WorldWideScience

Sample records for circuit integre asic

  1. Application specific integrated circuit (ASIC) readout technologies for future ion beam analytical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J. E-mail: harry_j.whitlow@nuclear.lu.se

    2000-03-01

    New possibilities for ion beam analysis (IBA) are afforded by recent developments in detector technology which facilitate the parallel collection of data from a large number of channels. Application specific integrated circuit (ASIC) technologies, which have been widely employed for multi-channel readout systems in nuclear and particle physics, are more net-cost effective (160/channel for 1000 channels) and a more rational solution for readout of a large number of channels than afforded by conventional electronics. Based on results from existing and on-going chip designs, the possibilities and issues of ASIC readout technology are considered from the IBA viewpoint. Consideration is given to readout chip architecture and how the stringent resolution, linearity and stability requirements for IBA may be met. In addition the implications of the restrictions imposed by ASIC technology are discussed.

  2. A Low Power Application-Specific Integrated Circuit (ASIC) Implementation of Wavelet Transform/Inverse Transform

    National Research Council Canada - National Science Library

    Harvala, Daniel

    2001-01-01

    .... The ASIC is based on an existing four-chip FPGA implementation. Implementing the design using a dedicated ASIC enhances the speed, decreases chip count to a single die, and uses significantly less power compared to the FPGA implementation...

  3. Conception and test of an integrated circuit (ASIC): application to multiwire chambers and photomultipliers of the GRAAL experience; Conception et test d`un circuit integre (ASIC): application aux chambres multifils et aux photomultiplicateurs de l`experience GRAAL

    Energy Technology Data Exchange (ETDEWEB)

    Bugnet, H.

    1995-11-21

    The nuclear physics project GRAAL (GRenoble Anneau Accelerateur Laser) located at the European Synchrotron Radiation Facility (ESRF) in Grenoble produces a high energy photon beam with a maximum energy of 1.5 GeV. This gamma beam is obtained by Compton backscattering and can be polarized easily. It permits to probe, in an original way, the structure of the nucleon. The associated detector system includes multiwire proportional chambers and scintillator hodoscopes. A kit of six ASICs (Application Specific Integrated Circuit) has been developed and used for the signal processing and data conditioning up to the level of the data acquisition. This integrated electronics can be mounted right on the detectors. Obvious advantages, due to the reduction of the length of the wires and the number of connections, are an improvement of the signal quality and an increase of the reliability. The Wire Processor (WP), ASIC designed and tested during this thesis, treats the signals from the chamber wires and the photomultipliers. In one chip, there are two identical channels permitting the amplification, the amplitude discrimination, the generation of a programmable delay and the writing in a two state memory in case of coincidence with an external strobe signal. The measurement of the multiwire chamber efficiency demonstrates the functioning of the WP, the data conditioning electronics, the data acquisition and the chamber itself. (author). 62 refs., 111 figs., 13 tabs.

  4. Conception and test of an integrated circuit (ASIC): application to multiwire chambers and photomultipliers of the GRAAL experience

    International Nuclear Information System (INIS)

    Bugnet, H.

    1995-01-01

    The nuclear physics project GRAAL (GRenoble Anneau Accelerateur Laser) located at the European Synchrotron Radiation Facility (ESRF) in Grenoble produces a high energy photon beam with a maximum energy of 1.5 GeV. This gamma beam is obtained by Compton backscattering and can be polarized easily. It permits to probe, in an original way, the structure of the nucleon. The associated detector system includes multiwire proportional chambers and scintillator hodoscopes. A kit of six ASICs (Application Specific Integrated Circuit) has been developed and used for the signal processing and data conditioning up to the level of the data acquisition. This integrated electronics can be mounted right on the detectors. Obvious advantages, due to the reduction of the length of the wires and the number of connections, are an improvement of the signal quality and an increase of the reliability. The Wire Processor (WP), ASIC designed and tested during this thesis, treats the signals from the chamber wires and the photomultipliers. In one chip, there are two identical channels permitting the amplification, the amplitude discrimination, the generation of a programmable delay and the writing in a two state memory in case of coincidence with an external strobe signal. The measurement of the multiwire chamber efficiency demonstrates the functioning of the WP, the data conditioning electronics, the data acquisition and the chamber itself. (author). 62 refs., 111 figs., 13 tabs

  5. Integrated circuit cell library

    Science.gov (United States)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor)

    2005-01-01

    According to the invention, an ASIC cell library for use in creation of custom integrated circuits is disclosed. The ASIC cell library includes some first cells and some second cells. Each of the second cells includes two or more kernel cells. The ASIC cell library is at least 5% comprised of second cells. In various embodiments, the ASIC cell library could be 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more comprised of second cells.

  6. An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit.

    Science.gov (United States)

    Tao Tang; Wang Ling Goh; Lei Yao; Jia Hao Cheong; Yuan Gao

    2017-07-01

    This paper describes an integrated multichannel neural recording analog front end (AFE) with a novel area-efficient driven right leg (DRL) circuit to improve the system common mode rejection ratio (CMRR). The proposed AFE consists of an AC-coupled low-noise programmable-gain amplifier, an area-efficient DRL block and a 10-bit SAR ADC. Compared to conventional DRL circuit, the proposed capacitor-less DRL design achieves 90% chip area reduction with enhanced CMRR performance, making it ideal for multichannel biomedical recording applications. The AFE circuit has been designed in a standard 0.18-μm CMOS process. Post-layout simulation results show that the AFE provides two gain settings of 54dB/60dB while consuming 1 μA per channel under a supply voltage of 1 V. The input-referred noise of the AFE integrated from 1 Hz to 10k Hz is only 4 μVrms and the CMRR is 110 dB.

  7. Development of Charge Sensitive Preamplifier and Readout Integrate Circuit Board for High Resolution Detector using ASIC Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J. Y.; Kim, J. H.; Park, J. M.; Yang, J. Y.; Kim, K. Y.; Kim, Y. S. [RadTek Co., Daejeon (Korea, Republic of)

    2010-06-15

    - Design of discrete type charge sensitive amplifier for high resolution semi-conductor sensor - Design and develop the test board for the performance of charge sensitive amplifier with sensor - Performance of electrical test for the sensor and charge sensitive amplifier - Development of prototype 8 x 8 array type detector module - Noise equivalent charge test for the charge sensitive amplifier - Design and development of Micro SMD discrete type amplifier applying ASIC procedure - Development of Hybrid type charge sensitive amplifier including shape

  8. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  9. Rad-Hard Structured ASIC Body of Knowledge

    Science.gov (United States)

    Heidecker, Jason

    2013-01-01

    Structured Application-Specific Integrated Circuit (ASIC) technology is a platform between traditional ASICs and Field-Programmable Gate Arrays (FPGA). The motivation behind structured ASICs is to combine the low nonrecurring engineering costs (NRE) costs of FPGAs with the high performance of ASICs. This report provides an overview of the structured ASIC platforms that are radiation-hardened and intended for space application

  10. Note: A 102 dB dynamic-range charge-sampling readout for ionizing particle/radiation detectors based on an application-specific integrated circuit (ASIC)

    Science.gov (United States)

    Pullia, A.; Zocca, F.; Capra, S.

    2018-02-01

    An original technique for the measurement of charge signals from ionizing particle/radiation detectors has been implemented in an application-specific integrated circuit form. The device performs linear measurements of the charge both within and beyond its output voltage swing. The device features an unprecedented spectroscopic dynamic range of 102 dB and is suitable for high-resolution ion and X-γ ray spectroscopy. We believe that this approach may change a widespread paradigm according to which no high-resolution spectroscopy is possible when working close to or beyond the limit of the preamplifier's output voltage swing.

  11. Estimating Delays In ASIC's

    Science.gov (United States)

    Burke, Gary; Nesheiwat, Jeffrey; Su, Ling

    1994-01-01

    Verification is important aspect of process of designing application-specific integrated circuit (ASIC). Design must not only be functionally accurate, but must also maintain correct timing. IFA, Intelligent Front Annotation program, assists in verifying timing of ASIC early in design process. This program speeds design-and-verification cycle by estimating delays before layouts completed. Written in C language.

  12. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    Science.gov (United States)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  13. Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs

    International Nuclear Information System (INIS)

    Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.

    2017-01-01

    Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.

  14. A Prototype PZT Matrix Transducer With Low-Power Integrated Receive ASIC for 3-D Transesophageal Echocardiography.

    Science.gov (United States)

    Chen, Chao; Raghunathan, Shreyas B; Yu, Zili; Shabanimotlagh, Maysam; Chen, Zhao; Chang, Zu-yao; Blaak, Sandra; Prins, Christian; Ponte, Jacco; Noothout, Emile; Vos, Hendrik J; Bosch, Johan G; Verweij, Martin D; de Jong, Nico; Pertijs, Michiel A P

    2016-01-01

    This paper presents the design, fabrication, and experimental evaluation of a prototype lead zirconium titanate (PZT) matrix transducer with an integrated receive ASIC, as a proof of concept for a miniature three-dimensional (3-D) transesophageal echocardiography (TEE) probe. It consists of an array of 9 ×12 piezoelectric elements mounted on the ASIC via an integration scheme that involves direct electrical connections between a bond-pad array on the ASIC and the transducer elements. The ASIC addresses the critical challenge of reducing cable count, and includes front-end amplifiers with adjustable gains and micro-beamformer circuits that locally process and combine echo signals received by the elements of each 3 ×3 subarray. Thus, an order-of-magnitude reduction in the number of receive channels is achieved. Dedicated circuit techniques are employed to meet the strict space and power constraints of TEE probes. The ASIC has been fabricated in a standard 0.18-μm CMOS process and consumes only 0.44 mW/channel. The prototype has been acoustically characterized in a water tank. The ASIC allows the array to be presteered across ±37° while achieving an overall dynamic range of 77 dB. Both the measured characteristics of the individual transducer elements and the performance of the ASIC are in good agreement with expectations, demonstrating the effectiveness of the proposed techniques.

  15. Application specific integrated circuits and hybrid micro circuits for nuclear instrumentation

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sukhwani, Menka; Mukhopadhyay, P.K.; Shastrakar, R.S.; Sudheer, M.; Shedam, V.; Keni, Anubha

    2009-01-01

    Rapid development in semiconductor technology, sensors, detectors and requirements of high energy physics experiments as well as advances in commercially available nuclear instruments have lead to challenges for instrumentation. These challenges are met with development of Application Specific Integrated Circuits and Hybrid Micro Circuits. This paper discusses various activities in ASIC and HMC development in Bhabha Atomic Research Centre. (author)

  16. Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems.

    Science.gov (United States)

    Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V

    2011-07-01

    This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.

  17. ASIC design at Fermilab

    International Nuclear Information System (INIS)

    Yarema, R.

    1991-06-01

    In the past few years, ASIC (Application Specific Integrated Circuit) design has become important at Fermilab. The purpose of this paper is to present an overview of the in-house ASIC design activity which has taken place. This design effort has added much value to the high energy physics program and physics capability at Fermilab. The two approaches to ASIC development being pursued at Fermilab are examined by looking at some of the types of projects where ASICs are being used or contemplated. To help estimate the cost of future designs, a cost comparison is given to show the relative development and production expenses for these two ASIC approaches. 5 refs., 14 figs., 7 tabs

  18. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  19. Test and verification of a reactor protection system application-specific integrated circuit

    International Nuclear Information System (INIS)

    Battle, R.E.; Turner, G.W.; Vandermolen, R.I.; Vitalbo, C.

    1997-01-01

    Application-specific integrated circuits (ASICs) were utilized in the design of nuclear plant safety systems because they have certain advantages over software-based systems and analog-based systems. An advantage they have over software-based systems is that an ASIC design can be simple enough to not include branch statements and also can be thoroughly tested. A circuit card on which an ASIC is mounted can be configured to replace various versions of older analog equipment with fewer design types required. The approach to design and testing of ASICs for safety system applications is discussed in this paper. Included are discussions of the ASIC architecture, how it is structured to assist testing, and of the functional and enhanced circuit testing

  20. A Front-End ASIC with Receive Sub-array Beamforming Integrated with a 32 × 32 PZT Matrix Transducer for 3-D Transesophageal Echocardiography

    NARCIS (Netherlands)

    Chen, C.; Chen, Z.; Bera, Deep; Raghunathan, S.B.; ShabaniMotlagh, M.; Noothout, E.C.; Chang, Z.Y.; Ponte, Jacco; Prins, Christian; Vos, H.J.; Bosch, Johan G.; Verweij, M.D.; de Jong, N.; Pertijs, M.A.P.

    2017-01-01

    This paper presents a power-and area-efficient front-end application-specific integrated circuit (ASIC) that is directly integrated with an array of 32 × 32 piezoelectric transducer elements to enable next-generation miniature ultrasound probes for real-time 3-D transesophageal echocardiography.

  1. Memory, microprocessor, and ASIC

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    System Timing. ROM/PROM/EPROM. SRAM. Embedded Memory. Flash Memories. Dynamic Random Access Memory. Low-Power Memory Circuits. Timing and Signal Integrity Analysis. Microprocessor Design Verification. Microprocessor Layout Method. Architecture. ASIC Design. Logic Synthesis for Field Programmable Gate Array (EPGA) Technology. Testability Concepts and DFT. ATPG and BIST. CAD Tools for BIST/DFT and Delay Faults.

  2. Issues of verification and validation of application-specific integrated circuits in reactor trip systems

    International Nuclear Information System (INIS)

    Battle, R.E.; Alley, G.T.

    1993-01-01

    Concepts of using application-specific integrated circuits (ASICs) in nuclear reactor safety systems are evaluated. The motivation for this evaluation stems from the difficulty of proving that software-based protection systems are adequately reliable. Important issues concerning the reliability of computers and software are identified and used to evaluate features of ASICS. These concepts indicate that ASICs have several advantages over software for simple systems. The primary advantage of ASICs over software is that verification and validation (V ampersand V) of ASICs can be done with much higher confidence than can be done with software. A method of performing this V ampersand V on ASICS is being developed at Oak Ridge National Laboratory. The purpose of the method's being developed is to help eliminate design and fabrication errors. It will not solve problems with incorrect requirements or specifications

  3. Development of wide range charge integration application specified integrated circuit for photo-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Katayose, Yusaku, E-mail: katayose@ynu.ac.jp [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501 (Japan); Ikeda, Hirokazu [Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tanaka, Manobu [National Laboratory for High Energy Physics, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shibata, Makio [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501 (Japan)

    2013-01-21

    A front-end application specified integrated circuit (ASIC) is developed with a wide dynamic range amplifier (WDAMP) to read-out signals from a photo-sensor like a photodiode. The WDAMP ASIC consists of a charge sensitive preamplifier, four wave-shaping circuits with different amplification factors and Wilkinson-type analog-to-digital converter (ADC). To realize a wider range, the integrating capacitor in the preamplifier can be changed from 4 pF to 16 pF by a two-bit switch. The output of a preamplifier is shared by the four wave-shaping circuits with four gains of 1, 4, 16 and 64 to adapt the input range of ADC. A 0.25-μm CMOS process (of UMC electronics CO., LTD) is used to fabricate the ASIC with four-channels. The dynamic range of four orders of magnitude is achieved with the maximum range over 20 pC and the noise performance of 0.46 fC + 6.4×10{sup −4} fC/pF. -- Highlights: ► A front-end ASIC is developed with a wide dynamic range amplifier. ► The ASIC consists of a CSA, four wave-shaping circuits and pulse-height-to-time converters. ► The dynamic range of four orders of magnitude is achieved with the maximum range over 20 pC.

  4. Smart Power: New power integrated circuit technologies and their applications

    Science.gov (United States)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  5. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  6. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  7. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  8. Reactor protection system design using application specific integrated circuits

    International Nuclear Information System (INIS)

    Battle, R.E.; Bryan, W.L.; Kisner, R.A.; Wilson, T.L. Jr.

    1992-01-01

    Implementing reactor protection systems (RPS) or other engineering safeguard systems with application specific integrated circuits (ASICs) offers significant advantages over conventional analog or software based RPSs. Conventional analog RPSs suffer from setpoints drifts and large numbers of discrete analog electronics, hardware logic, and relays which reduce reliability because of the large number of potential failures of components or interconnections. To resolve problems associated with conventional discrete RPSs and proposed software based RPS systems, a hybrid analog and digital RPS system implemented with custom ASICs is proposed. The actual design of the ASIC RPS resembles a software based RPS but the programmable software portion of each channel is implemented in a fixed digital logic design including any input variable computations. Set point drifts are zero as in proposed software systems, but the verification and validation of the computations is made easier since the computational logic an be exhaustively tested. The functionality is assured fixed because there can be no future changes to the ASIC without redesign and fabrication. Subtle error conditions caused by out of order evaluation or time dependent evaluation of system variables against protection criteria are eliminated by implementing all evaluation computations in parallel for simultaneous results. On- chip redundancy within each RPS channel and continuous self-testing of all channels provided enhanced assurance that a particular channel is available and faults are identified as soon as possible for corrective actions. The use of highly integrated ASICs to implement channel electronics rather than the use of discrete electronics greatly reduces the total number of components and interconnections in the RPS to further increase system reliability. A prototype ASIC RPS channel design and the design environment used for ASIC RPS systems design is discussed

  9. An integrated circuit switch

    Science.gov (United States)

    Bonin, E. L.

    1969-01-01

    Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.

  10. Application-specific integrated circuit design for a typical pressurized water reactor pressure channel trip

    International Nuclear Information System (INIS)

    Battle, R.E.; Manges, W.W.; Emery, M.S.; Vendermolen, R.I.; Bhatt, S.

    1994-01-01

    This article discusses the use of application-specific integrated circuits (ASICs) in nuclear plant safety systems. ASICs have certain advantages over software-based systems because they can be simple enough to be thoroughly tested, and they can be tailored to replace existing equipment. An architecture to replace a pressurized water reactor pressure channel trip is presented. Methods of implementing digital algorithms are also discussed

  11. Integration of SPICE with TEK LV500 ASIC Design Verification System

    Directory of Open Access Journals (Sweden)

    A. Srivastava

    1996-01-01

    Full Text Available The present work involves integration of the simulation stage of design of a VLSI circuit and its testing stage. The SPICE simulator, TEK LV500 ASIC Design Verification System, and TekWaves, a test program generator for LV500, were integrated. A software interface in ‘C’ language in UNIX ‘solaris 1.x’ environment has been developed between SPICE and the testing tools (TekWAVES and LV500. The function of the software interface developed is multifold. It takes input from either SPICE2G.6 or SPICE 3e.1. The output generated by the interface software can be given as an input to either TekWAVES or LV500. A graphical user interface has also been developed with OPENWlNDOWS using Xview tool kit on SUN workstation. As an example, a two phase clock generator circuit has been considered and usefulness of the software demonstrated. The interface software could be easily linked with VLSI design such as MAGIC layout editor.

  12. Trends in integrated circuit design for particle physics experiments

    International Nuclear Information System (INIS)

    Atkin, E V

    2017-01-01

    Integrated circuits are one of the key complex units available to designers of multichannel detector setups. A whole number of factors makes Application Specific Integrated Circuits (ASICs) valuable for Particle Physics and Astrophysics experiments. Among them the most important ones are: integration scale, low power dissipation, radiation tolerance. In order to make possible future experiments in the intensity, cosmic, and energy frontiers today ASICs should provide new level of functionality at a new set of constraints and trade-offs, like low-noise high-dynamic range amplification and pulse shaping, high-speed waveform sampling, low power digitization, fast digital data processing, serialization and data transmission. All integrated circuits, necessary for physical instrumentation, should be radiation tolerant at an earlier not reached level (hundreds of Mrad) of total ionizing dose and allow minute almost 3D assemblies. The paper is based on literary source analysis and presents an overview of the state of the art and trends in nowadays chip design, using partially own ASIC lab experience. That shows a next stage of ising micro- and nanoelectronics in physical instrumentation. (paper)

  13. Highly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring.

    Science.gov (United States)

    Xue, Ning; Wang, Chao; Liu, Cunxiu; Sun, Jianhai

    2018-01-02

    In this paper, a highly monolithic-integrated multi-modality sensor is proposed for intracorporeal monitoring. The single-chip sensor consists of a solid-state based temperature sensor, a capacitive based pressure sensor, and an electrochemical oxygen sensor with their respective interface application-specific integrated circuits (ASICs). The solid-state-based temperature sensor and the interface ASICs were first designed and fabricated based on a 0.18-μm 1.8-V CMOS (complementary metal-oxide-semiconductor) process. The oxygen sensor and pressure sensor were fabricated by the standard CMOS process and subsequent CMOS-compatible MEMS (micro-electromechanical systems) post-processing. The multi-sensor single chip was completely sealed by the nafion, parylene, and PDMS (polydimethylsiloxane) layers for biocompatibility study. The size of the compact sensor chip is only 3.65 mm × 1.65 mm × 0.72 mm. The functionality, stability, and sensitivity of the multi-functional sensor was tested ex vivo. Cytotoxicity assessment was performed to verify that the bio-compatibility of the device is conforming to the ISO 10993-5:2009 standards. The measured sensitivities of the sensors for the temperature, pressure, and oxygen concentration are 10.2 mV/°C, 5.58 mV/kPa, and 20 mV·L/mg, respectively. The measurement results show that the proposed multi-sensor single chip is suitable to sense the temperature, pressure, and oxygen concentration of human tissues for intracorporeal physiological condition monitoring.

  14. Integrated circuit structure

    International Nuclear Information System (INIS)

    1981-01-01

    The invention describes the fabrication of integrated circuit structures, such as read-only memory components of field-effect transistors, which may be fabricated and then maintained in inventory, and later selectively modified in accordance with a desired pattern. It is claimed that MOS depletion-mode devices in accordance with the invention can be fabricated at lower cost and at higher yields. (U.K.)

  15. Integrated Circuit Immunity

    Science.gov (United States)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  16. Integrated coincidence circuits

    International Nuclear Information System (INIS)

    Borejko, V.F.; Grebenyuk, V.M.; Zinov, V.G.

    1976-01-01

    The description is given of two coincidence units employing integral circuits in the VISHNYA standard. The units are distinguished for the coincidence selection element which is essentially a combination of a tunnel diode and microcircuits. The output fast response of the units is at least 90 MHz in the mode of the output signal unshaped in duration and 50 MHz minimum in the mode of the output signal shaping. The resolution time of the units is dependent upon the duration of input signals

  17. Semiconductor integrated circuits

    International Nuclear Information System (INIS)

    Michel, A.E.; Schwenker, R.O.; Ziegler, J.F.

    1979-01-01

    An improved method involving ion implantation to form non-epitaxial semiconductor integrated circuits. These are made by forming a silicon substrate of one conductivity type with a recessed silicon dioxide region extending into the substrate and enclosing a portion of the silicon substrate. A beam of ions of opposite conductivity type impurity is directed at the substrate at an energy and dosage level sufficient to form a first region of opposite conductivity within the silicon dioxide region. This impurity having a concentration peak below the surface of the substrate forms a region of the one conductivity type which extends from the substrate surface into the first opposite type region to a depth between the concentration peak and the surface and forms a second region of opposite conductivity type. The method, materials and ion beam conditions are detailed. Vertical bipolar integrated circuits can be made this way when the first opposite type conductivity region will function as a collector. Also circuits with inverted bipolar devices when this first region functions as a 'buried'' emitter region. (U.K.)

  18. ASIC design used in high energy physics experiments

    International Nuclear Information System (INIS)

    Zhang Hongyu; Lin Tao; Wu Ling; Zhao jingwei; Gu Shudi

    1997-01-01

    The author introduces an ASIC (Application Specific Integrated Circuit) design environment based on PC. Some design tools used in such environment are also introduced. A kind of ASIC chip used in high energy physics experiment, weighting mean timer, is being developed now

  19. Nano integrated circuit process

    International Nuclear Information System (INIS)

    Yoon, Yung Sup

    2004-02-01

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  20. Linear integrated circuits

    CERN Document Server

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  1. Nano integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yung Sup

    2004-02-15

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  2. Insulator photocurrents: Application to dose rate hardening of CMOS/SOI integrated circuits

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.; Coiec, Y.M.; Flament, O.; Tinel, F.

    1998-01-01

    Irradiation of insulators with a pulse of high energy x-rays can induce photocurrents in the interconnections of integrated circuits. The authors present, here, a new method to measure and analyze this effect together with a simple model. They also demonstrate that these insulator photocurrents have to be taken into account to obtain high levels of dose-rate hardness with CMOS on SOI integrated circuits, especially flip-flops or memory blocks of ASICs. They show that it explains some of the upsets observed in a SRAM embedded in an ASIC

  3. Driver ASICs for Advanced Deformable Mirrors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the SBIR program is to develop a new Application Specified Integrated Circuit (ASIC) driver to be used in driver electronics of a deformable...

  4. Extreme Temperature, Rad-Hard Power Management ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a rad-hard Application Specific Integrated Circuit (ASIC) for spacecraft power management that is functional over a temperature range of...

  5. SODR Memory Control Buffer Control ASIC

    Science.gov (United States)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  6. Thermionic integrated circuits: electronics for hostile environments

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.; MacRoberts, M.D.J.; Wilde, D.K.; Dooley, G.R.; Brown, D.R.

    1985-01-01

    Thermionic integrated circuits combine vacuum tube technology with integrated circuit techniques to form integrated vacuum triode circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments

  7. Radiation Hardened Structured ASIC Platform for Rapid Chip Development for Very High Speed System on a Chip (SoC) and Complex Digital Logic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Hardened Application Specific Integrated Circuits (ASICs) provide for the highest performance, lowest power and size for Space Missions. In order to...

  8. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  9. Transistor and integrated circuit manufacture

    International Nuclear Information System (INIS)

    Colman, D.

    1978-01-01

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)

  10. Transistor and integrated circuit manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Colman, D

    1978-09-27

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.

  11. Secure integrated circuits and systems

    CERN Document Server

    Verbauwhede, Ingrid MR

    2010-01-01

    On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,

  12. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  13. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection.

    Science.gov (United States)

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2016-03-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm(2). The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system.

  14. Variational integrators for electric circuits

    International Nuclear Information System (INIS)

    Ober-Blöbaum, Sina; Tao, Molei; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E.

    2013-01-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator

  15. A 64-channel integrated circuit for signal readout from coordinate detectors

    International Nuclear Information System (INIS)

    Aulchenko, V.; Shekhtman, L.; Zhulanov, V.

    2017-01-01

    A specialized integrated circuit was developed for the readout of signal from coordinate detectors of different types, including gas micro-pattern detectors and silicon microstrip detectors. The ASIC includes 64 channels, each containing a low-noise charge-sensitive amplifier with a connectable feedback capacitor and resistor, and fast reset of the feedback capacitor. Each channel of the ASIC also contains 100 cells of analogue memory where the signal can be stored at a rate of 10 MHz. The pitch of input pads is 50 μm and the chip size is 5× 5 mm 2 . The equivalent noise charge of the ASIC channel is about 2000 electrons with 10 pF capacitance at the input and maximal signal before saturation corresponds to 2× 10 6 electrons. The first application for this ASIC is the detector for imaging of explosions at a synchrotron radiation beam (DIMEX), where it has to substitute the old and slower APC128 ASIC. The full-size electronics including 8 ASICs for 512 channels was assembled and tested.

  16. ASIC For Complex Fixed-Point Arithmetic

    Science.gov (United States)

    Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.

    1995-01-01

    Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.

  17. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    Science.gov (United States)

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  18. Integrated Optical Circuit Engineering

    Science.gov (United States)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  19. Wide Temperature Rad-Hard ASIC for Process Control of a Fuel Cell System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group developed a top-level design of a rad-hard application-specific integrated circuit (ASIC) for spacecraft power management that is functional over a...

  20. CASAGEM: a readout ASIC for micro pattern gas detectors

    International Nuclear Information System (INIS)

    He Li; Deng Zhi; Liu Yinong

    2012-01-01

    A readout ASIC for micro pattern gas detectors has been designed This ASIC integrates 16 channels for anode readout and 1 channel for cathode readout which can make use of the signal of detector's cathode to generate a trigger Every channel can provide amplification and shaping of detector signals. The ASIC can also provide adjustable gain which can be adjusted from 2 mV/fC to 40 mV/fC, and adjustable shaping time which can be adjusted from 20 ns to 80 ns; so this ASIC can be applied to detectors with wide range output signal and different counting rate. The ASIC is fabricated with Chartered 0.35 μm CMOS process More circuit design Details and test results will be presented. (authors)

  1. Vertically Integrated Circuits at Fermilab

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  2. 4-D ICE: A 2-D Array Transducer With Integrated ASIC in a 10-Fr Catheter for Real-Time 3-D Intracardiac Echocardiography.

    Science.gov (United States)

    Wildes, Douglas; Lee, Warren; Haider, Bruno; Cogan, Scott; Sundaresan, Krishnakumar; Mills, David M; Yetter, Christopher; Hart, Patrick H; Haun, Christopher R; Concepcion, Mikael; Kirkhorn, Johan; Bitoun, Marc

    2016-12-01

    We developed a 2.5 ×6.6 mm 2 2 -D array transducer with integrated transmit/receive application-specific integrated circuit (ASIC) for real-time 3-D intracardiac echocardiography (4-D ICE) applications. The ASIC and transducer design were optimized so that the high-voltage transmit, low-voltage time-gain control and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019-mm 2 area of the element. The transducer assembly was deployed in a 10-Fr (3.3-mm diameter) catheter, integrated with a GE Vivid E9 ultrasound imaging system, and evaluated in three preclinical studies. The 2-D image quality and imaging modes were comparable to commercial 2-D ICE catheters. The 4-D field of view was at least 90 ° ×60 ° ×8 cm and could be imaged at 30 vol/s, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4-D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology ablation procedures. 4-D ICE may be able to replace transesophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.

  3. Microcontroller based Integrated Circuit Tester

    OpenAIRE

    Yousif Taha Yousif Elamin; Abdelrasoul Jabar Alzubaidi

    2015-01-01

    The digital integrated circuit (IC) tester is implemented by using the ATmega32 microcontroller . The microcontroller processes the inputs and outputs and displays the results on a Liquid Crystal Display (LCD). The basic function of the digital IC tester is to test a digital IC for correct logical functioning as described in the truth table and/or function table. The designed model can test digital ICs having 14 pins. Since it is programmable, any number of ICs can be tested . Thi...

  4. OMEGAPIX 3D integrated circuit prototype dedicated to the ATLAS upgrade Super LHC pixel project

    CERN Document Server

    Thienpont, D; de La Taille, C; Seguin-Moreau, N; Martin-Chassard, G; Guo b, Y

    2009-01-01

    In late 2008, an international consortium for development of vertically integrated (3D) readout electronics was created to explore features available from this technology. In this paper, the OMEGAPIX circuit is presented. It is the first front-end ASIC prototype designed at LAL in 3D technology. It has been submitted on May 2009. At first, a short reminder of 3D technology is presented. Then the IC design is explained: analogue tier, digital tier and testability.

  5. Refractory silicides for integrated circuits

    International Nuclear Information System (INIS)

    Murarka, S.P.

    1980-01-01

    Transition metal silicides have, in the past, attracted attention because of their usefulness as high temperature materials and in integrated circuits as Schottky barrier and ohmic contacts. More recently, with the increasing silicon integrated circuits (SIC) packing density, the line widths get narrower and the sheet resistance contribution to the RC delay increases. The possibility of using low resistivity silicides, which can be formed directly on the polysilicon, makes these silicides highly attractive. The usefulness of a silicide metallization scheme for integrated circuits depends, not only on the desired low resistivity, but also on the ease with which the silicide can be formed and patterned and on the stability of the silicides throughout device processing and during actual device usage. In this paper, various properties and the formation techniques of the silicides have been reviewed. Correlations between the various properties and the metal or silicide electronic or crystallographic structure have been made to predict the more useful silicides for SIC applications. Special reference to the silicide resistivity, stress, and oxidizability during the formation and subsequent processing has been given. Various formation and etching techniques are discussed

  6. Integrated circuits, and design and manufacture thereof

    Science.gov (United States)

    Auracher, Stefan; Pribbernow, Claus; Hils, Andreas

    2006-04-18

    A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.

  7. Electron commutator on integrated circuits

    International Nuclear Information System (INIS)

    Demidenko, V.V.

    1975-01-01

    The scheme and the parameters of an electron 16-channel contactless commutator based entirely on integrated circuits are described. The device consists of a unit of analog keys based on field-controlled metal-insulator-semiconductor (m.i.s.) transistors, operation amplifier comparators controlling these keys, and a level distributor. The distributor is based on a ''matrix'' scheme and comprises two ring-shaped shift registers plugged in series and a decoder base on two-input logical elements I-NE. The principal dynamical parameters of the circuit are as follows: the control signal delay in the distributor. 50 nsec; the total channel switch-over time, 500-600 nsec. The commutator transmits both constant signals and pulses whose duration reaches tens of nsec. The commutator can be used in data acquisition and processing systems, for shaping complicated signals (for example), (otherwise signals), for simultaneous oscillographing of several signals, and so forth [ru

  8. Command Interface ASIC - Analog Interface ASIC Chip Set

    Science.gov (United States)

    Ruiz, Baldes; Jaffe, Burton; Burke, Gary; Lung, Gerald; Pixler, Gregory; Plummer, Joe; Katanyoutanant,, Sunant; Whitaker, William

    2003-01-01

    A command interface application-specific integrated circuit (ASIC) and an analog interface ASIC have been developed as a chip set for remote actuation and monitoring of a collection of switches, which can be used to control generic loads, pyrotechnic devices, and valves in a high-radiation environment. The command interface ASIC (CIA) can be used alone or in combination with the analog interface ASIC (AIA). Designed primarily for incorporation into spacecraft control systems, they are also suitable for use in high-radiation terrestrial environments (e.g., in nuclear power plants and facilities that process radioactive materials). The primary role of the CIA within a spacecraft or other power system is to provide a reconfigurable means of regulating the power bus, actuating all valves, firing all pyrotechnic devices, and controlling the switching of power to all switchable loads. The CIA is a mixed-signal (analog and digital) ASIC that includes an embedded microcontroller with supporting fault-tolerant switch control and monitoring circuitry that is capable of connecting to a redundant set of interintegrated circuit (I(sup 2)C) buses. Commands and telemetry requests are communicated to the CIA. Adherence to the I(sup 2)C bus standard helps to reduce development costs by facilitating the use of previously developed, commercially available components. The AIA is a mixed-signal ASIC that includes the analog circuitry needed to connect the CIA to a custom higher powered version of the I(sup 2)C bus. The higher-powered version is designed to enable operation with bus cables longer than those contemplated in the I(sup 2)C standard. If there are multiple higher-power I(sup 2)C-like buses, then there must an AIA between the CIA and each such bus. The AIA includes two identical interface blocks: one for the side-A I(sup 2)C clock and data buses and the other for the side B buses. All the AIAs on each side are powered from a common power converter module (PCM). Sides A and B

  9. ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain

    Directory of Open Access Journals (Sweden)

    Cao Hui

    2010-12-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ, to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA, lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.

  10. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    Science.gov (United States)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  11. Development of front-end ASIC for radiation detection and measurement

    International Nuclear Information System (INIS)

    Shimazoe, K.

    2014-01-01

    For realizing the multichannel spectroscopy of gamma rays, the technology of integrated circuits is necessary. Multi-channel gamma ray spectroscopy is very important for many applications including the medical imaging and the environmental monitoring. The current progress in the development of application specific integrated circuit (ASIC) for multi-channel radiation detection is introduced and reviewed. (author)

  12. INTEGRATED SENSOR EVALUATION CIRCUIT AND METHOD FOR OPERATING SAID CIRCUIT

    OpenAIRE

    Krüger, Jens; Gausa, Dominik

    2015-01-01

    WO15090426A1 Sensor evaluation device and method for operating said device Integrated sensor evaluation circuit for evaluating a sensor signal (14) received from a sensor (12), having a first connection (28a) for connection to the sensor and a second connection (28b) for connection to the sensor. The integrated sensor evaluation circuit comprises a configuration data memory (16) for storing configuration data which describe signal properties of a plurality of sensor control signals (26a-c). T...

  13. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  14. Operational Excellence through Schedule Optimization and Production Simulation of Application Specific Integrated Circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Flory, John Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Padilla, Denise D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Steven P [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Upcoming weapon programs require an aggressive increase in Application Specific Integrated Circuit (ASIC) production at Sandia National Laboratories (SNL). SNL has developed unique modeling and optimization tools that have been instrumental in improving ASIC production productivity and efficiency, identifying optimal operational and tactical execution plans under resource constraints, and providing confidence in successful mission execution. With ten products and unprecedented levels of demand, a single set of shared resources, highly variable processes, and the need for external supplier task synchronization, scheduling is an integral part of successful manufacturing. The scheduler uses an iterative multi-objective genetic algorithm and a multi-dimensional performance evaluator. Schedule feasibility is assessed using a discrete event simulation (DES) that incorporates operational uncertainty, variability, and resource availability. The tools provide rapid scenario assessments and responses to variances in the operational environment, and have been used to inform major equipment investments and workforce planning decisions in multiple SNL facilities.

  15. Scaling of graphene integrated circuits.

    Science.gov (United States)

    Bianchi, Massimiliano; Guerriero, Erica; Fiocco, Marco; Alberti, Ruggero; Polloni, Laura; Behnam, Ashkan; Carrion, Enrique A; Pop, Eric; Sordan, Roman

    2015-05-07

    The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 μm gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.

  16. Integrated Circuit Electromagnetic Immunity Handbook

    Science.gov (United States)

    Sketoe, J. G.

    2000-08-01

    This handbook presents the results of the Boeing Company effort for NASA under contract NAS8-98217. Immunity level data for certain integrated circuit parts are discussed herein, along with analytical techniques for applying the data to electronics systems. This handbook is built heavily on the one produced in the seventies by McDonnell Douglas Astronautics Company (MDAC, MDC Report E1929 of 1 August 1978, entitled Integrated Circuit Electromagnetic Susceptibility Handbook, known commonly as the ICES Handbook, which has served countless systems designers for over 20 years). Sections 2 and 3 supplement the device susceptibility data presented in section 4 by presenting information on related material required to use the IC susceptibility information. Section 2 concerns itself with electromagnetic susceptibility analysis and serves as a guide in using the information contained in the rest of the handbook. A suggested system hardening requirements is presented in this chapter. Section 3 briefly discusses coupling and shielding considerations. For conservatism and simplicity, a worst case approach is advocated to determine the maximum amount of RF power picked up from a given field. This handbook expands the scope of the immunity data in this Handbook is to of 10 MHz to 10 GHz. However, the analytical techniques provided are applicable to much higher frequencies as well. It is expected however, that the upper frequency limit of concern is near 10 GHz. This is due to two factors; the pickup of microwave energy on system cables and wiring falls off as the square of the wavelength, and component response falls off at a rapid rate due to the effects of parasitic shunt paths for the RF energy. It should be noted also that the pickup on wires and cables does not approach infinity as the frequency decreases (as would be expected by extrapolating the square law dependence of the high frequency roll-off to lower frequencies) but levels off due to mismatch effects.

  17. Smart Sensor ASIC for Nuclear Power Monitoring

    International Nuclear Information System (INIS)

    Kerwin, David B.; Merkel, Kenneth G.; Rouxel, Olivier

    2013-06-01

    Mixed-signal integrated circuits are used in a variety of applications where ionizing radiation is present, including satellites, space vehicles, nuclear reactor monitoring, medical imaging, and cancer therapy. While total ionizing radiation is present in each of these environments, the type of radiation (e.g. heavy ions vs. high-energy x-rays) and other environmental factors present unique challenges to the mixed-signal designer. This paper discusses a Smart Sensor radiation hardened, mixed-signal, application specific integrated circuit (ASIC) specifically designed for sensor monitoring in a nuclear reactor environment. Results after exposure to gamma rays, neutrons, and temperatures up to 200 deg. C are reported. (authors)

  18. Design of analog integrated circuits and systems

    CERN Document Server

    Laker, Kenneth R

    1994-01-01

    This text is designed for senior or graduate level courses in analog integrated circuits or design of analog integrated circuits. This book combines consideration of CMOS and bipolar circuits into a unified treatment. Also included are CMOS-bipolar circuits made possible by BiCMOS technology. The text progresses from MOS and bipolar device modelling to simple one and two transistor building block circuits. The final two chapters present a unified coverage of sample-data and continuous-time signal processing systems.

  19. Hybdrid integral circuit for proportional chambers

    International Nuclear Information System (INIS)

    Yanik, R.; Khudy, M.; Povinets, P.; Strmen', P.; Grabachek, Z.; Feshchenko, A.A.

    1978-01-01

    Outlined briefly are a hybrid integrated circuit of the channel. One channel contains an input amplifier, delay circuit, and memory register on the base of the D-type flip-flop and controlled by the recording gate pulse. Provided at the output of the channel is a readout gating circuit. Presented are the flowsheet of the channel, the shaper amplifier and logical channel. At present the logical circuit was accepted for manufacture

  20. A Fault Tolerant Integrated Circuit Memory

    OpenAIRE

    Barton, Anthony Francis

    1980-01-01

    Most commercially produced integrated circuits are incapable of tolerating manufacturing defects. The area and function of the circuits is thus limited by the probability of faults occurring within the circuit. This thesis examines techniques for using redundancy in memory circuits to provide fault tolerance and to increase storage capacity. A hierarchical memory architecture using multiple Hamming codes is introduced and analysed to determine its resistance to manufa...

  1. SiGe Integrated Circuit Developments for SQUID/TES Readout

    Science.gov (United States)

    Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Piat, M.; Goldwurm, A.; Laurent, P.

    2018-03-01

    SiGe integrated circuits dedicated to the readout of superconducting bolometer arrays for astrophysics have been developed since more than 10 years at APC. Whether for Cosmic Microwave Background (CMB) observations with the QUBIC ground-based experiment (Aumont et al. in astro-ph.IM, 2016. arXiv:1609.04372) or for the Hot and Energetic Universe science theme with the X-IFU instrument on-board of the ATHENA space mission (Barret et al. in SPIE 9905, space telescopes & instrumentation 2016: UV to γ Ray, 2016. https://doi.org/10.1117/12.2232432), several kinds of Transition Edge Sensor (TES) (Irwin and Hilton, in ENSS (ed) Cryogenic particle detection, Springer, Berlin, 2005) arrays have been investigated. To readout such superconducting detector arrays, we use time or frequency domain multiplexers (TDM, FDM) (Prêle in JINST 10:C08015, 2016. https://doi.org/10.1088/1748-0221/10/08/C08015) with Superconducting QUantum Interference Devices (SQUID). In addition to the SQUID devices, low-noise biasing and amplification are needed. These last functions can be obtained by using BiCMOS SiGe technology in an Application Specific Integrated Circuit (ASIC). ASIC technology allows integration of highly optimised circuits specifically designed for a unique application. Moreover, we could reach very low-noise and wide band amplification using SiGe bipolar transistor either at room or cryogenic temperatures (Cressler in J Phys IV 04(C6):C6-101, 1994. https://doi.org/10.1051/jp4:1994616). This paper discusses the use of SiGe integrated circuits for SQUID/TES readout and gives an update of the last developments dedicated to the QUBIC telescope and to the X-IFU instrument. Both ASIC called SQmux128 and AwaXe are described showing the interest of such SiGe technology for SQUID multiplexer controls.

  2. Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging

    Science.gov (United States)

    Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao

    2017-09-01

    The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.

  3. Integrated circuit and method of arbitration in a network on an integrated circuit.

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to an integrated circuit and to a method of arbitration in a network on an integrated circuit. According to the invention, a method of arbitration in a network on an integrated circuit is provided, the network comprising a router unit, the router unit comprising a first input

  4. Post irradiation effects (PIE) in integrated circuits

    International Nuclear Information System (INIS)

    Barnes, C.E.; Shaw, D.C.; Fleetwood, D.M.; Winokur, P.S.

    1992-01-01

    Post Irradiation Effects (PIE) ranging from normal recovery catastrophic failure have been observed in integrated circuits during the PIE period. These variations indicate that a rebound or PIE recipe used for radiation hardness assurance must be chosen with care. In this paper, the authors provide examples of PIE in a variety of integrated circuits of importance to spacecraft electronics

  5. Active components for integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Krasavin, A.V.; Bolger, P.M.; Zayats, A.V.

    2009-01-01

    We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.......We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides....

  6. Integrated optical circuit comprising a polarization convertor

    NARCIS (Netherlands)

    1998-01-01

    An integrated optical circuit includes a first device and a second device, which devices are connected by a polarization convertor. The polarization convertor includes a curved section of a waveguide, integrated in the optical circuit. The curved section may have several differently curved

  7. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    International Nuclear Information System (INIS)

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-01-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.)

  8. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J. [Lawrence Berkeley National Lab., CA (United States)

    1998-04-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.). 11 refs.

  9. The Software Reliability of Large Scale Integration Circuit and Very Large Scale Integration Circuit

    OpenAIRE

    Artem Ganiyev; Jan Vitasek

    2010-01-01

    This article describes evaluation method of faultless function of large scale integration circuits (LSI) and very large scale integration circuits (VLSI). In the article there is a comparative analysis of factors which determine faultless of integrated circuits, analysis of already existing methods and model of faultless function evaluation of LSI and VLSI. The main part describes a proposed algorithm and program for analysis of fault rate in LSI and VLSI circuits.

  10. Multichannel readout ASIC design flow for high energy physics and cosmic rays experiments

    International Nuclear Information System (INIS)

    Voronin, A; Malankin, E

    2016-01-01

    In the large-scale high energy physics and astrophysics experiments multi-channel readout application specific integrated circuits (ASICs) are widely used. The ASICs for such experiments are complicated systems, which usually include both analog and digital building blocks. The complexity and large number of channels in such ASICs require the proper methodological approach to their design. The paper represents the mixed-signal design flow of the ASICs for high energy physics and cosmic rays experiments. This flow was successfully embedded to the development of the read-out ASIC prototype for the muon chambers of the CBM experiment. The approach was approved in UMC CMOS MMRF 180 nm process. The design flow enable to analyse the mixed-signal system operation on the different levels: functional, behavioural, schematic and post layout including parasitic elements. The proposed design flow allows reducing the simulation period and eliminating the functionality mismatches on the very early stage of the design. (paper)

  11. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Hughes, R.C.

    1977-01-01

    Electronic circuits that operate properly after exposure to ionizing radiation are necessary for nuclear weapon systems, satellites, and apparatus designed for use in radiation environments. The program to develop and theoretically model radiation-tolerant integrated circuit components has resulted in devices that show an improvement in hardness up to a factor of ten thousand over earlier devices. An inverter circuit produced functions properly after an exposure of 10 6 Gy (Si) which, as far as is known, is the record for an integrated circuit

  12. ASIC design in the KM3NeT detector

    International Nuclear Information System (INIS)

    Gajanana, D; Gromov, V; Timmer, P

    2013-01-01

    In the KM3NeT project [1], Cherenkov light from the muon interactions with transparent matter around the detector, is used to detect neutrinos. Photo multiplier tubes (PMT) used as photon sensor, are housed in a glass sphere (aka Optical Module) to detect single photons from the Cherenkov light. The PMT needs high operational voltage ( ∼ 1.5 kV) and is generated by a Cockroft-Walton (CW) multiplier circuit. The electronics required to control the PMT's and collect the signals is integrated in two ASIC's namely: 1) a front-end mixed signal ASIC (PROMiS) for the readout of the PMT and 2) an analog ASIC (CoCo) to generate pulses for charging the CW circuit and to control the feedback of the CW circuit. In this article, we discuss the two integrated circuits and test results of the complete setup. PROMiS amplifies the input charge, converts it to a pulse width and delivers the information via LVDS signals. These LVDS signals carry accurate information on the Time of arrival ( 2 C bus. This unique combination of the ASIC's results in a very cost and power efficient PMT base design.

  13. Test and Diagnosis of Integrated Circuits

    OpenAIRE

    Bosio , Alberto

    2015-01-01

    The ever-increasing growth of the semiconductor market results in an increasing complexity of digital circuits. Smaller, faster, cheaper and low-power consumption are the main challenges in semiconductor industry. The reduction of transistor size and the latest packaging technology (i.e., System-On-a-Chip, System-In-Package, Trough Silicon Via 3D Integrated Circuits) allows the semiconductor industry to satisfy the latest challenges. Although producing such advanced circuits can benefit users...

  14. An analog integrated circuit design laboratory

    OpenAIRE

    Mondragon-Torres, A.F.; Mayhugh, Jr.; Pineda de Gyvez, J.; Silva-Martinez, J.; Sanchez-Sinencio, E.

    2003-01-01

    We present the structure of an analog integrated circuit design laboratory to instruct at both, senior undergraduate and entry graduate levels. The teaching material includes: a laboratory manual with analog circuit design theory, pre-laboratory exercises and circuit design specifications; a reference web page with step by step instructions and examples; the use of mathematical tools for automation and analysis; and state of the art CAD design tools in use by industry. Upon completion of the ...

  15. Reverse engineering of integrated circuits

    Science.gov (United States)

    Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.

    2003-01-01

    Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.

  16. ASIC Development for Three-Dimensional Silicon Imaging Array for Cold Neutrons

    International Nuclear Information System (INIS)

    Britton, C.L.; Jagadish, U.; Bryan, W.L.

    2004-01-01

    An Integrated Circuit (IC) readout chip with four channels arranged so as to receive input charge from the corners of the chip was designed for use with 5- to 7-mm pixel detectors. This Application Specific IC (ASIC) can be used for cold neutron imaging, for study of structural order in materials using cold neutron scattering or for particle physics experiments. The ASIC is fabricated in a 0.5-(micro)m n-well AMI process. The design of the ASIC and the test measurements made is reported. Noise measurements are also reported

  17. Study of preamplifier, shaper and peak detector in readout ASIC for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Zhang Shengjun; Fan Lei; Li Xian

    2014-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout system and ASICs have been designed in China now. This project designed a multi-channel readout ASIC for general detector. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured, results will be reported in time. (authors)

  18. Semiconductors integrated circuit design for manufacturability

    CERN Document Server

    Balasinki, Artur

    2011-01-01

    Because of the continuous evolution of integrated circuit manufacturing (ICM) and design for manufacturability (DfM), most books on the subject are obsolete before they even go to press. That's why the field requires a reference that takes the focus off of numbers and concentrates more on larger economic concepts than on technical details. Semiconductors: Integrated Circuit Design for Manufacturability covers the gradual evolution of integrated circuit design (ICD) as a basis to propose strategies for improving return-on-investment (ROI) for ICD in manufacturing. Where most books put the spotl

  19. Silicon integrated circuits part A : supplement 2

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Applied Solid State Science, Supplement 2: Silicon Integrated Circuits, Part A focuses on MOS device physics. This book is divided into three chapters-physics of the MOS transistor; nonvolatile memories; and properties of silicon-on-sapphire substrates devices, and integrated circuits. The topics covered include the short channel effects, MOSFET structures, floating gate devices, technology for nonvolatile semiconductor memories, sapphire substrates, and SOS integrated circuits and systems. The MOS capacitor, MIOS devices, and SOS process and device technology are also deliberated. This public

  20. Method of manufacturing Josephson junction integrated circuits

    International Nuclear Information System (INIS)

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  1. A new integrated microwave SQUID circuit design

    International Nuclear Information System (INIS)

    Erne, S.N.; Finnegan, T.F.

    1980-01-01

    In this paper we consider the design and operation of a planar thin-film rf-SQUID circuit which can be realized via microwave-integrated-circuit (MIC) techniques and which differs substantially from pervious microwave SQUID configurations involving either mechanical point-contact or cylindrical thin-film micro-bridge geometries. (orig.)

  2. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1991-01-01

    This paper reports on the development an extra fast current feedback amplifier and a level discriminator employing a dielectrically-isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity-gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  3. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1990-01-01

    This paper reports an extra fast current feedback amplifier and a level discriminator developed employing a dielectrically isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity- gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  4. Latch-up in CMOS integrated circuits

    International Nuclear Information System (INIS)

    Estreich, D.B.; Dutton, R.W.

    1978-04-01

    An analysis is presented of latch-up in CMOS integrated circuits. A latch-up prediction algorithm has been developed and used to evaluate methods to control latch-up. Experimental verification of the algorithm is demonstrated

  5. LC Quadrature Generation in Integrated Circuits

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais

    2001-01-01

    Today quadrature signals for IQ demodulation are provided through RC polyphase networks, quadrature oscillators or double frequency VCOs. This paper presents a new method for generating quadrature signals in integrated circuits using only inductors and capacitors. This LC quadrature generation...

  6. Lateral power transistors in integrated circuits

    CERN Document Server

    Erlbacher, Tobias

    2014-01-01

    This book details and compares recent advancements in the development of novel lateral power transistors (LDMOS devices) for integrated circuits in power electronic applications. It includes the state-of-the-art concept of double-acting RESURF topologies.

  7. How complex can integrated optical circuits become?

    NARCIS (Netherlands)

    Smit, M.K.; Hill, M.T.; Baets, R.G.F.; Bente, E.A.J.M.; Dorren, H.J.S.; Karouta, F.; Koenraad, P.M.; Koonen, A.M.J.; Leijtens, X.J.M.; Nötzel, R.; Oei, Y.S.; Waardt, de H.; Tol, van der J.J.G.M.; Khoe, G.D.

    2007-01-01

    The integration scale in Photonic Integrated Circuits will be pushed to VLSI-level in the coming decade. This will bring major changes in both application and manufacturing. In this paper developments in Photonic Integration are reviewed and the limits for reduction of device demensions are

  8. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  9. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  10. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  11. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  12. A Differential Electrochemical Readout ASIC With Heterogeneous Integration of Bio-Nano Sensors for Amperometric Sensing.

    Science.gov (United States)

    Ghoreishizadeh, Sara S; Taurino, Irene; De Micheli, Giovanni; Carrara, Sandro; Georgiou, Pantelis

    2017-10-01

    A monolithic biosensing platform is presented for miniaturized amperometric electrochemical sensing in CMOS. The system consists of a fully integrated current readout circuit for differential current measurement as well as on-die sensors developed by growing platinum nanostructures (Pt-nanoS) on top of electrodes implemented with the top metal layer. The circuit is based on the switch-capacitor technique and includes pseudodifferential integrators for concurrent sampling of the differential sensor currents. The circuit further includes a differential to single converter and a programmable gain amplifier prior to an ADC. The system is fabricated in [Formula: see text] technology and measures current within [Formula: see text] with minimum input-referred noise of [Formula: see text] and consumes [Formula: see text] from a [Formula: see text] supply. Differential sensing for nanostructured sensors is proposed to build highly sensitive and offset-free sensors for metabolite detection. This is successfully tested for bio-nano-sensors for the measurement of glucose in submilli molar concentrations with the proposed readout IC. The on-die electrodes are nanostructured and cyclic voltammetry run successfully through the readout IC to demonstrate detection of [Formula: see text].

  13. Materials issues in silicon integrated circuit processing

    International Nuclear Information System (INIS)

    Wittmer, M.; Stimmell, J.; Strathman, M.

    1986-01-01

    The symposium on ''Materials Issues in Integrated Circuit Processing'' sought to bring together all of the materials issued pertinent to modern integrated circuit processing. The inherent properties of the materials are becoming an important concern in integrated circuit manufacturing and accordingly research in materials science is vital for the successful implementation of modern integrated circuit technology. The session on Silicon Materials Science revealed the advanced stage of knowledge which topics such as point defects, intrinsic and extrinsic gettering and diffusion kinetics have achieved. Adaption of this knowledge to specific integrated circuit processing technologies is beginning to be addressed. The session on Epitaxy included invited papers on epitaxial insulators and IR detectors. Heteroepitaxy on silicon is receiving great attention and the results presented in this session suggest that 3-d integrated structures are an increasingly realistic possibility. Progress in low temperature silicon epitaxy and epitaxy of thin films with abrupt interfaces was also reported. Diffusion and Ion Implantation were well presented. Regrowth of implant-damaged layers and the nature of the defects which remain after regrowth were discussed in no less than seven papers. Substantial progress was also reported in the understanding of amorphising boron implants and the use of gallium implants for the formation of shallow p/sup +/ -layers

  14. Integrated circuits for multimedia applications

    DEFF Research Database (Denmark)

    Vandi, Luca

    2007-01-01

    , and it is applied to a broad-band dual-loop receiver architecture in order to boost the linearity performances of the stage. A simplified noise- and linearity analysis of the circuit is derived, and a comparison is provided with a more traditional dual-loop topology (a broad-band stage based on shunt...... the impact of substrate-induced currents. Basic models are derived in the design phase, and the technological limits of the device are considered. Measurement results show that a very compact coil can provide ~1nH inductance up to 20GHz (physical limit for the measurement equipment), with a peak quality...

  15. Polysilicon photoconductor for integrated circuits

    Science.gov (United States)

    Hammond, R.B.; Bowman, D.R.

    1989-04-11

    A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response. 6 figs.

  16. Integrated circuit design using design automation

    International Nuclear Information System (INIS)

    Gwyn, C.W.

    1976-09-01

    Although the use of computer aids to develop integrated circuits is relatively new at Sandia, the program has been very successful. The results have verified the utility of the in-house CAD design capability. Custom IC's have been developed in much shorter times than available through semiconductor device manufacturers. In addition, security problems were minimized and a saving was realized in circuit cost. The custom CMOS IC's were designed at less than half the cost of designing with conventional techniques. In addition to the computer aided design, the prototype fabrication and testing capability provided by the semiconductor development laboratory and microelectronics computer network allows the circuits to be fabricated and evaluated before the designs are transferred to the commercial semiconductor manufacturers for production. The Sandia design and prototype fabrication facilities provide the capability of complete custom integrated circuit development entirely within the ERDA laboratories

  17. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  18. Generic testability and test methods guidelines for ASIC devices

    International Nuclear Information System (INIS)

    Puri, K.; Takeda, H.

    1996-04-01

    Many industries are switching from analog equipment to digital equipment. This change has become desirable because digital devices have become cost-effective, easily available, highly reliable, easy to qualify and easy to test and replace when needed. The nuclear power industry is beginning to upgrade some of its instrumentation and control equipment from an analog design to digital design. A digital application specific integrated circuit (ASIC) device can be designed to perform the same functions as performed by analog modules. However, the ASIC must be designed for cost-effective testability and qualification. This report provides generic guidelines for designing cost-effective methods for testing and characterizing ASIC devices to accomplish qualification

  19. Interconnect rise time in superconducting integrating circuits

    International Nuclear Information System (INIS)

    Preis, D.; Shlager, K.

    1988-01-01

    The influence of resistive losses on the voltage rise time of an integrated-circuit interconnection is reported. A distribution-circuit model is used to present the interconnect. Numerous parametric curves are presented based on numerical evaluation of the exact analytical expression for the model's transient response. For the superconducting case in which the series resistance of the interconnect approaches zero, the step-response rise time is longer but signal strength increases significantly

  20. Active Trimming of Hybrid Integrated Circuits

    OpenAIRE

    Németh, P.; Krémer, P.

    1984-01-01

    One of the more important fields of the microelectronics industry is the manufacturing of hybrid integrated circuits.An important part of the manufacturing process is concerned with the trimming of the hybrid integratedl circuits. This article deals with the basic principles of active trimming and introduces a microprocessor controlled trimming machine. By comparing active trimming with passive techniques, it can be shown that the active system has some advantages. This article outlines these...

  1. Integrated circuit implementation of fuzzy controllers

    OpenAIRE

    Huertas Díaz, José Luis; Sánchez Solano, Santiago; Baturone Castillo, María Iluminada; Barriga Barros, Ángel

    1996-01-01

    This paper presents mixed-signal current-mode CMOS circuits to implement programmable fuzzy controllers that perform the singleton or zero-order Sugeno’s method. Design equations to characterize these circuits are provided to explain the precision and speed that they offer. This analysis is illustrated with the experimental results of prototypes integrated in standard CMOS technologies. These tests show that an equivalent precision of 6 bits is achieved. The connection of these...

  2. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    Science.gov (United States)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  3. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    Science.gov (United States)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  4. Development of the specialized integrated circuit for signal readout from micro-strip structures of a coordinate detectors

    International Nuclear Information System (INIS)

    Aulchenko, V.; Shekhtman, L.; Zhulanov, V.

    2015-01-01

    The paper presents current status of development of a specialized 64-channel integrated circuit (IC, ASIC) for front-end electronics of coordinate detectors in the Budker INP. The ASIC is produced using 180 nm process. During the recording phase the IC allows integration of short current pulses from strips of a coordinate sensor, and storing of up to 100 corresponding charge values in the analogue memory with minimum time interval of 100 ns. Maximum input charge is equal to 2×10 6 electrons, equivalent noise charge is ∼2.7×10 3 electrons. Conversion of the data, stored in the analogue memory, to digital form is performed by an external ADC during the readout through an analogue multiplexer

  5. Predictive Direct Torque Control Application-Specific Integrated Circuit of an Induction Motor Drive with a Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Guo-Ming Sung

    2017-06-01

    Full Text Available This paper proposes a modified predictive direct torque control (PDTC application-specific integrated circuit (ASIC of a motor drive with a fuzzy controller for eliminating sampling and calculating delay times in hysteresis controllers. These delay times degrade the control quality and increase both torque and flux ripples in a motor drive. The proposed fuzzy PDTC ASIC calculates the stator’s magnetic flux and torque by detecting the three-phase current, three-phase voltage, and rotor speed, and eliminates the ripples in the torque and flux by using a fuzzy controller and predictive scheme. The Verilog hardware description language was used to implement the hardware architecture, and the ASIC was fabricated by the Taiwan Semiconductor Manufacturing Company through a 0.18-μm 1P6M CMOS process that involved a cell-based design method. The measurements revealed that the proposed fuzzy PDTC ASIC of the three-phase induction motor yielded a test coverage of 96.03%, fault coverage of 95.06%, chip area of 1.81 × 1.81 mm2, and power consumption of 296 mW, at an operating frequency of 50 MHz and a supply voltage of 1.8 V.

  6. A fast charge integrating and shaping circuit

    International Nuclear Information System (INIS)

    Kulka, Z.; Szoncso, F.

    1990-01-01

    The development of a low cost fast charge integrating and shaping circuit (FCISC) was motivated by the need for an interface between the photomultipliers of an existing hadronic calorimeter and recently developed new readout electronics designed to match the output of small ionization chambers for the upgraded UA1 detector at the CERN proton-antiproton collider. This paper describes the design principles of gated and ungated charge integrating and shaping circuits. An FCISC prototype using discrete components was made and its properties were determined with a computerized test setup. Finally an SMD implementation of the FCISC is presented and the performance is reported. (orig.)

  7. Test Structures For Bumpy Integrated Circuits

    Science.gov (United States)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  8. Radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    Pikor, A.; Reiss, E.M.

    1980-01-01

    Substantial effort has been directed at radiation-hardening CMOS integrated circuits using various oxide processes. While most of these integrated circuits have been successful in demonstrating megarad hardness, further investigations have shown that the 'wet-oxide process' is most compatible with the RCA CD4000 Series process. This article describes advances in the wet-oxide process that have resulted in multimegarad hardness and yield to MIL-M-38510 screening requirements. The implementation of these advances into volume manufacturing is geared towards supplying devices for aerospace requirements such as the Defense Meterological Satellite program (DMSP) and the Global Positioning Satellite (GPS). (author)

  9. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  10. Beamsteerable GNSS Radio Occultation ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop an integrated RF ASIC to enable high quality radio occultation (RO) weather observations using the Global Navigations System Satellite (GNSS)...

  11. VMM - An ASIC for Micropattern Detectors

    Directory of Open Access Journals (Sweden)

    Iakovidis George

    2018-01-01

    Full Text Available The VMM is a custom Application Specific Integrated Circuit (ASIC that can be used in a variety of charge interpolating tracking detectors. It is designed to be used with the resistive strip micromegas and sTGC detectors in the New Small Wheel upgrade of the ATLAS Muon spectrometer. The ASIC is designed at Brookhaven National Laboratory and fabricated in the 130 nm Global Foundries 8RF-DM process. It is packaged in a Ball Grid Array with outline dimensions of 21×21 mm2. It integrates 64 channels, each providing charge amplification, discrimination, neighbour logic, amplitude and timing measurements, analog-to-digital conversions, and either direct output for trigger or multiplexed readout. The front-end amplifier can operate with a wide range of input capacitances, has adjustable polarity, gain and peaking time. The VMM1 and VMM2 are the first two versions of the VMM ASIC family fabricated in 2012 and 2014 respectively. The design, tests and qualification of the VMM1, VMM2 and roadmap to VMM3 are described.

  12. Latest generation of ASICs for photodetector readout

    International Nuclear Information System (INIS)

    Seguin-Moreau, N.

    2013-01-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips

  13. VMM - An ASIC for Micropattern Detectors

    Science.gov (United States)

    Iakovidis, George

    2018-02-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) that can be used in a variety of charge interpolating tracking detectors. It is designed to be used with the resistive strip micromegas and sTGC detectors in the New Small Wheel upgrade of the ATLAS Muon spectrometer. The ASIC is designed at Brookhaven National Laboratory and fabricated in the 130 nm Global Foundries 8RF-DM process. It is packaged in a Ball Grid Array with outline dimensions of 21×21 mm2. It integrates 64 channels, each providing charge amplification, discrimination, neighbour logic, amplitude and timing measurements, analog-to-digital conversions, and either direct output for trigger or multiplexed readout. The front-end amplifier can operate with a wide range of input capacitances, has adjustable polarity, gain and peaking time. The VMM1 and VMM2 are the first two versions of the VMM ASIC family fabricated in 2012 and 2014 respectively. The design, tests and qualification of the VMM1, VMM2 and roadmap to VMM3 are described.

  14. Latest generation of ASICs for photodetector readout

    Science.gov (United States)

    Seguin-Moreau, N.

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.

  15. Latest generation of ASICs for photodetector readout

    Energy Technology Data Exchange (ETDEWEB)

    Seguin-Moreau, N., E-mail: seguin@lal.in2p3.fr [Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Université Paris-Sud, Bâtiment 200, 91898 Orsay Cedex (France)

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the “ROC” family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the “ROC” chips.

  16. VMM - An ASIC for micropattern detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00215906; The ATLAS collaboration; Polychronakos, Venetios; De Geronimo, Gianluigi

    2015-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) that can be used in a variety of charge interpolating tracking detectors. It is designed to be used with the resistive strip micromegas and sTGC detectors in the New Small Wheel upgrade of the ATLAS Muon spectrometer. The ASIC is designed at Brookhaven National Laboratory and fabricated in the 130 nm Global Foundries 8RF-DM process. It is packaged in a Ball Grid Array with outline dimensions of 21 $\\times$ 21 mm$^2$. It integrates 64 channels, each providing charge amplification, discrimination, neighbour logic, amplitude and timing measurements, analog-to-digital conversions, and either direct output for trigger or multiplexed readout. The front-end amplifier can operate with a wide range of input capacitances, has adjustable polarity, gain and peaking time. The VMM1 and VMM2 are the first two versions of the VMM ASIC family fabricated in 2012 and 2014 respectively. The design, tests and qualification of the VMM1, VMM2 and roadmap to VMM3 are...

  17. Low-power digital ASIC for on-chip spectral analysis of low-frequency physiological signals

    International Nuclear Information System (INIS)

    Nie Zedong; Zhang Fengjuan; Li Jie; Wang Lei

    2012-01-01

    A digital ASIC chip customized for battery-operated body sensing devices is presented. The ASIC incorporates a novel hybrid-architecture fast Fourier transform (FFT) unit that is capable of scalable spectral analysis, a licensed ARM7TDMI IP hardcore and several peripheral IP blocks. Extensive experimental results suggest that the complete chip works as intended. The power consumption of the FFT unit is 0.69 mW at 1 MHz with 1.8 V power supply. The low-power and programmable features of the ASIC make it suitable for ‘on-the-fly’ low-frequency physiological signal processing. (semiconductor integrated circuits)

  18. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  19. A complementary metal oxide semiconductor—integrable conditioning circuit for resistive chemical sensor management

    International Nuclear Information System (INIS)

    Depari, Alessandro; Flammini, Alessandra; De Marcellis, Andrea; Ferri, Giuseppe

    2011-01-01

    This paper presents a new interface circuit (for MOX-based resistive chemical sensors) capable of overcoming the main limit of the circuits based on the resistance-to-time approach, i.e. the long measuring time with high-value resistances. The system is designed to operate with a single supply of 3.3 V, thus facilitating an ASIC implementation together with digital electronics for a first data analysis and transmission. This is particularly advantageous when the elaboration process requires a large computational load and a data pre-elaboration is advisable. Simulations of the integrable solution of the system have shown the feasibility of the proposed approach. A prototype with discrete components has been furthermore fabricated and experimentally tested, showing good performance in the range 0.5 MΩ to 10 GΩ with a maximum measuring time of 60 ms

  20. Silicon Photonic Integrated Circuit Mode Multiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2013-01-01

    We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully...

  1. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on

  2. Integrated Circuits in the Introductory Electronics Laboratory

    Science.gov (United States)

    English, Thomas C.; Lind, David A.

    1973-01-01

    Discusses the use of an integrated circuit operational amplifier in an introductory electronics laboratory course for undergraduate science majors. The advantages of this approach and the implications for scientific instrumentation are identified. Describes a number of experiments suitable for the undergraduate laboratory. (Author/DF)

  3. Lithographic technology for microwave integrated circuits

    OpenAIRE

    Shepherd, PR; Evans, PSA; Ramsey, BJ; Harrison, DJ

    1997-01-01

    Conductive lithographic films (CLFs) have been developed primarily as substitutes for resin/laminate boards, which share properties with the metallisation patterns used in planar microwave integrated circuits (MICs). The authors examine the microwave properties of the films and show that, although the losses are greater, they have potential as an alternative to the traditional manufacturing process of MICs.

  4. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  5. An ASIC implementation of digital front-end electronics for a high resolution PET scanner

    International Nuclear Information System (INIS)

    Newport, D.F.; Young, J.W.

    1993-01-01

    AN Application Specific Integrated Circuit (ASIC) has been designed and fabricated which implements many of the current functions found in the digital front-end electronics for a high resolution Positron Emission Tomography (PET) scanner. The ASIC performs crystal selection, energy qualification, time correction, and event counting functions for block technology high resolution PET scanners. Digitized x and y position, event energy, and time information are used by the ASIC to determine block crystal number, qualify the event based on energy, and correct the event time. In addition, event counting and block dead time calculations are performed for system dead time corrections. A loadable sequencer for controlling the analog front-end electronics is also implemented. The ASIC is implemented in a 37,000 gate, 1.0 micron CMOS gate-array and is capable of handling 4 million events/second while reducing parts count, cost, and power consumption over current board-level designs

  6. Data readout system utilizing photonic integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Stopiński, S., E-mail: S.Stopinski@tue.nl [COBRA Research Institute, Eindhoven University of Technology (Netherlands); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Malinowski, M.; Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology (Poland); Smit, M.K.; Leijtens, X.J.M. [COBRA Research Institute, Eindhoven University of Technology (Netherlands)

    2013-10-11

    We describe a novel optical solution for data readout systems. The core of the system is an Indium-Phosphide photonic integrated circuit performing as a front-end readout unit. It functions as an optical serializer in which the serialization of the input signal is provided by means of on-chip optical delay lines. The circuit employs electro-optic phase shifters to build amplitude modulators, power splitters for signal distribution, semiconductor optical amplifiers for signal amplification as well as on-chip reflectors. We present the concept of the system, the design and first characterization results of the devices that were fabricated in a multi-project wafer run.

  7. Conductus makes high-Tc integrated circuit

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports that researchers at Conductus have successfully demonstrated what the company says is the world's first integrated circuit containing active devices made from high-temperature superconductors. The circuit is a SQUID magnetometer made from seven layers of material: three layers of yttrium-barium-copper oxide, two layers of insulating material, a seed layer to create grain boundaries for the Josephson junctions, and a layer of silver for making electrical contact to the device. The chip also contains vias, or pathways that make a superconducting contact between the superconducting layers otherwise separated by insulators. Conductus had previously announced the development of a SQUID magnetometer that featured a SQUID sensor and a flux transformer manufactured on separate chips. What makes this achievement important is that the company was able to put both components on the same chip, thus creating a simple integrated circuit on a single chip. This is still a long way from conventional semiconductor technology, with as many as a million components per chip, or even the sophisticated low-Tc superconducting chips made by the Japanese, but the SQUID magnetometer demonstrates all the elements and techniques necessary to build more complex high-temperature superconductor integrated circuits, making this an important first step

  8. Power management techniques for integrated circuit design

    CERN Document Server

    Chen, Ke-Horng

    2016-01-01

    This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. * A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management * Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes * Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience * Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors manuals, and program downloads.

  9. Development of 3D integrated circuits for HEP

    International Nuclear Information System (INIS)

    Yarema, R.; Fermilab

    2006-01-01

    Three dimensional integrated circuits are well suited to improving circuit bandwidth and increasing effective circuit density. Recent advances in industry have made 3D integrated circuits an option for HEP. The 3D technology is discussed in this paper and several examples are shown. Design of a 3D demonstrator chip for the ILC is presented

  10. Front-End ASICs for 3-D Ultrasound : From Beamforming to Digitization

    NARCIS (Netherlands)

    Chen, C.

    2018-01-01

    This thesis describes the analysis, design and evaluation of front-end application-specific integrated circuits (ASICs) for 3-D medical ultrasound imaging, with the focus on the receive electronics. They are specifically designed for next-generation miniature 3-D ultrasound devices, such as

  11. Effective and efficient circuit synthesis for LUT FPGAs : based on functional decomposition and information relationship measures

    NARCIS (Netherlands)

    Chojnacki, A.

    2004-01-01

    The narrowing opportunity window and the dramatically increasing development costs of deep sub-micron application specific integrated circuit (ASIC) designs have presented new challenges to the development process. The cost of ASICs development and fabrication is presently so high that more and more

  12. Reverse Engineering Integrated Circuits Using Finite State Machine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oler, Kiri J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Carl H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-12

    In this paper, we present a methodology for reverse engineering integrated circuits, including a mathematical verification of a scalable algorithm used to generate minimal finite state machine representations of integrated circuits.

  13. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  14. High-frequency analog integrated circuit design

    CERN Document Server

    1995-01-01

    To learn more about designing analog integrated circuits (ICs) at microwave frequencies using GaAs materials, turn to this text and reference. It addresses GaAs MESFET-based IC processing. Describes the newfound ability to apply silicon analog design techniques to reliable GaAs materials and devices which, until now, was only available through technical papers scattered throughout hundred of articles in dozens of professional journals.

  15. Design of Integrated Circuits Approaching Terahertz Frequencies

    OpenAIRE

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also important for driving THz signal sources. To meet the requirement of high output power, amplifiers based on InP double heterojunction bipolar transistor (DHBT) devices from the III-V Lab in Marcoussic,...

  16. Silicon wafers for integrated circuit process

    OpenAIRE

    Leroy , B.

    1986-01-01

    Silicon as a substrate material will continue to dominate the market of integrated circuits for many years. We first review how crystal pulling procedures impact the quality of silicon. We then investigate how thermal treatments affect the behaviour of oxygen and carbon, and how, as a result, the quality of silicon wafers evolves. Gettering techniques are then presented. We conclude by detailing the requirements that wafers must satisfy at the incoming inspection.

  17. Substrate optimization for integrated circuit antennas

    OpenAIRE

    Alexopoulos, N. G.; Katehi, P. B.; Rutledge, D. B.

    1982-01-01

    Imaging systems in microwaves, millimeter and submillimeter wave applications employ printed circuit antenna elements. The effect of substrate properties is analyzed in this paper by both reciprocity theorem as well as integral equation approach for infinitesimally short as well as finite length dipole and slot elements. Radiation efficiency and substrate surface wave guidance is studied for practical substrate materials as GaAs, Silicon, Quartz and Duroid.

  18. Minimizing time for test in integrated circuit

    OpenAIRE

    Andonova, A. S.; Dimitrov, D. G.; Atanasova, N. G.

    2004-01-01

    The cost for testing integrated circuits represents a growing percentage of the total cost for their production. The former strictly depends on the length of the test session, and its reduction has been the target of many efforts in the past. This paper proposes a new method for reducing the test length by adopting a new architecture and exploiting an evolutionary optimisation algorithm. A prototype of the proposed approach was tested on 1SCAS standard benchmarks and theexperimental results s...

  19. Viewing Integrated-Circuit Interconnections By SEM

    Science.gov (United States)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  20. RD53A Integrated Circuit Specifications

    OpenAIRE

    Garcia-Sciveres, Mauricio

    2015-01-01

    Specifications for the RD53 collaboration’s first engineering wafer run of an integrated circuit (IC) for hybrid pixel detector readout, called RD53A. RD53A is intended to demonstrate in a large format IC the suitability of the technology (including radiation tolerance), the stable low threshold operation, and the high hit and trigger rate capabilities, required for HL-LHC upgrades of ATLAS and CMS. The wafer scale production will permit the experiments to prototype bump bonding assembly with...

  1. The RD53A Integrated Circuit

    CERN Document Server

    Garcia-Sciveres, Maurice

    2017-01-01

    Implementation details for the RD53A pixel readout integrated circuit designed by the RD53 Collaboration. This is a companion to the specifications document and will eventually become a reference for chip users. RD53A is not intended to be a final production IC for use in an experiment, and contains design variations for testing purposes, making the pixel matrix non-uniform. The chip size is 20.0 mm by 11.8 mm.

  2. Progress in radiation immune thermionic integrated circuits

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs

  3. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  4. Progress in radiation immune thermionic integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, D.K.; McCormick, J.B. (comps.)

    1985-08-01

    This report describes the results of a program directed at evaluating the thermionic integrated circuit (TIC) technology for applicability to military systems. Previous programs under the sponsorship of the Department of Energy, Office of Basic Energy Sciences, have developed an initial TIC technology base and demonstrated operation in high-temperature and high-radiation environments. The program described in this report has two parts: (1) a technical portion in which experiments and analyses were conducted to refine perceptions of near-term as well as ultimate performance levels of the TIC technology and (2) an applications portion in which the technical conclusions were to be evaluated against potential military applications. This report draws several conclusions that strongly suggest that (1) useful radiation-hard/high-temperature operable integrated circuits can be developed using the TIC technology; (2) because of their ability to survive and operate in hostile environments, a variety of potential military applications have been projected for this technology; and (3) based on the above two conclusions, an aggressive TIC development program should be initiated to provide the designers of future systems with integrated circuits and devices with the unique features of the TICs.

  5. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  6. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  7. Radiation sensitivity of integrated circuits Pt. 1

    International Nuclear Information System (INIS)

    Bereczkine Kerenyi, Ilona

    1986-01-01

    The cosmic ray sensitivity of CMOS integrated circuits are overviewed in three parts. The aim is to analyze the effects of ionizing radiation on the degradation of electronic parameters, the effects of the electric state during irradiation, and the radiation hardening of ICs. In this Part 1 a general introduction of the response of semiconductors to cosmic radiation is given, and the radiation tolerance and hardening of small-scale integrated CMOS ICs is analyzed in detail. The devices include various basic inverters and simple gate ICs. (R.P.)

  8. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  9. 2nd generation ASICs for CALICE/EUDET calorimeters

    International Nuclear Information System (INIS)

    Dulucq, F; Fleury, J; La Taille, C de; Martin-Chassard, G; Raux, L; Seguin-Moreau, N

    2009-01-01

    Imaging calorimetry depends heavily on the development of high performance, highly integrated readout ASICs embedded inside the detector which readout the millions of foreseen channels. Suitable ASICs prototypes have been fabricated in 2006-2007 and show good preliminary performance.

  10. Specification of requirements for the implementation of ASICs and FPGA in instrumentation and control systems important to safety in German NPPs

    International Nuclear Information System (INIS)

    Schnurer, G.

    2007-01-01

    This paper gives an overview concerning the design as well as the verification and validation of Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays (FPGA) in German NPPs which are applied to carry out I and C functions. The qualification procedures dealt with restricted on ASICs without any microcontroller core. Dependent on the different safety categories, recommendations concerning the qualification level and procedures are elaborated which have to be achieved for ASICs and FPGA. Important aspects within the framework of the expert judgement for upgrading of safety relevant I and C by ASICs and FPGA are dealt with. These aspects are of general character and are mainly focused on suitability test procedures and robustness requirements of ASICs and FPGA

  11. Mouldable all-carbon integrated circuits.

    Science.gov (United States)

    Sun, Dong-Ming; Timmermans, Marina Y; Kaskela, Antti; Nasibulin, Albert G; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I; Ohno, Yutaka

    2013-01-01

    A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027 cm(2) V(-1) s(-1) and an ON/OFF ratio of 10(5). The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.

  12. Vacuum die attach for integrated circuits

    Science.gov (United States)

    Schmitt, E.H.; Tuckerman, D.B.

    1991-09-10

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.

  13. Integrated Circuits for Analog Signal Processing

    CERN Document Server

    2013-01-01

      This book presents theory, design methods and novel applications for integrated circuits for analog signal processing.  The discussion covers a wide variety of active devices, active elements and amplifiers, working in voltage mode, current mode and mixed mode.  This includes voltage operational amplifiers, current operational amplifiers, operational transconductance amplifiers, operational transresistance amplifiers, current conveyors, current differencing transconductance amplifiers, etc.  Design methods and challenges posed by nanometer technology are discussed and applications described, including signal amplification, filtering, data acquisition systems such as neural recording, sensor conditioning such as biomedical implants, actuator conditioning, noise generators, oscillators, mixers, etc.   Presents analysis and synthesis methods to generate all circuit topologies from which the designer can select the best one for the desired application; Includes design guidelines for active devices/elements...

  14. Multi-channel Waveform Sampling ASIC for radiation detection and measurement

    International Nuclear Information System (INIS)

    Shimazoe, K.; Takahashi, H.; Yeom, J.Y.; Furumiya, T.; Ohi, J.

    2013-01-01

    We have designed and fabricated a 16-channel Waveform Sampling ASIC for radiation detection and measurement. Waveform sampling is very important for the pulse shape analysis and discrimination, which is often used in radiation detection to discriminate different radiations such as alpha, beta and gamma rays. One channel of the fabricated ASIC consists of a charge-sensitive preamplifier, a VGA (Variable Gain Amplifier), an ADC (Analog to Digital Converter) and digital circuits. The preamplifier converts the current signal to the voltage signal, and the VGA amplifies the signal to appropriate level for the ADC. The ADC was designed to digitize the waveform with a frequency of 100 MHz and a resolution of 6bits. Digital circuits consist of a free-running ADC and a multiplexer which were designed to convert a digitized 100 MHz/6bit signal to a 200 MHz/3bit one, which is effective for the reduction of the number and for the achievement of the high integration in one chip. This chip was designed and fabricated with 0.35 μm CMOS technology by ROHM and the size of the ASIC is 4.9 mm by 4.9 mm. The design concept and some experimental results are shown in this paper. -- Highlights: ► Waveform sampling (WS) ASIC is newly developed for pulse shape discrimination. ► WS ASIC can be used for radiation measurement and discrimination. ► WS ASIC is fabricated by submicron CMOS technology for 5 mm × 5 mm area. ► WS ASIC achieves high integration and can be used in very limited space

  15. Thermoelectricity from wasted heat of integrated circuits

    KAUST Repository

    Fahad, Hossain M.

    2012-05-22

    We demonstrate that waste heat from integrated circuits especially computer microprocessors can be recycled as valuable electricity to power up a portion of the circuitry or other important accessories such as on-chip cooling modules, etc. This gives a positive spin to a negative effect of ever increasing heat dissipation associated with increased power consumption aligned with shrinking down trend of transistor dimension. This concept can also be used as an important vehicle for self-powered systemson- chip. We provide theoretical analysis supported by simulation data followed by experimental verification of on-chip thermoelectricity generation from dissipated (otherwise wasted) heat of a microprocessor.

  16. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  17. Organic membrane photonic integrated circuits (OMPICs).

    Science.gov (United States)

    Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa

    2017-08-07

    We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.

  18. Testing Fixture For Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, Robert; Shalkhauser, Kurt

    1989-01-01

    Testing fixture facilitates radio-frequency characterization of microwave and millimeter-wave integrated circuits. Includes base onto which two cosine-tapered ridge waveguide-to-microstrip transitions fastened. Length and profile of taper determined analytically to provide maximum bandwidth and minimum insertion loss. Each cosine taper provides transformation from high impedance of waveguide to characteristic impedance of microstrip. Used in conjunction with automatic network analyzer to provide user with deembedded scattering parameters of device under test. Operates from 26.5 to 40.0 GHz, but operation extends to much higher frequencies.

  19. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  20. Accelerating functional verification of an integrated circuit

    Science.gov (United States)

    Deindl, Michael; Ruedinger, Jeffrey Joseph; Zoellin, Christian G.

    2015-10-27

    Illustrative embodiments include a method, system, and computer program product for accelerating functional verification in simulation testing of an integrated circuit (IC). Using a processor and a memory, a serial operation is replaced with a direct register access operation, wherein the serial operation is configured to perform bit shifting operation using a register in a simulation of the IC. The serial operation is blocked from manipulating the register in the simulation of the IC. Using the register in the simulation of the IC, the direct register access operation is performed in place of the serial operation.

  1. Long-wavelength III-V/silicon photonic integrated circuits

    NARCIS (Netherlands)

    Roelkens, G.C.; Kuyken, B.; Leo, F.; Hattasan, N.; Ryckeboer, E.M.P.; Muneeb, M.; Hu, C.L.; Malik, A.; Hens, Z.; Baets, R.G.F.; Shimura, Y.; Gencarelli, F.; Vincent, B.; Loo, van de R.; Verheyen, P.A.; Lepage, G.; Campenhout, van J.; Cerutti, L.; Rodriquez, J.B.; Tournie, E.; Chen, X; Nedeljkovic, G.; Mashanovich, G.; Liu, X.; Green, W.S.

    2013-01-01

    We review our work in the field of short-wave infrared and mid-infrared photonic integrated circuits for applications in spectroscopic sensing systems. Passive silicon waveguide circuits, GeSn photodetectors, the integration of III-V and IV-VI semiconductors on these circuits, and silicon nonlinear

  2. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  3. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  4. A new approach of optimization procedure for superconducting integrated circuits

    International Nuclear Information System (INIS)

    Saitoh, K.; Soutome, Y.; Tarutani, Y.; Takagi, K.

    1999-01-01

    We have developed and tested a new circuit simulation procedure for superconducting integrated circuits which can be used to optimize circuit parameters. This method reveals a stable operation region in the circuit parameter space in connection with the global bias margin by means of a contour plot of the global bias margin versus the circuit parameters. An optimal set of parameters with margins larger than these of the initial values has been found in the stable region. (author)

  5. A Low-Power Correlator ASIC for Arrays with Many Antennas

    Science.gov (United States)

    D'Addario, Larry R.; Wang, Douglas

    2016-01-01

    We report the design of a new application-specific integrated circuit (ASIC) for use in radio telescope correlators. It supports the construction of correlators for an arbitrarily large number of signals. The ASIC uses an intrinsically low-power architecture along with design techniques and a process that together result in unprecedentedly low power consumption. The design is flexible in that it can support telescopes with almost any number of antennas N. It is intended for use in an "FX" correlator, where a uniform filter bank breaks each signal into separate frequency channels prior to correlation.

  6. Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector

    Science.gov (United States)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2014-10-01

    An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.

  7. Macromodels of digital integrated circuits for program packages of circuit engineering design

    Science.gov (United States)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  8. A Framework for Robust Multivariable Optimization of Integrated Circuits in Space Applications

    Science.gov (United States)

    DuMonthier, Jeffrey; Suarez, George

    2013-01-01

    Application Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the

  9. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    Science.gov (United States)

    2017-03-01

    Despite all actions and concerns, this problem continues to escalate due to offshore fabrication of the integrated circuits ICs [1]. In order to...diagnosis and fault isolation in ICs, as well as the characterization of the functionality of ICs including malicious circuitry. Integrated circuits ...Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits   contains the RF-switch matrix and broad-band (BB) low noise amplifiers (LNAs

  10. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  11. Multi-channel integrated circuits for the detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Engel, G.L.; Duggireddi, N.; Vangapally, V.; Elson, J.M.; Sobotka, L.G.; Charity, R.J.

    2011-01-01

    The Integrated Circuits (IC) Design Research Laboratory at Southern Illinois University Edwardsville (SIUE) has collaborated with the Nuclear Reactions Group at Washington University (WU) to develop a family of multi-channel integrated circuits. To date, the collaboration has successfully produced two micro-chips. The first was an analog shaped and peak sensing chip with on-board constant-fraction discriminators and sparsified readout. This chip is known as Heavy-Ion Nuclear Physics-16 Channel (HINP16C). The second chip, christened PSD8C, was designed to logically complement (in terms of detector types) the HINP16C chip. Pulse Shape Discrimination-8 Channel (PSD8C), featuring three settable charge integration windows per channel, performs pulse shape discrimination (PSD). This paper summarizes the design, capabilities, and features of the HINP16C and PSD8C ICs. It proceeds to discuss the modifications, made to the ICs and their associated systems, which have attempted to improve ease of use, increase performance, and extend capabilities. The paper concludes with a brief discussion of what may be the next chip (employing a multi-sampling scheme) to be added to our CMOS ASIC 'tool box' for radiation detection instrumentation.

  12. Superconducting power distribution structure for integrated circuits

    International Nuclear Information System (INIS)

    Ruby, R.C.

    1991-01-01

    This patent describes a superconducting power distribution structure for an integrated circuit. It comprises a first superconducting capacitor plate; a second superconducting capacitor plate provided with electrical isolation means within the second capacitor plate; dielectric means separating the first capacitor plate from the second capacitor plate; first via means coupled at a first end to the first capacitor plate and extending through the dielectric and the electrical isolation means of the second capacitor plate; first contact means coupled to a second end of the first via means; and second contact means coupled to the second capacitor plate such that the first contact means and the second contact means are accessible from the same side of the second capacitor plate

  13. Integrated optical circuits for numerical computation

    Science.gov (United States)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  14. Parallel Jacobi EVD Methods on Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Chi-Chia Sun

    2014-01-01

    Full Text Available Design strategies for parallel iterative algorithms are presented. In order to further study different tradeoff strategies in design criteria for integrated circuits, A 10 × 10 Jacobi Brent-Luk-EVD array with the simplified μ-CORDIC processor is used as an example. The experimental results show that using the μ-CORDIC processor is beneficial for the design criteria as it yields a smaller area, faster overall computation time, and less energy consumption than the regular CORDIC processor. It is worth to notice that the proposed parallel EVD method can be applied to real-time and low-power array signal processing algorithms performing beamforming or DOA estimation.

  15. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  16. RD53A Integrated Circuit Specifications

    CERN Document Server

    Garcia-Sciveres, Mauricio

    2015-01-01

    Specifications for the RD53 collaboration’s first engineering wafer run of an integrated circuit (IC) for hybrid pixel detector readout, called RD53A. RD53A is intended to demonstrate in a large format IC the suitability of the technology (including radiation tolerance), the stable low threshold operation, and the high hit and trigger rate capabilities, required for HL-LHC upgrades of ATLAS and CMS. The wafer scale production will permit the experiments to prototype bump bonding assembly with realistic sensors in this new technology and to measure the performance of hybrid assemblies. RD53A is not intended to be a final production IC for use in an experiment, and will contain design variations for testing purposes, making the pixel matrix non-uniform.

  17. MIMIC For Millimeter Wave Integrated Circuit Radars

    Science.gov (United States)

    Seashore, C. R.

    1987-09-01

    A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.

  18. Photonic integrated circuits: new challenges for lithography

    Science.gov (United States)

    Bolten, Jens; Wahlbrink, Thorsten; Prinzen, Andreas; Porschatis, Caroline; Lerch, Holger; Giesecke, Anna Lena

    2016-10-01

    In this work routes towards the fabrication of photonic integrated circuits (PICs) and the challenges their fabrication poses on lithography, such as large differences in feature dimension of adjacent device features, non-Manhattan-type features, high aspect ratios and significant topographic steps as well as tight lithographic requirements with respect to critical dimension control, line edge roughness and other key figures of merit not only for very small but also for relatively large features, are highlighted. Several ways those challenges are faced in today's low-volume fabrication of PICs, including the concept multi project wafer runs and mix and match approaches, are presented and possible paths towards a real market uptake of PICs are discussed.

  19. Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection

    CERN Document Server

    Despeisse, M; Jarron, P; Kaplon, J; Moraes, D; Nardulli, A; Powolny, F; Wyrsch, N

    2008-01-01

    Radiation detectors based on the deposition of a 10 to 30 mum thick hydrogenated amorphous silicon (a-Si:H) sensor directly on top of integrated circuits have been developed. The performance of this detector technology has been assessed for the first time in the context of particle detectors. Three different circuits were designed in a quarter micron CMOS technology for these studies. The so-called TFA (Thin-Film on ASIC) detectors obtained after deposition of a-Si:H sensors on the developed circuits are presented. High internal electric fields (104 to 105 V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in this amorphous material. However, the deposited sensor's leakage current at such fields turns out to be an important parameter which limits the performance of a TFA detector. Its detailed study is presented as well as the detector's pixel segmentation. Signal induction by generated free carrier motion in the a-Si:H sensor has been characterized using a 660 nm pul...

  20. Integrated Reconfigurable High-Voltage Transmitting Circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2014-01-01

    -out and measurements are performed on the integrated circuit. The transmitting circuit is reconfigurable externally making it able to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes, pulse voltages up to 100 V, maximum pulse range of 50 V and frequencies up to 5 MHz. The area...

  1. Adaptive control of power supply for integrated circuits

    NARCIS (Netherlands)

    2012-01-01

    The present invention relates to a circuit arrangement and method for controlling power supply in an integrated circuit wherein at least one working parameter of at least one electrically isolated circuit region (10) is monitored, and the conductivity of a variable resistor means is locally

  2. FF-EMU: a radiation tolerant ASIC for the distribution of timing, trigger and control signals in the CMS End-Cap Muon detector

    International Nuclear Information System (INIS)

    Campagnari, C; Costantino, N; Magazzù, G; Tongiani, Claudio

    2012-01-01

    A radiation tolerant integrated circuit for the distribution of clock, trigger and control signals in the Front-End electronics of the CMS End-Cap Muon detector has been developed in the IBM CMOS 130nm technology. The circuit houses transmitter and receiver interfaces to serial links implementing the FF-LYNX protocol that allows the integrated transmission of triggers and data frames with different latency constraints. Encoder and decoder modules associate signal transitions to FF-LYNX frames. The system and the ASIC architecture and behavior and the results of test and characterization of the ASIC prototypes will be presented.

  3. CMOS digital integrated circuits a first course

    CERN Document Server

    Hawkins, Charles; Zarkesh-Ha, Payman

    2016-01-01

    This book teaches the fundamentals of modern CMOS technology and covers equal treatment to both types of MOSFET transistors that make up computer circuits; power properties of logic circuits; physical and electrical properties of metals; introduction of timing circuit electronics and introduction of layout; real-world examples and problem sets.

  4. Energy-efficient neuron, synapse and STDP integrated circuits.

    Science.gov (United States)

    Cruz-Albrecht, Jose M; Yung, Michael W; Srinivasa, Narayan

    2012-06-01

    Ultra-low energy biologically-inspired neuron and synapse integrated circuits are presented. The synapse includes a spike timing dependent plasticity (STDP) learning rule circuit. These circuits have been designed, fabricated and tested using a 90 nm CMOS process. Experimental measurements demonstrate proper operation. The neuron and the synapse with STDP circuits have an energy consumption of around 0.4 pJ per spike and synaptic operation respectively.

  5. Heavy ions testing experimental results on programmable integrated circuits

    International Nuclear Information System (INIS)

    Velazco, R.; Provost-Grellier, A.

    1988-01-01

    The natural radiation environment in space has been shown to produce anomalies in satellite-borne microelectronics. It becomes then mandatory to define qualification strategies allowing to choose the less vulnerable circuits. In this paper, is presented a strategy devoted to one of the most critical effects, the soft errors (so called upset). The method addresses programmable integrated circuits i.e. circuits able to execute an instruction or command set. Experimental results on representative circuits will illustrate the approach. 11 refs [fr

  6. Reverse Engineering Camouflaged Sequential Integrated Circuits Without Scan Access

    OpenAIRE

    Massad, Mohamed El; Garg, Siddharth; Tripunitara, Mahesh

    2017-01-01

    Integrated circuit (IC) camouflaging is a promising technique to protect the design of a chip from reverse engineering. However, recent work has shown that even camouflaged ICs can be reverse engineered from the observed input/output behaviour of a chip using SAT solvers. However, these so-called SAT attacks have so far targeted only camouflaged combinational circuits. For camouflaged sequential circuits, the SAT attack requires that the internal state of the circuit is controllable and obser...

  7. Femtosecond Resolution Timing in Multi-GS/s Waveform Digitizing ASICs

    Science.gov (United States)

    Orel, Peter; Varner, Gary S.

    2017-07-01

    A waveform digitizer with high-resolution timing provides with the possibility of a novel approach to vertex detectors for high-luminosity particle colliders. Present efforts are centered on the development of an application specific integrated circuit (ASIC) intended to measure signal arrival times with timing resolution in the range of 100 fs or less. The design of such an ASIC requires very good understanding of the effects that impact the timing resolution. This paper presents the simulation results that clearly identify and quantify the sources of error and the underlying coupling mechanisms. In addition, a synthetic waveform generator, developed solely for this purpose, is presented and validated through the measurement results. Crucial knowledge, insights, and confidence have been gained for the development of the ASIC or any other fast, wideband RF systems that aim to achieve such performance.

  8. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  9. Silicon carbide MOSFET integrated circuit technology

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.M.; Downey, E.; Ghezzo, M.; Kretchmer, J.; Krishnamurthy, V.; Hennessy, W.; Michon, G. [General Electric Co., Schenectady, NY (United States). Corporate Research and Development Center

    1997-07-16

    The research and development activities carried out to demonstrate the status of MOS planar technology for the manufacture of high temperature SiC ICs will be described. These activities resulted in the design, fabrication and demonstration of the World`s first SiC analog IC - a monolithic MOSFET operational amplifier. Research tasks required for the development of a planar SiC MOSFET IC technology included characterization of the SiC/SiO{sub 2} interface using thermally grown oxides: high temperature (350 C) reliability studies of thermally grown oxides: ion implantation studies of donor (N) and acceptor (B) dopants to form junction diodes: epitaxial layer characterization: N channel inversion and depletion mode MOSFETs; device isolation methods and finally integrated circuit design, fabrication and testing of the World`s first monolithic SiC operational amplifier IC. These studies defined a SiC n-channel depletion mode MOSFET IC technology and outlined tasks required to improve all types of SiC devices. For instance, high temperature circuit drift instabilities at 350 C were discovered and characterized. This type of instability needs to be understood and resolved because it affects the high temperature reliability of other types of SiC devices. Improvements in SiC wafer surface quality and the use of deposited oxides instead of thermally grown SiO{sub 2} gate dielectrics will probably be required for enhanced reliability. The slow reverse recovery time exhibited by n{sup +}-p diodes formed by N ion implantation is a problem that needs to be resolved for all types of planar bipolar devices. The reproducibility of acceptor implants needs to be improved before CMOS ICs and many types of power device structures will be manufacturable. (orig.) 51 refs.

  10. Wide-band polarization controller for Si photonic integrated circuits.

    Science.gov (United States)

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  11. A 4×8-Gbps VCSEL array driver ASIC and integration with a custom array transmitter module for the LHC front-end transmission

    International Nuclear Information System (INIS)

    Guo, Di; Liu, Chonghan; Chen, Jinghong; Chramowicz, John; Gong, Datao; He, Huiqin; Hou, Suen; Liu, Tiankuan; Prosser, Alan; Teng, Ping-Kun; Xiang, Annie C.; Xiao, Le; Ye, Jingbo

    2016-01-01

    This paper describes the design, fabrication and experiment results of a 4×8-Gbps Vertical-Cavity Surface-Emitting Laser (VCSEL) array driver ASIC with the adjustable active-shunt peaking technique and the novel balanced output structure under the Silicon-on-Sapphire (SOS) process, and a custom array optical transmitter module, featuring a compact size of 10 mm×15 mm×5.3 mm. Both the array driver ASIC and the module have been fully tested after integration as a complete parallel transmitter. Optical eye diagram of each channel passes the eye mask at 8 Gbps/ch with adjacent channel working simultaneously with a power consumption of 150 mW/ch. The optical transmission of Bit-Error Rate (BER) less than 10E-12 is achieved at an aggregated data rate of 4×8-Gbps. - Highlights: • An anode-driven VCSEL Array driver ASIC with the configurable active-shunt peaking technique in pre-driving stages. • A novel full-differential balanced output structure is used to minimize the noise and crosstalk from the power. • A custom array optical transmitter module with custom low-cost reliable alignment method.

  12. A 4×8-Gbps VCSEL array driver ASIC and integration with a custom array transmitter module for the LHC front-end transmission

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Di [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei Anhui 230026 (China); Liu, Chonghan [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Chen, Jinghong [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004 (United States); Chramowicz, John [Real-Time Systems Engineering Department, Fermi National Laboratory, Batavia, IL 60510 (United States); Gong, Datao [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); He, Huiqin [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Shenzhen Polytechnic, Shenzhen 518055 (China); Hou, Suen [Institute of Physics, Academia Sinica, Nangang 11529, Taipei, Taiwan (China); Liu, Tiankuan [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Prosser, Alan [Real-Time Systems Engineering Department, Fermi National Laboratory, Batavia, IL 60510 (United States); Teng, Ping-Kun [Institute of Physics, Academia Sinica, Nangang 11529, Taipei, Taiwan (China); Xiang, Annie C. [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Xiao, Le [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Department of Physics, Central China Normal University, Wuhan, Hubei 430079 (China); Ye, Jingbo [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States)

    2016-09-21

    This paper describes the design, fabrication and experiment results of a 4×8-Gbps Vertical-Cavity Surface-Emitting Laser (VCSEL) array driver ASIC with the adjustable active-shunt peaking technique and the novel balanced output structure under the Silicon-on-Sapphire (SOS) process, and a custom array optical transmitter module, featuring a compact size of 10 mm×15 mm×5.3 mm. Both the array driver ASIC and the module have been fully tested after integration as a complete parallel transmitter. Optical eye diagram of each channel passes the eye mask at 8 Gbps/ch with adjacent channel working simultaneously with a power consumption of 150 mW/ch. The optical transmission of Bit-Error Rate (BER) less than 10E-12 is achieved at an aggregated data rate of 4×8-Gbps. - Highlights: • An anode-driven VCSEL Array driver ASIC with the configurable active-shunt peaking technique in pre-driving stages. • A novel full-differential balanced output structure is used to minimize the noise and crosstalk from the power. • A custom array optical transmitter module with custom low-cost reliable alignment method.

  13. Topology Optimization of Building Blocks for Photonic Integrated Circuits

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    Photonic integrated circuits are likely candidates as high speed replacements for the standard electrical integrated circuits of today. However, in order to obtain a satisfactorily performance many design prob- lems that up until now have resulted in too high losses must be resolved. In this work...... we demonstrate how the method of topology optimization can be used to design a variety of high performance building blocks for the future circuits....

  14. Small Microprocessor for ASIC or FPGA Implementation

    Science.gov (United States)

    Kleyner, Igor; Katz, Richard; Blair-Smith, Hugh

    2011-01-01

    A small microprocessor, suitable for use in applications in which high reliability is required, was designed to be implemented in either an application-specific integrated circuit (ASIC) or a field-programmable gate array (FPGA). The design is based on commercial microprocessor architecture, making it possible to use available software development tools and thereby to implement the microprocessor at relatively low cost. The design features enhancements, including trapping during execution of illegal instructions. The internal structure of the design yields relatively high performance, with a significant decrease, relative to other microprocessors that perform the same functions, in the number of microcycles needed to execute macroinstructions. The problem meant to be solved in designing this microprocessor was to provide a modest level of computational capability in a general-purpose processor while adding as little as possible to the power demand, size, and weight of a system into which the microprocessor would be incorporated. As designed, this microprocessor consumes very little power and occupies only a small portion of a typical modern ASIC or FPGA. The microprocessor operates at a rate of about 4 million instructions per second with clock frequency of 20 MHz.

  15. VMM3, an ASIC for Micropattern Detectors

    CERN Document Server

    Iakovidis, Georgios; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC). It will be used in the front- end readout electronics of both the Micromegas and sTGC detectors of the New Small Wheel upgrade of the ATLAS experiment at CERN. It is being developed at Brookhaven National Laboratory and fabricated in the 130nm Global Foundries 8RF-DM process (former IBM 8RF- DM). The 64 channels ASIC has highly configurable parameters and is able to handle signals of opposite polarities and a high range of capacitances while being low noise and low on power consumption. The VMM has four independent data output paths. First is the “precision” (10-bit) amplitude and (effective) 20-bit time stamp read out continuously (250 ns dead-time per channel) or at when a trigger occurs. Second, a serial output called Address in Real Time (ART). This is the address of the channel which had a signal above threshold within the bunch crossing clock. Third, the parallel prompt outputs from all 64 channels in a variety of selectable formats...

  16. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    International Nuclear Information System (INIS)

    Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele

    2012-01-01

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg −1 . This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25–65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the

  17. Integrated optical switch circuit operating under FPGA control

    NARCIS (Netherlands)

    Stabile, R.; Zal, M.; Williams, K.A.; Bienstman, P.; Morthier, G.; Roelkens, G.; et al., xx

    2011-01-01

    Integrated photonic circuits are enabling an abrupt step change in networking systems providing massive bandwidth and record transmission. The increasing complexity of high connectivity photonic integrated switches requires sophisticated control planes and more intimate high speed electronics. Here

  18. Securing Health Sensing Using Integrated Circuit Metric

    Science.gov (United States)

    Tahir, Ruhma; Tahir, Hasan; McDonald-Maier, Klaus

    2015-01-01

    Convergence of technologies from several domains of computing and healthcare have aided in the creation of devices that can help health professionals in monitoring their patients remotely. An increase in networked healthcare devices has resulted in incidents related to data theft, medical identity theft and insurance fraud. In this paper, we discuss the design and implementation of a secure lightweight wearable health sensing system. The proposed system is based on an emerging security technology called Integrated Circuit Metric (ICMetric) that extracts the inherent features of a device to generate a unique device identification. In this paper, we provide details of how the physical characteristics of a health sensor can be used for the generation of hardware “fingerprints”. The obtained fingerprints are used to deliver security services like authentication, confidentiality, secure admission and symmetric key generation. The generated symmetric key is used to securely communicate the health records and data of the patient. Based on experimental results and the security analysis of the proposed scheme, it is apparent that the proposed system enables high levels of security for health monitoring in resource optimized manner. PMID:26492250

  19. Counterfeit integrated circuits detection and avoidance

    CERN Document Server

    Tehranipoor, Mark (Mohammad); Forte, Domenic

    2015-01-01

    This timely and exhaustive study offers a much-needed examination of the scope and consequences of the electronic counterfeit trade.  The authors describe a variety of shortcomings and vulnerabilities in the electronic component supply chain, which can result in counterfeit integrated circuits (ICs).  Not only does this book provide an assessment of the current counterfeiting problems facing both the public and private sectors, it also offers practical, real-world solutions for combatting this substantial threat.   ·      Helps beginners and practitioners in the field by providing a comprehensive background on the counterfeiting problem; ·      Presents innovative taxonomies for counterfeit types, test methods, and counterfeit defects, which allows for a detailed analysis of counterfeiting and its mitigation; ·      Provides step-by-step solutions for detecting different types of counterfeit ICs; ·      Offers pragmatic and practice-oriented, realistic solutions to counterfeit IC d...

  20. Securing Health Sensing Using Integrated Circuit Metric

    Directory of Open Access Journals (Sweden)

    Ruhma Tahir

    2015-10-01

    Full Text Available Convergence of technologies from several domains of computing and healthcare have aided in the creation of devices that can help health professionals in monitoring their patients remotely. An increase in networked healthcare devices has resulted in incidents related to data theft, medical identity theft and insurance fraud. In this paper, we discuss the design and implementation of a secure lightweight wearable health sensing system. The proposed system is based on an emerging security technology called Integrated Circuit Metric (ICMetric that extracts the inherent features of a device to generate a unique device identification. In this paper, we provide details of how the physical characteristics of a health sensor can be used for the generation of hardware “fingerprints”. The obtained fingerprints are used to deliver security services like authentication, confidentiality, secure admission and symmetric key generation. The generated symmetric key is used to securely communicate the health records and data of the patient. Based on experimental results and the security analysis of the proposed scheme, it is apparent that the proposed system enables high levels of security for health monitoring in resource optimized manner.

  1. Designing TSVs for 3D Integrated Circuits

    CERN Document Server

    Khan, Nauman

    2013-01-01

    This book explores the challenges and presents best strategies for designing Through-Silicon Vias (TSVs) for 3D integrated circuits.  It describes a novel technique to mitigate TSV-induced noise, the GND Plug, which is superior to others adapted from 2-D planar technologies, such as a backside ground plane and traditional substrate contacts. The book also investigates, in the form of a comparative study, the impact of TSV size and granularity, spacing of C4 connectors, off-chip power delivery network, shared and dedicated TSVs, and coaxial TSVs on the quality of power delivery in 3-D ICs. The authors provide detailed best design practices for designing 3-D power delivery networks.  Since TSVs occupy silicon real-estate and impact device density, this book provides four iterative algorithms to minimize the number of TSVs in a power delivery network. Unlike other existing methods, these algorithms can be applied in early design stages when only functional block- level behaviors and a floorplan are available....

  2. Securing health sensing using integrated circuit metric.

    Science.gov (United States)

    Tahir, Ruhma; Tahir, Hasan; McDonald-Maier, Klaus

    2015-10-20

    Convergence of technologies from several domains of computing and healthcare have aided in the creation of devices that can help health professionals in monitoring their patients remotely. An increase in networked healthcare devices has resulted in incidents related to data theft, medical identity theft and insurance fraud. In this paper, we discuss the design and implementation of a secure lightweight wearable health sensing system. The proposed system is based on an emerging security technology called Integrated Circuit Metric (ICMetric) that extracts the inherent features of a device to generate a unique device identification. In this paper, we provide details of how the physical characteristics of a health sensor can be used for the generation of hardware "fingerprints". The obtained fingerprints are used to deliver security services like authentication, confidentiality, secure admission and symmetric key generation. The generated symmetric key is used to securely communicate the health records and data of the patient. Based on experimental results and the security analysis of the proposed scheme, it is apparent that the proposed system enables high levels of security for health monitoring in resource optimized manner.

  3. Test of a 32-channel Prototype ASIC for Photon Counting Application.

    Science.gov (United States)

    Chen, Y; Cui, Y; O'Connor, P; Seo, Y; Camarda, G S; Hossain, A; Roy, U; Yang, G; James, R B

    2015-01-01

    A new low-power application-specific integrated circuit (ASIC) for Cadmium Zinc Telluride (CZT) detectors for single-photon emission computed tomography (SPECT) application is being developed at BNL. As the first step, a 32-channel prototype ASIC was designed and tested recently. Each channel has a preamplifier followed by CR-RC 3 shaping circuits and three independent energy bins with comparators and 16-bit counters. The ASIC was fabricated with TSMC 0.35-μm complementary metal-oxide-semiconductor (CMOS) process and tested in laboratories. The power consumption is around 1 mW/ch with a 2.5-V supply. With a gain of 400 mV/fC and the peaking time of 500 ns, the equivalent noise charge (ENC) of 360 e- has been measured in room temperature while the crosstalk rate is less than 0.3%. The 10-bit DACs for global thresholds have an integral nonlinearity (INL) less than 0.56% and differential nonlinearity (DNL) less than 0.33%. In the presentation, we will report the detailed test results with this ASIC.

  4. F-Paris: integrated electronic circuits [Tender

    CERN Multimedia

    2003-01-01

    "Fourniture, montage et tests des circuits imprimes et modules multi composants pour le trajectographe central de CMS. Maximum de 12 000 circuits imprimes et modules multi-composants necessaires au trajectographe central de l'experience CMS aupres du Large Hadron Collider" (1 page).

  5. Precise linear gating circuit on integrated microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Butskii, V.V.; Vetokhin, S.S.; Reznikov, I.V.

    Precise linear gating circuit on four microcircuits is described. A basic flowsheet of the gating circuit is given. The gating circuit consists of two input differential cascades total load of which is two current followers possessing low input and high output resistances. Follower outlets are connected to high ohmic dynamic load formed with a current source which permits to get high amplification (>1000) at one cascade. Nonlinearity amounts to <0.1% in the range of input signal amplitudes of -10-+10 V. Front duration for an output signal with 10 V amplitude amounts to 100 ns. Attenuation of input signal with a closed gating circuit is 60 db. The gating circuits described is used in the device intended for processing of scintillation sensor signals.

  6. Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration

    Science.gov (United States)

    Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.

    2018-01-01

    Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.

  7. Very Low-Power Consumption Analog Pulse Processing ASIC for Semiconductor Radiation Detectors

    International Nuclear Information System (INIS)

    Wessendorf, K.O.; Lund, J.C.; Brunett, B.A.; Laguna, G.R.; Clements, J.W.

    1999-01-01

    We describe a very-low power consumption circuit for processing the pulses from a semiconductor radiation detector. The circuit was designed for use with a cadmium zinc telluride (CZT) detector for unattended monitoring of stored nuclear materials. The device is intended to be battery powered and operate at low duty-cycles over a long period of time. This system will provide adequate performance for medium resolution gamma-ray pulse-height spectroscopy applications. The circuit incorporates the functions of a charge sensitive preamplifier, shaping amplifier, and peak sample and hold circuit. An application specific integrated circuit (ASIC) version of the design has been designed, built and tested. With the exception of the input field effect transistor (FET), the circuit is constructed using bipolar components. In this paper the design philosophy and measured performance characteristics of the circuit are described

  8. Computer-aided engineering of semiconductor integrated circuits

    Science.gov (United States)

    Meindl, J. D.; Dutton, R. W.; Gibbons, J. F.; Helms, C. R.; Plummer, J. D.; Tiller, W. A.; Ho, C. P.; Saraswat, K. C.; Deal, B. E.; Kamins, T. I.

    1980-07-01

    Economical procurement of small quantities of high performance custom integrated circuits for military systems is impeded by inadequate process, device and circuit models that handicap low cost computer aided design. The principal objective of this program is to formulate physical models of fabrication processes, devices and circuits to allow total computer-aided design of custom large-scale integrated circuits. The basic areas under investigation are (1) thermal oxidation, (2) ion implantation and diffusion, (3) chemical vapor deposition of silicon and refractory metal silicides, (4) device simulation and analytic measurements. This report discusses the fourth year of the program.

  9. Integrated differential high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Farch, Kjartan

    2015-01-01

    In this paper an integrated differential high-voltage transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is designed and implemented in a 0.35 μm high-voltage process. Measurements are performed on the integrated circuit in order...... to assess its performance. The circuit generates pulses at differential voltage levels of 60V, 80V and 100 V, a frequency up to 5MHz and a measured driving strength of 1.75 V/ns with the CMUT connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption...

  10. Design of 3D integrated circuits and systems

    CERN Document Server

    Sharma, Rohit

    2014-01-01

    Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and sys

  11. Design for ASIC reliability for low-temperature applications

    Science.gov (United States)

    Chen, Yuan; Mojaradi, Mohammad; Westergard, Lynett; Billman, Curtis; Cozy, Scott; Burke, Gary; Kolawa, Elizabeth

    2005-01-01

    In this paper, we present a methodology to design for reliability for low temperature applications without requiring process improvement. The developed hot carrier aging lifetime projection model takes into account both the transistor substrate current profile and temperature profile to determine the minimum transistor size needed in order to meet reliability requirements. The methodology is applicable for automotive, military, and space applications, where there can be varying temperature ranges. A case study utilizing this methodology is given to design for reliability into a custom application-specific integrated circuit (ASIC) for a Mars exploration mission.

  12. Parallel sparse direct solver for integrated circuit simulation

    CERN Document Server

    Chen, Xiaoming; Yang, Huazhong

    2017-01-01

    This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques. · Introduces complicated algorithms of sparse linear solvers, using concise principles and simple examples, without complex theory or lengthy derivations; · Describes a parallel sparse direct solver that can be adopted to accelerate any SPICE-like integrated circuit simulato...

  13. ARTROC—a readout ASIC for GEM-based full-field XRF imaging system

    Science.gov (United States)

    Fiutowski, T.; Koperny, S.; Łach, B.; Mindur, B.; Świentek, K.; Wiącek, P.; Dąbrowski, W.

    2017-12-01

    In the paper we report on development of an Application Specific Integrated Circuit (ASIC), called ARTROC, being part of a full-field X-ray fluorescence spectroscopy (XRF) imaging system equipped with a standard three stage Gas Electron Multiplier (GEM) detector of 10×10 cm2 area. The ARTROC consists of 64 independent channels, allowing for simultaneous recording of the amplitudes (energy sub-channel) and time stamps (timing sub-channel) of incoming signals. Thanks to the implemented token-based read out of derandomizing buffers, the ASIC also provides data sparsification and full zero suppression. Reconstruction of the hit positions is performed in an external data acquisition system by matching the time stamps of signals recorded in X- and Y-strips. The amplitude information is used for centre of gravity finding in clusters of signals on neighbouring strips belonging to the same detection events. The ASIC could work in one of six gain modes and one of two speed modes. In a slower mode the maximum count rate per channel is 105/s while in a faster mode it is three times higher. The ARTROC comprises also input protection circuits against possible random discharges inside active detector volume, so it can be used without any additional input components. The ASIC has been designed in 350 nm CMOS process. The basic functionality and parameters have been evaluated using the testability functions implemented in the ASIC design. The ASIC has been also tested in a fully equipped GEM detector set-up with X-rays source.

  14. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    Science.gov (United States)

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  15. A 1.0 V 78 mircoW reconfigurable ASIC embedded in an intelligent electrode for continuous remote ECG applications.

    Science.gov (United States)

    Yang, Geng; Chen, Jian; Jonsson, Fredrik; Tenhunen, Hannu; Zheng, Li-Rong

    2009-01-01

    In this paper, a reconfigurable, low-power Application Specific Integrated Circuit (ASIC) that extracts and transmits electrocardiograph (ECG) signals is presented. An Intelligent Electrode is introduced which consists of the proposed ASIC and a micro spike array, permitting onsite ECG signal acquisition, processing and transmission. Fabricated in a standard 0.18 microm CMOS process, the ASIC consumes 78 microW with 1.0 V core voltage at 6 MHz operating frequency and only occupies 2.25 mm(2). The tiny silicon size makes it possible and suitable to embed the proposed ASIC into an Intelligent Electrode, and the low power consumption makes it feasible for long term continuous ECG monitoring.

  16. A ±6 ms-Accuracy, 0.68 mm2, and 2.21 μW QRS Detection ASIC

    Directory of Open Access Journals (Sweden)

    Sheng-Chieh Huang

    2012-01-01

    Full Text Available Healthcare issues arose from population aging. Meanwhile, electrocardiogram (ECG is a powerful measurement tool. The first step of ECG is to detect QRS complexes. A state-of-the-art QRS detection algorithm was modified and implemented to an application-specific integrated circuit (ASIC. By the dedicated architecture design, the novel ASIC is proposed with 0.68 mm2 core area and 2.21 μW power consumption. It is the smallest QRS detection ASIC based on 0.18 μm technology. In addition, the sensitivity is 95.65% and the positive prediction of the ASIC is 99.36% based on the MIT/BIH arrhythmia database certification.

  17. Design of front end electronics and a full scale 4k pixel readout ASIC for the DSSC X-ray detector at the European XFEL

    International Nuclear Information System (INIS)

    Erdinger, Florian

    2016-01-01

    The goal of this thesis was to design a large scale readout ASIC for the 1-Mega pixel DEPFET Sensor with Signal Compression (DSSC) detector system which is being developed by an international collaboration for the European XFEL (EuXFEL). Requirements for the DSSC detector include single photon detection down to 0.5 keV combined with a large dynamic range of up to 10000 photons at frame rates of up to 4.5 MHz. The detector core concepts include full parallel readout, signal compression on the sensor or ASIC level, filtering, immediate digitization and local storage within the pixel. The DSSC is a hybrid pixel detector, each sensor pixel mates to a dedicated ASIC pixel, which includes the entire specified signal processing chain along with auxiliary circuits. One ASIC comprises 4096 pixels and a full periphery including biasing and digital control. This thesis presents the design of the ASIC, its components and integration are described in detail. Emphasis is put on the design of the analog front-end. The first full format ASIC (F1) has been fabricated within the scope of this thesis along with numerous test chips. Furthermore, the EuXFEL and the DSSC detector system are presented to create the context for the ASIC, which is the core topic of this thesis.

  18. Design of front end electronics and a full scale 4k pixel readout ASIC for the DSSC X-ray detector at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Erdinger, Florian

    2016-11-22

    The goal of this thesis was to design a large scale readout ASIC for the 1-Mega pixel DEPFET Sensor with Signal Compression (DSSC) detector system which is being developed by an international collaboration for the European XFEL (EuXFEL). Requirements for the DSSC detector include single photon detection down to 0.5 keV combined with a large dynamic range of up to 10000 photons at frame rates of up to 4.5 MHz. The detector core concepts include full parallel readout, signal compression on the sensor or ASIC level, filtering, immediate digitization and local storage within the pixel. The DSSC is a hybrid pixel detector, each sensor pixel mates to a dedicated ASIC pixel, which includes the entire specified signal processing chain along with auxiliary circuits. One ASIC comprises 4096 pixels and a full periphery including biasing and digital control. This thesis presents the design of the ASIC, its components and integration are described in detail. Emphasis is put on the design of the analog front-end. The first full format ASIC (F1) has been fabricated within the scope of this thesis along with numerous test chips. Furthermore, the EuXFEL and the DSSC detector system are presented to create the context for the ASIC, which is the core topic of this thesis.

  19. Timing and control requirements for a 32-channel AMU-ADC ASIC for the PHENIX detector

    International Nuclear Information System (INIS)

    Emery, M.S.; Ericson, M.N.; Britton, C.L. Jr.

    1998-01-01

    A custom CMOS Application Specific Integrated Circuit (ASIC) has been developed consisting of an analog memory unit (AMU) has been developed consisting of an analog memory unit (AMU) and analog to digital converter (ADC), both of which have been designed for applications in the PHENIX experiment. This IC consists of 32 pipes of analog memory with 64 cells per pipe. Each pipe also has its own ADC channel. Timing and control signal requirements for optimum performance are discussed in this paper

  20. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    -division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-oninsulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7x7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror......, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained...

  1. Integrated electric circuit CAD system in Minolta Camera Co. Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, Tsuyoshi; Hirata, Sumiaki; Matsumura, Fumihiko

    1988-08-26

    Development background, fundamental concept, details and future plan of the integrated electric circuit CAD system for OA equipment are presented. The central integrated database is basically intended to store experiences or know-hows, to cover the wide range of data required for designs, and to provide a friendly interface. This easy-to-use integrated database covers the drawing data, parts information, design standards, know-hows and system data. The system contains the circuit design function to support drawing circuit diagrams, the wiring design function to support the wiring and arrangement of printed circuit boards and various parts integratedly, and the function to verify designs, to make full use of parts or technical information, to maintain the system security. In the future, as the system will be wholly in operation, the design period reduction, quality improvement and cost saving will be attained by this integrated design system. (19 figs, 2 tabs)

  2. A full feature FASTBUS slave interface using semicustom integrated circuits

    International Nuclear Information System (INIS)

    Skegg, R.; Daviel, A.; Downing, R.

    1986-01-01

    Two semi-custom integrated circuits have been designed and manufactured which enable the construction of a full featured FASTBUS slave interface without the need for a detailed knowledge of the FASTBUS protocol. A relatively small amount of board space is required compared to implementations using conventional circuits. The semi-custom devices are described in detail, and an application example is given. (orig.)

  3. A multichannel front end ASIC for PMT readout in LHAASO WCDA

    Science.gov (United States)

    Liang, Y.; Zhao, L.; Guo, Y.; Qin, J.; Yang, Y.; Cheng, B.; Liu, S.; An, Q.

    2018-01-01

    Time and charge measurements over a large dynamic range from 1 Photo Electron (P.E.) to 4000 P.E. are required for the Water Cherenkov Detector Array (WCDA), which is one of the key components in the Large High Altitude Air Shower Observatory (LHAASO). To simplify the circuit structure of the readout electronics, a front end ASIC was designed. Based on the charge-to-time conversion method, the output pulse width of the ASIC corresponds to the input signal charge information while time information of the input signal is picked off through a discriminator, and thus the time and charge information can be digitized simultaneously using this ASIC and a following Time-to-Digital Converter (TDC). To address the challenge of mismatch among the channels observed in the previous prototype version, this work presents approaches for analyzing the problem and optimizing the circuits. A new version of the ASIC was designed and fabricated in the GLOBALFOUNDRIES 0.35 μm CMOS technology, which integrates 6 channels (corresponding to the readout of the 3 PMTs) in each chip. The test results indicate that the mismatch between the channels is significantly reduced to less than 20% using the proposed approach. The time measurement resolution better than 300 ps is achieved, and the charge measurement resolution is better than 10% at 1 P.E., and 1% at 4000 P.E., which meets the application requirements.

  4. ASIC design and data communications for the Boston retinal prosthesis.

    Science.gov (United States)

    Shire, Douglas B; Ellersick, William; Kelly, Shawn K; Doyle, Patrick; Priplata, Attila; Drohan, William; Mendoza, Oscar; Gingerich, Marcus; McKee, Bruce; Wyatt, John L; Rizzo, Joseph F

    2012-01-01

    We report on the design and testing of a custom application-specific integrated circuit (ASIC) that has been developed as a key component of the Boston retinal prosthesis. This device has been designed for patients who are blind due to age-related macular degeneration or retinitis pigmentosa. Key safety and communication features of the low-power ASIC are described, as are the highly configurable neural stimulation current waveforms that are delivered to its greater than 256 output electrodes. The ASIC was created using an 0.18 micron Si fabrication process utilizing standard 1.8 volt CMOS transistors as well as 20 volt lightly doped drain FETs. The communication system receives frequency-shift keyed inputs at 6.78 MHz from an implanted secondary coil, and transmits data back to the control unit through a lower-bandwidth channel that employs load-shift keying. The design's safety is ensured by on-board electrode voltage monitoring, stimulus charge limits, error checking of data transmitted to the implant, and comprehensive self-test and performance monitoring features. Each stimulus cycle is initiated by a transmitted word with a full 32-bit error check code. Taken together, these features allow researchers to safely and wirelessly tailor retinal stimulation and vision recovery for each patient.

  5. Digital Heart-Rate Variability Parameter Monitoring and Assessment ASIC.

    Science.gov (United States)

    Massagram, W; Hafner, N; Mingqi Chen; Macchiarulo, L; Lubecke, V M; Boric-Lubecke, O

    2010-02-01

    This paper describes experimental results for an application-specific integrated circuit (ASIC), designed for digital heart rate variability (HRV) parameter monitoring and assessment. This ASIC chip measures beat-to-beat (RR) intervals and stores HRV parameters into its internal memory in real time. A wide range of short-term and long-term ECG signals obtained from Physionet was used for testing. The system detects R peaks with millisecond accuracy, and stores up to 2 min of continuous RR interval data and up to 4 min of RR interval histogram. The prototype chip was fabricated in a 0.5 ¿m complementary metal-oxide semiconductor technology on a 3×3 mm(2) die area, with a measured dynamic power consumption of 10 ¿W and measured leakage current of 2.62 nA. The HRV monitoring system including this HRV ASIC, an analog-to-digital converter, and a low complexity microcontroller was estimated to consume 32.5 ¿V, which is seven times lower power than a stand-alone microcontroller performing the same functions. Compact size, low cost, and low power consumption make this chip suitable for a miniaturized portable HRV monitoring system.

  6. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System.

    Science.gov (United States)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2018-01-01

    This paper presents a wireless capsule microsystem to detect and monitor the pH, pressure, and temperature of the gastrointestinal tract in real time. This research contributes to the integration of sensors (microfabricated capacitive pH, capacitive pressure, and resistive temperature sensors), frequency modulation and pulse width modulation based interface IC circuits, microcontroller, and transceiver with meandered conformal antenna for the development of a capsule system. The challenges associated with the system miniaturization, higher sensitivity and resolution of sensors, and lower power consumption of interface circuits are addressed. The layout, PCB design, and packaging of a miniaturized wireless capsule, having diameter of 13 mm and length of 28 mm, have successfully been implemented. A data receiver and recorder system is also designed to receive physiological data from the wireless capsule and to send it to a computer for real-time display and recording. Experiments are performed in vitro using a stomach model and minced pork as tissue simulating material. The real-time measurements also validate the suitability of sensors, interface circuits, and meandered antenna for wireless capsule applications.

  7. The digital ASIC for the digital front end electronics of the SPI astrophysics gamma-ray experiment

    International Nuclear Information System (INIS)

    Lafond, E.; Mur, M.; Schanne, S.

    1998-01-01

    The SPI spectrometer is one of the gamma-ray astronomy instruments that will be installed on the ESA INTEGRAL satellite, intended to be launched in 2001 by the European Space Agency. The Digital Front-End Electronics sub-system (DFEE) is in charge of the real time data processing of the various measurements produced by the Germanium (Ge) detectors and the Bismuth Germanate (BGO) anti-coincidence shield. The central processing unit of the DFEE is implemented in a digital ASIC circuit, which provides the real time association of the various time signals, acquires the associated energy measurements, and classifies the various types of physics events. The paper gives the system constraints of the DFEE, the architecture of the ASIC circuit, the technology requirements, and the strategy for test and integration. Emphasis is given to the high level language development and simulation, the automatic circuit synthesis approach, and the performance estimation

  8. Hybrid integrated circuit for charge-to-time interval conversion

    Energy Technology Data Exchange (ETDEWEB)

    Basiladze, S.G.; Dotsenko, Yu.Yu.; Man' yakov, P.K.; Fedorchenko, S.N. (Joint Inst. for Nuclear Research, Dubna (USSR))

    The hybrid integrated circuit for charge-to time interval conversion with nanosecond input fast response is described. The circuit can be used in energy measuring channels, time-to-digital converters and in the modified variant in amplitude-to-digital converters. The converter described consists of a buffer amplifier, a linear transmission circuit, a direct current source and a unit of time interval separation. The buffer amplifier represents a current follower providing low input and high output resistances by the current feedback. It is concluded that the described converter excelled the QT100B circuit analogous to it in a number of parameters especially, in thermostability.

  9. Vertically integrated circuit development at Fermilab for detectors

    International Nuclear Information System (INIS)

    Yarema, R; Deptuch, G; Hoff, J; Khalid, F; Lipton, R; Shenai, A; Trimpl, M; Zimmerman, T

    2013-01-01

    Today vertically integrated circuits, (a.k.a. 3D integrated circuits) is a popular topic in many trade journals. The many advantages of these circuits have been described such as higher speed due to shorter trace lenghts, the ability to reduce cross talk by placing analog and digital circuits on different levels, higher circuit density without the going to smaller feature sizes, lower interconnect capacitance leading to lower power, reduced chip size, and different processing for the various layers to optimize performance. There are some added advantages specifically for MAPS (Monolithic Active Pixel Sensors) in High Energy Physics: four side buttable pixel arrays, 100% diode fill factor, the ability to move PMOS transistors out of the diode sensing layer, and a increase in channel density. Fermilab began investigating 3D circuits in 2006. Many different bonding processes have been described for fabricating 3D circuits [1]. Fermilab has used three different processes to fabricate several circuits for specific applications in High Energy Physics and X-ray imaging. This paper covers some of the early 3D work at Fermilab and then moves to more recent activities. The major processes we have used are discussed and some of the problems encountered are described. An overview of pertinent 3D circuit designs is presented along with test results thus far.

  10. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    Science.gov (United States)

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  11. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... This thesis draws on available data from the electronics integrated circuit industry to attempt to assess whether statistical modeling offers a viable method for predicting the presence of DMSMS...

  12. Microwave integrated circuit mask design, using computer aided microfilm techniques

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, J.M.; Batliwala, E.R.; Ajose, S.O.

    1977-01-01

    This paper examines the possibility of using a computer interfaced with a precision film C.R.T. information retrieval system, to produce photomasks suitable for the production of microwave integrated circuits.

  13. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  14. Pulsed laser-induced SEU in integrated circuits

    International Nuclear Information System (INIS)

    Buchner, S.; Kang, K.; Stapor, W.J.; Campbell, A.B.; Knudson, A.R.; McDonald, P.; Rivet, S.

    1990-01-01

    The authors have used a pulsed picosecond laser to measure the threshold for single event upset (SEU) and single event latchup (SEL) for two different kinds of integrated circuits. The relative thresholds show good agreement with published ion upset data. The consistency of the results together with the advantages of using a laser system suggest that the pulsed laser can be used for SEU/SEL hardness assurance of integrated circuits

  15. Addressable-Matrix Integrated-Circuit Test Structure

    Science.gov (United States)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  16. Analog integrated circuits design for processing physiological signals.

    Science.gov (United States)

    Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting

    2010-01-01

    Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.

  17. Photonic integrated circuits : a new approach to laser technology

    NARCIS (Netherlands)

    Piramidowicz, R.; Stopinski, S.T.; Lawniczuk, K.; Welikow, K.; Szczepanski, P.; Leijtens, X.J.M.; Smit, M.K.

    2012-01-01

    In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is

  18. Micromachined integrated quantum circuit containing a superconducting qubit

    Science.gov (United States)

    Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert

    We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.

  19. Microwave GaAs Integrated Circuits On Quartz Substrates

    Science.gov (United States)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  20. Test vehicles for CMS HGCAL readout ASIC

    CERN Document Server

    Thienpont, Damien

    2017-01-01

    This paper presents first measurement results of two test vehicles ASIC embedding some building blocks for the future CMS High Granularity CALorimeter (HGCAL) read-out ASIC. They were fabricated in CMOS 130 nm, in order to first design the Analog and Mixed-Signal blocks before going to a complete and complex chip. Such a circuit needs to achieve low noise high dynamic range charge measurement and 20 ps resolution timing capability. The results show good analog performance but with higher noise levels compared to simulations. We present the results of the preamplifiers, shapers and ADCs.

  1. Integrating Neural Circuits Controlling Female Sexual Behavior.

    Science.gov (United States)

    Micevych, Paul E; Meisel, Robert L

    2017-01-01

    The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation) for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH), activating β-endorphin projections to the medial preoptic nucleus (MPN), which in turn modulate ventromedial hypothalamic nucleus (VMH) activity-the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa . While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.

  2. Integrating Neural Circuits Controlling Female Sexual Behavior

    Directory of Open Access Journals (Sweden)

    Paul E. Micevych

    2017-06-01

    Full Text Available The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH, activating β-endorphin projections to the medial preoptic nucleus (MPN, which in turn modulate ventromedial hypothalamic nucleus (VMH activity—the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.

  3. Robust Multivariable Optimization and Performance Simulation for ASIC Design

    Science.gov (United States)

    DuMonthier, Jeffrey; Suarez, George

    2013-01-01

    Application-specific-integrated-circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power, and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem, which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques, which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable, are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way that facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as a framework of software modules, templates, and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation.

  4. A custom front-end ASIC for the readout and timing of 64 SiPM photosensors

    International Nuclear Information System (INIS)

    Bagliesi, M.G.; Avanzini, C.; Bigongiari, G.; Cecchi, R.; Kim, M.Y.; Maestro, P.; Marrocchesi, P.S.; Morsani, F.

    2011-01-01

    A new class of instruments - based on Silicon PhotoMultiplier (SiPM) photosensors - are currently under development for the next generation of Astroparticle Physics experiments in future space missions. A custom front-end ASIC (Application Specific Integrated Circuit) for the readout of 64 SiPM sensors was specified in collaboration with GM-IDEAS (Norway) that designed and manufactured the ASIC. Our group developed a custom readout board equipped with a 16 bit ADC for the digitization of both pulse height and time information. A time stamp, generated by the ASIC in correspondence of the threshold crossing time, is digitized and recorded for each channel. This allows to define a narrow time window around the physics event that reduces significantly the background due to the SiPM dark count rate. In this paper, we report on the preliminary test results obtained with the readout board prototype.

  5. FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS

    International Nuclear Information System (INIS)

    DE GERONIMO, G.; CHEN, W.; FRIED, J.; LI, Z.; PINELLI, D.A.; REHAK, P.; VERNON, E.; GASKIN, J.A.; RAMSEY, B.D.; ANELLI, G.

    2007-01-01

    We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm 2 , dissipates 12 mW cm -2 , and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a 55 Fe source

  6. An Implantable Versatile Electrode-Driving ASIC for Chronic Epidural Stimulation in Rats.

    Science.gov (United States)

    Giagka, Vasiliki; Eder, Clemens; Donaldson, Nick; Demosthenous, Andreas

    2015-06-01

    This paper presents the design and testing of an electrode driving application specific integrated circuit (ASIC) intended for epidural spinal cord electrical stimulation in rats. The ASIC can deliver up to 1 mA fully programmable monophasic or biphasic stimulus current pulses, to 13 electrodes selected in any possible configuration. It also supports interleaved stimulation. Communication is achieved via only 3 wires. The current source and the control of the stimulation timing were kept off-chip to reduce the heat dissipation close to the spinal cord. The ASIC was designed in a 0.18- μm high voltage CMOS process. Its output voltage compliance can be up to 25 V. It features a small core area (ASIC was developed to be suitable for integration on the epidural electrode array, and two different versions were fabricated and electrically tested. Results from both versions were almost indistinguishable. The performance of the system was verified for different loads and stimulation parameters. Its suitability to drive a passive epidural 12-electrode array in saline has also been demonstrated.

  7. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract.

    Science.gov (United States)

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang

    2014-12-01

    This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.

  8. A Wireless Capsule Endoscope System With Low-Power Controlling and Processing ASIC.

    Science.gov (United States)

    Xinkai Chen; Xiaoyu Zhang; Linwei Zhang; Xiaowen Li; Nan Qi; Hanjun Jiang; Zhihua Wang

    2009-02-01

    This paper presents the design of a wireless capsule endoscope system. The proposed system is mainly composed of a CMOS image sensor, a RF transceiver and a low-power controlling and processing application specific integrated circuit (ASIC). Several design challenges involving system power reduction, system miniaturization and wireless wake-up method are resolved by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology with a die area of 3.4 mm * 3.3 mm. The digital baseband can work under a power supply down to 0.95 V with a power dissipation of 1.3 mW. The prototype capsule based on the ASIC and a data recorder has been developed. Test result shows that proposed system architecture with local image compression lead to an average of 45% energy reduction for transmitting an image frame.

  9. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    Science.gov (United States)

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  10. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  11. Investigation for connecting waveguide in off-planar integrated circuits.

    Science.gov (United States)

    Lin, Jie; Feng, Zhifang

    2017-09-01

    The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6  dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.

  12. Chemical sensors fabricated by a photonic integrated circuit foundry

    Science.gov (United States)

    Stievater, Todd H.; Koo, Kee; Tyndall, Nathan F.; Holmstrom, Scott A.; Kozak, Dmitry A.; Goetz, Peter G.; McGill, R. Andrew; Pruessner, Marcel W.

    2018-02-01

    We describe the detection of trace concentrations of chemical agents using waveguide-enhanced Raman spectroscopy in a photonic integrated circuit fabricated by AIM Photonics. The photonic integrated circuit is based on a five-centimeter long silicon nitride waveguide with a trench etched in the top cladding to allow access to the evanescent field of the propagating mode by analyte molecules. This waveguide transducer is coated with a sorbent polymer to enhance detection sensitivity and placed between low-loss edge couplers. The photonic integrated circuit is laid-out using the AIM Photonics Process Design Kit and fabricated on a Multi-Project Wafer. We detect chemical warfare agent simulants at sub parts-per-million levels in times of less than a minute. We also discuss anticipated improvements in the level of integration for photonic chemical sensors, as well as existing challenges.

  13. Micro-relay technology for energy-efficient integrated circuits

    CERN Document Server

    Kam, Hei

    2015-01-01

    This book describes the design of relay-based circuit systems from device fabrication to circuit micro-architectures. This book is ideal for both device engineers as well as circuit system designers and highlights the importance of co-design across design hierarchies when optimizing system performance (in this case, energy-efficiency). This book is ideal for researchers and engineers focused on semiconductors, integrated circuits, and energy efficient electronics. This book also: ·         Covers microsystem fabrication, MEMS device design, circuit design, circuit micro-architecture, and CAD ·         Describes work previously done in the field and also lays the groundwork and criteria for future energy-efficient device and system design ·         Maximizes reader insights into the design and modeling of micro-relay, micro-relay reliability, integrated circuit design with micro-relays, and more

  14. Integrated digital superconducting logic circuits for the quantum synthesizer. Report

    International Nuclear Information System (INIS)

    Buchholz, F.I.; Kohlmann, J.; Khabipov, M.; Brandt, C.M.; Hagedorn, D.; Balashov, D.; Maibaum, F.; Tolkacheva, E.; Niemeyer, J.

    2006-11-01

    This report presents the results, which were reached in the framework of the BMBF cooperative plan ''Quantum Synthesizer'' in the partial plan ''Integrated Digital Superconducting Logic Circuits''. As essential goal of the plan a novel instrument on the base of quantum-coherent superconducting circuits should be developed. which allows to generate praxis-relevant wave forms with quantum accuracy, the quantum synthesizer. The main topics of development of the reported partial plan lied at the one hand in the development of integrated, digital, superconducting circuit in rapid-single-flux (RSFQ) quantum logics for the pattern generator of the quantum synthesizer, at the other hand in the further development of the fabrication technology for the aiming of high circuit complexity. In order to fulfil these requirements at the PTB a new design system was implemented, based on the software of Cadence. Together with the required RSFQ extensions for the design of digital superconducting circuits was a platform generated, on which the reachable circuit complexity is exclusively limited by the technology parameters of the available fabrication technology: Physical simulations are with PSCAN up to a complexity of more than 1000 circuit elements possible; furthermore VHDL allows the verification of arbitrarily large circuit architectures. In accordance for this the production line at the PTB was brought to a level, which allows in Nb/Al-Al x O y /Nb SIS technology implementation the fabrication of highly integrable RSFQ circuit architectures. The developed and fabricated basic circuits of the pattern generator have proved correct functionality and reliability in the measuring operation. Thereby for the circular RSFQ shift registers a key role as local memories in the construction of the pattern generator is devolved upon. The registers were realized with the aimed bit lengths up to 128 bit and with reachable signal-processing speeds of above 10 GHz. At the interface RSFQ

  15. Molecular annotation of integrative feeding neural circuits.

    Science.gov (United States)

    Pérez, Cristian A; Stanley, Sarah A; Wysocki, Robert W; Havranova, Jana; Ahrens-Nicklas, Rebecca; Onyimba, Frances; Friedman, Jeffrey M

    2011-02-02

    The identity of higher-order neurons and circuits playing an associative role to control feeding is unknown. We injected pseudorabies virus, a retrograde tracer, into masseter muscle, salivary gland, and tongue of BAC-transgenic mice expressing GFP in specific neural populations and identified several CNS regions that project multisynaptically to the periphery. MCH and orexin neurons were identified in the lateral hypothalamus, and Nurr1 and Cnr1 in the amygdala and insular/rhinal cortices. Cholera toxin β tracing showed that insular Nurr1(+) and Cnr1(+) neurons project to the amygdala or lateral hypothalamus, respectively. Finally, we show that cortical Cnr1(+) neurons show increased Cnr1 mRNA and c-Fos expression after fasting, consistent with a possible role for Cnr1(+) neurons in feeding. Overall, these studies define a general approach for identifying specific molecular markers for neurons in complex neural circuits. These markers now provide a means for functional studies of specific neuronal populations in feeding or other complex behaviors. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Thermal measurement a requirement for monolithic microwave integrated circuit design

    OpenAIRE

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  17. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  18. Application specific integrated circuit for high temperature oil well applications

    Energy Technology Data Exchange (ETDEWEB)

    Fallet, T.; Gakkestad, J.; Forre, G.

    1994-12-31

    This paper describes the design of an integrated BiCMOS circuit for high temperature applications. The circuit contains Pierce oscillators with automatic gain control, and measurements show that it is operating up to 266{sup o}C. The relative frequency variation up to 200 {sup o}C is less than 60 ppm caused mainly by the crystal element itself. 4 refs., 7 figs.

  19. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  20. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  1. Development of integrated thermionic circuits for high-temperature applications

    International Nuclear Information System (INIS)

    McCormick, J.B.; Wilde, D.; Depp, S.; Hamilton, D.J.; Kerwin, W.; Derouin, C.; Roybal, L.; Dooley, R.

    1981-01-01

    A class of devices known as integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 0 C is described. The evolution of the ITC concept is discussed. A set of practical design and performance equations is demonstrated. Recent experimental results are discussed in which both devices and simple circuits have successfully operated in 500 0 C environments for extended periods of time

  2. Dielectric isolation for power integrated circuits; Isolation dielectrique enterree pour les circuits integres de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Zerrouk, D.

    1997-07-18

    Considerable efforts have been recently directed towards integrating onto the same chip, sense or protection elements that is low voltage analog and/or digital control circuitry together with high voltage/high current devices. Most of these so called `smart power` devices use either self isolation, junction isolation or Silicon-On-Insulator (SOI) to integrate low voltage elements with vertical power devices. Dielectric isolation is superior to the other isolation techniques such as self isolation or junction isolation. Thesis work consists of the study of the feasibility of a dielectric technology based on the melting and the solidification in a Rapid Thermal Processing furnace (RTP), of thick polysilicon films deposited on oxide. The purpose of this technique is to obtain substrate with localized SOI structures for smart power applications. SOI technology offers significant potential advantages, such as non-occurrence of latch-up in CMOS structures, high packaging density, low parasitic capacitance and the possibility of 3D structures. In addition, SOI technology using thick silicon films (10-100 {mu}m) offers special advantages for high voltage integrated circuits. Several techniques have been developed to form SOI films. Zone melting recrystallization is one of the most promising for localized SOI. The SOI structures have first been analyzed in term of extended defects. N-channel MOSFET`s transistors have also been fabricated in the SOI substrates and electrically characterized (threshold voltages, off-state leakage current, mobilities,...). The SOI transistors exhibit good characteristics, although inferior to witness transistors. The recrystallized silicon films are therefore found to be suitable for the fabrication of SOI devices. (author) 106 refs.

  3. Hybrid CMOS/Molecular Integrated Circuits

    Science.gov (United States)

    Stan, M. R.; Rose, G. S.; Ziegler, M. M.

    CMOS silicon technologies are likely to run out of steam in the next 10-15 years despite revolutionary advances in the past few decades. Molecular and other nanoscale technologies show significant promise but it is unlikely that they will completely replace CMOS, at least in the near term. This chapter explores opportunities for using CMOS and nanotechnology to enhance and complement each other in hybrid circuits. As an example of such a hybrid CMOS/nano system, a nanoscale programmable logic array (PLA) based on majority logic is described along with its supplemental CMOS circuitry. It is believed that such systems will be able to sustain the historical advances in the semiconductor industry while addressing manufacturability, yield, power, cost, and performance challenges.

  4. Process Variations and Probabilistic Integrated Circuit Design

    CERN Document Server

    Haase, Joachim

    2012-01-01

    Uncertainty in key parameters within a chip and between different chips in the deep sub micron era plays a more and more important role. As a result, manufacturing process spreads need to be considered during the design process.  Quantitative methodology is needed to ensure faultless functionality, despite existing process variations within given bounds, during product development.   This book presents the technological, physical, and mathematical fundamentals for a design paradigm shift, from a deterministic process to a probability-orientated design process for microelectronic circuits.  Readers will learn to evaluate the different sources of variations in the design flow in order to establish different design variants, while applying appropriate methods and tools to evaluate and optimize their design.  Trains IC designers to recognize problems caused by parameter variations during manufacturing and to choose the best methods available to mitigate these issues during the design process; Offers both qual...

  5. Upgrading FLIR NanoRaider with the next Generation of CdZnTe Detectors. Goal - Integrate VFG detectors into FLIR R200. Advanced Virtual Grid ASIC (AVG-ASIC).

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Yonggang [Brookhaven National Lab. (BNL), Upton, NY (United States); Vernon, Emerson [Brookhaven National Lab. (BNL), Upton, NY (United States); De Geronimo, Gianluigi [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-06-01

    This document presents motivations, goals and the current status of this project; development (fabrication, performance) of position-sensitive virtual Frisch-grid detectors proposed for nanoRaider, an instrument commonly used by nuclear inspectors; ASIC developments for CZT detectors; and the electronics development for the detector prototype..

  6. Development of n+-in-p planar pixel quadsensor flip-chipped with FE-I4 readout ASICs

    International Nuclear Information System (INIS)

    Unno, Y.; Hanagaki, K.; Hori, R.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Kamada, S.; Yamamura, K.; Yamamoto, H.; Takashima, R.; Tojo, J.; Kono, T.; Nagai, R.; Saito, S.; Sugibayashi, K.; Hirose, M.; Jinnouchi, O.; Sato, S.; Sawai, H.; Hara, K.

    2017-01-01

    We have developed flip-chip modules applicable to the pixel detector for the HL-LHC. New radiation-tolerant n + -in-p planar pixel sensors of a size of four FE-I4 application-specific integrated circuits (ASICs) are laid out in a 6-in wafer. Variation in readout connection for the pixels at the boundary of ASICs is implemented in the design of quadsensors. Bump bonding technology is developed for four ASICs onto one quadsensor. Both sensors and ASICs are thinned to 150 μm before bump bonding, and are held flat with vacuum chucks. Using lead-free SnAg solder bumps, we encounter deficiency with large areas of disconnected bumps after thermal stress treatment, including irradiation. Surface oxidation of the solder bumps is identified as a critical source of this deficiency after bump bonding trials, using SnAg bumps with solder flux, indium bumps, and SnAg bumps with a newly-introduced hydrogen-reflow process. With hydrogen-reflow, we establish flux-less bump bonding technology with SnAg bumps, appropriate for mass production of the flip-chip modules with thin sensors and thin ASICs.

  7. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  8. A CMOS integrated timing discriminator circuit for fast scintillation counters

    International Nuclear Information System (INIS)

    Jochmann, M.W.

    1998-01-01

    Based on a zero-crossing discriminator using a CR differentiation network for pulse shaping, a new CMOS integrated timing discriminator circuit is proposed for fast (t r ≥ 2 ns) scintillation counters at the cooler synchrotron COSY-Juelich. By eliminating the input signal's amplitude information by means of an analog continuous-time divider, a normalized pulse shape at the zero-crossing point is gained over a wide dynamic input amplitude range. In combination with an arming comparator and a monostable multivibrator this yields in a highly precise timing discriminator circuit, that is expected to be useful in different time measurement applications. First measurement results of a CMOS integrated logarithmic amplifier, which is part of the analog continuous-time divider, agree well with the corresponding simulations. Moreover, SPICE simulations of the integrated discriminator circuit promise a time walk well below 200 ps (FWHM) over a 40 dB input amplitude dynamic range

  9. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  10. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  11. A DES ASIC Suitable for Network Encryption at 10 Gbps and Beyond

    International Nuclear Information System (INIS)

    Gass, Karl; Pierson, Lyndon G.; Robertson, Perry J.; Wilcox, D. Craig; Witzke, Edward L.

    1999-01-01

    The Sandia National Laboratories (SNL) Data Encryption Standard (DES) Application Specific Integrated Circuit (ASIC) is the fastest known implementation of the DES algorithm as defined in the Federal Information Processing Standards (FIPS) Publication 46-2. DES is used for protecting data by cryptographic means. The SNL DES ASIC, over 10 times faster than other currently available DES chips, is a high-speed, filly pipelined implementation offering encryption, decryption, unique key input, or algorithm bypassing on each clock cycle. Operating beyond 105 MHz on 64 bit words, this device is capable of data throughputs greater than 6.7 Billion bits per second (tester limited). Simulations predict proper operation up to 9.28 Billion bits per second. In low frequency, low data rate applications, the ASIC consumes less that one milliwatt of power. The device has features for passing control signals synchronized to throughput data. Three SNL DES ASICS may be easily cascaded to provide the much greater security of triple-key, triple-DES

  12. Development of a 32-channel ASIC for an X-ray APD detector onboard the ISS

    Science.gov (United States)

    Arimoto, Makoto; Harita, Shohei; Sugita, Satoshi; Yatsu, Yoichi; Kawai, Nobuyuki; Ikeda, Hirokazu; Tomida, Hiroshi; Isobe, Naoki; Ueno, Shiro; Mihara, Tatehiro; Serino, Motoko; Kohmura, Takayoshi; Sakamoto, Takanori; Yoshida, Atsumasa; Tsunemi, Hiroshi; Hatori, Satoshi; Kume, Kyo; Hasegawa, Takashi

    2018-02-01

    We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capable of achieving a minimum energy detection threshold of 20 keV. The developed ASIC has the ability to read out 32-channel APD signals using 0.35 μm CMOS technology, and an analog amplifier at the input stage is designed to suppress the capacitive noise primarily arising from the large detector capacitance of the APDs. The ASIC achieves a performance of 2099 e- + 1.5 e-/pF at root mean square (RMS) with a wide 300 fC dynamic range. Coupling a reverse-type APD with a Ce:GAGG scintillator, we obtain an energy resolution of 6.7% (FWHM) at 662 keV and a minimum detectable energy of 20 keV at room temperature (20 °C). Furthermore, we examine the radiation tolerance for space applications by using a 90 MeV proton beam, confirming that the ASIC is free of single-event effects and can operate properly without serious degradation in analog and digital processing.

  13. Silicon integrated circuits advances in materials and device research

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Silicon Integrated Circuits, Part B covers the special considerations needed to achieve high-power Si-integrated circuits. The book presents articles about the most important operations needed for the high-power circuitry, namely impurity diffusion and oxidation; crystal defects under thermal equilibrium in silicon and the development of high-power device physics; and associated technology. The text also describes the ever-evolving processing technology and the most promising approaches, along with the understanding of processing-related areas of physics and chemistry. Physicists, chemists, an

  14. Programmable delay unit incorporating a semi-custom integrated circuit

    International Nuclear Information System (INIS)

    Linstadt, E.

    1985-04-01

    The synchronization of SLC accelerator control and monitoring functions is realized by a CAMAC module, the PDU II (Programmable Delay Unit II, SLAC 253-002), which includes a semi-custom gate array integrated circuit. The PDU II distributes 16 channels of independently programmable delayed pulses to other modules within the same CAMAC crate. The delays are programmable in increments of 8.4 ns. Functional descriptions of both the module and the semi-custom integrated circuit used to generate the output pulses are given

  15. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  16. Integrated circuits for particle physics experiments

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Toifl, Thomas H; Wyllie, Ken H

    2000-01-01

    High energy particle physics experiments investigate the nature of matter through the identification of subatomic particles produced in collisions of protons, electrons, or heavy ions which have been accelerated to very high energies. Future experiments will have hundreds of millions of detector channels to observe the interaction region where collisions take place at a 40 MHz rate. This paper gives an overview of the electronics requirements for such experiments and explains how data reduction, timing distribution, and radiation tolerance in commercial CMOS circuits are achieved for these big systems. As a detailed example, the electronics for the innermost layers of the future tracking detector, the pixel vertex detector, is discussed with special attention to system aspects. A small-scale prototype (130 channels) implemented in standard 0.25 mu m CMOS remains fully functional after a 30 Mrad(SiO/sub 2/) irradiation. A full-scale pixel readout chip containing 8000 readout channels in a 14 by 16 mm/sup 2/ ar...

  17. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Mandal, Saumen; Noh, Yong-Young

    2015-01-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  18. CODA : Compact front-end analog ASIC for silicon detectors

    International Nuclear Information System (INIS)

    Chandratre, V.B.; Sardesai, S.V.; Kataria, S.K.

    2004-01-01

    The paper presents the design of a front-end signal processing ASIC to be used with Silicon detectors having full depletion capacitance up to 40 pf. The ASIC channel consists of a charge amplifier, a shaper amplifier (CR-RC 3 ) and a comparator. There is provision for changing gain and polarity. The circuit has an estimated power dissipation of 16 mw. The ASIC is fabricated in 1.2 um CMOS technology. The 0pf noise is ∼400e. The chip has an area of 3 by 4 mm is packaged in 48 pin CLCC and COB option (Chip on Board). (author)

  19. Design optimization of radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    1975-01-01

    Ionizing-radiation-induced threshold voltage shifts in CMOS integrated circuits will drastically degrade circuit performance unless the design parameters related to the fabrication process are properly chosen. To formulate an approach to CMOS design optimization, experimentally observed analytical relationships showing strong dependences between threshold voltage shifts and silicon dioxide thickness are utilized. These measurements were made using radiation-hardened aluminum-gate CMOS inverter circuits and have been corroborated by independent data taken from MOS capacitor structures. Knowledge of these relationships allows one to define ranges of acceptable CMOS design parameters based upon radiation-hardening capabilities and post-irradiation performance specifications. Furthermore, they permit actual design optimization of CMOS integrated circuits which results in optimum pre- and post-irradiation performance with respect to speed, noise margins, and quiescent power consumption. Theoretical and experimental results of these procedures, the applications of which can mean the difference between failure and success of a CMOS integrated circuit in a radiation environment, are presented

  20. ASIC1A in neurons is critical for fear-related behaviors.

    Science.gov (United States)

    Taugher, R J; Lu, Y; Fan, R; Ghobbeh, A; Kreple, C J; Faraci, F M; Wemmie, J A

    2017-11-01

    Acid-sensing ion channels (ASICs) have been implicated in fear-, addiction- and depression-related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron-specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron-specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear-related behaviors including Pavlovian fear conditioning to cue and context, predator odor-evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression-related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear-related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Three-dimensional integrated circuit design

    CERN Document Server

    Xie, Yuan; Sapatnekar, Sachin S

    2009-01-01

    This book presents an overview of the field of 3D IC design, with an emphasis on electronic design automation (EDA) tools and algorithms that can enable the adoption of 3D ICs, and the architectural implementation and potential for future 3D system design. The aim of this book is to provide the reader with a complete understanding of: the promise of 3D ICs in building novel systems that enable the chip industry to continue along the path of performance scaling, the state of the art in fabrication technologies for 3D integration, the most prominent 3D-specific EDA challenges, along with solutio

  2. Performance of digital integrated circuit technologies at very high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Prince, J.L.; Draper, B.L.; Rapp, E.A.; Kromberg, J.N.; Fitch, L.T.

    1980-01-01

    Results of investigations of the performance and reliability of digital bipolar and CMOS integrated circuits over the 25 to 340/sup 0/C range are reported. Included in these results are both parametric variation information and analysis of the functional failure mechanisms. Although most of the work was done using commercially available circuits (TTL and CMOS) and test chips from commercially compatible processes, some results of experimental simulations of dielectrically isolated CMOS are also discussed. It was found that commercial Schottky clamped TTL, and dielectrically isolated, low power Schottky-clamped TTL, functioned to junction temperatures in excess of 325/sup 0/C. Standard gold doped TTL functioned only to 250/sup 0/C, while commercial, isolated I/sup 2/L functioned to the range 250/sup 0/C to 275/sup 0/C. Commercial junction isolated CMOS, buffered and unbuffered, functioned to the range 280/sup 0/C to 310/sup 0/C/sup +/, depending on the manufacturer. Experimental simulations of simple dielectrically isolated CMOS integrated circuits, fabricated with heavier doping levels than normal, functioned to temperatures in excess of 340/sup 0/C. High temperature life testing of experimental, silicone-encapsulated simple TTL and CMOS integrated circuits have shown no obvious life limiting problems to date. No barrier to reliable functionality of TTL bipolar or CMOS integrated ciruits at temperatures in excess of 300/sup 0/C has been found.

  3. Novel technique for reliability testing of silicon integrated circuits

    NARCIS (Netherlands)

    Le Minh, P.; Wallinga, Hans; Woerlee, P.H.; van den Berg, Albert; Holleman, J.

    2001-01-01

    We propose a simple, inexpensive technique with high resolution to identify the weak spots in integrated circuits by means of a non-destructive photochemical process in which photoresist is used as the photon detection tool. The experiment was done to localize the breakdown link of thin silicon

  4. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  5. A study of radiation hardness screening techniques of integrated circuits

    International Nuclear Information System (INIS)

    Wang Xuli

    2002-01-01

    The principle and operational procedure of Integrated Circuits (ICs) screening with irradiation-and-anneal and multicomponent regression analysis are discussed. The key technology, advantages and shortcomings of the two methods are described in contrast, and some advices are given with the state-of-the-art of the screening technology

  6. Radiation response of high speed CMOS integrated circuits

    International Nuclear Information System (INIS)

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.

    1987-01-01

    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  7. Heat sinking of highly integrated photonic and electronic circuits

    NARCIS (Netherlands)

    van Rijn, M.B.J.; Smit, M.K.

    2017-01-01

    Dense integration of photonic and electronic circuits poses high requirements on thermal management. In this paper we present analysis of temperature distributions in PICs in InP membranes on top of a BiCMOS chip, which contain hot spots in both the photonic and the electronic layer (lasers, optical

  8. An integrated circuit/packet switched video conferencing system

    International Nuclear Information System (INIS)

    Kippenhan Junior, H.A.; Lidinsky, W.P.; Roediger, G.A.; Waits, T.A.

    1996-01-01

    The HEP Network Resource Center (HEPNRC) at Fermilab and the Collider Detector Facility (CDF) collaboration have evolved a flexible, cost-effective, widely accessible video conferencing system for use by high energy physics collaborations and others wishing to use video conferencing. No current systems seemed to fully meet the needs of high energy physics collaborations. However, two classes of video conferencing technology: circuit-switched and packet-switched, if integrated, might encompass most of HEPS's needs. It was also realized that, even with this integration, some additional functions were needed and some of the existing functions were not always wanted. HEPNRC with the help of members of the CDF collaboration set out to develop such an integrated system using as many existing subsystems and components as possible. This system is called VUPAC (Video conferencing Using Packets and Circuits). This paper begins with brief descriptions of the circuit-switched and packet-switched video conferencing systems. Following this, issues and limitations of these systems are considered. Next the VUPAC system is described. Integration is accomplished primarily by a circuit/packet video conferencing interface. Augmentation is centered in another subsystem called MSB (Multiport MultiSession Bridge). Finally, there is a discussion of the future work needed in the evolution of this system. (author)

  9. Plasma Etching for Failure Analysis of Integrated Circuit Packages

    NARCIS (Netherlands)

    Tang, J.; Schelen, J.B.J.; Beenakker, C.I.M.

    2011-01-01

    Plastic integrated circuit packages with copper wire bonds are decapsulated by a Microwave Induced Plasma system. Improvements on microwave coupling of the system are achieved by frequency tuning and antenna modification. Plasmas with a mixture of O2 and CF4 showed a high etching rate around 2

  10. An integrated circuit/packet switched video conferencing system

    Energy Technology Data Exchange (ETDEWEB)

    Kippenhan Junior, H.A.; Lidinsky, W.P.; Roediger, G.A. [Fermi National Accelerator Lab., Batavia, IL (United States). HEP Network Resource Center; Waits, T.A. [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    1996-07-01

    The HEP Network Resource Center (HEPNRC) at Fermilab and the Collider Detector Facility (CDF) collaboration have evolved a flexible, cost-effective, widely accessible video conferencing system for use by high energy physics collaborations and others wishing to use video conferencing. No current systems seemed to fully meet the needs of high energy physics collaborations. However, two classes of video conferencing technology: circuit-switched and packet-switched, if integrated, might encompass most of HEPS's needs. It was also realized that, even with this integration, some additional functions were needed and some of the existing functions were not always wanted. HEPNRC with the help of members of the CDF collaboration set out to develop such an integrated system using as many existing subsystems and components as possible. This system is called VUPAC (Video conferencing Using Packets and Circuits). This paper begins with brief descriptions of the circuit-switched and packet-switched video conferencing systems. Following this, issues and limitations of these systems are considered. Next the VUPAC system is described. Integration is accomplished primarily by a circuit/packet video conferencing interface. Augmentation is centered in another subsystem called MSB (Multiport MultiSession Bridge). Finally, there is a discussion of the future work needed in the evolution of this system. (author)

  11. FUZZY NEURAL NETWORK FOR OBJECT IDENTIFICATION ON INTEGRATED CIRCUIT LAYOUTS

    Directory of Open Access Journals (Sweden)

    A. A. Doudkin

    2015-01-01

    Full Text Available Fuzzy neural network model based on neocognitron is proposed to identify layout objects on images of topological layers of integrated circuits. Testing of the model on images of real chip layouts was showed a highеr degree of identification of the proposed neural network in comparison to base neocognitron.

  12. Foundry fabricated photonic integrated circuit optical phase lock loop.

    Science.gov (United States)

    Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C

    2017-07-24

    This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.

  13. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  14. Flexible circuits with integrated switches for robotic shape sensing

    Science.gov (United States)

    Harnett, C. K.

    2016-05-01

    Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.

  15. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  16. AVME readout module for multichannel ASIC characterization

    International Nuclear Information System (INIS)

    Borkar, S.P.; Lalwani, S.K.; Ghodgaonkar, M.D.; Kataria, S.K.; Reynaud, Serge; )

    2004-01-01

    Electronics Division, BARC has been working on the development of multi-channel ASIC, called SPAIR (Silicon-strip Pulse Amplifier Integrated Readout). It contains 8 channels of preamplifier, shaper and track-and-hold circuitry. Electronics Division has also actively participated in development of test setup for the front-end ASIC, called PACE, for the preshower detector of the Compact Muon Solenoid (CMS) Experiment at CERN, Geneva. PACE is a 32 channel ASIC for silicon strip detector, containing preamplifier, shaper, calibration circuitry, switched capacitor array, readout amplifier per channel and an analog multiplexer. A VME Readout Module, (VRM) is developed which can be utilized in data acquisition from ASICs like PACE and SPAIR. The VRM can also be used as the Detector Dependent Unit for digitally processing the data received from the front-end electronics on the 16-bit LVDS port. The processed, data can be read by the VME system. Thus the VRM is very useful in building an ASIC characterization system and/or the automated ASIC production testing system. It can be used also to build the applications using such ASICs. To cater to various requirements arising in future, variety of VME modules are to be developed like ADCs, DACs and D 1/0. VME interface remains a common part to all these modules. The different functional blocks of these modules can be designed and fabricated on small piggyback boards (called Test Boards) and mounted on the VRM, which provides the common VME interface. The design details and uses of VRM are presented here. (author)

  17. An SEU analysis approach for error propagation in digital VLSI CMOS ASICs

    International Nuclear Information System (INIS)

    Baze, M.P.; Bartholet, W.G.; Dao, T.A.; Buchner, S.

    1995-01-01

    A critical issue in the development of ASIC designs is the ability to achieve first pass fabrication success. Unsuccessful fabrication runs have serious impact on ASIC costs and schedules. The ability to predict an ASICs radiation response prior to fabrication is therefore a key issue when designing ASICs for military and aerospace systems. This paper describes an analysis approach for calculating static bit error propagation in synchronous VLSI CMOS circuits developed as an aid for predicting the SEU response of ASIC's. The technique is intended for eventual application as an ASIC development simulation tool which can be used by circuit design engineers for performance evaluation during the pre-fabrication design process in much the same way that logic and timing simulators are used

  18. Digital integrated circuit design using Verilog and SystemVerilog

    CERN Document Server

    Mehler, Ronald W

    2014-01-01

    For those with a basic understanding of digital design, this book teaches the essential skills to design digital integrated circuits using Verilog and the relevant extensions of SystemVerilog. In addition to covering the syntax of Verilog and SystemVerilog, the author provides an appreciation of design challenges and solutions for producing working circuits. The book covers not only the syntax and limitations of HDL coding, but deals extensively with design problems such as partitioning and synchronization, helping you to produce designs that are not only logically correct, but will actually

  19. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  20. Blind channel estimation for MLSE receiver in high speed optical communications: theory and ASIC implementation.

    Science.gov (United States)

    Gorshtein, Albert; Levy, Omri; Katz, Gilad; Sadot, Dan

    2013-09-23

    Blind channel estimation is critical for digital signal processing (DSP) compensation of optical fiber communications links. The overall channel consists of deterministic distortions such as chromatic dispersion, as well as random and time varying distortions including polarization mode dispersion and timing jitter. It is critical to obtain robust acquisition and tracking methods for estimating these distortions effects, which, in turn, can be compensated by means of DSP such as Maximum Likelihood Sequence Estimation (MLSE). Here, a novel blind estimation algorithm is developed, accompanied by inclusive mathematical modeling, and followed by extensive set of real time experiments that verify quantitatively its performance and convergence. The developed blind channel estimation is used as the basis of an MLSE receiver. The entire scheme is fully implemented in a 65 nm CMOS Application Specific Integrated Circuit (ASIC). Experimental measurements and results are presented, including Bit Error Rate (BER) measurements, which demonstrate the successful data recovery by the MLSE ASIC under various channel conditions and distances.

  1. ENC Measurement for ASIC Preamp Board as a Detector Module for PET System

    Directory of Open Access Journals (Sweden)

    N. Nagara

    2016-08-01

    Full Text Available We developed a gamma ray detector with an LuAG:Pr scintillator and an avalanche photodiode as a detector for a positron emission tomography (PET system. Studies have been performed on the influences of gamma irradiation on application-specific integrated circuit (ASIC preamp boards used as a detector module. As a device used in nuclear environments for substantial durations, the ASIC has to have a lifetime long enough to ensure that there will be a negligible failure rate during this period. These front-end systems must meet the requirements for standard positron emission tomography (PET systems. Therefore, an equivalent noise charge (ENC experiment is needed to measure the front-end system's characteristics. This study showed that minimum ENC conditions can be achieved if a shorter shaping time could be applied.

  2. Study of multi-channel readout ASIC and its discrete module for particle detector

    International Nuclear Information System (INIS)

    Wang Ke; Fan Lei; Zhang Shengjun; Li Xian

    2013-01-01

    Recently, kinds of particle detectors have used Application Specific Integrated Circuits (ASIC) in their electronics readout systems, it is the key part for the whole system. This project designed a multi-channel readout ASIC for general detectors. The chip has Preamplifier, Shaper and Peak Detector embedded for easy readout. For each channel, signal which is preprocessed by a low-noise preamplifier is sent to the shaper to form a quasi-Gaussian pulse and keep its peak for readout. This chip and modules of individual Preamplifier, Shaper and Peak Detector have been manufactured and tested. The discrete modules work well, and the 6-channel chip NPRE 6 is ready for test in some particle detection system. (authors)

  3. Integrated circuit devices in control systems of coal mining complexes

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Systems of automatic monitoring and control of coal mining complexes developed in the 1960's used electromagnetic relays, thyristors, and flip-flops on transistors of varying conductivity. The circuits' designers, devoted much attention to ensuring spark safety, lowering power consumption, and raising noise immunity and repairability of functional devices. The fast development of integrated circuitry led to the use of microelectronic components in most devices of mine automation. An analysis of specifications and experimental research into integrated circuits (IMS) shows that the series K 176 IMS components made by CMOS technology best meet mine conditions of operation. The use of IMS devices under mine conditions has demonstrated their high reliability. Further development of integrated circuitry involve using microprocessors and microcomputers. (SC)

  4. Multi-Objective Optimization in Physical Synthesis of Integrated Circuits

    CERN Document Server

    A Papa, David

    2013-01-01

    This book introduces techniques that advance the capabilities and strength of modern software tools for physical synthesis, with the ultimate goal to improve the quality of leading-edge semiconductor products.  It provides a comprehensive introduction to physical synthesis and takes the reader methodically from first principles through state-of-the-art optimizations used in cutting edge industrial tools. It explains how to integrate chip optimizations in novel ways to create powerful circuit transformations that help satisfy performance requirements. Broadens the scope of physical synthesis optimization to include accurate transformations operating between the global and local scales; Integrates groups of related transformations to break circular dependencies and increase the number of circuit elements that can be jointly optimized to escape local minima;  Derives several multi-objective optimizations from first observations through complete algorithms and experiments; Describes integrated optimization te...

  5. RF and microwave integrated circuit development technology, packaging and testing

    CERN Document Server

    Gamand, Patrice; Kelma, Christophe

    2018-01-01

    RF and Microwave Integrated Circuit Development bridges the gap between existing literature, which focus mainly on the 'front-end' part of a product development (system, architecture, design techniques), by providing the reader with an insight into the 'back-end' part of product development. In addition, the authors provide practical answers and solutions regarding the choice of technology, the packaging solutions and the effects on the performance on the circuit and to the industrial testing strategy. It will also discuss future trends and challenges and includes case studies to illustrate examples. * Offers an overview of the challenges in RF/microwave product design * Provides practical answers to packaging issues and evaluates its effect on the performance of the circuit * Includes industrial testing strategies * Examines relevant RF MIC technologies and the factors which affect the choice of technology for a particular application, e.g. technical performance and cost * Discusses future trends and challen...

  6. Integrated microchannel cooling in a three dimensional integrated circuit: A thermal management

    Directory of Open Access Journals (Sweden)

    Wang Kang-Jia

    2016-01-01

    Full Text Available Microchannel cooling is a promising technology for solving the three-dimensional integrated circuit thermal problems. However, the relationship between the microchannel cooling parameters and thermal behavior of the three dimensional integrated circuit is complex and difficult to understand. In this paper, we perform a detailed evaluation of the influence of the microchannel structure and the parameters of the cooling liquid on steady-state temperature profiles. The results presented in this paper are expected to aid in the development of thermal design guidelines for three dimensional integrated circuit with microchannel cooling.

  7. Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract.

    Science.gov (United States)

    Liu, Gang; Yan, Guozheng; Zhu, Bingquan; Lu, Li

    2016-11-01

    In recent years, wireless capsule endoscopy (WCE) has been a state-of-the-art tool to examine disorders of the human gastrointestinal tract painlessly. However, system miniaturization, enhancement of the image-data transfer rate and power consumption reduction for the capsule are still key challenges. In this paper, a video capsule endoscopy system with a low-power controlling and processing application-specific integrated circuit (ASIC) is designed and fabricated. In the design, these challenges are resolved by employing a microimage sensor, a novel radio frequency transmitter with an on-off keying modulation rate of 20 Mbps, and an ASIC structure that includes a clock management module, a power-efficient image compression module and a power management unit. An ASIC-based prototype capsule, which measures Φ11 mm × 25 mm, has been developed here. Test results show that the designed ASIC consumes much less power than most of the other WCE systems and that its total power consumption per frame is the least. The image compression module can realize high near-lossless compression rate (3.69) and high image quality (46.2 dB). The proposed system supports multi-spectral imaging, including white light imaging and autofluorescence imaging, at a maximum frame rate of 24 fps and with a resolution of 400 × 400. Tests and in vivo trials in pigs have proved the feasibility of the entire system, but further improvements in capsule control and compression performance inside the ASIC are needed in the future.

  8. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer

    International Nuclear Information System (INIS)

    Long Shanli; Liu Yan; He Kejun; Tang Xinggang; Chen Qian

    2014-01-01

    A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is −116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5 × 2.5 mm 2 and the current is 3.5 mA. (semiconductor integrated circuits)

  9. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    Science.gov (United States)

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  10. A TDC integrated circuit for drift chamber readout

    International Nuclear Information System (INIS)

    Passaseo, M.; Petrolo, E.; Veneziano, S.

    1995-01-01

    A custom integrated circuit for the measurement of the signal drift-time coming from the KLOE chamber developed by INFN Sezione di Roma is presented. The circuit is a multichannel common start/stop TDC, with 32 channels per chip. The TDC integrated circuit will be developed as a full-custom device in 0.5 μm CMOS technology, with 1 ns LSB realized using a Gray counter working at the frequency of 1 GHz. The circuit is capable of detecting rising/falling edges, with a double edge resolution of 8 ns; the hits are recorded as 16 bit words, hits older than a programmable time window are discarded, if not confirmed by a stop signal. The chip has four event-buffers, which are used only if at least one hit is present in one of the 32 channels. The readout of the data passes through the I/O port at a speed of 33 MHz; empty channels are automatically skipped during the readout phase. (orig.)

  11. A TDC integrated circuit for drift chamber readout

    Energy Technology Data Exchange (ETDEWEB)

    Passaseo, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Petrolo, E. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Veneziano, S. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)

    1995-12-11

    A custom integrated circuit for the measurement of the signal drift-time coming from the KLOE chamber developed by INFN Sezione di Roma is presented. The circuit is a multichannel common start/stop TDC, with 32 channels per chip. The TDC integrated circuit will be developed as a full-custom device in 0.5 {mu}m CMOS technology, with 1 ns LSB realized using a Gray counter working at the frequency of 1 GHz. The circuit is capable of detecting rising/falling edges, with a double edge resolution of 8 ns; the hits are recorded as 16 bit words, hits older than a programmable time window are discarded, if not confirmed by a stop signal. The chip has four event-buffers, which are used only if at least one hit is present in one of the 32 channels. The readout of the data passes through the I/O port at a speed of 33 MHz; empty channels are automatically skipped during the readout phase. (orig.).

  12. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  13. Organic printed photonics: From microring lasers to integrated circuits.

    Science.gov (United States)

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

  14. Burst Mode ASIC-Based Modem

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  15. 75 FR 49524 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2010-08-13

    ... the United States after importation of certain integrated circuits, chipsets, and products containing... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-709] In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including Televisions, Media Players, and Cameras; Notice...

  16. 76 FR 34101 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2011-06-10

    ... within the United States after importation of certain integrated circuits, chipsets, and products... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-709] In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including Televisions, Media Players, and Cameras; Notice...

  17. 75 FR 65654 - In the Matter of: Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2010-10-26

    ... within the United States after importation of certain integrated circuits, chipsets, and products... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-709] In the Matter of: Certain Integrated Circuits, Chipsets, and Products Containing Same Including Televisions, Media Players, and Cameras; Notice...

  18. Investigation of SFQ integrated circuits using Nb fabrication technology

    International Nuclear Information System (INIS)

    Numata, H.; Tanaka, M.; Kitagawa, Y.; Tahara, S.

    1999-01-01

    In NEC's standard process, the minimum junction size is 2 μm and the critical current density (J C ) is 2.5 kA cm -2 . In the process, i-line stepper lithography and reactive ion etching with SF 6 gas are used and the standard deviation (σ) of the critical current (I C ) was 0.9% for the 2 μm junctions. This junction uniformity enables integration of more than 10M junctions if an I C variation of ±10% permits correct circuit operation. A 512-bit shift register was designed and fabricated by our standard process. Correct 512-bit delay operation was obtained. These results are promising for the large-scale integration of single flux quantum circuits. (author)

  19. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  20. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  1. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  2. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  3. Highly focused ion beams in integrated circuit testing

    International Nuclear Information System (INIS)

    Horn, K.M.; Dodd, P.E.; Doyle, B.L.

    1996-01-01

    The nuclear microprobe has proven to be a useful tool in radiation testing of integrated circuits. This paper reviews single event upset (SEU) and ion beam induced charge collection (IBICC) imaging techniques, with special attention to damage-dependent effects. Comparisons of IBICC measurements with three-dimensional charge transport simulations of charge collection are then presented for isolated p-channel field effect transistors under conducting and non-conducting bias conditions

  4. Optimization of Segmentation Quality of Integrated Circuit Images

    Directory of Open Access Journals (Sweden)

    Gintautas Mušketas

    2012-04-01

    Full Text Available The paper presents investigation into the application of genetic algorithms for the segmentation of the active regions of integrated circuit images. This article is dedicated to a theoretical examination of the applied methods (morphological dilation, erosion, hit-and-miss, threshold and describes genetic algorithms, image segmentation as optimization problem. The genetic optimization of the predefined filter sequence parameters is carried out. Improvement to segmentation accuracy using a non optimized filter sequence makes 6%.Artcile in Lithuanian

  5. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  6. A CMOS ASIC Design for SiPM Arrays.

    Science.gov (United States)

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2011-12-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM).

  7. High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, H., E-mail: nishino@post.kek.j [Institute for Cosmic Ray Research, University of Tokyo, Chiba 277-8582 (Japan); Awai, K.; Hayato, Y.; Nakayama, S.; Okumura, K.; Shiozawa, M.; Takeda, A. [Institute for Cosmic Ray Research, University of Tokyo, Chiba 277-8582 (Japan); Ishikawa, K.; Minegishi, A. [Iwatsu Test Instruments Corporation, Tokyo 168-8511 (Japan); Arai, Y. [The Institute of Particle and Nuclear Studies, KEK, Ibaraki 305-0801 (Japan)

    2009-11-11

    A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detector's PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0.3mVapprox3V; 0.2approx2500pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.

  8. High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Nishino, H.; Awai, K.; Hayato, Y.; Nakayama, S.; Okumura, K.; Shiozawa, M.; Takeda, A.; Ishikawa, K.; Minegishi, A.; Arai, Y.

    2009-01-01

    A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detector's PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0.3mV∼3V; 0.2∼2500pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.

  9. The integrated circuit IC EMP transient state disturbance effect experiment method investigates

    International Nuclear Information System (INIS)

    Li Xiaowei

    2004-01-01

    Transient state disturbance characteristic study on the integrated circuit, IC, need from its coupling path outset. Through cable (aerial) coupling, EMP converts to an pulse current voltage and results in the impact to the integrated circuit I/O orifice passing the cable. Aiming at the armament system construction feature, EMP effect to the integrated circuit, IC inside the system is analyzed. The integrated circuit, IC EMP effect experiment current injection method is investigated and a few experiments method is given. (authors)

  10. Short circuit analysis of distribution system with integration of DG

    DEFF Research Database (Denmark)

    Su, Chi; Liu, Zhou; Chen, Zhe

    2014-01-01

    and as a result bring challenges to the network protection system. This problem has been frequently discussed in the literature, but mostly considering only the balanced fault situation. This paper presents an investigation on the influence of full converter based wind turbine (WT) integration on fault currents......Integration of distributed generation (DG) such as wind turbines into distribution system is increasing all around the world, because of the flexible and environmentally friendly characteristics. However, DG integration may change the pattern of the fault currents in the distribution system...... during both balanced and unbalanced faults. Major factors such as external grid short circuit power capacity, WT integration location, connection type of WT integration transformer are taken into account. In turn, the challenges brought to the protection system in the distribution network are presented...

  11. Integrated biocircuits: engineering functional multicellular circuits and devices

    Science.gov (United States)

    Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang

    2018-04-01

    Objective. Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. Approach. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. Main results. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. Significance. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.

  12. Hybrid circuit prototypes for the CMS Tracker upgrade front-end electronics

    International Nuclear Information System (INIS)

    Blanchot, G; Honma, A; Kovacs, M; Braga, D; Raymond, M

    2013-01-01

    New high-density interconnect hybrid circuits are under development for the CMS tracker modules at the HL-LHC. These hybrids will provide module connectivity between flip-chip front-end ASICs, strip sensors and a service board for the data transmission and powering. Rigid organic-based substrate prototypes and also a flexible hybrid design have been built, containing up to eight front-end flip chip ASICs. A description of the function of the hybrid circuit in the tracker, the first prototype designs, results of some electrical and mechanical properties from the prototypes, and examples of the integration of the hybrids into detector modules are presented

  13. 76 FR 41521 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2011-07-14

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-786] In the Matter of Certain Integrated Circuits... sale within the United States after importation of certain integrated circuits, chipsets, and products... after importation of certain integrated circuits, chipsets, and products containing same including...

  14. 76 FR 58041 - Certain Digital Televisions Containing Integrated Circuit Devices and Components Thereof; Notice...

    Science.gov (United States)

    2011-09-19

    ... Integrated Circuit Devices and Components Thereof; Notice of Institution of Investigation; Institution of... integrated circuit devices and components thereof by reason of infringement of certain claims of U.S. Patent... after importation of certain digital televisions containing integrated circuit devices and components...

  15. 75 FR 5804 - In the Matter of: Certain Semiconductor Integrated Circuits and Products Containing Same; Notice...

    Science.gov (United States)

    2010-02-04

    ... Semiconductor Integrated Circuits and Products Containing Same; Notice of Commission Determination To Review in... importation of certain semiconductor integrated circuits and products containing same by reason of... (collectively ``Seagate''). Qimonda accuses of infringement certain LSI integrated circuits, as well as certain...

  16. 75 FR 16837 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2010-04-02

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-709] In the Matter of Certain Integrated Circuits... importation of certain integrated circuits, chipsets, and products containing same including televisions... importation, or the sale within the United States after importation of certain integrated circuits, chipsets...

  17. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  18. Diamond electro-optomechanical resonators integrated in nanophotonic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Rath, P.; Ummethala, S.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Diewald, S. [Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Lewes-Malandrakis, G.; Brink, D.; Heidrich, N.; Nebel, C. [Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg (Germany)

    2014-12-22

    Diamond integrated photonic devices are promising candidates for emerging applications in nanophotonics and quantum optics. Here, we demonstrate active modulation of diamond nanophotonic circuits by exploiting mechanical degrees of freedom in free-standing diamond electro-optomechanical resonators. We obtain high quality factors up to 9600, allowing us to read out the driven nanomechanical response with integrated optical interferometers with high sensitivity. We are able to excite higher order mechanical modes up to 115 MHz and observe the nanomechanical response also under ambient conditions.

  19. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    Science.gov (United States)

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  20. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    Science.gov (United States)

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

  1. FDTD-SPICE for Characterizing Metamaterials Integrated with Electronic Circuits

    Directory of Open Access Journals (Sweden)

    Zhengwei Hao

    2012-01-01

    Full Text Available A powerful time-domain FDTD-SPICE simulator is implemented and applied to the broadband analysis of metamaterials integrated with active and tunable circuit elements. First, the FDTD-SPICE modeling theory is studied and details of interprocess communication and hybridization of the two techniques are discussed. To verify the model, some simple cases are simulated with results in both time domain and frequency domain. Then, simulation of a metamaterial structure constructed from periodic resonant loops integrated with lumped capacitor elements is studied, which demonstrates tuning resonance frequency of medium by changing the capacitance of the integrated elements. To increase the bandwidth of the metamaterial, non-Foster transistor configurations are integrated with the loops and FDTD-SPICE is applied to successfully bridge the physics of electromagnetic and circuit topologies and to model the whole composite structure. Our model is also applied to the design and simulation of a metasurface integrated with nonlinear varactors featuring tunable reflection phase characteristic.

  2. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  3. Design automation for integrated nonlinear logic circuits (Conference Presentation)

    Science.gov (United States)

    Van Vaerenbergh, Thomas; Pelc, Jason; Santori, Charles; Bose, Ranojoy; Kielpinski, Dave; Beausoleil, Raymond G.

    2016-05-01

    A key enabler of the IT revolution of the late 20th century was the development of electronic design automation (EDA) tools allowing engineers to manage the complexity of electronic circuits with transistor counts now reaching into the billions. Recently, we have been developing large-scale nonlinear photonic integrated logic circuits for next generation all-optical information processing. At this time a sufficiently powerful EDA-style software tool chain to design this type of complex circuits does not yet exist. Here we describe a hierarchical approach to automating the design and validation of photonic integrated circuits, which can scale to several orders of magnitude higher complexity than the state of the art. Most photonic integrated circuits developed today consist of a small number of components, and only limited hierarchy. For example, a simple photonic transceiver may contain on the order of 10 building-block components, consisting of grating couplers for photonic I/O, modulators, and signal splitters/combiners. Because this is relatively easy to lay out by hand (or simple script) existing photonic design tools have relatively little automation in comparison to electronics tools. But demonstrating all-optical logic will require significantly more complex photonic circuits containing up to 1,000 components, hence becoming infeasible to design manually. Our design framework is based off Python-based software from Luceda Photonics which provides an environment to describe components, simulate their behavior, and export design files (GDS) to foundries for fabrication. At a fundamental level, a photonic component is described as a parametric cell (PCell) similarly to electronics design. PCells are described by geometric characteristics of their layout. A critical part of the design framework is the implementation of PCells as Python objects. PCell objects can then use inheritance to simplify design, and hierarchical designs can be made by creating composite

  4. Set of CAMAC modules on the base of large integrated circuits for an accelerator synchronization system

    International Nuclear Information System (INIS)

    Glejbman, Eh.M.; Pilyar, N.V.

    1986-01-01

    Parameters of functional moduli in the CAMAC standard developed for accelerator synchronization system are presented. They comprise BZN-8K and BZ-8K digital delay circuits, timing circuit and pulse selection circuit. In every module 3 large integral circuits of KR 580 VI53 type programmed timer, circuits of the given system bus bar interface with bus bars of crate, circuits of data recording control, 2 peripheric storage devices, circuits of initial regime setting, input and output shapers, circuits of installation and removal of blocking in channels are used

  5. Improved On-Chip Measurement of Delay in an FPGA or ASIC

    Science.gov (United States)

    Chen, Yuan; Burke, Gary; Sheldon, Douglas

    2007-01-01

    An improved design has been devised for on-chip-circuitry for measuring the delay through a chain of combinational logic elements in a field-programmable gate array (FPGA) or application-specific integrated circuit (ASIC). In the improved design, the delay chain does not include input and output buffers and is not configured as an oscillator. Instead, the delay chain is made part of the signal chain of an on-chip pulse generator. The duration of the pulse is measured on-chip and taken to equal the delay.

  6. A front-end ASIC for ionising radiation monitoring with femto-amp capabilities

    International Nuclear Information System (INIS)

    Voulgari, E.; Noy, M.; Anghinolfi, F.; Perrin, D.; Krummenacher, F.; Kayal, M.

    2016-01-01

    An ultra-low leakage current Application Specific Integrated Circuit (ASIC) called Utopia (Ultralow Picoammeter) has been designed and fabricated in AMS 0.35 μm CMOS, in order to be used as the front-end for ionising radiation monitoring at CERN. It is based on the topology of a Current to Frequency Converter (CFC) through charge balancing and demonstrates a wide dynamic range of 8.5 decades without range changing. Due to a design aimed at minimising input leakage currents, input currents as low as 01 fA can be measured

  7. Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Diederichsen, Søren Elmin; Jørgensen, Ivan Harald Holger

    2017-01-01

    Portable ultrasound scanners (PUS) have, in recent years, raised a lot of attention, as they can potentially overcome some of the limitations of static scanners. However, PUS have a lot of design limitations including size and power consumption. These restrictions can compromise the image quality...... of the scanner. In order to overcome these restrictions, application specific integrated circuits (ASICs) are needed to implement the electronics. In this work, a comparative study of the transmitting performance of a capacitive micromachined ultrasonic transducer (CMUT) driven by a commercial generic ultrasound...

  8. The development of two ASIC's for a fast silicon strip detector readout system

    International Nuclear Information System (INIS)

    Christain, D.; Haldeman, M.; Yarema, R.; Zimmerman, T.; Newcomer, F.M.; VanBerg, R.

    1989-01-01

    A high speed, low noise readout system for silicon strip detectors is being developed for Fermilab E771, which will begin taking data in 1989. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experimental apparatus consists of an open geometry magnetic spectrometer featuring good muon and electron identification and a 16000 channel silicon microstrip vertex detector. This paper reviews the design and prototyping of two application specific integrated circuits (ASIC's) an amplifier and a discriminator, which are being produced for the silicon strip detector readout system

  9. InP-based three-dimensional photonic integrated circuits

    Science.gov (United States)

    Tsou, Diana; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volumes require high data communication bandwidth over longer distances than short wavelength (850 nm) multi-mode fiber systems can provide. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low cost, high-speed laser modules at 1310 and 1550 nm wavelengths are required. The great success of GaAs 850 nm VCSELs for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with available intrinsic materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits, which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits (PICs) have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform for fabricating InP-based photonic integrated circuits compatible with surface-emitting laser technology. Employing InP transparency at 1310 and 1550 nm wavelengths, we have created 3-D photonic integrated circuits (PICs) by utilizing light beams in both surface normal and in-plane directions within the InP-based structure

  10. A 172 $\\mu$W Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data.

    Science.gov (United States)

    Pamula, Venkata Rajesh; Valero-Sarmiento, Jose Manuel; Yan, Long; Bozkurt, Alper; Hoof, Chris Van; Helleputte, Nick Van; Yazicioglu, Refet Firat; Verhelst, Marian

    2017-06-01

    A compressive sampling (CS) photoplethysmographic (PPG) readout with embedded feature extraction to estimate heart rate (HR) directly from compressively sampled data is presented. It integrates a low-power analog front end together with a digital back end to perform feature extraction to estimate the average HR over a 4 s interval directly from compressively sampled PPG data. The application-specified integrated circuit (ASIC) supports uniform sampling mode (1x compression) as well as CS modes with compression ratios of 8x, 10x, and 30x. CS is performed through nonuniformly subsampling the PPG signal, while feature extraction is performed using least square spectral fitting through Lomb-Scargle periodogram. The ASIC consumes 172  μ W of power from a 1.2 V supply while reducing the relative LED driver power consumption by up to 30 times without significant loss of relevant information for accurate HR estimation.

  11. External technology sourcing through alliances or acquisitions : an analysis of the Application-Specific Integrated Circuits (ASIC) industry

    NARCIS (Netherlands)

    Vanhaverbeke, W.P.M.; Duysters, G.M.; Noorderhaven, N.G.

    2002-01-01

    In today's turbulent business environment innovation is the result of the interplay between two distinct but related factors: endogenous R&D efforts and (quasi) external acquisition of technology and know-how. Given the increasing importance of innovation, it is vital to understand more about the

  12. A novel readout integrated circuit for ferroelectric FPA detector

    Science.gov (United States)

    Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying

    2017-11-01

    Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.

  13. Lithography for enabling advances in integrated circuits and devices.

    Science.gov (United States)

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  14. A High-Performance Application Specific Integrated Circuit for Electrical and Neurochemical Traumatic Brain Injury Monitoring.

    Science.gov (United States)

    Pagkalos, Ilias; Rogers, Michelle L; Boutelle, Martyn G; Drakakis, Emmanuel M

    2018-05-22

    This paper presents the first application specific integrated chip (ASIC) for the monitoring of patients who have suffered a Traumatic Brain Injury (TBI). By monitoring the neurophysiological (ECoG) and neurochemical (glucose, lactate and potassium) signals of the injured human brain tissue, it is possible to detect spreading depolarisations, which have been shown to be associated with poor TBI patient outcome. This paper describes the testing of a new 7.5 mm 2 ASIC fabricated in the commercially available AMS 0.35 μm CMOS technology. The ASIC has been designed to meet the demands of processing the injured brain tissue's ECoG signals, recorded by means of depth or brain surface electrodes, and neurochemical signals, recorded using microdialysis coupled to microfluidics-based electrochemical biosensors. The potentiostats use switchedcapacitor charge integration to record currents with 100 fA resolution, and allow automatic gain changing to track the falling sensitivity of a biosensor. This work supports the idea of a "behind the ear" wireless microplatform modality, which could enable the monitoring of currently non-monitored mobile TBI patients for the onset of secondary brain injury. ©2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Thermally-isolated silicon-based integrated circuits and related methods

    Science.gov (United States)

    Wojciechowski, Kenneth; Olsson, Roy H.; Clews, Peggy J.; Bauer, Todd

    2017-05-09

    Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.

  16. Method of making thermally-isolated silicon-based integrated circuits

    Science.gov (United States)

    Wojciechowski, Kenneth; Olsson, Roy; Clews, Peggy J.; Bauer, Todd

    2017-11-21

    Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.

  17. AIDA: A 16-channel amplifier ASIC to read out the advanced implantation detector array for experiments in nuclear decay spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Braga, D. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Coleman-Smith, P. J. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Davinson, T. [Dept. of Physics and Astronomy, Univ. of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Lazarus, I. H. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Page, R. D. [Dept. of Physics, Univ. of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Thomas, S. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2011-07-01

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detector channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)

  18. High-precision analog circuit technology for power supply integrated circuits; Dengen IC yo koseido anarogu kairo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, A.; Suzuki, T.; Mizoe, K. [Fuji Electric Corporate Research and Development,Ltd., Kanagawa (Japan)

    2000-08-10

    With the recent rapid spread of portable electronic appliances, specification requirements such as compact power supply and long operation with batteries have become severer. Power supply ICs (integrated circuits) are required to reduce power consumption in the circuit and perform high-precision control. To meet these requirements, Fuji Electric develops high-precision CMOS (complementary metal-oxide semiconductor) analog technology. This paper describes three analog circuit technologies of a voltage reference, an operational amplifier and a comparator as circuit components particularly important for the precision of power supply ICs. (author)

  19. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  20. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    Science.gov (United States)

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  1. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    Science.gov (United States)

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  2. Transient-induced latchup in CMOS integrated circuits

    CERN Document Server

    Ker, Ming-Dou

    2009-01-01

    "Transient-Induced Latchup in CMOS Integrated Circuits equips the practicing engineer with all the tools needed to address this regularly occurring problem while becoming more proficient at IC layout. Ker and Hsu introduce the phenomenon and basic physical mechanism of latchup, explaining the critical issues that have resurfaced for CMOS technologies. Once readers can gain an understanding of the standard practices for TLU, Ker and Hsu discuss the physical mechanism of TLU under a system-level ESD test, while introducing an efficient component-level TLU measurement setup. The authors then present experimental methodologies to extract safe and area-efficient compact layout rules for latchup prevention, including layout rules for I/O cells, internal circuits, and between I/O and internal circuits. The book concludes with an appendix giving a practical example of extracting layout rules and guidelines for latchup prevention in a 0.18-micrometer 1.8V/3.3V silicided CMOS process."--Publisher's description.

  3. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  4. Method for deposition of a conductor in integrated circuits

    Science.gov (United States)

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  5. Analysis and Evaluation of Statistical Models for Integrated Circuits Design

    Directory of Open Access Journals (Sweden)

    Sáenz-Noval J.J.

    2011-10-01

    Full Text Available Statistical models for integrated circuits (IC allow us to estimate the percentage of acceptable devices in the batch before fabrication. Actually, Pelgrom is the statistical model most accepted in the industry; however it was derived from a micrometer technology, which does not guarantee reliability in nanometric manufacturing processes. This work considers three of the most relevant statistical models in the industry and evaluates their limitations and advantages in analog design, so that the designer has a better criterion to make a choice. Moreover, it shows how several statistical models can be used for each one of the stages and design purposes.

  6. Integrated circuit authentication hardware Trojans and counterfeit detection

    CERN Document Server

    Tehranipoor, Mohammad; Zhang, Xuehui

    2013-01-01

    This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions. 

  7. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  8. CALCULATIONS OF DOUBLE IMPURITY DIFFUSION IN INTEGRATED CIRCUIT PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. A. Bondarev

    2005-01-01

    Full Text Available Analytical formulae for calculating simultaneous diffusion of two impurities in silicon are presented. The formulae are based on analytical solutions of diffusion equations that have been obtained for the first time by the author while using some special mathematical functions. In contrast to usual formal mathematical approaches, new functions are determined in the process of investigation of real physical models. Algorithms involve some important relations from thermodynamics of irreversible processes and also variational thermodynamic functionals that were previously obtained by the author for transfer processes. Calculations considerably reduce the time required for development of new integrated circuits

  9. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  10. Investigation of Optimal Integrated Circuit Raster Image Vectorization Method

    Directory of Open Access Journals (Sweden)

    Leonas Jasevičius

    2011-03-01

    Full Text Available Visual analysis of integrated circuit layer requires raster image vectorization stage to extract layer topology data to CAD tools. In this paper vectorization problems of raster IC layer images are presented. Various line extraction from raster images algorithms and their properties are discussed. Optimal raster image vectorization method was developed which allows utilization of common vectorization algorithms to achieve the best possible extracted vector data match with perfect manual vectorization results. To develop the optimal method, vectorized data quality dependence on initial raster image skeleton filter selection was assessed.Article in Lithuanian

  11. Design and application of multilayer monolithic microwave integrated circuit transformers

    Energy Technology Data Exchange (ETDEWEB)

    Economides, S.B

    1999-07-01

    fabricated on standard foundry processes. With careful modelling it is also feasible to integrate the two couplers into a single tri-filar transformer structure. This is a robust balun topology, which could be widely adopted. A push-pull MESFET amplifier with 8 dB gain demonstrated this at 12 GHz, using the balun chips connected to amplifier circuits. (author)

  12. Monolithic readout circuits for RHIC

    International Nuclear Information System (INIS)

    O'Connor, P.; Harder, J.; Sippach, W.

    1991-10-01

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology

  13. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  14. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    Science.gov (United States)

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  15. Simultaneous Disruption of Mouse ASIC1a, ASIC2 and ASIC3 Genes Enhances Cutaneous Mechanosensitivity

    Science.gov (United States)

    Kang, Sinyoung; Jang, Jun Ho; Price, Margaret P.; Gautam, Mamta; Benson, Christopher J.; Gong, Huiyu; Welsh, Michael J.; Brennan, Timothy J.

    2012-01-01

    Three observations have suggested that acid-sensing ion channels (ASICs) might be mammalian cutaneous mechanoreceptors; they are structurally related to Caenorhabditis elegans mechanoreceptors, they are localized in specialized cutaneous mechanosensory structures, and mechanical displacement generates an ASIC-dependent depolarization in some neurons. However, previous studies of mice bearing a single disrupted ASIC gene showed only subtle or no alterations in cutaneous mechanosensitivity. Because functional redundancy of ASIC subunits might explain limited phenotypic alterations, we hypothesized that disrupting multiple ASIC genes would markedly impair cutaneous mechanosensation. We found the opposite. In behavioral studies, mice with simultaneous disruptions of ASIC1a, -2 and -3 genes (triple-knockouts, TKOs) showed increased paw withdrawal frequencies when mechanically stimulated with von Frey filaments. Moreover, in single-fiber nerve recordings of cutaneous afferents, mechanical stimulation generated enhanced activity in A-mechanonociceptors of ASIC TKOs compared to wild-type mice. Responses of all other fiber types did not differ between the two genotypes. These data indicate that ASIC subunits influence cutaneous mechanosensitivity. However, it is unlikely that ASICs directly transduce mechanical stimuli. We speculate that physical and/or functional association of ASICs with other components of the mechanosensory transduction apparatus contributes to normal cutaneous mechanosensation. PMID:22506072

  16. Driver ASIC Environmental Testing and Performance Optimization for SpaceBased Active Mirrors

    Science.gov (United States)

    Mejia Prada, Camilo

    Direct imaging of Earth-like planets requires techniques for light suppression, such as coronagraphs or nulling interferometers, in which deformable mirrors (DM) are a principal component. On ground-based systems, DMs are used to correct for turbulence in the Earth’s atmosphere in addition to static aberrations in the optics. For space-based observations, DMs are used to correct for static and quasi- static aberrations in the optical train. State-of-the-art, high-actuator count deformable mirrors suffer from external heavy and bulky electronics in which electrical connections are made through thousands of wires. We are instead developing Application Specific Integrated Circuits (ASICs) capable of direct integration with the DM in a single small package. This integrated ASIC-DM is ideal for space missions, where it offers significant reduction in mass, power and complexity, and performance compatible with high-contrast observations of exoplanets. We have successfully prototyped and tested a 32x32 format Switch-Mode (SM) ASIC which consumes only 2mW static power (total, not per-actuator). A number of constraints were imposed on key parameters of this ASIC design, including sub-picoamp levels of leakage across turned-off switches and from switch-to-substrate, control resolution of 0.04 mV, satisfactory rise/fall times, and a near-zero on-chip crosstalk over a useful range of operating temperatures. This driver ASIC technology is currently at TRL 4. This Supporting Technology proposal will further develop the ASIC technology to TRL 5 by carrying on environmental tests and further optimizing performance, with the end goal of making ASICs suitable for space-based deployment. The effort will be led by JPL, which has considerable expertise with DMs used in highcontrast imaging systems for exoplanet missions and in adaptive optic systems, and in design of DM driver electronics. Microscale, which developed the prototype of the ASICDM, will continue its development. We

  17. A Muscle Fibre Conduction Velocity Tracking ASIC for Local Fatigue Monitoring.

    Science.gov (United States)

    Koutsos, Ermis; Cretu, Vlad; Georgiou, Pantelis

    2016-12-01

    Electromyography analysis can provide information about a muscle's fatigue state by estimating Muscle Fibre Conduction Velocity (MFCV), a measure of the travelling speed of Motor Unit Action Potentials (MUAPs) in muscle tissue. MFCV better represents the physical manifestations of muscle fatigue, compared to the progressive compression of the myoelectic Power Spectral Density, hence it is more suitable for a muscle fatigue tracking system. This paper presents a novel algorithm for the estimation of MFCV using single threshold bit-stream conversion and a dedicated application-specified integrated circuit (ASIC) for its implementation, suitable for a compact, wearable and easy to use muscle fatigue monitor. The presented ASIC is implemented in a commercially available AMS 0.35 [Formula: see text] CMOS technology and utilizes a bit-stream cross-correlator that estimates the conduction velocity of the myoelectric signal in real time. A test group of 20 subjects was used to evaluate the performance of the developed ASIC, achieving good accuracy with an error of only 3.2% compared to Matlab.

  18. Economic testing of large integrated switching circuits - a challenge to the test engineer

    International Nuclear Information System (INIS)

    Kreinberg, W.

    1978-01-01

    With reference to large integrated switching circuits, one can use an incoming standard programme test or the customer's switching circuits. The author describes the development of suitable, extensive and economical test programmes. (orig.) [de

  19. The Mixed-Signal ASIC design course at Twente

    NARCIS (Netherlands)

    Stehelin, G.; Tangelder, R.J.W.T.; Gerez, Sabih H.; Kerkhoff, Hans G.; Klumperink, Eric A.M.; Smit, J.; Snijders, H.; Speek, H.; de Vries, H.

    2000-01-01

    In this paper we give a detailed overview of the ASIC design course as it is being given at the Department of Electrical Engineering of the University of Twente. This course covers the complete trajectory from system design via circuit design and actual implementation to testing. Design and testing

  20. Post-irradiation effects in CMOS integrated circuits

    International Nuclear Information System (INIS)

    Zietlow, T.C.; Barnes, C.E.; Morse, T.C.; Grusynski, J.S.; Nakamura, K.; Amram, A.; Wilson, K.T.

    1988-01-01

    The post-irradiation response of CMOS integrated circuits from three vendors has been measured as a function of temperature and irradiation bias. The author's have found that a worst-case anneal temperature for rebound testing is highly process dependent. At an anneal temperature of 80 0 C, the timing parameters of a 16K SRAM from vendor A quickly saturate at maximum values, and display no further changes at this temperature. At higher temperature, evidence for the anneal of interface state charge is observed. Dynamic bias during irradiation results in the same saturation value for the timing parameters, but the anneal time required to reach this value is longer. CMOS/SOS integrated circuits (vendor B) were also examined, and showed similar behavior, except that the saturation value for the timing parameters was stable up to 105 0 C. After irradiation to 10 Mrad(Si), a 16K SRAM (vendor C) was annealed at 80 0 C. In contrast to the results from the vendor A SRAM, the access time decreased toward prerad values during the anneal. Another part irradiated in the same manner but annealed at room temperature showed a slight increase during the anneal

  1. Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit

    Science.gov (United States)

    Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa

    2018-02-01

    In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.

  2. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  3. Integrated circuit amplifiers for multi-electrode intracortical recording.

    Science.gov (United States)

    Jochum, Thomas; Denison, Timothy; Wolf, Patrick

    2009-02-01

    Significant progress has been made in systems that interpret the electrical signals of the brain in order to control an actuator. One version of these systems senses neuronal extracellular action potentials with an array of up to 100 miniature probes inserted into the cortex. The impedance of each probe is high, so environmental electrical noise is readily coupled to the neuronal signal. To minimize this noise, an amplifier is placed close to each probe. Thus, the need has arisen for many amplifiers to be placed near the cortex. Commercially available integrated circuits do not satisfy the area, power and noise requirements of this application, so researchers have designed custom integrated-circuit amplifiers. This paper presents a comprehensive survey of the neural amplifiers described in publications prior to 2008. Methods to achieve high input impedance, low noise and a large time-constant high-pass filter are reviewed. A tutorial on the biological, electrochemical, mechanical and electromagnetic phenomena that influence amplifier design is provided. Areas for additional research, including sub-nanoampere electrolysis and chronic cortical heating, are discussed. Unresolved design concerns, including teraohm circuitry, electrical overstress and component failure, are identified.

  4. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    Science.gov (United States)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.

  5. Mixed signal custom integrated circuit development for physics instrumentation

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Bryan, W.L.; Emery, M.S.

    1998-01-01

    The Monolithic Systems Development Group at the Oak Ridge National Laboratory has been greatly involved in custom mixed-mode integrated circuit development for the PHENIX detector at the Relativistic Heavy Ion collider (RHIC) at Brookhaven National Laboratory and position-sensitive germanium spectrometer front-ends for the Naval Research Laboratory (NRL). This paper will outline the work done for both PHENIX and the Naval Research Laboratory in the area of full-custom, mixed-signal CMOS integrated electronics. This paper presents the architectures chosen for the various PHENIX detectors which include position-sensitive silicon, capacitive pixel, and phototube detectors, and performance results for the subsystems as well as a system description of the NRL germanium strip system and its performance. The performance of the custom preamplifiers, discriminators, analog memories, analog-digital converters, and control circuitry for all systems will be presented

  6. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  7. Numerical counting ratemeter with variable time constant and integrated circuits

    International Nuclear Information System (INIS)

    Kaiser, J.; Fuan, J.

    1967-01-01

    We present here the prototype of a numerical counting ratemeter which is a special version of variable time-constant frequency meter (1). The originality of this work lies in the fact that the change in the time constant is carried out automatically. Since the criterion for this change is the accuracy in the annunciated result, the integration time is varied as a function of the frequency. For the prototype described in this report, the time constant varies from 1 sec to 1 millisec. for frequencies in the range 10 Hz to 10 MHz. This prototype is built entirely of MECL-type integrated circuits from Motorola and is thus contained in two relatively small boxes. (authors) [fr

  8. Mixed signal custom integrated circuit development for physics instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L. Jr.; Bryan, W.L.; Emery, M.S. [and others

    1998-10-01

    The Monolithic Systems Development Group at the Oak Ridge National Laboratory has been greatly involved in custom mixed-mode integrated circuit development for the PHENIX detector at the Relativistic Heavy Ion collider (RHIC) at Brookhaven National Laboratory and position-sensitive germanium spectrometer front-ends for the Naval Research Laboratory (NRL). This paper will outline the work done for both PHENIX and the Naval Research Laboratory in the area of full-custom, mixed-signal CMOS integrated electronics. This paper presents the architectures chosen for the various PHENIX detectors which include position-sensitive silicon, capacitive pixel, and phototube detectors, and performance results for the subsystems as well as a system description of the NRL germanium strip system and its performance. The performance of the custom preamplifiers, discriminators, analog memories, analog-digital converters, and control circuitry for all systems will be presented.

  9. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    Science.gov (United States)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  10. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    Science.gov (United States)

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  11. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes.

    Science.gov (United States)

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos; Kollarik, Marian

    2014-11-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%-95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65-75%). ASIC1, ASIC2, and ASIC3 were expressed in 65-75%, 55-70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. Copyright © 2014 the American Physiological Society.

  12. Removal of Gross Air Embolization from Cardiopulmonary Bypass Circuits with Integrated Arterial Line Filters: A Comparison of Circuit Designs.

    Science.gov (United States)

    Reagor, James A; Holt, David W

    2016-03-01

    Advances in technology, the desire to minimize blood product transfusions, and concerns relating to inflammatory mediators have lead many practitioners and manufacturers to minimize cardiopulmonary bypass (CBP) circuit designs. The oxygenator and arterial line filter (ALF) have been integrated into one device as a method of attaining a reduction in prime volume and surface area. The instructions for use of a currently available oxygenator with integrated ALF recommends incorporating a recirculation line distal to the oxygenator. However, according to an unscientific survey, 70% of respondents utilize CPB circuits incorporating integrated ALFs without a path of recirculation distal to the oxygenator outlet. Considering this circuit design, the ability to quickly remove a gross air bolus in the blood path distal to the oxygenator may be compromised. This in vitro study was designed to determine if the time required to remove a gross air bolus from a CPB circuit without a path of recirculation distal to the oxygenator will be significantly longer than that of a circuit with a path of recirculation distal to the oxygenator. A significant difference was found in the mean time required to remove a gross air bolus between the circuit designs (p = .0003). Additionally, There was found to be a statistically significant difference in the mean time required to remove a gross air bolus between Trial 1 and Trials 4 (p = .015) and 5 (p =.014) irrespective of the circuit design. Under the parameters of this study, a recirculation line distal to an oxygenator with an integrated ALF significantly decreases the time it takes to remove an air bolus from the CPB circuit and may be safer for clinical use than the same circuit without a recirculation line.

  13. A 32-channels, 025 mu m CMOS ASIC for the readout of the Silicon Drift Detectors of the ALICE experiment

    CERN Document Server

    Mazza, G; Anelli, G; Anghinolfi, F; Martínez, M I; Rotondo, F

    2004-01-01

    In this paper we present a 32 channel ASIC prototype for the readout of the Silicon Drift Detectors (SDDs) of the ALICE experiment. The ASIC integrates on the same chip 32 transimpedance amplifiers, a 32*256 cells analogue memory and 16 successive approximation 10 bit A /D converters. The circuit amplifies and samples at 40 MS/s the input signal in a continuous way; when an external trigger signal validates the acquisition, the sampling is stopped and the data are digitized at lower speed (0.5 MS/s). The chip has been designed and fabricated in a commercial. 0.25 mu m CMOS technology. It has been extensively tested both on a bench and connected with the detector in several beam tests. In this paper both design issues and test results are presented. The commercial technology used for the design has been yield radiation tolerant with special layout techniques. Total dose irradiation tests are also presented. (13 refs).

  14. A 32-channel, 025 mum CMOS ASIC for the readout of the silicon drift detectors of the ALICE experiment

    CERN Document Server

    Mazza, G; Anghinolfi, F; Martínez, M I; Rivetti, A; Rotondo, F

    2004-01-01

    In this paper we present a 32 channel ASIC prototype for the readout of the silicon drift detectors (SDDs) of the ALICE experiment. The ASIC integrates on the same substrate 32 transimpedance amplifiers, a 32 x 256 cell analogue memory and 16 successive approximation 10 bit A/D converters. The circuit amplifies and samples at 40 MS/s the input signal in a continuous way. When an external trigger signal validates the acquisition, the sampling is stopped and the data are digitized at lower speed (0.5 MS/s). The chip has been designed and fabricated in a commercial 0.25 mum CMOS technology. It has been extensively tested both on a bench and connected with a detector in several beam tests. In this paper both design issues and test results are presented. The radiation tolerance of the design has been increased by special layout techniques. Total dose irradiation tests are also presented.

  15. Diagnosis of soft faults in analog integrated circuits based on fractional correlation

    International Nuclear Information System (INIS)

    Deng Yong; Shi Yibing; Zhang Wei

    2012-01-01

    Aiming at the problem of diagnosing soft faults in analog integrated circuits, an approach based on fractional correlation is proposed. First, the Volterra series of the circuit under test (CUT) decomposed by the fractional wavelet packet are used to calculate the fractional correlation functions. Then, the calculated fractional correlation functions are used to form the fault signatures of the CUT. By comparing the fault signatures, the different soft faulty conditions of the CUT are identified and the faults are located. Simulations of benchmark circuits illustrate the proposed method and validate its effectiveness in diagnosing soft faults in analog integrated circuits. (semiconductor integrated circuits)

  16. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    OpenAIRE

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitu...

  17. Long-wavelength photonic integrated circuits and avalanche photodetectors

    Science.gov (United States)

    Tsou, Yi-Jen D.; Zaytsev, Sergey; Pauchard, Alexandre; Hummel, Steve; Lo, Yu-Hwa

    2001-10-01

    Fast-growing internet traffic volume require high data communication bandwidth over longer distances. Access network bottlenecks put pressure on short-range (SR) telecommunication systems. To effectively address these datacom and telecom market needs, low-cost, high-speed laser modules at 1310 to 1550 nm wavelengths and avalanche photodetectors are required. The great success of GaAs 850nm VCSEls for Gb/s Ethernet has motivated efforts to extend VCSEL technology to longer wavelengths in the 1310 and 1550 nm regimes. However, the technological challenges associated with materials for long wavelength VCSELs are tremendous. Even with recent advances in this area, it is believed that significant additional development is necessary before long wavelength VCSELs that meet commercial specifications will be widely available. In addition, the more stringent OC192 and OC768 specifications for single-mode fiber (SMF) datacom may require more than just a long wavelength laser diode, VCSEL or not, to address numerous cost and performance issues. We believe that photonic integrated circuits (PICs), which compactly integrate surface-emitting lasers with additional active and passive optical components with extended functionality, will provide the best solutions to today's problems. Photonic integrated circuits have been investigated for more than a decade. However, they have produced limited commercial impact to date primarily because the highly complicated fabrication processes produce significant yield and device performance issues. In this presentation, we will discuss a new technology platform of InP-based PICs compatible with surface-emitting laser technology, as well as a high data rate externally modulated laser module. Avalanche photodetectors (APDs) are the key component in the receiver to achieve high data rate over long transmission distance because of their high sensitivity and large gain- bandwidth product. We have used wafer fusion technology to achieve In

  18. The GOTTHARD charge integrating readout detector: design and characterization

    International Nuclear Information System (INIS)

    Mozzanica, A; Bergamaschi, A; Dinapoli, R; Greiffenberg, D; Henrich, B; Johnson, I; Valeria, R; Schmitt, B; Xintian, S; Graafsma, H; Lohmann, M

    2012-01-01

    A charge integrating readout ASIC (Application Specific Integrated Circuit) for silicon strip sensors has been developed at PSI in collaboration with DESY. The goal of the project is to provide a charge integrating readout system able to cope with the pulsed beam of XFEL machines and at the same time to retain the high dynamic range and single photon resolution performances typical for photon counting systems. The ASIC, designed in IBM 130 nm CMOS technology, takes advantage of its three gain stages with automatic stage selection to achieve a dynamic range of 10000 12 keV photons and a noise better than 300 e.n.c.. The 4 analog outputs of the ASIC are optimized for speed, allowing frame rates higher than 1 MHz, without compromises on linearity and noise performances. This work presents the design features of the ASIC, and reports the characterization results of the chip itself.

  19. Perspective: The future of quantum dot photonic integrated circuits

    Directory of Open Access Journals (Sweden)

    Justin C. Norman

    2018-03-01

    Full Text Available Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS foundries.

  20. Perspective: The future of quantum dot photonic integrated circuits

    Science.gov (United States)

    Norman, Justin C.; Jung, Daehwan; Wan, Yating; Bowers, John E.

    2018-03-01

    Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS) foundries.

  1. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    Science.gov (United States)

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  2. Integrated Circuit Design in US High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Geronimo, G. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bebek, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Garcia-Sciveres, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lippe, H. V. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Grillo, AA [Univ. of California, Santa Cruz, CA (United States); Newcomer, M [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2013-07-10

    This whitepaper summarizes the status, plans, and challenges in the area of integrated circuit design in the United States for future High Energy Physics (HEP) experiments. It has been submitted to CPAD (Coordinating Panel for Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the whitepaper was distributed to the attendees before the workshop, the content was discussed at the meeting, and this document is the resulting final product. The scope of the whitepaper includes the following topics: Needs for IC technologies to enable future experiments in the three HEP frontiers Energy, Cosmic and Intensity Frontiers; Challenges in the different technology and circuit design areas and the related R&D needs; Motivation for using different fabrication technologies; Outlook of future technologies including 2.5D and 3D; Survey of ICs used in current experiments and ICs targeted for approved or proposed experiments; IC design at US institutes and recommendations for collaboration in the future.

  3. Hydrogenated amorphous silicon sensors based on thin film on ASIC technology

    CERN Document Server

    Despeisse, M; Anelli, G; Jarron, P; Kaplon, J; Rusack, R; Saramad, S; Wyrsch, N

    2006-01-01

    The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting "thin-film on ASIC" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre- amplifiers. The measurement set-up also permits to study the depletion of the senso...

  4. Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O's.

    Science.gov (United States)

    Absil, Philippe P; Verheyen, Peter; De Heyn, Peter; Pantouvaki, Marianna; Lepage, Guy; De Coster, Jeroen; Van Campenhout, Joris

    2015-04-06

    Silicon photonics integrated circuits are considered to enable future computing systems with optical input-outputs co-packaged with CMOS chips to circumvent the limitations of electrical interfaces. In this paper we present the recent progress made to enable dense multiplexing by exploiting the integration advantage of silicon photonics integrated circuits. We also discuss the manufacturability of such circuits, a key factor for a wide adoption of this technology.

  5. Integrated circuit for processing a low-frequency signal from a seismic detector

    Energy Technology Data Exchange (ETDEWEB)

    Malashevich, N. I.; Roslyakov, A. S.; Polomoshnov, S. A., E-mail: S.Polomoshnov@tsen.ru; Fedorov, R. A. [Research and Production Complex ' Technological Center' of the Moscow Institute of Electronic Technology (Russian Federation)

    2011-12-15

    Specific features for the detection and processing of a low-frequency signal from a seismic detector are considered in terms of an integrated circuit based on a large matrix crystal of the 5507 series. This integrated circuit is designed for the detection of human movements. The specific features of the information signal, obtained at the output of the seismic detector, and the main characteristics of the integrated circuit and its structure are reported.

  6. CMOS analog integrated circuit design technology; CMOS anarogu IC sekkei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Fujisawa, A. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-08-10

    In the field of the LSI (large scale integrated circuit) in rapid progress toward high integration and advanced functions, CAD (computer-aided design) technology has become indispensable to LSI development within a short period. Fuji Electric has developed design technologies and automatic design system to develop high-quality analog ICs (integrated circuits), including power supply ICs. within a short period. This paper describes CMOS (complementary metal-oxide semiconductor) analog macro cell, circuit simulation, automatic routing, and backannotation technologies. (author)

  7. Technique for selection of transient radiation-hard junction-isolated integrated circuits

    International Nuclear Information System (INIS)

    Crowley, J.L.; Junga, F.A.; Stultz, T.J.

    1976-01-01

    A technique is presented which demonstrates the feasibility of selecting junction-isolated integrated circuits (JI/ICS) for use in transient radiation environments. The procedure guarantees that all PNPN paths within the integrated circuit are identified and describes the methods used to determine whether the paths represent latchup susceptible structures. Two examples of the latchup analysis are given involving an SSI and an LSI bipolar junction-isolated integrated circuit

  8. Analog Integrated Circuit Design for Spike Time Dependent Encoder and Reservoir in Reservoir Computing Processors

    Science.gov (United States)

    2018-01-01

    HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. FOR THE CHIEF ENGINEER : / S / / S...bridged high-performance computing, nanotechnology , and integrated circuits & systems. 15. SUBJECT TERMS neuromorphic computing, neuron design, spike...multidisciplinary effort encompassed high-performance computing, nanotechnology , integrated circuits, and integrated systems. The project’s architecture was

  9. 77 FR 35426 - Certain Radio Frequency Integrated Circuits and Devices Containing Same; Institution of...

    Science.gov (United States)

    2012-06-13

    ... of certain radio frequency integrated circuits and devices containing same by reason of infringement... importation of certain radio frequency integrated circuits and devices containing same that infringe one or... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-848] Certain Radio Frequency Integrated...

  10. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.; Rana, I.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. Purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing

  11. Wireless Neural Recording With Single Low-Power Integrated Circuit

    Science.gov (United States)

    Harrison, Reid R.; Kier, Ryan J.; Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V.

    2010-01-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902–928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor. PMID:19497825

  12. Infrared transparent graphene heater for silicon photonic integrated circuits.

    Science.gov (United States)

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  13. Apparatus and method for defect testing of integrated circuits

    Science.gov (United States)

    Cole, Jr., Edward I.; Soden, Jerry M.

    2000-01-01

    An apparatus and method for defect and failure-mechanism testing of integrated circuits (ICs) is disclosed. The apparatus provides an operating voltage, V.sub.DD, to an IC under test and measures a transient voltage component, V.sub.DDT, signal that is produced in response to switching transients that occur as test vectors are provided as inputs to the IC. The amplitude or time delay of the V.sub.DDT signal can be used to distinguish between defective and defect-free (i.e. known good) ICs. The V.sub.DDT signal is measured with a transient digitizer, a digital oscilloscope, or with an IC tester that is also used to input the test vectors to the IC. The present invention has applications for IC process development, for the testing of ICs during manufacture, and for qualifying ICs for reliability.

  14. Photonic integrated circuits unveil crisis-induced intermittency.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Akizawa, Yasuhiro; Kanno, Kazutaka; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki

    2016-09-19

    We experimentally investigate an intermittent route to chaos in a photonic integrated circuit consisting of a semiconductor laser with time-delayed optical feedback from a short external cavity. The transition from a period-doubling dynamics to a fully-developed chaos reveals a stage intermittently exhibiting these two dynamics. We unveil the bifurcation mechanism underlying this route to chaos by using the Lang-Kobayashi model and demonstrate that the process is based on a phenomenon of attractor expansion initiated by a particular distribution of the local Lyapunov exponents. We emphasize on the crucial importance of the distribution of the steady-state solutions introduced by the time-delayed feedback on the existence of this intermittent dynamics.

  15. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  16. Monolithic microwave integrated circuit devices for active array antennas

    Science.gov (United States)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  17. Two multichannel integrated circuits for neural recording and signal processing.

    Science.gov (United States)

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  18. Wireless neural recording with single low-power integrated circuit.

    Science.gov (United States)

    Harrison, Reid R; Kier, Ryan J; Chestek, Cynthia A; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V

    2009-08-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902-928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor.

  19. Neural Circuit to Integrate Opposing Motions in the Visual Field.

    Science.gov (United States)

    Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander

    2015-07-16

    When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Networked Social Reproduction: Crises in the Integrated Circuit

    Directory of Open Access Journals (Sweden)

    Elise Danielle Thorburn

    2016-07-01

    Full Text Available This paper argues that the means of communication are sites for, and aspects of, social reproduction. In contemporary capitalism, motivated as it is by new, networked digital technologies, social reproduction is increasingly virtualised through the means of communication. Although recent political struggles have demonstrated how networked technologies can liberate social reproduction from the profit motive and from commodifying impulses, the tendency is to invoke and accelerate socially reproductive crises—crises in the capacity to reproduce ourselves both daily and intergenerationally. These crises have psychic and corporeal impacts, and intensify Tronti’s “social factory” thesis of capital’s technical composition. In order to develop modes and means of liberatory communication in the integrated circuit it is necessary to untangle and chart both the pathways and outcomes of the crises networked social reproduction invokes.

  1. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. The purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing. A demonstration model for protection system of PWR reactor has been designed and built

  2. Enabling the Internet of Things from integrated circuits to integrated systems

    CERN Document Server

    2017-01-01

    This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the tiny nodes at its edge. The authors provide a fresh perspective on how the IoT will evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them. This book describes what the IoT really means from the design point of view, and how the constraints imposed by applications translate into integrated circuit requirements and design guidelines. Chapter contributions equally come from industry and academia. After providing a system perspective on IoT nodes, this book focuses on state-of-the-art design techniques for IoT applications, encompassing the fundamental sub-systems encountered in Systems on Chip for IoT: ultra-low power digital architectures and circuits low- and zero-leakage memories (including emerging technologies) circuits for hardwar...

  3. Design and Test of Application-Specific Integrated Circuits by use of Mobile Clients

    Directory of Open Access Journals (Sweden)

    Michael Auer

    2009-02-01

    Full Text Available The aim of this work is to develop a simultaneous multi user access system – READ (Remote ASIC Design and Test that allows users to perform test and measurements remotely via clients running on mobile devices as well as on standard PCs. The system also facilitates the remote design of circuits with the PAC-Designer The system is controlled by LabVIEW and was implemented using a Data Acquisition Card from National instruments. Such systems are specially suited for manufacturing process monitoring and control. The performance of the simultaneous access was tested under load with a variable number of users. The server implements a queue that processes user’s commands upon request.

  4. Single event upset test structures for digital CMOS application specific integrated circuits

    International Nuclear Information System (INIS)

    Baze, M.P.; Bartholet, W.G.; Braatz, J.C.; Dao, T.A.

    1993-01-01

    An approach has been developed for the design and utilization of SEU test structures for digital CMOS ASICs. This approach minimizes the number of test structures required by categorizing ASIC library cells according to their SEU response and designing a structure to characterize each response for each category. Critical SEU response parameters extracted from these structures are used to evaluate the SEU hardness of ASIC libraries and predict the hardness of ASIC chips

  5. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator

    Science.gov (United States)

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex. PMID:27242416

  6. Intelligent switches of integrated lightwave circuits with core telecommunication functions

    Science.gov (United States)

    Izhaky, Nahum; Duer, Reuven; Berns, Neil; Tal, Eran; Vinikman, Shirly; Schoenwald, Jeffrey S.; Shani, Yosi

    2001-05-01

    We present a brief overview of a promising switching technology based on Silica on Silicon thermo-optic integrated circuits. This is basically a 2D solid-state optical device capable of non-blocking switching operation. Except of its excellent performance (insertion lossvariable output power control (attenuation), for instance, to equalize signal levels and compensate for unbalanced different optical input powers, or to equalize unbalanced EDFA gain curve. We examine the market segments appropriate for the switch size and technology, followed by a discussion of the basic features of the technology. The discussion is focused on important requirements from the switch and the technology (e.g., insertion loss, power consumption, channel isolation, extinction ratio, switching time, and heat dissipation). The mechanical design is also considered. It must take into account integration of optical fiber, optical planar wafer, analog electronics and digital microprocessor controls, embedded software, and heating power dissipation. The Lynx Photon.8x8 switch is compared to competing technologies, in terms of typical market performance requirements.

  7. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  8. Focused ion beam damage to MOS integrated circuits

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Campbell, Ann N.; Hembree, Charles E.; Tangyunyong, Paiboon; Jessing, Jeffrey R.; Soden, Jerry M.

    2000-01-01

    Commercial focused ion beam (FIB) systems are commonly used to image integrated circuits (ICS) after device processing, especially in failure analysis applications. FIB systems are also often employed to repair faults in metal lines for otherwise functioning ICS, and are being evaluated for applications in film deposition and nanofabrication. A problem that is often seen in FIB imaging and repair is that ICS can be damaged during the exposure process. This can result in degraded response or out-right circuit failure. Because FIB processes typically require the surface of an IC to be exposed to an intense beam of 30--50 keV Ga + ions, both charging and secondary radiation damage are potential concerns. In previous studies, both types of effects have been suggested as possible causes of device degradation, depending on the type of device examined and/or the bias conditions. Understanding the causes of this damage is important for ICS that are imaged or repaired by a FIB between manufacture and operation, since the performance and reliability of a given IC is otherwise at risk in subsequent system application. In this summary, the authors discuss the relative roles of radiation damage and charging effects during FIB imaging. Data from exposures of packaged parts under controlled bias indicate the possibility for secondary radiation damage during FIB exposure. On the other hand, FIB exposure of unbiased wafers (a more common application) typically results in damage caused by high-voltage stress or electrostatic discharge. Implications for FIB exposure and subsequent IC use are discussed

  9. READ - Remote Analog ASIC Design System

    Directory of Open Access Journals (Sweden)

    Michael E. Auer

    2006-11-01

    Full Text Available The scope of this work is to present a solution to implement a remote electronic laboratory for testing and designing analog ASICs (ispPAC10. The application allows users to create circuit schematics, upload the design to the device and perform measurements. The software used for designing circuits is the PAC-Designer and it runs on a Citrix server. The signals are generated and the responses are acquired by a data acquisition board controlled by LabView. The virtual instruments interact with some ActiveX controls specially designed to look like real oscilloscope and function generator devices and represent the user interface of the lab. These ActiveX give users the control over the LabView VIs and the access to its facilities in order to perform electronic exercises.

  10. An optoelectronic integrated device including a laser and its driving circuit

    Energy Technology Data Exchange (ETDEWEB)

    Matsueda, H.; Nakano, H.; Tanaka, T.P.

    1984-10-01

    A monolithic optoelectronic integrated circuit (OEIC) including a laser diode, photomonitor and driving and detecting circuits has been fabricated on a semi-insulating GaAs substrate. The OEIC has a horizontal integrating structure which is suitable for realising high-density multifunctional devices. The fabricating process and the static and dynamic characteristics of the optical and electronic elements are described. The preliminary results of the co-operative operation of the laser and its driving circuit are also presented.

  11. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications.

    Science.gov (United States)

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-10-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μ W. In acquisition mode, the total power consumption of every pixel is 200 μ W. An equivalent noise charge (ENC) of 160 e - RMS at maximum gain and negative polarity conditions has been measured at room temperature.

  12. Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology

    Science.gov (United States)

    Bahl, Inder J.

    Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.

  13. 77 FR 25747 - Certain Semiconductor Integrated Circuit Devices and Products Containing Same; Institution of...

    Science.gov (United States)

    2012-05-01

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-840] Certain Semiconductor Integrated Circuit... States after importation of certain semiconductor integrated circuit devices and products containing same... No. 6,847,904 (``the '904 patent''). The complaint further alleges that an industry in the United...

  14. Experimental Demonstration of 7 Tb/s Switching Using Novel Silicon Photonic Integrated Circuit

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We demonstrate BER performance <10^-9 for a 1 Tb/s/core transmission over 7-core fiber and SDM switching using a novel silicon photonic integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers.......We demonstrate BER performance integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers....

  15. Integrated circuits with emitter coupling and their application in nanosecond nuclear electronics

    International Nuclear Information System (INIS)

    Basiladze, S.G.

    1976-01-01

    Principal static and dynamic characteristics are considered of integrated circuits with emitter coupling, as well as problems of signal transmission. Diagrams are given of amplifiers, discriminators, time interval drivers, generators, etc. Systems and units of nanosecond electronics employing integrated circuits with emitter coupling are briefly described

  16. Integrated all optical transmodulator circuits with non-linear gain elements and tunable optical fibers

    NARCIS (Netherlands)

    Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.

    2012-01-01

    We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.

  17. Speech recognition by means of a three-integrated-circuit set

    Energy Technology Data Exchange (ETDEWEB)

    Zoicas, A.

    1983-11-03

    The author uses pattern recognition methods for detecting word boundaries, and monitors incoming speech at 12 millisecond intervals. Frequency is divided into eight bands and analysis is achieved in an analogue interface integrated circuit, a pipeline digital processor and a control integrated circuit. Applications are suggested, including speech input to personal computers. 3 references.

  18. Design structure for in-system redundant array repair in integrated circuits

    Science.gov (United States)

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  19. Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit

    Science.gov (United States)

    Roham, Masoud; Halpern, Jeffrey M.; Martin, Heidi B.; Chiel, Hillel J.

    2015-01-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order ΔΣ modulator (ΔΣM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 μm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~250 fA, ~1.5 pA, ~4.5 pA, and ~17 pA were achieved for input currents in the range of ±5, ±37, ±150, and ±600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 μM wirelessly over a transmission distance of ~0.5 m in flow injection analysis experiments. PMID:18990633

  20. GaAs integrated circuits and heterojunction devices

    Science.gov (United States)

    Fowlis, Colin

    1986-06-01

    The state of the art of GaAs technology in the U.S. as it applies to digital and analog integrated circuits is examined. In a market projection, it is noted that whereas analog ICs now largely dominate the market, in 1994 they will amount to only 39 percent vs. 57 percent for digital ICs. The military segment of the market will remain the largest (42 percent in 1994 vs. 70 percent today). ICs using depletion-mode-only FETs can be constructed in various forms, the closest to production being BFL or buffered FET logic. Schottky diode FET logic - a lower power approach - can reach higher complexities and strong efforts are being made in this direction. Enhancement type devices appear essential to reach LSI and VLSI complexity, but process control is still very difficult; strong efforts are under way, both in the U.S. and in Japan. Heterojunction devices appear very promising, although structures are fairly complex, and special fabrication techniques, such as molecular beam epitaxy and MOCVD, are necessary. High-electron-mobility-transistor (HEMT) devices show significant performance advantages over MESFETs at low temperatures. Initial results of heterojunction bipolar transistor devices show promise for high speed A/D converter applications.

  1. Latch-up control in CMOS integrated circuits

    International Nuclear Information System (INIS)

    Ochoa, A.; Dawes, W.; Estreich, D.; Packard, H.

    1979-01-01

    The potential for latch-up, a pnpn self-sustaining low impedance state, is inherent in standard bulk CMOS-integrated circuit structures. Under normal bias, the parasitic SCR is in its blocking state but, if subjected to a large voltage spike or if exposed to an ionizing environment, triggering may occur. This may result in device burn-out or loss of state. The problem has been extensively studied for space and weapons applications. Prevention of latch-up has been achieved in conservative design (approx. 9 μm p-well depths) by the use of minority lifetime control methods such as gold doping and neutron irradiation and by modifying the base transport factor with buried layers. The push toward VLSI densities will enhance parasitic action sufficiently so that the problem will become of more universal concern. The paper will surveys latch-up control methods presently employed for weapons and space applications on present (approx. 9 μm p-well) CMOS and indicates the extent of their applicability to VLSI designs

  2. Integrated circuits and electrode interfaces for noninvasive physiological monitoring.

    Science.gov (United States)

    Ha, Sohmyung; Kim, Chul; Chi, Yu M; Akinin, Abraham; Maier, Christoph; Ueno, Akinori; Cauwenberghs, Gert

    2014-05-01

    This paper presents an overview of the fundamentals and state of the-art in noninvasive physiological monitoring instrumentation with a focus on electrode and optrode interfaces to the body, and micropower-integrated circuit design for unobtrusive wearable applications. Since the electrode/optrode-body interface is a performance limiting factor in noninvasive monitoring systems, practical interface configurations are offered for biopotential acquisition, electrode-tissue impedance measurement, and optical biosignal sensing. A systematic approach to instrumentation amplifier (IA) design using CMOS transistors operating in weak inversion is shown to offer high energy and noise efficiency. Practical methodologies to obviate 1/f noise, counteract electrode offset drift, improve common-mode rejection ratio, and obtain subhertz high-pass cutoff are illustrated with a survey of the state-of-the-art IAs. Furthermore, fundamental principles and state-of-the-art technologies for electrode-tissue impedance measurement, photoplethysmography, functional near-infrared spectroscopy, and signal coding and quantization are reviewed, with additional guidelines for overall power management including wireless transmission. Examples are presented of practical dry-contact and noncontact cardiac, respiratory, muscle and brain monitoring systems, and their clinical applications.

  3. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.

    Science.gov (United States)

    Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke

    2017-06-16

    Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

  4. In situ high-resolution thermal microscopy on integrated circuits.

    Science.gov (United States)

    Zhuo, Guan-Yu; Su, Hai-Ching; Wang, Hsien-Yi; Chan, Ming-Che

    2017-09-04

    The miniaturization of metal tracks in integrated circuits (ICs) can cause abnormal heat dissipation, resulting in electrostatic discharge, overvoltage breakdown, and other unwanted issues. Unfortunately, locating areas of abnormal heat dissipation is limited either by the spatial resolution or imaging acquisition speed of current thermal analytical techniques. A rapid, non-contact approach to the thermal imaging of ICs with sub-μm resolution could help to alleviate this issue. In this work, based on the intensity of the temperature-dependent two-photon fluorescence (TPF) of Rhodamine 6G (R6G) material, we developed a novel fast and non-invasive thermal microscopy with a sub-μm resolution. Its application to the location of hotspots that may evolve into thermally induced defects in ICs was also demonstrated. To the best of our knowledge, this is the first study to present high-resolution 2D thermal microscopic images of ICs, showing the generation, propagation, and distribution of heat during its operation. According to the demonstrated results, this scheme has considerable potential for future in situ hotspot analysis during the optimization stage of IC development.

  5. Experimental demonstration of interferometric imaging using photonic integrated circuits.

    Science.gov (United States)

    Su, Tiehui; Scott, Ryan P; Ogden, Chad; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Yu, Runxiang; Yoo, S J B

    2017-05-29

    This paper reports design, fabrication, and demonstration of a silica photonic integrated circuit (PIC) capable of conducting interferometric imaging with multiple baselines around λ = 1550 nm. The PIC consists of four sets of five waveguides (total of twenty waveguides), each leading to a three-band spectrometer (total of sixty waveguides), after which a tunable Mach-Zehnder interferometer (MZI) constructs interferograms from each pair of the waveguides. A total of thirty sets of interferograms (ten pairs of three spectral bands) is collected by the detector array at the output of the PIC. The optical path difference (OPD) of each interferometer baseline is kept to within 1 µm to maximize the visibility of the interference measurement. We constructed an experiment to utilize the two baselines for complex visibility measurement on a point source and a variable width slit. We used the point source to demonstrate near unity value of the PIC instrumental visibility, and used the variable slit to demonstrate visibility measurement for a simple extended object. The experimental result demonstrates the visibility of baseline 5 and 20 mm for a slit width of 0 to 500 µm in good agreement with theoretical predictions.

  6. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Science.gov (United States)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  7. Tomography of integrated circuit interconnect with an electromigration void

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Zachary H. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States); Kalukin, Andrew R. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Kuhn, Markus [Intel Corporation RA1-329, 5200 Northeast Elam Young Parkway, Hillsboro, Oregon 74124 (United States); Frigo, Sean P. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Retsch, Cornelia C. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Wang, Yuxin [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Arp, Uwe [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Lucatorto, Thomas B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Ravel, Bruce D. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States)] (and others)

    2000-05-01

    An integrated circuit interconnect was subject to accelerated-life test conditions to induce an electromigration void. The silicon substrate was removed, leaving only the interconnect test structure encased in silica. We imaged the sample with 1750 eV photons using the 2-ID-B scanning transmission x-ray microscope at the Advanced Photon Source, a third-generation synchrotron facility. Fourteen views through the sample were obtained over a 170 degree sign range of angles (with a 40 degree sign gap) about a single rotation axis. Two sampled regions were selected for three-dimensional reconstruction: one of the ragged end of a wire depleted by the void, the other of the adjacent interlevel connection (or ''via''). We applied two reconstruction techniques: the simultaneous iterative reconstruction technique and a Bayesian reconstruction technique, the generalized Gaussian Markov random field method. The stated uncertainties are total, with one standard deviation, which resolved the sample to 200{+-}70 and 140{+-}30 nm, respectively. The tungsten via is distinguished from the aluminum wire by higher absorption. Within the void, the aluminum is entirely depleted from under the tungsten via. The reconstructed data show the applicability of this technique to three-dimensional imaging of buried defects in submicrometer structures relevant to the microelectronics industry. (c) 2000 American Institute of Physics.

  8. Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

    Directory of Open Access Journals (Sweden)

    Ken Saito

    2014-06-01

    Full Text Available In this paper, we will propose the neural networks integrated circuit (NNIC which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K.

  9. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  10. Mathematical model of an integrated circuit cooling through cylindrical rods

    Directory of Open Access Journals (Sweden)

    Beltrán-Prieto Luis Antonio

    2017-01-01

    Full Text Available One of the main challenges in integrated circuits development is to propose alternatives to handle the extreme heat generated by high frequency of electrons moving in a reduced space that cause overheating and reduce the lifespan of the device. The use of cooling fins offers an alternative to enhance the heat transfer using combined a conduction-convection systems. Mathematical model of such process is important for parametric design and also to gain information about temperature distribution along the surface of the transistor. In this paper, we aim to obtain the equations for heat transfer along the chip and the fin by performing energy balance and heat transfer by conduction from the chip to the rod, followed by dissipation to the surrounding by convection. Newton's law of cooling and Fourier law were used to obtain the equations that describe the profile temperature in the rod and the surface of the chip. Ordinary differential equations were obtained and the respective analytical solutions were derived after consideration of boundary conditions. The temperature along the rod decreased considerably from the initial temperature (in contatct with the chip surface. This indicates the benefit of using a cilindrical rod to distribute the heat generated in the chip.

  11. Wireless amperometric neurochemical monitoring using an integrated telemetry circuit.

    Science.gov (United States)

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2008-11-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order Delta Sigma modulator (Delta Sigma M) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 microm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of approximately 250 fA, approximately 1.5 pA, approximately 4.5 pA, and approximately 17 pA were achieved for input currents in the range of +/-5, +/-37, +/-150, and +/-600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 microM wirelessly over a transmission distance of approximately 0.5 m in flow injection analysis experiments.

  12. PETRIC - A positron emission tomography readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Pedrali-Noy, Marzio; Gruber, Gregory; Krieger, Bradley; Mandelli, Emmanuele; Meddeler, Gerrit; Moses, William; Rosso, Valeria

    2000-11-05

    We present architecture, critical design issues and performance measurements of PETRIC, a 64-channel mixed signal front-end integrated circuit (IC) for reading out a photodiode (PD) array coupled with LSO scintillator crystals for a medical imaging application (PET). Each channel consists of a low noise charge sensitive pre-amplifier (CSA), an RC-CR pulse shaper and a winner-take-all (WTA) multiplexer that selects the channel with the largest input signal. Triggered by an external timing signal, a switch opens and a capacitor stores the peak voltage of the winner channel. The shaper rise and fall times are adjustable by means of external current inputs over a continuous range of 0.7 (mu)s to 9 (mu)s. Power consumption is 5.4 mW per channel, measured Equivalent Noise Charge (ENC) at 1 (mu)s peaking time. Zero leakage current is 33 rms electrons plus 7.3 rms electrons per pF of input capacitance. Design is fabricated in 0.5 (mu)m 3.3V CMOS technology.

  13. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    Science.gov (United States)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  14. ASIC1 and ASIC3 Play Different Roles in the Development of Hyperalgesia Following Inflammatory Muscle Injury

    OpenAIRE

    Walder, R.Y.; Rasmussen, L.A.; Rainier, J.D.; Light, A.R.; Wemmie, J.A.; Sluka, K.A.

    2009-01-01

    Acid-sensing ion channels (ASICs) respond to acidosis that normally occurs after inflammation. We examined the expression of ASIC1, ASIC2, and ASIC3 mRNAs in lumbar DRG neurons before and 24h after carrageenan-induced muscle inflammation. Muscle inflammation causes bilateral increases of ASIC2 and ASIC3, but not ASIC1 (neither ASIC1a nor ASIC1b) mRNA, suggesting differential regulation of ASIC1 versus ASIC2 and ASIC3 mRNA. Similar mRNA increases were observed following inflammation in knockou...

  15. Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)

    Science.gov (United States)

    Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul

    2000-03-01

    Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this

  16. Mongoose ASIC microcontroller programming guide

    Science.gov (United States)

    Smith, Brian S.

    1993-01-01

    The 'Mongoose' ASIC microcontroller is a radiation-hard implementation of the R3000 microprocessor. This document describes the internals of the microcontroller in a level of detail necessary for someone implementing a software design.

  17. Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations

    International Nuclear Information System (INIS)

    Tessier, G; Polignano, M-L; Pavageau, S; Filloy, C; Fournier, D; Cerutti, F; Mica, I

    2006-01-01

    Camera-based thermoreflectance microscopy is a unique tool for high spatial resolution thermal imaging of working integrated circuits. However, a calibration is necessary to obtain quantitative temperatures on the complex surface of integrated circuits. The spatial and temperature resolutions reached by thermoreflectance are excellent (360 nm and 2.5 x 10 -2 K in 1 min here), but the precision is more difficult to assess, notably due to the lack of comparable thermal techniques at submicron scales. We propose here a Peltier element control of the whole package temperature in order to obtain calibration coefficients simultaneously on several materials visible on the surface of the circuit. Under high magnifications, movements associated with thermal expansion are corrected using a piezo electric displacement and a software image shift. This calibration method has been validated by comparison with temperatures measured using integrated thermistors and diodes and by a finite volume simulation. We show that thermoreflectance measurements agree within a precision of ±2.3% with the on-chip sensors measurements. The diode temperature is found to underestimate the actual temperature of the active area by almost 70% due to the thermal contact of the diode with the substrate, acting as a heat sink

  18. Accurate automatic tuning circuit for bipolar integrated filters

    NARCIS (Netherlands)

    de Heij, Wim J.A.; de Heij, W.J.A.; Hoen, Klaas; Hoen, Klaas; Seevinck, Evert; Seevinck, E.

    1990-01-01

    An accurate automatic tuning circuit for tuning the cutoff frequency and Q-factor of high-frequency bipolar filters is presented. The circuit is based on a voltage controlled quadrature oscillator (VCO). The frequency and the RMS (root mean square) amplitude of the oscillator output signal are

  19. Integrated reconfigurable high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper a high-voltage transmitting circuit aimed for capacitive micromachined ultrasonic transducers (CMUTs) used in scanners for medical applications is designed and implemented in a 0.35 μm high-voltage CMOS process. The transmitting circuit is reconfigurable externally making it able...... to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes with voltages up to 100 V, maximum pulse range of 50 V, frequencies up to 5 MHz and different driving slew rates. Measurements are performed on the circuit in order to assess its functionality and power consumption...... performance. The design occupies an on-chip area of 0.938 mm2 and the power consumption of a 128-element transmitting circuit array that would be used in an portable ultrasound scanner is found to be a maximum of 181 mW....

  20. Monolitic integrated circuit for the strobed charge-to-time converter

    International Nuclear Information System (INIS)

    Bel'skij, V.I.; Bushnin, Yu.B.; Zimin, S.A.; Punzhin, Yu.N.; Sen'ko, V.A.; Soldatov, M.M.; Tokarchuk, V.P.

    1985-01-01

    The developed and comercially produced semiconducting circuit - gating charge-to-time converter KR1101PD1 is described. The considered integrated circuit is a short pulse charge-to-time converter with integration of input current. The circuit is designed for construction of time-to-pulse analog-to-digital converters utilized in multichannel detection systems when studying complex topology processes. Input resistance of the circuit is 0.1 Ω permissible input current is 50 mA, maximum measured charge is 300-1000 pC

  1. Design Implementation and Testing of a VLSI High Performance ASIC for Extracting the Phase of a Complex Signal

    National Research Council Canada - National Science Library

    Altmeyer, Ronald

    2002-01-01

    This thesis documents the research, circuit design, and simulation testing of a VLSI ASIC which extracts phase angle information from a complex sampled signal using the arctangent relationship: (phi=tan/-1 (Q/1...

  2. A Novel Front-End ASIC With Post Digital Filtering and Calibration for CZT-Based PET Detector

    International Nuclear Information System (INIS)

    Gao, W.; Yin, J.; Li, C.; Zeng, H.; Gao, D.; Hu, Y.

    2015-01-01

    This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by a FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e - to 100000 e - , which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)

  3. A Novel Front-End ASIC With Post Digital Filtering and Calibration for CZT-Based PET Detector

    Energy Technology Data Exchange (ETDEWEB)

    Gao, W.; Yin, J.; Li, C.; Zeng, H.; Gao, D. [Institute of Microelectronics, School of Computer Science and Techonology, Northwestern Polytechnical University, Xi' an (China); Hu, Y. [Institut Pluridiscipline Hubert Curien, CNRS/UDS/IN2P3, Strasbourg (France)

    2015-07-01

    This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by a FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e{sup -} to 100000 e{sup -}, which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)

  4. ASIC PROTEINS REGULATE SMOOTH MUSCLE CELL MIGRATION

    OpenAIRE

    Grifoni, Samira C.; Jernigan, Nikki L.; Hamilton, Gina; Drummond, Heather A.

    2007-01-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated Epithelial Na+ Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration, however the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence indi...

  5. Failure of the integrated circuits involving complementary MOS transistors under thermal and ionizing radiation stresses

    International Nuclear Information System (INIS)

    Sarrabayrouse, G.; Rossel, P.; Buxo, J.; Vialaret, G.

    Some criteria for reliability and sorting of complementary MOS transistor integrated circuits are proposed, that take account for special environmental stresses near plane reactors or nuclear reactor cores. An analysis of the damaging causes for these circuits at high and low temperatures is proposed, results obtained on the evolution of these devices under irradiation and irradiation behaviors are discussed. The whole set of experiments has been carried out on CD 4007 AD(K) circuits [fr

  6. Experimental Study of WBFC method for testing electromagnetic immunity of integrated circuits

    OpenAIRE

    香川, 直己; カガワ, ナオキ; Naoki, KAGAWA

    2004-01-01

    The author made a workbench faraday cage, WBFC, in order to estimate performance of the WBFC method for the measurement of common mode noise immunity of integrated circuits. In this report, characteristics of the constructed workbench faraday cage and results of experimental study of effects of the common mode noise on a circuit board including an electronic device are shown. Selected DUT, LM324 is popular operational amplifier for electrical circuits in vehicles.

  7. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    OpenAIRE

    Yang, Shan; Tong, Xiangqian

    2016-01-01

    Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...

  8. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  9. A numerical integration-based yield estimation method for integrated circuits

    International Nuclear Information System (INIS)

    Liang Tao; Jia Xinzhang

    2011-01-01

    A novel integration-based yield estimation method is developed for yield optimization of integrated circuits. This method tries to integrate the joint probability density function on the acceptability region directly. To achieve this goal, the simulated performance data of unknown distribution should be converted to follow a multivariate normal distribution by using Box-Cox transformation (BCT). In order to reduce the estimation variances of the model parameters of the density function, orthogonal array-based modified Latin hypercube sampling (OA-MLHS) is presented to generate samples in the disturbance space during simulations. The principle of variance reduction of model parameters estimation through OA-MLHS together with BCT is also discussed. Two yield estimation examples, a fourth-order OTA-C filter and a three-dimensional (3D) quadratic function are used for comparison of our method with Monte Carlo based methods including Latin hypercube sampling and importance sampling under several combinations of sample sizes and yield values. Extensive simulations show that our method is superior to other methods with respect to accuracy and efficiency under all of the given cases. Therefore, our method is more suitable for parametric yield optimization. (semiconductor integrated circuits)

  10. A numerical integration-based yield estimation method for integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Liang Tao; Jia Xinzhang, E-mail: tliang@yahoo.cn [Key Laboratory of Ministry of Education for Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2011-04-15

    A novel integration-based yield estimation method is developed for yield optimization of integrated circuits. This method tries to integrate the joint probability density function on the acceptability region directly. To achieve this goal, the simulated performance data of unknown distribution should be converted to follow a multivariate normal distribution by using Box-Cox transformation (BCT). In order to reduce the estimation variances of the model parameters of the density function, orthogonal array-based modified Latin hypercube sampling (OA-MLHS) is presented to generate samples in the disturbance space during simulations. The principle of variance reduction of model parameters estimation through OA-MLHS together with BCT is also discussed. Two yield estimation examples, a fourth-order OTA-C filter and a three-dimensional (3D) quadratic function are used for comparison of our method with Monte Carlo based methods including Latin hypercube sampling and importance sampling under several combinations of sample sizes and yield values. Extensive simulations show that our method is superior to other methods with respect to accuracy and efficiency under all of the given cases. Therefore, our method is more suitable for parametric yield optimization. (semiconductor integrated circuits)

  11. The Detector Control Unit An ASIC for the monitoring of the CMS silicon tracker

    CERN Document Server

    Magazzù, G; Moreira, P

    2004-01-01

    The Detector Control Unit (DCU) is an ASIC developed as the central building block of a monitoring system for the CMS Tracker. Leakage currents in the Silicon detectors, power supply voltages of the readout electronics and local temperatures will be monitored in order to guarantee safe operating conditions during the 10-years lifetime in the LHC environment. All these measurements can be performed by an A/D converter preceded by an analog multiplexer and properly interfaced to the central control system. The requirements in terms of radiation tolerance, low-power dissipation and integration with the rest of the system led to the design of a custom integrated circuit. Its structure and characteristics are described in this paper. (6 refs).

  12. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B. [Brookhaven National Laboratory, Upton, New York 11793 (United States); Hodges, D. [University of Texas at El Paso, El Paso, Texas 79968 (United States); Lee, W. [Korea University, Seoul 136-855 (Korea, Republic of); Petryk, M. [SUNY Binghamton, Vestal, New York 13902 (United States)

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  13. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    Science.gov (United States)

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  14. Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Arun Kaintura

    2018-02-01

    Full Text Available Advances in manufacturing process technology are key ensembles for the production of integrated circuits in the sub-micrometer region. It is of paramount importance to assess the effects of tolerances in the manufacturing process on the performance of modern integrated circuits. The polynomial chaos expansion has emerged as a suitable alternative to standard Monte Carlo-based methods that are accurate, but computationally cumbersome. This paper provides an overview of the most recent developments and challenges in the application of polynomial chaos-based techniques for uncertainty quantification in integrated circuits, with particular focus on high-dimensional problems.

  15. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  16. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  17. SEMICONDUCTOR INTEGRATED CIRCUITS: A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth

    Science.gov (United States)

    Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang

    2010-05-01

    A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.

  18. Deeply-etched DBR mirrors for photonic integrated circuits and tunable lasers

    NARCIS (Netherlands)

    Docter, B.

    2009-01-01

    Deeply-etched Distributed Bragg Reflector (DBR) mirrors are a new versatile building block for Photonic Integrated Circuits that allows us to create more complex circuits for optical telecommunication applications. The DBR mirrors increase the device design flexibility because the mirrors can be

  19. Single-event effects in analog and mixed-signal integrated circuits

    International Nuclear Information System (INIS)

    Turflinger, T.L.

    1996-01-01

    Analog and mixed-signal integrated circuits are also susceptible to single-event effects, but they have rarely been tested. Analog circuit single-particle transients require modified test techniques and data analysis. Existing work is reviewed and future concerns are outlined

  20. A Novel Analog Integrated Circuit Design Course Covering Design, Layout, and Resulting Chip Measurement

    Science.gov (United States)

    Lin, Wei-Liang; Cheng, Wang-Chuan; Wu, Chen-Hao; Wu, Hai-Ming; Wu, Chang-Yu; Ho, Kuan-Hsuan; Chan, Chueh-An

    2010-01-01

    This work describes a novel, first-year graduate-level analog integrated circuit (IC) design course. The course teaches students analog circuit design; an external manufacturer then produces their designs in three different silicon chips. The students, working in pairs, then test these chips to verify their success. All work is completed within…