Takahashi identities. Combination of these three equations immediately yields the Adler-Bardeen theorem. (author)
High-energy limit of quantum electrodynamics beyond Sudakov approximation
Penin, Alexander A.
2015-01-01
We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which dominates the amplitudes at extremely high energies. Possible applications of our result...
Directory of Open Access Journals (Sweden)
Bochao Chen
2013-05-01
Full Text Available This study presents the calculation method for short-circuit electrodynamic force of power transformer winding and development of electrodynamic force analysis software package. Finite element method is used to achieve the leakage magnetic field of transformer winding under short circuit operation. Electromagnetic force is calculated by using Lorentz force formula. Based on mechanical properties of kraft-manila paper and press-board, which are used as insulation and reinforcement materials, considering the elastic force and friction of the various insulating materials, the equivalent mass spring model of winding is established and axial dynamic force and displacement is calculated. Using client/server mode, short-circuit electrodynamic force analysis software for power transformer winding is developed, which consists of several sub-system, such as parameter input and calculation and result analysis. The client/server structure facilitates the expansion of the software features. This software package has been applied in the power transformer manufacture enterprise.
High-energy limit of quantum electrodynamics beyond Sudakov approximation
Directory of Open Access Journals (Sweden)
Alexander A. Penin
2015-05-01
Full Text Available We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which dominates the amplitudes at extremely high energies. Possible applications of our result to the analysis of the high-energy processes in quantum chromodynamics is also discussed.
High-energy limit of quantum electrodynamics beyond Sudakov approximation
Energy Technology Data Exchange (ETDEWEB)
Penin, Alexander A., E-mail: penin@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)
2015-05-18
We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics beyond the leading order of the small electron mass expansion in the leading logarithmic approximation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative corrections are induced by a soft electron pair exchange and result in enhancement of the power-suppressed contribution, which dominates the amplitudes at extremely high energies. Possible applications of our result to the analysis of the high-energy processes in quantum chromodynamics is also discussed.
Circuit analysis of quantum measurement
Kurotani, Yuji; Ueda, Masahito
2006-01-01
We develop a circuit theory that enables us to analyze quantum measurements on a two-level system and on a continuous-variable system on an equal footing. As a measurement scheme applicable to both systems, we discuss a swapping state measurement which exchanges quantum states between the system and the measuring apparatus before the apparatus meter is read out. This swapping state measurement has an advantage in gravitational-wave detection over contractive state measurement in that the post...
Quantum Electrodynamics with the Pauli Term
Sastry, R R
1999-01-01
The quantum field theory of extended objects is employed to address the hitherto nonrenormalizable Pauli interaction. This is achieved by quantizing the Dirac field using the infinite dimensional generalization of the extended object formulation. The order $\\alpha$ contribution to the anomalous magnetic moment of the electron (and of the muon) arising from the Pauli term is calculated.
Superconducting Quantum Circuits
Majer, J.B.
2002-01-01
This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;
2011-01-01
of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum...
Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger;
2013-01-01
We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from longi...
The quantum Hall's effect:A quantum electrodynamic phenomenon
Institute of Scientific and Technical Information of China (English)
A.I. Arbab
2012-01-01
We have applied Maxwell's equations to study the physics of quantum Hall's effect.The electromagnetic properties of this system are obtained.The Hall's voltage,VH =2πh2ns/e rn,where ns is the electron number density,for a 2-dimensional system,and h =2πh is the Planck's constant,is found to coincide with the voltage drop across the quantum capacitor.Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance.Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached.At a fundamental level,the Hall's effect is found to be equivalent to a resonant LCR circuit with LH =2π m/e2ns and CH =me2/2πh2ns satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time,Ts.The Hall's resistance is found to be RH =√LH/CH.The Hall's resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimeasional gas.
Black hole qubit correspondence from quantum circuits
Prudencio, Thiago; Silva, Edilberto O; Belich, Humberto
2014-01-01
We propose a black hole qubit correspondence (BHQC) from quantum circuits, taking into account the BHQC formulations of wrapped brane qubits. With base on BHQC, we implement the corresponding gate operations to realize any given quantum circuit. In particular, we implement cases of the generation of Bell states, quantum teleportation and GHZ states circuits. Finally, we give an interpretation of the BHQC from quantum circuits with base on the BHQC classification of entanglement classes.
Modified Maxwell equations in quantum electrodynamics
Harmuth, Henning F; Meffert, Beate
2001-01-01
Divergencies in quantum field theory referred to as "infinite zero-point energy" have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy. In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations. T
Quantum electrodynamics with an external field disturbing vacuum stability
Gitman, D. M.; Fradkin, E. S.; Shvartsman, Sh. M.
The problems of quantum field theory with unstable vacuum are examined using quantum electrodynamics with an external field as an example. The instability manifests itself as the possibility of electron-positron pair generation from vacuum due to external electric fields. A perturbation theory for the matrix elements of the transition process is developed which allows, in an exact manner, for interaction with the external field generating the pairs. It is shown that the development of a special perturbation theory, in which propagators have a matrix structure, is required for calculating the mean values of the operators of physical quantities in quantum field theory. Calculations of various processes in pair-generating fields are presented.
Quantum Electrodynamics near a Huttner-Barnett dielectric
Eberlein, Claudia
2012-01-01
We build up a consistent theory of quantum electrodynamics in the presence of macroscopic polarizable media. We use the Huttner-Barnett model of a dispersive and absorbing dielectric medium and formulate the theory in terms of interacting quantum fields. We integrate out the damped polaritons by using diagrammatic techniques and find an exact expression for the displacement field (photon) propagator in the presence of a dispersive and absorbing dielectric half-space. This opens a new route to traceable perturbative calculations of the same kind as in free-space quantum electrodynamics. As a worked-through example we consider the interaction of a neutral atom with a dispersive and absorbing dielectric half-space. For that we use the multipolar coupling $\\boldsymbol{\\mu}\\cdot\\mathbf{D}$ of the atomic dipole moment to the electromagnetic displacement field. We apply the newly developed formalism to calculate the one-loop correction to the atomic electron propagator and find the energy-level shift and changes in ...
Strong-Field Quantum Electrodynamics and Muonic Hydrogen
Jentschura, U D
2014-01-01
We explore the possibility of a breakdown of perturbative quantum electrodynamics in light muonic bound systems, notably, muonic hydrogen. The average electric field seen by a muon orbiting a proton is shown to be comparable to hydrogenlike Uranium and, notably, larger than the electric field achievable using even the most advanced strong-laser facilities. Following Maltman and Isgur who have shown that fundamental forces such as the meson exchange force may undergo a qualitative change in the strong-coupling regime, we investigate a concomitant possible existence of muon-proton and electron-proton contact interactions, of nonperturbative origin, and their influence on transition frequencies in light one-muon ions.
Progress in quantum electrodynamics theory of highly charged ions
Energy Technology Data Exchange (ETDEWEB)
Volotka, Andrey V. [Institut fuer Theoretische Physik, Technische Universitaet Dresden, Mommsenstrasse 13, 01062, Dresden (Germany); Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, 198504, St. Petersburg (Russian Federation); Glazov, Dmitry A.; Shabaev, Vladimir M. [Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets, 198504, St. Petersburg (Russian Federation); Plunien, Guenter [Institut fuer Theoretische Physik, Technische Universitaet Dresden, Mommsenstrasse 13, 01062, Dresden (Germany)
2013-09-15
Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnetic moments with heavy ions are discussed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Relativistic and quantum electrodynamics effects in the helium pair potential.
Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K
2010-05-01
The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].
Renormalization constants and asymptotic behaviour in quantum electrodynamics
International Nuclear Information System (INIS)
Using dimensional regularization a field theory contains at least one parameter less than the dimension of a mass. The Callan-Symanzik equations for the renormalization constants then become soluble entirely in terms of the coefficient functions. Explicit expressions are obtained for all the renormalization constants in Quantum Electrodynamics. At nonexceptional momenta the infrared behaviour and the three leading terms in the asymptotic expansion of any Greens function are controlled by the Callan-Symanzik equations. For the propagators the three leading terms are computed explicitly in terms of functions of α only. The gauge dependence of the electron propagator in momentum space is solved explicitly in all orders of perturbation theory. (Auth.)
Quantum electrodynamics of inhomogeneous anisotropic media
Lopez, Adrian E Rubio
2014-01-01
In this work we calculate the closed time path (CTP) generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then, we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss and give insights about how the gauge invariance must be treated in the formalism w...
Quantum Circuits with Mixed States
Aharonov, D; Nisan, N; Aharonov, Dorit; Kitaev, Alexei; Nisan, Noam
1998-01-01
We define the model of quantum circuits with density matrices, where non-unitary gates are allowed. Measurements in the middle of the computation, noise and decoherence are implemented in a natural way in this model, which is shown to be equivalent in computational power to standard quantum circuits. The main result in this paper is a solution for the subroutine problem: The general function that a quantum circuit outputs is a probabilistic function, but using pure state language, such a function can not be used as a black box in other computations. We give a natural definition of using general subroutines, and analyze their computational power. We suggest convenient metrics for quantum computing with mixed states. For density matrices we analyze the so called ``trace metric'', and using this metric, we define and discuss the ``diamond metric'' on superoperators. These metrics enable a formal discussion of errors in the computation. Using a ``causality'' lemma for density matrices, we also prove a simple lowe...
Relativistic quantum transport theory for electrodynamics
Zhuang, P; Zhuang, P; Heinz, U
1995-01-01
We investigate the relationship between the covariant and the three-dimensional (equal-time) formulations of quantum kinetic theory. We show that the three-dimensional approach can be obtained as the energy average of the covariant formulation. We illustrate this statement in scalar and spinor QED. For scalar QED we derive Lorentz covariant transport and constraint equations directly from the Klein-Gordon equation rather than through the previously used Feshbach-Villars representation. We then consider pair production in a spatially homogeneous but time-dependent electric field and show that the pair density is derived much more easily via the energy averaging method than in the equal-time representation. Proceeding to spinor QED, we derive the covariant version of the equal-time equation derived by Bialynicki-Birula et al. We show that it must be supplemented by another self-adjoint equation to obtain a complete description of the covariant spinor Wigner operator. After spinor decomposition and energy averag...
Quantum electrodynamic effects in finite space
Dobiasch, P.; Walther, H.
The modifications of various quantum properties due to a discrete structure of the modes of the vacuum electromagnetic field are discussed. In contrast to the usual case of a continuous spectrum of the free space fluctuations, we consider physical systems in a resonator or in a wave guide. It is shown that the relaxation time of the system can be increased ot decreased, by increasing or decreasing the density of modes with respect to the case of unperturbed vacuum. On the other hand, we predict level shifts due to the reduced mass of the electron and deviations from the Lambshift for hydrogen in a wave guide, which can be detected with the presently feasible high resolution spectroscopy. We propose an experimental set-up. Nous discutons les modifications de diverses propriétés quantiques sous l'influence d'une structure de modes discrets du champ électromagnétique dans le vide. En comparaison du cas habituel d'un spectre continu des fluctuations du vide dans l'espace libre, nous considérons ici des systèmes physiques dans un résonateur ou un guide d'ondes. Il est démontré que le temps de relaxation du système peut être prolongé ou raccourci, ceci en augmentant ou diminuant la densité des modes par rapport à sa valeur dans le vide non-perturbé. D'autre part, nous prédisons des déplacements de niveau dus à la masse réduite de l'électron et des déviations du Lamb shift pour des atomes d'hydrogène dans un guide d'ondes, qui peuvent être détectées grâce à la haute résolution accessible actuellement en spectroscopie. Nous présentons un dispositif expérimental.
Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Zahn, J.W.
2006-12-15
We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)
Quantum corrections to the Larmor radiation formula in scalar electrodynamics
Higuchi, A
2009-01-01
We use the semi-classical approximation in perturbative scalar quantum electrodynamics to calculate the quantum correction to the Larmor radiation formula to first order in Planck's constant in the non-relativistic approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We calculate this correction in two cases: in the first case the charged particle is accelerated by a time-dependent but space-independent vector potential whereas in the second case it is accelerated by a time-independent vector potential which is a function of one spatial coordinate. We find that the corrections in these two cases are different even for a charged particle with the same classical motion. The correction in each case turns out to be non-local in time in contrast to the classical approximation.
Nonlocal electrodynamics of Josephson vortices in superconducting circuits
Abdumalikov, A. A., Jr.; Alfimov, G. L.; Malishevskii, A. S.
2009-02-01
A review of the main analytical, numerical and experimental results of nonlocal Josephson electrodynamics in different types of junctions is presented. Several mechanisms of nonlocality are discussed. Linear electromagnetic waves and vortices (kinks) propagating along junctions are examined in detail. The main attention is paid to bulk junctions with internal nonlocality and to narrow junctions with geometrical nonlocality. Theoretical conceptions of Cherenkov excitation of plasma waves, discretization of kink velocities and forming of multikinks by binding of elementary vortices are considered. Experimental results for narrow junctions are surveyed. It is shown that the positions of Fiske steps and Cherenkov resonances at current-voltage characteristics which have been obtained in experiments can be properly explained by a nonlocal model that takes into account stray magnetic fields outside the junction.
Dipolar quantum electrodynamics of the two-dimensional electron gas
Todorov, Yanko
2015-03-01
Similarly to a previous work on the homogeneous electron gas [Y. Todorov, Phys. Rev. B 89, 075115 (2014), 10.1103/PhysRevB.89.075115], we apply the Power-Zienau-Wooley (PZW) formulation of the quantum electrodynamics to the case of an electron gas quantum confined by one-dimensional potential. We provide a microscopic description of all collective plasmon modes of the gas, oscillating both along and perpendicular to the direction of quantum confinement. Furthermore, we study the interaction of the collective modes with a photonic structure, planar metallic waveguide, by using the full expansion of the electromagnetic field into normal modes. We show how the boundary conditions for the electromagnetic field influence both the transverse light-matter coupling and the longitudinal particle-particle interactions. The PZW descriptions appear thus as a convenient tool to study semiconductor quantum optics in geometries where quantum-confined particles interact with strongly confined electromagnetic fields in microresonators, such as the ones used to achieve the ultrastrong light-matter coupling regime.
Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics
Myrzakulov, Ratbay; Odintsov, Sergei; Sebastiani, Lorenzo
2016-01-01
We study inflation for a quantum scalar electrodynamics model in curved space-time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters,...
Third emission mechanism in solid-state nanocavity quantum electrodynamics.
Yamaguchi, Makoto; Asano, Takashi; Noda, Susumu
2012-09-01
Photonic crystal (PC) nanocavities have been receiving a great deal of attention recently because of their ability to strongly confine photons in a tiny space with a high quality factor. According to cavity quantum electrodynamics (cavity QED), such confined photons can achieve efficient interactions with excitons in semiconductors, leading to the Purcell effect in the weak coupling regime and vacuum Rabi splitting (VRS) in the strong coupling regime. These features are promising for applications such as quantum information processing, highly efficient single photon sources and ultra-low threshold lasers. In this context, the coupled system of a semiconductor quantum dot (QD) and a PC nanocavity has been intensively investigated in recent years.Although experimental reports have demonstrated such fundamental features, two anomalous phenomena have also been observed. First, photon emission from the cavity occurs even when it is significantly detuned from the QD. Second, spectral triplets are formed by additional bare-cavity lines between the VRS lines. These features cannot be explained by standard cavity QED theories and have prompted controversy regarding their physical mechanisms. In this review we describe the recent experimental and theoretical progress made in the investigation of these phenomena. Similar mechanisms will also occur in many other coupled quantum systems, and thus the findings are applicable to a wide range of fields.
Institute of Scientific and Technical Information of China (English)
孟建宇; 王培月; 冯伟; 杨国建; 李新奇
2012-01-01
Solid-state superconducting circuit-quantum electrodynamics (QED) system is a promising candidate for quantum information processing and an ideal platform for quantum measurement and quantum control studies. As an extension to our previous simulation for single qubit circuit-QED, in this work we simulate the quantum measurement and control of multi-qubit system. Particularly, we consider the deterministic generation of a two-qubit Bell state. In this context we examine the validity conditions of two cavity- photon-elimination scheme. On the level of quantum trajectory simulation, we find that, owing to the qubit flip caused by feedback, the advanced polaron-transformation scheme is no longer applicable if the measurement is not weak, which also makes meaningless the elegant effective measurement operator.%基于超导传输线和超导量子比特相互耦合的电路量子电动力学（quantumelectrodynamics，QED）系统，是研究固态量子信息和量子测量与控制的理想实验平台．本文在已有工作（单比特电路QED）基础上，进一步研究多比特电路QED系统．具体通过对两比特系统的量子测量和量子控制动力学的模拟，检验了“绝热消除”和“极化子变换”两种消除微腔光子自由度方法的适用条件．和单比特情况不同，我们特别检验了两比特系统Bell纠缠态的“确定性”制备问题．在量子路径水平上模拟发现，由于反馈操作引起量子比特状态翻转，使得极化子变换方法失效，它所导出的“有效测量算符”（其中含有非平庸的“宇称项”）此时也将变得没有意义．
Physical synthesis of quantum circuits using templates
Mirkhani, Zahra; Mohammadzadeh, Naser
2016-06-01
Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of "physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.
Physical synthesis of quantum circuits using templates
Mirkhani, Zahra; Mohammadzadeh, Naser
2016-10-01
Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of " physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.
Quantum State Engineering with Circuit Electromechanical Three-Body Interactions
Abdi, Mehdi; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Hartmann, Michael J.
2015-05-01
We propose a hybrid system with quantum mechanical three-body interactions between photons, phonons, and qubit excitations. These interactions take place in a circuit quantum electrodynamical architecture with a superconducting microwave resonator coupled to a transmon qubit whose shunt capacitance is free to mechanically oscillate. We show that this system design features a three-mode polariton-mechanical mode and a nonlinear transmon-mechanical mode interaction in the strong coupling regime. Together with the strong resonator-transmon interaction, these properties provide intriguing opportunities for manipulations of this hybrid quantum system. We show, in particular, the feasibility of cooling the mechanical motion down to its ground state and preparing various nonclassical states including mechanical Fock and cat states and hybrid tripartite entangled states.
Quantum electrodynamical corrections to a magnetic dipole in general relativity
Pétri, J
2015-01-01
Magnetized neutron stars are privileged places where strong electromagnetic fields as high as $\\BQ=4.4\\times10^9$~T exist, giving rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). These corrections need to be included to the general relativistic (GR) description of a magnetic dipole supposed to be anchored in the neutron star. In this paper, these QED and GR perturbations to the standard flat space-time dipole are calculated to the lowest order in the fine structure constant~$\\alpha_{\\rm sf}$ and to any order in the ratio $\\Rs/R$ where $R$ is the neutron star radius and $\\Rs$ its Schwarzschild radius. Following our new 3+1~formalism developed in a previous work, we compute the multipolar non-linear corrections to this dipole and demonstrate the presence of a small dipolar~$\\ell=1$ and hexapolar~$\\ell=3$ component.
Effective field theory of quantum gravity coupled to scalar electrodynamics
Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.
2016-05-01
In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.
Cavity Quantum Electrodynamics of Continuously Monitored Bose-Condensed Atoms
Directory of Open Access Journals (Sweden)
Mark D. Lee
2015-09-01
Full Text Available We study cavity quantum electrodynamics of Bose-condensed atoms that are subjected to continuous monitoring of the light leaking out of the cavity. Due to a given detection record of each stochastic realization, individual runs spontaneously break the symmetry of the spatial profile of the atom cloud and this symmetry can be restored by considering ensemble averages over many realizations. We show that the cavity optomechanical excitations of the condensate can be engineered to target specific collective modes. This is achieved by exploiting the spatial structure and symmetries of the collective modes and light fields. The cavity fields can be utilized both for strong driving of the collective modes and for their measurement. In the weak excitation limit the condensate–cavity system may be employed as a sensitive phonon detector which operates by counting photons outside the cavity that have been selectively scattered by desired phonons.
Quantum electrodynamics and plasmonic resonance of metallic nanostructures.
Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang
2016-04-20
Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 10(7) times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.
Quantum Electrodynamics Effects in Rovibrational Spectra of Molecular Hydrogen.
Komasa, Jacek; Piszczatowski, Konrad; Łach, Grzegorz; Przybytek, Michał; Jeziorski, Bogumił; Pachucki, Krzysztof
2011-10-11
The dissociation energies from all rovibrational levels of H2 and D2 in the ground electronic state are calculated with high accuracy by including relativistic and quantum electrodynamics (QED) effects in the nonadiabatic treatment of the nuclear motion. For D2, the obtained energies have theoretical uncertainties of 0.001 cm(-1). For H2, similar uncertainties are for the lowest levels, while for the higher ones the uncertainty increases to 0.005 cm(-1). Very good agreement with recent high-resolution measurements of the rotational v = 0 levels of H2, including states with large angular momentum J, is achieved. This agreement would not have been possible without accurate evaluation of the relativistic and QED contributions and may be viewed as the first observation of the QED effects, mainly the electron self-energy, in a molecular spectrum. For several electric quadrupole transitions, we still observe certain disagreement with experimental results, which remains to be explained.
Higgs-Like Particle due to Revised Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Lehnert B.
2013-07-01
Full Text Available A Higgs-like particle having zero net electric charge, zero spin, and a nonzero rest mass can be deduced from an earlier elaborated revised quantum electrodynamical theory which is based on linear symmetry breaking through a nonzero electric ﬁeld divergence in the vacuum state. This special particle is obtained from a composite longitudinal solution based on a zero magnetic ﬁeld strength and on a nonzero divergence but a vanishing curl of the electric ﬁeld strength. The present theory further diﬀers from that of the nonlinear spontaneously broken symmetry by Higgs, in which elementary particles obtain their masses through an interaction with the Higgs ﬁeld. An experimental proof of the basic features of a Higgs-like particle thus supports the present theory, but does not for certain conﬁrm the process which would generate massive particles through a Higgs ﬁeld
Are There Topologically Charged States Associated with Quantum Electrodynamics ?
Marino, E C
1994-01-01
We present a formulation of Quantum Electrodynamics in terms of an antisymmetric tensor gauge field. In this formulation the topological current of this field appears as a source for the electromagnetic field and the topological charge therefore acts physically as an electric charge. The charged states of QED lie in the sector where the topological charge is identical to the matter charge. The antisymmetric field theory, however, admits new sectors where the topological charge is more general. These nontrivial, electrically charged, sectors contain massless states orthogonal to the vacuum which are created by a gauge invariant operator and can be interpreted as coherent states of photons. We evaluate the correlation functions of these states in the absence of matter. The new states have a positive definite norm and do interact with the charged states of QED in the usual way. It is argued that if these new sectors are in fact realized in nature then a very intense background electromagnetic field is necessary ...
Quantum electrodynamics and plasmonic resonance of metallic nanostructures
Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang
2016-04-01
Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 107 times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications.
Nonperturbative renormalization of scalar quantum electrodynamics in d=3
Energy Technology Data Exchange (ETDEWEB)
Dimock, J., E-mail: dimock@buffalo.edu [Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260 (United States)
2015-10-15
For scalar quantum electrodynamics on a three-dimensional toroidal lattice with a fine lattice spacing, we consider the renormalization problem of choosing counter terms depending on the lattice spacing, so that the theory stays finite as the spacing goes to zero. We employ a renormalization group method which analyzes the flow of the mass and the vacuum energy as a problem in discrete dynamical systems. The main result is that counter terms can be chosen so that at the end of the iteration these quantities take preassigned values. No use is made of perturbation theory. The renormalization group transformations are defined with bounded fields, an approximation which can be justified in Balaban’s approach to the renormalization group.
Quantum electrodynamics and plasmonic resonance of metallic nanostructures.
Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang
2016-04-20
Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 10(7) times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications. PMID:26987436
Knowles, R.
1982-07-01
A general theory of moments for electrodynamic magnetic levitation systems has been developed using double Fourier series and dynamic circuit principles. Both employ Parseval's theorem using either wave constant derivatives or the polar waveconstant principle of the Fourier-Bessel/double Fourier series equivalence. A method for calculating angular derivatives of moments and forces is explained, and for all of these methods comparisons are made with experimental results obtained for single and split rail configurations. Extensions of dynamic circuit theory for tilted nonflat and circular magnets are also explained.
Gate-Level Simulation of Quantum Circuits
Viamontes, G F; Markov, I L; Hayes, J P; Viamontes, George F.; Rajagopalan, Manoj; Markov, Igor L.; Hayes, John P.
2002-01-01
While thousands of experimental physicists and chemists are currently trying to build scalable quantum computers, it appears that simulation of quantum computation will be at least as critical as circuit simulation in classical VLSI design. However, since the work of Richard Feynman in the early 1980s little progress was made in practical quantum simulation. Most researchers focused on polynomial-time simulation of restricted types of quantum circuits that fall short of the full power of quantum computation. Simulating quantum computing devices and useful quantum algorithms on classical hardware now requires excessive computational resources, making many important simulation tasks infeasible. In this work we propose a new technique for gate-level simulation of quantum circuits which greatly reduces the difficulty and cost of such simulations. The proposed technique is implemented in a simulation tool called the Quantum Information Decision Diagram (QuIDD) and evaluated by simulating Grover's quantum search al...
On The Origin Of The Classical And Quantum Electrodynamic Arrows Of Time
Leiter, Darryl
2009-01-01
In order to describe the microscopic classical electrodynamic measurement process in an operational, relativistic, observer-participant manner, an Abelian operator symmetry of microscopic observer-participation called Measurement Color (MC) is incorporated into the field theoretic structure of the Classical Electrodynamics (CED) of interacting point charges. The new formalism, called Measurement Color Classical Electrodynamics (MC-CED), is shown to be a nonlocal, time reversal violating, classical field theory of interacting point charges in which a microscopic classical electrodynamic arrow of time emerges dynamically, independent of any external thermodynamic or cosmological assumptions. We then show how the standard canonical quantum field quantization program can be applied to the classical observer-participant MC-CED theory. This leads to the development of a relativistic, observer-participant Measurement Color Quantum Electrodynamic (MC-QED) formalism in the Heisenberg Picture, which contains an intrins...
Reversible and quantum circuits optimization and complexity analysis
Abdessaied, Nabila
2016-01-01
This book presents a new optimization flow for quantum circuits realization. At the reversible level, optimization algorithms are presented to reduce the quantum cost. Then, new mapping approaches to decompose reversible circuits to quantum circuits using different quantum libraries are described. Finally, optimization techniques to reduce the quantum cost or the delay are applied to the resulting quantum circuits. Furthermore, this book studies the complexity of reversible circuits and quantum circuits from a theoretical perspective.
Realization of Quantum Circuits in Fock Space
Institute of Scientific and Technical Information of China (English)
MA Lei; LI Yun
2004-01-01
In this letter, by using the method we offered in our paper [L. Ma and Y.D. Zhang, Commun. Theor. Phys.(Beijing, China) 36 (2001) 119], some extended quantum logic gates, such as quantum counter, quantum adder, are studied and their expressions are given. It may be useful for us to study the more complicated quantum logic circuits deeply.
Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.
Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas
2013-01-01
We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.
Discretized light-cone quantization: Application to quantum electrodynamics
International Nuclear Information System (INIS)
In this work, a general method for solving quantum field theories, Discretized Light-Cone Quantization (DLCQ), is presented. The method is very straightforward and essentially consists of diagonalizing the light-cone Hamiltonian matrix for the mass spectrum and wavefunctions. This method has been applied successfully in the past to various one space, one time dimensional theories. In each of these past applications, the mass spectrum and wave functions were successfully obtained, and all results agree with previous analytical and numerical work. The success of DLCQ in 1 + 1 dimensions provides the hope of solving theories in three space and one time dimensions. The application to higher dimensions is much more involved than in 1 + 1 dimensions due to the need to introduce ultraviolet and infrared regulators, and invoke a renormalization scheme consistent with gauge invariance and Lorentz invariance. This is in addition to the extra work involved implementing two extra dimensions with their added degrees of freedom. In this paper, I will present the application of DLCQ to 3 + 1 dimensional Quantum Electrodynamics. 24 refs., 43 figs., 2 tabs
Institute of Scientific and Technical Information of China (English)
Tang Jing-Wu; Zhao Guan-Xiang; He Xiong-Hui
2011-01-01
Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4)1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.
Quantum gravitational contributions to the beta function of quantum electrodynamics
International Nuclear Information System (INIS)
Full text: Because of the negative mass dimension of the coupling constant perturbative Einstein quantum gravity (EQG) is nonrenormalizable. However, one can still make sense of EQG if it's interpreted as an effective field theory within a low energy expansion of a more fundamental theory. In an effective field theory all interactions compatible with its essential symmetry content are in principle allowed into the Lagrangian and thus it establishes a systematic framework to calculate quantum gravitational effects. This approach has been used to study the asymptotic behavior at high energies of quantum field theories that incorporate the gravitational field. Some studies analyze the asymptotic freedom for the coupling constants of some theories including gravitation near the Planck scale. For example, Robinson and Wilczek suggest that the gravitational field improve the asymptotic freedom of pure Yang-Mills near the Planck scale. Already , a similar calculation in the Maxwell-Einstein theory suggest that such conclusion is gauge dependence. This result was obtained by Pietrykowski. D. Toms say what the effective action is calculated in a gauge-condition independent version of the background field method using dimensional regularization it's argued that the gravitational field plays no role in the beta function of the Yang-Mills coupling. Another calculation done by Ebert, Plefka and Rodigast using conventional diagrammatic methods confirms the result obtained by Toms. In a recent publication, again published by Toms in 2010, claimed that quadratic divergent contributions were responsible to improve asymptotic freedom of fine structure constant by quantum gravity effects by using proper time cutoff regularization and effective action methods. However, the physical reality of the result in Tom's was questioned in recent work. This purpose of this work is to shed light on the origin of such controversies using only a diagrammatic analysis. As an effective model EQG is
DEFF Research Database (Denmark)
Reitzenstein, S.; Schneider, C.; Albert, F.;
2011-01-01
Semiconductor quantum dots (QDs) are fascinating nanoscopic structures for photonics and future quantum information technology. However, the random position of self-organized QDs inhibits a deterministic coupling in devices relying on cavity quantum electrodynamics (cQED) effects which complicate...
Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light
Le Hur, Karyn; Henriet, Loïc; Petrescu, Alexandru; Plekhanov, Kirill; Roux, Guillaume; Schiró, Marco
2016-10-01
We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes-Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott-superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin-orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices - using time-dependent Floquet perturbations periodic in time, for example - as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose-Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose-Hubbard model is related to the Jaynes-Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase. xml:lang="fr"
Feedback control of superconducting quantum circuits
Ristè, D.
2014-01-01
Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback contr
Nonlinear quantum electrodynamic and electroweak processes in strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian
2015-06-24
Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.
Interference control of perfect photon absorption in cavity quantum electrodynamics
Wang, Liyong; Zhu, Yifu; Agarwal, G S
2016-01-01
We propose and analyze a scheme for controlling coherent photon transmission and reflection in a cavity-quantum-electrodynamics (CQED) system consisting of an optical resonator coupled with three-level atoms coherently prepared by a control laser from free space. When the control laser is off and the cavity is excited by two identical light fields from two ends of the cavity, the two input light fields can be completely absorbed by the CQED system and the light energy is converted into the excitation of the polariton states, but no light can escape from the cavity. Two distinct cases of controlling the perfect photon absorption are analyzed: (a) when the control laser is tuned to the atomic resonance and creates electromagnetically induced transparency, the prefect photon absorption is suppressed and the input light fields are nearly completely transmitted through the cavity; (b) when the control laser is tuned to the polariton state resonance and inhibits the polariton state excitation, the perfect photon ab...
Quantum Electrodynamics in d=3 from the ε Expansion.
Di Pietro, Lorenzo; Komargodski, Zohar; Shamir, Itamar; Stamou, Emmanuel
2016-04-01
We study quantum electrodynamics in d=3 coupled to N_{f} flavors of fermions. The theory flows to an IR fixed point for N_{f} larger than some critical number N_{f}^{c}. For N_{f}≤N_{f}^{c}, chiral-symmetry breaking is believed to take place. In analogy with the Wilson-Fisher description of the critical O(N) models in d=3, we make use of the existence of a fixed point in d=4-2ε to study the three-dimensional conformal theory. We compute, in perturbation theory, the IR dimensions of fermion bilinear and quadrilinear operators. For small N_{f}, a quadrilinear operator can become relevant in the IR and destabilize the fixed point. Therefore, the epsilon expansion can be used to estimate N_{f}^{c}. An interesting novelty compared to the O(N) models is that the theory in d=3 has an enhanced symmetry due to the structure of 3D spinors. We identify the operators in d=4-2ε that correspond to the additional conserved currents at d=3 and compute their infrared dimensions.
Perfect photon absorption in nonlinear regime of cavity quantum electrodynamics
Agarwal, G S; Wang, Liyong; Zhu, Yifu
2016-01-01
It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by the destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze the perfect photon absorption and onset of optical bistability in the nonlinear regime of the CQED and show that the perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of the optical bistability. Therefore the perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals for the first time that the optical bistability is influenced by the input-light interference and can be manipulated by varying the relative ph...
Quantum Electrodynamics in d=3 from the ε Expansion.
Di Pietro, Lorenzo; Komargodski, Zohar; Shamir, Itamar; Stamou, Emmanuel
2016-04-01
We study quantum electrodynamics in d=3 coupled to N_{f} flavors of fermions. The theory flows to an IR fixed point for N_{f} larger than some critical number N_{f}^{c}. For N_{f}≤N_{f}^{c}, chiral-symmetry breaking is believed to take place. In analogy with the Wilson-Fisher description of the critical O(N) models in d=3, we make use of the existence of a fixed point in d=4-2ε to study the three-dimensional conformal theory. We compute, in perturbation theory, the IR dimensions of fermion bilinear and quadrilinear operators. For small N_{f}, a quadrilinear operator can become relevant in the IR and destabilize the fixed point. Therefore, the epsilon expansion can be used to estimate N_{f}^{c}. An interesting novelty compared to the O(N) models is that the theory in d=3 has an enhanced symmetry due to the structure of 3D spinors. We identify the operators in d=4-2ε that correspond to the additional conserved currents at d=3 and compute their infrared dimensions. PMID:27081967
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.
2015-02-01
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.
Macroscopic quantum electrodynamics of high-Q cavities
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, Mikayel
2009-10-27
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the
Macroscopic quantum electrodynamics of high-Q cavities
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, Mikayel
2009-10-27
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the
Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory
Institute of Scientific and Technical Information of China (English)
王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman
2001-01-01
From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.
Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics
Kostelecky, V A; Kostelecky, Alan; Pickering, Austin
2003-01-01
Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.
Quantum-electrodynamic influences on the lifetime of metastable states
International Nuclear Information System (INIS)
High-precision lifetime measurements of the metastable 1s22s22p2P03/2 level in boronlike Ar XIV and the 3s22p 2P03/2 level in aluminumlike Fe XIV were performed at the Heidelberg electron beam ion trap (HD-EBIT). The lifetimes were inferred by monitoring their optical decay curves resulting from the magnetic dipole (M1) transition 1s22s22p2P03/2-2P01/2 and 3s23p 2P03/2-2P01/2 to the ground state configuration with transition wavelengths of 441.256 nm and 530.29 nm, respectively. Possible systematic error sources were investigated by studying the dependence of the decay times of the curves on various trapping conditions with high statistical significance. A new trapping scheme for lifetime measurements at an EBIT has been applied and allowed to reach an unprecedented precision in the realm of lifetime determinations on highly charged ions. The results of 9.573(4)(+12-5) ms (stat)(syst) for Ar XIV and 16.726(10)(+17) ms (stat)(syst) for Fe XIV with a relative accuracy of 0.14% and 0.13%, respectively, make these measurements for the first time sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM). The results, improving the accuracy of previous measurements by factors of 10 and 6, respectively, show a clear discrepancy of about 3σ and 4σ to the trend of existing theoretical models, which in almost all cases predict a shorter lifetime, when adjusted for the EAMM. The obvious disagreement between experimental results and the predictions points at the incompleteness of the theoretical models used. (orig.)
Single-shot optical readout of a quantum bit using cavity quantum electrodynamics
Sun, Shuo; Waks, Edo
2016-07-01
We propose a method to perform single-shot optical readout of a quantum bit (qubit) using cavity quantum electrodynamics. We selectively couple the optical transitions associated with different qubit basis states to the cavity and utilize the change in cavity transmissivity to generate a qubit readout signal composed of many photons. We show that this approach enables single-shot optical readout even when the qubit does not have a good cycling transition, which is required for standard resonance fluorescence measurements. We calculate the probability that the measurement detects the correct qubit state using the example of a quantum-dot spin under various experimental conditions and demonstrate that it can exceed 0.99.
Excess of positrons in cosmic rays: A Lindbladian model of quantum electrodynamics
Campos, Andre G; Bondar, Denys I; Rabitz, Herschel
2015-01-01
The fraction of positrons and electrons in cosmic rays recently observed on the International Space Station unveiled an unexpected excess of the positrons, undermining the current foundations of cosmic rays sources. We provide a quantum electrodynamics phenomenological model explaining the observed data. This model incorporates electroproduction, in which cosmic ray electrons decelerating in the interstellar medium emit photons that turn into electron-positron pairs. These findings not only advance our knowledge of cosmic ray physics, but also pave the way for computationally efficient formulations of quantum electrodynamics, critically needed in physics and chemistry.
Popa, Alexandru
2013-01-01
Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamical Systems is a reference on the new field of relativistic optics, examining topics related to relativistic interactions between very intense laser beams and particles. Based on 30 years of research, this unique book connects the properties of quantum equations to corresponding classical equations used to calculate the energetic values and the symmetry properties of atomic, molecular and electrodynamical systems. In addition, it examines applications for these methods, and for the calculation of
Phenomenology of the vacuum in quantum electrodynamics and beyond
Energy Technology Data Exchange (ETDEWEB)
Doebrich, Babette
2011-09-30
Determining forces that arise by the restriction of the fluctuation modes of the vacuum by the insertion of boundaries or the observation of altered light propagation in external fields is a versatile means to investigate the vacuum structure of quantum electrodynamics. For these quantum vacuum probes, the vacuum can be understood and effectively modeled as a medium. Investigating the properties of this medium cannot only test and broaden our understanding of known interactions but can also be a valuable tool in the search for particles at low energy scales which arise in extensions of the standard model. In this thesis, we first study the geometry dependence of fluctuation modes in the Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. To this end we employ a technique which is fully nonperturbative in the height profile. We parameterize the differences to the distance dependencies in the planar limit in terms of an anomalous dimension quantifying the power-law deviation from the planar case. In numerical studies of experimentally relevant corrugations, we identify a universal regime of the anomalous dimension at larger distances. We argue that this universality arises as the relevant fluctuations average over corrugation structures smaller than the atom-wall distance. Turning to modified light propagation as a probe of the quantum vacuum, we show that a combination of strong, pulsed magnets and gravitational-wave interferometers can not only facilitate the detection of strong-field QED phenomena, but also significantly enlarges the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed magnets as a suitable strong-field source to induce quantum nonlinearities, since their pulse frequency can be perfectly matched with the domain of highest sensitivity of modern gravitational-wave interferometers. Pushing current laboratory field-strengths to their limits, we suggest a
Phenomenology of the vacuum in quantum electrodynamics and beyond
International Nuclear Information System (INIS)
Determining forces that arise by the restriction of the fluctuation modes of the vacuum by the insertion of boundaries or the observation of altered light propagation in external fields is a versatile means to investigate the vacuum structure of quantum electrodynamics. For these quantum vacuum probes, the vacuum can be understood and effectively modeled as a medium. Investigating the properties of this medium cannot only test and broaden our understanding of known interactions but can also be a valuable tool in the search for particles at low energy scales which arise in extensions of the standard model. In this thesis, we first study the geometry dependence of fluctuation modes in the Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. To this end we employ a technique which is fully nonperturbative in the height profile. We parameterize the differences to the distance dependencies in the planar limit in terms of an anomalous dimension quantifying the power-law deviation from the planar case. In numerical studies of experimentally relevant corrugations, we identify a universal regime of the anomalous dimension at larger distances. We argue that this universality arises as the relevant fluctuations average over corrugation structures smaller than the atom-wall distance. Turning to modified light propagation as a probe of the quantum vacuum, we show that a combination of strong, pulsed magnets and gravitational-wave interferometers can not only facilitate the detection of strong-field QED phenomena, but also significantly enlarges the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed magnets as a suitable strong-field source to induce quantum nonlinearities, since their pulse frequency can be perfectly matched with the domain of highest sensitivity of modern gravitational-wave interferometers. Pushing current laboratory field-strengths to their limits, we suggest a
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-01
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Multiparty Quantum Secret Sharing of Classical Message using Cavity Quantum Electrodynamic System
Institute of Scientific and Technical Information of China (English)
HAN Lian-Fang; LIU Yi-Min; ZHANG Zhan-Jun
2006-01-01
@@ An experimental feasible scheme of multiparty secret sharing of classical messages is proposed, based on a cavity quantum electrodynamic system. The secret messages are imposed on atomic Bell states initially in the sender's possession by local unitary operations. By swapping quantum entanglement of atomic Bell states, the secret messages are split into several parts and each part is distributed to a separate party. In this case, any subset of the entire party group can not read out the secret message but the entirety via mutual cooperations. In this scheme, to discriminate atomic Bell states, additional classical fields are employed besides the same highly-detuned single-mode cavities used to prepare atomic Bell states. This scheme is insensitive to the cavity decay and the thermal field, and usual joint Bell-state measurements are unnecessary.
Ruggenthaler, Michael; Flick, Johannes; Pellegrini, Camilla; Appel, Heiko; Tokatly, Ilya V.; Rubio, Angel
2014-07-01
In this work, we give a comprehensive derivation of an exact and numerically feasible method to perform ab initio calculations of quantum particles interacting with a quantized electromagnetic field. We present a hierarchy of density-functional-type theories that describe the interaction of charged particles with photons and introduce the appropriate Kohn-Sham schemes. We show how the evolution of a system described by quantum electrodynamics in Coulomb gauge is uniquely determined by its initial state and two reduced quantities. These two fundamental observables, the polarization of the Dirac field and the vector potential of the photon field, can be calculated by solving two coupled, nonlinear evolution equations without the need to explicitly determine the (numerically infeasible) many-body wave function of the coupled quantum system. To find reliable approximations to the implicit functionals, we present the appropriate Kohn-Sham construction. In the nonrelativistic limit, this density-functional-type theory of quantum electrodynamics reduces to the density-functional reformulation of the Pauli-Fierz Hamiltonian, which is based on the current density of the electrons and the vector potential of the photon field. By making further approximations, e.g., restricting the allowed modes of the photon field, we derive further density-functional-type theories of coupled matter-photon systems for the corresponding approximate Hamiltonians. In the limit of only two sites and one mode we deduce the appropriate effective theory for the two-site Hubbard model coupled to one photonic mode. This model system is used to illustrate the basic ideas of a density-functional reformulation in great detail and we present the exact Kohn-Sham potentials for our coupled matter-photon model system.
Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems
Energy Technology Data Exchange (ETDEWEB)
Alidoosty Shahraki, Moslem; Khorasani, Sina; Aram, Mohammad Hasan [Sharif University of Technology, School of Electrical Engineering, Tehran (Iran, Islamic Republic of)
2014-05-15
The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole-dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured. (orig.)
Haeringen, W. van
1960-01-01
In view of remaining obscurities and difficulties in existing treatments of the infrared divergences in quantum electrodynamics this problem has been considered anew. The approximate model introduced in 1937 by Bloch and Nordsieck is rediscussed. It is explicitly shown to be a good substitute for th
Mode expansions in the quantum electrodynamics of photonic media with disorder
DEFF Research Database (Denmark)
Wubs, Martijn; Mortensen, N. Asger
2012-01-01
We address two issues in the quantum electrodynamical description of photonic media with some disorder, neglecting material dispersion. When choosing a gauge in which the static potential vanishes, the normal modes of the medium with disorder satisfy another transversality condition than the modes...
Efficient scheme for preparation of the multi-atom W state via cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Zhang Jin; Ye Liu
2004-01-01
We present an efficient scheme for preparation of the multi-atom W state via cavity quantum electrodynamics.Involved in this scheme are n identical two-level atoms and a single-mode cavity field. Discussion indicates that this scheme can be realized easily by current technologies.
Quantum Information Transfer in Circuit QED with Landau-Zener Tunneling
Institute of Scientific and Technical Information of China (English)
LI Jun-Wang; WU Chun-Wang; DAI Hong-Yi
2011-01-01
We propose a scheme to implement quantum information transfer between Cooper-pair boxes (CPBs) in a circuit quantum electrodynamic (QED) system with Landau-Zener tunneling. The system consists of two CPB qubits and a one-dimensional transmission line resonator (TLR). By analytically solving the eigenequation and numerically calculating the transition probability, the results show the quantum state transfer from one qubit to another via a fast adiabatic passage. The coupling mechanism is robust against decoherence effects.%@@ We propose a scheme to implement quantum information transfer between Cooper-pair boxes(CPBs)in a circuit quantum electrodynamic(QED)system with Landau-Zener tunneling.The system consists of two CPB qubits and a one-dimensional transmission line resonator(TLR).By analytically solving the eigenequation and numeri-cally calculating the transition probability,the results show the quantum state transfer from one qubit to another via a fast adiabatic passage.The coupling mechanism is robust against decoherence effects.
Effect of Multiphoton Processes on Geometric Quantum Computation in Superconducting Circuit QED
Institute of Scientific and Technical Information of China (English)
CHEN Chang-Yong
2012-01-01
We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.
Directory of Open Access Journals (Sweden)
I. I. Sergey
2005-01-01
Full Text Available The paper contains description of a simplified method for calculating closing-in of switch-gear flexible buses at short circuit. The developed method is based on integral and energy principles of mechanics. In order to increase accuracy of the calculation corrections factors are introduced in an explicit formula for calculation of maximum horizontal deviations. These factors have been obtained with the help of a computer program that realized numerical method for calculating closing-in of wires by flexible thread levels.Diagrams are constructed with the purpose to find ymax and criteria of electro-dynamic resistance of flexible buses (permissible impulse of electro-dynamic forces and current of electro-dynamic resistance is determined.
Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system.
Chen, Zihao; Zhou, Yao; Shen, Jung-Tsung
2016-07-15
We numerically investigate the photonic state generation and its nonclassical correlations in a ring-resonator waveguide quantum electrodynamics system. Specifically, we discuss photon antibunching and bunching in various scenarios, including the imperfect resonator with backscattering and dissipations. Our numerical results indicate that an imperfect ring resonator with backscattering can enhance the quality of antibunching. In addition, we also identify the quantum photonic halo phenomenon in the photon scattering dynamics and the shoulder effect in the second-order correlation function.
Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system.
Chen, Zihao; Zhou, Yao; Shen, Jung-Tsung
2016-07-15
We numerically investigate the photonic state generation and its nonclassical correlations in a ring-resonator waveguide quantum electrodynamics system. Specifically, we discuss photon antibunching and bunching in various scenarios, including the imperfect resonator with backscattering and dissipations. Our numerical results indicate that an imperfect ring resonator with backscattering can enhance the quality of antibunching. In addition, we also identify the quantum photonic halo phenomenon in the photon scattering dynamics and the shoulder effect in the second-order correlation function. PMID:27420523
Teleportation of Atomic States via Cavity Quantum Electrodynamics
Guerra, E S
2004-01-01
In this article we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.
Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box
Dutra, Sergio M.
2004-12-01
What happens to light when it is trapped in a box? Cavity Quantum Electrodynamics addresses a fascinating question in physics: what happens to light, and in particular to its interaction with matter, when it is trapped inside a box? With the aid of a model-building approach, readers discover the answer to this question and come to appreciate its important applications in computing, cryptography, quantum teleportation, and opto-electronics. Instead of taking a traditional approach that requires readers to first master a series of seemingly unconnected mathematical techniques, this book engages the readers' interest and imagination by going straight to the point, introducing the mathematics along the way as needed. Appendices are provided for the additional mathematical theory. Researchers, scientists, and students of modern physics can refer to Cavity Quantum Electrodynamics and examine the field thoroughly. Several key topics covered that readers cannot find in any other quantum optics book include: * Introduction to the problem of the "vacuum catastrophe" and the cosmological constant * Detailed up-to-date account of cavity QED lasers and thresholdless lasing * Examination of cavities with movable walls * First-principles discussion about cavity QED in open cavities * Pedagogical account of microscopic quantization in dielectrics Complementing the coverage of the most advanced theory and techniques, the author provides context by discussing the historical evolution of the field and its discoveries. In that spirit, "recommended reading," provided in each chapter, leads readers to both contemporary literature as well as key historical papers. Despite being one of many specialties within physics, cavity quantum electrodynamics serves as a window to many of the fundamental issues of physics. Cavity Quantum Electrodynamics will serve as an excellent resource for advanced undergraduate quantum mechanics courses as well as for graduate students, researchers, and
Thermal rectification in nonlinear quantum circuits
DEFF Research Database (Denmark)
Ruokola, T.; Ojanen, T.; Jauho, Antti-Pekka
2009-01-01
We present a theoretical study of radiative heat transport in nonlinear solid-state quantum circuits. We give a detailed account of heat rectification effects, i.e., the asymmetry of heat current with respect to a reversal of the thermal gradient, in a system consisting of two reservoirs at finite...... the rectification changes sign as a function of temperature....
Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics
Myrzakulov, Ratbay; Sebastiani, Lorenzo
2016-01-01
We study inflation for a quantum scalar electrodynamics model in curved space-time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.
Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics
Myrzakulov, R.; Odintsov, S. D.; Sebastiani, L.
2016-06-01
We study inflation for a quantum scalar electrodynamics model in curved space-time and for higher-derivative quantum gravity (QG) coupled with scalar electrodynamics. The corresponding renormalization-group (RG) improved potential is evaluated for both theories in Jordan frame where non-minimal scalar-gravitational coupling sector is explicitly kept. The role of one-loop quantum corrections is investigated by showing how these corrections enter in the expressions for the slow-roll parameters, the spectral index and the tensor-to-scalar ratio and how they influence the bound of the Hubble parameter at the beginning of the primordial acceleration. We demonstrate that the viable inflation maybe successfully realized, so that it turns out to be consistent with last Planck and BICEP2/Keck Array data.
Tunable Hybrid Quantum Electrodynamics from Non-Linear Electron Transport
Schiró, Marco; Hur, Karyn Le
2013-01-01
Recent advances in quantum electronics have allowed to engineer hybrid nano-devices comprising on chip a microwave electromagnetic resonator coupled to an artificial atom, a quantum dot. These systems realize novel platforms to explore non-equilibrium quantum impurity physics with light and matter. Coupling the quantum dot system to reservoir leads (source and drain) produces an electronic current as well as dissipation when applying a bias voltage across the system. Focusing on a standard mo...
Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits
Bonneau, D.; Engin, E.; Dorenbos, S.N.; Zwiller, V., et al
2012-01-01
Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-oninsulator material system, where quantum interference and the manipulation of quantum
Popa, Alexandru
2013-01-01
Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon
Exact two-qubit universal quantum circuit
Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar
2003-01-01
We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit gates. Each block in this circuit is given in a closed form solution. We also analyze the efficiency of different entangling gates, and find that exactly half of all the controlled-unitary gates can be used to implement two-qubit operations as efficiently as the commonly used CNOT gate.
Quantum-mechanical and quantum-electrodynamic equations for spectroscopic transitions
Yearchuck, Dmitry; Yerchak, Yauhen; Dovlatova, Alla
2010-09-01
Transition operator method is developed for description of the dynamics of spectroscopic transitions. Quantum-mechanical and quantum-electrodynamic difference-differential equations in general discrete space case and differential equations in continuum limit have been derived for spectroscopic transitions in the system of periodical ferroelectrically (ferromagnetically) ordered chains, interacting with external electromagnetic field. It was shown, that given equations can be represented in the form of Landau-Lifshitz equation in continuum limit and its generalization in discrete space case. Landau-Lifshitz equation was represented in Lorentz invariant form by Hilbert space definition over the ring of quaternions. It has been shown, that spin vector can be considered to be quaternion vector of the state of the system studied. From comparison with pure optical experiments the value of spin S=1/2 for spin-Peierls solitons in carbon chains has been found and it has also been established, that given quasiparticles are dually charged. The ratio of magnetic to electric (imaginary to real) components of electromagnetic dual (complex) charge is evaluated for given centers to be ge ≈(1.1-1.3)10 in correspondence with Dirac theory of charge quantization. The given results seem to be obtained for the first time.
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...
Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse
2015-11-10
The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications.
Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse
2015-01-01
The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications. PMID:26555179
Semidirect product of CCR and CAR algebras and asymptotic states in quantum electrodynamics
Herdegen, Andrzej
1997-01-01
A C*-algebra containing the CCR and CAR algebras as its subalgebras and naturally described as the semidirect product of these algebras is discussed. A particular example of this structure is considered as a model for the algebra of asymptotic fields in quantum electrodynamics, in which Gauss' law is respected. The appearence in this algebra of a phase variable related to electromagnetic potential leads to the universal charge quantization. Translationally covariant representations of this al...
Infinity in the regularization of Quantum Electrodynamics: A non standard Alternative
Barcenas, J.; Reyes, L.; Esquivel--Sirvent, R.
2006-01-01
We review the concept of infinity as applied to regularization procedures in Quantum Electrodynamics. A clear distinction that is lacking in current literature is made between the physical contents of renormalization, and the mathematical aspects of regularization. Robinson's non-standard analysis is offered as a means to settle the ambiguities of the theory, in the spirit of Paul Dirac's well known comments concerning the weak status of the mathematics used in traditional regularization sche...
SIMLA: Simulating laser-particle interactions via classical and quantum electrodynamics
Green, D. G.; Harvey, C. N.
2014-01-01
We present the Fortran code SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. This can be done classically via the Landau-Lifshitz equation, or alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo type routines. Multiple laser fields can be included in the simulation and the propagation direction, beam shape (plane wave, focussed paraxi...
Preparation of Genuinely Entangled Six-Atom State via Cavity Quantum Electrodynamics
Institute of Scientific and Technical Information of China (English)
ZHANG Wen; LIU Yi-Min; YIN Xiao-Feng; ZHANG Zhan-Jun
2011-01-01
A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.
Normalizability analysis of the generalized quantum electrodynamics from the causal point of view
Bufalo, R.; Pimentel, B. M.; Soto, D. E.
2015-01-01
The causal perturbation theory is an axiomatic perturbative theory of the S-matrix. This formalism has as its essence the following axioms: causality, Lorentz invariance and asymptotic conditions. Any other property must be showed via the inductive method order-by-order and, of course, it depends on the particular physical model. In this work we shall study the normalizability of the generalized quantum electrodynamics in the framework of the causal approach. Furthermore, we analyse the impli...
Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Sanchez Madrigal, S; Raya, A [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia, Michoacan 58040 (Mexico); Hofmann, C P, E-mail: saul@ifm.umicri.mx, E-mail: christoph@ucol.mx, E-mail: raya@ifm.umich.mx [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima 28045 (Mexico)
2011-04-01
We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.
Bound states in the two-dimension massive quantum electrodynamics (Qed2)
International Nuclear Information System (INIS)
This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated
Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory
Zhu, Guanyu
Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different
Payton, John L; Morton, Seth M; Moore, Justin E; Jensen, Lasse
2014-01-21
Surface-enhanced Raman scattering (SERS) is a technique that has broad implications for biological and chemical sensing applications by providing the ability to simultaneously detect and identify a single molecule. The Raman scattering of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude. These enhancements stem from a twofold mechanism: an electromagnetic mechanism (EM), which is due to the enhanced local field near the metal surface, and a chemical mechanism (CM), which is due to the adsorbate specific interactions between the metal surface and the molecules. The local field near the metal surface can be significantly enhanced due to the plasmon excitation, and therefore chemists generally accept that the EM provides the majority of the enhancements. While classical electrodynamics simulations can accurately simulate the local electric field around metal nanoparticles, they offer few insights into the spectral changes that occur in SERS. First-principles simulations can directly predict the Raman spectrum but are limited to small metal clusters and therefore are often used for understanding the CM. Thus, there is a need for developing new methods that bridge the electrodynamics simulations of the metal nanoparticle and the first-principles simulations of the molecule to facilitate direct simulations of SERS spectra. In this Account, we discuss our recent work on developing a hybrid atomistic electrodynamics-quantum mechanical approach to simulate SERS. This hybrid method is called the discrete interaction model/quantum mechanics (DIM/QM) method and consists of an atomistic electrodynamics model of the metal nanoparticle and a time-dependent density functional theory (TDDFT) description of the molecule. In contrast to most previous work, the DIM/QM method enables us to retain a detailed atomistic structure of the nanoparticle and provides a natural bridge between the electronic structure methods and the macroscopic
Quantum memory with millisecond coherence in circuit QED
Reagor, Matthew; Pfaff, Wolfgang; Axline, Christopher; Heeres, Reinier W.; Ofek, Nissim; Sliwa, Katrina; Holland, Eric; Wang, Chen; Blumoff, Jacob; Chou, Kevin; Hatridge, Michael J.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2016-07-01
Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.
A scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Wu Tao; Ye Liu; Ni Zhi-Xiang
2006-01-01
In this paper, we propose a scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics (QED). This scheme, which has a successful probability of 100 percent, does not require Bell-state measurement and performing any operations to reconstruct an initial state. Meanwhile, the scheme only involves atomfield interaction with a large detuning and does not require the transfer of quantum information between the atoms and cavity. Thus the scheme is insensitive to the cavity field states and cavity decay. This scheme can also be extended to transfer ring an entangled state of n-atom.
Interference control of nonlinear excitation in a multi-atom cavity quantum electrodynamics system.
Yang, Guoqing; Tan, Zheng; Zou, Bichen; Zhu, Yifu
2014-12-01
We show that by manipulating quantum interference in a multi-atom cavity quantum electrodynamics (CQED) system, the nonlinear excitation of the cavity-atom polariton can be resonantly enhanced while the linear excitation is suppressed. Under the appropriate conditions, it is possible to selectively enhance or suppress the polariton excitation with two free-pace laser fields. We report on an experiment with cold Rb atoms in an optical cavity and present experimental results that demonstrate such interference control of the CQED excitation and its direct application to studies of all-optical switching and cross-phase modulation of the cavity-transmitted light.
Cavity quantum electrodynamics in the Anderson-localized regime
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;
2010-01-01
We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....
Multi-objective design of quantum circuits using genetic programming
Sarvaghad-Moghaddam, Moein
2016-01-01
Quantum computing is a new way of data processing based on the concept of quantum mechanics. Quantum circuit design is a process of converting a quantum gate to a series of basic gates and is divided into two general categories based on the decomposition and composition. In the second group, using evolutionary algorithms and especially genetic algorithms, multiplication of matrix gates was used to achieve the final characteristic of quantum circuit. Genetic programming is a subfield of evolut...
On Multiplicative Linear Logic, Modality and Quantum Circuits
Directory of Open Access Journals (Sweden)
Ugo Dal Lago
2012-10-01
Full Text Available A logical system derived from linear logic and called QMLL is introduced and shown able to capture all unitary quantum circuits. Conversely, any proof is shown to compute, through a concrete GoI interpretation, some quantum circuits. The system QMLL, which enjoys cut-elimination, is obtained by endowing multiplicative linear logic with a quantum modality.
The quantum vacuum at the foundations of classical electrodynamics
Leuchs, G; Sánchez-Soto, L L
2010-01-01
In the classical theory of electromagnetism, the permittivity and the permeability of free space are constants whose magnitudes do not seem to possess any deeper physical meaning. By replacing the free space of classical physics with the quantum notion of the vacuum, we speculate that the values of the aforementioned constants could arise from the polarization and magnetization of virtual pairs in vacuum. A classical dispersion model with parameters determined by quantum and particle physics is employed to estimate their values. We find the correct orders of magnitude. Additionally, our simple assumptions yield an independent estimate for the number of charged elementary particles based on the known values of the permittivity and the permeability, and for the volume of a virtual pair. Such interpretation would provide an intriguing connection between the celebrated theory of classical electromagnetism and the quantum theory in the weak field limit.
Random electrodynamics : a classical foundation for key quantum concepts
International Nuclear Information System (INIS)
The model of random electrodynamics, in which electromagnetic particles are subjected, in a classical manner, to the forces of radiation damping and the fluctuating zero-point fields provides the framework in which the following results are obtained: (1) The precession dynamics of a long-lived, non-relativistic particle with a magnetic moment proportional to its spin, leads to a self-consistent determination of the spin value as one-half. (2) The internal dynamic underlying the intrinsic magnetic moment of a Dirac particle yields a classically visualizable picture of the spin-magnetic moment. (3) The Bose correlation among indistinguishable, non-interacting, spin-zero Particles arises from the coupling through the common- zero point fields and the radiation reaction fields when the particles are close together in both the r vector and the energy spaces. (4) The (exclusion principle-induced) correlation among identical, non-interacting magnetic particles with spin 1/2 is brought about by the coupling, (through the common fields of radiation reaction and the vacuum fluctuations), of the spins as well as the translational motions when the particles are close together in r vector and the energy spaces. (5) A dilute gas of free electrons has a Maxwellian distribution of velocities and the correct value of the djamagnetic moment in the presence of a magnetic field. Considerations on the centre of mass motion of a composite neutral particle lead to a simple resolution of the foundational paradoxes of statistical mechanics. (6) An approximate treatment of the hydrogen atom leads to a description of the evolution to the ground state at absolute zero and an estimation of the mass frequency and the line-width of the radiation emitted when an excited atom decays. (author)
Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer
Xiao, Yun-Feng; Xue, Peng; Xiao, Lixin; Li, Yan; Dong, Chun-Hua; Han, Zheng-Fu; Gong, Qihuang
2010-01-01
Quasi-transverse-electric and -transverse-magnetic fundamental whispering gallery modes in a polymer-coated silica microtoroid are theoretically investigated and demonstrated to possess very high-quality factors. The existence of a nanometer-thickness layer not only evidently reduces the cavity mode volume but also draws the maximal electric field's position of the mode to the outside of the silica toroid, where single quantum dots or nanocrystals are located. Both effects result in a strongly enhanced coherent interaction between a single dipole (for example, a single defect center in a diamond crystal) and the quantized cavity mode. Since the coated microtoroid is highly feasible and robust in experiments, it may offer an excellent platform to study strong-coupling cavity quantum electrodynamics, quantum information, and quantum computation.
Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer
International Nuclear Information System (INIS)
Quasi-transverse-electric and -transverse-magnetic fundamental whispering gallery modes in a polymer-coated silica microtoroid are theoretically investigated and demonstrated to possess very high-quality factors. The existence of a nanometer-thickness layer not only evidently reduces the cavity mode volume but also draws the maximal electric field's position of the mode to the outside of the silica toroid, where single quantum dots or nanocrystals are located. Both effects result in a strongly enhanced coherent interaction between a single dipole (for example, a single defect center in a diamond crystal) and the quantized cavity mode. Since the coated microtoroid is highly feasible and robust in experiments, it may offer an excellent platform to study strong-coupling cavity quantum electrodynamics, quantum information, and quantum computation.
Epitaxial lift-off for solid-state cavity quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Greuter, Lukas; Najer, Daniel; Kuhlmann, Andreas V.; Starosielec, Sebastian; Warburton, Richard J. [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056 (Switzerland); Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2015-08-21
We demonstrate an approach to incorporate self-assembled quantum dots into a Fabry-Pérot-like microcavity. Thereby, a 3λ/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor-mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggest that we are close to the strong coupling regime.
A nanophotonic probe for quantum electrodynamics in random cavities
DEFF Research Database (Denmark)
Huisman, S. R.; Frater, E. H.; Korterik, J. P.;
2011-01-01
Disorder in photonic-crystal slab waveguides can cause localization of light [1, 2]. Sapienza et al. observed that the interaction of localized light with embedded quantum dots is so strong that it yields a considerable Purcell enhancement of the emission rate [3]. This coupling between emitters ...
Approach for electrodynamic force for compensation in low voltage circuit breaker WP 630-1.2 type
Institute of Scientific and Technical Information of China (English)
LU Na; XU L.J.; Miedzi(n)ski B.
2007-01-01
Undesirable repulsive force between contact members due to both a current path shrink near a real contact area and/or so-called pinch effect is particularly onerous for power switch applications, and results in either contact floating or bouncing which are associated with an electric arc following contact welding. This problem is of great importance for any circuit breaker especially for compact low voltage vacuum circuit breakers. To avoid contact floating at closure and during any inrush current under short circuit conditions, the electrodynamic repulsive force can be employed successfully if we use a special compensation system flexibly combined with the contact itself. However to select and design the compensation system properly, its efficiency has to be known. This paper presents an approach to obtain the electrodynamic force value depending on different shaped (rectangular,square, circle and arch) copper plates used in the compensator by using ANSYS for current values 40 kA RMS. Curve-fitting was done according to the calculating results, the optimization designing of compensation unit is based on them.
Institute of Scientific and Technical Information of China (English)
郑仕标
2001-01-01
A scheme is proposed for generating the superpositions of several coherent states in a cavity field with dispersive cavity quantum electrodynamics (QED). In the scheme, a sequence of atoms interacts dispersively with the cavity field, connected with a microwave source, and is manipulated by classical fields, followed by state-selective measurements. In this way, the cavity field is collapsed onto a superposition of several coherent states along a straight line with controllable coefficients. This scheme provides the possibility for quantum state engineering via coherent-state superpositions along a straight line in cavity QED for the first time.
Circuit Design Methods for Quantum Separator (QS) and Systems to Use Its Output
Werbos, Paul J
2010-01-01
The underlying dynamics (\\partialt{\\psi}=iH{\\psi}) of quantum electrodynamics are symmetric with respect to time (T and CPT), but traditional calculations and designs in electronics and electromagnetics impose an observer formalism or causality constraints which assume a gross asymmetry between forwards time and backwards time. In 2008, I published a paper in the International Journal of Theoretical Physics (see arXiv:0801.1234) which describes how to construct physics based on the dynamics alone, without these extraneous assumptions. It pointed out that this changes certain predictions of physics in a testable way, and that evidence from experiment favors the new and simpler versions of quantum theory. This disclosure follows up on that paper, by describing methods for circuit design based on the new physics. It provides a striking example - how to design a quantum separator (QS), which separates out the eigenfunctions which supply ordinary time-forwards free energy from the time-inverted eigenfunctions, whe...
Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits
Institute of Scientific and Technical Information of China (English)
LIU Jian-Xin; AN Zhan-Yuan; SONG Yong-Hua
2006-01-01
Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved.The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schrodinger equation can be divided into two Mathieu equations in p representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.
Quantum Teleportation circuit using Matlab and Mathematica
Directory of Open Access Journals (Sweden)
Ms.Swati Sharma,
2010-08-01
Full Text Available This Paper describes a basic Quantum Teleportation circuit using mat lab Qlib tool. Teleportation is a new and exciting field of future communication. We know that security in data communication is a major concern nowadays. Among the encryption technologies that are available at present, shared key is the most reliable which depends on secure key generation and distribution. Teleportation/ ntanglement is a perfect solution for secure key generation and distribution, as for the no cloning theorem of quantum mechanics any attempt to intercept the key by the eavesdropper will be detectable immediately. A program is simulated with successful simulation which give successful transfer of random qubit to output and which governs perfect communication between Alice and Bob.
Universal programmable quantum circuit schemes to emulate an operator
Energy Technology Data Exchange (ETDEWEB)
Daskin, Anmer; Grama, Ananth; Kollias, Giorgos [Department of Computer Science, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre [Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Doha (Qatar)
2012-12-21
Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.
The current density in quantum electrodynamics in external potentials
Schlemmer, Jan
2015-01-01
We review different definitions of the current density for quantized fermions in the presence of an external electromagnetic field. Several deficiencies in the popular prescription due to Schwinger and the mode sum formula for static external potentials are pointed out. We argue that Dirac's method, which is the analog of the Hadamard point-splitting employed in quantum field theory in curved space-times, is conceptually the most satisfactory. As a concrete example, we discuss vacuum polarization and the stress-energy tensor for massless fermions in 1+1 dimension. Also a general formula for the vacuum polarization in static external potentials in 3+1 dimensions is derived.
Quantum memristor in a superconducting circuit
Salmilehto, Juha; Sanz, Mikel; di Ventra, Massimiliano; Solano, Enrique
Memristors, resistive elements that retain information of their past, have garnered interest due to their paradigm-changing potential in information processing and electronics. The emergent hysteretic behaviour allows for novel architectural applications and has recently been classically demonstrated in a simplified superconducting setup using the phase-dependent conductance in the tunnel-junction-microscopic model. In this contribution, we present a truly quantum model for a memristor constructed using established elements and techniques in superconducting nanoelectronics, and explore the parameters for feasible operation as well as refine the methods for quantifying the memory retention. In particular, the memristive behaviour is shown to arise from quasiparticle-induced tunneling in the full dissipative model and can be observed in the phase-driven tunneling current. The relevant hysteretic behaviour should be observable using current state-of-the-art measurements for detecting quasiparticle excitations. Our theoretical findings constitute the first quantum memristor in a superconducting circuit and act as the starting point for designing further circuit elements that have non-Markovian characteristics The authors acknowledge support from the CCQED EU project and the Finnish Cultural Foundation.
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
Joyee Ghosh; R Ghosh; Deepak Kumar
2011-10-01
A three-level atom in a conﬁguration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efﬁcient storage of cavity photons into long-lived atomic excitations, and their retrieval with high ﬁdelity, in an adiabatic transfer process through the ‘dark state’ by a slow variation of the control laser intensity. We study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of , which is radiative. We ﬁnd that the ﬁdelity of storage is better, the stronger the control ﬁeld and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control ﬁeld. Also, for retrieval, the behaviour with dissipation is non-monotonic. These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry’s superadiabatic transfer results without dissipation.
Jian, Shao-Kai; Maciejko, Joseph; Yao, Hong
2016-01-01
We show that a supersymmetric gauge theory with dynamical gauge bosons and fermionic gauginos emerges naturally at the pair-density-wave (PDW) quantum phase transition on the surface of a correlated topological insulator (TI) hosting three Dirac cones, such as the candidate topological Kondo insulator SmB$_6$. At the tricritical point separating the first- and second-order quantum phase transitions between the surface Dirac semimetal and nematic PDW phases, three massless bosonic Cooper pair fields emerge as the superpartners of three massless surface Dirac fermions. The resulting low-energy effective theory is the supersymmetric XYZ model, which is dual by mirror symmetry to $\\mathcal{N}=2$ supersymmetric quantum electrodynamics (SQED) in 2+1 dimensions. Using supersymmetry, we calculate exactly certain critical exponents and the optical conductivity of the surface states at the tricritical point, which may be measured in future experiments.
On the Quantum Circuit Complexity Equivalence
Drezgic, M; Drezgic, Milos; Sastry, Shankar
2007-01-01
Nielsen \\cite{Nielsen05} recently asked the following question: "What is the minimal size quantum circuit required to exactly implement a specified $% \\mathit{n}$-qubit unitary operation $U$, without the use of ancilla qubits?" Nielsen was able to prove that a lower bound on the minimal size circuit is provided by the length of the geodesic between the identity $I$ and $U$, where the length is defined by a suitable Finsler metric on $SU(2^{n})$. We prove that the minimum circuit size that simulates $U$ is in linear relation with the geodesic length and simulation parameters, for the given Finsler structure $F$. As a corollary we prove the highest lower bound of $O(\\frac{% n^{4}}{p}d_{F_{p}}^{2}(I,U)L_{F_{p}}(I,\\tilde{U})) $and the lowest upper bound of $\\Omega (n^{4}d_{F_{p}}^{3}(I,U))$, for the standard simulation technique. Therefore, our results show that by standard simulation one can not expect a better then $n^{2}$ times improvement in the upper bound over the result from Nielsen, Dowling, Gu and Dohert...
Computing Hypergraph Ramsey Numbers by Using Quantum Circuit
Qu, Ri; Li, Zong-shang; WANG, Juan; Bao, Yan-ru; Cao, Xiao-chun
2012-01-01
Gaitan and Clark [Phys. Rev. Lett. 108, 010501 (2012)] have recently shown a quantum algorithm for the computation of the Ramsey numbers using adiabatic quantum evolution. We present a quantum algorithm to compute the two-color Ramsey numbers for r-uniform hypergraphs by using the quantum counting circuit.
A Quantum Algorithm for Finding a Hamilton Circuit
Institute of Scientific and Technical Information of China (English)
GUO Hao; LONG Gui-Lu; SUN Yang; XIU Xiao-Lin
2001-01-01
A quantum algorithm for solving the classical NP-complete problem - the Hamilton circuit is presented. The algorithm employs the quantum SAT and the quantum search algorithms. The algorithm is square-root faster than classical algorithm, and becomes exponentially faster than classical algorithm if nonlinear quantum mechanical computer is used.
Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics
Wuttke, C; Brückner, S; Rothhardt, M; Rauschenbeutel, A
2012-01-01
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.
SIMLA: Simulating laser-particle interactions via classical and quantum electrodynamics
Green, D G
2014-01-01
We present the Fortran code SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. This can be done classically via the Landau-Lifshitz equation, or alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo type routines. Multiple laser fields can be included in the simulation and the propagation direction, beam shape (plane wave, focussed paraxial, constant crossed, or constant magnetic), and time envelope of each can be independently specified.
Ni, G; Ni, Guang-jiong; Wang, Haibin
1997-01-01
A simple but effective method for regularization-renormalization (R-R) is proposed for handling the Feynman diagram integral (FDI) at one loop level in quantum electrodynamics (QED). The divergence is substituted by some constants to be fixed via experiments. So no counter term, no bare parameter and no arbitrary running mass scale is involved. Then the Lamb Shift in Hydrogen atom can be calculated qualitatively and simply as $\\Delta E(2S_{1/2})- \\Delta E(2P_{1/2})=996.7 MHz$ versus the experimental value $1057.85 MHz$.
Quantum electrodynamics corrections to the 2P fine splitting in Li.
Puchalski, Mariusz; Pachucki, Krzysztof
2014-08-15
We consider quantum electrodynamics (QED) corrections to the fine splitting E(2P_{3/2})-E(2P_{1/2}) in the Li atom. We derive complete formulas for the mα^{6} and mα^{7}lnα contributions and calculate them numerically using highly optimized, explicitly correlated basis functions. The obtained results are in agreement with the most recent measurement, helping to resolve discrepancies between former ones and lay the foundation for the investigation of QED effects in light, many-electron atoms.
Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.
Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A
2012-06-01
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications.
Normalizability analysis of the generalized quantum electrodynamics from the causal point of view
Bufalo, R; Soto, D E
2015-01-01
The causal perturbation theory is an axiomatic perturbative theory of the S-matrix. This formalism has as its essence the following axioms: causality, Lorentz invariance and asymptotic conditions. Any other property must be showed via the inductive method order-by-order and, of course, it depends on the particular physical model. In this work we shall study the normalizability of the generalized quantum electrodynamics in the framework of the causal approach. Furthermore, we analyse the implication of the gauge invariance onto the model and obtain the respective Ward-Takahashi-Fradkin identities.
Mross, David F.; Alicea, Jason; Motrunich, Olexei I.
2016-07-01
We explicitly derive the duality between a free electronic Dirac cone and quantum electrodynamics in (2 +1 ) dimensions (QED3 ) with N =1 fermion flavors. The duality proceeds via an exact, nonlocal mapping from electrons to dual fermions with long-range interactions encoded by an emergent gauge field. This mapping allows us to construct parent Hamiltonians for exotic topological-insulator surface phases, derive the particle-hole-symmetric field theory of a half-filled Landau level, and nontrivially constrain QED3 scaling dimensions. We similarly establish duality between bosonic topological insulator surfaces and N =2 QED3 .
Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation
Herbut, Igor F
2016-01-01
Spontaneous chiral symmetry breaking in three dimensional ($d=3$) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions $N=N_c$. We discuss the root of universality of $N_c$ in this picture, together with some features of the phase boundary in the $(d,N)$ plane. In particular, it is shown that as $d\\rightarrow 4$, $N_c\\rightarrow 0$ with a constant slope, our best estimate of which suggests that $N_c = 2.89$ in $d=3$.
Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation
Herbut, Igor F.
2016-07-01
Spontaneous chiral symmetry breaking in three-dimensional (d =3 ) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions N =Nc. We discuss the root of universality of Nc in this picture, together with some features of the phase boundary in the (d ,N ) plane. In particular, it is shown that as d →4 , Nc→0 with a constant slope, our best estimate of which suggests that Nc=2.89 in d =3 .
Sound-based analogue of cavity quantum electrodynamics in silicon.
Soykal, Ö O; Ruskov, Rusko; Tahan, Charles
2011-12-01
A quantum mechanical superposition of a long-lived, localized phonon and a matter excitation is described. We identify a realization in strained silicon: a low-lying donor transition (P or Li) driven solely by acoustic phonons at wavelengths where high-Q phonon cavities can be built. This phonon-matter resonance is shown to enter the strongly coupled regime where the "vacuum" Rabi frequency exceeds the spontaneous phonon emission into noncavity modes, phonon leakage from the cavity, and phonon anharmonicity and scattering. We introduce a micropillar distributed Bragg reflector Si/Ge cavity, where Q≃10(5)-10(6) and mode volumes V≲25λ(3) are reachable. These results indicate that single or many-body devices based on these systems are experimentally realizable.
Time Evolution in the external field problem of Quantum Electrodynamics
Lazarovici, Dustin
2013-01-01
A general problem of quantum field theories is the fact that the free vacuum and the vacuum for an interacting theory belong to different, non-equivalent representations of the canonical (anti-)commutation relations. In the external field problem of QED, we encounter this problem in the form that the Dirac time evolution for an external field with non-vanishing magnetic components will not satisfy the Shale-Stinespring condition, known to be necessary and sufficient for the existence of an implementation on the fermionic Fock space. Therefore, a second quantization of the time evolution in the usual way is impossible. In this thesis, we present several rigorous approaches to QED with time-dependent, external fields and analyze in what sense a time evolution can exist in the second quantized theory. We study different constructions of the fermionic Fock space and prove their equivalence. We study and compare the results of Deckert et. al. (2010), where the time evolution is realized as unitary transformations ...
Tracking Multi-State Quantum Jumps in a Superconducting Circuit
Forouzani, Neda; Tan, Dian; Naghiloo, Mahdi; Murch, Kater
Quantum measurements are known to be crucial for quantum error-correction and state initialization. Continuous measurements can be used for state tracking and real-time quantum feedback. If the measurements are strong, the state dynamics are described by quantum jumps between states. Using continuous measurements, we track the quantum state of a transmon circuit initially in its lowest energy state. We observe spurious jumps between five observable states of the circuit and use a Bayesian update formalism to estimate state occupation probabilities as well as transition rates over time. Our analysis reveals switching between different quantum jump statistics. Resolving the energy distribution of spurious jumps will help characterize this decoherence process.
Nonlinear Electrodynamics and QED
Delphenich, David
2003-01-01
The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...
Zohar, Erez; Cirac, J Ignacio; Reznik, Benni
2012-09-21
Recently, there has been much interest in simulating quantum field theory effects of matter and gauge fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-Einstein condensates has been suggested. We suggest an alternative approach, which relies on single atoms in an optical lattice, carrying 2l + 1 internal levels, which converges rapidly to CQED as l increases. That enables the simulation of CQED in 2 + 1 dimensions in both the weak and the strong coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the theory. We provide an explicit construction for the case l = 1 which is sufficient for simulating the effect of confinement between two external static charges.
Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.
Khankhoje, U K; Kim, S-H; Richards, B C; Hendrickson, J; Sweet, J; Olitzky, J D; Khitrova, G; Gibbs, H M; Scherer, A
2010-02-10
In this paper, we present recent progress in the growth, modelling, fabrication and characterization of gallium arsenide (GaAs) two-dimensional (2D) photonic-crystal slab cavities with embedded indium arsenide (InAs) quantum dots (QDs) that are designed for cavity quantum electrodynamics (cQED) experiments. Photonic-crystal modelling and device fabrication are discussed, followed by a detailed discussion of different failure modes that lead to photon loss. It is found that, along with errors introduced during fabrication, other significant factors such as the presence of a bottom substrate and cavity axis orientation with respect to the crystal axis, can influence the cavity quality factor (Q). A useful diagnostic tool in the form of contour finite-difference time domain (FDTD) is employed to analyse device performance.
Cavity quantum electrodynamics with separate photon storage and qubit readout modes.
Leek, P J; Baur, M; Fink, J M; Bianchetti, R; Steffen, L; Filipp, S; Wallraff, A
2010-03-12
We present the realization of a cavity quantum electrodynamics setup in which photons of strongly different lifetimes are engineered in different harmonic modes of the same cavity. We achieve this in a superconducting transmission line resonator with superconducting qubits coupled to the different modes. One cavity mode is strongly coupled to a detection line for qubit state readout, while a second long lifetime mode is used for photon storage and coherent quantum operations. We demonstrate sideband-based measurement of photon coherence, generation of n photon Fock states and the scaling of the sideband Rabi frequency with square root of n using a scheme that may be extended to realize sideband-based two-qubit logic gates.
Non-unitary probabilistic quantum computing circuit and method
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
Mapping of topological quantum circuits to physical hardware.
Paler, Alexandru; Devitt, Simon J; Nemoto, Kae; Polian, Ilia
2014-01-01
Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit. PMID:24722360
Mapping of Topological Quantum Circuits to Physical Hardware
Paler, Alexandru; Devitt, Simon J.; Nemoto, Kae; Polian, Ilia
2014-04-01
Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. In this work, we introduce an algorithm for mapping an topological circuit to the operations needed by the physical hardware. We determine the control commands for each qubit in the computer and the relevant measurements that are needed to track information as it moves through the circuit.
Wang, W -M; Gibbon, P; Li, Y -T
2016-01-01
We develop the particle-in-cell (PIC) code KLAPS to include the photon generation via the Compton scattering and electron-positron creation via the Breit-Wheeler process due to quantum electrodynamics (QED) effects. We compare two sets of existing formulas for the photon generation and different Monte Carlo algorithms. Then we benchmark the PIC simulation results.
Optimal quantum circuit synthesis from Controlled-U gates
Zhang, J; Sastry, S; Whaley, K B; Zhang, Jun; Vala, Jiri; Sastry, Shankar
2003-01-01
From a geometric approach, we derive the minimum number of applications needed for an arbitrary Controlled-Unitary gate to construct a universal quantum circuit. A new analytic construction procedure is presented and shown to be either optimal or close to optimal. This result can be extended to improve the efficiency of universal quantum circuit construction from any entangling gate. Specifically, for both the Controlled-NOT and Double-CNOT gates, we develop simple analytic ways to construct universal quantum circuits with three applications, which is the least possible.
Emulating weak localization using a solid-state quantum circuit.
Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M
2014-10-14
Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.
Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems.
Afshar V, S; Henderson, M R; Greentree, A D; Gibson, B C; Monro, T M
2014-05-01
An ideal optical cavity operates by confining light in all three dimensions. We show that a cylindrical waveguide can provide the longitudinal confinement required to form a two dimensional cavity, described here as a self-formed cavity, by locating a dipole, directed along the waveguide, on the interface of the waveguide. The cavity resonance modes lead to peaks in the radiation of the dipole-waveguide system that have no contribution due to the skew rays that exist in longitudinally invariant waveguides and reduce their Q-factor. Using a theoretical model, we evaluate the Q-factor and modal volume of the cavity formed by a dipole-cylindrical-waveguide system and show that such a cavity allows access to both the strong and weak coupling regimes of cavity quantum electrodynamics.
Ichikawa, Kazuhide; Tachibana, Akitomo
2014-01-01
We discuss a method to follow step-by-step time evolution of atomic and molecular systems based on QED (Quantum Electrodynamics). Our strategy includes expanding the electron field operator by localized wavepackets to define creation and annihilation operators and following the time evolution using the equations of motion of the field operator in the Heisenberg picture. We first derive a time evolution equation for the excitation operator, the product of two creation or annihilation operators, which is necessary for constructing operators of physical quantities such as the electronic charge density operator. We then describe our approximation methods to obtain time differential equations of the electronic density matrix, which is defined as the expectation value of the excitation operator. By solving the equations numerically, we show "electron-positron oscillations", the fluctuations originated from virtual electron-positron pair creations and annihilations, appear in the charge density of a hydrogen atom an...
Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Ni Guang-Jiong; Xu Jian-Jun; Lou Sea-Yue
2011-01-01
Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S-2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.
Chiral-Symmetry Breaking in Pseudo Quantum Electrodynamics at Finite Temperature
Nascimento, Leandro O; Peña, Francisco; Smith, C Morais; Marino, E C
2015-01-01
We use the Schwinger-Dyson equations in the presence of a thermal bath, in order to study chiral symmetry breaking in a system of massless Dirac fermions interacting through pseudo quantum electrodynamics (PQED3), in (2+1) dimensions. We show that there is a critical temperature $T_c$, below which chiral symmetry is broken, and a corresponding mass gap is dynamically generated, provided the coupling is above a certain, temperature dependent, critical value $\\alpha_c$. The ratio between the energy gap and the critical temperature for this model is estimated to be $2 \\pi$. These results are confirmed by analytical and numerical investigations of the Schwinger-Dyson equation for the electron. In addition, we calculate the first finite-temperature corrections to the static Coulomb interaction. The relevance of this result in the realm of condensed matter systems, like graphene, is briefly discussed.
Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao
2007-01-01
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics
Sok, Jérémy
2016-02-01
The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence of the para-positronium, the bound state of an electron and a positron with antiparallel spins, in the BDF model represented by a critical point of the energy functional in the absence of an external field. We also prove the existence of the dipositronium, a molecule made of two electrons and two positrons that also appears as a critical point. More generally, for any half integer j ∈ 1/2 + Z + , we prove the existence of a critical point of the energy functional made of 2j + 1 electrons and 2j + 1 positrons.
Space-time-resolved quantum electrodynamics: A (1+1)-dimensional model
Glasgow, Scott; Smith, Dallas; Pritchett, Luke; Gardner, John; Ware, Michael J.
2016-06-01
We develop a model that reduces quantum electrodynamics (QED) in time plus three spatial dimensions to time plus a single spatial dimension, making it is possible to numerically calculate the dynamic behavior of simple QED systems. The dimensionality is restricted in such a way as to preserve the influence of spin and angular momentum. In contrast to the S -matrix scattering approach, these calculations are not perturbative within the zero- and one-photon sector of the relevant Hilbert space. The model restricts the electron occupation number to one and the photon occupation number to zero or one. We use this model to calculate the dynamics of a so-called bare electron that dresses itself by a photon field.
Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics
Agarwal, G. S.; Di, Ke; Wang, Liyong; Zhu, Yifu
2016-06-01
It has been shown that perfect photon absorption can occur in the linear excitation regime of cavity quantum electrodynamics (CQED), in which photons from two identical light fields coupled into two ends of the cavity are completely absorbed and result in excitation of the polariton state of the CQED system. The output light from the cavity is totally suppressed by destructive interference and the polariton state can only decay incoherently back to the ground state. Here we analyze perfect photon absorption and the onset of optical bistability in the nonlinear regime of the CQED and show that perfect photon absorption persists in the nonlinear regime of the CQED below the threshold of optical bistability. Therefore perfect photon absorption is a phenomenon that can be observed in both linear and nonlinear regimes of CQED. Furthermore, our study reveals that optical bistability is influenced by input-light interference and can be manipulated by varying the relative phase of the two input fields.
Ohsaku, T; Yamaki, D; Yamaguchi, K
2002-01-01
For studying the group theoretical classification of the solutions of the density functional theory in relativistic framework, we propose quantum electrodynamical density-matrix functional theory (QED-DMFT). QED-DMFT gives the energy as a functional of a local one-body $4\\times4$ matrix $Q(x)\\equiv -$, where $\\psi$ and $\\bar{\\psi}$ are 4-component Dirac field and its Dirac conjugate, respectively. We examine some characters of QED-DMFT. After these preparations, by using Q(x), we classify the solutions of QED-DMFT under O(3) rotation, time reversal and spatial inversion. The behavior of Q(x) under nonrelativistic and ultrarelativistic limits are also presented. Finally, we give plans for several extensions and applications of QED-DMFT.
Quantum noise in large-scale coherent nonlinear photonic circuits
Santori, Charles; Beausoleil, Raymond G; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo
2014-01-01
A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A netlist-based circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important...
Gao, Yi; Neuhauser, Daniel
2012-08-21
We develop an approach for dynamical (ω > 0) embedding of mixed quantum mechanical (QM)/classical (or more precisely QM/electrodynamics) systems with a quantum sub-region, described by time-dependent density functional theory (TDDFT), within a classical sub-region, modeled here by the recently proposed near-field (NF) method. Both sub-systems are propagated simultaneously and are coupled through a common Coulomb potential. As a first step we implement the method to study the plasmonic response of a metal film which is half jellium-like QM and half classical. The resulting response is in good agreement with both full-scale TDDFT and the purely classical NF method. The embedding method is able to describe the optical response of the whole system while capturing quantum mechanical effects, so it is a promising approach for studying electrodynamics in hybrid molecules-metals nanostructures.
Discrete-charge quantum circuits in semiclassical approach
Utreras-Díaz, C.A.; J. C. Flores
2006-01-01
We discuss a new approach to describe mesoscopic systems, based on the ideas of quantum electrical circuits with charge discreteness. This approach has allowed us to propose a simple alternative descriptions of some mesoscopic systems, with interesting results for some mesoscopic systems. In his work, we show that the application of the Bohr-Sommerfeld quantization rules to the Quantum $LC$ circuit with discrete charge allows us to easily reproduce previous results.
Generating efficient quantum circuits for preparing maximally multipartite entangled states
Sadowski, Przemysław
2013-01-01
In this work we provide a method for generating quantum circuits preparing maximally multipartite entangled states using genetic programming. The presented method is faster that known realisations thanks to the applied fitness function and several modifications to the genetic programming schema. Moreover, we enrich the described method by the unique possibility to define an arbitrary structure of a system. We use the developed method to find new quantum circuits, which are simpler from known ...
Specification of photonic circuits using Quantum Hardware Description Language
Tezak, Nikolas; Niederberger, Armand; Pavlichin, Dmitri S.; Sarma, Gopal; Mabuchi, Hideo
2011-01-01
Following the simple observation that the interconnection of a set of quantum optical input-output devices can be specified using structural mode VHSIC Hardware Description Language (VHDL), we demonstrate a computer-aided schematic capture workflow for modeling and simulating multi-component photonic circuits. We describe an algorithm for parsing circuit descriptions to derive quantum equations of motion, illustrate our approach using simple examples based on linear and cavity-nonlinear optic...
Quantum Effect in the Mesoscopic RLC Circuits with a Source
Institute of Scientific and Technical Information of China (English)
LIU Jian-Xin; YAN Zhan-Yuan
2005-01-01
The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schrodinger equation of.the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schrodinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of currents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.
Local Random Quantum Circuits are Approximate Polynomial-Designs
Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał
2016-09-01
We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.
Levy, James E.; Carroll, Malcolm S.; Ganti, Anand; Phillips, Cynthia A.; Landahl, Andrew J.; Gurrieri, Thomas M.; Carr, Robert D.; Stalford, Harold L.; Nielsen, Erik
2011-01-01
In this paper we present the impact of classical electronics constraints on a solid-state quantum dot logical qubit architecture. Constraints due to routing density, bandwidth allocation, signal timing, and thermally aware placement of classical supporting electronics significantly affect the quantum error correction circuit's error rate. We analyze one level of a quantum error correction circuit using nine data qubits in a Bacon-Shor code configured as a quantum memory. A hypothetical silico...
Quantum Wavelet Transforms Fast Algorithms and Complete Circuits
Fijany, A; Fijany, Amir; Williams, Colin P.
1998-01-01
The quantum Fourier transform (QFT), a quantum analog of the classical Fourier transform, has been shown to be a powerful tool in developing quantum algorithms. However, in classical computing there is another class of unitary transforms, the wavelet transforms, which are every bit as useful as the Fourier transform. Wavelet transforms are used to expose the multi-scale structure of a signal and are likely to be useful for quantum image processing and quantum data compression. In this paper, we derive efficient, complete, quantum circuits for two representative quantum wavelet transforms, the quantum Haar and quantum Daubechies $D^{(4)}$ transforms. Our approach is to factor the operators for these transforms into direct sums, direct products and dot products of unitary matrices. In so doing, we find that permutation matrices, a particular class of unitary matrices, play a pivotal role. Surprisingly, we find that operations that are easy and inexpensive to implement classically are not always easy and inexpen...
Eremeev, Vitalie; Ciobanu, Nellu; Orszag, Miguel
2014-05-01
We investigate thermal effects on sudden changes and freezing of the quantum and classical correlations of remote qubits in a cavity quantum electrodynamics (CQED) network with losses. We find that the detrimental effect of thermal reservoirs on the freezing of correlations can be compensated via an efficient coupling of the fiber connecting the two cavities of the system. Furthermore, for certain initial conditions, we find a double sudden transition in the dynamics of Bures geometrical quantum discord. The second transition tends to disappear at a critical temperature, hence freezing the discord. Finally, we discuss the feasibility of the experimental realization of the present proposal.
Efficient quantum circuits for Toeplitz and Hankel matrices
Mahasinghe, A.; Wang, J. B.
2016-07-01
Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.
Quantum Simulation of the Ultrastrong Coupling Dynamics in Circuit QED
Ballester, D; García-Ripoll, J J; Deppe, F; Solano, E
2011-01-01
We propose a method to get experimental access to the physics of the ultrastrong (USC) and deep strong (DSC) coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED technology, and can be easily extended to general quantum optical cavity-QED setups. We provide examples of USC/DSC quantum effects that would be otherwise unaccessible.
A new algorithm for producing quantum circuits using KAK decompositions
Nakajima, Y; Sekigawa, H; Nakajima, Yumi; Kawano, Yasuhito; Sekigawa, Hiroshi
2005-01-01
We provide a new algorithm that translates a unitary matrix into a quantum circuit according to the G=KAK theorem in Lie group theory. The algorithm can derive any matrix decomposition based on the G=KAK theorem corresponding to the type-AIII Cartan involutions by selecting a global Cartan involution. The algorithm contains, as its special cases, Cosine-Sine decomposition (CSD) and Khaneja-Glaser decomposition (KGD) in the sense that it derives the same quantum circuits as the ones obtained by them, if we select suitable Cartan involutions and square-root matrices in the algorithm. Although the number of gates needed in order to implement an element g of SU(2^n) is bounded by O(4^n) in the worst case, which is the same as the previous results, we show explicitly that our method can automatically reproduce the well-known efficient quantum circuit for the n-qubit quantum Fourier transform.
Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.
2016-08-01
A fundamental theory is developed for describing laser-driven resonance energy transfer (RET) in dimensionally constrained nanostructures within the framework of quantum electrodynamics. The process of RET communicates electronic excitation between suitably disposed emitter and detector particles in close proximity, activated by the initial excitation of the emitter. Here, we demonstrate that the transfer rate can be significantly increased by propagation of an auxiliary laser beam through a pair of nanostructure particles. This is due to the higher order perturbative contribution to the Förster-type RET, in which laser field is applied to stimulate the energy transfer process. We construct a detailed picture of how excitation energy transfer is affected by an off-resonant radiation field, which includes the derivation of second and fourth order quantum amplitudes. The analysis delivers detailed results for the dependence of the transfer rates on orientational, distance, and laser intensity factor, providing a comprehensive fundamental understanding of laser-driven RET in nanostructures. The results of the derivations demonstrate that the geometry of the system exercises considerable control over the laser-assisted RET mechanism. Thus, under favorable conformational conditions and relative spacing of donor-acceptor nanostructures, the effect of the auxiliary laser beam is shown to produce up to 70% enhancement in the energy migration rate. This degree of control allows optical switching applications to be identified.
Simulating Zeno physics by a quantum quench with superconducting circuits
Tong, Qing-Jun; An, Jun-Hong; Kwek, L. C.; Luo, Hong-Gang; Oh, C. H.
2014-06-01
Studying out-of-equilibrium physics in quantum systems under quantum quench is of vast experimental and theoretical interest. Using periodic quantum quenches, we present an experimentally accessible scheme to simulate the quantum Zeno and anti-Zeno effects in an open quantum system of a single superconducting qubit interacting with an array of transmission line resonators. The scheme is based on the following two observations: First, compared with conventional systems, the short-time nonexponential decay in our superconducting circuit system is readily observed; and second, a quench-off process mimics an ideal projective measurement when its time duration is sufficiently long. Our results show the active role of quantum quench in quantum simulation and control.
Photonic Circuits with Time Delays and Quantum Feedback.
Pichler, Hannes; Zoller, Peter
2016-03-01
We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.
Quantum chemistry and charge transport in biomolecules with superconducting circuits
García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.
2016-01-01
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814
Digital quantum simulation of fermionic models with a superconducting circuit
Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.
2015-07-01
One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions.
Quantum chemistry and charge transport in biomolecules with superconducting circuits
García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.
2016-06-01
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.
Quantum circuit physical design methodology with emphasis on physical synthesis
Mohammadzadeh, Naser; Saheb Zamani, Morteza; Sedighi, Mehdi
2013-11-01
In our previous works, we have introduced the concept of "physical synthesis" as a method to consider the mutual effects of quantum circuit synthesis and physical design. While physical synthesis can involve various techniques to improve the characteristics of the resulting quantum circuit, we have proposed two techniques (namely gate exchanging and auxiliary qubit selection) to demonstrate the effectiveness of the physical synthesis. However, the previous contributions focused mainly on the physical synthesis concept, and the techniques were proposed only as a proof of concept. In this paper, we propose a methodological framework for physical synthesis that involves all previously proposed techniques along with a newly introduced one (called auxiliary qubit insertion). We will show that the entire flow can be seen as one monolithic methodology. The proposed methodology is analyzed using a large set of benchmarks. Experimental results show that the proposed methodology decreases the average latency of quantum circuits by about 36.81 % for the attempted benchmarks.
Quantum interface between an electrical circuit and a single atom
Kielpinski, D; Woolley, M J; Milburn, G J; Taylor, J M
2011-01-01
We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.
Causal signal transmission by quantum fields. V: Quantum electrodynamics in response representation
Plimak, L I
2011-01-01
Using electromagnetic interaction as an example, response transformations [L.P. and S.S., Ann.Phys. 323, 1963, 1989 (2008), 324, 600 (2009)] are applied to the standard perturbative approach of quantum field theory. This approach is rewritten in the form where the place of field propagators is taken by the retarded Green function of the field. Unlike in conventional quantum-field-theoretical techniques, the concept of space-time propagation of quantized field is built into our techniques.
Characterization of optical quantum circuits using resonant phase shifts
Poot, Menno
2016-01-01
We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases are determined as well as the coupling ratios of its directional couplers.
Magnetic monopole plasma phase in (2+1)d compact quantum electrodynamics with fermionic matter
International Nuclear Information System (INIS)
We present the first evidence from lattice simulations that the magnetic monopoles in three-dimensional compact quantum electrodynamics (cQED3) with Nf=2 and Nf=4 four-component fermion flavors are in a plasma phase. The evidence is based mainly on the divergence of the monopole susceptibility (polarizability) with the lattice size at weak gauge couplings. A weak four-Fermi term added to the cQED3 action enabled simulations with massless fermions. The exact chiral symmetry of the interaction terms forbids symmetry breaking lattice discretization counterterms to appear in the theory's effective action. It is also shown that the scenario of a monopole plasma does not depend on the strength of the four-Fermi coupling. Other observables such as the densities of isolated dipoles and monopoles and the so-called specific heat show that a crossover from a dense monopole plasma to a dilute monopole gas occurs at strong couplings. The implications of our results on the stability of U(1) spin liquids in two spatial dimensions are also discussed.
Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation
Directory of Open Access Journals (Sweden)
Ilya D. Feranchuk
2007-12-01
Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.
Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions
International Nuclear Information System (INIS)
The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π-) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV
Exploring Quantum Dot Cellular Automata Based Reversible Circuit
Directory of Open Access Journals (Sweden)
Saroj Kumar Chandra
2012-03-01
Full Text Available Quantum-dot Cellular Automata (QCA is a new technology for development of logic circuits based on nanotechnology, and it is an one of the alternative for designing high performance computing over existing CMOS technology. The basic logic in QCA does not use voltage level for logic representation rather it represent binary state by polarization of electrons on the Quantum Cell which is basic building block of QCA. Extensive work is going on QCA for circuit design due to low power consumption and regularity in the circuit.. Clocking is used in QCA circuit to synchronize and control the information flow and to provide the power to run the circuit. Reversible logic design is a well-known paradigm in digital computation, and if circuit developed is reversible then it consumes very low power . Here, in this paper we are presenting a Reversible Universal Gate (RUG based on Quantum-dot Cellular Automata (QCA. The RUG implemented by QCA Designer tool and also its behavior is simulated by it.
Specification of photonic circuits using quantum hardware description language.
Tezak, Nikolas; Niederberger, Armand; Pavlichin, Dmitri S; Sarma, Gopal; Mabuchi, Hideo
2012-11-28
Following the simple observation that the interconnection of a set of quantum optical input-output devices can be specified using structural mode VHSIC hardware description language, we demonstrate a computer-aided schematic capture workflow for modelling and simulating multi-component photonic circuits. We describe an algorithm for parsing circuit descriptions to derive quantum equations of motion, illustrate our approach using simple examples based on linear and cavity-nonlinear optical components, and demonstrate a computational approach to hierarchical model reduction. PMID:23091208
Emulating a mesoscopic system using superconducting quantum circuits
Chen, Yu; Barends, R.; Bochmann, J.; Campbell, B.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Neill, C.; O'Malley, P.; Ohya, S.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.
2013-03-01
We demonstrate an emulation of a mesoscopic system using superconducting quantum circuits. Taking advantage of our ReZQu-architectured quantum processor, we controllably splitted a microwave photon and manipulated the splitted photons before they recombined for detection. In this way, we were able to simulate the weak localization effect in mesoscopic systems - a coherent backscattering process due to quantum interference. The influence of the phase coherence was investigated by tuning the coherence time of the quantum circuit, which in turn mimics the temperature effect on the weak localization process. At the end, we demonstrated an effect resembling universal conductance fluctuations, which arises from the frequency beating between different coherent backscattering processes. The universality of the observed fluctuation was shown as the independence of the fluctuation amplitude on detailed experimental conditions.
Derandomizing Quantum Circuits with Measurement-Based Unitary Designs
Turner, Peter S.; Markham, Damian
2016-05-01
Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t , while foregoing adaptive feedforward entirely. Such ensembles—known as t designs—often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.
Deterministic linear optics quantum computation utilizing linked photon circuits
Yoran, N; Yoran, Nadav; Reznik, Benni
2003-01-01
We suggest an efficient scheme for quantum computation with linear optical elements utilizing "linked" photon states. The linked states are designed according to the particular quantum circuit one wishes to process. Once a linked-state has been successfully prepared, the computation is pursued deterministically by a sequence of teleportation steps. The present scheme enables a significant reduction of the average number of elementary gates per logical gate to about 20-30 CZ_{9/16} gates.
Derivative expansion of the effective action for quantum electrodynamics in 2+1 and 3+1 dimensions
International Nuclear Information System (INIS)
The derivative expansion of the one-loop effective action in QED3 and QED4 (quantum electrodynamics) is considered. The first term in such an expansion is the effective action for a constant electromagnetic field. An explicit expression for the next term containing two derivatives of the field strength Fμν, but exact in the magnitude of the field strength, is obtained. The general results for both fermion and scalar electrodynamics are presented. The cases of pure electric and pure magnetic external fields are considered in detail. The Feynman technique for the perturbative expansion of the one-loop effective action in the number of derivatives is developed. copyright 1999 American Institute of Physics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Reitzenstein, S.;
2010-01-01
The coupling between a quantum dot (QD) and a micropillar cavity is experimentally investigated by performing time-resolved, correlation, and two-photon interference measurements. The Jaynes-Cummings model including dissipative Lindblad terms and dephasing is analyzed, and all the parameters for ...
Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Lodahl, Peter
2013-01-01
We present detuning-dependent spectral and decay-rate measurements to study the difference between the spectral and dynamical properties of single quantum dots embedded in micropillar and photonic crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jayn...
Parallel Quantum Circuit in a Tunnel Junction.
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-01-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N). PMID:27453262
Parallel Quantum Circuit in a Tunnel Junction
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).
Parallel Quantum Circuit in a Tunnel Junction.
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-25
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).
Tucci, Robert R
2010-01-01
This paper introduces QOperAv v1.5, a Java application available for free. (Source code included in the distribution.) QOperAv is a "code generator" for generating quantum circuits. The quantum circuits generated by QOperAv can be used to evaluate with polynomial efficiency the average of $f(A)$ for some simple (that is, computable with polynomial efficiency) function $f$ and a Hermitian operator $A$, provided that we know how to compile $\\exp(iA)$ with polynomial efficiency. QOperAv implements an algorithm described in earlier papers, that combines various standard techniques such as quantum phase estimation and quantum multiplexors.
Coupling single emitters to quantum plasmonic circuits
Huck, Alexander
2016-01-01
In recent years the controlled coupling of single photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic non-linearity on a nano-scaled platform. In this article we will review the recent progress on coupling single emitters to nano-wires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale, and for the study of fundamental physics in the ultra-strong coupling regime.
Synthesis of Arbitrary Quantum Circuits to Topological Assembly.
Paler, Alexandru; Devitt, Simon J; Fowler, Austin G
2016-01-01
Given a quantum algorithm, it is highly nontrivial to devise an efficient sequence of physical gates implementing the algorithm on real hardware and incorporating topological quantum error correction. In this paper, we present a first step towards this goal, focusing on generating correct and simple arrangements of topological structures that correspond to a given quantum circuit and largely neglecting their efficiency. We detail the many challenges that will need to be tackled in the pursuit of efficiency. The software source code can be consulted at https://github.com/alexandrupaler/tqec. PMID:27481212
Synthesis of Arbitrary Quantum Circuits to Topological Assembly
Paler, Alexandru; Devitt, Simon J.; Fowler, Austin G.
2016-08-01
Given a quantum algorithm, it is highly nontrivial to devise an efficient sequence of physical gates implementing the algorithm on real hardware and incorporating topological quantum error correction. In this paper, we present a first step towards this goal, focusing on generating correct and simple arrangements of topological structures that correspond to a given quantum circuit and largely neglecting their efficiency. We detail the many challenges that will need to be tackled in the pursuit of efficiency. The software source code can be consulted at https://github.com/alexandrupaler/tqec.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Energy Technology Data Exchange (ETDEWEB)
Marcos, D., E-mail: david.marcos@me.com [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Widmer, P. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Rico, E. [IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg (France); Hafezi, M. [Joint Quantum Institute, NIST/University of Maryland, College Park 20742 (United States); Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Rabl, P. [Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Wiese, U.-J. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Zoller, P. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
2014-12-15
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Magneto-optical cavity quantum electrodynamics effects in quantum dot - micropillar systems
International Nuclear Information System (INIS)
We report on magneto-optical studies of strongly coupled quantum dot - micropillar cavity systems. Large In0.3Ga0.7As quantum dots (QDs) in the active layer of the micropillar facilitate the observation of strong coupling. In addition, they exhibit a particular large diamagnetic response which is exploited to demonstrate magneto-optical resonance tuning in the strong coupling regime. The magnetic field employed in Faraday configuration induces a transition from strong coupling towards the critical coupling regime which is explained in terms of a magnetic field dependent oscillator strength of the In0.3Ga0.7As QDs. We further study the coherent interaction between spin resolved states of the QDs and microcavity photon modes. A detailed oscillator model is used to extract the associated coupling parameters of the individual spin and cavity modes and reveals an effective coupling between photon modes that is mediated by the exciton spin states.
Gallium Arsenide (GaAs) Quantum Photonic Waveguide Circuits
Wang, Jianwei; Jiang, Pisu; Bonneau, Damien; Engin, Erman; Silverstone, Joshua W; Lermer, Matthias; Beetz, Johannes; Kamp, Martin; Hofling, Sven; Tanner, Michael G; Natarajan, Chandra M; Hadfield, Robert H; Dorenbos, Sander N; Zwiller, Val; O'Brien, Jeremy L; Thompson, Mark G
2014-01-01
Integrated quantum photonics is a promising approach for future practical and large-scale quantum information processing technologies, with the prospect of on-chip generation, manipulation and measurement of complex quantum states of light. The gallium arsenide (GaAs) material system is a promising technology platform, and has already successfully demonstrated key components including waveguide integrated single-photon sources and integrated single-photon detectors. However, quantum circuits capable of manipulating quantum states of light have so far not been investigated in this material system. Here, we report GaAs photonic circuits for the manipulation of single-photon and two-photon states. Two-photon quantum interference with a visibility of 94.9 +/- 1.3% was observed in GaAs directional couplers. Classical and quantum interference fringes with visibilities of 98.6 +/- 1.3% and 84.4 +/- 1.5% respectively were demonstrated in Mach-Zehnder interferometers exploiting the electro-optic Pockels effect. This w...
Nataf, Pierre; Ciuti, Cristiano
2010-09-07
In cavity quantum electrodynamics (QED), the interaction between an atomic transition and the cavity field is measured by the vacuum Rabi frequency Ω(0). The analogous term 'circuit QED' has been introduced for Josephson junctions, because superconducting circuits behave as artificial atoms coupled to the bosonic field of a resonator. In the regime with Ω(0) comparable with the two-level transition frequency, 'superradiant' quantum phase transitions for the cavity vacuum have been predicted, for example, within the Dicke model. In this study, we prove that if the time-independent light-matter Hamiltonian is considered, a superradiant quantum critical point is forbidden for electric dipole atomic transitions because of the oscillator strength sum rule. In circuit QED, the analogous of the electric dipole coupling is the capacitive coupling, and such no-go property can be circumvented by Cooper pair boxes capacitively coupled to a resonator, because of their peculiar Hilbert space topology and a violation of the corresponding sum rule.
Quantum multiparty communication complexity and circuit lower bounds
Kerenidis, I
2005-01-01
We define a quantum model for multiparty communication complexity and prove a simulation theorem between the classical and quantum models. As a result of our simulation, we show that if the quantum k-party communication complexity of a function f is $\\Omega(n/2^k)$, then its classical k-party communication is $\\Omega(n/2^{k/2})$. Finding such an f would allow us to prove strong classical lower bounds for (k>log n) players and hence resolve a main open question about symmetric circuits. Furthermore, we prove that for the Generalized Inner Product (GIP) function, the quantum model is exponentially more efficient than the classical one. This provides the first exponential separation for a total function between any quantum and public coin randomized communication model.
Large-scale quantum photonic circuits in silicon
Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk
2016-08-01
Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards
轴向分裂变压器的短路电动力特点%Characteristic of Short Circuit Electrodynamic Force in Axial Split Transformer
Institute of Scientific and Technical Information of China (English)
李英; 武力
2001-01-01
This paper calculates and analyzes the winding leakage magnetic field and short circuit electrodynamic force in a three-phase axial double split transformer passed the short circuit test in half crossing situation. Some suggestions on increasing short circuit mechanical force withstand capability in an axial split transformer are offered.%以一台在半穿越状态下通过短路试验的三相轴向双分裂变压器为例，对半穿越运行的绕组漏磁场和短路电动力进行了计算分析，提出了增强轴向分裂变压器抗短路机械强度几点建议。
Complete quantum circuit of Haar wavelet based MRA
Institute of Scientific and Technical Information of China (English)
HE Yuguo; SUN Jigui
2005-01-01
Wavelet analysis has applications in many areas, such as signal analysis and image processing. We propose a method for generating the complete circuit of Haar wavelet based MRA by factoring butterfly matrices and conditional perfect shuffle permutation matrices. The factorization of butterfly matrices is the essential part of the design. As a result, it is the key point to obtain the circuits of .I2t()W()I2n-2t-2. In this paper, we use a simple means to develop quantum circuits for this kind of matrices. Similarly, the conditional permutation matrix is implemented entirely, combined with the scheme of Fijany and Williams. The cir-cuits and the ideas adopted in the design are simple and in-telligible.
Causal approach for the electron-positron scattering in Generalized Quantum Electrodynamics
Bufalo, R.; Pimentel, B. M.; Soto, D. E.
2014-01-01
In this paper we study the generalized electrodynamics contribution for the electron-positron scattering process, $e^{-}e^{+}\\rightarrow e^{-}e^{+}$, the Bhabha scattering. Within the framework of the standard model, for energies larger when compared to the electron mass, we calculate the cross section expression for the scattering process. This quantity is usually calculated in the framework of the Maxwell electrodynamics and, by phenomenological reasons, corrected by a cut-off parameter. On...
Bloch-wave engineering of quantum dot-micropillars for cavity quantum electrodynamics experiments
Lermer, Matthias; Dunzer, Florian; Reitzenstein, Stephan; Höfling, Sven; Mørk, Jesper; Worschech, Lukas; Kamp, Martin; Forchel, Alfred
2011-01-01
We have employed Bloch-wave engineering to realize submicron diameter ultra-high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high visibility of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13,600 and a Rabi splitting of 85 \\mueV with an estimated visibility v of 0.38 are observed for a small mode volume MP with a diameter dc of 850 nm.
Bloch-wave engineering of quantum dot-micropillars for cavity quantum electrodynamics experiments
DEFF Research Database (Denmark)
Lermer, Matthias; Gregersen, Niels; Dunzer, Florian;
2012-01-01
We have employed Bloch-wave engineering to realize submicron diameter ultra-high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced...... scattering loss leads to record-high visibility of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13,600 and a Rabi splitting of 85 \\mueV with an estimated visibility v of 0.38 are observed for a small mode volume MP with a diameter dc of 850 nm....
Pahlavani, H.; Kolur, E. Rahmanpour
2016-08-01
Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.
International Nuclear Information System (INIS)
We report on magneto-optical studies of strongly coupled quantum dot - micropillar cavity systems. Laterally extended In0.3Ga0.7As quantum dots (QDs) in the active layer of a micropillar cavity facilitate the observation of strong coupling. These QDs are characterized by large oscillator strength and they exhibit a large diamagnetic response, which is exploited to demonstrate magneto-optical resonance tuning. In addition, the coherent interaction between spin resolved states of the QDs and microcavity photon modes is studied. We access the spin degree of freedom by applying a non-zero magnetic field in Faraday configuration, so that the spin degeneracy of the QD exciton is lifted, while the resonance tuning of the Zeeman split exciton lines is achieved by temperature variation. A detailed oscillator model is used to extract coupling parameters of the individual spin and cavity modes. Our results demonstrate an effective coupling between photon modes that is mediated by the exciton spin states. We further show simulations of the photon-photon coupling in dependence of the coupling parameters.
Schuster, D I; Fragner, A; Dykman, M I; Lyon, S A; Schoelkopf, R J
2010-07-23
We propose a hybrid architecture in which an on-chip high finesse superconducting cavity is coupled to the lateral motion and spin state of a single electron trapped on the surface of superfluid helium. We estimate the motional coherence times to exceed 15 μs, while energy will be coherently exchanged with the cavity photons in less than 10 ns for charge states and faster than 1 μs for spin states, making the system attractive for quantum information processing and strong coupling cavity quantum electrodynamics experiments. The cavity is used for nondestructive readout and as a quantum bus mediating interactions between distant electrons or an electron and a superconducting qubit.
QUANTUM FLUCTUATIONS IN A MESOSCOPIC DAMPED LC PARALLEL CIRCUIT IN DISPLACED SQUEEZED FOCK STATE
Institute of Scientific and Technical Information of China (English)
GU YONG-JIAN
2001-01-01
We study the quantum effects of a damped LC parallel circuit considering its different performance from an RLC series circuit in classical physics. The damped LC parallel circuit with a source is quantized and the quantum fluctuations of magnetic flux and electric charge in the circuit in displaced squeezed Fock state are investigated. It is shown that, as in the RLC series circuit, the fluctuations only depend on the squeezing parameter and the parameters of the circuit components in the damped LC parallel circuit, but the effects of the circuit components on the fluctuations are different in the two circuits.
Energy Technology Data Exchange (ETDEWEB)
Radożycki, Tomasz, E-mail: t.radozycki@uksw.edu.pl [Faculty of Mathematics and Natural Sciences, College of Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938, Warsaw (Poland)
2015-09-24
The Lorentz transformation properties of the equal-time bound-state Bethe–Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a ‘meson’) this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles (‘quarks’), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties.
Energy Technology Data Exchange (ETDEWEB)
Radozycki, Tomasz [Cardinal Stefan Wyszynski University, Faculty of Mathematics and Natural Sciences, College of Sciences, Warsaw (Poland)
2015-09-15
The Lorentz transformation properties of the equal-time bound-state Bethe-Salpeter amplitude in the two-dimensional massless quantum electrodynamics (the so-called Schwinger model) are considered. It is shown that while boosting a bound state (a 'meson') this amplitude is subject to approximate Lorentz contraction. The effect is exact for large separations of constituent particles ('quarks'), while for small distances the deviation is more significant. For this phenomenon to appear, the full function, i.e. with the inclusion of all instanton contributions, has to be considered. The amplitude in each separate topological sector does not exhibit such properties. (orig.)
Hainzl, Christian; Lewin, Mathieu; Sere, Eric
2006-01-01
The Bogoliubov-Dirac-Fock (BDF) model is the mean-field approximation of no-photon Quantum Electrodynamics. The present paper is devoted to the study of the minimization of the BDF energy functional under a charge constraint. An associated minimizer, if it exists, will usually represent the ground state of a system of $N$ electrons interacting with the Dirac sea, in an external electrostatic field generated by one or several fixed nuclei. We prove that such a minimizer exists when a binding (...
Wells, James D
2015-01-01
With the Higgs boson discovery and no new physics found at the LHC, confidence in Naturalness as a guiding principle for particle physics is under increased pressure. We wait to see if it proves its mettle in the LHC upgrades ahead, and beyond. In the meantime, in a series of "realistic intellectual leaps" I present a justification {\\it a posteriori} of the Naturalness criterion by suggesting that uncompromising application of the principle to quantum electrodynamics leads toward the Standard Model and Higgs boson without additional experimental input. Potential lessons for today and future theory building are commented upon.
Mross, David F; Alicea, Jason; Motrunich, Olexei I
2016-07-01
We explicitly derive the duality between a free electronic Dirac cone and quantum electrodynamics in (2+1) dimensions (QED_{3}) with N=1 fermion flavors. The duality proceeds via an exact, nonlocal mapping from electrons to dual fermions with long-range interactions encoded by an emergent gauge field. This mapping allows us to construct parent Hamiltonians for exotic topological-insulator surface phases, derive the particle-hole-symmetric field theory of a half-filled Landau level, and nontrivially constrain QED_{3} scaling dimensions. We similarly establish duality between bosonic topological insulator surfaces and N=2 QED_{3}.
International Nuclear Information System (INIS)
The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages-these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would
Rossi, R., Jr.; de Magalhães, A. R. Bosco; Nemes, M. C.
2008-01-01
We propose an experiment for the observation of the quantum Zeno effect (QZE) in a bipartite system. The setup involves two microwave cavities and a “tunneling” photon, which is observed by the passage of Rydberg atoms. Our proposal allows for the consideration of two types of measurements, namely, sequential observations of the atomic state and its inclusive measurement. In the present system the two processes are shown to lead to the same result in the ideal case. We consider realistic atom-field interaction times, cavity dissipation, and limited detection efficiency. Analytical expressions for the “tunneling” probability are obtained exhibiting a competition between the environment induced exponential decay and the characteristic t2 (for short times) dependence of the QZE. We show that for sufficiently small dissipation constants the effect can be observed with current experimental facilities.
Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments.
Lermer, M; Gregersen, N; Dunzer, F; Reitzenstein, S; Höfling, S; Mørk, J; Worschech, L; Kamp, M; Forchel, A
2012-02-01
We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85 μeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm.
Relativistic quantum teleportation with superconducting circuits.
Friis, N; Lee, A R; Truong, K; Sabín, C; Solano, E; Johansson, G; Fuentes, I
2013-03-15
We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes nonuniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion. However, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology. PMID:25166531
Relativistic Quantum Teleportation with superconducting circuits
Friis, Nicolai; Truong, Kevin; Sabín, Carlos; Solano, Enrique; Johansson, Göran; Fuentes, Ivette
2012-01-01
We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes non-uniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion however, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.
Quantum simulation with a boson sampling circuit
González Olivares, Diego; Peropadre, Borja; Aspuru-Guzik, Alán; García-Ripoll, Juan José
2016-08-01
In this work we study a system that consists of 2 M matter qubits that interact through a boson sampling circuit, i.e., an M -port interferometer, embedded in two different architectures. We prove that, under the conditions required to derive a master equation, the qubits evolve according to effective bipartite X Y spin Hamiltonians, with or without local and collective dissipation terms. This opens the door to the simulation of any bipartite spin or hard-core boson models and exploring dissipative phase transitions as the competition between coherent and incoherent exchange of excitations. We also show that in the purely dissipative regime this model has a large number of exact and approximate dark states, whose structure and decay rates can be estimated analytically. We finally argue that this system may be used for the adiabatic preparation of boson sampling states encoded in the matter qubits.
Two-resonator circuit QED: A superconducting quantum switch
International Nuclear Information System (INIS)
Coupling different kind of superconducting (sc) qubits to on-chip microwave resonators has strongly advanced the field of circuit QED. Regarding the application of circuit QED systems in quantum information processing it would be highly desirable to switch on and off the interaction between two resonators. We introduce a formalism for two-resonator circuit QED where two on-chip microwave resonators are simultaneously coupled to one sc qubit. In this three-circuit network, the qubit mediates a geometric and a dynamic second-order interaction between the two resonators. These two coupling strengths can be tuned to be equal by varying the qubit operation point, thus permitting to switch on and off the interaction between the resonators. We discuss the effect of the qubit on the dynamic second-order coupling and how it can be deliberately manipulated to realize a sc quantum switch. Finally, we present a realistic design for implementing a two-resonator circuit QED setup based on a flux qubit and show preliminary experimental results.
Chaotic phenomena in Josephson circuits coupled quantum cellular neural networks
Institute of Scientific and Technical Information of China (English)
Wang Sen; Cai Li; Li Qin; Wu Gang
2007-01-01
In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.
Quantum dot rolled-up microtube optoelectronic integrated circuit.
Bhowmick, Sishir; Frost, Thomas; Bhattacharya, Pallab
2013-05-15
A rolled-up microtube optoelectronic integrated circuit operating as a phototransceiver is demonstrated. The microtube is made of a InGaAs/GaAs strained bilayer with InAs self-organized quantum dots inserted in the GaAs layer. The phototransceiver consists of an optically pumped microtube laser and a microtube photoconductive detector connected by an a-Si/SiO2 waveguide. The loss in the waveguide and responsivity of the entire phototransceiver circuit are 7.96 dB/cm and 34 mA/W, respectively.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Digitized adiabatic quantum computing with a superconducting circuit
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-08
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Kotikov, A V
2013-01-01
We compute the two-loop fermion self-energy in massless reduced quantum electrodynamics for an arbitrary gauge using the method of integration by parts. Focusing on the limit where the photon field is four-dimensional, our formula involves only recursively one-loop integrals and can therefore be evaluated exactly. From this formula, we deduce the anomalous scaling dimension of the fermion field as well as the renormalized fermion propagator up to two loops. The results are then applied to the ultra-relativistic limit of graphene and compared with similar results obtained for four-dimensional and three-dimensional quantum electrodynamics.
The Causal approach for the electron-positron scattering in the Generalized Quantum Electrodynamics
Bufalo, R; Soto, D E
2014-01-01
In this paper we study the generalized electrodynamics contribution for the electron-positron scattering process, $e^{-}e^{+}\\rightarrow e^{-}e^{+}$, the Bhabha scattering. Within the framework of the standard model, for energies larger when compared to the electron mass, we calculate the cross section expression for the scattering process. This quantity is usually calculated in the framework of the Maxwell electrodynamics and, by phenomenological reasons, corrected by a cut-off parameter. On the other hand, by considering the generalized electrodynamics instead of Maxwell's, we can show that the effects played by the Podolsky mass is actually a natural cut-off parameter for this scattering process. Furthermore, by means of experimental data of Bhabha scattering we will estimate its lower bound value. Nevertheless, in order to have a mathematically well defined description of our study we shall present our discussion in the framework of the Epstein-Glaser causal theory.
Efficient quantum circuits for one-way quantum computing.
Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco
2009-03-13
While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.
Evolution of Quantum State for Mesoscopic Circuits with Dissipation
Institute of Scientific and Technical Information of China (English)
WAN Hua-Ming; LUO Hai-Mei; WANG Yi-Fan
2005-01-01
Based on the maximum entropy principle, we present a density matrix of mesoscopic RLC circuit to make it possible to analyze the connection of the initial condition with temperature. Our results show that the quantum state evolution is closely related to the initial condition, and that the system evolves to generalized coherent state if it is in ground state initially, and evolves to squeezed state if it is in excited state initially.
Quantum electrodynamics and the electron self-energy in a deformed space with a minimal length scale
Silva, Apollo V.; Abreu, E. M. C.; Neves, M. J.
2016-06-01
The main motivation to study models in the presence of a minimal length is to obtain a quantum field theory free of the divergences. In this way, in this paper, we have constructed a new framework for quantum electrodynamics embedded in a minimal length scale background. New operators are introduced and the Green function method was used for the solution of the field equations, i.e. the Maxwell, Klein-Gordon and Dirac equations. We have analyzed specifically the scalar field and its one loop propagator. The mass of the scalar field regularized by the minimal length was obtained. The QED Lagrangian containing a minimal length was also constructed and the divergences were analyzed. The electron and photon propagators, and the electron self-energy at one loop as a function of the minimal length was also obtained.
Quantum Fluctuation of Mesoscopic Capacitance Coupled Circuit in a Thermal Vacuum State
Institute of Scientific and Technical Information of China (English)
朱爱东; 张寿; 金哲; 赵永芳; 井孝功; 千正男; 苏文辉
2003-01-01
The quantum fluctuations of mesoscopic capacitance-coupled circuit in thermal vacuum state are investigated by using the theory of thermal field dynamics on the basis of quantization of the mesoscopic circuit. It is shown that under a definite temperature, the fluctuations of electric charges and currents change with temperature. The higher the temperature, the more quantum noise the coupled circuit exhibits.
Large-scale quantum photonic circuits in silicon
Directory of Open Access Journals (Sweden)
Harris Nicholas C.
2016-08-01
Full Text Available Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today’s classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3 of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes.
Photodetection of propagating quantum microwaves in circuit QED
Energy Technology Data Exchange (ETDEWEB)
Romero, Guillermo [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Casilla 307, Santiago 2 (Chile); Garcia-Ripoll, Juan Jose [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Solano, Enrique [Departamento de Quimica Fisica, Universidad del PaIs Vasco - Euskal Herriko Unibertsitatea, Apdo. 644, 48080 Bilbao (Spain)], E-mail: enrique_solano@ehu.es
2009-12-15
We develop the theory of a metamaterial composed of an array of discrete quantum absorbers inside a one-dimensional waveguide that implements a high-efficiency microwave photon detector. A basic design consists of a few metastable superconducting nanocircuits spread inside and coupled to a one-dimensional waveguide in a circuit QED setup. The arrival of a propagating quantum microwave field induces an irreversible change in the population of the internal levels of the absorbers, due to a selective absorption of photon excitations. This design is studied using a formal but simple quantum field theory, which allows us to evaluate the single-photon absorption efficiency for one and many absorber setups. As an example, we consider a particular design that combines a coplanar coaxial waveguide with superconducting phase qubits, a natural but not exclusive playground for experimental implementations. This work and a possible experimental realization may stimulate the possible arrival of 'all-optical' quantum information processing with propagating quantum microwaves, where a microwave photodetector could play a key role.
International Nuclear Information System (INIS)
We consider curvature-squared corrections to Einstein-Hilbert gravity action in the form of a Gauss-Bonnet term in D>4 dimensions. In this theory, we study the thermodynamics of charged static black holes with anti-de Sitter (AdS) asymptotics, and whose electric field is described by nonlinear electrodynamics. These objects have received considerable attention in recent literature on gravity/gauge dualities. It is well-known that, within the framework of anti-de Sitter/conformal field theory (AdS/CFT) correspondence, there exists a nonvanishing Casimir contribution to the internal energy of the system, manifested as the vacuum energy for global AdS spacetime in odd dimensions. Because of this reason, we derive a quantum statistical relation directly from the Euclidean action and not from the integration of the first law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists, in addition to the bulk action, of counterterms that depend on both extrinsic and intrinsic curvatures of the boundary (Kounterterm series). This procedure results in a consistent inclusion of the vacuum energy and chemical potential in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless of the explicit form of the nonlinear electrodynamics Lagrangian.
Fermionic models with superconducting circuits
Energy Technology Data Exchange (ETDEWEB)
Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)
2015-12-01
We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Steinmetz, Tilo
2008-04-29
In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to {approx}37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g{sub 0}=2{pi}.300 MHz respectively C{sub 0}=210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [German] In der vorliegenden Dissertation werden Experimente zur Resonator-Quantenelektrodynamik auf einem Mikrofallenchip beschrieben. Dabei konnte u. a. erstmals einzelne, in einer Chipfalle gefangene Atome detektiert werden. Hier fuer wurde im Rahmen dieser Arbeit ein neuartiger optischer Mikroresonator entwickelt, der sich dank seiner Miniaturisierung mit der in unserer Arbeitsgruppe
Local random quantum circuits: ensemble CP maps and swap algebras
Zanardi, Paolo
2013-01-01
We define different classes of local random quantum circuits (L-RQC) and show that: a) statistical properties of L-RQC are encoded into an associated family of completely positive maps and b) average purity dynamics can be described by the action of these maps on operator algebras of permutations (swap algebras). An exactly solvable one-dimensional case is analyzed to illustrate the power of the swap algebra formalism. More in general, we prove short time area-law bounds on average purity for...
A geometric approach to quantum circuit lower bounds
Nielsen, Michael A.
2005-01-01
What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on SU(2^n). The geodesic curves of such a metric have the striking property that once an initial position and velocity are set, the remainder of the geodesic is complet...
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
Hardal, Ali U. C.; Müstecaplıoğlu, Özgür Esat; Altıntaş, Ferdi
2014-01-01
PHYSICAL REVIEW A 91, 023816 (2015) Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits Ferdi Altintas,1 Ali U¨ . C. Hardal,2 and O¨ zgu¨r E. Mu¨stecaplıog˘lu2,* 1Department of Physics, Abant Izzet Baysal University, Bolu, 14280, Turkey 2Department of Physics, Koc¸ University, Sarıyer, ˙Istanbul, 34450, Turkey (Received 10 November 2014; published 12 February 2015) We propose a multilevel quantum heat engine with a working medium de...
Electrodynamics and quantum capacity: The case of Bi{sub 2}Se{sub 3} topological insulator
Energy Technology Data Exchange (ETDEWEB)
Craco, L. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, MT (Brazil)
2015-11-14
Layered Bi-chalcogenide topological insulators are among the most available energy conversion (thermoelectric) and storage (battery) materials. Motivated by this applied aspect of fundamental importance and the good agreement between theory and key experiments probing spectroscopy and dc transport, we undertake a detailed study of electrodynamic responses of bulk Bi{sub 2}Se{sub 3} topological insulator. In particular, we confirm that the interplay between spin-orbit and electron correlations underpins its bulk metallicity. We show the implications of our proposal for the multi-channel nature of galvanostatic, voltage-capacity profiles intrinsic to Li{sub x}Bi{sub 2}Se{sub 3} battery material. Supported by a microscopic description of quantum capacity, we predict that layered Bi-based topological insulators are promising candidates for future high-voltage solid-state batteries.
Observation of topological transitions in interacting quantum circuits.
Roushan, P; Neill, C; Chen, Yu; Kolodrubetz, M; Quintana, C; Leung, N; Fang, M; Barends, R; Campbell, B; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Kelly, J; Megrant, A; Mutus, J; O'Malley, P J J; Sank, D; Vainsencher, A; Wenner, J; White, T; Polkovnikov, A; Cleland, A N; Martinis, J M
2014-11-13
Topology, with its abstract mathematical constructs, often manifests itself in physics and has a pivotal role in our understanding of natural phenomena. Notably, the discovery of topological phases in condensed-matter systems has changed the modern conception of phases of matter. The global nature of topological ordering, however, makes direct experimental probing an outstanding challenge. Present experimental tools are mainly indirect and, as a result, are inadequate for studying the topology of physical systems at a fundamental level. Here we employ the exquisite control afforded by state-of-the-art superconducting quantum circuits to investigate topological properties of various quantum systems. The essence of our approach is to infer geometric curvature by measuring the deflection of quantum trajectories in the curved space of the Hamiltonian. Topological properties are then revealed by integrating the curvature over closed surfaces, a quantum analogue of the Gauss-Bonnet theorem. We benchmark our technique by investigating basic topological concepts of the historically important Haldane model after mapping the momentum space of this condensed-matter model to the parameter space of a single-qubit Hamiltonian. In addition to constructing the topological phase diagram, we are able to visualize the microscopic spin texture of the associated states and their evolution across a topological phase transition. Going beyond non-interacting systems, we demonstrate the power of our method by studying topology in an interacting quantum system. This required a new qubit architecture that allows for simultaneous control over every term in a two-qubit Hamiltonian. By exploring the parameter space of this Hamiltonian, we discover the emergence of an interaction-induced topological phase. Our work establishes a powerful, generalizable experimental platform to study topological phenomena in quantum systems. PMID:25391961
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2015-12-15
The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2015-12-15
The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account. PMID:26627715
Reinisch, Gilbert C.; Gazeau, Maxime
2016-07-01
In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic potential; ii) the linear quantum electrodynamics Hamiltonian of a quantized field coupled to two fixed charges. Computing numerically the ground state and the first excited state about the maximum eigenstate overlap (which is not zero because of eigenstate non-orthogonality), we numerically demonstrate that these two descriptions coincide at first order. As a consequence, a specific definition of the fine-structure constant α is provided within 99.95% accuracy by the present first-order non-relativistic and nonlinear quantum description. This result also means that the internal Coulomb interaction commutes with external particle confinement for the calculation of the ground state. Consequently peculiar nonlinear quantum properties become observable (an experiment with GaAs quantum-dot helium is suggested).
Constructing quantum circuits for maximally entangled multi-qubit states using the genetic algorithm
Fan, Zheyong; Goertzel, Ben; Ren, Zhongzhou; Zeng, Huabi
2010-01-01
Numerical optimization methods such as hillclimbing and simulated annealing have been applied to search for highly entangled multi-qubit states. Here the genetic algorithm is applied to this optimization problem -- to search not only for highly entangled states, but also for the corresponding quantum circuits creating these states. Simple quantum circuits for maximally (highly) entangled states are discovered for 3, 4, 5, and 6-qubit systems; and extension of the method to systems with more qubits is discussed. Among other results we have found explicit quantum circuits for maximally entangled 5 and 6-qubit circuits, with only 8 and 13 quantum gates respectively. One significant advantage of our method over previous ones is that it allows very simple construction of quantum circuits based on the quantum states found.
Some Consequences of a Generalization to Heisenberg Algebra in Quantum Electrodynamics
Camacho, A
2003-01-01
In this essay it will be shown that the introduction of a modification to Heisenberg algebra (here this feature means the existence of a minimal obserlvable length), as a fundamental part of the quantization process of the electrodynamical field, renders states in which the uncertainties in the two quadrature components violate the usual Heisenberg uncertainty relation. Hence in this context it may be asserted that any physically realistic generalization of the uncertainty principle must include, not only a minimal observable length, but also a minimal observable momentum.
Daskin, Anmer; Kais, Sabre
2011-04-14
Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems. PMID:21495747
Superposition states for quantum nanoelectronic circuits and their nonclassical properties
Choi, Jeong Ryeol
2016-09-01
Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge(q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.
Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C
2012-09-27
Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS.
Li, Jiahua; Yu, Rong; Liu, Jiuyang; Ding, Chunling; Wu, Ying
2016-05-01
We study the probe-field transmission in cavity quantum electrodynamics (cavity-QED) systems with a partially transmitting element (PTE), where the PTE is used to control and tune the amplitude of the weak probe field propagating along a single waveguide channel in the structure. We derive analytic formulas utilized to determine the transmission coefficient of the probe field within the framework of quantum optics. Using experimentally accessible parameters, it is clearly shown that the asymmetric Fano-resonance line shape can be formed and manipulated by means of the added PTE. Furthermore, we reveal that there exists superluminal light with large intensity transmission in the transport spectrum of the waveguide-coupled cavity-QED system. This superluminal-light propagation effect, which exhibits the anomalous phase shift and is characterized by the negative group delay, can be enhanced by properly choosing the system parameters. The obtained results may be used for designing switching, modulation, and sensing for nanophotonic applications and ultrafast on-chip signal processing in telecom applications.
Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.
Yalla, Ramachandrarao; Sadgrove, Mark; Nayak, Kali P; Hakuta, Kohzo
2014-10-01
We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. By using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.
Aharonov-Bohm phases in a quantum LC circuit
Cao, ChunJun; Zhitnitsky, Ariel R
2015-01-01
We study novel types of contributions to the partition function of the Maxwell system defined on a small compact manifold. These contributions, often not addressed in the perturbative treatment with physical photons, emerge as a result of tunneling transitions between topologically distinct but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that this effect is highly sensitive to a small external electric field, which should be contrasted with the conventional Casimir effect where the vacuum photons are essentially unaffected by any external field. Furthermore, photons will be emitted from the vacuum in response to a time-dependent electric field, similar to the dynamical Casimir effect in which real particles are radiated from the vacuum due to the time-dependent boundary conditions. We also propose an experimental setup using a quantum LC circuit to detect this novel effect. We expect physical electric charges to a...
Introduction to Quantum-limited Parametric Amplification of Quantum Signals with Josephson Circuits
Devoret, Michel
2016-01-01
This short and opinionated review starts with a concept of quantum signals at microwave frequencies and focuses on the principle of linear parametric amplification. The amplification process arises from the dispersive nonlinearity of Josephson junctions driven with appropriate tones. We discuss two defining characteristics of these amplifiers: the number of modes receiving the signal, idler and pump waves and the number of independent ports through which these waves enter into the circuit.
A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics
Huang, Wen; Zou, Xu-Bo; Guo, Guang-Can
2015-06-01
We theoretically study the system of a superconducting transmission line resonator coupled to two interacting superconducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology. Project supported by the National Fundamental Research Program of China (Grant No. 2011cba00200), the National Natural Science Foundation of China (Grant No. 11274295), and the Doctor Foundation of Education Ministry of China (Grant No. 20113402110059).
High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.
Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J
2010-10-22
We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.
Observation of the three-state dressed states in circuit quantum electrodynamics.
Koshino, K; Terai, H; Inomata, K; Yamamoto, T; Qiu, W; Wang, Z; Nakamura, Y
2013-06-28
We have investigated the microwave response of a transmon qubit coupled directly to a transmission line. In a transmon qubit, owing to its weak anharmonicity, a single driving field may generate dressed states involving more than two bare states. We confirmed the formation of three-state dressed states by observing all of the six associated Rabi sidebands, which appear as either amplification or attenuation of the probe field. The experimental results are reproduced with good precision by a theoretical model incorporating the radiative coupling between the qubit and the microwave.
Design of arithmetic circuits in quantum dot cellular automata nanotechnology
Sridharan, K
2015-01-01
This research monograph focuses on the design of arithmetic circuits in Quantum Dot Cellular Automata (QCA). Using the fact that the 3-input majority gate is a primitive in QCA, the book sets out to discover hitherto unknown properties of majority logic in the context of arithmetic circuit designs. The pursuit for efficient adders in QCA takes two forms. One involves application of the new results in majority logic to existing adders. The second involves development of a custom adder for QCA technology. A QCA adder named as hybrid adder is proposed and it is shown that it outperforms existing multi-bit adders with respect to area and delay. The work is extended to the design of a low-complexity multiplier for signed numbers in QCA. Furthermore the book explores two aspects unique to QCA technology, namely thermal robustness and the role of interconnects. In addition, the book introduces the reader to QCA layout design and simulation using QCADesigner. Features & Benefits: This research-based book: · �...
Circuit Design Methods for Quantum Separator (QS) and Systems to Use Its Output
Werbos, Paul J.
2010-01-01
The underlying dynamics (\\partialt{\\psi}=iH{\\psi}) of quantum electrodynamics are symmetric with respect to time (T and CPT), but traditional calculations and designs in electronics and electromagnetics impose an observer formalism or causality constraints which assume a gross asymmetry between forwards time and backwards time. In 2008, I published a paper in the International Journal of Theoretical Physics (see arXiv:0801.1234) which describes how to construct physics based on the dynamics a...
Phase-controlled coherent population trapping in superconducting quantum circuits
Institute of Scientific and Technical Information of China (English)
程广玲; 王一平; 陈爱喜
2015-01-01
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single∆-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 orπ, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice ofπ/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phaseπ/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices.
Solid state multi-ensemble quantum computer in waveguide circuit model
Moiseev, Sergey A; Gubaidullin, Firdus F
2010-01-01
The first realization of solid state quantum computer was demonstrated recently by using artificial atoms -- transmons in superconducting resonator. Here, we propose a novel architecture of flexible and scalable quantum computer based on a waveguide circuit coupling many quantum nodes of controlled atomic ensembles. For the first time, we found the optimal practically attainable parameters of the atoms and circuit for 100{%} efficiency of quantum memory for multi qubit photon fields and confirmed experimentally the predicted perfect storage. Then we revealed self modes for reversible transfer of qubits between the quantum memory node and arbitrary other nodes. We found a realization of iSWAP gate via direct coupling of two arbitrary nodes with a processing rate accelerated proportionally to number of atoms in the node. A large number of the two-qubit gates can be simultaneously realized in the circuit for implementation of parallel quantum processing. Dynamic coherent elimination procedure of excess quantum s...
The Scalable Integration of long-lived quantum memories into a photonic circuit
Mouradian, Sara L; Poitras, Carl B; Li, Luozhou; Goldstein, Jordan; Chen, Edward H; Cardenas, Jaime; Markham, Matthew L; Twitchen, Daniel J; Lipson, Michal; Englund, Dirk
2014-01-01
We demonstrate a photonic circuit with integrated long-lived quantum memories. Pre-selected quantum nodes - diamond micro-waveguides containing single, stable, and negatively charged nitrogen vacancy centers - are deterministically integrated into low-loss silicon nitride waveguides. Each quantum memory node efficiently couples into the single-mode waveguide (> 1 Mcps collected into the waveguide) and exhibits long spin coherence times of up to 120 {\\mu}s. Our system facilitates the assembly of multiple quantum memories into a photonic integrated circuit with near unity yield, paving the way towards scalable quantum information processing.
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics
International Nuclear Information System (INIS)
We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms)
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics.
Cimmarusti, A D; Yan, Z; Patterson, B D; Corcos, L P; Orozco, L A; Deffner, S
2015-06-12
We measure the quantum speed of the state evolution of the field in a weakly driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment-assisted speed-up is realized: the quantum speed of the state repopulation in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).
International Nuclear Information System (INIS)
Using a previously formulated theory of quantum electrodynamics based on self-energy, we give a general method for computing the Lamb shift and related Casimir-Polder energies for a quantum system in the vicinity of perfectly conducting boundaries. Our results are exact and easily extendable to a full covariant relativistic form. As a particular example we apply the method to an atom near an infinite conducting plane, and we recover the standard QED results (which are known only in the dipole approximation) in a simple and straightforward manner. This is accomplished in the context of the new theory which is not second quantized and contains no vacuum fluctuations. (author)
Energy Technology Data Exchange (ETDEWEB)
Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)
2015-04-27
Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.
Wundt, B J; 10.1103/PhysRevA.80.022505
2009-01-01
We calculate the relativistic corrections of relative order (Z alpha)^2$ to the two-photon decay rate of higher excited S and D states in ionic atomic systems, and we also evaluate the leading radiative corrections of relative order alpha (Z alpha)^2 ln[(Z alpha)^(-2)]. We thus complete the theory of the two-photon decay rates up to relative order alpha^3 ln(alpha). An approach inspired by nonrelativistic quantum electrodynamics is used. We find that the corrections of relative order (Z alpha)^2 to the two-photon decay are given by the zitterbewegung, the spin-orbit coupling and by relativistic corrections to the electron mass, and by quadrupole interactions. We show that all corrections are separately gauge-invariant with respect to a "hybrid" transformation from velocity to length gauge, where the gauge transformation of the wave function is neglected. The corrections are evaluated for the two-photon decay from 2S, 3S, 3D, and 4S states in one-electron (hydrogenlike) systems, with 1S and 2S final states.
Study on Quantum Entanglement Between Mesoscopic Circuit and Environment at Coherent State
Institute of Scientific and Technical Information of China (English)
JI Ying-Hua
2008-01-01
Taking into account the interaction between electrons and phonons, in the case without-rotating-wave approximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or equilibrium state. The result indicates that, in long time limit t→∞, the averages of charge and current in the circuit only depend on the average of the system at the initial state when the environment is initially at thermal equilibrium. However, when the environment is initiMly at coherent state, the average of charge and current in the circuit is determined by the specific coherent state ensemble. Generally speaking, the entanglement between the circuit and environment will lead to the quantum state purity declining of the circuit, then the circuit emerges decoherent phenomenon, and so a mixed state appears. Purity changes are related to the initial quantum state of environment and circuit. With the further evolution of time, coherence will be gradually restored, but cannot return to 1.
Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Institute of Scientific and Technical Information of China (English)
Wu Chao; Fang Mao-Fa; Xiao Xing; Li Yan-Ling; Cao Shuai
2011-01-01
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance, are used for implementing quantum gates. By using dressed states, quantum state transfer and quantum entangling gate can be implemented. With the help of the time-dependent electromagnetic field, any two dressed qubits can be selectively coupled to the data bus (the last LC circuit), then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed. As a result, the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.
I. I. Sergey; E. G. Ponomarenko; W. M. Sammur; P. I. Klimkovich
2005-01-01
The paper contains description of a simplified method for calculating closing-in of switch-gear flexible buses at short circuit. The developed method is based on integral and energy principles of mechanics. In order to increase accuracy of the calculation corrections factors are introduced in an explicit formula for calculation of maximum horizontal deviations. These factors have been obtained with the help of a computer program that realized numerical method for calculating closing-in of wi...
Nonlinear optical effects and Hong-Ou-Mandel interference in cavity quantum electrodynamics
Mirza, Imran M.; van Enk, Steven J.
Pure quantum interference among single photons is one of the key ingredients to perform linear optics quantum computation (LOQC). The Hong-Ou-Mandel interference (HOMI) [C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, (18), 2044-2046 (1987)] i.e. complete destructive interference between two identical and indistinguishable photons simultaneously entering input ports of a 50/50 beam splitter, is a well-known example in this context. In this talk, I'll present our theoretical study of HOMI in a coupled Jaynes-Cummings array. In particular and by applying quantum jump/trajectory formalism, I'll focus on how partial quantum interference between two photons survive both non-linearities produced by two-level emitter and spectral filtering due to optical cavities in our coupled cavity array setup [Imran M. Mirza and Steven J. van Enk, Opt. Comm. 343, 172-177 (2015)]. Along with LOQC, this work is crucial from the perspective of exploiting coupled cavity arrays to store single photons reliably (without altering their temporal and spectral traits) [Imran M. Mirza, Steven J. van Enk and Jeff Kimble, JOSA B, 10, 2640-2649, (2013)].
Aharonov-Bohm phases in a quantum LC circuit
Cao, ChunJun; Yao, Yuan; Zhitnitsky, Ariel R.
2016-03-01
We study novel types of contributions to the partition function of the Maxwell system defined on a small compact manifold. These contributions, often not addressed in the perturbative treatment with physical photons, emerge as a result of tunneling transitions between topologically distinct but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that this effect is highly sensitive to a small external electric field, which should be contrasted with the conventional Casimir effect, where the vacuum photons are essentially unaffected by any external field. Furthermore, photons will be emitted from the vacuum in response to a time-dependent electric field, similar to the dynamical Casimir effect in which real particles are radiated from the vacuum due to the time-dependent boundary conditions. We also propose an experimental setup using a quantum LC circuit to detect this novel effect. We expect physical electric charges to appear on the capacitor plates when the system dimension is such that coherent Aharonov-Bohm phases can be maintained over macroscopically large distances.
Quantum Fluctuation of a Mesoscopic Inductance Coupling Circuit at Finite Temperature
Institute of Scientific and Technical Information of China (English)
SONG Tong-Qiang; ZHU Yue-Jin
2003-01-01
We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas.
Smolka, Stephan; Wuester, Wolf; Haupt, Florian; Faelt, Stefan; Wegscheider, Werner; Imamoglu, Ataç
2014-10-17
Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities.
On Real and Virtual Photons in the Davies Theory of Time-Symmetric Quantum Electrodynamics
Kastner, R E
2013-01-01
This paper explores the distinction between virtual and real photons in the context of the Davies quantum relativistic extension of the Wheeler-Feynman classical electromagnetic theory. An alternative way of understanding this distinction is proposed, based on the transactional picture as first proposed by Cramer. It is noted that this proposed account of the relationship between virtual and real photons might have empirically detectable consequences.
Flamini, Fulvio; Rab, Adil S; Spagnolo, Nicolò; D'Ambrosio, Vincenzo; Mataloni, Paolo; Sciarrino, Fabio; Zandrini, Tommaso; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto
2015-01-01
The importance of integrated quantum photonics in the telecom band resides on the possibility of interfacing with the optical network infrastructure developed for classical communications. In this framework, femtosecond laser written integrated photonic circuits, already assessed for quantum information experiments in the 800 nm wavelength range, have great potentials. In fact these circuits, written in glass, can be perfectly mode-matched at telecom wavelength to the in/out coupling fibers, which is a key requirement for a low-loss processing node in future quantum optical networks. In addition, for several applications quantum photonic devices will also need to be dynamically reconfigurable. Here we experimentally demonstrate the high performance of femtosecond laser written photonic circuits for quantum experiments in the telecom band and we show the use of thermal shifters, also fabricated by the same femtosecond laser, to accurately tune them. State-of-the-art manipulation of single and two-photon states...
Quantum Fluctuation in Mesoscopic Coupled LC Electric Circuits at FiniteTemperature
Institute of Scientific and Technical Information of China (English)
LIANG Xian-Ting; FAN Hong-Yi
2001-01-01
We consider the quantization of two coupled LC circuits with mutual inductance at a finite temperature T. It is shown that the quantum mechanical zero-point fluctuations of currents in the two circuits both increase with upgoing T. Thermal field dynamics and Weyl-Wigner theorern are used in our calculation of ensemble average of the observables.
Quantum Fluctuation in Thermal Vacuum State for Mesoscopic LC Electric Circuit
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; LIANG Xian-Ting
2000-01-01
We consider the quantization of LC (inductance-capacitance) circuit at a finite temperature T as any practical circuits always produce Joule heat except for superconductivity. It is shown that the quantum mechanical zeropoint fluctuations of both charge and current increase with upgoing T. Thermal field dynamics is used in ourdiscussion.
International Nuclear Information System (INIS)
An experiment is described which studied quantum electrodynamic interactions under conditions of extremely high fields, along with a review of the relevant theory. The high fields were created by an intense, tightly-focused pulse of laser light at green or infrared wavelengths, into which was sent an ultra-relativistic electron beam of 46.6-GeV energy. The relevant theory is that of an electron in an electromagnetic wave so intense that the electron's mass is effectively shifted by the transverse momentum imparted to it by the wave, and the electron encounters field strengths comparable to the Schwinger critical field strength of 511 kV per Compton wavelength. An electron in the intense wave may radiate a photon and balance 4-momentum by absorbing multiple photons from the laser, which can lead to real photons with energies above the kinematic limit for conventional Compton scattering. All particles have significant probability of scattering multiple times while in the focus of the laser, including the photons radiated by the electrons, which may convert into electron-positron pairs, again with absorption of multiple photons from the laser. This experiment was able to measure the rates and spectra of positrons, electrons, and photons emerging from the interaction region. Results from both experiment and theoretical simulations are presented and compared. The results from the electron and positron measurements are compatible with the accepted theory, within experimental uncertainties due mainly to the laser intensity measurement. The photon spectrum shows the correct shape, but the ratio of rates in the linear and two-absorbed-photon portions of the spectrum does not vary as expected with the laser intensity, suggesting a disagreement with the accepted theory, with a significance of roughly two standard deviations. A follow-up experiment would be in order
Institute of Scientific and Technical Information of China (English)
S. H. Kim
2006-01-01
We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross section is 1016 times the Thomson cross section, confirming the result obtained by a previous analysis of the experimental data. A QWD calculation show that spontaneous emission in an FEL using only an electric wiggler can be very strong while amplification through net stimulated emission is practically negligible.
Quantum inductive circuits under ac and dc fields: Current manifestations of charge discreteness
International Nuclear Information System (INIS)
It is well known that the electrical current of a quantum inductive circuits with charge discreteness qe displays Bloch-like oscillations (frequency ωB=qeεd-bar ) under a dc external voltage (εd). Here we consider the effect of a superposed ac voltage in the circuit. Resonances are explicitly found. In the limit of small external frequency (ω-bar ωB), the electrical (one-period-averaged) current exist and has always the same sign. This gives us an experimental method to measure discrete charge effects in (quantum) nanometric circuits since the established current is depending on charge discreteness
Java Application that Outputs Quantum Circuit for Some NAND Formula Evaluators
Tucci, Robert R.
2008-01-01
This paper introduces QuanFruit v1.1, a Java application available for free. (Source code included in the distribution.) Recently, Farhi-Goldstone-Gutmann (FGG) wrote a paper arXiv:quant-ph/0702144 that proposes a quantum algorithm for evaluating NAND formulas. QuanFruit outputs a quantum circuit for the FFG algorithm.
Schneeweiss, Philipp; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen
2016-01-01
We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as its out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75+/-1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.
Energy Technology Data Exchange (ETDEWEB)
Chen, Jingwei [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wei, L.F., E-mail: weilianfu@gmail.com [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China)
2015-10-23
Highlights: • A specific SCRAP technique is proposed to realize quantum gates in the circuit QED. • These quantum gates are insensitive to the durations of the applied pluses. • The implemented quantum gates are robustness against the operational imperfections. - Abstract: We show that a set of universal quantum gates could be implemented robustly in a circuit QED system by using Stark-chirped rapid adiabatic passage (SCRAP) technique. Under the adiabatic limit we find that the population transfers could be deterministically passaged from one selected quantum states to the others, and thus the desired quantum gates can be implemented. The proposed SCRAP-based gates are insensitive to the details of the operations and thus relax the designs of the applied pulses, operational imperfections, and the decoherence of the system.
International Nuclear Information System (INIS)
Highlights: • A specific SCRAP technique is proposed to realize quantum gates in the circuit QED. • These quantum gates are insensitive to the durations of the applied pluses. • The implemented quantum gates are robustness against the operational imperfections. - Abstract: We show that a set of universal quantum gates could be implemented robustly in a circuit QED system by using Stark-chirped rapid adiabatic passage (SCRAP) technique. Under the adiabatic limit we find that the population transfers could be deterministically passaged from one selected quantum states to the others, and thus the desired quantum gates can be implemented. The proposed SCRAP-based gates are insensitive to the details of the operations and thus relax the designs of the applied pulses, operational imperfections, and the decoherence of the system
A quantum watermarking scheme using simple and small-scale quantum circuits
Miyake, S.; Nakamae, K.
2016-05-01
A new quantum gray-scale image watermarking scheme by using simple and small-scale quantum circuits is proposed. The NEQR representation for quantum images is used. The image sizes for carrier and watermark are assumed to be 2n × 2n and n × n, respectively. At first, a classical watermark with n × n image size and 8 bits gray scale is expanded to an image with 2n × 2n image size and 2 bits gray scale. Then the expanded image is scrambled to be a meaningless image by the SWAP gates that controlled by the keys only known to the operator. The scrambled image is embedded into the carrier image by the CNOT gates (XOR operation). The watermark is extracted from the watermarked image by applying operations in the reverse order. Simulation-based experimental results show that our proposed scheme is excellent in terms of three items, visual quality, robustness performance under noises, and computational complexity.
On a modified electrodynamics.
Reiss, H R
2012-09-01
A modification of electrodynamics is proposed, motivated by previously unremarked paradoxes that can occur in the standard formulation. It is shown by specific examples that gauge transformations exist that radically alter the nature of a problem, even while maintaining the values of many measurable quantities. In one example, a system with energy conservation is transformed to a system where energy is not conserved. The second example possesses a ponderomotive potential in one gauge, but this important measurable quantity does not appear in the gauge-transformed system. A resolution of the paradoxes comes from noting that the change in total action arising from the interaction term in the Lagrangian density cannot always be neglected, contrary to the usual assumption. The problem arises from the information lost by employing an adiabatic cutoff of the field. This is not necessary. Its replacement by a requirement that the total action should not change with a gauge transformation amounts to a supplementary condition for gauge invariance that can be employed to preserve the physical character of the problem. It is shown that the adiabatic cutoff procedure can also be eliminated in the construction of quantum transition amplitudes, thus retaining consistency between the way in which asymptotic conditions are applied in electrodynamics and in quantum mechanics. The 'gauge-invariant electrodynamics' of Schwinger is shown to depend on an ansatz equivalent to the condition found here for maintenance of the ponderomotive potential in a gauge transformation. Among the altered viewpoints required by the modified electrodynamics, in addition to the rejection of the adiabatic cutoff, is the recognition that the electric and magnetic fields do not completely determine a physical problem, and that the electromagnetic potentials supply additional information that is required for completeness of electrodynamics.
Xu, Xing-Lei; Xu, Shi-Min; Li, Hong-Qi
2008-06-01
The quantization of mesoscopic damped circuit involving capacitance-inductance coupling is proposed by the method of thrice linear transformation and damped harmonic oscillator quantization. The quantum fluctuations of the charges and current of each loop are calculated by thermo-field dynamics (TFD) in thermal vacuum state, thermal coherent state and thermal squeezed state, respectively. It is shown that the quantum fluctuations of the charges and current not only depend on circuit inherent parameter and coupled magnitude, but also rely on squeezed coefficients, squeezed angle, environmental temperature and damped resistance. And, because of influence of environmental temperature and damped resistance, the quantum fluctuations increase with increasing temperature and decrease with prolonging time.
Electric circuit networks equivalent to chaotic quantum billiards
Bulgakov, Evgeny N.; Maksimov, Dmitrii N.; Sadreev, Almas F.
2004-01-01
We formulate two types of electric RLC resonance network equivalent to quantum billiards. In the network of inductors grounded by capacitors squared resonant frequencies are eigenvalues of the quantum billiard. In the network of capacitors grounded by inductors squared resonant frequencies are given by inverse eigen values of the billiard. In both cases local voltages play role of the wave function of the quantum billiard. However as different from quantum billiards there is a heat power beca...
Experimental investigation of a four-qubit linear-optical quantum logic circuit.
Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J
2016-01-01
We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176
Institute of Scientific and Technical Information of China (English)
XU Xing-Lei
2007-01-01
Mesoscopic damped mutual capacitance coupled double resonance circuit is quantized by the method of damped harmonic oscillator quantization. Hamiltonian is diagonalized by the method of unitary transformation. The energy spectra of this circuit are given. The quantum fluctuations of the charge and current of each loop are investigated by the method of thermofield dynamics (TFD) in thermal excitation state,thermal squeezed vacuum state,thermal vacuum state and vacuum state. It is shown that the quantum fluctuations of the charge and current are related to not only circuit inherent parameter and coupled magnitude,but also quantum number of excitation,squeezed coefficients,squeezed angle and environmental temperature. And the quantum fluctuations increase with the increase of temperature and decay with time.
Quantum Hadamard Gate Implementation Using Planar Lightwave Circuit and Photonic Crystal Structures
Directory of Open Access Journals (Sweden)
Shamsolah Salemian
2008-01-01
Full Text Available An all optical method has been proposed for quantum Hadamard gate implementation. This quantum gate was realized by using Y-junction beam splitter. Normal modes in waveguides have been used as quantum bit. This all optical gate can be used in quantum computation and communication. The proposed Hadamard gate has potential of being more compact and easily realized compared to other optical implementations. By using planar lightwave circuit in implementation, the width of Y-junction input waveguide, width of each branch, angle of bend and length of bend were obtained 1 micron, 0.75 micron, 45° and 0.75 micron, respectively. By using planar lightwave circuit in implementation, the radius of large air holes and the radius of small holes were obtained 0.2 ands 0.1 micron, respectively. The index of substrate was 1.325. Implementation based on photonic crystal structures and planar lightwave circuit technology was used in integrated optics.
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Chulhai, Dhabih V; Jensen, Lasse
2014-10-01
Raman optical activity has proven to be a powerful tool for probing the geometry of small organic and biomolecules. It has therefore been expected that the same mechanisms responsible for surface-enhanced Raman scattering may allow for similar enhancements in surface-enhanced Raman optical activity (SEROA). However, SEROA has proved to be an experimental challenge and mirror-image SEROA spectra of enantiomers have so far not been measured. There exists a handful of theories to simulate SEROA, all of which treat the perturbed molecule as a point-dipole object. To go beyond these approximations, we present two new methods to simulate SEROA: the first is a dressed-tensors model that treats the molecule as a point-dipole and point-quadrupole object; the second method is the discrete interaction model/quantum mechanical (DIM/QM) model, which considers the entire charge density of the molecule. We show that although the first method is acceptable for small molecules, it fails for a medium-sized one such as 2-bromohexahelicene. We also show that the SEROA mode intensities and signs are highly sensitive to the nature of the local electric field and gradient, the orientation of the molecule, and the surface plasmon frequency width. Our findings give some insight into why experimental SEROA, and in particular observing mirror-image SEROA for enantiomers, has been difficult.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K.S.; Abulizi, G.; Jong, de M.P.; Wiel, van der W.G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is we
A nanoCryotron comparator can connect single-flux quantum circuits to conventional electronics
Zhao, Qing-Yuan; Dane, Andrew E; Berggren, Karl K; Ortlepp, Thomas
2016-01-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realiz...
Error sensitivity to environmental noise in quantum circuits for chemical state preparation
Sawaya, Nicolas P D; McClean, Jarrod R; Aspuru-Guzik, Alán
2016-01-01
Calculating molecular energies is likely to be one of the first useful applications to achieve quantum supremacy, performing faster on a quantum than a classical computer. However, if future quantum devices are to produce accurate calculations, errors due to environmental noise and algorithmic approximations need to be characterized and reduced. In this study, we use the high performance qHiPSTER software to investigate the effects of environmental noise on the preparation of quantum chemistry states. We simulate nineteen 16-qubit quantum circuits under environmental noise, each corresponding to a unitary coupled cluster state preparation of a different molecule or molecular configuration. Additionally, we analyze the nature of simple gate errors in noise-free circuits of up to 40 qubits. We find that the Jordan-Wigner (JW) encoding produces consistently smaller errors under a noisy environment as compared to the Bravyi-Kitaev (BK) encoding. For the JW encoding, pure-dephasing noise is shown to produce substa...
Generation of a macroscopic entangled coherent state using quantum memories in circuit QED
Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco
2016-01-01
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip
Schuck, Carsten; Fan, Linran; Ma, Xiao-Song; Poot, Menno; Tang, Hong X
2015-01-01
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single photon detectors. The photonic circuit and detector fabrication processes are compatible with standa...
Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits
Xue, Zheng-Yuan; Zhou, Jian; Wang, Z. D.
2015-08-01
To implement a set of universal quantum logic gates based on non-Abelian geometric phases, it is conventional wisdom that quantum systems beyond two levels are required, which is extremely difficult to fulfill for superconducting qubits and appears to be a main reason why only single-qubit gates were implemented in a recent experiment [A. A. Abdumalikov, Jr. et al., Nature (London) 496, 482 (2013), 10.1038/nature12010]. Here we propose to realize nonadiabatic holonomic quantum computation in decoherence-free subspace on circuit QED, where one can use only the two levels in transmon qubits, a usual interaction, and a minimal resource for the decoherence-free subspace encoding. In particular, our scheme not only overcomes the difficulties encountered in previous studies but also can still achieve considerably large effective coupling strength, such that high-fidelity quantum gates can be achieved. Therefore, the present scheme makes realizing robust holonomic quantum computation with superconducting circuits very promising.
Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world
Directory of Open Access Journals (Sweden)
Schanck John M.
2016-10-01
Full Text Available We propose a circuit extension handshake for Tor that is forward secure against adversaries who gain quantum computing capabilities after session negotiation. In doing so, we refine the notion of an authenticated and confidential channel establishment (ACCE protocol and define pre-quantum, transitional, and post-quantum ACCE security. These new definitions reflect the types of adversaries that a protocol might be designed to resist. We prove that, with some small modifications, the currently deployed Tor circuit extension handshake, ntor, provides pre-quantum ACCE security. We then prove that our new protocol, when instantiated with a post-quantum key encapsulation mechanism, achieves the stronger notion of transitional ACCE security. Finally, we instantiate our protocol with NTRU-Encrypt and provide a performance comparison between ntor, our proposal, and the recent design of Ghosh and Kate.
Dimensions and Units in Electrodynamics
Hehl, F W; Hehl, Friedrich W; Obukhov, Yuri N
2004-01-01
We sketch the foundations of classical electrodynamics, in particular the transition that took place when Einstein, in 1915, succeeded to formulate general relativity. In 1916 Einstein demonstrated that, with a choice of suitable variables for the electromagnetic field, it is possible to put Maxwell's equation into a form that is covariant under general coordinate transformations. This unfolded, by basic contributions of Kottler, Cartan, van Dantzig, Schouten & Dorgelo, Toupin & Truesdell, and Post, to what one may call {\\em premetric classical electrodynamics.} This framework will be described shortly. An analysis is given of the physical dimensions involved in electrodynamics and subsequently the question of units addressed. It will be pointed out that these results are untouched by the generalization of classical to quantum electrodynamics (QED). We compare critically our results with those of {\\sl L.B. Okun} which he had presented at a recent conference.
Energy Technology Data Exchange (ETDEWEB)
Brenner, G.
2007-07-17
High-precision lifetime measurements of the metastable 1s{sup 2}2s{sup 2}2p{sup 2}P{sup 0}{sub 3/2} level in boronlike Ar XIV and the 3s{sup 2}2p {sup 2}P{sup 0}{sub 3/2} level in aluminumlike Fe XIV were performed at the Heidelberg electron beam ion trap (HD-EBIT). The lifetimes were inferred by monitoring their optical decay curves resulting from the magnetic dipole (M1) transition 1s{sup 2}2s{sup 2}2p{sup 2}P{sup 0}{sub 3/2}-{sup 2}P{sup 0}{sub 1/2} and 3s{sup 2}3p {sup 2}P{sup 0}{sub 3/2}-{sup 2}P{sup 0}{sub 1/2} to the ground state configuration with transition wavelengths of 441.256 nm and 530.29 nm, respectively. Possible systematic error sources were investigated by studying the dependence of the decay times of the curves on various trapping conditions with high statistical significance. A new trapping scheme for lifetime measurements at an EBIT has been applied and allowed to reach an unprecedented precision in the realm of lifetime determinations on highly charged ions. The results of 9.573(4)({sup +12}{sub -5}) ms (stat)(syst) for Ar XIV and 16.726(10)(+17) ms (stat)(syst) for Fe XIV with a relative accuracy of 0.14% and 0.13%, respectively, make these measurements for the first time sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM). The results, improving the accuracy of previous measurements by factors of 10 and 6, respectively, show a clear discrepancy of about 3{sigma} and 4{sigma} to the trend of existing theoretical models, which in almost all cases predict a shorter lifetime, when adjusted for the EAMM. The obvious disagreement between experimental results and the predictions points at the incompleteness of the theoretical models used. (orig.)
Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof
2012-06-14
The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound
Schwinger, Julian Seymour; Milton, K A; Tsai, W Y
1998-01-01
This text for the graduate classical electrodynamics course was left unfinished upon Julian Schwinger's death in 1994, but was completed by his coauthors, who have brilliantly recreated the excitement of Schwinger's novel approach. Classical Electrodynamics captures Schwinger's inimitable lecturing style, in which everything flows inexorably from what has gone before. An essential resource for both physicists and their students, the book includes a "Reader's Guide", which describes the major themes in each chapter, suggests a possible path through the book, and identifies topics for inclusion
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
Quantum phase transition and degeneracy of a circuit-QED vacuum
Nataf, Pierre
2009-01-01
We investigate theoretically the quantum vacuum properties of a transmission line resonator inductively coupled to a chain of $N$ superconducting qubits. We derive the quantum Hamiltonian for such circuit-QED system, showing that, due to the type and strength of the interaction, a quantum phase transition occurs in the limit of large $N$, with a twice degenerate quantum vacuum above a critical coupling. The phase diagram can be fully explored thanks to the controllable ultrastrong coupling of the qubits with the modes of the transmission line resonator. For finite values of $N$, an energy splitting occurs, which becomes exponentially small with increasing size and coupling.
Gradiometric tunable-gap flux qubits in a circuit QED architecture
Energy Technology Data Exchange (ETDEWEB)
Schwarz, Manuel Johannes
2015-02-03
In circuit quantum electrodynamics or quantum simulation experiments, superconducting quantum bits with long coherence time, high in situ tunability and usually large anharmonicity are required. In contrast to the popular transmon, the gradiometric tunable-gap flux qubit meets all these requirements. We fabricate and characterize such a qubit and demonstrate its first implementation into a transmission line resonator. We show spectroscopy and first time domain results.
Gradiometric tunable-gap flux qubits in a circuit QED architecture
Schwarz, Manuel Johannes
2015-01-01
In circuit quantum electrodynamics or quantum simulation experiments, superconducting quantum bits with long coherence time, high in situ tunability and usually large anharmonicity are required. In contrast to the popular transmon, the gradiometric tunable-gap flux qubit meets all these requirements. We fabricate and characterize such a qubit and demonstrate its first implementation into a transmission line resonator. We show spectroscopy and first time domain results.
Institute of Scientific and Technical Information of China (English)
Li Wen-Dong; Zhang Jian-Li; Gu Yong-Jian
2006-01-01
Deterministic and exact teleportation can be achieved via two partially entangled pairs of particles[Gu Y J 2006 Opt.Comm.259 385].The key point of the protocol is a generalized measurement described by a positive operator valued measure, which can be realized by performing a unitary operation in the extended space and a conventional Von Neumann orthogonal measurement.By decomposing the evolution process from the initial state to the final state, we construct the quantum circuits for realizing the unitary operation with quantum Toffoli gates, and thus provide a physical means to realize the teleportation.Our method for constructing quantum circuits differs from the usual methods based on decomposition of unitary matrices, and is convenient for a large class of quantum processes involving generalized measurements.
International Nuclear Information System (INIS)
We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz
Saat, NK; Dean, P.; Khanna, SP; Salih, M; Linfield, EH; Davies, AG
2015-01-01
We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modula...
Automatic synthesis of quantum circuits for point addition on ordinary binary elliptic curves
Budhathoki, Parshuram; Steinwandt, Rainer
2015-01-01
When designing quantum circuits for Shor's algorithm to solve the discrete logarithm problem, implementing the group arithmetic is a cost-critical task. We introduce a software tool for the automatic generation of addition circuits for ordinary binary elliptic curves, a prominent platform group for digital signatures. The resulting circuits reduce the number of -gates by a factor compared to the best previous construction, without increasing the number of qubits or -depth. The software also optimizes the (CNOT) depth for -linear operations by means of suitable graph colorings.
Xu, Xing-Lei; Li, Hong-Qi; Wang, Ji-Suo
2007-06-01
Starting from the Kirchhoff's equation for electric circuits and in reference of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of damped double-resonance mesoscopic RLC circuit involving complicated coupling is proposed. The quantum fluctuations of charge and current of each loop are calculated in thermal squeezed state, thermal coherent state and thermal vacuum state, respectively. The results not only depend on the circuit proper parameters and coupled magnitude, but also rely on the squeezing coefficients, environmental temperature and damped resistance. The fluctuations increase with temperature rising and decay with time.
Solving field equations in spinor electrodynamics
Bratchikov, A. V.
2009-01-01
Solutions of classical and quantum equations of motion in spinor electrodynamics are constructed within the context of perturbation theory. The solutions possess a graphical representation in terms of diagrams.
Probabilistic Teleportation of an Arbitrary Two-Particle State and Its Quantum Circuits
Institute of Scientific and Technical Information of China (English)
GUO Zhan-Ying; FANG Jian-Xing; ZHU Shi-Qun; QIAN Xue-Min
2006-01-01
Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed.After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile,quantum circuits for realization of successful teleportation are also presented.
Observation of Majorization Principle for quantum algorithms via 3-D integrated photonic circuits
Flamini, Fulvio; Giordani, Taira; Bentivegna, Marco; Spagnolo, Nicoló; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Martin-Delgado, Miguel Angel; Sciarrino, Fabio
2016-01-01
The Majorization Principle is a fundamental statement governing the dynamics of information processing in optimal and efficient quantum algorithms. While quantum computation can be modeled to be reversible, due to the unitary evolution undergone by the system, these quantum algorithms are conjectured to obey a quantum arrow of time dictated by the Majorization Principle: the probability distribution associated to the outcomes gets ordered step-by-step until achieving the result of the computation. Here we report on the experimental observation of the effects of the Majorization Principle for two quantum algorithms, namely the quantum fast Fourier transform and a recently introduced validation protocol for the certification of genuine many-boson interference. The demonstration has been performed by employing integrated 3-D photonic circuits fabricated via femtosecond laser writing technique, which allows to monitor unambiguously the effects of majorization along the execution of the algorithms. The measured ob...
Tunable quantum interference in a 3D integrated circuit.
Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J
2015-04-27
Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.
Khalilov, V R
2015-01-01
The polarization operator (tensor) for planar charged fermions in constant uniform magnetic field is calculated in the one-loop approximation of the 2+1 dimensional quantum electrodynamics (QED$_{2+1}$) with a nonzero fermion density. We construct the Green function of the Dirac equation with a constant uniform external magnetic field in the QED$_{2+1}$ at the finite chemical potential, find the imaginary part of this Green function and then obtain the polarization tensor related to the combined contribution from real particles occupying the finite number of energy levels and magnetic field. We expect that some physical effects under consideration seem to be likely to be revealed in a monolayer graphene sample in the presence of external constant uniform magnetic field $B$ perpendicular to it.
Energy Technology Data Exchange (ETDEWEB)
Khalilov, V.R.; Mamsurov, I.V. [M.V. Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)
2015-04-01
The polarization operator (tensor) for planar charged fermions in a constant uniform magnetic field is calculated in the one-loop approximation of 2 + 1-dimensional quantum electrodynamics (QED{sub 2+1}) with a nonzero fermion density. We construct the Green function of the Dirac equation with a constant uniform external magnetic field in QED{sub 2+1} at a finite chemical potential, find the imaginary part of this Green function, and then obtain the polarization tensor related to the combined contribution from real particles occupying the finite number of energy levels and magnetic field. We expect that some physical effects under consideration seem likely to be revealed in a monolayer graphene sample in the presence of an external constant uniform magnetic field B perpendicular to it. (orig.)
Asymptotically Optimal Quantum Circuits for d-level Systems
Bullock, S S; O'Leary, D P; Brennen, Gavin K.; Bullock, Stephen S.; Leary, Dianne P. O'
2004-01-01
As a qubit is a two-level quantum system whose state space is spanned by |0>, |1>, so a qudit is a d-level quantum system whose state space is spanned by |0>,...,|d-1>. Quantum computation has stimulated much recent interest in algorithms factoring unitary evolutions of an n-qubit state space into component two-particle unitary evolutions. In the absence of symmetry, Shende, Markov and Bullock use Sard's theorem to prove that at least C 4^n two-qubit unitary evolutions are required, while Vartiainen, Moettoenen, and Salomaa (VMS) use the QR matrix factorization and Gray codes in an optimal order construction involving two-particle evolutions. In this work, we note that Sard's theorem demands C d^{2n} two-qudit unitary evolutions to construct a generic (symmetry-less) n-qudit evolution. However, the VMS result applied to virtual-qubits only recovers optimal order in the case that d is a power of two. We further construct a QR decomposition for d-multi-level quantum logics, proving a sharp asymptotic of Theta(d...
Barz, Stefanie
2015-04-01
Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization.
Circuit models and SPICE macro-models for quantum Hall effect devices
Ortolano, Massimo
2015-01-01
Quantum Hall effect (QHE) devices are a pillar of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a systematic analysis of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided.
Circuit models and SPICE macro-models for quantum Hall effect devices
International Nuclear Information System (INIS)
Precise electrical measurement technology based on the quantum Hall effect is one of the pillars of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a concise review of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided. (paper)
All-high-Tc superconductor rapid-single-flux-quantum circuit operating at ˜30 K
Shokhor, S.; Nadgorny, B.; Gurvitch, M.; Semenov, V.; Polyakov, Yu.; Likharev, K.; Hou, S. Y.; Phillips, Julia M.
1995-11-01
We have implemented a simple circuit of the rapid single-flux-quantum (RSFQ) logic family using a single-layer YBa2Cu3O7-x thin-film structure with 14 in-plane Josephson junctions formed by direct electron beam writing. The circuit includes two dc/SFQ converters, two Josephson transmission lines, a complete RS SFQ flip-flop, and an SFQ/dc converter (readout SQUID). Low-frequency testing has shown that the dc-current-biased circuit operates correctly and reliably at T˜30 K, a few degrees below the effective critical temperature of the junctions. Prospects for a further increase of the operation temperature and implementation of more complex RSFQ circuits are discussed in brief.
Error Sensitivity to Environmental Noise in Quantum Circuits for Chemical State Preparation.
Sawaya, Nicolas P D; Smelyanskiy, Mikhail; McClean, Jarrod R; Aspuru-Guzik, Alán
2016-07-12
Calculating molecular energies is likely to be one of the first useful applications to achieve quantum supremacy, performing faster on a quantum than a classical computer. However, if future quantum devices are to produce accurate calculations, errors due to environmental noise and algorithmic approximations need to be characterized and reduced. In this study, we use the high performance qHiPSTER software to investigate the effects of environmental noise on the preparation of quantum chemistry states. We simulated 18 16-qubit quantum circuits under environmental noise, each corresponding to a unitary coupled cluster state preparation of a different molecule or molecular configuration. Additionally, we analyze the nature of simple gate errors in noise-free circuits of up to 40 qubits. We find that, in most cases, the Jordan-Wigner (JW) encoding produces smaller errors under a noisy environment as compared to the Bravyi-Kitaev (BK) encoding. For the JW encoding, pure dephasing noise is shown to produce substantially smaller errors than pure relaxation noise of the same magnitude. We report error trends in both molecular energy and electron particle number within a unitary coupled cluster state preparation scheme, against changes in nuclear charge, bond length, number of electrons, noise types, and noise magnitude. These trends may prove to be useful in making algorithmic and hardware-related choices for quantum simulation of molecular energies. PMID:27254482
International Nuclear Information System (INIS)
Superconducting single flux quantum (SFQ) circuit can operate at very low temperature. This is suitable for controlling a quantum computing system with Josephson junctions. However, it is difficult to integrate both SFQ circuits and qubits into a single-chip, because of the dissipative characteristics of SFQ circuits. Therefore, we have developed a multi-chip packaging technology for a qubit control module. The module consists of SFQ circuit chips, qubit chips, and a substrate all of which are fabricated with Nb and Al technology. The chips are flip-chip bonded with superconducting solder bumps. We also investigated SFQ control circuits for superconducting qubits and circuit parameter optimization for sub-Kelvin temperature operation. Using both multi-chip packaging and optimized SFQ control circuit makes the design of qubit control module more flexible
Optimal ILP-Based Approach for Gate Location Assignment and Scheduling in Quantum Circuits
Directory of Open Access Journals (Sweden)
Naser Mohammadzadeh
2014-01-01
Full Text Available Physical design and synthesis are two key processes of quantum circuit design methodology. The physical design process itself decomposes into scheduling, mapping, routing, and placement. In this paper, a mathematical model is proposed for mapping, routing, and scheduling in ion-trap technology in order to minimize latency of the circuit. The proposed model which is a mixed integer linear programming (MILP model gives the optimal locations for gates and the best sequence of operations in terms of latency. Experimental results show that our scheme outperforms the other schemes for the attempted benchmarks.
Small slot waveguide rings for on-chip quantum optical circuits
Rotenberg, Nir; Haakh, Harald; Martin-Cano, Deigo; Goetzinger, Stephan; Sandoghdar, Vahid
2016-01-01
Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 $\\mu$m (Q = 27,900), near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.
Cavity enhanced second-order nonlinear quantum photonic logic circuits
Trivedi, Rahul; Majumdar, Arka
2015-01-01
A large obstacle for realizing quantum photonic logic is the weak optical nonlinearity of available materials, which results in large power consumption. In this paper, we argue that second order ($\\chi^{(2)}$) nonlinear optical devices are more suitable for achieving low power photonic logic. We present the theoretical design of all-optical logic with $\\chi^{(2)}$ nonlinear bimodal cavities and their networks. Using semiclassical models derived from the Wigner quasi-probability distribution function, we analyze the power consumption of networks implementing an optical AND gate and an optical latch. Comparison between the second and third order $(\\chi^{(3)})$ optical logic reveals that the $\\chi^{(2)}$ design outperforms the corresponding $\\chi^{(3)}$ design in terms of the gate power consumption at high quality factors. Specifically, using realistic estimates for the $\\chi^{(2)}$ and $\\chi^{(3)}$ susceptibilities of available materials we show that at cavity quality factors $\\sim 10^4$, optical logic designed...
A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis
Zeller, Luke
In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-01
We present very accurate quantum mechanical calculations of the three lowest S-states [1s22s2(S10), 1s22p2(S10), and 1s22s3s(S10)] of the two stable isotopes of the boron ion, B10+ and B11+. At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10 000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading α2 relativistic corrections (α is the fine structure constant; α =1/c, where c is the speed of light) and the α3 quantum electrodynamics (QED) correction. We also estimated the α4 QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm-1.
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-21
We present very accurate quantum mechanical calculations of the three lowest S-states [1s(2)2s(2)((1)S(0)), 1s(2)2p(2)((1)S(0)), and 1s(2)2s3s((1)S(0))] of the two stable isotopes of the boron ion, (10)B(+) and (11)B(+). At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10,000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading alpha(2) relativistic corrections (alpha is the fine structure constant; alpha=1/c, where c is the speed of light) and the alpha(3) quantum electrodynamics (QED) correction. We also estimated the alpha(4) QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm(-1).
Englund, Dirk R.
2015-09-01
A central goal of quantum information science is the entanglement of multiple quantum memories that can be individually controlled. Here, we discuss progress towards photonic integrated circuits designed to enable efficient optical interactions between multiple spin qubits in nitrogen vacancy (NV) centers in diamond. We describe NV-nanocavity systems in the strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 μs implantation of NVs with nanometer-scale apertures, including into cavity field maxima; hybrid on-chip networks for integration of multiple functional NV-cavity systems; and scalable integration of superconducting nanowire single photon detectors on-chip.
Thermoelectric energy harvesting with quantum dots.
Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N
2015-01-21
We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.
Stern, David P.
1990-01-01
The present one-dimensional model analysis of substorm electrodynamics proceeds from the standard scenario in which the plasma sheet collapses into a neutral sheet, and magnetic merging occurs between the two tail lobes; plasma flows into the neutral sheet from the lobes and the sides, undergoing acceleration in the dawn-dusk direction. The process is modified by the tendency of the accelerated plasma to unbalance charge neutrality, leading to an exchange of electrons with the ionosphere in order to maintain neutrality. The cross-tail current is weakened by the diversion: this reduces the adjacent lobe-field intensity, but without notable effects apart from a slight expansion of the tail boundary.
Wang, Shuai
2009-05-01
For L-C circuit, a new quantized scheme has been proposed in the context of number-phase quantization. In this quantization scheme, the number n of the electric charge q( q= en) is quantized as the charge number operator and the phase difference θ across the capacity is quantized as phase operator. Based on the scheme of number-phase quantization and the thermo field dynamics (TFD), the quantum fluctuations of the charge number and phase difference of a mesoscopic L-C circuit in the thermal vacuum state, the thermal coherent state and the thermal squeezed state have been studied. It is shown that these quantum fluctuations of the charge number and phase difference are related to not only the parameters of circuit, the squeezing parameter, but also the temperature in these quantum states. It is proven that the number-phase quantization scheme is very useful to tackle with quantization of some mesoscopic electric circuits and the quantum effects.
Boi, Luciano
2011-01-01
A vacuum, classically understood, contains nothing. The quantum vacuum, on the other hand, is a seething cauldron of nothingness: particle pairs going in and out of existence continuously and rapidly while exerting influence over an enormous range of scales. Acclaimed mathematical physicist and natural philosopher Luciano Boi expounds the quantum vacuum, exploring the meaning of nothingness and its relationship with physical reality. Boi first provides a deep analysis of the interaction between geometry and physics at the quantum level. He next describes the relationship between the microscopic and macroscopic structures of the world. In so doing, Boi sheds light on the very nature of the universe, stressing in an original and profound way the relationship between quantum geometry and the internal symmetries underlying the behavior of matter and the interactions of forces. Beyond the physics and mathematics of the quantum vacuum, Boi offers a profoundly philosophical interpretation of the concept. Plato and...
Institute of Scientific and Technical Information of China (English)
YU You-Hong
2008-01-01
The invariants for a mesoscopic RLC circuit with a power source are studied and used to construct the squeezed states and squeezed number states for the system. The quantum fluctuations of the mesoscopic RLC circuit in the squeezed states and squeezed number states are also investigated.
Waveguide photon-number-resolving detectors for quantum photonic integrated circuits
Sahin, D; Zhou, Z; Jahanmirinejad, S; Mattioli, F; Leoni, R; Beetz, J; Lermer, M; Kamp, M; Höfling, S; Fiore, A
2013-01-01
Quantum photonic integration circuits are a promising approach to scalable quantum processing with photons. Waveguide single-photon-detectors (WSPDs) based on superconducting nanowires have been recently shown to be compatible with single-photon sources for a monolithic integration. While standard WSPDs offer single-photon sensitivity, more complex superconducting nanowire structures can be configured to have photon-number-resolving capability. In this work, we present waveguide photon-number-resolving detectors (WPNRDs) on GaAs/Al0.75Ga0.25As ridge waveguides based on a series connection of nanowires. The detection of 0-4 photons has been demonstrated with a four-wire WPNRD, having a single electrical read-out. A device quantum efficiency ~24 % is reported at 1310 nm for the TE polarization.
Synthesis of multi-qudit Hybrid and d-valued Quantum Logic Circuits by Decomposition
Khan, F S; Khan, Faisal Shah; Perkowski, Marek
2005-01-01
Recent research in generalizing quantum computation from 2-valued qudits to d-valued qudits has shown practical advantages for scaling up a quantum computer. A further generalization leads to quantum computing with hybrid qudits where two or more qudits have different finite dimensions. Advantages of hybrid and d-valued gates (circuits) and their physical realizations have been studied in detail by Muthukrishnan and Stroud (Physical Review A, 052309, 2000), Daboul et al. (J. Phys. A: Math. Gen. 36 2525-2536, 2003), and Bartlett et al (Physical Review A, Vol.65, 052316, 2002). In both cases, a quantum computation is performed when a unitary evolution operator, acting as a quantum logic gate, transforms the state of qudits in a quantum system. Unitary operators can be represented by square unitary matrices. If the system consists of a single qudit, then Tilma et al (J.Phys. A: Math. Gen. 35 (2002) 10467-10501) have shown that the unitary evolution matrix (gate) can be synthesized in terms of its Euler angle par...
Institute of Scientific and Technical Information of China (English)
YANG Wen-Xing; ZHAN Zhi-Ming; LI Jia-Hua
2004-01-01
@@ We propose a simple method to generate a practical SU(2)-Schrodinger-cat state of a single trapped-ion vibration mode and the light field state, using the method based on a quantum system, which is composed of the onedimensional trapped-ion motion and a single cavity field mode. Moreover, the method proposed can be used for the generation two-mode maximal quantum entangled state. The detection of such a state is also briefly discussed.
Hu, Zixuan; Ratner, Mark A; Seideman, Tamar
2014-12-14
We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.
Chantler, C T; Kinnane, M N; Gillaspy, J D; Hudson, L T; Payne, A T; Smale, L F; Henins, A; Pomeroy, J M; Tan, J N; Kimpton, J A; Takacs, E; Makonyi, K
2012-10-12
We report a new test of quantum electrodynamics (QED) for the w (1s2p(1)P(1)→1s(2)(1)S(0)) x-ray resonance line transition energy in heliumlike titanium. This measurement is one of few sensitive to two-electron QED contributions. Systematic errors such as Doppler shifts are minimized in our experiment by trapping and stripping Ti atoms in an electron beam ion trap and by applying absolute wavelength standards to calibrate the dispersion function of a curved-crystal spectrometer. We also report a more general systematic discrepancy between QED theory and experiment for the w transition energy in heliumlike ions for Z>20. When all of the data available in the literature for Z=16-92 are taken into account, the divergence is seen to grow as approximately Z(3) with a statistical significance on the coefficient that rises to the level of 5 standard deviations. Our result for titanium alone, 4749.85(7) eV for the w line, deviates from the most recent ab initio prediction by 3 times our experimental uncertainty and by more than 10 times the currently estimated uncertainty in the theoretical prediction.
Nanocatalysts by Quantum Electrodynamics Induced Electromagnetic Radiation%量子电动学诱导电磁辐射研究纳米催化剂
Institute of Scientific and Technical Information of China (English)
Thomas V. PREVENSLIK
2008-01-01
Gold has been regarded as a poor heterogeneous catalyst because it is generally considered a nonreactive metal. But as nanocatalysts, gold and other metals somehow significantly enhance reactivity. It is generally thought chemical bonds of reactants are weakened by adsorption to nanocatalysts thereby allowing reactions to proceed more rapidly, but how this reaction proceeds to completion is not well understood. Here gold nanocatalysts are treated as unsupported nanoparticles (NPs) in a solution of reactant molecules from which extensions are made to gold NPs supported on titanium dioxide. Whether the NPs are supported or unsupported, enhanced catalytic reactivity depends on absorbed thermal kT (k is Boltzmann′s constant and T is absolute temperature) energy accumulated from prior collisions of reactant molecules. The accumulated kT energy is treated as electromagnetic thereby allowing frequency up-conversion by quantum electrodynamics (QED) to the confinement frequency of the NP, typically beyond the vacuum ultraviolet (VUV). By this theory, the chemical reaction of reactant molecules having bonds weakened by adsorption is completed by QED induced VUV photolysis.
Mullin, Jonathan; Schatz, George C
2012-03-01
A multiscale method is presented that allows for evaluation of plasmon-enhanced optical properties of nanoparticle/molecule complexes with no additional cost compared to standard electrodynamics (ED) and linear response quantum mechanics (QM) calculations for the particle and molecule, respectively, but with polarization and orientation effects automatically described. The approach first calculates the total field of the nanoparticle by ED using the finite difference time domain (FDTD) method. The field intensity in the frequency domain as a function of distance from the nanoparticle is calculated via a Fourier transform. The molecular optical properties are then calculated with QM in the frequency domain in the presence of the total field of the nanoparticle. Back-coupling due to dipolar reradiation effects is included in the single-molecule plane wave approximation. The effects of polarization and partial orientation averaging are considered. The QM/ED method is evaluated for the well-characterized test case of surface-enhanced Raman scattering (SERS) of pyridine bound to silver, as well as for the resonant Raman chromophore rhodamine 6G. The electromagnetic contribution to the enhancement factor is 10(4) for pyridine and 10(2) for rhodamine 6G.
Electrodynamic Stability Computations for Flexible Conductors of the Aerial Lines
I. I. Sergey; Y. G. Panamarenka; P. I. Klimkovich; A. P. Dolin; Y. V. Potachits
2015-01-01
In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of th...
Dual Quantum Electrodynamics Dyon-Dyon and Charge-Monopole Scattering in a High-Energy Approximation
Gamberg, L P; Gamberg, Leonard; Milton, Kimball A.
2000-01-01
We develop the quantum field theory of electron-point magnetic monopole interactions and more generally, dyon-dyon interactions, based on the original string-dependent ``nonlocal'' action of Dirac and Schwinger. We demonstrate that a viable nonperturbative quantum field theoretic formulation can be constructed that results in a string {\\em independent} cross section for monopole-electron and dyon-dyon scattering. Such calculations can be done only by using nonperturbative approximations such as the eikonal and not by some mutilation of lowest-order perturbation theory.
Experimental Quantum Randomness Processing Using Superconducting Qubits
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Experimental Quantum Randomness Processing Using Superconducting Qubits.
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present. PMID:27419550
Ulmer, W; Halberg, F; Schwarzkopff, O
2011-01-01
The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: 1. Diffusion of charged molecules in magnetic fields. 2. Quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. The methods of point 2 permit the treatment of molecular processes by circuits with characteristic resonances and 'beat-frequencies', which result from the primarily fast physical processes. As examples the tunneling processes between DNA base pairs (H bonds) and the ATP decomposition are considered.
International Nuclear Information System (INIS)
We investigate the dispersion-group index, as well as the transmission coefficient properties of a weak probe field in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is realized that the slope of dispersion can be changed from negative to positive or vice versa through the ratio of the Josephson coupling energy to the capacitive coupling strength which provides an extra controlling parameter for controlling the slope of dispersion. The temporal behavior of the probe dispersion and the required switching time for switching the superluminal light propagation to the subluminal light propagation are also discussed. The results may be useful for understanding the switching feature of slow light-based systems and have potential application in optical information processing
Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED
Nataf, Pierre
2011-01-01
We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show an universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic 'anisotropic' nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and manylevel dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic 'cat' state.
Deterministic separation of arbitrary photon pair states in integrated quantum circuits
Marchildon, Ryan P
2015-01-01
Entangled photon pairs generated within integrated devices must often be spatially separated for their subsequent manipulation in quantum circuits. Separation that is both deterministic and universal can in principle be achieved through anti-coalescent two-photon quantum interference. However, such interference-facilitated pair separation (IFPS) has not been extensively studied in the integrated setting, where the strong polarization and wavelength dependencies of integrated couplers -- as opposed to bulk-optics beamsplitters -- can have important implications for performance beyond the identical-photon regime. This paper provides a detailed review of IFPS and examines how these dependencies impact separation fidelity and interference visibility. Focus is given to IFPS mediated by an integrated directional coupler. The analysis applies equally to both on-chip and in-fiber implementations, and can be expanded to other coupler architectures such as multimode interferometers. When coupler dispersion is present, ...
Low-energy electrodynamics of novel spin excitations in the quantum spin ice Yb₂Ti₂O₇.
Pan, LiDong; Kim, Se Kwon; Ghosh, A; Morris, Christopher M; Ross, Kate A; Kermarrec, Edwin; Gaulin, Bruce D; Koohpayeh, S M; Tchernyshyov, Oleg; Armitage, N P
2014-09-18
In condensed matter systems, formation of long-range order (LRO) is often accompanied by new excitations. However, in many geometrically frustrated magnetic systems, conventional LRO is suppressed, while non-trivial spin correlations are still observed. A natural question to ask is then what is the nature of the excitations in this highly correlated state without broken symmetry? Frequently, applying a symmetry breaking field stabilizes excitations whose properties reflect certain aspects of the anomalous state without LRO. Here we report a THz spectroscopy study of novel excitations in quantum spin ice Yb2Ti2O7 under a directed magnetic field. At large positive fields, both right- and left-handed magnon and two-magnon-like excitations are observed. The g-factors of these excitations are dramatically enhanced in the low-field limit, showing a crossover of these states into features consistent with the quantum string-like excitations proposed to exist in quantum spin ice in small fields.
International Nuclear Information System (INIS)
We use quantum electrodynamics (QED) particle-in-cell simulations to investigate and compare the generation of dense electron-positron plasmas and intense γ-ray bursts in the case of counter-propagating laser solid interaction (two-side irradiation) and single laser solid interaction (one-side irradiation). In the case of counter-propagating linearly polarized laser pulses irradiating a thin aluminum foil with each pulse peak power of 12.5 PW (I = 4 × 1023 W/cm2), we calculate that about 20% of the laser energy is converted into a burst of γ-rays with flux exceeding 1014 s.−1 This would be one of the most intense γ-ray sources among those currently available in laboratories. The γ-ray conversion efficiency in the case of two-side irradiation is three times higher than in the case of one-side irradiation using a single 12.5 PW laser. Dense electron-positron plasma with a maximum density of 6 × 1027 m−3 are generated simultaneously during the two-side irradiation which is eightfold denser compared to the one-side irradiation. The enhancement of the effects in the case of counter-propagating lasers are the results of the symmetrical compression of the foil target and the formation of electric potential and standing wave around the target. Realizing experimentally the proposed counter-propagating QED-strong laser-solid interaction to produce dense electron-positron pairs and prolific γ-rays will be made possible by the Extreme Light Infrastructure-Nuclear Physics facility under construction
Institute of Scientific and Technical Information of China (English)
Shu Chang-Gan; Xin Xia; Liu Yu-Min; Yu Zhong-Yuan; Yao Wen-Jie; Wang Dong-Lin; Cao Gui
2012-01-01
We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in the strong-coupling regime.The model proposed by Johne et al.(Johne R,Gippius N A,Pavlovic G,Solnyshkov D D,Shelykh I A and Malpuech G 2008 Phys.Rev.Lett.100 240404),and by Robert et al.(Robert J,Gippius N A and Malpuech G 2009 Phys.Rev.B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot,which is necessary to connect the realistic experiment.The dynamics of the system is analysed by employing the Born-Markov master equation,through which the spectra for the system are computed as a function of various parameters.By means of this analysis the photon-reabsorption process in the strongcoupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.
Makarova, L.; Shirochkov, A.
So far the solar wind energy contribution to energetic balance of the middle atmosphere was ignored in any climatic research. However the solar wind is a permanent source of electromagnetic energy constantly supplied to the near-Earth space and its role is evaluated properly in magnetospheric and ionospheric (to lesser extent) studies. We made extensive studies of the direct solar wind influence on the thermodynamic features of the middle atmosphere by analyzing data of the rocket and balloon sounding. Data of many stations covering latitudinal belt 80o N-55o N and 90o S-65o S- were used. It was found that the stratospheric temperature closely correlated with the solar wind energy expressed as the subsolar distance between the Earth and magnetopause. The best coupling between these two parameters (r>0,8) was obtained for altitudes 22-26 km with decreasing (but meaningful) coupling up and dawn from these heights. Similar dependence between this space parameter and ozone density in its stratospheric maximum was obtained also. As a very important factor a strong (r=0,78) coupling between magnetopause position and magnitude of atmospheric electric field measured by high-altitude balloons above South P leo Station must be mentioned. All these findings allowed us to propose concept of the global electric circuit as a physical mechanism for explanation of a direct coupling between the solar wind and the middle atmosphere. We suggest a new, modified version of the circuit where an external Electro-motive Force generator driven by the solar wind energy is located at dayside magnetopause. The passive elements of this circuit are the ionospheric Elayer (external element of previous version of the- circuit), stratospheric conducting layer of heavy ions (h=20-25 km) and conducting layer of the Earth surface. In this configuration a previous scheme of the global electric circuit is a part of the proposed version of it. The changes of stratospheric temperature could be explained
Institute of Scientific and Technical Information of China (English)
吴春旺; 韩阳; 邓志姣; 李虹轶; 陈平形; 李承祖
2011-01-01
We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to 27r by simply adjusting the qubit-resonator detuning and the interaction time. Based on this gate proposal, we give a detailed procedure to implement the three-qubit quantum Fourier transform with circuit quantum eleetrodynamics （QED）. A careful analysis of the decoherence sources shows that the algorithm can be achieved with a high fidelity using current circuit QED techniques.
Herzberg Circuit and Berry's Phase in Chirality-based Coded Qubit in a Triangular Triple Quantum Dot
Hsieh, Chang-Yu; Rene, Alexandre; Hawrylak, Pawel
2011-01-01
We present a theoretical proposal for the Herzberg circuit and controlled accumulation of Berry's phase in a chirality-based coded qubit in a triangular triple quantum dot molecule with one electron spin each. The qubit is encoded in the two degenerate states of a three spin complex with total spin $S=1/2$. Using a Hubbard and Heisenberg model the Herzberg circuit encircling the degeneracy point is realized by adiabatically tuning the successive on-site energies of quantum dots and tunnel cou...
Xu, Xing-Lei; Li, Hong-Qi; Wang, Ji-Suo
2007-08-01
Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is proposed. The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case. It is shown that the fluctuations not only depend on circuit inherent parameters, but also rely on excitation quantum number and squeezing parameter. Moreover, due to the finite environmental temperature and damped resistance, the fluctuations increase with the temperature rising, and decay with time.
Institute of Scientific and Technical Information of China (English)
Xu Xing-Lei; Li Hong-Qi; Wang Ji-Suo
2007-01-01
Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics(TFD),the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling iS proposed.The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case.It is shown that the fluctuations not only depend on circuit inherent parameters.but also rely on excitation quantum number and squeezing parameter.Moreover.due to the finite environmental temperature and damped resistance,the fluctuations increase with the temperature rising.and decay with time.
Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits
Norte, Richard Alexander
a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents
Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying
2014-10-01
The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.
International Nuclear Information System (INIS)
The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.
Energy Technology Data Exchange (ETDEWEB)
Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2014-10-28
The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.
A quantum entropy source on an InP photonic integrated circuit for random number generation
Abellan, Carlos; Domenech, David; Muñoz, Pascual; Capmany, Jose; Longhi, Stefano; Mitchell, Morgan W; Pruneri, Valerio
2016-01-01
Random number generators are essential to ensure performance in information technologies, including cryptography, stochastic simulations and massive data processing. The quality of random numbers ultimately determines the security and privacy that can be achieved, while the speed at which they can be generated poses limits to the utilisation of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centre...
Graph states of prime-power dimension from generalized CNOT quantum circuit
Chen, Lin; Zhou, D. L.
2016-06-01
We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four.
Sabegh, Z Amini; Maleki, M A; Mahmoudi, M
2015-01-01
We study the propagation and amplification of a microwave field in a four-level cascade quantum system which is realized in a superconducting phase quantum circuit. It is shown that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in this system. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.