WorldWideScience

Sample records for circadian protein bmal1

  1. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  2. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    Science.gov (United States)

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1 -/- mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1 -/- mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  3. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms.

    Science.gov (United States)

    Patel, Sonal A; Chaudhari, Amol; Gupta, Richa; Velingkaar, Nikkhil; Kondratov, Roman V

    2016-04-01

    Calorie restriction (CR) increases longevity in many species by unknown mechanisms. The circadian clock was proposed as a potential mediator of CR. Deficiency of the core component of the circadian clock-transcriptional factor BMAL1 (brain and muscle ARNT [aryl hydrocarbon receptor nuclear translocator]-like protein 1)-results in accelerated aging. Here we investigated the role of BMAL1 in mechanisms of CR. The 30% CR diet increased the life span of wild-type (WT) mice by 20% compared to mice on anad libitum(AL) diet but failed to increase life span ofBmal1(-/-)mice. BMAL1 deficiency impaired CR-mediated changes in the plasma levels of IGF-1 and insulin. We detected a statistically significantly reduction of IGF-1 in CRvs.AL by 50 to 70% in WT mice at several daily time points tested, while inBmal1(-/-)the reduction was not significant. Insulin levels in WT were reduced by 5 to 9%, whileBmal1(-/-)induced it by 10 to 35% at all time points tested. CR up-regulated the daily average expression ofBmal1(by 150%) and its downstream target genesPeriods(by 470% forPer1and by 130% forPer2). We propose that BMAL1 is an important mediator of CR, and activation of BMAL1 might link CR mechanisms with biologic clocks.-Patel, S. A., Chaudhari, A., Gupta, R., Velingkaar, N., Kondratov, R. V. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. © FASEB.

  4. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Ariana Frederick

    Full Text Available Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP and Enkephalin (Enk, expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis, thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%, and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable. These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.

  5. A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms.

    Science.gov (United States)

    Gustafson, Chelsea L; Parsley, Nicole C; Asimgil, Hande; Lee, Hsiau-Wei; Ahlbach, Christopher; Michael, Alicia K; Xu, Haiyan; Williams, Owen L; Davis, Tara L; Liu, Andrew C; Partch, Carrie L

    2017-05-18

    The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    Science.gov (United States)

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  7. Disruption of the Circadian Clock Alters Antioxidative Defense via the SIRT1-BMAL1 Pathway in 6-OHDA-Induced Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yali Wang

    2018-01-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease and is known to involve circadian dysfunction and oxidative stress. Although antioxidative defense is regulated by the molecular circadian clock, few studies have examined their function in PD and their regulation by silent information regulator 1 (SIRT1. We hypothesize that reduced antioxidative activity in models of PD results from dysfunction of the molecular circadian clock via the SIRT1 pathway. We treated rats and SH-SY5Y cells with 6-hydroxydopamine (6-OHDA and measured the expression of core circadian clock and associated nuclear receptor genes using real-time quantitative PCR as well as levels of SIRT1, brain and muscle Arnt-like protein 1 (BMAL1, and acetylated BMAL1 using Western blotting. We found that 6-OHDA treatment altered the expression patterns of clock and antioxidative molecules in vivo and in vitro. We also detected an increased ratio of acetylated BMAL1:BMAL1 and a decreased level of SIRT1. Furthermore, resveratrol, an activator of SIRT1, decreased the acetylation of BMAL1 and inhibited its binding with CRY1, thereby reversing the impaired antioxidative activity induced by 6-OHDA. These results suggest that a dysfunctional circadian clock contributes to an abnormal antioxidative response in PD via a SIRT1-dependent BMAL1 pathway.

  8. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.

    Directory of Open Access Journals (Sweden)

    Guillaume Rey

    2011-02-01

    Full Text Available The mammalian circadian clock uses interlocked negative feedback loops in which the heterodimeric basic helix-loop-helix transcription factor BMAL1/CLOCK is a master regulator. While there is prominent control of liver functions by the circadian clock, the detailed links between circadian regulators and downstream targets are poorly known. Using chromatin immunoprecipitation combined with deep sequencing we obtained a time-resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed us to identify over 2,000 binding sites, with peak binding narrowly centered around Zeitgeber time 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E-boxes and tandem E1-E2 consensus elements. Electromobility shift assays showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction, a finding that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at Zeitgeber time 10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, analyzing the temporal profiles of BMAL1 binding, precursor mRNA and mature mRNA levels showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator crosstalk and drive phase-specific circadian output programs in a complex tissue.

  9. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Kristen L Curran

    Full Text Available We have been investigating whether xBmal1 and xNocturnin play a role in somitogenesis, a cyclic developmental process with an ultradian period. Previous work from our lab shows that circadian genes (xPeriod1, xPeriod2, xBmal1, and xNocturnin are expressed in developing somites. Somites eventually form the vertebrae, muscles of the back, and dermis. In Xenopus, a pair of somites is formed about every 50 minutes from anterior to posterior. We were intrigued by the co-localization of circadian genes in an embryonic tissue known to be regulated by an ultradian clock. Cyclic expression of genes involved in Notch signaling has been implicated in the somite clock. Disruption of Notch signaling in humans has been linked to skeletal defects in the vertebral column. We found that both depletion (morpholino and overexpression (mRNA of xBMAL1 protein (bHLH transcription factor or xNOCTURNIN protein (deadenylase on one side of the developing embryo led to a significant decrease in somite number with respect to the untreated side (p<0.001. These manipulations also significantly affect expression of a somite clock component (xESR9; p<0.05. We observed opposing effects on somite size. Depletion of xBMAL1 or xNOCTURNIN caused a statistically significant decrease in somite area (quantified using NIH ImageJ; p<0.002, while overexpression of these proteins caused a significant dose dependent increase in somite area (p<0.02; p<0.001, respectively. We speculate that circadian genes may play two separate roles during somitogenesis. Depletion and overexpression of xBMAL1 and NOCTURNIN both decrease somite number and influence expression of a somite clock component, suggesting that these proteins may modulate the timing of the somite clock in the undifferentiated presomitic mesoderm. The dosage dependent effects on somite area suggest that xBMAL1 and xNOCTURNIN may also act during somite differentiation to promote myogenesis.

  10. Circadian rhythms and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the rat retina.

    Science.gov (United States)

    Namihira, M; Honma, S; Abe, H; Tanahashi, Y; Ikeda, M; Honma, K

    1999-08-13

    Circadian expression and light-responsiveness of the mammalian clock genes, Clock and BMAL1, in the rat retina were examined by in situ hydbribization under constant darkness. A small but significant daily variation was detected in the Clock transcript level, but not in BMAL1. Light increased the Clock and BMAL1 expressions significantly when examined 60 min after exposure. The light-induced gene expression was phase-dependent for Clock and peaked at ZT2, while rather constant throughout the day for BMAL1. These findings suggest that Clock and BMAL1 play different roles in the generation of circadian rhytm in the retina from those in the suprachiasmatic nucleus. Different roles are also suggested between the two genes in the photic signal transduction in the retina.

  11. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity.

    Science.gov (United States)

    Zhang, Ying; Markert, Matthew J; Groves, Shayna C; Hardin, Paul E; Merlin, Christine

    2017-09-05

    Circadian repression of CLOCK-BMAL1 by PERIOD and CRYPTOCHROME (CRY) in mammals lies at the core of the circadian timekeeping mechanism. CRY repression of CLOCK-BMAL1 and regulation of circadian period are proposed to rely primarily on competition for binding with coactivators on an α-helix located within the transactivation domain (TAD) of the BMAL1 C terminus. This model has, however, not been tested in vivo. Here, we applied CRISPR/Cas9-mediated mutagenesis in the monarch butterfly ( Danaus plexippus ), which possesses a vertebrate-like CRY (dpCRY2) and an ortholog of BMAL1, to show that insect CRY2 regulates circadian repression through TAD α-helix-dependent and -independent mechanisms. Monarch mutants lacking the BMAL1 C terminus including the TAD exhibited arrhythmic eclosion behavior. In contrast, mutants lacking the TAD α-helix but retaining the most distal C-terminal residues exhibited robust rhythms during the first day of constant darkness (DD1), albeit with a delayed peak of eclosion. Phase delay in this mutant on DD1 was exacerbated in the presence of a single functional allele of dpCry2 , and rhythmicity was abolished in the absence of dpCRY2. Reporter assays in Drosophila S2 cells further revealed that dpCRY2 represses through two distinct mechanisms: a TAD-dependent mechanism that involves the dpBMAL1 TAD α-helix and dpCLK W328 and a TAD-independent mechanism involving dpCLK E333. Together, our results provide evidence for independent mechanisms of vertebrate-like CRY circadian regulation on the BMAL1 C terminus and the CLK PAS-B domain and demonstrate the importance of a BMAL1 TAD-independent mechanism for generating circadian rhythms in vivo.

  12. The Circadian Clock Gene BMAL1 Coordinates Intestinal RegenerationSummary

    Directory of Open Access Journals (Sweden)

    Kyle Stokes

    2017-07-01

    Full Text Available Background & Aims: The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. Methods: We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. Results: The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. Conclusions: Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology. Keywords: Intestine, Circadian Rhythms, Gastrointestinal Syndrome, TNF, Intestinal Stem Cells

  13. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Time-of-Day Dependent Neuronal Injury After Ischemic Stroke: Implication of Circadian Clock Transcriptional Factor Bmal1 and Survival Kinase AKT.

    Science.gov (United States)

    Beker, Mustafa Caglar; Caglayan, Berrak; Yalcin, Esra; Caglayan, Ahmet Burak; Turkseven, Seyma; Gurel, Busra; Kelestemur, Taha; Sertel, Elif; Sahin, Zafer; Kutlu, Selim; Kilic, Ulkan; Baykal, Ahmet Tarik; Kilic, Ertugrul

    2018-03-01

    Occurrence of stroke cases displays a time-of-day variation in human. However, the mechanism linking circadian rhythm to the internal response mechanisms against pathophysiological events after ischemic stroke remained largely unknown. To this end, temporal changes in the susceptibility to ischemia/reperfusion (I/R) injury were investigated in mice in which the ischemic stroke induced at four different Zeitgeber time points with 6-h intervals (ZT0, ZT6, ZT12, and ZT18). Besides infarct volume and brain swelling, neuronal survival, apoptosis, ischemia, and circadian rhythm related proteins were examined using immunohistochemistry, Western blot, planar surface immune assay, and liquid chromatography-mass spectrometry tools. Here, we present evidence that midnight (ZT18; 24:00) I/R injury in mice resulted in significantly improved infarct volume, brain swelling, neurological deficit score, neuronal survival, and decreased apoptotic cell death compared with ischemia induced at other time points, which were associated with increased expressions of circadian proteins Bmal1, PerI, and Clock proteins and survival kinases AKT and Erk-1/2. Moreover, ribosomal protein S6, mTOR, and Bad were also significantly increased, while the levels of PRAS40, negative regulator of AKT and mTOR, and phosphorylated p53 were decreased at this time point compared to ZT0 (06:00). Furthermore, detailed proteomic analysis revealed significantly decreased CSKP, HBB-1/2, and HBA levels, while increased GNAZ, NEGR1, IMPCT, and PDE1B at midnight as compared with early morning. Our results indicate that nighttime I/R injury results in less severe neuronal damage, with increased neuronal survival, increased levels of survival kinases and circadian clock proteins, and also alters the circadian-related proteins.

  15. Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels.

    Science.gov (United States)

    Samblas, Mirian; Milagro, Fermin I; Gómez-Abellán, Purificación; Martínez, J Alfredo; Garaulet, Marta

    2016-06-01

    The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p < 0.05). This research describes apparently for the first time an association between changes in the methylation of the BMAL1 gene with the intervention and the effects of a weight loss intervention on blood lipids levels. © 2016 The Author(s).

  16. Association of circadian rhythm genes ARNTL/BMAL1 and CLOCK with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Polona Lavtar

    Full Text Available Prevalence of multiple sclerosis varies with geographic latitude. We hypothesized that this fact might be partially associated with the influence of latitude on circadian rhythm and consequently that genetic variability of key circadian rhythm regulators, ARNTL and CLOCK genes, might contribute to the risk for multiple sclerosis. Our aim was to analyse selected polymorphisms of ARNTL and CLOCK, and their association with multiple sclerosis. A total of 900 Caucasian patients and 1024 healthy controls were compared for genetic signature at 8 SNPs, 4 for each of both genes. We found a statistically significant difference in genotype (ARNTL rs3789327, P = 7.5·10-5; CLOCK rs6811520 P = 0.02 distributions in patients and controls. The ARNTL rs3789327 CC genotype was associated with higher risk for multiple sclerosis at an OR of 1.67 (95% CI 1.35-2.07, P = 0.0001 and the CLOCK rs6811520 genotype CC at an OR of 1.40 (95% CI 1.13-1.73, P = 0.002. The results of this study suggest that genetic variability in the ARNTL and CLOCK genes might be associated with risk for multiple sclerosis.

  17. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    International Nuclear Information System (INIS)

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  18. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    Science.gov (United States)

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  19. Global but not gonadotrope-specific disruption of Bmal1 abolishes the luteinizing hormone surge without affecting ovulation

    DEFF Research Database (Denmark)

    Chu, Adrienne; Zhu, Lei; Blum, Ian D

    2013-01-01

    While there is evidence for a circadian regulation of the preovulatory luteinizing hormone (LH) surge, the contributions of individual tissue clocks to this process remain unclear. We studied female mice deficient in the Bmal1 gene (Bmal1(-/-)), which is essential for circadian clock function, an...

  20. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    Science.gov (United States)

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.

  1. Food anticipation in Bmal1-/- and AAV-Bmal1 rescued mice: a reply to Fuller et al

    Directory of Open Access Journals (Sweden)

    Mistlberger Ralph E

    2009-08-01

    Full Text Available Abstract Evidence that circadian food-anticipatory activity and temperature rhythms are absent in Bmal1 knockout mice and rescued by restoration of Bmal1 expression selectively in the dorsomedial hypothalamus was published in 2008 by Fuller et al and critiqued in 2009 by Mistlberger et al. Fuller et al have responded to the critique with new information. Here we update our critique in the light of this new information. We also identify and correct factual and conceptual errors in the Fuller et al response. We conclude that the original results of Fuller et al remain inconclusive and fail to clarify the role of Bmal1 or the dorsomedial hypothalamus in the generation of food-entrainable rhythms in mice.

  2. Magel2, a Prader-Willi syndrome candidate gene, modulates the activities of circadian rhythm proteins in cultured cells

    Directory of Open Access Journals (Sweden)

    Devos Julia

    2011-12-01

    Full Text Available Abstract Background The Magel2 gene is most highly expressed in the suprachiasmatic nucleus of the hypothalamus, where its expression cycles in a circadian pattern comparable to that of clock-controlled genes. Mice lacking the Magel2 gene have hypothalamic dysfunction, including circadian defects that include reduced and fragmented total activity, excessive activity during the subjective day, but they have a normal circadian period. Magel2 is a member of the MAGE family of proteins that have various roles in cellular function, but the specific function of Magel2 is unknown. Methods We used a variety of cell-based assays to determine whether Magel2 modifies the properties of core circadian rhythm proteins. Results Magel2 represses the activity of the Clock:Bmal1 heterodimer in a Per2-luciferase assay. Magel2 interacts with Bmal1 and with Per2 as measured by co-immunoprecipitation in co-transfected cells, and exhibits a subcellular distribution consistent with these interactions when visualized by immunofluorescence. As well, Magel2 induces the redistribution of the subcellular localization of Clock towards the cytoplasm, in contrast to the nucleus-directed effect of Bmal1 on Clock subcellular localization. Conclusion Consistent with the blunted circadian rhythm observed in Magel2-null mice, these data suggest that Magel2 normally promotes negative feedback regulation of the cellular circadian cycle, through interactions with key core circadian rhythm proteins.

  3. Effects of a free-choice high-fat high-sugar diet on brain PER2 and BMAL1 protein expression in mice.

    Science.gov (United States)

    Blancas-Velazquez, Aurea; la Fleur, Susanne E; Mendoza, Jorge

    2017-10-01

    The suprachiasmatic nucleus (SCN) times the daily rhythms of behavioral processes including feeding. Beyond the SCN, the hypothalamic arcuate nucleus (ARC), involved in feeding regulation and metabolism, and the epithalamic lateral habenula (LHb), implicated in reward processing, show circadian rhythmic activity. These brain oscillators are functionally coupled to coordinate the daily rhythm of food intake. In rats, a free choice high-fat high-sugar (fcHFHS) diet leads to a rapid increase of calorie intake and body weight gain. Interestingly, under a fcHFHS condition, rats ingest a similar amount of sugar during day time (rest phase) as during night time (active phase), but keep the rhythmic intake of regular chow-food. The out of phase between feeding patterns of regular (chow) and highly rewarding food (sugar) may involve alterations of brain circadian oscillators regulating feeding. Here, we report that the fcHFHS diet is a successful model to induce calorie intake, body weight gain and fat tissue accumulation in mice, extending its effectiveness as previously reported in rats. Moreover, we observed that whereas in the SCN the day-night difference in the PER2 clock protein expression was similar between chow-fed and fcHFHS-fed animals, in the LHb, this day-night difference was altered in fcHFHS-exposed animals compared to control chow mice. These findings confirm previous observations in rats showing disrupted daily patterns of feeding behavior under a fcHFHS diet exposure, and extend our insights on the effects of the diet on circadian gene expression in brain clocks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Activation of MMPs in Macrophages by Mycobacterium tuberculosis via the miR-223-BMAL1 Signaling Pathway.

    Science.gov (United States)

    Lou, Jun; Wang, Yongli; Zhang, Zhimin; Qiu, Weiqiang

    2017-12-01

    An interaction between Mycobacterium tuberculosis and macrophages constitutes an essential step in tuberculosis development, as macrophages exert both positive and negative effects on M. tuberculosis-triggered organ lesions. In this study, we focused on the regulation of the expression of matrix metalloproteinases (MMPs), which is responsible for lung matrix degradation and bacteria dissection, in macrophages following M. tuberculosis infection. Female BALB/c mice were intravenously injected with the M. tuberculosis strain H37Rv at 0 h zeitgeber time (ZT0) or 12 h zeitgeber time (ZT12). The expression and activity of MMP-1, -2, -3, and -9 in lungs and spleens were then evaluated. In vitro, peritoneal macrophages were harvested at ZT0 or at ZT12 and infected with 10 MOI M. tuberculosis. The expression of MMPs, microRNA-223 and BMAL1 was analyzed by qRT-PCR and/or Western blot. The binding of BMAL1 3'-UTR by miR-223 was confirmed by luciferase activity assay. Additionally, wild-type BMAL1 or NLS mut BMAL1 plasmids were transfected to evaluate the effect of BMAL1 on MMPs. The results showed a differential expression of MMPs in mice tissues infected at different times. M. tuberculosis infection caused enhanced MMP-1, -9, and miR-223 expression, with inhibited BMAL1 expression. MiR-223 modulated BMAL1 expression via the direct binding of BMAL1 3'-UTR. Furthermore, wild-type BMAL1 other than NLS mut BMAL1 attenuated MMPs expression in M. tuberculosis-infected macrophages. Overall, this study demonstrated a potential involvement of circadian rhythm in MMP activation by M. tuberculosis in macrophages. J. Cell. Biochem. 118: 4804-4812, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Effects of a free-choice high-fathigh-sugar diet on brain PER2 and BMAL1 protein expression in mice

    NARCIS (Netherlands)

    Blancas-Velazquez, Aurea; la Fleur, Susanne E.; Mendoza, Jorge

    2017-01-01

    The suprachiasmatic nucleus (SCN) times the daily rhythms of behavioral processes including feeding. Beyond the SCN, the hypothalamic arcuate nucleus (ARC), involved in feeding regulation and metabolism, and the epithalamic lateral habenula (LHb), implicated in reward processing, show circadian

  6. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism.

    Directory of Open Access Journals (Sweden)

    David John Kennaway

    Full Text Available The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident, but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight. Bmal1 null mice aged 2 months were killed across 24 hours and plasma adiponectin and leptin, and adipose tissue expression of Adipoq, Lep, Retn and Nampt mRNA measured. Glucose, insulin and pyruvate tolerance tests were conducted and the expression of liver glycolytic and gluconeogenic enzyme mRNA determined. Bmal1 null mice displayed a pattern of increased plasma adiponectin and plasma leptin concentrations on both control and high fat diets. Bmal1 null male and female mice displayed increased adiposity (1.8 fold and 2.3 fold respectively on the normal diet, but the high fat diet did not exaggerate these differences. Despite normal glucose and insulin tolerance, Bmal1 null mice had increased production of glucose from pyruvate, implying increased liver gluconeogenesis. The Bmal1 null mice had arrhythmic clock gene expression in epigonadal fat and liver, and loss of rhythmic transcription of a range of metabolic genes. Furthermore, the expression of epigonadal fat Adipoq, Retn, Nampt, AdipoR1 and AdipoR2 and liver Pfkfb3 mRNA were down-regulated. These results show for the first time that global loss of Bmal1, and the consequent arrhythmicity, results in compensatory changes in adipokines involved in the cellular control of glucose metabolism.

  7. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  8. Circadian rhythms and reproduction.

    Science.gov (United States)

    Boden, Michael J; Kennaway, David J

    2006-09-01

    There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.

  9. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Marti, Andrea R; Patil, Sudarshan; Mrdalj, Jelena; Meerlo, Peter; Skrede, Silje; Pallesen, Ståle; Pedersen, Torhild T; Bramham, Clive R; Grønli, Janne

    2017-01-01

    Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats ( n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m 7 GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC

  10. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Andrea R. Marti

    2017-10-01

    Full Text Available Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1 has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40 were exposed to forced activity, either in their rest phase (simulated night shift work or in their active phase (simulated day shift work for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0. Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus implicated in cognition and sleep loss, were analyzed with m7GTP (cap pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1 was significantly reduced in

  11. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat

    Science.gov (United States)

    Sabbar, Mariam; Dkhissi-Benyahya, Ouria; Benazzouz, Abdelhamid; Lakhdar-Ghazal, Nouria

    2017-01-01

    Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances. PMID:28970786

  12. Changes in pH and NADPH regulate the DNA binding activity of neuronal PAS domain protein 2, a mammalian circadian transcription factor.

    Science.gov (United States)

    Yoshii, Katsuhiro; Tajima, Fumihisa; Ishijima, Sumio; Sagami, Ikuko

    2015-01-20

    Neuronal PAS domain protein 2 (NPAS2) is a core clock transcription factor that forms a heterodimer with BMAL1 to bind the E-box in the promoter of clock genes and is regulated by various environmental stimuli such as heme, carbon monoxide, and NAD(P)H. In this study, we investigated the effects of pH and NADPH on the DNA binding activity of NPAS2. In an electrophoretic mobility shift (EMS) assay, the pH of the reaction mixture affected the DNA binding activity of the NPAS2/BMAL1 heterodimer but not that of the BMAL1/BMAL1 homodimer. A change in pH from 7.0 to 7.5 resulted in a 1.7-fold increase in activity in the absence of NADPH, and NADPH additively enhanced the activity up to 2.7-fold at pH 7.5. The experiments using truncated mutants revealed that N-terminal amino acids 1-61 of NPAS2 were sufficient to sense the change in both pH and NADPH. We further analyzed the kinetics of formation and DNA binding of the NPAS2/BMAL1 heterodimer at various pH values. In the absence of NADPH, a change in pH from 6.5 to 8.0 decreased the KD(app) value of the E-box from 125 to 22 nM, with an 8-fold increase in the maximal level of DNA binding for the NPAS2/BMAL1 heterodimer. The addition of NADPH resulted in a further decrease in KD(app) to 9 nM at pH 8.0. Furthermore, NPAS2-dependent transcriptional activity in a luciferase assay using NIH3T3 cells also increased with the pH of the culture medium. These results suggest that NPAS2 has a role as a pH and metabolite sensor in regulating circadian rhythms.

  13. Circadian rhythms regulate amelogenesis.

    Science.gov (United States)

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  15. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  16. Circadian regulation of myocardial sarcomeric Titin-cap (Tcap, telethonin: identification of cardiac clock-controlled genes using open access bioinformatics data.

    Directory of Open Access Journals (Sweden)

    Peter S Podobed

    Full Text Available Circadian rhythms are important for healthy cardiovascular physiology and are regulated at the molecular level by a circadian clock mechanism. We and others previously demonstrated that 9-13% of the cardiac transcriptome is rhythmic over 24 h daily cycles; the heart is genetically a different organ day versus night. However, which rhythmic mRNAs are regulated by the circadian mechanism is not known. Here, we used open access bioinformatics databases to identify 94 transcripts with expression profiles characteristic of CLOCK and BMAL1 targeted genes, using the CircaDB website and JTK_Cycle. Moreover, 22 were highly expressed in the heart as determined by the BioGPS website. Furthermore, 5 heart-enriched genes had human/mouse conserved CLOCK:BMAL1 promoter binding sites (E-boxes, as determined by UCSC table browser, circadian mammalian promoter/enhancer database PEDB, and the European Bioinformatics Institute alignment tool (EMBOSS. Lastly, we validated findings by demonstrating that Titin cap (Tcap, telethonin was targeted by transcriptional activators CLOCK and BMAL1 by showing 1 Tcap mRNA and TCAP protein had a diurnal rhythm in murine heart; 2 cardiac Tcap mRNA was rhythmic in animals kept in constant darkness; 3 Tcap and control Per2 mRNA expression and cyclic amplitude were blunted in Clock(Δ19/Δ19 hearts; 4 BMAL1 bound to the Tcap promoter by ChIP assay; 5 BMAL1 bound to Tcap promoter E-boxes by biotinylated oligonucleotide assay; and 6 CLOCK and BMAL1 induced tcap expression by luciferase reporter assay. Thus this study identifies circadian regulated genes in silico, with validation of Tcap, a critical regulator of cardiac Z-disc sarcomeric structure and function.

  17. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    International Nuclear Information System (INIS)

    Keith, Dove; Finlay, Liam; Butler, Judy; Gómez, Luis; Smith, Eric; Moreau, Régis; Hagen, Tory

    2014-01-01

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks

  18. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  19. SRC-2 is an essential coactivator for orchastrating metabolism and circadian rhythm

    Science.gov (United States)

    Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:C...

  20. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Valérie Mongrain

    Full Text Available We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP, we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset, -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  1. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Science.gov (United States)

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  2. Astakine 2--the dark knight linking melatonin to circadian regulation in crustaceans.

    Directory of Open Access Journals (Sweden)

    Apiruck Watthanasurorot

    2013-03-01

    Full Text Available Daily, circadian rhythms influence essentially all living organisms and affect many physiological processes from sleep and nutrition to immunity. This ability to respond to environmental daily rhythms has been conserved along evolution, and it is found among species from bacteria to mammals. The hematopoietic process of the crayfish Pacifastacus leniusculus is under circadian control and is tightly regulated by astakines, a new family of cytokines sharing a prokineticin (PROK domain. The expression of AST1 and AST2 are light-dependent, and this suggests an evolutionarily conserved function for PROK domain proteins in mediating circadian rhythms. Vertebrate PROKs are transmitters of circadian rhythms of the suprachiasmatic nucleus (SCN in the brain of mammals, but the mechanism by which they function is unknown. Here we demonstrate that high AST2 expression is induced by melatonin in the brain. We identify RACK1 as a binding protein of AST2 and further provide evidence that a complex between AST2 and RACK1 functions as a negative-feedback regulator of the circadian clock. By DNA mobility shift assay, we showed that the AST2-RACK1 complex will interfere with the binding between BMAL1 and CLK and inhibit the E-box binding activity of the complex BMAL1-CLK. Finally, we demonstrate by gene knockdown that AST2 is necessary for melatonin-induced inhibition of the complex formation between BMAL1 and CLK during the dark period. In summary, we provide evidence that melatonin regulates AST2 expression and thereby affects the core clock of the crustacean brain. This process may be very important in all animals that have AST2 molecules, i.e. spiders, ticks, crustaceans, scorpions, several insect groups such as Hymenoptera, Hemiptera, and Blattodea, but not Diptera and Coleoptera. Our findings further reveal an ancient evolutionary role for the prokineticin superfamily protein that links melatonin to direct regulation of the core clock gene feedback loops.

  3. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  4. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick.

    Science.gov (United States)

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2017-08-01

    To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fetal alcohol exposure disrupts metabolic signaling in hypothalamic proopiomelanocortin neurons via a circadian mechanism in male mice.

    Science.gov (United States)

    Agapito, Maria A; Zhang, Changqing; Murugan, Sengottuvelan; Sarkar, Dipak K

    2014-07-01

    Early-life ethanol feeding (ELAF) alters the metabolic function of proopiomelanocortin (POMC)-producing neurons and the circadian expression of clock regulatory genes in the hypothalamus. We investigated whether the circadian mechanisms control the action of ELAF on metabolic signaling genes in POMC neurons. Gene expression measurements of Pomc and a selected group of metabolic signaling genes, Stat3, Sirt1, Pgc1-α, and Asb4 in laser-captured microdissected POMC neurons in the hypothalamus of POMC-enhanced green fluorescent protein mice showed circadian oscillations under light/dark and constant darkness conditions. Ethanol programmed these neurons such that the adult expression of Pomc, Stat3, Sirt, and Asb4 gene transcripts became arrhythmic. In addition, ELAF dampened the circadian peak of gene expression of Bmal1, Per1, and Per2 in POMC neurons. We crossed Per2 mutant mice with transgenic POMC-enhanced green fluorescent protein mice to determine the role of circadian mechanism in ELAF-altered metabolic signaling in POMC neurons. We found that ELAF failed to alter arrhythmic expression of most circadian genes, with the exception of the Bmal1 gene and metabolic signaling regulating genes in Per2 mutant mice. Comparison of the ELAF effects on the circadian blood glucose in wild-type and Per2 mutant mice revealed that ELAF dampened the circadian peak of glucose, whereas the Per2 mutation shifted the circadian cycle and prevented the ELAF dampening of the glucose peak. These data suggest the possibility that the Per2 gene mutation may regulate the ethanol actions on Pomc and the metabolic signaling genes in POMC neurons in the hypothalamus by blocking circadian mechanisms.

  6. Cell-permeable Circadian Clock Proteins

    National Research Council Canada - National Science Library

    Johnson, Carl

    2002-01-01

    .... These 'biological clocks' are important to human physiology. For example, psychiatric and medical studies have shown that circadian rhythmicity is involved in some forms of depressive illness, 'jet lag', drug tolerance/efficacy, memory, and insomnia...

  7. An essential role for the circadian-regulated gene nocturnin in osteogenesis: the importance of local timekeeping in skeletal homeostasis.

    Science.gov (United States)

    Guntur, Anyonya R; Kawai, Masanobu; Le, Phuong; Bouxsein, Mary L; Bornstein, Sheila; Green, Carla B; Rosen, Clifford J

    2011-11-01

    The role of circadian proteins in regulating whole-body metabolism and bone turnover has been studied in detail and has led to the discovery of an elemental system for timekeeping involving the core genes Clock, Bmal1, Per, and Cry. Nocturnin (Noc; Ccrn4l), a peripheral circadian-regulated gene has been shown to play a very important role in regulating adipogenesis by deadenylation of key mRNAs and intracytoplasmic transport of PPARγ. The role that it plays in osteogenesis has previously not been studied in detail. In this report we examined in vitro and in vivo osteogenesis in the presence and absence of Noc and show that loss of Noc enhances bone formation and can rescue rosiglitazone-induced bone loss in mice. The circadian rhythm of Noc is likely to be an essential element of marrow stromal cell fate. © 2011 New York Academy of Sciences.

  8. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ. Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte

  9. Genetic Disruption of the Core Circadian Clock Impairs Hippocampus-Dependent Memory

    Science.gov (United States)

    Wardlaw, Sarah M.; Phan, Trongha X.; Saraf, Amit; Chen, Xuanmao; Storm, Daniel R.

    2014-01-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1[superscript -/-] mice, which are arrhythmic…

  10. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    Directory of Open Access Journals (Sweden)

    Takao Hirai

    2015-11-01

    Full Text Available Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG, was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1 and Bmal1 (Bmal1, also known as Arntl, which are components of the core loop of the circadian clock in osteoblasts.

  11. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    Science.gov (United States)

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  12. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice

    Science.gov (United States)

    Landgraf, Dominic; Long, Jaimie E.; Proulx, Christophe D.; Barandas, Rita; Malinow, Roberto; Welsh, David K.

    2016-01-01

    Background Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. Methods We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). Results In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Conclusions Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. PMID:27113500

  13. Genetic Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus Causes Helplessness, Behavioral Despair, and Anxiety-like Behavior in Mice.

    Science.gov (United States)

    Landgraf, Dominic; Long, Jaimie E; Proulx, Christophe D; Barandas, Rita; Malinow, Roberto; Welsh, David K

    2016-12-01

    Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  14. Evidence for an Overlapping Role of CLOCK and NPAS2 Transcription Factors in Liver Circadian Oscillators▿

    Science.gov (United States)

    Bertolucci, Cristiano; Cavallari, Nicola; Colognesi, Ilaria; Aguzzi, Jacopo; Chen, Zheng; Caruso, Pierpaolo; Foá, Augusto; Tosini, Gianluca; Bernardi, Francesco; Pinotti, Mirko

    2008-01-01

    The mechanisms underlying the circadian control of gene expression in peripheral tissues and influencing many biological pathways are poorly defined. Factor VII (FVII), the protease triggering blood coagulation, represents a valuable model to address this issue in liver since its plasma levels oscillate in a circadian manner and its promoter contains E-boxes, which are putative DNA-binding sites for CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers and hallmarks of circadian regulation. The peaks of FVII mRNA levels in livers of wild-type mice preceded those in plasma, indicating a transcriptional regulation, and were abolished in Clock−/−; Npas2−/− mice, thus demonstrating a role for CLOCK and NPAS2 circadian transcription factors. The investigation of Npas2−/− and ClockΔ19/Δ19 mice, which express functionally defective heterodimers, revealed robust rhythms of FVII expression in both animal models, suggesting a redundant role for NPAS2 and CLOCK. The molecular bases of these observations were established through reporter gene assays. FVII transactivation activities of the NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers were (i) comparable (a fourfold increase), (ii) dampened by the negative circadian regulators PER2 and CRY1, and (iii) abolished upon E-box mutagenesis. Our data provide the first evidence in peripheral oscillators for an overlapping role of CLOCK and NPAS2 in the regulation of circadianly controlled genes. PMID:18316400

  15. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.

    Science.gov (United States)

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S

    2016-01-01

    Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    Science.gov (United States)

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

    Science.gov (United States)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja Kh; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Vierkant, Robert A; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Schernhammer, Eva; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M; Kelemen, Linda E; Ramus, Susan J; Monteiro, Alvaro N A; Goode, Ellen L; Narod, Steven A; Gayther, Simon A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10 -4 ]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1 , may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.

  18. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan

    2013-01-01

    in the rat neocortex. Among these, Per1, Per2, Per3, Cry1, Bmal1, Nr1d1 and Dbp were found to exhibit daily rhythms. The amplitude of circadian oscillation in neocortical clock gene expression was damped and the peak delayed as compared with the SCN. Lesions of the SCN revealed that rhythmic clock gene...... expression in the neocortex is dependent on the SCN. In situ hybridization and immunohistochemistry showed that products of the canonical clock gene Per2 are located in perikarya throughout all areas of the neocortex. These findings show that local circadian oscillators driven by the SCN reside within...... neurons of the neocortex....

  19. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction

    Directory of Open Access Journals (Sweden)

    Yves eLecarpentier

    2014-11-01

    Full Text Available Circadian clock mechanisms are far-from-equilibrium dissipative structures. Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta and gamma play a key role in metabolic regulatory processes, particularly in heart muscle. Links between circadian rhythms (CRs and PPARs have been established. Mammalian CRs involve at least two critical transcription factors, CLOCK and BMAL1 (Gekakis et al., 1998; Hogenesch et al., 1998. PPAR gamma plays a major role in both glucose and lipid metabolisms and presents circadian properties which coordinate the interplay between metabolism and CRs. PPAR gamma is a major component of the vascular clock. Vascular PPAR gamma is a peripheral regulator of cardiovascular rhythms controlling circadian variations in blood pressure and heart rate through BMAL1. We focused our review on diseases with abnormalities of CRs and with primary or secondary cardiac dysfunction. Moreover, these diseases presented changes in the Wnt/beta-catenin pathway and PPARs, according to two opposed profiles. Profile 1 was defined as follows: inactivation of the Wnt/beta-catenin pathway with increased expression of PPAR gamma. Profile 2 was defined as follows: activation of the Wnt/beta-catenin pathway with decreased expression of PPAR gamma. A typical profile 1 disease is arrhythmogenic right ventricular cardiomyopathy, a genetic cardiac disease which presents mutations of the desmosomal proteins and is mainly characterized by fatty acid accumulation in adult cardiomyocytes mainly in the right ventricle. The link between PPAR gamma dysfunction and desmosomal genetic mutations occurs via inactivation of the Wnt/beta-catenin pathway presenting oscillatory properties. A typical profile 2 disease is type 2 diabetes, with activation of the Wnt/beta-catenin pathway and decreased expression of PPAR gamma. CRs abnormalities are present in numerous pathologies such as cardiovascular diseases, sympathetic/parasympathetic dysfunction

  20. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit.

    Science.gov (United States)

    Bouchard-Cannon, Pascale; Mendoza-Viveros, Lucia; Yuen, Andrew; Kærn, Mads; Cheng, Hai-Ying M

    2013-11-27

    The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The Circadian Molecular Clock Regulates Adult Hippocampal Neurogenesis by Controlling the Timing of Cell-Cycle Entry and Exit

    Directory of Open Access Journals (Sweden)

    Pascale Bouchard-Cannon

    2013-11-01

    Full Text Available The subgranular zone (SGZ of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body.

  2. Genetic disruption of the core circadian clock impairs hippocampus-dependent memory

    OpenAIRE

    2014-01-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1−/− mice, which are arrhythmic under constant conditions, were examined for hippocampus-dependent memory, LTP at the Schaffer-collateral synapse, and signal transduction activity in the hippoca...

  3. Toward a detailed computational model for the mammalian circadian clock

    Science.gov (United States)

    Leloup, Jean-Christophe; Goldbeter, Albert

    2003-06-01

    We present a computational model for the mammalian circadian clock based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, Clock, and Rev-Erb genes. In agreement with experimental observations, the model can give rise to sustained circadian oscillations in continuous darkness, characterized by an antiphase relationship between Per/Cry/Rev-Erb and Bmal1 mRNAs. Sustained oscillations correspond to the rhythms autonomously generated by suprachiasmatic nuclei. For other parameter values, damped oscillations can also be obtained in the model. These oscillations, which transform into sustained oscillations when coupled to a periodic signal, correspond to rhythms produced by peripheral tissues. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark cycles. Simulations show that the phase of the oscillations can then vary by several hours with relatively minor changes in parameter values. Such a lability of the phase could account for physiological disorders related to circadian rhythms in humans, such as advanced or delayed sleep phase syndrome, whereas the lack of entrainment by light-dark cycles can be related to the non-24h sleep-wake syndrome. The model uncovers the possible existence of multiple sources of oscillatory behavior. Thus, in conditions where the indirect negative autoregulation of Per and Cry expression is inoperative, the model indicates the possibility that sustained oscillations might still arise from the negative autoregulation of Bmal1 expression.

  4. Ras Activity Oscillates in the Mouse Suprachiasmatic Nucleus and Modulates Circadian Clock Dynamics.

    Science.gov (United States)

    Serchov, Tsvetan; Jilg, Antje; Wolf, Christian T; Radtke, Ina; Stehle, Jörg H; Heumann, Rolf

    2016-04-01

    Circadian rhythms, generated in the mouse suprachiasmatic nucleus (SCN), are synchronized to the environmental day-night changes by photic input. The activation of the extracellular signal-regulated kinases 1 and 2 (ERK1,2) and cAMP response element-binding protein (CREB)-mediated transcription play a critical role in this photoentrainment. The small GTPase Ras is one of the major upstream regulators of the ERK1,2/CREB pathway. In contrast to the well-described role of Ras in structural and functional synaptic plasticity in the adult mouse brain, the physiological regulation of Ras by photic sensory input is yet unknown. Here, we describe for the first time a circadian rhythm of Ras activity in the mouse SCN. Using synRas transgenic mice, expressing constitutively activated V12-Ha-Ras selectively in neurons, we demonstrate that enhanced Ras activation causes shortening of the circadian period length. We found upregulated expression and decreased inhibitory phosphorylation of the circadian period length modulator, glycogen synthase kinase-3 beta (GSK3β), in the SCN of synRas mice. Conversely, downregulation of Ras activity by blocking its function with an antibody in oscillating cell cultures reduced protein levels and increased phosphorylation of GSK3β and lengthened the period of BMAL1 promoter-driven luciferase activity. Furthermore, enhanced Ras activity in synRas mice resulted in a potentiation of light-induced phase delays at early subjective night, and increased photic induction of pERK1,2/pCREB and c-Fos. In contrast, at late subjective night, photic activation of Ras/ERK1,2/CREB in synRas mice was not sufficient to stimulate c-Fos protein expression and phase advance the clock. Taken together, our results demonstrate that Ras activity fine tunes the period length and modulates photoentrainment of the circadian clock.

  5. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2

    DEFF Research Database (Denmark)

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted...... cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2(-/-) mice. Circadian rhythms in QT100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2......(-/-), respectively (p = 0.15). A diurnal rhythm in QT100 intervals was only found in WT mice. QTmean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2(-/-). The amplitude of the circadian rhythm in QTmean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2(-/-), respectively (p = 0...

  6. Circadian Misalignment Increases C-Reactive Protein and Blood Pressure in Chronic Shift Workers.

    Science.gov (United States)

    Morris, Christopher J; Purvis, Taylor E; Mistretta, Joseph; Hu, Kun; Scheer, Frank A J L

    2017-04-01

    Shift work is a risk factor for inflammation, hypertension, and cardiovascular disease. This increased risk cannot be fully explained by classical risk factors. Shift workers' behavioral and environmental cycles are typically misaligned relative to their endogenous circadian system. However, there is little information on the impact of acute circadian misalignment on cardiovascular disease risk in shift workers, independent of differences in work stress, food quality, and other factors that are likely to differ between night and day shifts. Thus, our objectives were to determine the independent effect of circadian misalignment on 24-h high-sensitivity C-reactive protein (hs-CRP; a marker of systemic inflammation) and blood pressure levels-cardiovascular disease risk factors-in chronic shift workers. Chronic shift workers undertook two 3-day laboratory protocols that simulated night work, comprising 12-hour inverted behavioral and environmental cycles (circadian misalignment) or simulated day work (circadian alignment), using a randomized, crossover design. Circadian misalignment increased 24-h hs-CRP by 11% ( p shift workers. This may help explain the increased inflammation, hypertension, and cardiovascular disease risk in shift workers.

  7. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    OpenAIRE

    Long, Dani M.; Giebultowicz, Jadwiga M.

    2018-01-01

    Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demo...

  8. A central role for ubiquitination within a circadian clock protein modification code

    Directory of Open Access Journals (Sweden)

    Katarina eStojkovic

    2014-08-01

    Full Text Available Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation-transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components, but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.

  9. Evaluation of circadian phenotypes utilizing fibroblasts from patients with circadian rhythm sleep disorders.

    Science.gov (United States)

    Hida, A; Ohsawa, Y; Kitamura, S; Nakazaki, K; Ayabe, N; Motomura, Y; Matsui, K; Kobayashi, M; Usui, A; Inoue, Y; Kusanagi, H; Kamei, Y; Mishima, K

    2017-04-25

    We evaluated the circadian phenotypes of patients with delayed sleep-wake phase disorder (DSWPD) and non-24-hour sleep-wake rhythm disorder (N24SWD), two different circadian rhythm sleep disorders (CRSDs) by measuring clock gene expression rhythms in fibroblast cells derived from individual patients. Bmal1-luciferase (Bmal1-luc) expression rhythms were measured in the primary fibroblast cells derived from skin biopsy samples of patients with DSWPD and N24SWD, as well as control subjects. The period length of the Bmal1-luc rhythm (in vitro period) was distributed normally and was 22.80±0.47 (mean±s.d.) h in control-derived fibroblasts. The in vitro periods in DSWPD-derived fibroblasts and N24SWD-derived fibroblasts were 22.67±0.67 h and 23.18±0.70 h, respectively. The N24SWD group showed a significantly longer in vitro period than did the control or DSWPD group. Furthermore, in vitro period was associated with response to chronotherapy in the N24SWD group. Longer in vitro periods were observed in the non-responders (mean±s.d.: 23.59±0.89 h) compared with the responders (mean±s.d.: 22.97±0.47 h) in the N24SWD group. Our results indicate that prolonged circadian periods contribute to the onset and poor treatment outcome of N24SWD. In vitro rhythm assays could be useful for predicting circadian phenotypes and clinical prognosis in patients with CRSDs.

  10. Non-circadian expression masking clock-driven weak transcription rhythms in U2OS cells.

    Directory of Open Access Journals (Sweden)

    Julia Hoffmann

    Full Text Available U2OS cells harbor a circadian clock but express only a few rhythmic genes in constant conditions. We identified 3040 binding sites of the circadian regulators BMAL1, CLOCK and CRY1 in the U2OS genome. Most binding sites even in promoters do not correlate with detectable rhythmic transcript levels. Luciferase fusions reveal that the circadian clock supports robust but low amplitude transcription rhythms of representative promoters. However, rhythmic transcription of these potentially clock-controlled genes is masked by non-circadian transcription that overwrites the weaker contribution of the clock in constant conditions. Our data suggest that U2OS cells harbor an intrinsically rather weak circadian oscillator. The oscillator has the potential to regulate a large number of genes. The contribution of circadian versus non-circadian transcription is dependent on the metabolic state of the cell and may determine the apparent complexity of the circadian transcriptome.

  11. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Bédard, Nathalie

    2012-01-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock...

  12. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    OpenAIRE

    Mongrain, Valerie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory s...

  13. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    Science.gov (United States)

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2.

    Science.gov (United States)

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter; Thomsen, Morten B

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 -/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT 100 = QT/(RR/100) 1/2 ). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT mean-RR ). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 -/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 -/- mice. Circadian rhythms in QT 100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2 -/- , respectively (p = 0.15). A diurnal rhythm in QT 100 intervals was only found in WT mice. QT mean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2 -/- . The amplitude of the circadian rhythm in QT mean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2 -/- , respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.

  15. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity

    Czech Academy of Sciences Publication Activity Database

    Trávníčková, Zdeňka; Cermakian, N.; Reppert, S. M.; Sassone-Corsi, P.

    2002-01-01

    Roč. 99, č. 11 (2002), s. 7728-7733 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z5011922 Keywords : circadian * period gene * cell signalling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.701, year: 2002

  16. Emergence of noise-induced oscillations in the central circadian pacemaker.

    Directory of Open Access Journals (Sweden)

    Caroline H Ko

    2010-10-01

    Full Text Available Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.

  17. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    International Nuclear Information System (INIS)

    Matsunaga, Ryota; Nishino, Tasuku; Yokoyama, Atsushi; Nakashima, Akio; Kikkawa, Ushio; Konishi, Hiroaki

    2016-01-01

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.

  18. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Ryota; Nishino, Tasuku [Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 (Japan); Yokoyama, Atsushi [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Nakashima, Akio; Kikkawa, Ushio [Biosignal Research Center, Kobe University, Kobe 657-8501 (Japan); Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp [Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023 (Japan)

    2016-01-15

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.

  19. Gnaz couples the circadian and dopaminergic system to G protein-mediated signaling in mouse photoreceptors.

    Directory of Open Access Journals (Sweden)

    Patrick Vancura

    Full Text Available The mammalian retina harbors a circadian clockwork that regulates vision and promotes healthiness of retinal neurons, mainly through directing the rhythmic release of the neurohormones dopamine-acting on dopamine D4 receptors-and melatonin-acting on MT1 and MT2 receptors. The gene Gnaz-a unique Gi/o subfamily member-was seen in the present study to be expressed in photoreceptors where its protein product Gαz shows a daily rhythm in its subcellular localization. Apart from subcellular localization, Gnaz displays a daily rhythm in expression-with peak values at night-in preparations of the whole retina, microdissected photoreceptors and photoreceptor-related pinealocytes. In retina, Gnaz rhythmicity was observed to persist under constant darkness and to be abolished in retina deficient for Clock or dopamine D4 receptors. Furthermore, circadian regulation of Gnaz was disturbed in the db/db mouse, a model of diabetic retinopathy. The data of the present study suggest that Gnaz links the circadian clockwork-via dopamine acting on D4 receptors-to G protein-mediated signaling in intact but not diabetic retina.

  20. Circadian Rhythms in Diet-Induced Obesity.

    Science.gov (United States)

    Engin, Atilla

    2017-01-01

    The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in

  1. cGMP-dependent protein kinase I, the circadian clock, sleep and learning.

    Science.gov (United States)

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-07-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consolidation. Furthermore, the ability to sustain waking episodes was compromised. These observations were also reflected in wheel-running and drinking activity. A decrease in electroencephalogram power in the delta frequency range (1-4 Hz) under baseline conditions was observed, which was normalized after sleep deprivation. Together with the finding that circadian clock amplitude is reduced in Prkg1 mutants these results indicate a decrease of the wake-promoting output of the circadian system affecting sleep. Because quality of sleep might affect learning we tested Prkg1 mutants in several learning tasks and find normal spatial learning but impaired object recognition memory in these animals. Our findings indicate that Prkg1 impinges on circadian rhythms, sleep and distinct aspects of learning.

  2. Temporal requirements of the fragile X mental retardation protein in modulating circadian clock circuit synaptic architecture

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2009-08-01

    Full Text Available Loss of fragile X mental retardation 1 (FMR1 gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs, a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity.

  3. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    Directory of Open Access Journals (Sweden)

    Yaoming Yang

    2012-06-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of ubiquitin ligases in the clock mechanism. Here we show a role for the rhythmically-expressed deubiquitinating enzyme ubiquitin specific peptidase 2 (USP2 in clock function. Mice with a deletion of the Usp2 gene (Usp2 KO display a longer free-running period of locomotor activity rhythms and altered responses of the clock to light. This was associated with altered expression of clock genes in synchronized Usp2 KO mouse embryonic fibroblasts and increased levels of clock protein PERIOD1 (PER1. USP2 can be coimmunoprecipitated with several clock proteins but directly interacts specifically with PER1 and deubiquitinates it. Interestingly, this deubiquitination does not alter PER1 stability. Taken together, our results identify USP2 as a new core component of the clock machinery and demonstrate a role for deubiquitination in the regulation of the circadian clock, both at the level of the core pacemaker and its response to external cues.

  4. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts.

    Science.gov (United States)

    Samulin Erdem, Johanna; Skare, Øivind; Petersen-Øverleir, Marte; Notø, Heidi Ødegaard; Lie, Jenny-Anne S; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh

    2017-01-01

    Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK , BMAL1 , CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK , BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers.

  5. Class IIa histone deacetylases are conserved regulators of circadian function.

    Science.gov (United States)

    Fogg, Paul C M; O'Neill, John S; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C; McIntosh, Rebecca L L; Elliott, Christopher J H; Sweeney, Sean T; Hastings, Michael H; Chawla, Sangeeta

    2014-12-05

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure

    Czech Academy of Sciences Publication Activity Database

    Shao, Q. M.; Sehadová, H.; Ichihara, N.; Sehnal, František; Takeda, M.

    2006-01-01

    Roč. 21, č. 2 (2006), s. 118-131 ISSN 0748-7304 Grant - others:Japan Society for the Promotion of Science(JP) JSPS 99L01205; Japan Society for the Promotion of Science(JP) ID No. P 04197 Institutional research plan: CEZ:AV0Z50070508 Keywords : circadian rhythm * photoperiodic clock * cryptochrome (CRY) Subject RIV: ED - Physiology Impact factor: 4.633, year: 2006

  7. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA.

    Science.gov (United States)

    Mori, Tetsuya; Saveliev, Sergei V; Xu, Yao; Stafford, Walter F; Cox, Michael M; Inman, Ross B; Johnson, Carl H

    2002-12-24

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecADnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns.

  8. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    Directory of Open Access Journals (Sweden)

    Julian Lippert

    Full Text Available From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH in comparison to those of healthy controls (HC. Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG and Multiple Sleep Latency Test (MSLT. Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  9. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    Science.gov (United States)

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  10. Protein phosphatase dependent circadian regulation of intermediate-term associative memory

    OpenAIRE

    Michel, Maximilian; Gardner, Jacob S.; Green, Charity L.; Organ, Chelsea L.; Lyons, Lisa C.

    2013-01-01

    The endogenous circadian clock is a principal factor modulating memory across species. Determining the processes through which the circadian clock modulates memory formation is a key issue in understanding and identifying mechanisms to improve memory. We used the marine mollusk Aplysia californica to investigate circadian modulation of intermediate-term memory (ITM) and the mechanisms through which the circadian clock phase specifically suppresses memory using the operant learning paradigm, l...

  11. A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery.

    Directory of Open Access Journals (Sweden)

    Annabelle Ballesta

    2011-09-01

    Full Text Available Circadian timing largely modifies efficacy and toxicity of many anticancer drugs. Recent findings suggest that optimal circadian delivery patterns depend on the patient genetic background. We present here a combined experimental and mathematical approach for the design of chronomodulated administration schedules tailored to the patient molecular profile. As a proof of concept we optimized exposure of Caco-2 colon cancer cells to irinotecan (CPT11, a cytotoxic drug approved for the treatment of colorectal cancer. CPT11 was bioactivated into SN38 and its efflux was mediated by ATP-Binding-Cassette (ABC transporters in Caco-2 cells. After cell synchronization with a serum shock defining Circadian Time (CT 0, circadian rhythms with a period of 26 h 50 (SD 63 min were observed in the mRNA expression of clock genes REV-ERBα, PER2, BMAL1, the drug target topoisomerase 1 (TOP1, the activation enzyme carboxylesterase 2 (CES2, the deactivation enzyme UDP-glucuronosyltransferase 1, polypeptide A1 (UGT1A1, and efflux transporters ABCB1, ABCC1, ABCC2 and ABCG2. DNA-bound TOP1 protein amount in presence of CPT11, a marker of the drug PD, also displayed circadian variations. A mathematical model of CPT11 molecular pharmacokinetics-pharmacodynamics (PK-PD was designed and fitted to experimental data. It predicted that CPT11 bioactivation was the main determinant of CPT11 PD circadian rhythm. We then adopted the therapeutics strategy of maximizing efficacy in non-synchronized cells, considered as cancer cells, under a constraint of maximum toxicity in synchronized cells, representing healthy ones. We considered exposure schemes in the form of an initial concentration of CPT11 given at a particular CT, over a duration ranging from 1 to 27 h. For any dose of CPT11, optimal exposure durations varied from 3h40 to 7h10. Optimal schemes started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the nadir of CPT11 bioactivation rhythm in

  12. Circadian Clock Proteins and Melatonin Receptors in Neurons and Glia of the Sapajus apella Cerebellum

    Directory of Open Access Journals (Sweden)

    Leila M. Guissoni Campos

    2018-02-01

    Full Text Available Oscillations of brain proteins in circadian rhythms are important for determining several cellular and physiological processes in anticipation of daily and seasonal environmental rhythms. In addition to the suprachiasmatic nucleus, the primary central oscillator, the cerebellum shows oscillations in gene and protein expression. The variety of local circuit rhythms that the cerebellar cortex contains influences functions such as motivational processes, regulation of feeding, food anticipation, language, and working memory. The molecular basis of the cerebellar oscillator has been demonstrated by “clock gene” expression within cells of the cerebellar layers. Genetic and epidemiological evidence suggests that disruption of circadian rhythms in humans can lead to many pathological conditions. Despite this importance, data about clock gene and protein expression in the cerebellum of diurnal (day-active species, specifically primates, is currently poorly explored, mainly in regard to cellular identity, as well as the relationship with other molecules also involved in cerebellar functions. These studies could contribute to clarification of the possible mechanisms behind cerebellar rhythmicity. Considering that calcium binding proteins (CaBPs play crucial roles in preserving and modulating cerebellar functions and that clock gene expression can be controlled by afferent projections or paracrine circadian signals such as the hormone melatonin, the present study aimed to describe cellular identities, distribution patterns and day/night expression changes in PER1, PER2, CaBPs, and MT1 and MT2 melatonin receptors in the cerebellar cortex of a diurnal primate using conventional fluorescence and peroxidase-antiperoxidase immunocytochemical techniques. PER1 and PER2 immunoreactive (IR cells were observed in the Purkinje cells of the cerebellum, and MT1 and MT2 receptors were localized around Purkinje cells in the Pj layer in Bergmann cells. This identity

  13. Effects of simulated microgravity on circadian rhythm of caudal arterial pressure and heart rate in rats and their underlying mechanism

    Directory of Open Access Journals (Sweden)

    Li CHEN

    2016-04-01

    Full Text Available Objective  To explore the effects of simulated microgravity on the circadian rhythm of rats' caudal arterial pressure and heart rate, and their underlying mechanism. Methods  Eighteen male SD rats (aged 8 weeks were randomly assigned to control (CON and tail suspension (SUS group (9 each. Rats with tail suspension for 28 days were adopted as the animal model to simulate microgravity. Caudal arterial pressure and heart rate of rats were measured every 3 hours. The circadian difference of abdominal aorta contraction was measured by aortic ring test. Western blotting was performed to determine and compare the protein expression level of clock genes such as Per2 (Period2, Bmal1 (Aryl hydrocarbon receptor nuclear translocatorlike and dbp (D element binding protein in suprachiasmatic nucleus (SCN and abdominal aorta of rats in CON and SUS group at different time points. Results  Compared with CON group, the caudal arterial pressure, both systolic and diastolic pressure, decreased significantly and the diurnal variability disappeared, meanwhile the heart rate increased obviously and also the diurnal variability disappeared in rats of SUS group. Compared with CON group, the contraction reactivity of abdominal aorta decreased with disappearence of the diurnal variability, and also the clock genes expression in SCN and abdominal aorta showed no diurnal variability in rats of SUS group. Conclusion  Simulated microgravity may lead to circadian rhythm disorders in rats' cardiovascular system, which may be associated with the changes of the clock genes expression. DOI: 10.11855/j.issn.0577-7402.2016.04.06

  14. Timing Matters: Circadian Rhythm in Sepsis, Obstructive Lung Disease, Obstructive Sleep Apnea, and Cancer.

    Science.gov (United States)

    Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul

    2016-07-01

    Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption.

  15. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    Science.gov (United States)

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  16. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells.

    Science.gov (United States)

    Guo, Yichen; Shen, Ouxi; Han, Jingjing; Duan, Hongyu; Yang, Siyuan; Zhu, Zhenghong; Tong, Jian; Zhang, Jie

    2017-01-01

    Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca 2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca 2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.

  17. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    Directory of Open Access Journals (Sweden)

    Dani M. Long

    2018-01-01

    Full Text Available Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain.

  18. Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals.

    Directory of Open Access Journals (Sweden)

    Federica Gilardi

    2014-03-01

    Full Text Available In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1 is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4 were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1

  19. Genome-Wide Analysis of SREBP1 Activity around the Clock Reveals Its Combined Dependency on Nutrient and Circadian Signals

    Science.gov (United States)

    Naldi, Aurélien; Baruchet, Michaël; Canella, Donatella; Le Martelot, Gwendal; Guex, Nicolas; Desvergne, Béatrice; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Martelot, Gwendal Le; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Delafontaine, Julien; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Martelot, Gwendal Le; Lammers, Fabienne; Baruchet, Michaël; Raghav, Sunil

    2014-01-01

    In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1 −/− mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes

  20. A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands.

    Directory of Open Access Journals (Sweden)

    Takako Noguchi

    Full Text Available In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR, respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that

  1. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine...... single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2......,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant...

  2. Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata).

    Science.gov (United States)

    Weiss, Julia; Terry, Marta I; Martos-Fuentes, Marina; Letourneux, Lisa; Ruiz-Hernández, Victoria; Fernández, Juan A; Egea-Cortines, Marcos

    2018-02-14

    Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to

  3. NPAS2 Compensates for Loss of CLOCK in Peripheral Circadian Oscillators.

    Directory of Open Access Journals (Sweden)

    Dominic Landgraf

    2016-02-01

    Full Text Available Heterodimers of CLOCK and BMAL1 are the major transcriptional activators of the mammalian circadian clock. Because the paralog NPAS2 can substitute for CLOCK in the suprachiasmatic nucleus (SCN, the master circadian pacemaker, CLOCK-deficient mice maintain circadian rhythms in behavior and in tissues in vivo. However, when isolated from the SCN, CLOCK-deficient peripheral tissues are reportedly arrhythmic, suggesting a fundamental difference in circadian clock function between SCN and peripheral tissues. Surprisingly, however, using luminometry and single-cell bioluminescence imaging of PER2 expression, we now find that CLOCK-deficient dispersed SCN neurons and peripheral cells exhibit similarly stable, autonomous circadian rhythms in vitro. In CLOCK-deficient fibroblasts, knockdown of Npas2 leads to arrhythmicity, suggesting that NPAS2 can compensate for loss of CLOCK in peripheral cells as well as in SCN. Our data overturn the notion of an SCN-specific role for NPAS2 in the molecular circadian clock, and instead indicate that, at the cellular level, the core loops of SCN neuron and peripheral cell circadian clocks are fundamentally similar.

  4. Are circadian rhythms new pathways to understand Autism Spectrum Disorder?

    Science.gov (United States)

    Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N

    2016-11-01

    Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks

    Directory of Open Access Journals (Sweden)

    Sam-Moon Kim

    2016-05-01

    Full Text Available Inflammatory signaling may play a role in high-fat diet (HFD-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA, docosahexaenoic acid (DHA, were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks.

  6. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    OpenAIRE

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Green and colleagues perform a global analysis of circadian-controlled poly(A) tails and identify hundreds of mRNAs that display dynamic rhythmic polyadenylation states. They identify three distinct classes of mRNAs with rhythmic poly(A) tails. Interestingly, class III mRNAs are controlled not by transcription, but by rhythmic cytoplasmic polyadenylation, and are regulated by the components of the cytoplasmic polyadenylation machinery, CPEB2 in particular, which are themselves rhythmically ex...

  7. Circadian light

    Directory of Open Access Journals (Sweden)

    Bierman Andrew

    2010-02-01

    Full Text Available Abstract The present paper reflects a work in progress toward a definition of circadian light, one that should be informed by the thoughtful, century-old evolution of our present definition of light as a stimulus for the human visual system. This work in progress is based upon the functional relationship between optical radiation and its effects on nocturnal melatonin suppression, in large part because the basic data are available in the literature. Discussed here are the fundamental differences between responses by the visual and circadian systems to optical radiation. Brief reviews of photometry, colorimetry, and brightness perception are presented as a foundation for the discussion of circadian light. Finally, circadian light (CLA and circadian stimulus (CS calculation procedures based on a published mathematical model of human circadian phototransduction are presented with an example.

  8. PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    International Nuclear Information System (INIS)

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio

    2007-01-01

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARα) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARα ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbα was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARα is involved in circadian clock control independently of the SCN and that PPARα could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS

  9. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Hassan, Nathaniel; McCarville, Kirstin; Morinaga, Kenzo; Mengatto, Cristiane M; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S; Nishimura, Ichiro

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.

  10. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  11. Feeding period restriction alters the expression of peripheral circadian rhythm genes without changing body weight in mice.

    Directory of Open Access Journals (Sweden)

    Hagoon Jang

    Full Text Available Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the expression of light-regulated hypothalamic circadian clock genes was unaffected by either a normal chow diet (NCD or a high-fat diet (HFD. In the liver, the expression pattern of circadian clock genes, including Bmal1, Clock, and Per2, was changed by different feeding period restrictions. Moreover, the expression of lipogenic genes, gluconeogenic genes, and fatty acid oxidation-related genes in the liver was also altered by feeding period restriction. Given that feeding period restriction does not affect body weight gain with a NCD or HFD, it is likely that the amount of food consumed might be a crucial factor in determining body weight. Collectively, these data suggest that feeding period restriction modulates the expression of peripheral circadian clock genes, which is uncoupled from light-sensitive hypothalamic circadian clock genes.

  12. Krüppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity.

    Science.gov (United States)

    Fan, Liyan; Hsieh, Paishiun N; Sweet, David R; Jain, Mukesh K

    2018-04-01

    Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chronic Maternal Low-Protein Diet in Mice Affects Anxiety, Night-Time Energy Expenditure and Sleep Patterns, but Not Circadian Rhythm in Male Offspring.

    Directory of Open Access Journals (Sweden)

    Randy F Crossland

    Full Text Available Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP diet, had lower body and hind-leg muscle weights and decreased liver enzyme serum levels. We conducted energy expenditure, neurobehavioral and circadian rhythm assays in male offspring to examine mechanisms for the body-weight phenotype and assess neurodevelopmental implications of MLP exposure. C57BL/6J dams were fed a protein restricted (8%protein, MLP or a control protein (20% protein, C diet from four weeks before mating until weaning of offspring. Male offspring were weaned to standard rodent diet (20% protein and single-housed until 8-12 weeks of age. We examined body composition, food intake, energy expenditure, spontaneous rearing activity and sleep patterns and performed behavioral assays for anxiety (open field activity, elevated plus maze [EPM], light/dark exploration, depression (tail suspension and forced swim test, sociability (three-chamber, repetitive (marble burying, learning and memory (fear conditioning, and circadian behavior (wheel-running activity during light-dark and constant dark cycles. We also measured circadian gene expression in hypothalamus and liver at different Zeitgeber times (ZT. Male offspring from separate MLP exposed dams had significantly greater body fat (P = 0.03, less energy expenditure (P = 0.004, less rearing activity (P = 0.04 and a greater number of night-time rest/sleep bouts (P = 0.03 compared to control. MLP offspring displayed greater anxiety-like behavior in the EPM (P<0.01 but had no learning and memory deficit in fear-conditioning assay (P = 0.02. There was an effect of time on Per1, Per 2 and Clock circadian gene expression in the hypothalamus but not on circadian behavior. Thus, transplacental and early developmental exposure of dams to chronic MLP reduces

  14. Neurobiology of circadian systems.

    Science.gov (United States)

    Schulz, Pierre; Steimer, Thierry

    2009-01-01

    Time is a dimension tightly associated with the biology of living species. There are cycles of varied lengths in biological activities, from very short (ultradian) rhythms to rhythms with a period of approximately one day (circadian) and rhythms with longer cycles, of a week, a month, a season, or even longer. These rhythms are generated by endogenous biological clocks, i.e. time-keeping structures, rather than being passive reactions to external fluctuations. In mammals, the suprachiasmatic nucleus (SCN) is the major pacemaker. The pineal gland, which secretes melatonin, is the major pacemaker in other phyla. There also exist biological clocks generating circadian rhythms in peripheral tissues, for example the liver. A series of clock genes generates the rhythm through positive and negative feedback effect of proteins on their own synthesis, and this system oscillates with a circadian period. External factors serve as indicators of the astronomical (solar) time and are called zeitgebers, literally time-givers. Light is the major zeitgeber, which resets daily the SCN circadian clock. In the absence of zeitgebers, the circadian rhythm is said to be free running; it has a period that differs from 24 hours. The SCN, together with peripheral clocks, enables a time-related homeostasis, which can become disorganized in its regulation by external factors (light, social activities, food intake), in the coordination and relative phase position of rhythms, or in other ways. Disturbances of rhythms are found in everyday life (jet lag, shift work), in sleep disorders, and in several psychiatric disorders including affective disorders. As almost all physiological and behavioural functions in humans occur on a rhythmic basis, the possibility that advances, delays or desynchronization of circadian rhythms might participate in neurological and psychiatric disorders has been a theme of research. In affective disorders, a decreased circadian amplitude of several rhythms as well as a

  15. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis.

    Directory of Open Access Journals (Sweden)

    Oh-oka Kyoko

    Full Text Available BACKGROUND & AIMS: The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. METHODS: The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2(m/m. In addition, the susceptibility to dextran sodium sulfate (DSS-induced colitis was compared between wild-type mice and mPer2(m/m mice. RESULTS: The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2(m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2(m/m mice. mPer2(m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. CONCLUSIONS: Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis.

  16. Application of an ex vivo cellular model of circadian variation for bipolar disorder research: a proof of concept study.

    Science.gov (United States)

    Bamne, Mikhil N; Ponder, Christine A; Wood, Joel A; Mansour, Hader; Frank, Ellen; Kupfer, David J; Young, Michael W; Nimgaonkar, Vishwajit L

    2013-09-01

    Disruption of circadian function has been observed in several human disorders, including bipolar disorder (BD). Research into these disorders can be facilitated by human cellular models that evaluate external factors (zeitgebers) that impact circadian pacemaker activity. Incorporating a firefly luciferase reporter system into human fibroblasts provides a facile, bioluminescent readout that estimates circadian phase, while leaving the cells intact. We evaluated whether this system can be adapted to clinical BD research and whether it can incorporate zeitgeber challenge paradigms. Fibroblasts from patients with bipolar I disorder (BD-I) (n = 13) and controls (n = 12) were infected ex vivo with a lentiviral reporter incorporating the promoter sequences for Bmal1, a circadian gene to drive expression of the firefly luciferase gene. Following synchronization, the bioluminescence was used to estimate period length. Phase response curves (PRCs) were also generated following forskolin challenge and the phase response patterns were characterized. Period length and PRCs could be estimated reliably from the constructs. There were no significant case-control differences in period length, with a nonsignificant trend for differences in PRCs following the phase-setting experiments. An ex vivo cellular fibroblast-based model can be used to investigate circadian function in BD-I. It can be generated from specific individuals and this could usefully complement ongoing circadian clinical research. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    Science.gov (United States)

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology. © 2013 British Society for Neuroendocrinology.

  18. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes

    International Nuclear Information System (INIS)

    Litlekalsoy, Jorunn; Rostad, Kari; Kalland, Karl-Henning; Hostmark, Jens G.; Laerum, Ole Didrik

    2016-01-01

    The purpose of this study was to evaluate invasive and metastatic potential of urothelial cancer by investigating differential expression of various clock genes/proteins participating in the 24 h circadian rhythms and to compare these gene expressions with transcription of other cancer-associated genes. Twenty seven paired samples of tumour and benign tissue collected from patients who underwent cystectomy were analysed and compared to 15 samples of normal bladder tissue taken from patients who underwent cystoscopy for benign prostate hyperplasia (unrelated donors). Immunohistochemical analyses were made for clock and clock-related proteins. In addition, the gene-expression levels of 22 genes (clock genes, casein kinases, oncogenes, tumour suppressor genes and cytokeratins) were analysed by real-time quantitative PCR (qPCR). Considerable up- or down-regulation and altered cellular distribution of different clock proteins, a reduction of casein kinase1A1 (CSNK1A1) and increase of casein kinase alpha 1 E (CSNK1E) were found. The pattern was significantly correlated with simultaneous up-regulation of stimulatory tumour markers, and a down-regulation of several suppressor genes. The pattern was mainly seen in aneuploid high-grade cancers. Considerable alterations were also found in the neighbouring bladder mucosa. The close correlation between altered expression of various clock genes and common tumour markers in urothelial cancer indicates that disturbed function in the cellular clock work may be an important additional mechanism contributing to cancer progression and malignant behaviour. The online version of this article (doi:10.1186/s12885-016-2580-y) contains supplementary material, which is available to authorized users

  19. Zebrafish Lacking Circadian Gene per2 Exhibit Visual Function Deficiency

    Directory of Open Access Journals (Sweden)

    Deng-feng Huang

    2018-03-01

    Full Text Available The retina has an intrinsic circadian clock, but the importance of this clock for vision is unknown. Zebrafish offer many advantages for studying vertebrate vision and circadian rhythm. Here, we explored the role of zebrafish per2, a light-regulated gene, in visual behavior and the underlying mechanisms. We observed that per2 mutant zebrafish larvae showed decreased contrast sensitivity and visual acuity using optokinetic response (OKR assays. Using a visual motor response (VMR assay, we observed normal OFF responses but abnormal ON responses in mutant zebrafish larvae. Immunofluorescence showed that mutants had a normal morphology of cone photoreceptor cells and retinal organization. However, electron microscopy showed that per2 mutants displayed abnormal and decreased photoreceptor ribbon synapses with arciform density, which resulted in retinal ON pathway defect. We also examined the expression of three cone opsins by quantitative real-time PCR (qRT-PCR, and the expression of long-wave-sensitive opsin (opn1lw and short-wave-sensitive opsin (opn1sw was reduced in mutant zebrafish larvae. qRT-PCR analyses also showed a down-regulation of the clock genes cry1ba and bmal1b in the adult eye of per2 mutant zebrafish. This study identified a mechanism by which a clock gene affects visual function and defined important roles of per2 in retinal information processing.

  20. Circadian rhythm and its role in malignancy

    Directory of Open Access Journals (Sweden)

    Mahmood Saqib

    2010-03-01

    Full Text Available Abstract Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer.

  1. Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy

    Directory of Open Access Journals (Sweden)

    F. J. Valenzuela

    2015-01-01

    Full Text Available Pregnancy is a complex and well-regulated temporal event in which several steps are finely orchestrated including implantation, decidualization, placentation, and partum and any temporary alteration has serious effects on fetal and maternal health. Interestingly, alterations of circadian rhythms (i.e., shiftwork have been correlated with increased risk of preterm delivery, intrauterine growth restriction, and preeclampsia. In the last few years evidence is accumulating that the placenta may have a functional circadian system and express the clock genes Bmal1, Per1-2, and Clock. On the other hand, there is evidence that the human placenta synthesizes melatonin, hormone involved in the regulation of the circadian system in other tissues. Moreover, is unknown the role of this local production of melatonin and whether this production have a circadian pattern. Available information indicates that melatonin induces in placenta the expression of antioxidant enzymes catalase and superoxide dismutase, prevents the injury produced by oxidative stress, and inhibits the expression of vascular endothelial growth factor (VEGF a gene that in other tissues is controlled by clock genes. In this review we aim to analyze available information regarding clock genes and clock genes controlled genes such as VEGF and the possible role of melatonin synthesis in the placenta.

  2. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 11. Circadian Rhythms ... M Vaze1 Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  3. Circadian Rhythms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Circadian Rhythms: Why do ... Nikhil Vijay Kumar Sharma1. Chronobiology Laboratory Evolutionary and Organismal Biology Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur, PO Box 6436, Bangalore 560 064, India.

  4. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    and clocks driving such rhythms have been studied for a long time now, our ... passage of time using near 24 h oscillation as a reference process, and (iii) Output .... Bünning's work on circadian rhythms across model systems ranging from ..... E Bünning, The Physiological Clock, Revised 3rd Edition, The English. Universities ...

  5. Circadian Rhythms

    Indian Academy of Sciences (India)

    IAS Admin

    Early studies on circadian rhythms focussed on unravelling the fundamental .... careful analysis revealed that deaths of most arrhythmic indi- viduals were due to .... is no more a sci-fi movie script and is achievable through a technique called ...

  6. The bipolarity of light and dark: A review on Bipolar Disorder and circadian cycles.

    Science.gov (United States)

    Abreu, T; Bragança, M

    2015-10-01

    Bipolar Disorder is characterized by episodes running the full mood spectrum, from mania to depression. Between mood episodes, residual symptoms remain, as sleep alterations, circadian cycle disturbances, emotional deregulation, cognitive impairment and increased risk for comorbidities. The present review intends to reflect about the most recent and relevant information concerning the biunivocal relation between bipolar disorder and circadian cycles. It was conducted a literature search on PubMed database using the search terms "bipolar", "circadian", "melatonin", "cortisol", "body temperature", "Clock gene", "Bmal1 gene", "Per gene", "Cry gene", "GSK3β", "chronotype", "light therapy", "dark therapy", "sleep deprivation", "lithum" and "agomelatine". Search results were manually reviewed, and pertinent studies were selected for inclusion as appropriate. Several studies support the relationship between bipolar disorder and circadian cycles, discussing alterations in melatonin, body temperature and cortisol rhythms; disruption of sleep/wake cycle; variations of clock genes; and chronotype. Some therapeutics for bipolar disorder directed to the circadian cycles disturbances are also discussed, including lithium carbonate, agomelatine, light therapy, dark therapy, sleep deprivation and interpersonal and social rhythm therapy. This review provides a summary of an extensive research for the relevant literature on this theme, not a patient-wise meta-analysis. In the future, it is essential to achieve a better understanding of the relation between bipolar disorder and the circadian system. It is required to establish new treatment protocols, combining psychotherapy, therapies targeting the circadian rhythms and the latest drugs, in order to reduce the risk of relapse and improve affective behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2016-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.

  8. cGMP-dependent protein kinase I, the circadian clock, sleep and learning

    OpenAIRE

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-01-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2 Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consoli...

  9. Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4 in the suprachiasmatic nucleus circadian clock.

    Directory of Open Access Journals (Sweden)

    Harrod H Ling

    Full Text Available Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN, which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4, a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.

  10. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    Science.gov (United States)

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, Pcircadian locomotor output cycles kaput (Clock, Pcircadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. IgE-dependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock.

    Science.gov (United States)

    Baumann, Anja; Feilhauer, Katharina; Bischoff, Stephan C; Froy, Oren; Lorentz, Axel

    2015-03-01

    Symptoms of allergic attacks frequently exhibit diurnal variations. Accordingly, we could recently demonstrate that mast cells and eosinophils - known as major effector cells of allergic diseases - showed an intact circadian clock. Here, we analyzed the role of the circadian clock in the functionality of mast cells and eosinophils. Human intestinal mast cells (hiMC) were isolated from intestinal mucosa; human eosinophils were isolated from peripheral blood. HiMC and eosinophils were synchronized by dexamethasone before stimulation every 4h around the circadian cycle by FcɛRI crosslinking or fMLP, respectively. Signaling molecule activation was examined using Western blot, mRNA expression by real-time RT-PCR, and mediator release by multiplex analysis. CXCL8 and CCL2 were expressed and released in a circadian manner by both hiMC and eosinophils in response to activation. Moreover, phosphorylation of ERK1/2, known to be involved in activation of hiMC and eosinophils, showed circadian rhythms in both cell types. Interestingly, all clock genes hPer1, hPer2, hCry1, hBmal1, and hClock were expressed in a similar circadian pattern in activated and unstimulated cells indicating that the local clock controls hiMC and eosinophils and subsequently allergic reactions but not vice versa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Long-term stability and circadian variation in circulating levels of surfactant protein D

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Sorensen, Grith Lykke; Tornoe, Ida

    2010-01-01

    Surfactant protein D (SP-D) is an oligomeric calcium-dependent lectin with important roles in innate host defence against infectious microorganisms. Several studies have shown that patients with inflammatory lung disease have elevated levels of circulating SP-D, and serum SP-D has been suggested...... to be used as a biomarker for disease e.g. in COPD. We aimed to investigate the variation of circulating SP-D in healthy individuals in and between days for 6 months. In addition, we studied the SP-D response to a standardized physical exercise programme. SP-D was measured in serum using a 5-layered ELISA...... pre-exercise level of SP-D was 746 ng/ml (95% CI: 384-2035), and immediately after cessation of physical activity the median SP-D level was 767 ng/ml (95% CI: 367-1885) (P=0.248). Our findings underscore the importance of standardized blood sampling conditions in future studies on the potential role...

  13. QUASIMODO, a novel GPI-anchored zona pellucida protein involved in light input to the Drosophila circadian clock

    Czech Academy of Sciences Publication Activity Database

    Chen, K. F.; Peschel, N.; Závodská, Radka; Sehadová, Hana; Stanewsky, R.

    2011-01-01

    Roč. 21, č. 9 (2011), s. 719-729 ISSN 0960-9822 R&D Projects: GA MŠk LC07032 Institutional research plan: CEZ:AV0Z50070508 Keywords : QUASIMODO * Drosophila * circadian clock Subject RIV: ED - Physiology Impact factor: 9.647, year: 2011

  14. Distribution of circadian clock-related proteins in the cephalic nervous system of the silkworm, Bombyx mori

    Czech Academy of Sciences Publication Activity Database

    Sehadová, Hana; Markova, E. P.; Sehnal, František; Takeda, M.

    2004-01-01

    Roč. 19, č. 6 (2004), s. 466-482 ISSN 0748-7304 Grant - others:JSPS(JP) 99L01205 Institutional research plan: CEZ:AV0Z5007907 Keywords : circadian rhythm * PER * CYC Subject RIV: ED - Physiology Impact factor: 2.979, year: 2004

  15. Usual normalization strategies for gene expression studies impair the detection and analysis of circadian patterns.

    Science.gov (United States)

    Figueredo, Diego de Siqueira; Barbosa, Mayara Rodrigues; Coimbra, Daniel Gomes; Dos Santos, José Luiz Araújo; Costa, Ellyda Fernanda Lopes; Koike, Bruna Del Vechio; Alexandre Moreira, Magna Suzana; de Andrade, Tiago Gomes

    2018-03-01

    Recent studies have shown that transcriptomes from different tissues present circadian oscillations. Therefore, the endogenous variation of total RNA should be considered as a potential bias in circadian studies of gene expression. However, normalization strategies generally include the equalization of total RNA concentration between samples prior to cDNA synthesis. Moreover, endogenous housekeeping genes (HKGs) frequently used for data normalization may exhibit circadian variation and distort experimental results if not detected or considered. In this study, we controlled experimental conditions from the amount of initial brain tissue samples through extraction steps, cDNA synthesis, and quantitative real time PCR (qPCR) to demonstrate a circadian oscillation of total RNA concentration. We also identified that the normalization of the RNA's yield affected the rhythmic profiles of different genes, including Per1-2 and Bmal1. Five widely used HKGs (Actb, Eif2a, Gapdh, Hprt1, and B2m) also presented rhythmic variations not detected by geNorm algorithm. In addition, the analysis of exogenous microRNAs (Cel-miR-54 and Cel-miR-39) spiked during RNA extraction suggests that the yield was affected by total RNA concentration, which may impact circadian studies of small RNAs. The results indicate that the approach of tissue normalization without total RNA equalization prior to cDNA synthesis can avoid bias from endogenous broad variations in transcript levels. Also, the circadian analysis of 2 -Cycle threshold (Ct) data, without HKGs, may be an alternative for chronobiological studies under controlled experimental conditions.

  16. Insulin Effects on Glucose Tolerance, Hypermetabolic Response, and Circadian-metabolic Protein Expression in a Rat Burn and Disuse Model

    Science.gov (United States)

    2014-04-23

    anesthesia and were able to ambulate, their hindquarters were unloaded using a tail traction system. The device prevented weight- bearing on the...Measurements were taken in the hindlimb-unloaded position to avoid weight- bearing . Body temperature was measured daily via laser skin thermometer...DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. AMPK regulates the circadian clock by

  17. [Behavior of circadian rhythm of ACTH and cortisol in 16 normal subjects after a balanced normocaloric diet and after a high protein diet (Cosinor mean method)].

    Science.gov (United States)

    Sellini, M; Giovannini, C; Manzo, G; Barletta, C; Borboni, P

    1983-01-31

    In 16 normal subjects the circadian rhythm of ACTH has been studied during normal calories diet and after a 15 days period of high protein content diet (2 g/Kg body weight). The statistical study, according Cosinor method, has shown a significant increase of the mesor and of the amplitude, but has not shown any change of the ACTH and Cortisol rhythm, after hyperproteic diet. Data advise the increase of the tonic and fasic secretion of both hormones and shown the mantained acrophase. The action of the protein on the ACTH and Cortisol secretion does not seem related to mechanism like stress, neither to the probable mediation of intestinal like-ACTH messengers. On the contrary it seems related to a direct stimulus on the diencephalo-pituitary axis; it is possible that some amino-acids (tryptophan, arginine) act as a mediator, even if data concern just the effect of the over mentioned amino-acid in large doses.

  18. Circadian Clocks: Unexpected Biochemical Cogs.

    Science.gov (United States)

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-10-05

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ∼ 24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Circadian Clocks: Unexpected Biochemical Cogs

    OpenAIRE

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-01-01

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ~24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes.

  20. Circadian gene expression in peripheral blood leukocytes of rotating night shift nurses.

    Science.gov (United States)

    Reszka, Edyta; Peplonska, Beata; Wieczorek, Edyta; Sobala, Wojciech; Bukowska, Agnieszka; Gromadzinska, Jolanta; Lie, Jenny-Anne; Kjuus, Helge; Wasowicz, Wojciech

    2013-03-01

    It has been hypothesized that the underlying mechanism of elevated breast cancer risk among long-term, night-working women involves circadian genes expression alteration caused by exposure to light at night and/or irregular work hours. The aim of the present study was to determine the effect of rotating night shift work on expression of selected core circadian genes. The cross-sectional study was conducted on 184 matched nurses and midwives, who currently work either day or rotating night shifts, to determine the effect of irregular work at night on circadian gene expression in peripheral blood leukocytes. Transcript levels of BMAL1, CLOCK, CRY1, CRY2, PER1, PER2, and PER3 were determined by means of quantitative real-time polymerase chain reaction (PCR). After adjusting for hour of blood collection, there were no statistically significant changes of investigated circadian genes among nurses and midwives currently working rotating night shifts compared to nurses working day shifts. The highest expression of PER1 messenger ribonucleic acid (mRNA) was observed for women currently working shifts who had worked >15 years in rotating night shift work. PER1 gene expression was associated with the lifetime duration of rotating night shift work among women currently working night shifts (P=0.04). PER1 and PER3 transcript levels in blood leukocytes were significantly down-regulated in the later versus early hours of the morning between 06.00-10.00 hours (β-coefficient -0.226, P=0.001 and β-coefficient -0.181, Pnight shift work does not affect circadian gene expression in human circulating leukocytes. In analysis of the peripheral clock in human studies, the hour of blood collection should be precisely specified.

  1. An integrated effect of protein intake at breakfast and morning exposure to sunlight on the circadian typology in Japanese infants aged 2-6 years.

    Science.gov (United States)

    Nakade, Miyo; Takeuchi, Hitomi; Taniwaki, Nozomi; Noji, Teruki; Harada, Tetsuo

    2009-09-01

    Tryptophan (Trp) intake at breakfast promotes morning-typed circadian typology and higher sleep quality in Japanese children aged 0-6 yrs (Harada et al., 2007). This effect may be accelerated by morning exposure to sunlight, which has not yet been tested. This study aimed to investigate such an effect in Japanese children. In May, 2006, an integrated questionnaire was administered to 0-6-year-old children attending one of 12 kindergartens. 906 parents answered the questionnaire for their children and themselves (response rate: 67.4%). The integrated questionnaire included the revised version for children of the Morningness-Eveningness (M-E) Questionnaire and questions on sleep, nutritional balance, mental health, and sunlight exposure. Analysis was made on data from 744 children aged 2-6 (385 girls, 359 boys) whose average M-E score was 20.6+/-3.46. Children who had breakfast at regular times tended to be more morning-typed and were less frequently angry (p=0.001) and depressed (p=0.007). Children who had nutritionally well-balanced breakfasts tended to be more morning-typed (pbreakfast might be a strong zeitgeber for circadian oscillators of children, and the morning-type driving effect of protein intake could be accelerated by morning exposure to sunlight.

  2. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis.

    Science.gov (United States)

    Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François

    2016-11-01

    Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Long-term Levodopa Treatment Accelerates the Circadian Rhythm Dysfunction in a 6-hydroxydopamine Rat Model of Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Si-Yue Li; Ya-Li Wang; Wen-Wen Liu; Dong-Jun Lyu; Fen Wang; Cheng-Jie Mao; Ya-Ping Yang; Li-Fang Hu; Chun-Feng Liu

    2017-01-01

    Background:Parkinson's disease (PD) patients with long-term levodopa (L-DOPA) treatment are suffering from severe circadian dysfunction.However,it is hard to distinguish that the circadian disturbance in patients is due to the disease progression itself,or is affected by L-DOPA replacement therapy.This study was to investigate the role of L-DOPA on the circadian dysfunction in a rat model of PD.Methods:The rat model of PD was constructed by a bilateral striatal injection with 6-hydroxydopamine (6-OHDA),followed by administration of saline or 25 mg/kg L-DOPA for 21 consecutive days.Rotarod test,footprint test,and open-field test were carried out to evaluate the motor function.Striatum,suprachiasmatic nucleus (SCN),liver,and plasma were collected at 6:00,12:00,18:00,and 24:00.Quantitative real-time polymerase chain reaction was used to examine the expression of clock genes.Enzyme-linked immunosorbent assay was used to determine the secretion level of cortisol and melatonin.High-performance liquid chromatography was used to measure the neurotransmitters.Analysis of variance was used for data analysis.Results:L-DOPA alleviated the motor deficits induced by 6-OHDA lesions in the footprint and open-field test (P < 0.01,P < 0.001,respectively).After L-DOPA treatment,Bmal1 decreased in the SCN compared with 6-OHDA group at 12:00 (P < 0.01) and 24:00 (P < 0.001).In the striatum,the expression ofBmal1,Rorα was lower than that in the 6-OHDA group at 18:00 (P < 0.05) and L-DOPA seemed to delay the peak of Per2 to 24:00.In liver,L-DOPA did not affect the rhythmicity and expression of these clock genes (P > 0.05).In addition,the cortisol secretion was increased (P > 0.05),but melatonin was further inhibited after L-DOPA treatment at 6:00 (P < 0.01).Conclusions:In the circadian system of advanced PD rat models,circadian dysfunction is not only contributed by the degeneration of the disease itself but also long-term L-DOPA therapy may further aggravate it.

  4. Evidences of Polymorphism Associated with Circadian System and Risk of Pathologies: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    F. J. Valenzuela

    2016-01-01

    Full Text Available The circadian system is a supraphysiological system that modulates different biological functions such as metabolism, sleep-wake, cellular proliferation, and body temperature. Different chronodisruptors have been identified, such as shift work, feeding time, long days, and stress. The environmental changes and our modern lifestyle can alter the circadian system and increase the risk of developing pathologies such as cancer, preeclampsia, diabetes, and mood disorder. This system is organized by transcriptional/tranductional feedback loops of clock genes Clock, Bmal1, Per1–3, and Cry1-2. How molecular components of the clock are able to influence the development of diseases and their risk relation with genetic components of polymorphism of clock genes is unknown. This research describes different genetic variations in the population and how these are associated with risk of cancer, metabolic diseases such as diabetes, obesity, and dyslipidemias, and also mood disorders such as depression, bipolar disease, excessive alcohol intake, and infertility. Finally, these findings will need to be implemented and evaluated at the level of genetic interaction and how the environment factors trigger the expression of these pathologies will be examined.

  5. NONO couples the circadian clock to the cell cycle.

    Science.gov (United States)

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  6. Aging and Circadian Rhythms

    Science.gov (United States)

    Duffy, Jeanne F.; Zitting, Kirsi-Marja; Chinoy, Evan D.

    2015-01-01

    Aging is associated with numerous changes, including changes in sleep timing, duration, and quality. The circadian timing system interacts with a sleep-wake homeostatic system to regulate human sleep, including sleep timing and structure. Here, we review key features of the human circadian timing system, age-related changes in the circadian timing system, and how those changes may contribute to the observed alterations in sleep. PMID:26568120

  7. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    Science.gov (United States)

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  8. Social Isolation Modulates CLOCK Protein and Beta-Catenin Expression Pattern in Gonadotropin-Inhibitory Hormone Neurons in Male Rats

    Directory of Open Access Journals (Sweden)

    Chuin Hau Teo

    2017-09-01

    Full Text Available Postweaning social isolation reduces the amplitude of the daily variation of CLOCK protein in the brain and induces lower reproductive activity. Gonadotropin-inhibitory hormone (GnIH acts as an inhibitor in the reproductive system and has been linked to stress. Social isolation has been shown to lower neuronal activity of GnIH-expressing neurons in the dorsomedial hypothalamus (DMH. The exact mechanism by which social isolation may affect GnIH is still unclear. We investigated the impact of social isolation on regulatory cellular mechanisms in GnIH neurons. We examined via immunohistochemistry the expression of CLOCK protein at four different times throughout the day in GnIH cells tagged with enhanced fluorescent green protein (EGFP-GnIH in 9-week-old adult male rats that have been raised for 6 weeks under postweaning social isolation and compared them with group-raised control rats of the same age. We also studied the expression of β-catenin—which has been shown to be affected by circadian proteins such as Bmal1—in EGFP-GnIH neurons to determine whether it could play a role in linking CLOCK in GnIH neurons. We found that social isolation modifies the pattern of CLOCK expression in GnIH neurons in the DMH. Socially isolated rats displayed greater CLOCK expression in the dark phase, while control rats displayed increased CLOCK expression in the light phase. Furthermore, β-catenin expression pattern in GnIH cells was disrupted by social isolation. This suggests that social isolation triggers changes in CLOCK and GnIH expression, which may be associated with an increase in nuclear β-catenin during the dark phase.

  9. Social Isolation Modulates CLOCK Protein and Beta-Catenin Expression Pattern in Gonadotropin-Inhibitory Hormone Neurons in Male Rats.

    Science.gov (United States)

    Teo, Chuin Hau; Soga, Tomoko; Parhar, Ishwar S

    2017-01-01

    Postweaning social isolation reduces the amplitude of the daily variation of CLOCK protein in the brain and induces lower reproductive activity. Gonadotropin-inhibitory hormone (GnIH) acts as an inhibitor in the reproductive system and has been linked to stress. Social isolation has been shown to lower neuronal activity of GnIH-expressing neurons in the dorsomedial hypothalamus (DMH). The exact mechanism by which social isolation may affect GnIH is still unclear. We investigated the impact of social isolation on regulatory cellular mechanisms in GnIH neurons. We examined via immunohistochemistry the expression of CLOCK protein at four different times throughout the day in GnIH cells tagged with enhanced fluorescent green protein (EGFP-GnIH) in 9-week-old adult male rats that have been raised for 6 weeks under postweaning social isolation and compared them with group-raised control rats of the same age. We also studied the expression of β-catenin-which has been shown to be affected by circadian proteins such as Bmal1-in EGFP-GnIH neurons to determine whether it could play a role in linking CLOCK in GnIH neurons. We found that social isolation modifies the pattern of CLOCK expression in GnIH neurons in the DMH. Socially isolated rats displayed greater CLOCK expression in the dark phase, while control rats displayed increased CLOCK expression in the light phase. Furthermore, β-catenin expression pattern in GnIH cells was disrupted by social isolation. This suggests that social isolation triggers changes in CLOCK and GnIH expression, which may be associated with an increase in nuclear β-catenin during the dark phase.

  10. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.

    Science.gov (United States)

    Sato, Shogo; Solanas, Guiomar; Peixoto, Francisca Oliveira; Bee, Leonardo; Symeonidi, Aikaterini; Schmidt, Mark S; Brenner, Charles; Masri, Selma; Benitah, Salvador Aznar; Sassone-Corsi, Paolo

    2017-08-10

    The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD + -related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.

    Science.gov (United States)

    Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-02-01

    The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).

  12. Protein-energy malnutrition induces an aberrant acute-phase response and modifies the circadian rhythm of core temperature.

    Science.gov (United States)

    Smith, Shari E; Ramos, Rafaela Andrade; Refinetti, Roberto; Farthing, Jonathan P; Paterson, Phyllis G

    2013-08-01

    Protein-energy malnutrition (PEM), present in 12%-19% of stroke patients upon hospital admission, appears to be a detrimental comorbidity factor that impairs functional outcome, but the mechanisms are not fully elucidated. Because ischemic brain injury is highly temperature-sensitive, the objectives of this study were to investigate whether PEM causes sustained changes in temperature that are associated with an inflammatory response. Activity levels were recorded as a possible explanation for the immediate elevation in temperature upon introduction to a low protein diet. Male, Sprague-Dawley rats (7 weeks old) were fed a control diet (18% protein) or a low protein diet (PEM, 2% protein) for either 7 or 28 days. Continuous core temperature recordings from bioelectrical sensor transmitters demonstrated a rapid increase in temperature amplitude, sustained over 28 days, in response to a low protein diet. Daily mean temperature rose transiently by day 2 (p = 0.01), falling to normal by day 4 (p = 0.08), after which mean temperature continually declined as malnutrition progressed. There were no alterations in activity mean (p = 0.3) or amplitude (p = 0.2) that were associated with the early rise in mean temperature. Increased serum alpha-2-macroglobulin (p protein diet had no effect on the signaling pathway of the pro-inflammatory transcription factor, NFκB, in the hippocampus. In conclusion, PEM induces an aberrant and sustained acute-phase response coupled with long-lasting effects on body temperature.

  13. Circadian Rhythm Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Erhan Akinci

    2016-06-01

    Full Text Available The circadian rhythm sleep disorders define the clinical conditions where sleep and ndash;wake rhythm is disrupted despite optimum environmental and social conditions. They occur as a result of the changes in endogenous circadian hours or non-compatibility of environmental factors or social life with endogenous circadian rhythm. The sleep and ndash;wake rhythm is disrupted continuously or in repeating phases depending on lack of balance between internal and external cycles. This condition leads to functional impairments which cause insomnia, excessive sleepiness or both in people. Application of detailed sleep anamnesis and sleep diary with actigraphy record, if possible, will be sufficient for diagnosis. The treatment aims to align endogenous circadian rhythm with environmental conditions. The purpose of this article is to review pathology, clinical characteristics, diagnosis and treatment of circadian rhythm disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 178-189

  14. "Time sweet time": circadian characterization of galectin-1 null mice

    Directory of Open Access Journals (Sweden)

    Rabinovich Gabriel A

    2010-04-01

    Full Text Available Abstract Background Recent evidence suggests a two-way interaction between the immune and circadian systems. Circadian control of immune factors, as well as the effect of immunological variables on circadian rhythms, might be key elements in both physiological and pathological responses to the environment. Among these relevant factors, galectin-1 is a member of a family of evolutionarily-conserved glycan-binding proteins with both extracellular and intracellular effects, playing important roles in immune cell processes and inflammatory responses. Many of these actions have been studied through the use of mice with a null mutation in the galectin-1 (Lgals1 gene. To further analyze the role of endogenous galectin-1 in vivo, we aimed to characterize the circadian behavior of galectin-1 null (Lgals1-/- mice. Methods We analyzed wheel-running activity in light-dark conditions, constant darkness, phase responses to light pulses (LP at circadian time 15, and reentrainment to 6 hour shifts in light-dark schedule in wild-type (WT and Lgals1-/- mice. Results We found significant differences in free-running period, which was longer in mutant than in WT mice (24.02 vs 23.57 h, p alpha (14.88 vs. 12.35 circadian h, p Conclusions Given the effect of a null mutation on circadian period and entrainment, we indicate that galectin-1 could be involved in the regulation of murine circadian rhythmicity. This is the first study implicating galectin-1 in the mammalian circadian system.

  15. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data

    Directory of Open Access Journals (Sweden)

    Sarah Lück

    2014-10-01

    Full Text Available The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

  16. Circadian gene variants and susceptibility to type 2 diabetes: a pilot study.

    Directory of Open Access Journals (Sweden)

    M Ann Kelly

    Full Text Available Disruption of endogenous circadian rhythms has been shown to increase the risk of developing type 2 diabetes, suggesting that circadian genes might play a role in determining disease susceptibility. We present the results of a pilot study investigating the association between type 2 diabetes and selected single nucleotide polymorphisms (SNPs in/near nine circadian genes. The variants were chosen based on their previously reported association with prostate cancer, a disease that has been suggested to have a genetic link with type 2 diabetes through a number of shared inherited risk determinants.The pilot study was performed using two genetically homogeneous Punjabi cohorts, one resident in the United Kingdom and one indigenous to Pakistan. Subjects with (N = 1732 and without (N = 1780 type 2 diabetes were genotyped for thirteen circadian variants using a competitive allele-specific polymerase chain reaction method. Associations between the SNPs and type 2 diabetes were investigated using logistic regression. The results were also combined with in silico data from other South Asian datasets (SAT2D consortium and white European cohorts (DIAGRAM+ using meta-analysis. The rs7602358G allele near PER2 was negatively associated with type 2 diabetes in our Punjabi cohorts (combined odds ratio [OR] = 0.75 [0.66-0.86], p = 3.18 × 10(-5, while the BMAL1 rs11022775T allele was associated with an increased risk of the disease (combined OR = 1.22 [1.07-1.39], p = 0.003. Neither of these associations was replicated in the SAT2D or DIAGRAM+ datasets, however. Meta-analysis of all the cohorts identified disease associations with two variants, rs2292912 in CRY2 and rs12315175 near CRY1, although statistical significance was nominal (combined OR = 1.05 [1.01-1.08], p = 0.008 and OR = 0.95 [0.91-0.99], p = 0.015 respectively.None of the selected circadian gene variants was associated with type 2 diabetes with study-wide significance after meta-analysis. The nominal

  17. Intact interval timing in circadian CLOCK mutants.

    Science.gov (United States)

    Cordes, Sara; Gallistel, C R

    2008-08-28

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.

  18. Molecular cogs of the insect circadian clock.

    Science.gov (United States)

    Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki

    2003-08-01

    During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.

  19. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  20. Dephosphorylation of the Core Clock Protein KaiC in the Cyanobacterial KaiABC Circadian Oscillator Proceeds via an ATP Synthase Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Egli, Martin; Mori, Tetsuya; Pattanayek, Rekha; Xu, Yao; Qin, Ximing; Johnson, Carl H. (Vanderbilt)

    2014-10-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro from three proteins, KaiA, KaiB, and KaiC in the presence of ATP, to tick in a temperature-compensated manner. KaiC, the central cog of this oscillator, forms a homohexamer with 12 ATP molecules bound between its N- and C-terminal domains and exhibits unusual properties. Both the N-terminal (CI) and C-terminal (CII) domains harbor ATPase activity, and the subunit interfaces between CII domains are the sites of autokinase and autophosphatase activities. Hydrolysis of ATP correlates with phosphorylation at threonine and serine sites across subunits in an orchestrated manner, such that first T432 and then S431 are phosphorylated, followed by dephosphorylation of these residues in the same order. Although structural work has provided insight into the mechanisms of ATPase and kinase, the location and mechanism of the phosphatase have remained enigmatic. From the available experimental data based on a range of approaches, including KaiC crystal structures and small-angle X-ray scattering models, metal ion dependence, site-directed mutagenesis (i.e., E318, the general base), and measurements of the associated clock periods, phosphorylation patterns, and dephosphorylation courses as well as a lack of sequence motifs in KaiC that are typically associated with known phosphatases, we hypothesized that KaiCII makes use of the same active site for phosphorylation and dephosphorlyation. We observed that wild-type KaiC (wt-KaiC) exhibits an ATP synthase activity that is significantly reduced in the T432A/S431A mutant. We interpret the first observation as evidence that KaiCII is a phosphotransferase instead of a phosphatase and the second that the enzyme is capable of generating ATP, both from ADP and P{sub i} (in a reversal of the ATPase reaction) and from ADP and P-T432/P-S431 (dephosphorylation). This new concept regarding the mechanism of dephosphorylation is also supported by the

  1. Circadian physiology of metabolism.

    Science.gov (United States)

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark. Copyright © 2016, American Association for the Advancement of Science.

  2. Circadian Rhythms in Cyanobacteria

    Science.gov (United States)

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  3. System identification of the Arabidopsis plant circadian system

    Science.gov (United States)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  4. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  5. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  6. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice

    Energy Technology Data Exchange (ETDEWEB)

    Anthérieu, Sébastien; Le Guillou, Dounia; Coulouarn, Cédric; Begriche, Karima [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Trak-Smayra, Viviane [Pathology Department, Saint-Joseph University, Beirut (Lebanon); Martinais, Sophie [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Porceddu, Mathieu [Mitologics SAS, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris (France); Robin, Marie-Anne [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Fromenty, Bernard, E-mail: bernard.fromenty@inserm.fr [INSERM, U991, Université de Rennes 1, 35000 Rennes (France)

    2014-04-01

    Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10{sup 6} ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10{sup 6} ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10{sup 2}–10{sup 3} ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants. - Highlights: • The contamination of drinking water with drugs may have harmful effects on health. • Some drugs can be more hepatotoxic in the context of obesity and fatty liver. • Effects of chronic exposure of trace drugs were studied in lean and obese mouse liver. Drugs and obesity present additive effects on circadian gene expression and toxicity. • Trace

  7. Circadian dysregulation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Aleksandar Videnovic

    2017-01-01

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disorder that affects over one million individuals in the US alone. PD is characterized by a plethora of motor and non-motor manifestations, resulting from a progressive degeneration of dopaminergic neurons and disbalance of several other neurotransmitters. A growing body of evidence points to significant alterations of the circadian system in PD. This is not surprising given the pivotal role that dopamine plays in circadian regulation as well as the role of circadian influences in dopamine metabolism. In this review we present basic and clinical investigations that examined the function of the circadian system in PD.

  8. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  9. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...... are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum...

  10. Circadian expression of clock genes and clock-controlled genes in the rat retina

    NARCIS (Netherlands)

    Kamphuis, Willem; Cailotto, Cathy; Dijk, Frederike; Bergen, Arthur; Buijs, Ruud M.

    2005-01-01

    The circadian expression patterns of genes encoding for proteins that make up the core of the circadian clock were measured in rat retina using real-time quantitative PCR (qPCR). Transcript levels of several genes previously used for normalization of qPCR assays were determined and the effect of

  11. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring.

    Directory of Open Access Journals (Sweden)

    Sarah J Borengasser

    Full Text Available The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosis, and lipogenic gene expression in the liver at weaning. However, the precise underlying mechanisms leading to metabolic dysregulation in the offspring remains unclear. Using a rat model of overfeeding-induced obesity, we previously demonstrated that exposure to maternal obesity from pre-conception to birth, is sufficient to program increased obesity risk in the offspring. Offspring of obese rat dams gain greater body weight and fat mass when fed high fat diet (HFD as compared to lean dam. Since, disruptions of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver, we examined the hypothesis that maternal obesity leads to perturbations of core clock components and thus energy metabolism in offspring liver. Offspring from lean and obese dams were examined at post-natal day 35, following a short (2 wk HFD challenge. Hepatic mRNA expression of circadian (CLOCK, BMAL1, REV-ERBα, CRY, PER and metabolic (PPARα, SIRT1 genes were strongly suppressed in offspring exposed to both maternal obesity and HFD. Using a mathematical model, we identified two distinct biological mechanisms that modulate PPARα mRNA expression: i decreased mRNA synthesis rates; and ii increased non-specific mRNA degradation rate. Moreover, our findings demonstrate that changes in PPARα transcription were associated with epigenomic alterations in H3K4me3 and H3K27me3 histone marks near the PPARα transcription start site. Our findings indicated that offspring from obese rat dams have detrimental alternations to circadian machinery that may contribute to impaired liver metabolism in response to HFD, specifically via reduced PPAR

  12. Involvement of cortisol and sirtuin1 during the response to stress of hypothalamic circadian system and food intake-related peptides in rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Naderi, Fatemeh; Hernández-Pérez, Juan; Chivite, Mauro; Soengas, José L; Míguez, Jesús M; López-Patiño, Marcos A

    2018-05-08

    Stress is conditioning animal welfare by negatively affecting a wide range of physiological and behavioral functions. This may be applied to circadian physiology and food intake. Cortisol, the stress-related hormone, may mediate such effect of stress, but other indirect mediators might be considered, such as sirtuin1. Then, either the independent modulatory effect or the existence of any interaction between mediators may be responsible. The circadian system is the main modulator of several integrative mechanisms at both central and peripheral levels that are rhythmically presented, thus influencing different processes such as food intake. In this way, food intake is controlled by the circadian system, as demonstrated by the persistence of such rhythms of food intake in the absence of environmental external cues. Our study aimed to evaluate the daily profile of hypothalamic mRNA abundance of circadian clock genes (clock1a, bmal1, per1 and rev-erbβ-like), and food intake regulators (crf, pomc-a1, cart, and npy) in rainbow trout (Oncorhynchus mykiss), the impact of stress on such rhythms, and the involvement of cortisol and sirtuin1 as mediators. Four cohorts of trout were subjected to 1) normal stocking density (control group), 2) high stocking density for 72 hours (stress group), 3) normal stocking density and implanted with mifepristone, a glucocorticoid receptors antagonist, and 4) mifepristone administered and stressed for 72 hours. Fish from each group were sampled every 4-h along the 24-h LD cycle, and cortisol, glucose and lactate plasma levels were evaluated. Hypothalamic mRNA abundance of clock genes, food intake regulators, glucocorticoid receptors and sirtuin1 were qPCR assayed. Our results reveal the impact of stress on most of the genes assayed, but different mechanisms appear to be involved. The rhythm of clock genes displayed decreased amplitude and averaged levels in stressed trout, with no changes of the acrophase being observed. This effect was

  13. Circadian disorganization alters intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Robin M Voigt

    Full Text Available Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.

  14. Circadian Pacemaker – Temperature Compensation

    NARCIS (Netherlands)

    Gerkema, Menno P.; Binder, Marc D.; Hirokawa, Nobutaka; Windhorst, Uwe

    2009-01-01

    One of the defining characteristics of circadian pacemakers and indicates the independence of the speed of circadian clock processes of environmental temperature. Mechanisms involved, so far not elucidated in full detail, entail at least two processes that are similarly affected by temperature

  15. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma; Kinouchi, Kenichiro; Sassone-Corsi, Paolo

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  16. The circadian clock modulates anti-cancer properties of curcumin

    International Nuclear Information System (INIS)

    Sarma, Ashapurna; Sharma, Vishal P.; Sarkar, Arindam B.; Sekar, M. Chandra; Samuel, Karunakar; Geusz, Michael E.

    2016-01-01

    Curcuminoids of the spice turmeric and their enhanced derivatives have much potential as cancer treatments. They act on a wide variety of biological pathways, including those regulating cell division and circadian rhythms. It is known that circadian clocks can modify cancer therapy effectiveness, according to studies aimed at optimizing treatments based on the circadian cycle. It is therefore important to determine whether treatments with curcumin or similar chemotherapeutic agents are regulated by circadian timing. Similarly, it is important to characterize any effects of curcumin on timing abilities of the circadian clocks within cancer cells. We examined the circadian clock’s impact on the timing of cell death and cell division in curcumin-treated C6 rat glioma cells through continuous video microscopy for several days. To evaluate its persistence and distribution in cancer cells, curcumin was localized within cell compartments by imaging its autofluorescence. Finally, HPLC and spectroscopy were used to determine the relative stabilities of the curcumin congeners demethoxycurcumin and bisdemethoxycurcumin that are present in turmeric. Circadian rhythms in cell death were observed in response to low (5 μM) curcumin, reaching a peak several hours before the peak in rhythmic expression of mPER2 protein, a major circadian clock component. These results revealed a sensitive phase of the circadian cycle that could be effectively targeted in patient therapies based on curcumin or its analogs. Curcumin fluorescence was observed in cell compartments at least 24 h after treatment, and the two congeners displayed greater stability than curcumin in cell culture medium. We propose a mechanism whereby curcuminoids act in a sustained manner, over several days, despite their tendency to degrade rapidly in blood and other aqueous media. During cancer therapy, curcumin or its analogs should be delivered to tumor cells at the optimal phase for highest efficacy after identifying

  17. Nocturia: The circadian voiding disorder

    Directory of Open Access Journals (Sweden)

    Jin Wook Kim

    2016-05-01

    Full Text Available Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.

  18. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    ) in urine the first night after both minor and major surgery. This delay after major surgery was correlated to the duration of surgery. The amplitude in the melatonin rhythm was unchanged the first night but increased in the second night after major surgery. The amplitude in AMT6s was reduced the first...... night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively....... There was also a shift in the autonomic nervous balance after major surgery with a significantly increased number of myocardial ischaemic episodes during the nighttime period. The circadian activity rhythm was also disturbed after both minor and major surgery. The daytime AMT6s excretion in urine after major...

  19. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Marco Proietto

    2015-07-01

    Full Text Available Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC, a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ, the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM. The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.

  20. Proteomics and circadian rhythms: It’s all about signaling!

    Science.gov (United States)

    Mauvoisin, Daniel; Dayon, Loïc; Gachon, Frédéric; Kussmann, Martin

    2014-01-01

    1. Abstract Proteomic technologies using mass spectrometry (MS) offer new perspectives in circadian biology, in particular the possibility to study posttranslational modifications (PTMs). To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic heath as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics. PMID:25103677

  1. Chronic maternal low-protein diet in mice affects anxiety, night-time energy expenditure and sleep patterns, but not circadian rhythm in male offspring

    Science.gov (United States)

    Offspring of murine dams chronically fed a protein-restricted diet have an increased risk for metabolic and neurobehavioral disorders. Previously we showed that adult offspring, developmentally exposed to a chronic maternal low-protein (MLP) diet, had lower body and hind-leg muscle weights and decre...

  2. Minimal tool set for a prokaryotic circadian clock.

    Science.gov (United States)

    Schmelling, Nicolas M; Lehmann, Robert; Chaudhury, Paushali; Beck, Christian; Albers, Sonja-Verena; Axmann, Ilka M; Wiegard, Anika

    2017-07-21

    Circadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacterium Synechococcus elongatus PCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear. Using a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous to Synechococcus elongatus PCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present. However, a KaiA-mediated phosphorylation is only detectable in KaiC1 orthologs. Our analysis of 11,264 genomes clearly demonstrates that components of the Synechococcus elongatus PCC 7942 circadian clock are present in Bacteria and Archaea. However, all components are less abundant in other organisms than Cyanobacteria and KaiA, Pex, LdpA, and CdpA are only present in the latter. Thus, only reduced KaiBC-based or even simpler, solely KaiC-based timing systems

  3. Circadian Rhythm Neuropeptides in Drosophila: Signals for Normal Circadian Function and Circadian Neurodegenerative Disease.

    Science.gov (United States)

    He, Qiankun; Wu, Binbin; Price, Jeffrey L; Zhao, Zhangwu

    2017-04-21

    Circadian rhythm is a ubiquitous phenomenon in many organisms ranging from prokaryotes to eukaryotes. During more than four decades, the intrinsic and exogenous regulations of circadian rhythm have been studied. This review summarizes the core endogenous oscillation in Drosophila and then focuses on the neuropeptides, neurotransmitters and hormones that mediate its outputs and integration in Drosophila and the links between several of these (pigment dispersing factor (PDF) and insulin-like peptides) and neurodegenerative disease. These signaling molecules convey important network connectivity and signaling information for normal circadian function, but PDF and insulin-like peptides can also convey signals that lead to apoptosis, enhanced neurodegeneration and cognitive decline in flies carrying circadian mutations or in a senescent state.

  4. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Catharine E Boothroyd

    2007-04-01

    Full Text Available Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken

  5. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle.

    Science.gov (United States)

    Terzibasi-Tozzini, Eva; Martinez-Nicolas, Antonio; Lucas-Sánchez, Alejandro

    2017-10-01

    The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Short-Wavelength Countermeasures for Circadian Desynchrony

    National Research Council Canada - National Science Library

    Heller, H. C; Smith, Mark

    2008-01-01

    .... Exposure of humans to bright light for an hour or more at the right phase of the circadian cycle produces significant phase shifts of circadian rhythms speeding recovery from jet-lag, and optimizing...

  7. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  8. Circadian rhythms and obesity in mammals.

    Science.gov (United States)

    Froy, Oren

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity.

  9. Circadian rhythm and the influence of physical activity on circulating surfactant protein D in early and long-standing rheumatoid arthritis

    DEFF Research Database (Denmark)

    Christensen, A F; Hoegh, S V; Lottenburger, T

    2011-01-01

    Surfactant protein D (SP-D) belongs to the collectin family and has pro-and anti-inflammatory capacities depending on its oligomerization. Previously, circulating SP-D was shown to be decreased in early rheumatoid arthritis (RA) and negatively correlated to disease activity. This study aimed...... at assessing the diurnal rhythmicity and the influence of physical activity on circulating SP-D in patients with RA at different stages compared with healthy individuals. Patients with early RA (ERA) with disease duration ... in two sub-studies. Healthy individuals served as controls. Diurnal variation: blood samples were collected every 3 h from 7 a.m to 10 p.m and the following morning. Physical activity: blood sampling was done before and after standardized physical challenge. SP-D was measured by ELISA. SP-D exhibited...

  10. Circadian rhythms in mitochondrial respiration

    NARCIS (Netherlands)

    de Goede, Paul; Wefers, Jakob; Brombacher, Eline Constance; Schrauwen, P; Kalsbeek, A.

    2018-01-01

    Many physiological processes are regulated with a 24h periodicity to anticipate the environmental changes of day to nighttime and vice versa. These 24h regulations, commonly termed circadian rhythms, amongst others control the sleep-wake cycle, locomotor activity and preparation for food

  11. Ischemic stroke destabilizes circadian rhythms

    Directory of Open Access Journals (Sweden)

    Borjigin Jimo

    2008-10-01

    Full Text Available Abstract Background The central circadian pacemaker is a remarkably robust regulator of daily rhythmic variations of cardiovascular, endocrine, and neural physiology. Environmental lighting conditions are powerful modulators of circadian rhythms, but regulation of circadian rhythms by disease states is less clear. Here, we examine the effect of ischemic stroke on circadian rhythms in rats using high-resolution pineal microdialysis. Methods Rats were housed in LD 12:12 h conditions and monitored by pineal microdialysis to determine baseline melatonin timing profiles. After demonstration that the circadian expression of melatonin was at steady state, rats were subjected to experimental stroke using two-hour intralumenal filament occlusion of the middle cerebral artery. The animals were returned to their cages, and melatonin monitoring was resumed. The timing of onset, offset, and duration of melatonin secretion were calculated before and after stroke to determine changes in circadian rhythms of melatonin secretion. At the end of the monitoring period, brains were analyzed to determine infarct volume. Results Rats demonstrated immediate shifts in melatonin timing after stroke. We observed a broad range of perturbations in melatonin timing in subsequent days, with rats exhibiting onset/offset patterns which included: advance/advance, advance/delay, delay/advance, and delay/delay. Melatonin rhythms displayed prolonged instability several days after stroke, with a majority of rats showing a day-to-day alternation between advance and delay in melatonin onset and duration. Duration of melatonin secretion changed in response to stroke, and this change was strongly determined by the shift in melatonin onset time. There was no correlation between infarct size and the direction or amplitude of melatonin phase shifting. Conclusion This is the first demonstration that stroke induces immediate changes in the timing of pineal melatonin secretion, indicating

  12. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health

    Science.gov (United States)

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-01-01

    Background While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. Scope of review This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively

  13. Non-alcoholic fatty pancreas disease pathogenesis: a role for developmental programming and altered circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Rebeca Carter

    Full Text Available OBJECTIVES: Emerging evidence suggests that maternal obesity (MO predisposes offspring to obesity and the recently described non-alcoholic fatty pancreas disease (NAFPD but involved mechanisms remain unclear. Using a pathophysiologically relevant murine model, we here investigated a role for the biological clock--molecular core circadian genes (CCG in the generation of NAFPD. DESIGN: Female C57BL6 mice were fed an obesogenic diet (OD or standard chow (SC for 6 weeks, prior to pregnancy and throughout gestation and lactation: resulting offspring were subsequently weaned onto either OD (Ob_Ob and Con_Ob or standard chow (Ob_Con and Con_Con for 6 months. Biochemical, pro-inflammatory and pro-fibrogenic markers associated with NAFPD were then evaluated and CCG mRNA expression in the pancreas determined. RESULTS: Offspring of obese dams weaned on to OD (Ob_Ob had significantly increased (p≤0.05: bodyweight, pancreatic triglycerides, macrovesicular pancreatic fatty-infiltration, and pancreatic mRNA expression of TNF-α, IL-6, α-SMA, TGF-β and increased collagen compared to offspring of control dams weaned on to control chow (Con_Con. Analyses of CCG expression demonstrated a phase shift in CLOCK (-4.818, p<0.01, REV-ERB-α (-1.4,p<0.05 and Per2 (3.27,p<0.05 in association with decreased amplitude in BMAL-1 (-0.914,p<0.05 and PER2 (1.18,p<0.005 in Ob_Ob compared to Con_Con. 2-way ANOVA revealed significant interaction between MO and post-weaning OD in expression of CLOCK (p<0.005, PER1 (p<0.005 and PER2 (p<0.05 whilst MO alone influenced the observed rhythmic variance in expression of all 5 measured CCG. CONCLUSIONS: Fetal and neonatal exposure to a maternal obesogenic environment interacts with a post-natal hyper-calorific environment to induce offspring NAFPD through mechanisms involving perturbations in CCG expression.

  14. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.

    Directory of Open Access Journals (Sweden)

    John C Means

    2015-05-01

    Full Text Available While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in

  15. Dim light at night disrupts molecular circadian rhythms and increases body weight.

    Science.gov (United States)

    Fonken, Laura K; Aubrecht, Taryn G; Meléndez-Fernández, O Hecmarie; Weil, Zachary M; Nelson, Randy J

    2013-08-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.

  16. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    Science.gov (United States)

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  17. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets.

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    Full Text Available Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.

  18. Mini Screening of Kinase Inhibitors Affecting Period-length of Mammalian Cellular Circadian Clock

    International Nuclear Information System (INIS)

    Yagita, Kazuhiro; Yamanaka, Iori; Koinuma, Satoshi; Shigeyoshi, Yasufumi; Uchiyama, Yasuo

    2009-01-01

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase Iεδ (CKIεδ) regurates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKIεδ. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells

  19. Regulation of reproduction by the circadian rhythms.

    Science.gov (United States)

    Zhang, Wen-Xiang; Chen, Si-Yu; Liu, Chang

    2016-12-25

    Mammals synchronize their circadian activity primarily to the cycles of light and darkness in the environment. Circadian rhythm is controlled by the central clock in the hypothalamic suprachiasmatic nucleus (SCN) and the peripheral clocks in various tissues. More importantly, the central clock can integrate photic/nonphotic signals to generate rhythmic outputs, and then drive the slave oscillators in peripheral tissues through neuroendocrine and behavioral signals. Human reproductive activities, as some other physiological functions, are controlled by the biological clocks. Accumulating lines of epidemiological and genetic evidence indicate that disruption of circadian clock can be directly involved in multiple pathological processes, including infertility. In this review, we mainly discuss the presence of a circadian clock in reproductive tissues and its roles in follicles development, ovulation, spermatogenesis, fertilization and embryo implantation, etc. As the increased shift work and assisted reproductive technologies possibly disrupt circadian rhythmicity to impact reproduction, the importance of circadian rhythms should be highlighted in the regulation of reproductive process.

  20. Circadian Rhythm Control: Neurophysiological Investigations

    Science.gov (United States)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  1. Circadian Rhythm Sleep-Wake Disorders.

    Science.gov (United States)

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Circadian organization in hemimetabolous insects.

    Science.gov (United States)

    Tomioka, Kenji; Abdelsalam, Salaheldin

    2004-12-01

    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm.

  3. Circadian control of p75 neurotrophin receptor leads to alternate activation of Nrf2 and c-Rel to reset energy metabolism in astrocytes via brain-derived neurotrophic factor.

    Science.gov (United States)

    Ishii, Tetsuro; Warabi, Eiji; Mann, Giovanni E

    2018-05-01

    Circadian clock genes regulate energy metabolism partly through neurotrophins in the body. The low affinity neurotrophin receptor p75 NTR is a clock component directly regulated by the transcriptional factor Clock:Bmal1 complex. Brain-derived neurotrophic factor (BDNF) is expressed in the brain and plays a key role in coordinating metabolic interactions between neurons and astrocytes. BDNF transduces signals through TrkB and p75 NTR receptors. This review highlights a novel molecular mechanism by which BDNF via circadian control of p75 NTR leads to daily resetting of glucose and glycogen metabolism in brain astrocytes to accommodate their functional interaction with neurons. Astrocytes store glycogen as an energy reservoir to provide active neurons with the glycolytic metabolite lactate. Astrocytes predominantly express the truncated receptor TrkB.T1 which lacks an intracellular receptor tyrosine kinase domain. TrkB.T1 retains the capacity to regulate cell morphology through regulation of Rho GTPases. In contrast, p75 NTR mediates generation of the bioactive lipid ceramide upon stimulation with BDNF and inhibits PKA activation. As ceramide directly activates PKCζ, we discuss the importance of the TrkB.T1-p75 NTR -ceramide-PKCζ signaling axis in the stimulation of glycogen and lipid synthesis and activation of RhoA. Ceramide-PKCζ-casein kinase 2 signaling activates Nrf2 to support oxidative phosphorylation via upregulation of antioxidant enzymes. In the absence of p75 NTR , TrkB.T1 functionally interacts with adenosine A 2A R and dopamine D1R receptors to enhance cAMP-PKA signaling and activate Rac1 and NF-κB c-Rel, favoring glycogen hydrolysis, gluconeogenesis and aerobic glycolysis. Thus, diurnal changes in p75 NTR levels in astrocytes resets energy metabolism via BDNF to accommodate their metabolic interaction with neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Circadian variation in sports performance.

    Science.gov (United States)

    Atkinson, G; Reilly, T

    1996-04-01

    Chronobiology is the science concerned with investigations of time-dependent changes in physiological variables. Circadian rhythms refer to variations that recur every 24 hours. Many physiological circadian rhythms at rest are endogenously controlled, and persist when an individual is isolated from environmental fluctuations. Unlike physiological variables, human performance cannot be monitored continuously in order to describe circadian rhythmicity. Experimental studies of the effect of circadian rhythms on performance need to be carefully designed in order to control for serial fatigue effects and to minimise disturbances in sleep. The detection of rhythmicity in performance variables is also highly influenced by the degree of test-retest repeatability of the measuring equipment. The majority of components of sports performance, e.g. flexibility, muscle strength, short term high power output, vary with time of day in a sinusoidal manner and peak in the early evening close to the daily maximum in body temperature. Psychological tests of short term memory, heart rate-based tests of physical fitness, and prolonged submaximal exercise performance carried out in hot conditions show peak times in the morning. Heart rate-based tests of work capacity appear to peak in the morning because the heart rate responses to exercise are minimal at this time of day. Post-lunch declines are evident with performance variables such as muscle strength, especially if measured frequently enough and sequentially within a 24-hour period to cause fatigue in individuals. More research work is needed to ascertain whether performance in tasks demanding fine motor control varies with time of day. Metabolic and respiratory rhythms are flattened when exercise becomes strenuous whilst the body temperature rhythm persists during maximal exercise. Higher work-rates are selected spontaneously in the early evening. At present, it is not known whether time of day influences the responses of a set

  5. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  6. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice.

    Science.gov (United States)

    Zhao, Yue; Liu, Min; Chan, Xue Ying; Tan, Sue Yee; Subramaniam, Sharrada; Fan, Yong; Loh, Eva; Chang, Kenneth Tou En; Tan, Thiam Chye; Chen, Qingfeng

    2017-11-02

    Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model. In this study, we found that consistent with their natural host species, mouse and human circulating leukocytes exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of trafficking correlated well with the diurnal expression levels of C-X-C chemokine receptor 4, which were controlled by the intracellular hypoxia-inducible factor 1α/aryl hydrocarbon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between mice and humans in generating intracellular reactive oxygen species, which subsequently regulated HIF-1α expression. In conclusion, we propose humanized mice as a robust model for human circadian studies and reveal insights on a novel molecular clock network in the human circadian rhythm. © 2017 by The American Society of Hematology.

  7. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    Science.gov (United States)

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  8. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    2008-10-01

    proteins to play key roles in the organization of the retinal circadian clock.

  9. Modeling and analysis of the impacts of jet lag on circadian rhythm and its role in tumor growth

    Directory of Open Access Journals (Sweden)

    Azka Hassan

    2018-06-01

    Full Text Available Circadian rhythms maintain a 24 h oscillation pattern in metabolic, physiological and behavioral processes in all living organisms. Circadian rhythms are organized as biochemical networks located in hypothalamus and peripheral tissues. Rhythmicity in the expression of circadian clock genes plays a vital role in regulating the process of cell division and DNA damage control. The oncogenic protein, MYC and the tumor suppressor, p53 are directly influenced by the circadian clock. Jet lag and altered sleep/wake schedules prominently affect the expression of molecular clock genes. This study is focused on developing a Petri net model to analyze the impacts of long term jet lag on the circadian clock and its probable role in tumor progression. The results depict that jet lag disrupts the normal rhythmic behavior and expression of the circadian clock proteins. This disruption leads to persistent expression of MYC and suppressed expression of p53. Thus, it is inferred that jet lag altered circadian clock negatively affects the expressions of cell cycle regulatory genes and contribute in uncontrolled proliferation of tumor cells.

  10. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization

    OpenAIRE

    Papp, Stephanie J; Huber, Anne-Laure; Jordan, Sabine D; Kriebs, Anna; Nguyen, Madelena; Moresco, James J; Yates, John R; Lamia, Katja A

    2015-01-01

    eLife digest Many aspects of our physiology and behavior, most notably our patterns of sleep and wakefulness, are synchronized with the day?night cycle. These circadian rhythms are generated and maintained by the circadian clock, which consists of positive and negative feedback loops formed by a large number of genes and proteins. The end result is that the rates at which thousands of proteins are produced varies rhythmically over the course of the day?night cycle. It has long been suspected ...

  11. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    Science.gov (United States)

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  12. May disordered protein cause serious drug side effect?

    Science.gov (United States)

    Tou, Weng Ieong; Chen, Calvin Yu-Chian

    2014-04-01

    Insomnia is a self-reported disease where patients lose their ability to initiate and maintain sleep, leading to daytime performance impairment. Several drug targets to ameliorate insomnia symptoms have been discovered; however, these drug targets lead to serious side effects. Thus, we characterize the structural properties of these sleep-related receptors and the clock complex and discuss a possible drug design that will reduce side effects. Computational prediction shows that disordered property is shared. Over 30% of the structure of CLOCK, PER1/2/3, BMAL-1, muscarinic acetylcholine receptor-M1, melatonin receptor and casein kinase I are structurally disordered (the remaining proteins represent insomnia drugs might be closely related to the protein architecture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. circadian rhythm; neuronal network; ion channel; behaviour; neurotransmitter; electrophysiology; Drosophila. Abstract. As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools ...

  14. Hierarchical organization of the circadian timing system

    NARCIS (Netherlands)

    Steensel, Mariska van

    2006-01-01

    In order to cope with and to predict 24-hour rhythms in the environment, most, if not all, organisms have a circadian timing system. The most important mammalian circadian pacemaker is located in the suprachiasmatic nucleus at the base of the hypothalamus in the brain. Over the years, it has become

  15. Development of cortisol circadian rhythm in infancy.

    NARCIS (Netherlands)

    Weerth, C. de; Zijl, R.H.

    2003-01-01

    BACKGROUND AND AIMS: Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not

  16. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus.

    Science.gov (United States)

    Hastings, M H; Brancaccio, M; Maywood, E S

    2014-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian pacemaker of the brain. It co-ordinates the daily rhythms of sleep and wakefulness, as well as physiology and behaviour, that set the tempo to our lives. Disturbance of this daily pattern, most acutely with jet-lag but more insidiously with rotational shift-work, can have severely deleterious effects for mental function and long-term health. The present review considers recent developments in our understanding of the properties of the SCN that make it a robust circadian time-keeper. It first focuses on the intracellular transcriptional/ translational feedback loops (TTFL) that constitute the cellular clockwork of the SCN neurone. Daily timing by these loops pivots around the negative regulation of the Period (Per) and Cryptochrome (Cry) genes by their protein products. The period of the circadian cycle is set by the relative stability of Per and Cry proteins, and this can be controlled by both genetic and pharmacological interventions. It then considers the function of these feedback loops in the context of cytosolic signalling by cAMP and intracellular calcium ([Ca(2+) ]i ), which are both outputs from, and inputs to, the TTFL, as well as the critical role of vasoactive intestinal peptide (VIP) signalling in synchronising cellular clocks across the SCN. Synchronisation by VIP in the SCN is paracrine, operating over an unconventionally long time frame (i.e. 24 h) and wide spatial domain, mediated via the cytosolic pathways upstream of the TTFL. Finally, we show how intersectional pharmacogenetics can be used to control G-protein-coupled signalling in individual SCN neurones, and how manipulation of Gq/[Ca(2+) ]i -signalling in VIP neurones can re-programme the circuit-level encoding of circadian time. Circadian pacemaking in the SCN therefore provides an unrivalled context in which to understand how a complex, adaptive behaviour can be organised by the dynamic activity of a relatively

  17. Circadian cycle-dependent MeCP2 and brain chromatin changes.

    Directory of Open Access Journals (Sweden)

    Alexia Martínez de Paz

    Full Text Available Methyl CpG binding protein 2 (MeCP2 is a chromosomal protein of the brain, very abundant especially in neurons, where it plays an important role in the regulation of gene expression. Hence it has the potential to be affected by the mammalian circadian cycle. We performed expression analyses of mice brain frontal cortices obtained at different time points and we found that the levels of MeCP2 are altered circadianly, affecting overall organization of brain chromatin and resulting in a circadian-dependent regulation of well-stablished MeCP2 target genes. Furthermore, this data suggests that alterations of MeCP2 can be responsible for the sleeping disorders arising from pathological stages, such as in autism and Rett syndrome.

  18. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    Science.gov (United States)

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  19. [Circadian markers and genes in bipolar disorder].

    Science.gov (United States)

    Yeim, S; Boudebesse, C; Etain, B; Belliviera, F

    2015-09-01

    Bipolar disorder is a severe and complex multifactorial disease, characterized by alternance of acute episodes of depression and mania/hypomania, interspaced by euthymic periods. The etiological determinants of bipolar disorder yet, are still poorly understood. For the last 30 years, chronobiology is an important field of investigation to better understand the pathophysiology of bipolar disorder. We conducted a review using Medline, ISI Database, EMBase, PsyInfo up to January 2015, using the following keywords combinations: "mood disorder", "bipolar disorder", "depression", "unipolar disorder", "major depressive disorder", "affective disorder", for psychiatric conditions; and "circadian rhythms", "circadian markers", "circadian gene", "clock gene", "melatonin" for circadian rhythms. The search critera was presence of word in any field of the article. Quantitative and qualitative circadian abnormalities are associated with bipolar disorders both during acute episodes and euthymic periods, suggesting that these altered circadian rhythms may represent biological trait markers of the disorder. These circadian dysfunctions were assessed by various validated tools including polysomnography, actigraphy, sleep diaries, chronotype assessments and blood melatonin/cortisol measures. Other altered endogenous circadian activities have also been reported in bipolar patients, such as hormones secretion, core body temperature or fibroblasts activity. Moreover, these markers were also altered in healthy relatives of bipolar patients, suggesting a degree of heritability. Several genetic association studies have also showed associations between multiple circadian genes and bipolar disorder, such as CLOCK, ARTNL1, GSK3β, PER3, NPAS2, NR1D1, TIMELESS, RORA, RORB, and CSNK1ε. Thus, these circadian gene variants may contribute to the genetic susceptibility of the disease. Furthermore, the study of the clock system may help to better understand some phenotypic aspects like the

  20. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney.

    Science.gov (United States)

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Yasuda, Hideo

    2017-05-01

    Activation of the intrarenal renin-angiotensin system (RAS) has a critical role in the pathophysiology of the circadian rhythm of blood pressure (BP) and renal injury, independent of circulating RAS. Although it is clear that the circulating RAS has a circadian rhythm, reports of a circadian rhythm in tissue-specific RAS are limited. Clinical studies evaluating intrarenal RAS activity by urinary angiotensinogen (AGT) levels have indicated that urinary AGT levels were equally low during both the daytime and nighttime in individuals without chronic kidney disease (CKD) and that urinary AGT levels were higher during the daytime than at nighttime in patients with CKD. Moreover, urinary AGT levels of the night-to-day (N/D) ratio of urinary AGT were positively correlated with the levels of N/D of urinary protein, albumin excretion and BP. In addition, animal studies have demonstrated that the expression of intrarenal RAS components, such as AGT, angiotensin II (AngII) and AngII type 1 receptor proteins, increased and peaked at the same time as BP and urinary protein excretion during the resting phase, and the amplitude of the oscillations of these proteins was augmented in a chronic progressive nephritis animal compared with a control. Thus, the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which both are associated with diurnal variations in BP. It is possible that augmented glomerular permeability increases AGT excretion levels into the tubular lumen and that circadian fluctuation of glomerular permeability influences the circadian rhythm of the intrarenal RAS.

  1. Circadian Regulation of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Donají Chi-Castañeda

    2018-06-01

    Full Text Available L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS. This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation of glutamate transport in neuronal and glial cells, and their consequence in brain function.

  2. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  3. Circadian rhythms of women with fibromyalgia

    Science.gov (United States)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  4. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

    Directory of Open Access Journals (Sweden)

    Naoto Hayasaka

    Full Text Available Regulators of G protein signaling (RGS are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN, the master circadian light-entrainable oscillator (LEO of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO-driven elevated food-anticipatory activity (FAA observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s.

  5. A software solution for recording circadian oscillator features in time-lapse live cell microscopy

    Directory of Open Access Journals (Sweden)

    Salmon Patrick

    2010-07-01

    Full Text Available Abstract Background Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. Results In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Conclusions Our software solution, Circadian Gene Express (CGE, is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and

  6. A software solution for recording circadian oscillator features in time-lapse live cell microscopy.

    Science.gov (United States)

    Sage, Daniel; Unser, Michael; Salmon, Patrick; Dibner, Charna

    2010-07-06

    Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Our software solution, Circadian Gene Express (CGE), is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and efficient recording of large number of cell parameters, including

  7. Mining for novel candidate clock genes in the circadian regulatory network

    OpenAIRE

    Bhargava, Anuprabha; Herzel, Hanspeter; Ananthasubramaniam, Bharath

    2015-01-01

    Background Most physiological processes in mammals are temporally regulated by means of a master circadian clock in the brain and peripheral oscillators in most other tissues. A transcriptional-translation feedback network of clock genes produces near 24 h oscillations in clock gene and protein expression. Here, we aim to identify novel additions to the clock network using a meta-analysis of public chromatin immunoprecipitation sequencing (ChIP-seq), proteomics and protein-protein interaction...

  8. Parotid radiosensitivity changes: a temporal relation to glandular circadian rhythms

    International Nuclear Information System (INIS)

    El-Mofty, S.K.; Hovenga, T.L.; Russell, J.E.; Simmons, D.J.

    1982-01-01

    The radiosensitivity of the rat parotid gland to X-radiation increased considerably towards the end of the daily light span (0800-2000 hours) and to a lesser extent before the onset of that period. The major sensitivity peak occurred at 1600 hours and coincides with a diurnal nadir in the rates of protein and RNA synthesis. The minor peak occurred at 0400 hours and was temporally related to a daily period of maximal secretory activity. It is suggested that suboptimal repair and secretion-linked cellular perturbations might contribute to the pathogenesis of the circadian increases in radiosensitivity of parotid cells. (author)

  9. Circadian Rhythms, Sleep, and Disorders of Aging.

    Science.gov (United States)

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Circadian Rhythm Management System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  11. Mathematical Modeling of Circadian/Performance Countermeasures

    Data.gov (United States)

    National Aeronautics and Space Administration — We developed and refined our current mathematical model of circadian rhythms to incorporate melatonin as a marker rhythm. We used an existing physiologically based...

  12. Circadian Rhythms and Obesity in Mammals

    OpenAIRE

    Froy, Oren

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabol...

  13. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  14. The Circadian Timing System: Making Sense of day/night gene expression

    Directory of Open Access Journals (Sweden)

    HANS G RICHTER

    2004-01-01

    Full Text Available The circadian time-keeping system ensures predictive adaptation of individuals to the reproducible 24-h day/night alternations of our planet by generating the 24-h (circadian rhythms found in hormone release and cardiovascular, biophysical and behavioral functions, and others. In mammals, the master clock resides in the suprachiasmatic nucleus (SCN of the hypothalamus. The molecular events determining the functional oscillation of the SCN neurons with a period of 24-h involve recurrent expression of several clock proteins that interact in complex transcription/translation feedback loops. In mammals, a glutamatergic monosynaptic pathway originating from the retina regulates the clock gene expression pattern in the SCN neurons, synchronizing them to the light:dark cycle. The emerging concept is that neural/humoral output signals from the SCN impinge upon peripheral clocks located in other areas of the brain, heart, lung, gastrointestinal tract, liver, kidney, fibroblasts, and most of the cell phenotypes, resulting in overt circadian rhythms in integrated physiological functions. Here we review the impact of day/night alternation on integrated physiology; the molecular mechanisms and input/output signaling pathways involved in SCN circadian function; the current concept of peripheral clocks; and the potential role of melatonin as a circadian neuroendocrine transducer

  15. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain

    Science.gov (United States)

    Beer, Katharina; Kolbe, Esther; Kahana, Noa B.; Yayon, Nadav; Weiss, Ron; Menegazzi, Pamela; Bloch, Guy

    2018-01-01

    Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera. We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation. PMID:29321240

  16. Linking Core Promoter Classes to Circadian Transcription.

    Directory of Open Access Journals (Sweden)

    Pål O Westermark

    2016-08-01

    Full Text Available Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs, is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.

  17. Circadian Metabolomics in Time and Space

    Directory of Open Access Journals (Sweden)

    Kenneth A. Dyar

    2017-07-01

    Full Text Available Circadian rhythms are widely known to govern human health and disease, but specific pathogenic mechanisms linking circadian disruption to metabolic diseases are just beginning to come to light. This is thanks in part to the development and application of various “omics”-based tools in biology and medicine. Current high-throughput technologies allow for the simultaneous monitoring of multiple dynamic cellular events over time, ranging from gene expression to metabolite abundance and sub-cellular localization. These fundamental temporal and spatial perspectives have allowed for a more comprehensive understanding of how various dynamic cellular events and biochemical processes are related in health and disease. With advances in technology, metabolomics has become a more routine “omics” approach for studying metabolism, and “circadian metabolomics” (i.e., studying the 24-h metabolome has recently been undertaken by several groups. To date, circadian metabolomes have been reported for human serum, saliva, breath, and urine, as well as tissues from several species under specific disease or mutagenesis conditions. Importantly, these studies have consistently revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway. Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and directed by internal 24-h biological clocks. In this review, we will attempt to put these data-rich circadian metabolomics experiments into perspective to find out what they can tell us about metabolic health and disease, and what additional biomarker potential they may reveal.

  18. Circadian clocks are resounding in peripheral tissues.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2006-03-01

    Full Text Available Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.

  19. Ribosomal S6 Kinase Cooperates with Casein Kinase 2 to Modulate the Drosophila Circadian Molecular Oscillator

    Science.gov (United States)

    Akten, Bikem; Tangredi, Michelle M.; Jauch, Eike; Roberts, Mary A.; Ng, Fanny; Raabe, Thomas; Jackson, F. Rob

    2009-01-01

    There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the MAPK pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the Casein Kinase 2 regulatory subunit (CK2β), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism. PMID:19144847

  20. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    Science.gov (United States)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  1. Social memory in the rat: circadian variation and effect of circadian rhythm disruption

    NARCIS (Netherlands)

    Reijmers, L.G.J.E.; Leus, I.E.; Burbach, J.P.H.; Spruijt, B.M.; Ree, van J.M.

    2001-01-01

    Disruption of circadian rhythm can impair long-term passive avoidance memory of rats and mice. The present study investigated whether disruption of circadian rhythm can also impair social memory of male rats. Social memory was assessed using the social discrimination test, in which a short-term

  2. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  3. Intergeneric complementation of a circadian rhythmicity defect : phylogenetic conservation of structure and function of the clock gene frequency

    NARCIS (Netherlands)

    Merrow, Martha W.; Dunlap, Jay C.; Dover, G.

    1994-01-01

    The Neurospora crassa frequency locus encodes a 989 amino acid protein that is a central component, a state variable, of the circadian biological clock. We have determined the sequence of all or part of this protein and surrounding regulatory regions from additional fungi representing three genera

  4. Shining a light on the Arabidopsis circadian clock.

    Science.gov (United States)

    Oakenfull, Rachael J; Davis, Seth J

    2017-11-01

    The circadian clock provides essential timing information to ensure optimal growth to prevailing external environmental conditions. A major time-setting mechanism (zeitgeber) in clock synchronization is light. Differing light wavelengths, intensities, and photoperiodic duration are processed for the clock-setting mechanism. Many studies on light-input pathways to the clock have focused on Arabidopsis thaliana. Photoreceptors are specific chromic proteins that detect light signals and transmit this information to the central circadian oscillator through a number of different signalling mechanisms. The most well-characterized clock-mediating photoreceptors are cryptochromes and phytochromes, detecting blue, red, and far-red wavelengths of light. Ultraviolet and shaded light are also processed signals to the oscillator. Notably, the clock reciprocally generates rhythms of photoreceptor action leading to so-called gating of light responses. Intermediate proteins, such as Phytochrome interacting factors (PIFs), constitutive photomorphogenic 1 (COP1) and EARLY FLOWERING 3 (ELF3), have been established in signalling pathways downstream of photoreceptor activation. However, the precise details for these signalling mechanisms are not fully established. This review highlights both historical and recent efforts made to understand overall light input to the oscillator, first looking at how each wavelength of light is detected, this is then related to known input mechanisms and their interactions. © 2017 John Wiley & Sons Ltd.

  5. Circadian disc shedding in Xenopus retina in vitro

    International Nuclear Information System (INIS)

    Flannery, J.G.; Fisher, S.K.

    1984-01-01

    To further examine the endogenous rhythm of disc shedding and phagocytosis observed in several species, adult Xenopus were entrained to a 12 hr light/12 hr dark cycle and then placed in constant darkness. At various times during a 3-day period of constant darkness, eyes were explanted and placed into culture medium, then processed for light and electron microscopy. A clear rhythmicity of disc shedding was observed, with pronounced peaks at the times light onset occurred in the original entrainment cycle. Modification of the HCO 3 - ion concentration in the medium was found to raise the amplitude of the peak of endogenous disc shedding. Explants maintained in culture medium containing deuterium oxide (a compound known to perturb circadian oscillators) were found to shed with a longer interval between peaks. The addition of the protein synthesis inhibitor, anisomycin, to this preparation suppressed the shedding rhythm. The action of anisomycin was investigated by autoradiographic examination of the pattern of 3 H-leucine uptake and protein synthesis by the explant. The findings suggest the presence of a circadian oscillator for rhythmic disc shedding within the amphibian eye

  6. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit’s Brain

    Directory of Open Access Journals (Sweden)

    Mario Caba

    2018-03-01

    Full Text Available Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research.

  7. Circadian Rhythm of Pyrocystis fusiformis

    Science.gov (United States)

    Weishaar, B.

    2016-12-01

    For the Academy of Science St. Louis Science Fair, I tested how different photoperiods affect the morphology of Pyrocystis fusiformis with respect to the placement and formation of the chloroplasts. I set up four different rooms to observe the effect the different times in the photoperiod on location of chloroplasts in the cell. At 3:00pm, one room has been in the dark for 12 hours, one for 6 hours, one had been in the light phase for 12 hours and the fourth in the light phase for 6 hours. P fusiformis samples were obtained from each room, observed, photographed at X100 power, and categorized as being a 1, 2, 3, or 4 depending on the position of the chloroplasts. The samples in the different rooms were observed once a week for two weeks, then the samples were rotated to see if P. fusiformis would synchronize the same to the new photoperiod. It was observed that the cells changed morphological stages in the circadian cycle, the chloroplasts moved further away from the nucleus when exposed to light and moved closer to the nucleus when experiencing no light.

  8. Sleep quality and methylation status of core circadian rhythm genes among nurses and midwives.

    Science.gov (United States)

    Bukowska-Damska, Agnieszka; Reszka, Edyta; Kaluzny, Pawel; Wieczorek, Edyta; Przybek, Monika; Zienolddiny, Shanbeh; Peplonska, Beata

    2017-01-01

    ABSTARCT Poor sleep quality or sleep restriction is associated with sleepiness and concentration problems. Moreover, chronic sleep restriction may affect metabolism, hormone secretion patterns and inflammatory responses. Limited recent reports suggest a potential link between sleep deprivation and epigenetic effects such as changes in DNA methylation profiles. The aim of the present study was to assess the potential association between poor sleep quality or sleep duration and the levels of 5-methylcytosine in the promoter regions of PER1, PER2, PER3, BMAL1, CLOCK, CRY1 CRY2 and NPAS2 genes, taking into account rotating night work and chronotype as potential confounders or modifiers. A cross-sectional study was conducted on 710 nurses and midwives (347 working on rotating nights and 363 working only during the day) aged 40-60 years. Data from in-person interviews about sleep quality, chronotype and potential confounders were used. Sleep quality and chronotype were assessed using Pittsburgh Sleep Quality Questionnaire (PSQI) and Morningness-Eveningness Questionnaire (MEQ), respectively. Morning blood samples were collected. The methylation status of the circadian rhythm genes was determined via quantitative methylation-specific real-time PCR assays (qMSP) reactions using DNA samples derived from leucocytes. The proportional odds regression model was fitted to quantify the relationship between methylation index (MI) as the dependent variable and sleep quality or sleep duration as the explanatory variable. Analyses were carried out for the total population as well as for subgroups of women stratified by the current system of work (rotating night shift/day work) and chronotype (morning type/intermediate type/evening type). A potential modifying effect of the system of work or the chronotype was examined using the likelihood ratio test. No significant findings were observed in the total study population. Subgroup analyses revealed two statistically significant

  9. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture.

    Science.gov (United States)

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian

  10. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture

    Directory of Open Access Journals (Sweden)

    Virginie Sabado

    2017-10-01

    Full Text Available Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF, which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the

  11. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain.

    Directory of Open Access Journals (Sweden)

    Rute S T Martins

    Full Text Available The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.

  12. Differential effect of lithium on the circadian oscillator in young and old hamsters

    International Nuclear Information System (INIS)

    Iwahana, Eiko; Hamada, Toshiyuki; Uchida, Ayumi; Shibata, Shigenobu

    2007-01-01

    Lithium is one of the most commonly used drugs in the prophylaxis and treatment of bipolar disorder. It is also known to lengthen circadian period in several organisms. Previously, we reported that there was the association between lengthening circadian period by lithium and GSK-3 protein and its enzyme activity in the mouse suprachiasmatic nucleus (SCN). In this study, we show that lithium affects the circadian oscillator in young and old hamster SCN, in an age-dependent manner. We found that basal levels of phosphorylated GSK-3 (pGSK-3) protein expression in old hamsters are much lower than that in young hamsters. Furthermore, in the old hamsters, lithium did not affect the period of the locomotor activity rhythm or pGSK-3 expression, while changing period and pGSK-3 in the younger animals. These results indicate that the content of pGSK-3 in the SCN has an important role in age-dependent effects of lithium on the circadian oscillator

  13. Functional analysis of Casein Kinase 1 in a minimal circadian system.

    Directory of Open Access Journals (Sweden)

    Gerben van Ooijen

    Full Text Available The Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1 is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcustauri, a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism.

  14. A novel animal model linking adiposity to altered circadian rhythms

    Science.gov (United States)

    Researchers have provided evidence for a link between obesity and altered circadian rhythms (e.g., shift work, disrupted sleep), but the mechanism for this association is still unknown. Adipocytes possess an intrinsic circadian clock, and circadian rhythms in adipocytokines and adipose tissue metab...

  15. Circadian timekeeping : from basic clock function to implications for health

    NARCIS (Netherlands)

    Lucassen, Eliane Alinda

    2016-01-01

    In modern society, circadian rhythms and sleep are often disturbed, which may negatively affect health. This thesis examines these associations and focuses on the basic functioning of sleep and the circadian system in mice and in humans. Circadian rhythms are orchestrated by ~20,000 neurons in the

  16. Circadian variation in serum free and total insulin-like growth factor (IGF)-I and IGF-II in untreated and treated acromegaly and growth hormone deficiency

    DEFF Research Database (Denmark)

    Skjaerbaek, Christian; Frystyk, Jan; Kaal, Andreas

    2000-01-01

    to the nocturnal increase in IGF binding protein-1. In this study we have investigated the circadian variation in circulating free IGF-I and IGF-II in patients with acromegaly and patients with adult onset growth hormone deficiency. PATIENTS: Seven acromegalic patients were studied with and without treatment...... no significant circadian variations in free IGF-I or free IGF-II in either of the two occasions. In contrast, there was a significant circadian variation of total IGF-I after adjustment for changes in plasma volume in both treated and untreated acromegaly and GH deficiency in all cases with a peak between 0300 h...

  17. Interaction between circadian rhythms and stress

    Directory of Open Access Journals (Sweden)

    C.E. Koch

    2017-02-01

    Full Text Available Life on earth has adapted to the day-night cycle by evolution of internal, so-called circadian clocks that adjust behavior and physiology to the recurring changes in environmental conditions. In mammals, a master pacemaker located in the suprachiasmatic nucleus (SCN of the hypothalamus receives environmental light information and synchronizes peripheral tissues and central non-SCN clocks to geophysical time. Regulatory systems such as the hypothalamus-pituitary-adrenal (HPA axis and the autonomic nervous system (ANS, both being important for the regulation of stress responses, receive strong circadian input. In this review, we summarize the interaction of circadian and stress systems and the resulting physiological and pathophysiological consequences. Finally, we critically discuss the relevance of rodent stress studies for humans, addressing complications of translational approaches and offering strategies to optimize animal studies from a chronobiological perspective.

  18. Clocking In Time to Gate Memory Processes: The Circadian Clock Is Part of the Ins and Outs of Memory

    Directory of Open Access Journals (Sweden)

    Oliver Rawashdeh

    2018-01-01

    Full Text Available Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA/protein kinase C (PKC/mitogen-activated protein kinase (MAPK/cyclic adenosine monophosphate response element-binding protein (CREB signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2. Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1 as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing.

  19. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  20. The circadian variation of premature atrial contractions

    DEFF Research Database (Denmark)

    Larsen, Bjørn Strøier; Kumarathurai, Preman; Nielsen, Olav W

    2016-01-01

    AIMS: The aim of the study was to assess a possible circadian variation of premature atrial contractions (PACs) in a community-based population and to determine if the daily variation could be used to assess a more vulnerable period of PACs in predicting later incidence of atrial fibrillation (AF...... variation in heart rate. After adjusting for relevant risk factors, the risk of AF was equal in all time intervals throughout the day. CONCLUSION: Premature atrial contractions showed a circadian variation in subjects with frequent PACs. No specific time interval of the day was more predictive of AF than...

  1. Circadian rhythm in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Eleftheriou, Andreas; Ulander, Martin; Lundin, Fredrik

    2018-01-01

    The pathogenesis of idiopathic normal pressure hydrocephalus (iNPH) takes place in structures close to the cerebral ventricular system. Suprachiasmatic nucleus (SCN), situated close to the third ventricle, is involved in circadian rhythm. Diurnal disturbances are well-known in demented patients. The cognitive decline in iNPH is potentially reversible after a shunt operation. Diurnal rhythm has never been studied in iNPH. We hypothesize that there is a disturbance of circadian rhythm in iNPH-patients and the aim was to study any changes of the diurnal rhythm (mesor and circadian period) as well as any changes of the diurnal amplitude and acrophase of the activity in iNPH-patients before and after a shunt operation. Twenty consecutive iNPH-patients fulfilling the criteria of the American iNPH-guidelines, 9 males and 11 females, mean age 73 (49-81) years were included. The patients underwent a pre-operative clinical work-up including 10m walk time (w10mt) steps (w10ms), TUG-time (TUGt) and steps (TUGs) and for cognitive function an MMSE score was measured. In order to receive circadian rhythm data actigraphic recordings were performed using the SenseWear 2 (BodyMedia Inc Pittsburgh, PA, USA) actigraph. Cosinor analyses of accelerometry data were performed in "R" using non-linear regression with Levenburg- Marquardt estimation. Pre- and post-operative data regarding mesor, amplitude and circadian period were compared using Wilcoxon-Mann-Whitney test for paired data. Twenty patients were evaluated before and three month post-operatively. Motor function (w10mt, w10ms, TUGt, TUGs) was significantly improved while MMSE was not significantly changed. Actigraphic measurements (mesor, amplitude and circadian period) showed no significant changes after shunt operation. This is the first systematic study of circadian rhythm in iNPH-patients. We found no significant changes in circadian rhythm after shunt surgery. The conceptual idea of diurnal rhythm changes in hydrocephalus is

  2. Interspecific studies of circadian genes period and timeless in Drosophila.

    Science.gov (United States)

    Noreen, Shumaila; Pegoraro, Mirko; Nouroz, Faisal; Tauber, Eran; Kyriacou, Charalambos P

    2018-03-30

    The level of rescue of clock function in genetically arrhythmic Drosophila melanogaster hosts using interspecific clock gene transformation was used to study the putative intermolecular coevolution between interacting clock proteins. Among them PER and TIM are the two important negative regulators of the circadian clock feedback loop. We transformed either the D. pseudoobscura per or tim transgenes into the corresponding arrhythmic D. melanogaster mutant (per01 or tim01) and observed >50% rhythmicity but the period of activity rhythm was either longer (D. pseudoobscura-per) or shorter than 24 h (D. pseudoobscura-tim) compared to controls. By introducing both transgenes simultaneously into double mutants, we observed that the period of the activity rhythm was rescued by the pair of hemizygous transgenes (~24 h). These flies also showed a more optimal level of temperature compensation for the period. Under LD 12:12 these flies have a D. pseudoobscura like activity profile with the absence of morning anticipation as well as a very prominent earlier evening peak of activity rhythm. These observation are consistent with the view that TIM and PER form a heterospecific coevolved module at least for the circadian period of activity rhythms. However the strength of rhythmicity was reduced by having both transgenes present, so while evidence for a coevolution between PER and TIM is observed for some characters it is not for others. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    Science.gov (United States)

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  4. Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period.

    Science.gov (United States)

    Mieda, Michihiro; Okamoto, Hitoshi; Sakurai, Takeshi

    2016-09-26

    As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Putative pacemakers in the eyestalk and brain of the crayfish Procambarus clarkii show circadian oscillations in levels of mRNA for crustacean hyperglycemic hormone.

    Directory of Open Access Journals (Sweden)

    Janikua Nelson-Mora

    Full Text Available Crustacean hyperglycemic hormone (CHH synthesizing cells in the optic lobe, one of the pacemakers of the circadian system, have been shown to be present in crayfish. However, the presence of CHH in the central brain, another putative pacemaker of the multi-oscillatory circadian system, of this decapod and its circadian transcription in the optic lobe and brain have yet to be explored. Therefore, using qualitative and quantitative PCR, we isolated and cloned a CHH mRNA fragment from two putative pacemakers of the multi-oscillatory circadian system of Procambarus clarkii, the optic lobe and the central brain. This CHH transcript synchronized to daily light-dark cycles and oscillated under dark, constant conditions demonstrating statistically significant daily and circadian rhythms in both structures. Furthermore, to investigate the presence of the peptide in the central brain of this decapod, we used immunohistochemical methods. Confocal microscopy revealed the presence of CHH-IR in fibers and cells of the protocerebral and tritocerebal clusters and neuropiles, particularly in some neurons located in clusters 6, 14, 15 and 17. The presence of CHH positive neurons in structures of P. clarkii where clock proteins have been reported suggests a relationship between the circadian clockwork and CHH. This work provides new insights into the circadian regulation of CHH, a pleiotropic hormone that regulates many physiological processes such as glucose metabolism and osmoregulatory responses to stress.

  6. dyschronic, a Drosophila homolog of a deaf-blindness gene, regulates circadian output and Slowpoke channels.

    Directory of Open Access Journals (Sweden)

    James E C Jepson

    Full Text Available Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc. dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO, an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein-protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system.

  7. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    Science.gov (United States)

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  8. Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar

    Science.gov (United States)

    Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William

    2016-01-01

    Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation. PMID:27494172

  9. Circadian modulation of anxiety: a role for somatostatin in the amygdala.

    Directory of Open Access Journals (Sweden)

    Anne Albrecht

    Full Text Available Pharmacological evidence suggests that the neuropeptide somatostatin (SST exerts anxiolytic action via the amygdala, but findings concerning the putative role of endogenous SST in the regulation of emotional responses are contradictory. We hypothesized that an endogenous regulation of SST expression over the course of the day may determine its function and tested both SST gene expression and the behavior of SST knock out (SST⁻/⁻ mice in different aversive tests in relation to circadian rhythm. In an open field and a light/dark avoidance test, SST⁻/⁻ mice showed significant hyperactivity and anxiety-like behavior during the second, but not during the first half of the active phase, failing to show the circadian modulation of behavior that was evident in their wild type littermates. Behavioral differences occurred independently of changes of intrinsically motivated activity in the home cage. A circadian regulation of SST mRNA and protein expression that was evident in the basolateral complex of the amygdala of wild type mice may provide a neuronal substrate for the observed behavior. However, fear memory towards auditory cue or the conditioning context displayed neither a time- nor genotype-dependent modulation. Together this indicates that SST, in a circadian manner and putatively via its regulation of expression in the amygdala, modulates behavior responding to mildly aversive conditions in mice.

  10. Circadian systems biology: When time matters

    Directory of Open Access Journals (Sweden)

    Luise Fuhr

    2015-01-01

    In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.

  11. Circadian rhythms in handwriting kinematics and legibility

    NARCIS (Netherlands)

    Jasper, Isabelle; Gordijn, Marijke; Haeussler, Andreas; Hermsdoerfer, Joachim

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10

  12. Measuring Relative Coupling Strength in Circadian Systems.

    Science.gov (United States)

    Schmal, Christoph; Herzog, Erik D; Herzel, Hanspeter

    2018-02-01

    Modern imaging techniques allow the monitoring of circadian rhythms of single cells. Coupling between these single cellular circadian oscillators can generate coherent periodic signals on the tissue level that subsequently orchestrate physiological outputs. The strength of coupling in such systems of oscillators is often unclear. In particular, effects on coupling strength by varying cell densities, by knockouts, and by inhibitor applications are debated. In this study, we suggest to quantify the relative coupling strength via analyzing period, phase, and amplitude distributions in ensembles of individual circadian oscillators. Simulations of different oscillator networks show that period and phase distributions become narrower with increasing coupling strength. Moreover, amplitudes can increase due to resonance effects. Variances of periods and phases decay monotonically with coupling strength, and can serve therefore as measures of relative coupling strength. Our theoretical predictions are confirmed by studying recently published experimental data from PERIOD2 expression in slices of the suprachiasmatic nucleus during and after the application of tetrodotoxin (TTX). On analyzing the corresponding period, phase, and amplitude distributions, we can show that treatment with TTX can be associated with a reduced coupling strength in the system of coupled oscillators. Analysis of an oscillator network derived directly from the data confirms our conclusions. We suggest that our approach is also applicable to quantify coupling in fibroblast cultures and hepatocyte networks, and for social synchronization of circadian rhythmicity in rodents, flies, and bees.

  13. EFFECTS OF CIRCADIAN RHYTHM ON BALANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Karagul Osman

    2017-09-01

    Full Text Available Introduction. The aim of the study was to examine the effect of circadian rhythm on dynamic balance performance and to determine the role of physical activity level, body temperature, chronotype, and gender in this possible effect. Material and

  14. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...

  15. Temperature compensation and entrainment in circadian rhythms

    International Nuclear Information System (INIS)

    Bodenstein, C; Heiland, I; Schuster, S

    2012-01-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles. (paper)

  16. Circadian rhythms in handwriting kinematics and legibility.

    Science.gov (United States)

    Jasper, Isabelle; Gordijn, Marijke; Häussler, Andreas; Hermsdörfer, Joachim

    2011-08-01

    The aim of the present study was to analyze the circadian rhythmicity in handwriting kinematics and legibility and to compare the performance between Dutch and German writers. Two subject groups underwent a 40 h sleep deprivation protocol under Constant Routine conditions either in Groningen (10 Dutch subjects) or in Berlin (9 German subjects). Both groups wrote every 3h a test sentence of similar structure in their native language. Kinematic handwriting performance was assessed with a digitizing tablet and evaluated by writing speed, writing fluency, and script size. Writing speed (frequency of strokes and average velocity) revealed a clear circadian rhythm, with a parallel decline during night and a minimum around 3:00 h in the morning for both groups. Script size and movement fluency did not vary with time of day in neither group. Legibility of handwriting was evaluated by intra-individually ranking handwriting specimens of the 13 sessions by 10 German and 10 Dutch raters. Whereas legibility ratings of the German handwriting specimens deteriorated during night in parallel with slower writing speed, legibility of the Dutch handwriting deteriorated not until the next morning. In conclusion, the circadian rhythm of handwriting kinematics seems to be independent of script language at least among the two tested western countries. Moreover, handwriting legibility is also subject to a circadian rhythm which, however, seems to be influenced by variations in the assessment protocol. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the

  18. Circadian Metabolism in the Light of Evolution

    DEFF Research Database (Denmark)

    Gerhart-Hines, Zachary; Lazar, Mitchell A.

    2015-01-01

    was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain const. ambient temp.; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes...

  19. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zhou

    Full Text Available The COP9 signalosome (CSN is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EX(nHXHX(10D of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCF(FWD-1 complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.

  20. Circadian polymorphisms associated with affective disorders

    Directory of Open Access Journals (Sweden)

    Shekhtman Tatyana

    2009-01-01

    Full Text Available Abstract Background Clinical symptoms of affective disorders, their response to light treatment, and sensitivity to other circadian interventions indicate that the circadian system has a role in mood disorders. Possibly the mechanisms involve circadian seasonal and photoperiodic mechanisms. Since genetic susceptibilities contribute a strong component to affective disorders, we explored whether circadian gene polymorphisms were associated with affective disorders in four complementary studies. Methods Four groups of subjects were recruited from several sources: 1 bipolar proband-parent trios or sib-pair-parent nuclear families, 2 unrelated bipolar participants who had completed the BALM morningness-eveningness questionnaire, 3 sib pairs from the GenRed Project having at least one sib with early-onset recurrent unipolar depression, and 4 a sleep clinic patient group who frequently suffered from depression. Working mainly with the SNPlex assay system, from 2 to 198 polymorphisms in genes related to circadian function were genotyped in the participant groups. Associations with affective disorders were examined with TDT statistics for within-family comparisons. Quantitative trait associations were examined within the unrelated samples. Results In NR1D1, rs2314339 was associated with bipolar disorder (P = 0.0005. Among the unrelated bipolar participants, 3 SNPs in PER3 and CSNK1E were associated with the BALM score. A PPARGC1B coding SNP, rs7732671, was associated with affective disorder with nominal significance in bipolar family groups and independently in unipolar sib pairs. In TEF, rs738499 was associated with unipolar depression; in a replication study, rs738499 was also associated with the QIDS-SR depression scale in the sleep clinic patient sample. Conclusion Along with anti-manic effects of lithium and the antidepressant effects of bright light, these findings suggest that perturbations of the circadian gene network at several levels may

  1. Circadian adaptations to meal timing: Neuroendocrine mechanisms

    Directory of Open Access Journals (Sweden)

    Danica F Patton

    2013-10-01

    Full Text Available Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus is directly entrained by daily light-dark cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this

  2. Light and the human circadian clock.

    Science.gov (United States)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field's pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many 'experimental' conditions provided by the real world, such as daylight savings time, the 'forced synchrony' imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly 'forced synchrony'.

  3. Circadian time structure of circulating plasma lipid peroxides, antioxidant enzymes and other small molecules in peptic ulcers.

    Science.gov (United States)

    Singh, Ranjana; Singh, Rajesh Kumar; Masood, Tariq; Tripathi, Anil Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar; Schwartzkopff, Othild; Cornelissen, Germaine

    2015-12-07

    The circadian rhythm, as part of a broad time structure (chronome) of lipid peroxides and antioxidant defense mechanisms may relate to prevention, efficacy and management of preventive and curative chronotherapy. Fifty newly diagnosed patients with peptic ulcers, 30-45 years of age, and 60 age-matched clinically healthy volunteers were synchronized for one week with diurnal activity from about 06:00 to about 22:00 and nocturnal rest. Breakfast was served around 08:30, lunch around 13:30 and dinner around 20:30. Drugs known to affect the free-radical systems were not taken. Blood samples were collected at 6-hour intervals for 24h under standardized, presumably 24-hour synchronized conditions. Plasma lipid peroxides, in the form of malondialdehyde (MDA), blood superoxide dismutase (SOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT) activities, and serum total protein, albumin, ascorbic acid, total serum cholesterol, and HDL-cholesterol concentrations were determined. By population-mean cosinor analysis, a marked circadian variation was demonstrated for all variables in healthy subjects and in ulcer patients (pascorbic acid, and HDL-C. They also had smaller circadian amplitude of SOD, CAT, GPx, GR, ascorbic acid, T-C, and HDL-C, but larger circadian amplitude of MDA and albumin. As compared to healthy subjects, the circadian acrophase of ulcer patients occurred later for MDA and GR and earlier for GPx. Mapping circadian rhythms, important chronome components that include trends with age and extra-circadian components characterizing antioxidants and pro-oxidants, is needed for exploring their putative role as markers in the treatment and management of peptic ulcers. Copyright © 2015. Published by Elsevier B.V.

  4. Strain- and sex-dependent circadian changes in abcc2 transporter expression: implications for irinotecan chronotolerance in mouse ileum.

    Directory of Open Access Journals (Sweden)

    Alper Okyar

    Full Text Available ATP-binding cassette transporter abcc2 is involved in the cellular efflux of irinotecan. The drug is toxic for mouse ileum, where abcc2 is highly expressed. Here, we investigate whether circadian changes in local abcc2 expression participate in the circadian rhythm of irinotecan toxicity for ileum mucosa, and further assess whether genetic background or sex modify this relation.Ileum mucosa was obtained every 3-4 h for 24 h in male and female B6D2F(1 and B6CBAF(1 mice synchronized with light from Zeitgeber Time (ZT0 to ZT12 alternating with 12 h of darkness. Irinotecan (50 mg/kg i.v. daily for 4 days was administered at the sex- and strain-specific times corresponding to least (ZT11-15 or largest drug-induced body weight loss (ZT23-03-07. Abcc2 expression was determined with qRT-PCR for mRNA and with immunohistochemistry and confocal microscopy for protein. Histopathologic lesions were graded in ileum tissues obtained 2, 4 or 6 days after treatment. Two- to six-fold circadian changes were demonstrated for mRNA and protein mean expressions of abcc2 in mouse ileum (p<0.05. ZT12 corresponded to high mRNA and protein expressions, with circadian waveforms differing according to genetic background and sex. The proportion of mice spared from ileum lesions varied three-fold according to irinotecan timing, with best tolerability at ZT11-15 (p = 0.00003. Irinotecan was also best tolerated in males (p = 0.05 and in B6CBAF(1 (p = 0.0006.Strain- and sex-dependent circadian patterns in abcc2 expressions displayed robust relations with the chronotolerance of ileum mucosa for irinotecan. This finding has strong potential implications for improving the intestinal tolerability of anticancer drugs through circadian delivery.

  5. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    Science.gov (United States)

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  6. Implications of Circadian Rhythm in Dopamine and Mood Regulation.

    Science.gov (United States)

    Kim, Jeongah; Jang, Sangwon; Choe, Han Kyoung; Chung, Sooyoung; Son, Gi Hoon; Kim, Kyungjin

    2017-07-31

    Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-erbα induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

  7. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis.

    Directory of Open Access Journals (Sweden)

    Gwendal Le Martelot

    2009-09-01

    Full Text Available In mammals, many aspects of behavior and physiology, and in particular cellular metabolism, are coordinated by the circadian timing system. Molecular clocks are thought to rely on negative feedback loops in clock gene expression that engender oscillations in the accumulation of transcriptional regulatory proteins, such as the orphan receptor REV-ERBalpha. Circadian transcription factors then drive daily rhythms in the expression of clock-controlled output genes, for example genes encoding enzymes and regulators of cellular metabolism. To gain insight into clock output functions of REV-ERBalpha, we carried out genome-wide transcriptome profiling experiments with liver RNA from wild-type mice, Rev-erbalpha knock-out mice, or REV-ERBalpha overexpressing mice. On the basis of these genetic loss- and gain-of-function experiments, we concluded that REV-ERBalpha participates in the circadian modulation of sterol regulatory element-binding protein (SREBP activity, and thereby in the daily expression of SREBP target genes involved in cholesterol and lipid metabolism. This control is exerted via the cyclic transcription of Insig2, encoding a trans-membrane protein that sequesters SREBP proteins to the endoplasmic reticulum membranes and thereby interferes with the proteolytic activation of SREBPs in Golgi membranes. REV-ERBalpha also participates in the cyclic expression of cholesterol-7alpha-hydroxylase (CYP7A1, the rate-limiting enzyme in converting cholesterol to bile acids. Our findings suggest that this control acts via the stimulation of LXR nuclear receptors by cyclically produced oxysterols. In conclusion, our study suggests that rhythmic cholesterol and bile acid metabolism is not just driven by alternating feeding-fasting cycles, but also by REV-ERBalpha, a component of the circadian clockwork circuitry.

  8. An expanding universe of circadian networks in higher plants.

    Science.gov (United States)

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  9. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity.

    Science.gov (United States)

    Torres-Ruiz, J; Sulli, A; Cutolo, M; Shoenfeld, Y

    2017-08-01

    Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.

  10. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available BACKGROUND: Circadian clocks are internal molecular time-keeping mechanisms that provide living organisms with the ability to adjust their growth and physiology and to anticipate diurnal environmental changes. Circadian clocks, without exception, respond to light and, in plants, light is the most potent and best characterized entraining stimulus. The capacity of plants to respond to light is achieved through a number of photo-perceptive proteins including cryptochromes and phytochromes. There is considerable experimental evidence demonstrating the roles of photoreceptors in providing light input to the clock. METHODOLOGY: In order to identify genes regulated by diurnal and circadian rhythms, and to establish possible functional relations between photoreceptors and the circadian clock in tomato, we monitored the temporal transcription pattern in plants entrained to long-day conditions, either by large scale comparative profiling, or using a focused approach over a number of photosensory and clock-related genes by QRT-PCR. In parallel, focused transcription analyses were performed in cry1a- and in CRY2-OX tomato genotypes. CONCLUSIONS: We report a large series of transcript oscillations that shed light on the complex network of interactions among tomato photoreceptors and clock-related genes. Alteration of cryptochrome gene expression induced major changes in the rhythmic oscillations of several other gene transcripts. In particular, over-expression of CRY2 had an impact not only on day/night fluctuations but also on rhythmicity under constant light conditions. Evidence was found for widespread diurnal oscillations of transcripts encoding specific enzyme classes (e.g. carotenoid biosynthesis enzymes as well as for post-transcriptional diurnal and circadian regulation of the CRY2 transcript.

  11. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    Science.gov (United States)

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  12. A mathematical model of communication between groups of circadian neurons in Drosophila melanogaster.

    Science.gov (United States)

    Risau-Gusman, Sebastián; Gleiser, Pablo M

    2014-12-01

    In the fruit fly, circadian behavior is controlled by a small number of specialized neurons, whose molecular clocks are relatively well known. However, much less is known about how these neurons communicate among themselves. In particular, only 1 circadian neuropeptide, pigment-dispersing factor (PDF), has been identified, and most aspects of its interaction with the molecular clock remain to be elucidated. Furthermore, it is speculated that many other peptides should contribute to circadian communication. We have developed a relatively detailed model of the 2 main groups of circadian pacemaker neurons (sLNvs and LNds) to investigate these issues. We have proposed many possible mechanisms for the interaction between the synchronization factors and the molecular clock, and we have compared the outputs with the experimental results reported in the literature both for the wild-type and PDF-null mutant. We have studied how different the properties of each neuron should be to account for the observations reported for the sLNvs in the mutant. We have found that only a few mechanisms, mostly related to the slowing down of nuclear entry of a circadian protein, can synchronize neurons that present these differences. Detailed immunofluorescent recordings have suggested that, whereas in the mutant, LNd neurons are synchronized, in the wild-type, a subset of the LNds oscillate faster than the rest. With our model, we find that a more likely explanation for the same observations is that this subset is being driven outside its synchronization range and displays therefore a complex pattern of oscillation.

  13. Composition and functional property of photosynthetic pigments under circadian rhythm in the cyanobacterium Spirulina platensis.

    Science.gov (United States)

    Kumar, Deepak; Kannaujiya, Vinod K; Richa; Pathak, Jainendra; Sundaram, Shanthy; Sinha, Rajeshwar P

    2018-05-01

    Circadian rhythm is an important endogenous biological signal for sustainable growth and development of cyanobacteria in natural ecosystems. Circadian effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A) and ultraviolet-B (UV-B) radiations on pigment composition have been studied in the cyanobacterium Spirulina platensis under light (L)/dark (D) oscillation with a combination of 4/20, 8/16, 12/12, 16/8, 20/4 and 24/24 h time duration. Circadian exposure of PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB) showed more than twofold decline in Chl a, total protein and phycocyanin (PC) in light phase and significant recovery was achieved in dark phase. The fluorescence emission wavelength of PC was shifted towards lower wavelengths in the light phase of PAB in comparison to P and PA whereas the same wavelength was retrieved in the dark phase. The production of free radicals was accelerated twofold in the light phase (24 h L) whereas the same was retrieved to the level of control during the dark phase. Oxidatively induced damage was alleviated by antioxidative enzymes such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the light phase (0-24-h L) whereas the dark phase showed significant inhibition of the same enzymes. Similar characteristic inhibition of free radicals and recovery of PC was observed inside cellular filament after circadian rhythm of 24/24 h (L/D). Circadian exposure of P, PA and PAB significantly altered the synthesis and recovery of pigments that could be crucial for optimization and sustainable production of photosynthetic products for human welfare.

  14. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    Science.gov (United States)

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering.

    Science.gov (United States)

    Henriques, Rossana; Wang, Huan; Liu, Jun; Boix, Marc; Huang, Li-Fang; Chua, Nam-Hai

    2017-11-01

    Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells.

    Science.gov (United States)

    Sandbichler, Adolf M; Jansen, Bianca; Peer, Bettina A; Paulitsch, Monika; Pelster, Bernd; Egg, Margit

    2018-01-01

    Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels of oxidized peroxiredoxins, resulting in a highly

  17. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells

    Directory of Open Access Journals (Sweden)

    Adolf M. Sandbichler

    2018-04-01

    Full Text Available Background/Aims: Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. Methods: For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Results: Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels

  18. Disruption of Circadian Rhythms by Light During Day and Night.

    Science.gov (United States)

    Figueiro, Mariana G

    2017-06-01

    This study aims to discuss possible reasons why research to date has not forged direct links between light at night, acute melatonin suppression or circadian disruption, and risks for disease. Data suggest that irregular light-dark patterns or light exposures at the wrong circadian time can lead to circadian disruption and disease risks. However, there remains an urgent need to: (1) specify light stimulus in terms of circadian rather than visual response; (2) when translating research from animals to humans, consider species-specific spectral and absolute sensitivities to light; (3) relate the characteristics of photometric measurement of light at night to the operational characteristics of the circadian system; and (4) examine how humans may be experiencing too little daytime light, not just too much light at night. To understand the health effects of light-induced circadian disruption, we need to measure and control light stimulus during the day and at night.

  19. Physiological links of circadian clock and biological clock of aging.

    Science.gov (United States)

    Liu, Fang; Chang, Hung-Chun

    2017-07-01

    Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  20. Altered Rhythm of Adrenal Clock Genes, StAR and Serum Corticosterone in VIP Receptor 2-Deficient Mice

    DEFF Research Database (Denmark)

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens

    2012-01-01

    oscillator based on a group of clock genes and their protein products. Mice lacking the VPAC2 receptor display disrupted circadian rhythm of physiology and behaviour, and therefore, we using real-time RT-PCR quantified (1) the mRNAs for the clock genes Per1 and Bmal1 in the adrenal gland and SCN, (2......RNA expression and serum corticosterone concentration. Double immunohistochemistry showed that the PER1 protein and StAR were co-localised in the same steroidogenic cells. Circulating corticosterone plays a role in the circadian timing system and the misaligned corticosterone rhythm in the VPAC2 receptor......The circadian time-keeping system consists of clocks in the suprachiasmatic nucleus (SCN) and in peripheral organs including an adrenal clock linked to the rhythmic corticosteroid production by regulating steroidogenic acute regulatory protein (StAR). Clock cells contain an autonomous molecular...

  1. Sleep, circadian rhythms, and athletic performance.

    Science.gov (United States)

    Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle

    2015-10-01

    Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mathematical Models of the Circadian Sleep-Wake Cycle.

    Science.gov (United States)

    1984-05-01

    circadian geber , 97,98 system precision, 4 Form factor Damped oscillators, mutual excitation of, and relationship to ratio of deviations, 37 self-sustainment...rhythms, 5-6 Forced internal desynebronization, by Zeit- incorporation of, into models of circadian geber , 97,98 system precision, 4 Form factor Damped...equation, for modeling of circadian geber phase, and modification by fre- rhythms, 19 quency coefficient, 54,55,56 Oscillatory range, effects of

  3. Expression of the Circadian Clock Gene Period2 in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour

    Directory of Open Access Journals (Sweden)

    Louisa M-C Wang

    2009-05-01

    Full Text Available Genes responsible for generating circadian oscillations are expressed in a variety of brain regions not typically associated with circadian timing. The functions of this clock gene expression are largely unknown, and in the present study we sought to explore the role of the Per2 (Period 2 gene in hippocampal physiology and learned behaviour. We found that PER2 protein is highly expressed in hippocampal pyramidal cell layers and that the expression of both protein and mRNA varies with a circadian rhythm. The peaks of these rhythms occur in the late night or early morning and are almost 180° out-of-phase with the expression rhythms measured from the suprachiasmatic nucleus of the same animals. The rhythms in Per2 expression are autonomous as they are present in isolated hippocampal slices maintained in culture. Physiologically, Per2-mutant mice exhibit abnormal long-term potentiation. The underlying mechanism is suggested by the finding that levels of phosphorylated cAMP-response-element-binding protein, but not phosphorylated extracellular-signal-regulated kinase, are reduced in hippocampal tissue from mutant mice. Finally, Per2-mutant mice exhibit deficits in the recall of trace, but not cued, fear conditioning. Taken together, these results provide evidence that hippocampal cells contain an autonomous circadian clock. Furthermore, the clock gene Per2 may play a role in the regulation of long-term potentiation and in the recall of some forms of learned behaviour.

  4. Circadian Phase Preference in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Kerri L. Kim

    2014-03-01

    Full Text Available Pediatric bipolar disorder (BD rates have notably increased over the past three decades. Given the significant morbidity and mortality associated with BD, efforts are needed to identify factors useful in earlier detection to help address this serious public health concern. Sleep is particularly important to consider given the sequelae of disrupted sleep on normative functioning and that sleep is included in diagnostic criteria for both Major Depressive and Manic Episodes. Here, we examine one component of sleep—i.e., circadian phase preference with the behavioral construct of morningness/eveningness (M/E. In comparing 30 BD and 45 typically developing control (TDC participants, ages 7–17 years, on the Morningness-Eveningness Scale for Children (MESC, no between-group differences emerged. Similar results were found when comparing three groups (BD−ADHD; BD+ADHD; TDC. Consistent with data available on circadian phase preference in adults with BD, however, we found that BD adolescents, ages 13 years and older, endorsed significantly greater eveningness compared to their TDC peers. While the current findings are limited by reliance on subjective report and the high-rate of comorbid ADHD among the BD group, this finding that BD teens demonstrate an exaggerated shift towards eveningness than would be developmentally expected is important. Future studies should compare the circadian rhythms across the lifespan for individuals diagnosed with BD, as well as identify the point at which BD youth part ways with their healthy peers in terms of phase preference. In addition, given our BD sample was overall euthymic, it may be that M/E is more state vs. trait specific in latency age youth. Further work would benefit from assessing circadian functioning using a combination of rating forms and laboratory-based measures. Improved understanding of sleep in BD may identify behavioral targets for inclusion in prevention and intervention protocols.

  5. The circadian clock, reward and memory

    Directory of Open Access Journals (Sweden)

    Urs eAlbrecht

    2011-11-01

    Full Text Available During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance and reward may be related to one another. This review will summarize data that describes the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  6. The Regulation of Mammalian Circadian Physiology by Light

    National Research Council Canada - National Science Library

    Foster, Russel

    1997-01-01

    .... Our work studies on retinally degenerate mammals have shown that visual blindness need not mean circadian blindness, and that two functionally distinct systems for processing light information must...

  7. Clinical Trial of Exercise on Circadian Clock Resetting

    National Research Council Canada - National Science Library

    Czeisler, Charles

    2001-01-01

    ...: test the hypothesis that multiple nightly bouts of exercise will induce significant delays in the endogenous circadian rhythms of core body temperature, plasma melatonin, reaction time, alertness...

  8. Links between circadian rhythms and psychiatric disease

    Directory of Open Access Journals (Sweden)

    Ilia N Karatsoreos

    2014-05-01

    Full Text Available Determining the cause of psychiatric disorders is a goal of modern neuroscience, and will hopefully lead to the discovery of treatments to either prevent or alleviate the suffering caused by these diseases. One roadblock to attaining this goal is the realization that neuropsychiatric diseases are rarely due to a single gene polymorphism, environmental exposure, or developmental insult. Rather, it is a complex interaction between these various influences that likely leads to the development of clinically relevant syndromes. Our lab is exploring the links between environmental exposures and neurobehavioral function by investigating how disruption of the circadian (daily clock alters the structure and function of neural circuits, with the hypothesis that disrupting this crucial homeostatic system can directly contribute to altered vulnerability of the organism to other factors that interact to produce psychiatric illness. This review explores some historical and more recent findings that link disrupted circadian clocks to neuropsychiatric disorders, particularly depression, mania, and schizophrenia. We take a comparative approach by exploring the effects observed in human populations, as well as some experimental models used in the laboratory to unravel mechanistic and causal relationships between disruption of the circadian clock and behavioral abnormalities. This is a rich area of research that we predict will contribute greatly to our understanding of how genes, environment, and development interact to modulate an individual’s vulnerability to psychiatric disorders.

  9. Factors influencing circadian rhythms in acetaminophen lethality.

    Science.gov (United States)

    Schnell, R C; Bozigian, H P; Davies, M H; Merrick, B A; Park, K S; McMillan, D A

    1984-01-01

    Experiments were conducted to examine the effects of changes in lighting schedules and food consumption on circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice. Under a normal lighting schedule (light: 06.00-18.00 h), male mice exhibited a circadian rhythm in acetaminophen lethality (peak: 18.00 h; nadir: 06.00, 10.00 h) and an inverse rhythm in hepatic glutathione concentrations (peak: 06.00, 10.00 h; nadir: 18.00 h). Under a reversed lighting schedule (light: 18.00-06.00 h) the glutathione rhythm was reversed and the rhythm in acetaminophen lethality was altered showing greater sensitivity to the drug. Under continuous light, there was a shift in the acetaminophen lethality and the hepatic glutathione rhythms. Under continuous dark, both rhythms were abolished. Under a normal lighting regimen, hepatic glutathione levels were closely correlated with food consumption; i.e., both were increased during the dark phase and decreased during the light phase. Fasting the mice for 12 h abolished the rhythms in acetaminophen lethality and hepatic glutathione levels; moreover, the lethality was increased and the hepatic glutathione levels were decreased. These experiments show that both lighting schedules and feeding can alter the circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice.

  10. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  11. A circadian gene expression atlas in mammals: implications for biology and medicine.

    Science.gov (United States)

    Zhang, Ray; Lahens, Nicholas F; Ballance, Heather I; Hughes, Michael E; Hogenesch, John B

    2014-11-11

    To characterize the role of the circadian clock in mouse physiology and behavior, we used RNA-seq and DNA arrays to quantify the transcriptomes of 12 mouse organs over time. We found 43% of all protein coding genes showed circadian rhythms in transcription somewhere in the body, largely in an organ-specific manner. In most organs, we noticed the expression of many oscillating genes peaked during transcriptional "rush hours" preceding dawn and dusk. Looking at the genomic landscape of rhythmic genes, we saw that they clustered together, were longer, and had more spliceforms than nonoscillating genes. Systems-level analysis revealed intricate rhythmic orchestration of gene pathways throughout the body. We also found oscillations in the expression of more than 1,000 known and novel noncoding RNAs (ncRNAs). Supporting their potential role in mediating clock function, ncRNAs conserved between mouse and human showed rhythmic expression in similar proportions as protein coding genes. Importantly, we also found that the majority of best-selling drugs and World Health Organization essential medicines directly target the products of rhythmic genes. Many of these drugs have short half-lives and may benefit from timed dosage. In sum, this study highlights critical, systemic, and surprising roles of the mammalian circadian clock and provides a blueprint for advancement in chronotherapy.

  12. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.

    Science.gov (United States)

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-08-29

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.

  13. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    Science.gov (United States)

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  14. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    Science.gov (United States)

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  15. Complementary approaches to understanding the plant circadian clock

    Directory of Open Access Journals (Sweden)

    Ozgur E. Akman

    2010-02-01

    Full Text Available Circadian clocks are oscillatory genetic networks that help organisms adapt to the 24-hour day/night cycle. The clock of the green alga Ostreococcus tauri is the simplest plant clock discovered so far. Its many advantages as an experimental system facilitate the testing of computational predictions. We present a model of the Ostreococcus clock in the stochastic process algebra Bio-PEPA and exploit its mapping to different analysis techniques, such as ordinary differential equations, stochastic simulation algorithms and model-checking. The small number of molecules reported for this system tests the limits of the continuous approximation underlying differential equations. We investigate the difference between continuous-deterministic and discrete-stochastic approaches. Stochastic simulation and model-checking allow us to formulate new hypotheses on the system behaviour, such as the presence of self-sustained oscillations in single cells under constant light conditions. We investigate how to model the timing of dawn and dusk in the context of model-checking, which we use to compute how the probability distributions of key biochemical species change over time. These show that the relative variation in expression level is smallest at the time of peak expression, making peak time an optimal experimental phase marker. Building on these analyses, we use approaches from evolutionary systems biology to investigate how changes in the rate of mRNA degradation impacts the phase of a key protein likely to affect fitness. We explore how robust this circadian clock is towards such potential mutational changes in its underlying biochemistry. Our work shows that multiple approaches lead to a more complete understanding of the clock.

  16. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity.

    Science.gov (United States)

    Bruckner, James V; Ramanathan, Raghupathy; Lee, K Monica; Muralidhara, Srinivasa

    2002-01-01

    The toxicity of carbon tetrachloride (CCl(4)) and certain other chemicals varies over a 24-h period. Because the metabolism of some drugs follows a diurnal rhythm, it was decided to investigate whether the hepatic metabolic activation of CCl(4) was rhythmic and coincided in time with maximum susceptibility to CCl(4) hepatotoxicity. A related objective was to test the hypothesis that abstinence from food during the sleep cycle results in lipolysis and formation of acetone, which participates in induction of liver microsomal cytochrome P450IIE1 (CYP2E1), resulting in a diurnal increase in CCl(4) metabolic activation and acute liver injury. Groups of fed and fasted male Sprague-Dawley rats were given a single oral dose of 800 mg of CCl(4)/kg at 2- to 4-h intervals over a 24-h period. Serum enzyme activities, measured 24 h post dosing as indices of acute liver injury, exhibited distinct maxima in both fed and fasted animals dosed with CCl(4) near the beginning of their dark/active cycle. Blood acetone, hepatic CYP2E1 activity, and covalent binding of (14)CCl(4)/metabolites to hepatic microsomal proteins in untreated rats fed ad libitum followed circadian rhythms similar to that of susceptibility to CCl(4). Parallel fluctuations of greater amplitude were seen in rats fasted for 24 h. Hepatic glutathione levels were lowest at the time of greatest susceptibility to CCl(4). Acetone dose-response experiments showed high correlations between blood acetone levels, CYP2E1 induction, and CCl(4)-induced liver injury. Pretreatment with diallyl sulfide suppressed CYP2E1 and abolished the circadian rhythmicity of susceptibility to CCl(4). These findings provide additional support for acetone's physiological role in CYP2E1 induction and for CYP2E1's role in modulating CCl(4) chronotoxicity in rats.

  17. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans.

    Science.gov (United States)

    Eastman, Charmane I; Suh, Christina; Tomaka, Victoria A; Crowley, Stephanie J

    2015-02-11

    Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period, and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals.

  18. Does Circadian Variation of Mothers Affect Macronutrients of Breast Milk?

    Science.gov (United States)

    Çetinkaya, Aslihan Köse; Dizdar, Evrim Alyamaç; Yarcı, Erbu; Sari, Fatma Nur; Oguz, Serife Suna; Uras, Nurdan; Canpolat, Fuat Emre

    2017-06-01

    Objective  To determine the within-day variation of fat, protein, and carbohydrate content of breast milk. Methods  The study was conducted at Zekai Tahir Burak Maternity Teaching Hospital between April 2013 and January 2014. We obtained milk samples from lactating mothers of hospitalized infants through hand expression after breast-feeding or pumping three times a day. A mid-infrared human milk analyzer was used for measuring the macronutrient contents of breast milk samples. Results  Lactating mothers of 52 infants (30 preterm, 22 term) were recruited to the study. No significant difference was found in protein, fat, and carbohydrate content of milk samples throughout the day. We compared within-day variation of macronutrients of transitional and mature milk, milk samples from the mothers of preterm and term infants, and samples collected by either hand expression or pumping. We did not find a significant difference between the groups. Conclusion  Absence of circadian variations in lipid, carbohydrate, and protein content of breast milk in our study may be related to ethnic differences, maternal nutritional status, different milk content measurement technique, and population characteristics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Circadian Macronutrients Variations over the First 7 Weeks of Human Milk Feeding of Preterm Infants.

    Science.gov (United States)

    Moran-Lev, Hadar; Mimouni, Francis B; Ovental, Amit; Mangel, Laurence; Mandel, Dror; Lubetzky, Ronit

    2015-09-01

    Little is known about circadian variations of macronutrients content of expressed preterm human milk (HM). This study evaluated diurnal variations of macronutrients and energy content of preterm HM over the first 7 weeks of lactation and tested the hypothesis that values obtained during a morning sample are predictive of those obtained from an evening sample. Expressed HM was obtained from 32 mothers of preterm infants (26-33 weeks in gestational age), who routinely expressed all their milk every 3 hours from the beginning of the second to the seventh week after delivery. One aliquot was obtained from the first morning expression and the second from the evening expression. Energy and macronutrients contents were measured using an HM analyzer. Mean fat and energy contents of all samples obtained during the whole period were significantly higher in evening samples (p < 0.0001). There were no significant differences between morning and evening carbohydrates and protein contents. Concentrations of protein, carbohydrates, and fat from morning samples were predictive of evening concentrations to different extents (R(2) = 0.720, R(2) = 0.663, and R(2) = 0.20, respectively; p < 0.02). The predictability of evening values by morning values was not influenced by the week of lactation at sampling or by individual patients. In repeated-measures analysis of variance performed on 11 patients who completed the whole 7-week period, over time, there was a significant decrease in fat, energy, and protein contents, whereas carbohydrates content remained unchanged. Day-night differences remained significant only for fat content. Circadian variations in fat and energy concentrations of HM are consistent over the first 7 weeks of lactation. There are no consistent circadian variations in HM protein and carbohydrates. Over a given day, there are little variations in protein and carbohydrates content, but fat concentrations are more variable, and evening values are less well predicted by

  20. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy.

    Directory of Open Access Journals (Sweden)

    Aneesh Alex

    Full Text Available Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR and cardiac activity period (CAP of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays

  1. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    Science.gov (United States)

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential

  2. An Approximation to the Temporal Order in Endogenous Circadian Rhythms of Genes Implicated in Human Adipose Tissue Metabolism

    Science.gov (United States)

    GARAULET, MARTA; ORDOVÁS, JOSÉ M.; GÓMEZ-ABELLÁN, PURIFICACIÓN; MARTÍNEZ, JOSE A.; MADRID, JUAN A.

    2015-01-01

    Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT including genes implicated in metabolic processes such as energy intake and expenditure, insulin resistance, adipocyte differentiation, dyslipidemia, and body fat distribution. Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). To investigate rhythmic expression pattern, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h using quantitative real-time PCR. Clock genes, glucocorticoid metabolism-related genes, leptin, adiponectin and their receptors were studied. Significant differences were found both in achrophases and relative-amplitude among genes (P 30%). When interpreting the phase map of gene expression in both depots, data indicated that circadian rhythmicity of the genes studied followed a predictable physiological pattern, particularly for subcutaneous AT. Interesting are the relationships between adiponectin, leptin, and glucocorticoid metabolism-related genes circadian profiles. Their metabolic significance is discussed. Visceral AT behaved in a different way than subcutaneous for most of the genes studied. For every gene, protein mRNA levels fluctuated during the day in synchrony with its receptors. We have provided an overall view of the internal temporal order of circadian rhythms in human adipose tissue. PMID:21520059

  3. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  4. Circadian Modulation of Short-Term Memory in "Drosophila"

    Science.gov (United States)

    Lyons, Lisa C.; Roman, Gregg

    2009-01-01

    Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term…

  5. The importance of hormonal circadian rhythms in daily feeding patterns

    NARCIS (Netherlands)

    Boumans, Iris J.M.M.; Boer, de Imke J.M.; Hofstede, Gert Jan; Fleur, la Susanne E.; Bokkers, Eddy

    2017-01-01

    The interaction between hormonal circadian rhythms and feeding behaviour is not well understood. This study aimed to deepen our understanding of mechanisms underlying circadian feeding behaviour in animals, using pigs, Sus scrofa, as a case study. Pigs show an alternans feeding pattern, that is,

  6. Identification of circadian clock modulators from existing drugs.

    Science.gov (United States)

    Tamai, T Katherine; Nakane, Yusuke; Ota, Wataru; Kobayashi, Akane; Ishiguro, Masateru; Kadofusa, Naoya; Ikegami, Keisuke; Yagita, Kazuhiro; Shigeyoshi, Yasufumi; Sudo, Masaki; Nishiwaki-Ohkawa, Taeko; Sato, Ayato; Yoshimura, Takashi

    2018-04-17

    Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet-lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time-consuming. We therefore performed a high-throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period-shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA Dietary administration of DHEA to mice shortened free-running circadian period and accelerated re-entrainment to advanced light-dark (LD) cycles, thereby reducing jet-lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Regulation of circadian blood pressure: from mice to astronauts.

    Science.gov (United States)

    Agarwal, Rajiv

    2010-01-01

    Circadian variation is commonly seen in healthy people; aberration in these biological rhythms is an early sign of disease. Impaired circadian variation of blood pressure (BP) has been shown to be associated with greater target organ damage and with an elevated risk of cardiovascular events independent of the BP load. The purpose of this review is to examine the physiology of circadian BP variation and propose a tripartite model that explains the regulation of circadian BP. The time-keeper in mammals resides centrally in the suprachiasmatic nucleus. Apart from this central clock, molecular clocks exist in most peripheral tissues including vascular tissue and the kidney. These molecular clocks regulate sodium balance, sympathetic function and vascular tone. A physiological model is proposed that integrates our understanding of molecular clocks in mice with the circadian BP variation among humans. The master regulator in this proposed model is the sleep-activity cycle. The equivalents of peripheral clocks are endothelial and adrenergic functions. Thus, in the proposed model, the variation in circadian BP is dependent upon three major factors: physical activity, autonomic function, and sodium sensitivity. The integrated consideration of physical activity, autonomic function, and sodium sensitivity appears to explain the physiology of circadian BP variation and the pathophysiology of disrupted BP rhythms in various conditions and disease states. Our understanding of molecular clocks in mice may help to explain the provenance of blunted circadian BP variation even among astronauts.

  8. The cholinergic system, circadian rhythmicity, and time memory

    NARCIS (Netherlands)

    Hut, R. A.; Van der Zee, E. A.

    2011-01-01

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor

  9. Development and entrainment of the colonic circadian clock during ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Olejníková, Lucie; Paušlyová, Lucia; Sládek, Martin; Soták, Matúš; Pácha, Jiří; Sumová, Alena

    2014-01-01

    Roč. 306, č. 4 (2014), G346-G356 ISSN 0193-1857 R&D Projects: GA ČR(CZ) GAP303/12/1108 Institutional support: RVO:67985823 Keywords : circadian clock * clock gene * ontogenesis * circadian entrainment Subject RIV: ED - Physiology Impact factor: 3.798, year: 2014

  10. How does healthy aging impact on the circadian clock?

    Science.gov (United States)

    Popa-Wagner, Aurel; Buga, Ana-Maria; Dumitrascu, Dinu Iuliu; Uzoni, Adriana; Thome, Johannes; Coogan, Andrew N

    2017-02-01

    Circadian rhythms are recurring patterns in a host of physiological and other parameters that recur with periods of near 24 h. These rhythms reflect the temporal organization of an organism's homeostatic control systems and as such are key processes in ensuring optimal physiological performance. Dysfunction of circadian processes is linked with adverse health conditions. In this review we highlight the evidence that normal, healthy aging is associated with changes in the circadian system; we examine the molecular mechanisms through which such changes may arise, discuss whether more robust circadian function is a predictor of longevity and highlight the role of circadian rhythms in age-related diseases. Overall, the literature shows that aging is associated with marked changes in circadian processes, both at the behavioral and molecular levels, and the molecular mechanisms through which such changes arise remain to be elucidated, but may involve inflammatory process, redox homeostasis and epigenetic modifications. Understanding the nature of age-related circadian dysfunction will allow for the design of chronotherapeutic intervention strategies to attenuate circadian dysfunction and thus improve health and quality of life.

  11. Physiological effects of light on the human circadian pacemaker

    Science.gov (United States)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  12. Discrepancy between circadian rhythms of inulin and creatinine clearance

    NARCIS (Netherlands)

    van Acker, B. A.; Koomen, G. C.; Koopman, M. G.; Krediet, R. T.; Arisz, L.

    1992-01-01

    To elucidate the disparity between circadian rhythmicity of inulin and creatinine clearance, we simultaneously measured inulin and creatinine clearances every 3 hours during 1 day in 14 normal subjects and in 8 patients with nephrotic syndrome. All patients and normal subjects had a circadian rhythm

  13. Circadian rhythms, metabolism, and chrononutrition in rodents and humans

    Science.gov (United States)

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial respon...

  14. A Circadian Rhythm Regulating Hyphal Melanization in Cercospora Kikuchii

    Science.gov (United States)

    Circadian rhythms, biochemical or developmental processes with a period length of approximately 24 hours, are thoroughly documented in plants and animals. However, virtually all of what is currently known about circadian rhythms in fungi is derived from the model fungus, Neurospora crassa, including...

  15. Circadian Activity Rhythms, Time Urgency, and Achievement Concerns.

    Science.gov (United States)

    Watts, Barbara L.

    Many physiological and psychological processes fluctuate throughout the day in fairly stable, rhythmic patterns. The relationship between individual differences in circadian activity rhythms and a sense of time urgency were explored as well as a number of achievement-related variables. Undergraduates (N=308), whose circadian activity rhythms were…

  16. Heritable circadian period length in a wild bird population

    NARCIS (Netherlands)

    Helm, B.; Visser, M.E.

    2010-01-01

    Timing is essential, but circadian clocks, which play a crucial role in timekeeping, are almost unaddressed in evolutionary ecology. A key property of circadian clocks is their free-running period length (τ), i.e. the time taken for a full cycle under constant conditions. Under laboratory

  17. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Uduak S. Udoh

    2015-10-01

    Full Text Available Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  18. Associations between circadian and stress response cortisol in children

    NARCIS (Netherlands)

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm

  19. Circadian variation of urinary albumin excretion in pregnancy

    NARCIS (Netherlands)

    Douma, C. E.; van der Post, J. A.; van Acker, B. A.; Boer, K.; Koopman, M. G.

    1995-01-01

    OBJECTIVE: The hypothesis was tested that circadian variations in urinary albumin excretion of pregnant women in the third trimester of normal pregnancy are different from nonpregnant individuals. DESIGN: Circadian variability in urinary albumin excretion was studied both in pregnant women and in

  20. Why and how do we model circadian rhythms?

    NARCIS (Netherlands)

    Beersma, DGM

    In our attempts to understand the circadian system, we unavoidably rely on abstractions. Instead of describing the behavior of the circadian system in all its complexity, we try to derive basic features from which we form a global concept on how the system works. Such a basic concept is a model of

  1. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  2. Immunity's fourth dimension: approaching the circadian-immune connection.

    Science.gov (United States)

    Arjona, Alvaro; Silver, Adam C; Walker, Wendy E; Fikrig, Erol

    2012-12-01

    The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-03-01

    Full Text Available Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.

  4. Recent Advances in Circadian Rhythms in Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Lihong eChen

    2015-04-01

    Full Text Available Growing evidence shows that intrinsic circadian clocks are tightly related to cardiovascular functions. The diurnal changes in blood pressure and heart rate are well known circadian rhythms. Endothelial function, platelet aggregation and thrombus formation exhibit circadian changes as well. The onset of many cardiovascular diseases (CVDs or events, such as myocardial infarction, stroke, arrhythmia, and sudden cardiac death, also exhibits temporal trends. Furthermore, there is strong evidence from animal models and epidemiological studies showing that disruption of circadian rhythms is a significant risk factor for many CVDs, and the intervention of CVDs may have a time dependent effect. In this mini review, we summarized recent advances in our understanding of the relationship between circadian rhythm and cardiovascular physiology and diseases including blood pressure regulation and myocardial infarction.

  5. Modelling of intercellular synchronization in the Drosophila circadian clock

    International Nuclear Information System (INIS)

    Jun-Wei, Wang; Ai-Min, Chen; Jia-Jun, Zhang; Zhan-Jiang, Yuan; Tian-Shou, Zhou

    2009-01-01

    In circadian rhythm generation, intercellular signaling factors are shown to play a crucial role in both sustaining intrinsic cellular rhythmicity and acquiring collective behaviours across a population of circadian neurons. However, the physical mechanism behind their role remains to be fully understood. In this paper, we propose an indirectly coupled multicellular model for the synchronization of Drosophila circadian oscillators combining both intracellular and intercellular dynamics. By simulating different experimental conditions, we find that such an indirect coupling way can synchronize both heterogeneous self-sustained circadian neurons and heterogeneous mutational damped circadian neurons. Moreover, they can also be entrained to ambient light-dark (LD) cycles depending on intercellular signaling. (cross-disciplinary physics and related areas of science and technology)

  6. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    Science.gov (United States)

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Circadian Effects on Simple Components of Complex Task Performance

    Science.gov (United States)

    Clegg, Benjamin A.; Wickens, Christopher D.; Vieane, Alex Z.; Gutzwiller, Robert S.; Sebok, Angelia L.

    2015-01-01

    The goal of this study was to advance understanding and prediction of the impact of circadian rhythm on aspects of complex task performance during unexpected automation failures, and subsequent fault management. Participants trained on two tasks: a process control simulation, featuring automated support; and a multi-tasking platform. Participants then completed one task in a very early morning (circadian night) session, and the other during a late afternoon (circadian day) session. Small effects of time of day were seen on simple components of task performance, but impacts on more demanding components, such as those that occur following an automation failure, were muted relative to previous studies where circadian rhythm was compounded with sleep deprivation and fatigue. Circadian low participants engaged in compensatory strategies, rather than passively monitoring the automation. The findings and implications are discussed in the context of a model that includes the effects of sleep and fatigue factors.

  8. Circadian Rhythms in Floral Scent Emission.

    Science.gov (United States)

    Fenske, Myles P; Imaizumi, Takato

    2016-01-01

    To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  9. Circadian rhythms in floral scent emission

    Directory of Open Access Journals (Sweden)

    Myles eFenske

    2016-04-01

    Full Text Available To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the benzenoid/phenylpropanoid (FVBP pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT1 (ODO1, EMISSION OF BENZENOIDS I (EOBI, and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  10. Circadian system from conception till adulthood

    Czech Academy of Sciences Publication Activity Database

    Sumová, Alena; Sládek, Martin; Polidarová, Lenka; Nováková, Marta; Houdek, Pavel

    2012-01-01

    Roč. 199, č. 2012 (2012), s. 83-103 ISSN 0079-6123 R&D Projects: GA ČR(CZ) GA305/09/0321; GA ČR(CZ) GAP303/11/0668; GA MŠk(CZ) LC554; GA MZd(CZ) NT11474; GA ČR(CZ) GAP303/12/1108 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : ontogenesis * suprachiasmatic nucleus * peripheral circadian clocks * clock gene Subject RIV: ED - Physiology Impact factor: 4.191, year: 2012

  11. Circadian rhythm asynchrony in man during hypokinesis.

    Science.gov (United States)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  12. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  13. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  14. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-01-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1 −/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  15. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    Science.gov (United States)

    Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A

    2015-01-01

    Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  16. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster

    OpenAIRE

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M.; Giebultowicz, Jadwiga M.

    2013-01-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exerci...

  17. Sleep, circadian rhythm and body weight: parallel developments.

    Science.gov (United States)

    Westerterp-Plantenga, Margriet S

    2016-11-01

    Circadian alignment is crucial for body-weight management, and for metabolic health. In this context, circadian alignment consists of alignment of sleep, meal patterns and physical activity. During puberty a significant reduction in sleep duration occurs, and pubertal status is inversely associated with sleep duration. A consistent inverse association between habitual sleep duration and body-weight development occurs, independent of possible confounders. Research on misalignment reveals that circadian misalignment affects sleep-architecture and subsequently disturbs glucose-insulin metabolism, substrate oxidation, leptin- and ghrelin concentrations, appetite, food reward, hypothalamic-pituitary-adrenal-axis activity and gut-peptide concentrations enhancing positive energy balance and metabolic disturbance. Not only aligning meals and sleep in a circadian way is crucial, also regular physical activity during the day strongly promotes the stability and amplitude of circadian rhythm, and thus may serve as an instrument to restore poor circadian rhythms. Endogenicity may play a role in interaction of these environmental variables with a genetic predisposition. In conclusion, notwithstanding the separate favourable effects of sufficient daily physical activity, regular meal patterns, sufficient sleep duration and quality sleep on energy balance, the overall effect of the amplitude and stability of the circadian rhythm, perhaps including genetic predisposition, may integrate the separate effects in an additive way.

  18. A circadian rhythm regulating hyphal melanization in Cercospora kikuchii.

    Science.gov (United States)

    Bluhm, Burton H; Burnham, A Michele; Dunkle, Larry D

    2010-01-01

    Many metabolic and developmental processes in fungi are controlled by biological rhythms. Circadian rhythms approximate a daily (24 h) cycle and have been thoroughly studied in the model fungus, Neurospora crassa. However relatively few examples of true circadian rhythms have been documented among other filamentous fungi. In this study we describe a circadian rhythm underlying hyphal melanization in Cercospora kikuchii, an important pathogen of soybean. After growth in light or light : dark cycles, colonies transferred to darkness produced zonate bands of melanized hyphae interspersed with bands of hyaline hyphae. Rhythmic production of bands was remarkably persistent in the absence of external cues, lasting at least 7 d after transfer to darkness, and was compensated over a range of temperatures. As in N. crassa, blue light but not red light was sufficient to entrain the circadian rhythm in C. kikuchii, and a putative ortholog of white collar-1, one of the genes required for light responses in N. crassa, was identified in C. kikuchii. Circadian regulation of melanization is conserved in other members of the genus: Similar rhythms were identified in another field isolate of C. kikuchii as well as field isolates of C. beticola and C. sorghi, but not in wild-type strains of C. zeae-maydis or C. zeina. This report represents the first documented circadian rhythm among Dothideomycete fungi and provides a new opportunity to dissect the molecular basis of circadian rhythms among filamentous fungi.

  19. Associations between circadian and stress response cortisol in children.

    Science.gov (United States)

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the cortisol circadian rhythm is associated with cortisol stress responses in 6-year-old children. To this end, 149 normally developing children (M age  = 6.09 years; 70 girls) participated in an innovative social evaluative stress test that effectively provoked increases in cortisol. To determine the cortisol stress response, six cortisol saliva samples were collected and two cortisol stress response indices were calculated: total stress cortisol and cortisol stress reactivity. To determine children's cortisol circadian rhythm eight cortisol circadian samples were collected during two days. Total diurnal cortisol and diurnal cortisol decline scores were calculated as indices of the cortisol circadian rhythm. Hierarchical regression analyses indicated that higher total diurnal cortisol as well as a smaller diurnal cortisol decline, were both uniquely associated with higher total stress cortisol. No associations were found between the cortisol circadian rhythm indices and cortisol stress reactivity. Possible explanations for the patterns found are links with children's self-regulatory capacities and parenting quality.

  20. Circadian modulation of short-term memory in Drosophila.

    Science.gov (United States)

    Lyons, Lisa C; Roman, Gregg

    2009-01-01

    Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively reinforced olfactory-learning paradigm in Drosophila melanogaster. We found that memory formation was regulated in a circadian manner. The peak performance in short-term memory (STM) occurred during the early subjective night with a twofold performance amplitude after a single pairing of conditioned and unconditioned stimuli. This rhythm in memory is eliminated in both timeless and period mutants and is absent during constant light conditions. Circadian gating of sensory perception does not appear to underlie the rhythm in short-term memory as evidenced by the nonrhythmic shock avoidance and olfactory avoidance behaviors. Moreover, central brain oscillators appear to be responsible for the modulation as cryptochrome mutants, in which the antennal circadian oscillators are nonfunctional, demonstrate robust circadian rhythms in short-term memory. Together these data suggest that central, rather than peripheral, circadian oscillators modulate the formation of short-term associative memory and not the perception of the stimuli.

  1. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  2. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.

    Science.gov (United States)

    Potter, Gregory D M; Skene, Debra J; Arendt, Josephine; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-12-01

    Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.

  3. A New Perspective for Parkinson's Disease: Circadian Rhythm.

    Science.gov (United States)

    Li, Siyue; Wang, Yali; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-02-01

    Circadian rhythm is manifested by the behavioral and physiological changes from day to night, which is controlled by the pacemaker and its regulator. The former is located at the suprachiasmatic nuclei (SCN) in the anterior hypothalamus, while the latter is composed of clock genes present in all tissues. Circadian desynchronization influences normal patterns of day-night rhythms such as sleep and alertness cycles, rest and activity cycles. Parkinson's disease (PD) exhibits diurnal fluctuations. Circadian dysfunction has been observed in PD patients and animal models, which may result in negative consequences to the homeostasis and even exacerbate the disease progression. Therefore, circadian therapies, including light stimulation, physical activity, dietary and social schedules, may be helpful for PD patients. However, the cellular and molecular mechanisms that underlie the circadian dysfunction in PD remain elusive. Further research on circadian patterns is needed. This article summarizes the existing research on the circadian rhythms in PD, focusing on the clinical symptom variations, molecular changes, as well as the available treatment options.

  4. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures

    Science.gov (United States)

    Skene, Debra J.; Arendt, Josephine; Cade, Janet E.; Grant, Peter J.; Hardie, Laura J.

    2016-01-01

    Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important. PMID:27763782

  5. Neural Mechanisms of Circadian Regulation of Natural and Drug Reward

    Directory of Open Access Journals (Sweden)

    Lauren M. DePoy

    2017-01-01

    Full Text Available Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.

  6. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine.

    Science.gov (United States)

    Huang, Rong-Chi

    2018-02-01

    Circadian clocks evolved to allow plants and animals to adapt their behaviors to the 24-hr change in the external environment due to the Earth's rotation. While the first scientific observation of circadian rhythm in the plant leaf movement may be dated back to the early 18th century, it took 200 years to realize that the leaf movement is controlled by an endogenous circadian clock. The cloning and characterization of the first Drosophila clock gene period in the early 1980s, independently by Jeffery C. Hall and Michael Rosbash at Brandeis University and Michael Young at Rockefeller University, paved the way for their further discoveries of additional genes and proteins, culminating in establishing the so-called transcriptional translational feedback loop (TTFL) model for the generation of autonomous oscillator with a period of ∼24 h. The 2017 Nobel Prize in Physiology or Medicine was awarded to honor their discoveries of molecular mechanisms controlling the circadian rhythm. Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  7. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease.

    Science.gov (United States)

    Videnovic, Aleksandar; Noble, Charleston; Reid, Kathryn J; Peng, Jie; Turek, Fred W; Marconi, Angelica; Rademaker, Alfred W; Simuni, Tanya; Zadikoff, Cindy; Zee, Phyllis C

    2014-04-01

    Diurnal fluctuations of motor and nonmotor symptoms and a high prevalence of sleep-wake disturbances in Parkinson disease (PD) suggest a role of the circadian system in the modulation of these symptoms. However, surprisingly little is known regarding circadian function in PD and whether circadian dysfunction is involved in the development of sleep-wake disturbances in PD. To determine the relationship between the timing and amplitude of the 24-hour melatonin rhythm, a marker of endogenous circadian rhythmicity, with self-reported sleep quality, the severity of daytime sleepiness, and disease metrics. A cross-sectional study from January 1, 2009, through December 31, 2012, of 20 patients with PD receiving stable dopaminergic therapy and 15 age-matched control participants. Both groups underwent blood sampling for the measurement of serum melatonin levels at 30-minute intervals for 24 hours under modified constant routine conditions at the Parkinson's Disease and Movement Disorders Center of Northwestern University. Twenty-four hour monitoring of serum melatonin secretion. Clinical and demographic data, self-reported measures of sleep quality (Pittsburgh Sleep Quality Index) and daytime sleepiness (Epworth Sleepiness Scale), and circadian markers of the melatonin rhythm, including the amplitude, area under the curve (AUC), and phase of the 24-hour rhythm. Patients with PD had blunted circadian rhythms of melatonin secretion compared with controls; the amplitude of the melatonin rhythm and the 24-hour AUC for circulating melatonin levels were significantly lower in PD patients (P hour melatonin AUC (P = .001). Disease duration, Unified Parkinson's Disease Rating Scale scores, levodopa equivalent dose, and global Pittsburgh Sleep Quality Index score in the PD group were not significantly related to measures of the melatonin circadian rhythm. Circadian dysfunction may underlie excessive sleepiness in PD. The nature of this association needs to be explored further

  8. Rhythms of mammalian body temperature can sustain peripheral circadian clocks.

    Science.gov (United States)

    Brown, Steven A; Zumbrunn, Gottlieb; Fleury-Olela, Fabienne; Preitner, Nicolas; Schibler, Ueli

    2002-09-17

    Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1 degrees C-4 degrees C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types. In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a (Delta)T of 4 degrees C (12 hr 37 degrees C/12 hr 33 degrees C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these "in vivo" temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals.

  9. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana.

    Science.gov (United States)

    Krahmer, Johanna; Hindle, Matthew M; Martin, Sarah F; Le Bihan, Thierry; Millar, Andrew J

    2015-01-01

    Systems biological approaches to study the Arabidopsis thaliana circadian clock have mainly focused on transcriptomics while little is known about the proteome, and even less about posttranslational modifications. Evidence has emerged that posttranslational protein modifications, in particular phosphorylation, play an important role for the clock and its output. Phosphoproteomics is the method of choice for a large-scale approach to gain more knowledge about rhythmic protein phosphorylation. Recent plant phosphoproteomics publications have identified several thousand phosphopeptides. However, the methods used in these studies are very labor-intensive and therefore not suitable to apply to a well-replicated circadian time series. To address this issue, we present and compare different strategies for sample preparation for phosphoproteomics that are compatible with large numbers of samples. Methods are compared regarding number of identifications, variability of quantitation, and functional categorization. We focus on the type of detergent used for protein extraction as well as methods for its removal. We also test a simple two-fraction separation of the protein extract. © 2015 Elsevier Inc. All rights reserved.

  10. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.

    Science.gov (United States)

    Mendoza-Vargas, Leonor; Báez-Saldaña, Armida; Alvarado, Ramón; Fuentes-Pardo, Beatriz; Flores-Soto, Edgar; Solís-Chagoyán, Héctor

    2017-06-01

    Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.

  11. Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee

    OpenAIRE

    Hong, Yunkyung; Kim, Hyunsoo; Lee, Seunghoon; Jin, Yunho; Choi, Jeonghyun; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2017-01-01

    Here, we show the role of melatonin combined with or without exercise as a determinant of multicellular behavior in osteoarthritis. We address the relationship between the molecular components governing local circadian clock and changes in the osteoarthritic musculoskeletal axis. Melatonin was injected subcutaneously in animals with advanced knee osteoarthritis (OA) for 4 weeks. Concurrently, moderate treadmill exercise was applied for 30 min/day. Morphometric, histological, and gene/protein-...

  12. Development of a circadian light source

    Science.gov (United States)

    Nicol, David B.; Ferguson, Ian T.

    2002-11-01

    Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.

  13. Circadian typology and sensation seeking in adolescents.

    Science.gov (United States)

    Muro, Anna; Gomà-i-Freixanet, Montserrat; Adan, Ana

    2012-12-01

    The relationship of circadian typology with personality has been largely studied in adults, but there are few studies exploring such relationship in adolescents. Adolescence has been associated with a greater tendency to eveningness preference, sleeping problems, poorer academic achievement, earlier substance use, or risky behaviors, and it is suggested that this association might be mediated by personality factors. Given the relevance of identifying the behavioral outcomes of young evening types to detect and prevent health problems, the present study aimed to explore, for the first time, the relationship between sensation seeking and circadian typology in an adolescent sample of 688 students (51.45% boys) from 12 to 16 yrs old. They answered the Spanish versions of the Morningness-Eveningness Scale for Children (MESC) and the Junior Sensation Seeking Scale (J-SSS), which includes four subscales measuring Thrill and Adventure Seeking, Experience Seeking, Disinhibition, and Boredom Susceptibility. Analyses showed that boys obtained significantly higher scores than girls on J-SSS total score and all subscales except Boredom Susceptibility, whereas evening-type adolescents of both sexes scored significantly higher than neither types and than morning types on J-SSS total score. These results indicate that evening-type adolescents show a greater desire for varied, new, complex, and intense sensations, and they are ready for experiencing more risks than morning types. The implications of this study suggest the need of being aware of individual differences in the SS trait in evening-type adolescents, as well as taking into account the wide variety of behaviors associated with it, either prosocial or antisocial, to design better preventive health and academic programs.

  14. Circadian phase resetting via single and multiple control targets.

    Directory of Open Access Journals (Sweden)

    Neda Bagheri

    2008-07-01

    Full Text Available Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness.

  15. Sleep and circadian rhythm disruption in neuropsychiatric illness.

    Science.gov (United States)

    Jagannath, Aarti; Peirson, Stuart N; Foster, Russell G

    2013-10-01

    Sleep and circadian rhythm disruption (SCRD) is a common feature in many neuropsychiatric diseases including schizophrenia, bipolar disorder and depression. Although the precise mechanisms remain unclear, recent evidence suggests that this comorbidity is not simply a product of medication or an absence of social routine, but instead reflects commonly affected underlying pathways and mechanisms. For example, several genes intimately involved in the generation and regulation of circadian rhythms and sleep have been linked to psychiatric illness. Further, several genes linked to mental illness have recently been shown to also play a role in normal sleep and circadian behaviour. Here we describe some of the emerging common mechanisms that link circadian rhythms, sleep and SCRD in severe mental illnesses. A deeper understanding of these links will provide not only a greater understanding of disease mechanisms, but also holds the promise of novel avenues for therapeutic intervention. Copyright © 2013. Published by Elsevier Ltd.

  16. Metabolic Compensation and Circadian Resilience in Prokaryotic Cyanobacteria

    Science.gov (United States)

    Johnson, Carl Hirschie; Egli, Martin

    2014-01-01

    For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value. PMID:24905782

  17. Escaping Circadian Regulation: An Emerging Hallmark of Cancer?

    Science.gov (United States)

    El-Athman, Rukeia; Relógio, Angela

    2018-03-28

    Alterations of circadian clock genes are associated with patient survival, tumor stage, and clinical subtype across various cancer types, highlighting the importance of timing in cancer treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Introduction: circadian rhythm and its disruption: impact on reproductive function.

    Science.gov (United States)

    Casper, Robert F; Gladanac, Bojana

    2014-08-01

    Almost all forms of life have predictable daily or circadian rhythms in molecular, endocrine, and behavioral functions. In mammals, a central pacemaker located in the suprachiasmatic nuclei coordinates the timing of these rhythms. Daily light exposure that affects the retina of the eye directly influences this area, which is required to align endogenous processes to the appropriate time of day. The present "Views and Reviews" articles discuss the influence of circadian rhythms, especially nightly secretion of melatonin, on reproductive function and parturition. In addition, an examination is made of problems that arise from recurrent circadian rhythm disruption associated with changes in light exposure patterns common to modern day society. Finally, a possible solution to prevent disruptions in circadian phase markers by filtering out short wavelengths from nocturnal light is reviewed. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. CIRCAD: Automated Analysis of Circadian Core Temperature Data

    National Research Council Canada - National Science Library

    Doherty, Tammy

    2000-01-01

    .... Use of the CIRCAD program, described in this report, dramatically reduces the amount of time required for circadian data analyses and provides the capability to quickly implement and test new analytical methods...

  20. Sleep structure in blindness is influenced by circadian desynchrony

    DEFF Research Database (Denmark)

    Aubin, Sébrina; Jennum, Poul; Nielsen, Tore

    2018-01-01

    We examined the structure, duration and quality of sleep, including non-rapid eye movement sleep and rapid eye movement sleep, in 11 blind individuals without conscious light perception and 11 age- and sex-matched sighted controls. Because blindness is associated with a greater incidence of free......-running circadian rhythms, we controlled for circadian phase by a measure of melatonin onset timing. When circadian rhythm was entrained and melatonin onset occurred at normal times, sleep structure did not differ between blind and sighted individuals. On the other hand, an abnormal timing of the circadian phase......, including delayed, shifted and unclassifiable melatonin onsets, led to larger rapid eye movement sleep latencies and increased wake times. No differences were observed for stages of non-rapid eye movement sleep, either between congenital and late blind and sighted individuals, or across the different...

  1. Speed control: cogs and gears that drive the circadian clock.

    Science.gov (United States)

    Zheng, Xiangzhong; Sehgal, Amita

    2012-09-01

    In most organisms, an intrinsic circadian (~24-h) timekeeping system drives rhythms of physiology and behavior. Within cells that contain a circadian clock, specific transcriptional activators and repressors reciprocally regulate each other to generate a basic molecular oscillator. A mismatch of the period generated by this oscillator with the external environment creates circadian disruption, which can have adverse effects on neural function. Although several clock genes have been extensively characterized, a fundamental question remains: how do these genes work together to generate a ~24-h period? Period-altering mutations in clock genes can affect any of multiple regulated steps in the molecular oscillator. In this review, we examine the regulatory mechanisms that contribute to setting the pace of the circadian oscillator. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Circadian and pharmacological regulation of casein kinase I in the ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... formed in strict accordance with NIH rules for animal care and maintenance. ... date and a mammalian protease inhibitor cocktail (Sigma,. Cat. No. P8340; dilution ..... 1998 Circadian behavior and plasticity of light-induced ...

  3. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  4. Model reduction and physical understanding of slowly oscillating processes : the circadian cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Goussis, Dimitris A. (Ploutonos 7, Palaio Faliro, Greece); Najm, Habib N.

    2006-01-01

    A differential system that models the circadian rhythm in Drosophila is analyzed with the computational singular perturbation (CSP) algorithm. Reduced nonstiff models of prespecified accuracy are constructed, the form and size of which are time-dependent. When compared with conventional asymptotic analysis, CSP exhibits superior performance in constructing reduced models, since it can algorithmically identify and apply all the required order of magnitude estimates and algebraic manipulations. A similar performance is demonstrated by CSP in generating data that allow for the acquisition of physical understanding. It is shown that the processes driving the circadian cycle are (i) mRNA translation into monomer protein, and monomer protein destruction by phosphorylation and degradation (along the largest portion of the cycle); and (ii) mRNA synthesis (along a short portion of the cycle). These are slow processes. Their action in driving the cycle is allowed by the equilibration of the fastest processes; (1) the monomer dimerization with the dimer dissociation (along the largest portion of the cycle); and (2) the net production of monomer+dimmer proteins with that of mRNA (along the short portion of the cycle). Additional results (regarding the time scales of the established equilibria, their origin, the rate limiting steps, the couplings among the variables, etc.) highlight the utility of CSP for automated identification of the important underlying dynamical features, otherwise accessible only for simple systems whose various suitable simplifications can easily be recognized.

  5. Distinct functions of Period2 and Period3 in the mouse circadian system revealed by in vitro analysis.

    Directory of Open Access Journals (Sweden)

    Julie S Pendergast

    2010-01-01

    Full Text Available The mammalian circadian system, which is composed of a master pacemaker in the suprachiasmatic nuclei (SCN as well as other oscillators in the brain and peripheral tissues, controls daily rhythms of behavior and physiology. Lesions of the SCN abolish circadian rhythms of locomotor activity and transplants of fetal SCN tissue restore rhythmic behavior with the periodicity of the donor's genotype, suggesting that the SCN determines the period of the circadian behavioral rhythm. According to the model of timekeeping in the SCN, the Period (Per genes are important elements of the transcriptional/translational feedback loops that generate the endogenous circadian rhythm. Previous studies have investigated the functions of the Per genes by examining locomotor activity in mice lacking functional PERIOD proteins. Variable behavioral phenotypes were observed depending on the line and genetic background of the mice. In the current study we assessed both wheel-running activity and Per1-promoter-driven luciferase expression (Per1-luc in cultured SCN, pituitary, and lung explants from Per2(-/- and Per3(-/- mice congenic with the C57BL/6J strain. We found that the Per2(-/- phenotype is enhanced in vitro compared to in vivo, such that the period of Per1-luc expression in Per2(-/- SCN explants is 1.5 hours shorter than in Per2+/+ SCN, while the free-running period of wheel-running activity is only 11 minutes shorter in Per2(-/- compared to Per2+/+ mice. In contrast, circadian rhythms in SCN explants from Per3(-/- mice do not differ from Per3+/+ mice. Instead, the period and phase of Per1-luc expression are significantly altered in Per3(-/- pituitary and lung explants compared to Per3+/+ mice. Taken together these data suggest that the function of each Per gene may differ between tissues. Per2 appears to be important for period determination in the SCN, while Per3 participates in timekeeping in the pituitary and lung.

  6. cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents.

    Directory of Open Access Journals (Sweden)

    Santiago A Plano

    Full Text Available The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN and is synchronized by several environmental stimuli, mainly the light-dark (LD cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2. The mechanism responsible for light-induced phase advances involves the activation of guanylyl cyclase (GC, cGMP and its related protein kinase (PKG. Pharmacological manipulation of cGMP by phosphodiesterase (PDE inhibition (e.g., sildenafil increases low-intensity light-induced circadian responses, which could reflect the ability of the cGMP-dependent pathway to directly affect the photic sensitivity of the master circadian clock within the SCN. Indeed, sildenafil is also able to increase the phase-shifting effect of saturating (1200 lux light pulses leading to phase advances of about 9 hours, as well as in C57 a mouse strain that shows reduced phase advances. In addition, sildenafil was effective in both male and female hamsters, as well as after oral administration. Other PDE inhibitors (such as vardenafil and tadalafil also increased light-induced phase advances of locomotor activity rhythms and accelerated reentrainment after a phase advance in the LD cycle. Pharmacological inhibition of the main downstream target of cGMP, PKG, blocked light-induced expression of Per1. Our results indicate that the cGMP-dependent pathway can directly modulate the light-induced expression of clock-genes within the SCN and the magnitude of light-induced phase advances of overt rhythms, and provide promising tools to design treatments for human circadian disruptions.

  7. Circadian modulation of complex learning in diurnal and nocturnal Aplysia

    OpenAIRE

    Lyons, Lisa C.; Rawashdeh, Oliver; Katzoff, Ayelet; Susswein, Abraham J.; Eskin, Arnold

    2005-01-01

    Understanding modulation of memory, as well as the mechanisms underlying memory formation, has become a key issue in neuroscience research. Previously, we found that the formation of long-term, but not short-term, memory for a nonassociative form of learning, sensitization, was modulated by the circadian clock in the diurnal Aplysia californica. To define the scope of circadian modulation of memory, we examined an associative operant learning paradigm, learning that food is inedible (LFI). Si...

  8. Circadian rhythm and sleep influences on digestive physiology and disorders

    OpenAIRE

    Vaughn, Bradley; Rotolo,Sean; Roth,Heidi

    2014-01-01

    Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their...

  9. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock

    OpenAIRE

    David M. Virshup; Rajesh Narasimamurthy

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entr...

  10. Associations between circadian and stress response cortisol in children

    OpenAIRE

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the ...

  11. Bright to Dim Oscillatory Response of the Neurospora Circadian Oscillator

    OpenAIRE

    Gooch, Van D.; Johnson, Alicia E.; Larrondo, Luis F.; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    The fungus Neurospora crassa constitutes an important model system extensively used in chronobiology. Several studies have addressed how environmental cues, such as light, can reset or synchronize a circadian system. By means of an optimized firefly luciferase reporter gene and a controllable lighting system, we show that Neurospora can display molecular circadian rhythms in dim light when cultures receive bright light prior to entering dim light conditions. We refer to this behavior as the “...

  12. Circadian rhythm and sleep influences on digestive physiology and disorders

    Directory of Open Access Journals (Sweden)

    Vaughn BV

    2014-09-01

    Full Text Available Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their role in normal physiology and the link of their disruption to pathological conditions. Recent work has demonstrated that sleep and circadian factors influence appetite, nutrient absorption, and metabolism. Disruption of sleep and circadian rhythms may increase vulnerability to digestive disorders, including reflux, ulcers, inflammatory bowel issues, irritable bowel disease, and gastrointestinal cancer. As our knowledge of the link between circadian timing and gastrointestinal physiology grows, so do our opportunities to provide promising diagnostic and therapeutic approaches for gastrointestinal disorders. Keywords: digestion, digestive diseases, gastrointestinal reflux, sleep, circadian rhythm 

  13. Circadian rhythms in cognitive performance: implications for neuropsychological assessment

    Directory of Open Access Journals (Sweden)

    Valdez P

    2012-12-01

    Full Text Available Pablo Valdez, Candelaria Ramírez, Aída GarcíaLaboratory of Psychophysiology, School of Psychology, University of Nuevo León, Monterrey, Nuevo León, MéxicoAbstract: Circadian variations have been found in human performance, including the efficiency to execute many tasks, such as sensory, motor, reaction time, time estimation, memory, verbal, arithmetic calculations, and simulated driving tasks. Performance increases during the day and decreases during the night. Circadian rhythms have been found in three basic neuropsychological processes (attention, working memory, and executive functions, which may explain oscillations in the performance of many tasks. The time course of circadian rhythms in cognitive performance may be modified significantly in patients with brain disorders, due to chronotype, age, alterations of the circadian rhythm, sleep deprivation, type of disorder, and medication. This review analyzes the recent results on circadian rhythms in cognitive performance, as well as the implications of these rhythms for the neuropsychological assessment of patients with brain disorders such as traumatic head injury, stroke, dementia, developmental disorders, and psychiatric disorders.Keywords: human circadian rhythms, cognitive performance, neuropsychological assessment, attention, working memory, executive functions

  14. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  15. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    Science.gov (United States)

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  16. Biochemical genetics of the circadian rhythm in Neurospora crassa: studies on the cel strain

    International Nuclear Information System (INIS)

    Lakin-Thomas, P.L.

    1985-01-01

    In Neurospora crassa, the cel mutation lengthens the period of the circadian rhythm when the medium is supplemented with linoleic acid (18:2). Double mutant strains were constructed between cel and the clock mutants prd-1 and four alleles at the frq locus. It was found that: (1) the effect of 18:2 on cel was blocked by prd-1, i.e., prd-1 is epistatic to cel. (2) cel and frq interact such that the percent increase in the period produced by 18:2 was inversely proportional to the period of the frq parent. (3) Data from the literature on period effects in double mutant strains support a multiplicative rather than an additive model. A biochemical interpretation of these interactions is discussed, based on the control of flux through metabolic pathways. Because the cel strain is known to be deficient in the pantothenate derivative normally attached to the fatty acid synthetase (FAS) complex, the possibility that cel may affect other pantothenate-modified proteins was investigated. It was found that in the cel + strain, five proteins of molecular weights (M/sub r/) 9000, 19,000, 22,000, 140,000, and 200,000 were labelled with [ 14 C]pantothenate. In the cel strain, only the 200 k (FAS) label was reduced in amount. Therefore, there is no evidence that cel affects circadian rhythmicity through any deficiency other than FAS. A biochemical model for circadian rhythmicity in Neurospora is presented. Oscillations in cytoplasmic and mitochondrial Ca 2+ are proposed; clock mutations are postulated to affect Ca 2+ transporters and the mitochondrial membrane; and phase-shifting effects are accounted for by changes in Ca 2+ or ATP levels

  17. RNAi of the circadian clock gene period disrupts the circadian rhythm but not the circatidal rhythm in the mangrove cricket

    OpenAIRE

    Takekata, Hiroki; Matsuura, Yu; Goto, Shin G.; Satoh, Aya; Numata, Hideharu

    2012-01-01

    The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in t...

  18. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation.

    Science.gov (United States)

    Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee

    2017-07-06

    Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.

  19. Depletion of white adipose tissue in cancer cachexia syndrome is associated with inflammatory signaling and disrupted circadian regulation.

    Directory of Open Access Journals (Sweden)

    Maria Tsoli

    Full Text Available Involuntary weight loss in patients with cancer is the hallmark of cancer cachexia. The etiology of cachexia is multifactorial involving loss of skeletal muscle and adipose tissue associated with high systemic levels of acute phase proteins and inflammatory cytokines. While muscle wasting overtly impacts on cancer patient quality of life, loss of lipid depots represents a sustained energy imbalance. In this study fat depletion was examined in Colon-26 model of cancer cachexia, which is a widely used rodent model of this syndrome. We investigated diurnal expression of circadian rhythm regulators as well as key mediators of energy metabolism and cytokine signaling. Mice bearing the C26 tumour exhibited reduced adipose mass, elevated adipose tissue lipolysis and a 5-fold increase in plasma levels of free fatty acids. These changes were associated with activated IL-6 signaling in WAT through a 3-fold increase in phosphorylated STAT3 and high SOCS3 gene expression levels. In addition perturbations in circadian regulation of lipid metabolism were also observed. Lipid catabolism did not appear to be influenced by the classical PKA pathway activating the lipase HSL. ATGL protein levels were elevated 2-fold in cachectic mice while 4-fold increase phosphorylated ACC and a 2-fold decrease in phosphorylated 4EBP1 was observed indicating that lipid metabolism is modulated by the ATGL & AMPK/mTOR pathways. This study provides evidence for activation of cytokine signaling and concomitant alterations in circadian rhythm and regulators of lipid metabolism in WAT of cachectic animals.

  20. Sex and ancestry determine the free-running circadian period.

    Science.gov (United States)

    Eastman, Charmane I; Tomaka, Victoria A; Crowley, Stephanie J

    2017-10-01

    The endogenous, free-running circadian period (τ) determines the phase relationship that an organism assumes when entrained to the 24-h day. We found a shorter circadian period in African Americans compared to non-Hispanic European Americans (24.07 versus 24.33 h). We speculate that a short circadian period, closer to 24 h, was advantageous to humans living around the equator, but when humans migrated North out of Africa, where the photoperiod changes with seasons, natural selection favoured people with longer circadian periods. Recently, in evolutionary terms, immigrants came from Europe and Africa to America ('the New World'). The Europeans were descendents of people who had lived in Europe for thousands of years with changing photoperiods (and presumably longer periods), whereas Africans had ancestors who had always lived around the equator (with shorter periods). It may have been advantageous to have a longer circadian period while living in Europe early in the evolution of humans. In our modern world, however, it is better to have a shorter period, because it helps make our circadian rhythms earlier, which is adaptive in our early-bird-dominated society. European American women had a shorter circadian period than men (24.24 versus 24.41), but there was no sex difference in African Americans (24.07 for both men and women). We speculate that selection pressures in Europe made men develop a slightly longer period than women to help them track dawn which could be useful for hunters, but less important for women as gatherers. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  1. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    Science.gov (United States)

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  2. Circadian rhythm disruption as a link between Attention-Deficit/Hyperactivity Disorder and obesity?

    NARCIS (Netherlands)

    Vogel, S.W.; Bijlenga, D.; Tanke, M.; Bron, T.I.; van der Heijden, K.B.; Swaab, H.; Beekman, A.T.; Kooij, J.

    2015-01-01

    Objective: Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) have a high prevalence of obesity. This is the first study to investigate whether circadian rhythmdisruption is a mechanismlinking ADHD symptoms to obesity. Methods: ADHD symptoms and two manifestations of circadian

  3. Control of Circadian Behavior by Transplanted Suprachiasmatic Nuclei and by the Tau Gene

    National Research Council Canada - National Science Library

    Menaker, Micahel

    1997-01-01

    The mammalian retina was found to contain an independent circadian oscillator which regulates the synthesis of melatonin and has effects, through a presently unknown pathway, on the circadian rhythm...

  4. Impacts of nurses’ circadian rhythm sleep disorders, fatigue, and depression on medication administration errors

    Directory of Open Access Journals (Sweden)

    Abdelbaset M. Saleh

    2014-01-01

    Conclusions: Medication administration errors, fatigue and depression were all significantly affected by circadian sleep disorders. An administration’s control of work flow to provide convenient sleep hours will help in improving sleep circadian rhythms and consequently minimize these problems.

  5. Circadian rhythms, food timing and obesity.

    Science.gov (United States)

    Lopez-Minguez, J; Gómez-Abellán, P; Garaulet, M

    2016-11-01

    It is known that our physiology changes throughout the day and that several physiological hormones display circadian rhythmicity. The alteration of this normal pattern is called chronodisruption (CD). In recent years, it has been demonstrated that CD is related to obesity. Although several factors may be causing CD, one important aspect to consider is the failure in our internal clock. Indeed, studies performed in mutant animals have demonstrated that mutations in clock genes are related to obesity. In human subjects, mutations are rare (obesity and weight loss. Taking into account that genetics is behind CD, as has already been demonstrated in twins' models, the question is: Are we predestinated? We will see along these lines that nutrigenetics and epigenetics answer: 'No, we are not predestinated'. Through nutrigenetics we know that our behaviours may interact with our genes and may decrease the deleterious effect of one specific risk variant. From epigenetics the message is even more positive: it is demonstrated that by changing our behaviours we can change our genome. Herein, we propose modifying 'what, how, and when we eat' as an effective tool to decrease our genetic risk, and as a consequence to diminish CD and decrease obesity. This is a novel and very promising area in obesity prevention and treatment.

  6. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. II. Interactions between bilaterally paired circadian pacemakers.

    Science.gov (United States)

    Ushirogawa, H; Abe, Y; Tomioka, K

    1997-10-01

    The optic lobe is essential for circadian locomotor rhythms in the cricket, Gryllodes sigillatus. We examined potential interactions between the bilaterally paired optic lobes in circadian rhythm generation. When one optic lobe was removed, the free-running period of the locomotor rhythm slightly but significantly lengthened. When exposed to light-dark cycles (LD) with 26 hr period, intact and sham operated animals were clearly entrained to the light cycle, but a large number of animals receiving unilateral optic nerve severance showed rhythm dissociation. In the dissociation, two rhythmic components appeared; one was readily entrained to the given LD and the other free-ran with a period shorter than 24 hr, and activity was expressed only when they were inphase. The period of the free-running component was significantly longer than that of the animals with a single blinded pacemaker kept in LD13:13, suggesting that the pacemaker on the intact side had some influence on the blinded pacemaker even in the dissociated state. The ratio of animals with rhythm dissociation was greater with the lower light intensity of the LD. The results suggest that the bilaterally distributed pacemakers are only weakly coupled to one another but strongly suppress the activity driven by the partner pacemaker during their subjective day. The strong suppression of activity would be advantageous to keep a stable nocturnality for this cricket living indoors.

  8. Metabolism as an Integral Cog in the Mammalian Circadian Clockwork

    Science.gov (United States)

    Gamble, Karen L.; Young, Martin E.

    2013-01-01

    Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144

  9. Natural selection against a circadian clock gene mutation in mice.

    Science.gov (United States)

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.

  10. Mood Disorders, Circadian Rhythms, Melatonin and Melatonin Agonists

    Directory of Open Access Journals (Sweden)

    M.A. Quera Salva

    2012-04-01

    Full Text Available Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC. Melatonin (N-acetyl-5-hydroxytryptamine is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse.

  11. Circadian Plasticity in the Brain of Insects and Rodents

    Directory of Open Access Journals (Sweden)

    Wojciech Krzeptowski

    2018-05-01

    Full Text Available In both vertebrate and invertebrate brains, neurons, glial cells and synapses are plastic, which means that the physiology and structure of these components are modified in response to internal and external stimuli during development and in mature brains. The term plasticity has been introduced in the last century to describe experience-dependent changes in synapse strength and number. These changes result from local functional and morphological synapse modifications; however, these modifications also occur more commonly in pre- and postsynaptic neurons. As a result, neuron morphology and neuronal networks are constantly modified during the life of animals and humans in response to different stimuli. Nevertheless, it has been discovered in flies and mammals that the number of synapses and size and shape of neurons also oscillate during the day. In most cases, these rhythms are circadian since they are generated by endogenous circadian clocks; however, some rhythmic changes in neuron morphology and synapse number and structure are controlled directly by environmental cues or by both external cues and circadian clocks. When the circadian clock is involved in generating cyclic changes in the nervous system, this type of plasticity is called circadian plasticity. It seems to be important in processing sensory information, in learning and in memory. Disruption of the clock may affect major brain functions.

  12. Calculating activation energies for temperature compensation in circadian rhythms

    International Nuclear Information System (INIS)

    Bodenstein, C; Heiland, I; Schuster, S

    2011-01-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation

  13. Chronotype and circadian rhythm in bipolar disorder: A systematic review.

    Science.gov (United States)

    Melo, Matias C A; Abreu, Rafael L C; Linhares Neto, Vicente B; de Bruin, Pedro F C; de Bruin, Veralice M S

    2017-08-01

    Despite a complex relationship between mood, sleep and rhythm, the impact of circadian disruptions on bipolar disorder (BD) has not been clarified. The purpose of this systematic review was to define current evidence regarding chronotype and circadian rhythm patterns in BD patients. 42 studies were included, involving 3432 BD patients. Disruption of the biological rhythm was identified, even in drug-naïve BD patients and independently of mood status. Daily profiles of melatonin levels and cortisol indicated a delayed phase. Depression was more frequently associated with circadian alterations than euthymia. Few studies evaluated mania, demonstrating irregular rhythms. Evening type was more common in BD adults. Studies about the influence of chronotype on depressive symptoms showed conflicting results. Only one investigation observed the influences of chronotype in mania, revealing no significant association. Effects of psychoeducation and lithium on rhythm in BD patients were poorly studied, demonstrating no improvement of rhythm parameters. Studies about genetics are incipient. In conclusion, disruption in circadian rhythm and eveningness are common in BD. Prospective research evaluating the impact of circadian disruption on mood symptoms, metabolism, seasonality, the influence of age and the effects of mood stabilizers are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Neurogenetics of Drosophila circadian clock: expect the unexpected.

    Science.gov (United States)

    Jarabo, Patricia; Martin, Francisco A

    2017-12-01

    Daily biological rhythms (i.e. circadian) are a fundamental part of animal behavior. Numerous reports have shown disruptions of the biological clock in neurodegenerative disorders and cancer. In the latter case, only recently we have gained insight into the molecular mechanisms. After 45 years of intense study of the circadian rhtythms, we find surprising similarities among species on the molecular clock that governs biological rhythms. Indeed, Drosophila is one of the most widely used models in the study of chronobiology. Recent studies in the fruit fly have revealed unpredicted roles for the clock machinery in different aspects of behavior and physiology. Not only the central pacemaker cells do have non-classical circadian functions but also circadian genes work in other cells and tissues different from central clock neurons. In this review, we summarize these new evidences. We also recapitulate the most basic features of Drosophila circadian clock, including recent data about the inputs and outputs that connect the central pacemaker with other regions of the brain. Finally, we discuss the advantages and drawbacks of using natural versus laboratory conditions.

  15. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus

    Directory of Open Access Journals (Sweden)

    Guilding Clare

    2009-08-01

    Full Text Available Abstract Background In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH, a site pivotal for optimal internal homeostatic regulation. Results Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc and dorsomedial nuclei (DMH. Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT. A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.

  16. A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity.

    Science.gov (United States)

    Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h) or day (10:00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.

  17. A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity.

    Directory of Open Access Journals (Sweden)

    Nahum Nolasco

    Full Text Available Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h or day (10:00 h, and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.

  18. Towards assessing the impact of circadian lighting in elderly housing from a holistic perspective

    DEFF Research Database (Denmark)

    Sen, Sumit; Flyvholm, Anton; Xylakis, Emmanouil

    2017-01-01

    Circadian lighting has the potential to be used as a welfare technology, and improve the health and well-being of the general public. A research-based dynamic circadian lighting scheme can be developed using LED lighting. Testing and evaluating circadian lighting however requires a holistic...

  19. Relationship between circadian typology and big five personality domains.

    Science.gov (United States)

    Tonetti, Lorenzo; Fabbri, Marco; Natale, Vincenzo

    2009-02-01

    We explored the relationship between personality, based on the five-factor model, and circadian preference. To this end, 503 participants (280 females, 223 males) were administered the Morningness-Eveningness Questionnaire (MEQ) and the self-report version of the Big Five Observer (BFO) to determine circadian preference and personality features, respectively. Morning types scored significantly higher than evening and intermediate types on the conscientiousness factor. Evening types were found to be more neurotic than morning types. With reference to the big five personality model, our data, together with those of all the previous studies, indicate that the conscientiousness domain is the one that best discriminates among the three circadian types. Results are discussed with reference to neurobiological models of personality.

  20. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  1. Photoperiodic regulation of the hamster testis: dependence on circadian rhythms

    International Nuclear Information System (INIS)

    Eskes, G.A.; Zucker, I.

    1978-01-01

    The testes of hamsters exposed to short days (10 hr of light per day) regress within 13 weeks. Administration of 7.5 percent deuterium oxide to hamsters lengthens the period of free running circadian activity rhythms by 2.2 percent and prevents testicular regression during short-day exposure. This is consistent with predictions derived from an external coincidence model for photoperiodic time measurement: Deuterium oxide changes phase relationships between the light-dark cycle and the circadian system, the hamster's daily photosensitive phase is stimulated with light during short days, and the testes remain large. Conservation of the period of circadian rhythms within narrow limits has adaptive significance for hamster photoperiodism and for the occurrence and phasing of the annual reproductive cycle

  2. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.

    Science.gov (United States)

    Narasimamurthy, Rajesh; Virshup, David M

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  3. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock

    Directory of Open Access Journals (Sweden)

    David M. Virshup

    2017-04-01

    Full Text Available An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  4. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    Science.gov (United States)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  5. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal

    Science.gov (United States)

    Fisk, Angus S.; Tam, Shu K. E.; Brown, Laurence A.; Vyazovskiy, Vladyslav V.; Bannerman, David M.; Peirson, Stuart N.

    2018-01-01

    Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses. PMID:29479335

  6. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.

    Science.gov (United States)

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-07

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

  7. Improved circadian sleep-wake cycle in infants fed a day/night dissociated formula milk.

    Science.gov (United States)

    Cubero, J; Narciso, D; Aparicio, S; Garau, C; Valero, V; Rivero, M; Esteban, S; Rial, R; Rodríguez, A B; Barriga, C

    2006-06-01

    On the basis of the circadian nutritional variations present in breast milk, and of the implications for the sleep/wake cycle of the nutrients present in infant formula milks, we designed a formula milk nutritionally dissociated into a Day/Night composition. The goal was to improve the bottle-fed infant's sleep/wake circadian rhythm. A total of 21 infants aged 4-20 weeks with sleeping difficulties were enrolled in the three-week duration study. The sleep analysis was performed using an actimeter (Actiwatch) placed on an ankle of each infant to uninterruptedly record movements during the three weeks. The dissociated Day milk, designed to be administered from 06:00 to 18:00, contained low levels of tryptophan (1.5g/100g protein) and carbohydrates, high levels of proteins, and the nucleotides Cytidine 5 monophosphate, Guanosine 5 monophosphate and Inosine 5 monophosphate. The dissociated Night milk, designed to be administered from 18.00 to 06.00, contained high levels of tryptophan (3.4g/100g protein) and carbohydrates, low levels of protein, and the nucleotides Adenosine 5 monophosphate and Uridine 5 monophosphate. Three different milk-feeding experiments were performed in a double-blind procedure covering three weeks. In week 1 (control), the infants received both by day and by night a standard formula milk; in week 2 (inverse control), they received the dissociated milk inversely (Night/Day instead of Day/Night); and in week 3, they received the Day/Night dissociated formula concordant with the formula design. When the infants were receiving the Day/Night dissociated milk in concordance with their environment, they showed improvement in all the nocturnal sleep parameters analyzed: total hours of sleep, sleep efficiency, minutes of nocturnal immobility, nocturnal awakenings, and sleep latency. In conclusion, the use of a chronobiologically adjusted infant formula milk seems to be effective in improving the consolidation of the circadian sleep/wake cycle in bottle

  8. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen

    2003-01-01

    UNLABELLED: Circadian Profile of Heart Rate Variability. INTRODUCTION: Although heart rate variability (HRV) has been established as a tool to study cardiac autonomic activity, almost no data are available on the circadian patterns of HRV in healthy subjects aged 20 to 70 years. METHODS AND RESULTS...... higher in men. Younger men also exhibited significantly higher values...... parasympathetic activity. The significant gender-related difference of HRV decreases with aging. These findings emphasize the need to determine age-, gender-, and nycthemeral-dependent normal ranges for HRV assessment....

  9. The effects of chronic marijuana use on circadian entrainment.

    Science.gov (United States)

    Whitehurst, Lauren N; Fogler, Kethera; Hall, Kate; Hartmann, Matthew; Dyche, Jeff

    2015-05-01

    Animal literature suggests a connection between marijuana use and altered circadian rhythms. However, the effect has not yet been demonstrated in humans. The present study examined the effect of chronic marijuana use on human circadian function. Participants consisted of current users who reported smoking marijuana daily for at least a year and non-marijuana user controls. Participants took a neurocognitive assessment, wore actigraphs and maintained sleep diaries for three weeks. While no significant cognitive changes were found between groups, data revealed that chronic marijuana use may act as an additional zeitgeber and lead to increased entrainment in human users.

  10. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle.

    Science.gov (United States)

    Gaucher, Jonathan; Montellier, Emilie; Sassone-Corsi, Paolo

    2018-05-01

    The cell cycle and the circadian clock operate as biological oscillators whose timed functions are tightly regulated. Accumulating evidence illustrates the presence of molecular links between these two oscillators. This mutual interplay utilizes various coupling mechanisms, such as the use of common regulators. The connection between these two cyclic systems has unique interest in the context of aberrant cell proliferation since both of these oscillators are frequently misregulated in cancer cells. Further studies will provide deeper understanding of the detailed molecular connections between the cell cycle and the circadian clock and may also serve as a basis for the design of innovative therapeutic strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Endogenous Circadian Regulation of Pro-inflammatory Cytokines and Chemokines in the Presence of Bacterial Lipopolysaccharide in Humans

    Science.gov (United States)

    Rahman, Shadab A.; Castanon-Cervantes, Oscar; Scheer, Frank A.J.L.; Shea, Steven A.; Czeisler, Charles A.; Davidson, Alec J.; Lockley, Steven W.

    2015-01-01

    Various aspects of immune response exhibit 24-hour variations suggesting that infection susceptibility and treatment efficacy may vary by time of day. Whether these 24-hour variations are endogenous or evoked by changes in environmental or behavioral conditions is not known. We assessed the endogenous circadian control and environmental and behavioral influences on ex-vivo lipopolysaccharide stimulation of whole blood in thirteen healthy participants under 48 hours of baseline conditions with standard sleep-wake schedules and 40–50 hours of constant environmental and behavioral (constant routine; CR) conditions. Significant 24-hour rhythms were observed under baseline conditions in Monocyte Chemotactic Protein, Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin 8 but not Tumor Necrosis Factor alpha whereas significant 24-hour rhythms were observed in all four immune factors under CR conditions. The rhythm amplitudes, expressed as a percentage of mean, were comparable between immune factors and across conditions. In contrast, the acrophase time (time of the fitted peak) was different between immune factors, and included daytime and nighttime peaks and changes across behavioral conditions. These results suggest that the endogenous circadian system underpins the temporal organization of immune responses in humans with additional effects of external environmental and behavioral cycles. These findings have implications for understanding the adverse effects of recurrent circadian disruption and sleep curtailment on immune function. PMID:25452149

  12. The Circadian Clock of the Ant Camponotus floridanus Is Localized in Dorsal and Lateral Neurons of the Brain.

    Science.gov (United States)

    Kay, Janina; Menegazzi, Pamela; Mildner, Stephanie; Roces, Flavio; Helfrich-Förster, Charlotte

    2018-06-01

    The circadian clock of social insects has become a focal point of interest for research, as social insects show complex forms of timed behavior and organization within their colonies. These behaviors include brood care, nest maintenance, foraging, swarming, defense, and many other tasks, of which several require social synchronization and accurate timing. Ants of the genus Camponotus have been shown to display a variety of daily timed behaviors such as the emergence of males from the nest, foraging, and relocation of brood. Nevertheless, circadian rhythms of isolated individuals have been studied in few ant species, and the circadian clock network in the brain that governs such behaviors remains completely uncharacterized. Here we show that isolated minor workers of Camponotus floridanus exhibit temperature overcompensated free-running locomotor activity rhythms under constant darkness. Under light-dark cycles, most animals are active during day and night, with a slight preference for the night. On the neurobiological level, we show that distinct cell groups in the lateral and dorsal brain of minor workers of C. floridanus are immunostained with an antibody against the clock protein Period (PER) and a lateral group additionally with an antibody against the neuropeptide pigment-dispersing factor (PDF). PER abundance oscillates in a daily manner, and PDF-positive neurites invade most parts of the brain, suggesting that the PER/PDF-positive neurons are bona fide clock neurons that transfer rhythmic signals into the relevant brain areas controlling rhythmic behavior.

  13. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    Science.gov (United States)

    Parsons, Michael J.; Brancaccio, Marco; Sethi, Siddharth; Maywood, Elizabeth S.; Satija, Rahul; Edwards, Jessica K.; Jagannath, Aarti; Couch, Yvonne; Finelli, Mattéa J.; Smyllie, Nicola J.; Esapa, Christopher; Butler, Rachel; Barnard, Alun R.; Chesham, Johanna E.; Saito, Shoko; Joynson, Greg; Wells, Sara; Foster, Russell G.; Oliver, Peter L.; Simon, Michelle M.; Mallon, Ann-Marie; Hastings, Michael H.; Nolan, Patrick M.

    2015-01-01

    Summary We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms. PMID:26232227

  14. Robustness from flexibility in the fungal circadian clock

    Directory of Open Access Journals (Sweden)

    Akman Ozgur E

    2010-06-01

    Full Text Available Abstract Background Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock's rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model of the circuit controlling conidiation in the fungus Neurospora crassa. Results The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq gene inhibits its transcriptional activator white collar-1 (wc-1, interlocked with a positive feedback loop in which FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts the behaviour of mutants that uncouple WC-1 production from FRQ's positive feedback, and shows that the positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is quantified using Kitano's measure for the overall robustness of a regulated system output. Further analysis demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on

  15. UNC79 and UNC80, putative auxiliary subunits of the NARROW ABDOMEN ion channel, are indispensable for robust circadian locomotor rhythms in Drosophila.

    Directory of Open Access Journals (Sweden)

    Bridget C Lear

    Full Text Available In the fruit fly Drosophila melanogaster, a network of circadian pacemaker neurons drives daily rhythms in rest and activity. The ion channel NARROW ABDOMEN (NA, orthologous to the mammalian sodium leak channel NALCN, functions downstream of the molecular circadian clock in pacemaker neurons to promote behavioral rhythmicity. To better understand the function and regulation of the NA channel, we have characterized two putative auxiliary channel subunits in Drosophila, unc79 (aka dunc79 and unc80 (aka CG18437. We have generated novel unc79 and unc80 mutations that represent strong or complete loss-of-function alleles. These mutants display severe defects in circadian locomotor rhythmicity that are indistinguishable from na mutant phenotypes. Tissue-specific RNA interference and rescue analyses indicate that UNC79 and UNC80 likely function within pacemaker neurons, with similar anatomical requirements to NA. We observe an interdependent, post-transcriptional regulatory relationship among the three gene products, as loss of na, unc79, or unc80 gene function leads to decreased expression of all three proteins, with minimal effect on transcript levels. Yet despite this relationship, we find that the requirement for unc79 and unc80 in circadian rhythmicity cannot be bypassed by increasing NA protein expression, nor can these putative auxiliary subunits substitute for each other. These data indicate functional requirements for UNC79 and UNC80 beyond promoting channel subunit expression. Immunoprecipitation experiments also confirm that UNC79 and UNC80 form a complex with NA in the Drosophila brain. Taken together, these data suggest that Drosophila NA, UNC79, and UNC80 function together in circadian clock neurons to promote rhythmic behavior.

  16. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP.

    Science.gov (United States)

    Yeom, Miji; Lee, HansongI; Shin, Seoungwoo; Park, Deokhoon; Jung, Eunsun

    2018-03-23

    Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.

  17. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    Science.gov (United States)

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP

    Directory of Open Access Journals (Sweden)

    Miji Yeom

    2018-03-01

    Full Text Available Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1 and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.

  19. Circadian remodeling of neuronal circuits involved in rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    María Paz Fernández

    2008-03-01

    Full Text Available Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.

  20. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis

    NARCIS (Netherlands)

    Kalsbeek, A.; van der Spek, R.; Lei, J.; Endert, E.; Buijs, R. M.; Fliers, E.

    2012-01-01

    The pronounced daily variation in the release of adrenal hormones has been at the heart of the deciphering and understanding of the circadian timing system. Indeed, the first demonstration of an endocrine day/night rhythm was provided by Pincus (1943), by showing a daily pattern of 17-keto-steroid

  1. Development of the circadian clockwork in the kidney

    DEFF Research Database (Denmark)

    Mészáros, Krisztina; Pruess, Linda; Szabó, Attila J.

    2014-01-01

    was modified postpartum. Clock, Rev-erbα, Per2, αENaC, SGK1, NHE3, and AVPR2 showed circadian expression at the end of intrauterine development. By 1 week, all genes oscillated with a distinct acrophase shift toward the time of peak feeding activity. Daily 4-hour withdrawal of mothers induced a 12-hour phase...

  2. Circadian control of isoprene emissions from oil palm (Elaeis guineensis).

    Science.gov (United States)

    Wilkinson, Michael J; Owen, Susan M; Possell, Malcolm; Hartwell, James; Gould, Peter; Hall, Anthony; Vickers, Claudia; Nicholas Hewitt, C

    2006-09-01

    The emission of isoprene from the biosphere to the atmosphere has a profound effect on the Earth's atmospheric system. Until now, it has been assumed that the primary short-term controls on isoprene emission are photosynthetically active radiation and temperature. Here we show that isoprene emissions from a tropical tree (oil palm, Elaeis guineensis) are under strong circadian control, and that the circadian clock is potentially able to gate light-induced isoprene emissions. These rhythms are robustly temperature compensated with isoprene emissions still under circadian control at 38 degrees C. This is well beyond the acknowledged temperature range of all previously described circadian phenomena in plants. Furthermore, rhythmic expression of LHY/CCA1, a genetic component of the central clock in Arabidopsis thaliana, is still maintained at these elevated temperatures in oil palm. Maintenance of the CCA1/LHY-TOC1 molecular oscillator at these temperatures in oil palm allows for the possibility that this system is involved in the control of isoprene emission rhythms. This study contradicts the accepted theory that isoprene emissions are primarily light-induced.

  3. Proteomics of the photoneuroendocrine circadian system of the brain

    DEFF Research Database (Denmark)

    Møller, Morten; Lund-Andersen, Casper; Rovsing, Louise

    2010-01-01

    controls circadian activity of the brain and peripheral tissues. The endogenous oscillator of the SCN is each day entrained to the length of the daily photoperiod by light that reach the retina, and specialized photoreceptors transmit impulses to the SCN via the optic nerves. Mass screening for day...

  4. Organization of Circadian Behavior Relies on Glycinergic Transmission.

    Science.gov (United States)

    Frenkel, Lia; Muraro, Nara I; Beltrán González, Andrea N; Marcora, María S; Bernabó, Guillermo; Hermann-Luibl, Christiane; Romero, Juan I; Helfrich-Förster, Charlotte; Castaño, Eduardo M; Marino-Busjle, Cristina; Calvo, Daniel J; Ceriani, M Fernanda

    2017-04-04

    The small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Circadian rhythm in salivary melatonin in narcoleptic patiens

    Czech Academy of Sciences Publication Activity Database

    Blažejová, K.; Illnerová, Helena; Hájek, Ivan; Nevšímalová, S.

    2008-01-01

    Roč. 437, č. 2 (2008), s. 162-164 ISSN 0304-3940 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : narcolepsy * circadian system * melatonin Subject RIV: FH - Neurology Impact factor: 2.200, year: 2008

  6. Transcripts from the Circadian Clock: Telling Time and Season

    NARCIS (Netherlands)

    K. Brand (Karl)

    2011-01-01

    textabstractWe all know it when we wake mere moments before an alarm clock is scheduled to wake us: our body clock made the alarm clock redundant. This phenomenon is driven by an endogenous timer known as the biological, or circadian clock. Each revolution of the Earth about its own axis produces

  7. Experience-independent development of the hamster circadian visual system.

    Directory of Open Access Journals (Sweden)

    August Kampf-Lassin

    2011-04-01

    Full Text Available Experience-dependent functional plasticity is a hallmark of the primary visual system, but it is not known if analogous mechanisms govern development of the circadian visual system. Here we investigated molecular, anatomical, and behavioral consequences of complete monocular light deprivation during extended intervals of postnatal development in Syrian hamsters. Hamsters were raised in constant darkness and opaque contact lenses were applied shortly after eye opening and prior to the introduction of a light-dark cycle. In adulthood, previously-occluded eyes were challenged with visual stimuli. Whereas image-formation and motion-detection were markedly impaired by monocular occlusion, neither entrainment to a light-dark cycle, nor phase-resetting responses to shifts in the light-dark cycle were affected by prior monocular deprivation. Cholera toxin-b subunit fluorescent tract-tracing revealed that in monocularly-deprived hamsters the density of fibers projecting from the retina to the suprachiasmatic nucleus (SCN was comparable regardless of whether such fibers originated from occluded or exposed eyes. In addition, long-term monocular deprivation did not attenuate light-induced c-Fos expression in the SCN. Thus, in contrast to the thalamocortical projections of the primary visual system, retinohypothalamic projections terminating in the SCN develop into normal adult patterns and mediate circadian responses to light largely independent of light experience during development. The data identify a categorical difference in the requirement for light input during postnatal development between circadian and non-circadian visual systems.

  8. Circadian control of the sleep-wake cycle

    NARCIS (Netherlands)

    Beersma, Domien G. M.; Gordijn, Marijke C. M.

    2007-01-01

    It is beyond doubt that the timing of sleep is under control of the circadian pacemaker. Humans are a diurnal species; they sleep mostly at night, and they do so at approximately 24-h intervals. If they do not adhere to this general pattern, for instance when working night shifts or when travelling

  9. Studies on circadian rhythm disturbances and melatonin in delirium

    NARCIS (Netherlands)

    de Jonghe, A.-M.

    2014-01-01

    The circadian sleep/wake rhythm disturbances that are seen in delirium and the role of melatonin supplementation provide a new angle in delirium research. More research is needed to determine the role of melatonin in the pathophysiological mechanisms of delirium and to determine whether the

  10. Multicellular models of intercellular synchronization in circadian neural networks

    International Nuclear Information System (INIS)

    Henson, Michael A.

    2013-01-01

    The circadian clock generates 24 h rhythms that drive physiological and behavioral processes in a diverse range of organisms including microbes, plants, insects, and mammals. Recent experimental advances have produced improved understanding of the molecular mechanisms involved in circadian rhythm generation at the single cell level. However, the intercellular mechanisms that allow large populations of coupled pacemaker cells to synchronize and coordinate their rhythms remain poorly understood. The purpose of this article is to review recent progress in dynamic modeling of the circadian clock with a focus on multicellular models required to describe cell population synchronization. Mammalian systems are emphasized to illustrate the highly heterogeneous structure and rich dynamical behavior of multicellular circadian systems. Available multicellular models are characterized with respect to their single cell descriptions, intercellular coupling mechanisms, and network topologies. Examples drawn from our own research are used to demonstrate the advantages associated with integrating detailed single cell models within realistic multicellular networks for prediction of mammalian system dynamics. Mathematical modeling is shown to represent a powerful tool for understanding the intracellular and intercellular mechanisms utilized to robustly synchronize large populations of highly heterogeneous and sparsely coupled single cell oscillators. The article concludes with some possible directions for future research

  11. Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.

    Science.gov (United States)

    Cui, Ming; Xiao, Huiwen; Luo, Dan; Zhang, Xin; Zhao, Shuyi; Zheng, Qisheng; Li, Yuan; Zhao, Yu; Dong, Jiali; Li, Hang; Wang, Haichao; Fan, Saijun

    2016-10-26

    Modern lifestyles, such as shift work, nocturnal social activities, and jet lag, disturb the circadian rhythm. The interaction between mammals and the co-evolved intestinal microbiota modulates host physiopathological processes. Radiotherapy is a cornerstone of modern management of malignancies; however, it was previously unknown whether circadian rhythm disorder impairs prognosis after radiotherapy. To investigate the effect of circadian rhythm on radiotherapy, C57BL/6 mice were housed in different dark/light cycles, and their intestinal bacterial compositions were compared using high throughput sequencing. The survival rate, body weight, and food intake of mice in diverse cohorts were measured following irradiation exposure. Finally, the enteric bacterial composition of irradiated mice that experienced different dark/light cycles was assessed using 16S RNA sequencing. Intriguingly, mice housed in aberrant light cycles harbored a reduction of observed intestinal bacterial species and shifts of gut bacterial composition compared with those of the mice kept under 12 h dark/12 h light cycles, resulting in a decrease of host radioresistance. Moreover, the alteration of enteric bacterial composition of mice in different groups was dissimilar. Our findings provide novel insights into the effects of biological clocks on the gut bacterial composition, and underpin that the circadian rhythm influences the prognosis of patients after radiotherapy in a preclinical setting.

  12. Paternal irradiation perturbs the expression of circadian genes in offspring

    International Nuclear Information System (INIS)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E.

    2015-01-01

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies

  13. Circadian rhythm gene regulation in the housefly, Musca domestica

    Czech Academy of Sciences Publication Activity Database

    Codd, V.; Doležel, David; Stehlík, Jan; Piccin, A.; Garner, K. J.; Racey, S. N.; Straatman, K. R.; Louis, E. J.; Costa, R.; Šauman, Ivo; Kyriacou, C. P.; Rosato, E.

    2007-01-01

    Roč. 177, č. 3 (2007), s. 1539-1551 ISSN 0016-6731 R&D Projects: GA ČR GA204/04/0862; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z50070508 Keywords : circadian * evolution * Diptera Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.001, year: 2007

  14. New methods to assess circadian clocks in humans

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marta; Sumová, Alena

    2014-01-01

    Roč. 52, č. 5 (2014), s. 404-412 ISSN 0019-5189 R&D Projects: GA MZd(CZ) NT11474 Grant - others:Univerzita Karlova(CZ) 22810 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : circadian * clock gene * melatonin * human Subject RIV: ED - Physiology Impact factor: 0.835, year: 2014

  15. Familial circadian rhythm disorder in the diurnal primate, Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Irina V Zhdanova

    Full Text Available In view of the inverse temporal relationship of central clock activity to physiological or behavioral outputs in diurnal and nocturnal species, understanding the mechanisms and physiological consequences of circadian disorders in humans would benefit from studies in a diurnal animal model, phylogenetically close to humans. Here we report the discovery of the first intrinsic circadian disorder in a family of diurnal non-human primates, the rhesus monkey. The disorder is characterized by a combination of delayed sleep phase, relative to light-dark cycle, mutual desynchrony of intrinsic rhythms of activity, food intake and cognitive performance, enhanced nighttime feeding or, in the extreme case, intrinsic asynchrony. The phenotype is associated with normal length of intrinsic circadian period and requires an intact central clock, as demonstrated by an SCN lesion. Entrainment to different photoperiods or melatonin administration does not eliminate internal desynchrony, though melatonin can temporarily reinstate intrinsic activity rhythms in the animal with intrinsic asynchrony. Entrainment to restricted feeding is highly effective in animals with intrinsic or SCN lesion-induced asynchrony. The large isolated family of rhesus macaques harboring the disorder provides a powerful new tool for translational research of regulatory circuits underlying circadian disorders and their effective treatment.

  16. Circadian regulation of epithelial functions in the intestine

    Czech Academy of Sciences Publication Activity Database

    Pácha, Jiří; Sumová, Alena

    2013-01-01

    Roč. 208, č. 1 (2013), s. 11-24 ISSN 1748-1708 R&D Projects: GA ČR(CZ) GAP303/10/0969; GA ČR(CZ) GAP303/11/0668 Institutional support: RVO:67985823 Keywords : circadian rhythms * intestine * colon * proliferation * digestion * intestinal transport Subject RIV: ED - Physiology Impact factor: 4.251, year: 2013

  17. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Chamber-dependent circadian expression of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Georg, Birgitte; Jørgensen, Henrik L

    2010-01-01

    Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) have important local functions within the myocardium, where they protect against accelerated fibrosis. As circadian expression of cardiac natriuretic peptides could be of importance in local cardiac protection against disease, we...

  19. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  20. Disrupting circadian rhythms in rats induces retrograde amnesia

    NARCIS (Netherlands)

    Fekete, Mátyás; Ree, J.M. van; Niesink, Raymond J.M.; Wied, D. de

    1985-01-01

    Disrupting circadian organization in rats by phase-shifting the illumination cycle or by exposure to a reversed day/night cycle or to continuous light, resulted in retrograde amnesia for passive avoidance behavior. This retrograde amnesia induced by phase-shifting lasted at least 2 days, and

  1. Circadian secretion patterns of ß-endorphin and leucine enkephalin

    Directory of Open Access Journals (Sweden)

    E. H. de Wet

    1992-07-01

    Full Text Available ß-endorphin and leucine enkephalin are neuropeptides with potent opioid activity. In a study to investigate the circadian secretion patterns of the above-mentioned, blood samples were collected hourly from 12 healthy males who were subjected to the experiment for 24 hours. Radioimmunoassays were used in the analysis of plasma samples for ß-endorphin and leucine enkephalin. Peak concentrations of ß-endorphin were demonstrated from 08:00-09:00, while peak concentrations of leucine enkephalin occured from 23:00-07:00. Trough concentrations of ß-endorphin occurred from 24:00-05:00, while trough con­centrations of leucine enkephalin were demonstrated from 09:00-12:00. The illustrated circadian secretion pattern for ß-endorphin simulates the well-known circadian rhythm of cortisol. The answer to this may be in the fact that ß-endorphin and corticotropin stem from the same precursor. The illustrated circadian secretion pattern for leucine enkephalin simulates that of melatonin. The reason for this is unclear.

  2. The Importance of the Circadian Clock in Regulating Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Jin A Kim

    2017-12-01

    Full Text Available Carbohydrates are the primary energy source for plant development. Plants synthesize sucrose in source organs and transport them to sink organs during plant growth. This metabolism is sensitive to environmental changes in light quantity, quality, and photoperiod. In the daytime, the synthesis of sucrose and starch accumulates, and starch is degraded at nighttime. The circadian clock genes provide plants with information on the daily environmental changes and directly control many developmental processes, which are related to the path of primary metabolites throughout the life cycle. The circadian clock mechanism and processes of metabolism controlled by the circadian rhythm were studied in the model plant Arabidopsis and in the crops potato and rice. However, the translation of molecular mechanisms obtained from studies of model plants to crop plants is still difficult. Crop plants have specific organs such as edible seed and tuber that increase the size or accumulate valuable metabolites by harvestable metabolic components. Human consumers are interested in the regulation and promotion of these agriculturally significant crops. Circadian clock manipulation may suggest various strategies for the increased productivity of food crops through using environmental signal or overcoming environmental stress.

  3. Peripheral circadian clocks are diversely affected by adrenalectomy

    Czech Academy of Sciences Publication Activity Database

    Soták, Matúš; Bryndová, Jana; Ergang, Peter; Vagnerová, Karla; Kvapilová, Pavlína; Vodička, Martin; Pácha, Jiří; Sumová, Alena

    2016-01-01

    Roč. 33, č. 5 (2016), s. 520-529 ISSN 0742-0528 R&D Projects: GA ČR(CZ) GA13-08304S Institutional support: RVO:67985823 Keywords : adrenalectomy * circadian rhythms * corticosterone * peripheral clock Subject RIV: ED - Physiology Impact factor: 2.562, year: 2016

  4. Circadian changes in long noncoding RNAs in the pineal gland

    DEFF Research Database (Denmark)

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F

    2012-01-01

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the ra...

  5. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  6. Oscillating perceptions: the ups and downs of the CLOCK protein in ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... A functional mouse CLOCK protein has long been thought to be essential for mammalian circadian ... ordinated actions of the Ror families of transcriptional acti- ..... CLOCK-deficient mice expressing the mPER2::LUC fusion.

  7. Circadian activity rhythms for mothers with an infant in ICU

    Directory of Open Access Journals (Sweden)

    Shih-Yu eLee

    2010-12-01

    Full Text Available Circadian rhythms influence sleep and wakefulness. Circadian activity rhythms (CAR are altered in individuals with dementia or seasonal affective disorder. To date, studies exploring CAR and sleep in postpartum women are rare. The purpose of this report is to describe relationships between CAR, sleep disturbance, and fatigue among 72 first-time mothers during their 2nd week postpartum while their newborn remain hospitalized in intensive care unit (ICU. Seventy two mothers were included in this secondary data analysis sample from three separate studies. Participants completed the General Sleep Disturbance Scale (GSDS, Numerical Rating Scale for Fatigue (NRS-F, and a sleep diary. The objective sleep data included total sleep time (TST, wake after sleep onset (WASO, and CAR determined by the circadian quotient (amplitude/mesor averaged from at least 48-hours of wrist actigraphy monitoring. The TST of mothers who self-reported as poor sleepers was 354 minutes (SEM= 21.9, with a mean WASO of 19.5% (SEM= 2.8. The overall sleep quality measured by the GSDS was clinically, significantly disrupted (M= 5.5, SD= 1.2. The mean score for morning fatigue was 5.8 (SD= 2.0, indicating moderate fatigue severity. The CAR was .62 (SEM= .04, indicating poor synchronization. The self-reported good sleepers (GSDS < 3 had better CAR (M= .71, SEM= .02 than poor sleepers (GSDS > 3 (t [70] = 2.0, p< .05. A higher circadian equation was associated with higher TST (r= .83, p<.001, less WASO (r= -.50, p< .001, lower self-reported sleep disturbance scores (r= -.35, p= .01, and less morning fatigue (r= -.26. Findings indicate that mothers with a hospitalized infant have both nocturnal sleep problems and disturbed circadian activity rhythms. Factors responsible for these sleep and rhythm disturbances, the adverse effects on mother’s physical and mental well-being, and mother-infant relationship require further study.

  8. [Circadian rhythm : Influence on Epworth Sleepiness Scale score].

    Science.gov (United States)

    Herzog, M; Bedorf, A; Rohrmeier, C; Kühnel, T; Herzog, B; Bremert, T; Plontke, S; Plößl, S

    2017-02-01

    The Epworth Sleepiness Scale (ESS) is frequently used to determine daytime sleepiness in patients with sleep-disordered breathing. It is still unclear whether different levels of alertness induced by the circadian rhythm influence ESS score. The aim of this study is to investigate the influence of circadian rhythm-dependent alertness on ESS performance. In a monocentric prospective noninterventional observation study, 97 patients with suspected sleep-disordered breathing were investigated with respect to daytime sleepiness in temporal relationship to polysomnographic examination and treatment. The Karolinska Sleepiness Scale (KSS) and the Stanford Sleepiness Scale (SSS) served as references for the detection of present sleepiness at three different measurement times (morning, noon, evening), prior to and following a diagnostic polysomnography night as well as after a continuous positive airway pressure (CPAP) titration night (9 measurements in total). The KSS, SSS, and ESS were performed at these times in a randomized order. The KSS and SSS scores revealed a circadian rhythm-dependent curve with increased sleepiness at noon and in the evening. Following a diagnostic polysomnography night, the scores were increased compared to the measurements prior to the night. After the CPAP titration night, sleepiness in the morning was reduced. KSS and SSS reflect the changes in alertness induced by the circadian rhythm. The ESS score war neither altered by the intra-daily nor by the inter-daily changes in the level of alertness. According to the present data, the ESS serves as a reliable instrument to detect the level of daytime sleepiness independently of the circadian rhythm-dependent level of alertness.

  9. A circadian rhythm of conidiation in Neurospora crassa (L-12)

    Science.gov (United States)

    Miyoshi, Yashuhiro

    1993-01-01

    Two fungi growth chambers containing six growth tubes each are used in this experiment. One chamber is for the space experiment; the other is for the simultaneous ground control experiment. The hyphae of Neurospora crassa band A mutant are inoculated at one end of each tube. Both the chambers are kept at 3 C plus or minus 1.5 C to stop hyphae growth until the Spacelab is activated. After the activation, each chamber is transferred simultaneously to the Spacelab and a phytotron in KSC and kept in continuous light at the same temperature. After about 24 hours of light exposure, each chamber is inserted into a growth chamber bag to keep it in constant darkness. The circadian rhythm of conidiation is initiated by this light to dark transition. After the dark incubation for 5 days at room temperature, both the growth chambers are kept at 3 C plus or minus 1.5 C to stop growth of the hyphae. After the space shuttle lands, both conidiation patterns are compared and analyzed. It has been known that numerous physiological phenomena show circadian rhythms. They are characterized by the fact that the oscillation can persist under constant conditions of light and temperature. Therefore, it has been accepted by most investigators that the generation mechanism of the circadian rhythm is endogeneous. However, one cannot reject the possibility that these rhythms are caused by some geophysical exogeneous factor having a 24-hour period, such as atmospheric pressure, gravity, or electromagnetic radiation. We use Neurospora crassa band A mutual which shows an obvious circadian rhythm in its spore-forming (conidiation) on the ground, and we intend to attempt the conidation of this mutant in the Spacelab where 24-hour periodicity is severely attenuated and to elucidate the effect of the geophysical exogeneous factor in the generation mechanism of the circadian rhythm.

  10. Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish

    Science.gov (United States)

    Wang, Haifang; Du, Jiulin; Yan, Jun

    2013-01-01

    In the study of circadian rhythms, it has been a puzzle how a limited number of circadian clock genes can control diverse aspects of physiology. Here we investigate circadian gene expression genome-wide using larval zebrafish as a model system. We made use of a spatial gene expression atlas to investigate the expression of circadian genes in various tissues and cell types. Comparison of genome-wide circadian gene expression data between zebrafish and mouse revealed a nearly anti-phase relationship and allowed us to detect novel evolutionarily conserved circadian genes in vertebrates. We identified three groups of zebrafish genes with distinct responses to light entrainment: fast light-induced genes, slow light-induced genes, and dark-induced genes. Our computational analysis of the circadian gene regulatory network revealed several transcription factors (TFs) involved in diverse aspects of circadian physiology through transcriptional cascade. Of these, microphthalmia-associated transcription factor a (mitfa), a dark-induced TF, mediates a circadian rhythm of melanin synthesis, which may be involved in zebrafish's adaptation to daily light cycling. Our study describes a systematic method to discover previously unidentified TFs involved in circadian physiology in complex organisms. PMID:23468616

  11. The effect of lens aging and cataract surgery on circadian rhythm.

    Science.gov (United States)

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  12. Metabolic effects of bariatric surgery in mouse models of circadian disruption.

    Science.gov (United States)

    Arble, D M; Sandoval, D A; Turek, F W; Woods, S C; Seeley, R J

    2015-08-01

    Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption. VSG led to a reduction in body weight and fat mass in both Clock(Δ19) mutant and constant-light mouse models (Pdisruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P>0.05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (Pdisruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, as the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption.

  13. Circadian rhythm of anti-fungal prenylated chromene in leaves of Piper aduncum.

    Science.gov (United States)

    Morandim, Andreia de A; Bergamo, Débora Cristina B; Kato, Massuo Jorge; Cavalheiro, Alberto José; Bolzani, Vanderlan da S; Furlan, Maysa

    2005-01-01

    Leaves of Piper aduncum accumulate the anti-fungal chromenes methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate (2). The enzymatic formation of 2 from dimethylallyl diphosphate and 1 was investigated using cell-free extracts of the title plant. An HPLC assay for the prenylation reaction was developed and the enzyme activity measured in the protein extracts. The prenyltransferase that catalyses the transfer of the dimethylallyl group to C-2' of 1 was soluble and required dimethylallyl diphosphate as the prenyl donor. In the leaves, the biosynthesis of the prenylated chromene 2 was time-regulated and prenyltransferase activity depended upon circadian variation. Preliminary characterisation and purification experiments on the prenyltransferase from P. aduncum have been performed.

  14. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors.

    Directory of Open Access Journals (Sweden)

    Frank A J L Scheer

    Full Text Available Platelets are involved in the thromboses that are central to myocardial infarctions and ischemic strokes. Such adverse cardiovascular events have day/night patterns with peaks in the morning (~9 AM, potentially related to endogenous circadian clock control of platelet activation. The objective was to test if the human endogenous circadian system influences (1 platelet function and (2 platelet response to standardized behavioral stressors. We also aimed to compare the magnitude of any effects on platelet function caused by the circadian system with that caused by varied standardized behavioral stressors, including mental arithmetic, passive postural tilt and mild cycling exercise.We studied 12 healthy adults (6 female who lived in individual laboratory suites in dim light for 240 h, with all behaviors scheduled on a 20-h recurring cycle to permit assessment of endogenous circadian function independent from environmental and behavioral effects including the sleep/wake cycle. Circadian phase was assessed from core body temperature. There were highly significant endogenous circadian rhythms in platelet surface activated glycoprotein (GP IIb-IIIa, GPIb and P-selectin (6-17% peak-trough amplitudes; p ≤ 0.01. These circadian peaks occurred at a circadian phase corresponding to 8-9 AM. Platelet count, ATP release, aggregability, and plasma epinephrine also had significant circadian rhythms but with later peaks (corresponding to 3-8 PM. The circadian effects on the platelet activation markers were always larger than that of any of the three behavioral stressors.These data demonstrate robust effects of the endogenous circadian system on platelet activation in humans--independent of the sleep/wake cycle, other behavioral influences and the environment. The 9 AM timing of the circadian peaks of the three platelet surface markers, including platelet surface activated GPIIb-IIIa, the final common pathway of platelet aggregation, suggests that endogenous

  15. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2008-11-01

    Full Text Available Drosophila clock neurons are self-sustaining cellular oscillators that rely on negative transcriptional feedback to keep circadian time. Proper regulation of organismal rhythms of physiology and behavior requires coordination of the oscillations of individual clock neurons within the circadian control network. Over the last decade, it has become clear that a key mechanism for intercellular communication in the circadian network is signaling between a subset of clock neurons that secrete the neuropeptide pigment dispersing factor (PDF and clock neurons that possess its G protein-coupled receptor (PDFR. Furthermore, the specific hypothesis has been proposed that PDF-secreting clock neurons entrain the phase of organismal rhythms, and the cellular oscillations of other clock neurons, via the temporal patterning of secreted PDF signals. In order to test this hypothesis, we have devised a novel technique for altering the phase relationship between circadian transcriptional feedback oscillation and PDF secretion by using an ion channel-directed spider toxin to modify voltage-gated Na(+ channel inactivation in vivo. This technique relies on the previously reported "tethered-toxin" technology for cell-autonomous modulation of ionic conductances via heterologous expression of subtype-specific peptide ion channel toxins as chimeric fusion proteins tethered to the plasma membrane with a glycosylphosphatidylinositol (GPI anchor. We demonstrate for the first time, to our knowledge, the utility of the tethered-toxin technology in a transgenic animal, validating four different tethered spider toxin ion channel modifiers for use in Drosophila. Focusing on one of these toxins, we show that GPI-tethered Australian funnel-web spider toxin delta-ACTX-Hv1a inhibits Drosophila para voltage-gated Na(+ channel inactivation when coexpressed in Xenopus oocytes. Transgenic expression of membrane-tethered delta-ACTX-Hv1a in vivo in the PDF-secreting subset of clock neurons

  16. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    Science.gov (United States)

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  17. Effects of short-term feed deprivation and melatonin implants on circadian patterns of leptin in the horse.

    Science.gov (United States)

    Buff, P R; Morrison, C D; Ganjam, V K; Keisler, D H

    2005-05-01

    Leptin is a protein hormone produced by adipose tissue that influences hypothalamic mechanisms regulating appetite and energy balance. In species tested thus far, including horses, concentrations of leptin increase as animal fat mass increases. The variables and mechanisms that influence the secretion of leptin are not well known, nor is it known in equine species how the secretion of leptin is influenced by acute alterations in energy balance, circadian patterns, and/or reproductive competence. Our objectives were to determine in horses: 1) whether plasma concentrations of leptin are secreted in a circadian and/or a pulsatile pattern; 2) whether a 48-h period of feed restriction would alter plasma concentrations of leptin, growth hormone, or insulin; and 3) whether ovariectomy and/or a melatonin implant would affect leptin. In Exp. 1, mares exposed to ambient photoperiod of visible light (11 h, 33 min to 11 h, 38 min), received treatments consisting of a 48-h feed restriction (RES) or 48 h of alfalfa hay fed ad libitum (FED). Mares were maintained in a dry lot before sampling and were tethered to a rail during sampling. Analyses revealed that leptin was not secreted in a pulsatile manner, and that mean leptin concentrations were greater (P < 0.001) in FED vs. RES mares (17.20 +/- 0.41 vs. 7.29 +/- 0.41 ng/mL). Plasma growth hormone was pulsatile, and mean concentrations were greater in RES than FED mares (2.15 +/- 0.31 vs. 1.08 +/- 0.31 ng/mL; P = 0.05). Circadian patterns of leptin secretion were observed, but only in FED mares (15.39 +/- 0.58 ng/mL for morning vs. 19.00 +/- 0.58 ng/mL for evening; P < 0.001). In Exp. 2, mares that were ovariectomized or intact received either a s.c. melatonin implant or a sham implant. Thereafter, blood was sampled at weekly intervals at 1000 and 1700. Concentrations of leptin in samples collected at 1700 were greater (P < 0.001) than in those collected at 1000 (28.24 +/- 1.7 vs. 22.07 +/- 1.7 ng/mL). Neither ovariectomy nor

  18. Circadian hormone profiles and insulin sensitivity in patients with Addison's disease: a comparison of continuous subcutaneous hydrocortisone infusion with conventional glucocorticoid replacement therapy.

    Science.gov (United States)

    Björnsdottir, Sigridur; Øksnes, Marianne; Isaksson, Magnus; Methlie, Paal; Nilsen, Roy M; Hustad, Steinar; Kämpe, Olle; Hulting, Anna-Lena; Husebye, Eystein S; Løvås, Kristian; Nyström, Thomas; Bensing, Sophie

    2015-07-01

    Conventional glucocorticoid replacement therapy in patients with Addison's disease (AD) is unphysiological with possible adverse effects on mortality, morbidity and quality of life. The diurnal cortisol profile can likely be restored by continuous subcutaneous hydrocortisone infusion (CSHI). The aim of this study was to compare circadian hormone rhythms and insulin sensitivity in conventional thrice-daily regimen of glucocorticoid replacement therapy with CSHI treatment in patients with AD. An open, randomized, two-period, 12-week crossover multicentre trial in Norway an