WorldWideScience

Sample records for circadian clock-coordinated hepatic

  1. The circadian clock coordinates ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Céline Jouffe

    Full Text Available Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.

  2. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling.

  3. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism

    DEFF Research Database (Denmark)

    Feng, Dan; Liu, Tao; Sun, Zheng;

    2011-01-01

    Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when...... HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbα. Rev-erbα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes...... hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis....

  4. Pituitary hormone circadian rhythm alterations in cirrhosis patients with subclinical hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To analyze pituitary hormone and melatonin cir- cadian rhythms, and to correlate hormonal alterations with clinical performance, hepatic disease severity and diagnostic tests used for the detection of hepatic en- cephalopathy in cirrhosis. METHODS: Twenty-six patients with cirrhosis were enrolled in the study. Thirteen patients hospitalized for systemic diseases not affecting the liver were included as controls. Liver disease severity was assessed by the Child-Pugh score. All patients underwent detailed neurological assessment, electroencephalogram (EEG), brain magnetic resonance imaging (MRI), assays of pi- tuitary hormone, cortisol and melatonin, and complete blood chemistry evaluation. RESULTS: Pituitary hormone and melatonin circadian patterns were altered in cirrhosis patients without clinical encephalopathy. Circadian hormone alterations were different in cirrhosis patients compared with con- trois. Although cortisol secretion was not altered in any patient with cirrhosis, the basal cortisol levels were low and correlated with EEG and brain MRI abnormalities. Melatonin was the only hormone associated with the severity of liver insufficiency. CONCLUSION: Abnormal pituitary hormone and mel- atonin circadian patterns are present in cirrhosis before the development of hepatic encephalopathy. These abnormalities may be early indicators of impending hepatic encephalopathy. Factors affecting the human biologic clock at the early stages of liver insufficiency require further study.

  5. Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes.

    Directory of Open Access Journals (Sweden)

    Giorgia Benegiamo

    Full Text Available BACKGROUND: Hepatitis C virus (HCV infects approximately 3% of the world population and is the leading cause of liver disease, impacting hepatocyte metabolism, depending on virus genotype. Hepatic metabolic functions show rhythmic fluctuations with 24-h periodicity (circadian, driven by molecular clockworks ticking through translational-transcriptional feedback loops, operated by a set of genes, called clock genes, encoding circadian proteins. Disruption of biologic clocks is implicated in a variety of disorders including fatty liver disease, obesity and diabetes. The relation between HCV replication and the circadian clock is unknown. METHODS: We investigated the relationship between HCV core infection and viral replication and the expression of clock genes (Rev-Erbα, Rorα, ARNTL, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1 and CRY2 in two cellular models, the Huh-7 cells transiently expressing the HCV core protein genotypes 1b or 3a, and the OR6 cells stably harboring the full-length hepatitis C genotype 1b replicon, and in human liver biopsies, using qRT-PCR, immunoblotting, luciferase assays and immunohistochemistry. RESULTS: In Huh-7 cells expressing the HCV core protein genotype 1b, but not 3a, and in OR6 cells, transcript and protein levels of PER2 and CRY2 were downregulated. Overexpression of PER2 led to a consistent decrease in HCV RNA replicating levels and restoration of altered expression pattern of a subset of interferon stimulated genes (ISGs in OR6 cells. Furthermore, in liver biopsies from HCV genotype 1b infected patients, PER2 was markedly localized to the nucleus, consistent with an auto-inhibitory transcriptional feedback loop. CONCLUSIONS: HCV can modulate hepatic clock gene machinery, and the circadian protein PER2 counteracts viral replication. Further understanding of circadian regulation of HCV replication and rhythmic patterns of host-hosted relationship may improve the effectiveness of HCV antiviral therapy. This would

  6. Hepatitis B virus X protein disrupts the balance of the expression of circadian rhythm genes in hepatocellular carcinoma.

    Science.gov (United States)

    Yang, Sheng-Li; Yu, Chao; Jiang, Jian-Xin; Liu, Li-Ping; Fang, Xiefan; Wu, Chao

    2014-12-01

    The human circadian rhythm is controlled by at least eight circadian clock genes and disruption of the circadian rhythm is associated with cancer development. The present study aims to elucidate the association between the expression of circadian clock genes and the development of hepatocellular carcinoma (HCC), and also to reveal whether the hepatitis B virus X protein (HBx) is the major regulator that contributes to the disturbance of circadian clock gene expression. The mRNA levels of circadian clock genes in 30 HCC and the paired peritumoral tissues were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A stable HBx-expressing cell line, Bel-7404-HBx, was established through transfection of HBx plasmids. The mRNA level of circadian clock genes was also detected by RT-qPCR in these cells. Compared with the paired peritumoral tissues, the mRNA levels of the Per1, Per2, Per3 and Cry2 genes in HCC tissue were significantly lower (P0.05). Compared with Bel-7404 cells, the mRNA levels of the CLOCK, Per1 and Per2 genes in Bel-7404-HBx cells were significantly increased, while the mRNA levels of the BMAL1, Per3, Cry1, Cry2 and CKIɛ genes were decreased (Pgenes is common in HCC. HBx disrupts the expression of circadian clock genes and may, therefore, induce the development of HCC.

  7. Circadian metabolic regulation through crosstalk between casein kinase 1δ and transcriptional coactivator PGC-1α.

    Science.gov (United States)

    Li, Siming; Chen, Xiao-Wei; Yu, Lei; Saltiel, Alan R; Lin, Jiandie D

    2011-12-01

    Circadian clock coordinates behavior and physiology in mammals in response to light and feeding cycles. Disruption of normal clock function is associated with increased risk for cardiovascular and metabolic diseases, underscoring the emerging concept that temporal regulation of tissue metabolism is a fundamental aspect of energy homeostasis. We have previously demonstrated that transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), coordinates circadian metabolic rhythms through simultaneous regulation of metabolic and clock gene expression. In this study, we found that PGC-1α physically interacts with, and is phosphorylated by, casein kinase 1δ (CK1δ), a core component of the circadian pacemaker. CK1δ represses the transcriptional function of PGC-1α in cultured hepatocytes, resulting in decreased gluconeogenic gene expression and glucose secretion. At the molecular level, CK1δ phosphorylation of PGC-1α within its arginine/serine-rich domain enhances its degradation through the proteasome system. Together, these results elucidate a novel mechanism through which circadian pacemaker transduces timing signals to the metabolic regulatory network that controls hepatic energy metabolism.

  8. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  9. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals

    Science.gov (United States)

    Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter

    2016-01-01

    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573

  10. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice.

    Science.gov (United States)

    Anthérieu, Sébastien; Le Guillou, Dounia; Coulouarn, Cédric; Begriche, Karima; Trak-Smayra, Viviane; Martinais, Sophie; Porceddu, Mathieu; Robin, Marie-Anne; Fromenty, Bernard

    2014-04-01

    Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10⁶ ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10⁶ ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10²-10³ ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants.

  11. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice

    Energy Technology Data Exchange (ETDEWEB)

    Anthérieu, Sébastien; Le Guillou, Dounia; Coulouarn, Cédric; Begriche, Karima [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Trak-Smayra, Viviane [Pathology Department, Saint-Joseph University, Beirut (Lebanon); Martinais, Sophie [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Porceddu, Mathieu [Mitologics SAS, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris (France); Robin, Marie-Anne [INSERM, U991, Université de Rennes 1, 35000 Rennes (France); Fromenty, Bernard, E-mail: bernard.fromenty@inserm.fr [INSERM, U991, Université de Rennes 1, 35000 Rennes (France)

    2014-04-01

    Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10{sup 6} ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10{sup 6} ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10{sup 2}–10{sup 3} ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants. - Highlights: • The contamination of drinking water with drugs may have harmful effects on health. • Some drugs can be more hepatotoxic in the context of obesity and fatty liver. • Effects of chronic exposure of trace drugs were studied in lean and obese mouse liver. Drugs and obesity present additive effects on circadian gene expression and toxicity. • Trace

  12. Genetic and Environmental Models of Circadian Disruption Link SRC-2 Function to Hepatic Pathology.

    Science.gov (United States)

    Fleet, Tiffany; Stashi, Erin; Zhu, Bokai; Rajapakshe, Kimal; Marcelo, Kathrina L; Kettner, Nicole M; Gorman, Blythe K; Coarfa, Cristian; Fu, Loning; O'Malley, Bert W; York, Brian

    2016-10-01

    Circadian rhythmicity is a fundamental process that synchronizes behavioral cues with metabolic homeostasis. Disruption of daily cycles due to jet lag or shift work results in severe physiological consequences including advanced aging, metabolic syndrome, and even cancer. Our understanding of the molecular clock, which is regulated by intricate positive feedforward and negative feedback loops, has expanded to include an important metabolic transcriptional coregulator, Steroid Receptor Coactivator-2 (SRC-2), that regulates both the central clock of the suprachiasmatic nucleus (SCN) and peripheral clocks including the liver. We hypothesized that an environmental uncoupling of the light-dark phases, termed chronic circadian disruption (CCD), would lead to pathology similar to the genetic circadian disruption observed with loss of SRC-2 We found that CCD and ablation of SRC-2 in mice led to a common comorbidity of metabolic syndrome also found in humans with circadian disruption, non-alcoholic fatty liver disease (NAFLD). The combination of SRC-2(-/-) and CCD results in a more robust phenotype that correlates with human non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) gene signatures. Either CCD or SRC-2 ablation produces an advanced aging phenotype leading to increased mortality consistent with other circadian mutant mouse models. Collectively, our studies demonstrate that SRC-2 provides an essential link between the behavioral activities influenced by light cues and the metabolic homeostasis maintained by the liver.

  13. Circadian gating of the cell cycle revealed in single cyanobacterial cells.

    Science.gov (United States)

    Yang, Qiong; Pando, Bernardo F; Dong, Guogang; Golden, Susan S; van Oudenaarden, Alexander

    2010-03-19

    Although major progress has been made in uncovering the machinery that underlies individual biological clocks, much less is known about how multiple clocks coordinate their oscillations. We simultaneously tracked cell division events and circadian phases of individual cells of the cyanobacterium Synechococcus elongatus and fit the data to a model to determine when cell cycle progression slows as a function of circadian and cell cycle phases. We infer that cell cycle progression in cyanobacteria slows during a specific circadian interval but is uniform across cell cycle phases. Our model is applicable to the quantification of the coupling between biological oscillators in other organisms.

  14. Novel putative mechanisms to link circadian clocks to healthy aging.

    Science.gov (United States)

    Popa-Wagner, Aurel; Catalin, Bogdan; Buga, Ana-Maria

    2015-08-01

    The circadian clock coordinates the internal physiology to increase the homeostatic capacity thereby providing both a survival advantage to the system and an optimization of energy budgeting. Multiple-oscillator circadian mechanisms are likely to play a role in regulating human health and may contribute to the aging process. Our aim is to give an overview of how the central clock in the hypothalamus and peripheral clocks relate to aging and metabolic disorders, including hyperlipidemia and hyperglycemia. In particular, we unravel novel putative mechanisms to link circadian clocks to healthy aging. This review may lead to the design of large-scale interventions to help people stay healthy as they age by adjusting daily activities, such as feeding behavior, and or adaptation to age-related changes in individual circadian rhythms.

  15. Circadian Rhythms

    Science.gov (United States)

    ... microbes. The study of circadian rhythms is called chronobiology. Are circadian rhythms the same thing as biological ... the eyes cross. Do circadian rhythms have a genetic component? Yes. Researchers have already identified genes that ...

  16. Circadian variation in the pharmacokinetics of verapamil

    DEFF Research Database (Denmark)

    Jespersen, C M; Frederiksen, M; Hansen, J F;

    1989-01-01

    Circadian variation in the metabolism of verapamil was investigated in 10 patients with stable angina pectoris during treatment with sustained-release verapamil 360 mg at 08.00 h or 22.0 h. No major difference in exercise parameters was found. During the evening dosage schedule a significantly gr...... or to circadian variation in hepatic microsomal metabolism....

  17. 不同昼夜节律下小鼠肝脏生物钟基因表达的变化及异氟醚麻醉对肝脏生物钟基因表达的影响%Changes in expression of hepatic circadian clock gene in different types of circadian rhythm and effect of isoflurane anesthesia on expression of hepatic circadian clock gene in mice

    Institute of Scientific and Technical Information of China (English)

    崔银; 夏天娇; 马正良; 顾小萍

    2014-01-01

    目的 探讨不同昼夜节律下小鼠肝脏生物钟基因表达的变化及异氟醚麻醉对肝脏生物钟基因表达的影响.方法 选择雄性C57/B6小鼠72只,2月龄,体重20 ~ 25 g,采用随机数字表法,将其分为3组(n=24),昼夜节律正常组:采用12h光照(光照期8:00-20:00)与12 h黑暗(黑暗期20:00-8:00)交替,持续3周;昼夜节律颠倒组:采用12h黑暗(黑暗期8:00-20:00)与12 h光照(光照期20:00-8:00)交替,持续3周;麻醉组:光照处理同昼夜节律正常组,持续3周后,行麻醉处理.将自然时间转换为昼夜节律时间(CT),以光照起点定为CT0.麻醉组在小鼠的相对觉醒期行2%异氟醚麻醉6h,即CT14开始,持续至CT20.于CT2、CT8、CT14、CT20时取下丘脑视交叉上核(SCN)和肝脏,采用实时定量聚合酶链反应方法测定Clock mRNA及Cry1 mRNA表达.结果 两种昼夜节律下小鼠肝脏与SCN中Crv1 mRNA、Clock mRNA表达都呈现节律性.与SCN比较,两种昼夜节律下肝脏Cry1mRNA及Clock mRNA表达的峰值相位均滞后;与昼夜节律正常组比较,麻醉组肝脏Cry1 mRNA及Clock mRNA表达的峰值相位滞后.结论 不同昼夜节律下肝脏生物钟基因呈现节律性表达,且异氟醚麻醉可导致其表达峰值相位的明显滞后.%Objective To investigate the changes in the expression of hepatic circadian clock gene in different types of circadian rhythm and the effect of isoflurane anesthesia on the expression of hepatic circadian clwk gene in mice.Methods Seventy-two male C57/B6 mice,aged 2 months,weighing 20-25 g,were randomly divided into 3 groups (n =24 each):normal light/dark (LD) cycle group,reversal LD cycle group and anesthesia group.Normal LD cycle group and anesthesia groupwere maintained in a regular 12 h LD cycle with lights on at 8:00 am and off at 8:00 pm for 3 weeks,and in addition anesthesia was then performed with isoflurane in anesthesia group.Reversal LD cycle group was kept in an inverted12 h LD cycle with lights on at 8

  18. Protein phosphatase 1 (PP1 is a post-translational regulator of the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Isabelle Schmutz

    Full Text Available Circadian clocks coordinate the timing of important biological processes. Interconnected transcriptional and post-translational feedback loops based on a set of clock genes generate and maintain these rhythms with a period of about 24 hours. Many clock proteins undergo circadian cycles of post-translational modifications. Among these modifications, protein phosphorylation plays an important role in regulating activity, stability and intracellular localization of clock components. Several protein kinases were characterized as regulators of the circadian clock. However, the function of protein phosphatases, which balance phosphorylation events, in the mammalian clock mechanism is less well understood. Here, we identify protein phosphatase 1 (PP1 as regulator of period and light-induced resetting of the mammalian circadian clock. Down-regulation of PP1 activity in cells by RNA interference and in vivo by expression of a specific inhibitor in the brain of mice tended to lengthen circadian period. Moreover, reduction of PP1 activity in the brain altered light-mediated clock resetting behavior in mice, enhancing the phase shifts in either direction. At the molecular level, diminished PP1 activity increased nuclear accumulation of the clock component PER2 in neurons. Hence, PP1, may reduce PER2 phosphorylation thereby influencing nuclear localization of this protein. This may at least partially influence period and phase shifting properties of the mammalian circadian clock.

  19. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling.

    Science.gov (United States)

    Plikus, Maksim V; Vollmers, Christopher; de la Cruz, Damon; Chaix, Amandine; Ramos, Raul; Panda, Satchidananda; Chuong, Cheng-Ming

    2013-06-04

    Regenerative cycling of hair follicles offers an unique opportunity to explore the role of circadian clock in physiological tissue regeneration. We focused on the role of circadian clock in actively proliferating transient amplifying cells, as opposed to quiescent stem cells. We identified two key sites of peripheral circadian clock activity specific to regenerating anagen hair follicles, namely epithelial matrix and mesenchymal dermal papilla. We showed that peripheral circadian clock in epithelial matrix cells generates prominent daily mitotic rhythm. As a consequence of this mitotic rhythmicity, hairs grow faster in the morning than in the evening. Because cells are the most susceptible to DNA damage during mitosis, this cycle leads to a remarkable time-of-day-dependent sensitivity of growing hair follicles to genotoxic stress. Same doses of γ-radiation caused dramatic hair loss in wild-type mice when administered in the morning, during mitotic peak, compared with the evening, when hair loss is minimal. This diurnal radioprotective effect becomes lost in circadian mutants, consistent with asynchronous mitoses in their hair follicles. Clock coordinates cell cycle progression with genotoxic stress responses by synchronizing Cdc2/Cyclin B-mediated G2/M checkpoint. Our results uncover diurnal mitotic gating as the essential protective mechanism in highly proliferative hair follicles and offer strategies for minimizing or maximizing cytotoxicity of radiation therapies.

  20. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930140 Hepatocyte stimulator peptide and itsclinical significance in viral hepatitis.ZHOUWeiping(周卫平),et al.Instit Viral Hepatitis,Chongqing Med Univ,630010.Chin J InternMed 1992;31(10):626-628.Hepatocyte stimulator peptide(HSP)is anewly developed hepatic stimulator substance.Its monoclonal antibodies have been obtained inour laboratory.In this study,HSP was deter-mined in the sera of 315 subjects including pa-

  1. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    2010349 Relationships between serum hepatitis B virus load in mothers,free maternal DNA in peripheral blood of newborns and hepatitis B virus infection of newborns. WEI Junni(魏俊妮),et al. Dept Epidemiol,Shanxi Med Univ,Taiyuan 030001. Chin J Infect Dis 2010;28(5):297-300. Objective To study the relationships between serum hepatitis B virus (HBV) DNA level

  2. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    970349 Primary structure and variability of partialsequences in nonstructural gene 5 region of hepatitis Gvirus, CHANG Jinhong(常锦红), et al. Hepatol Instis,People’s Hosp, Beijing Med Univ, Beijing, 100044. NatlMed J China 1997; 77(3): 178-182. Objective: To sequence partial genome of hepatitis G

  3. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    2009209 Effects of chronic hepatitis B virus infection on human hepatic cytochrome P450 2C9.ZHO Fuping(周福平),et al.Dept Infect Dis,Shanghai Changzheng Hosp,Shanghai 200003.Chin J Infect Dis,2009;27(2):94-98.

  4. Hepatitis

    Science.gov (United States)

    ... inflammation of the liver.” This inflammation can be caused by a wide variety of toxins, drugs, and metabolic diseases, as well as infection. There are at least 5 hepatitis viruses. Hepatitis A is contracted when a child eats food or drinks water that is contaminated with the virus or has ...

  5. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920691 The determination of serum hepa-titis B virus DNA by polymerase chain rea-ction in hepatitis B patients treated withalpha-interferon. XU. Jianye(徐建业), et al.Centr Lab, Chongqing Cancer Instit, 630030.Chin J Intern Med, 1992; 31(5): 278-280. To clarify the status of HBV in serum of

  6. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005226 Characteristics of peripheral blood T lymphocyte subsets in hepatitis B patients. FAN Zhen-ping(范振平),et al. Center Bio Ther, Instit Infect Dis, 302 Hosp Chin PLA, Beijing 100039. World Chin J Digestol, 2005;13(2): 194-197. Objective: To characterize the T-lymphocyte subsets in peripheral blood of patients with acute and chronic hepatitis B, and to explore their relations with the disease state. Methods: Peripheral blood

  7. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008312 Impact of hepatitis B virus infection on the activity of hematopoietic stem cell.SHI Yanmei(石雁梅),et al.Dept Infect Dis,1st Clin Coll,Harbin Med Univ,Harbin 150001.Chin J Infect Dis 2008;26(4):197-201.Objective To study the impact of hepatitis B virus (HBV)infection on the activity of cord hematopoieticstem cells.Methods CD34+cells were isolated from healthy human cord blood by mini MACS.Cells were

  8. Does circadian disruption play a role in the metabolic-hormonal link to delayed lactogenesis II?

    Directory of Open Access Journals (Sweden)

    Manjie eFu

    2015-02-01

    Full Text Available Breastfeeding improves maternal and child health. The American Academy of Pediatrics recommends exclusive breastfeeding for six months, with continued breastfeeding for at least one year. However, in the US, only 18.8% of infants are exclusively breastfed until six months of age. For mothers who initiate breastfeeding, the early postpartum period sets the stage for sustained breastfeeding. Mothers who experience breastfeeding problems in the early postpartum period are more likely to discontinue breastfeeding within two weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II (i.e. onset of milk coming in more than 72 h postpartum. Recent studies report a metabolic-hormonal link to delayed lactogenesis II. This is not surprising because around the time of birth the mother’s entire metabolism changes to direct nutrients to mammary glands. Circadian and metabolic systems are closely linked, and our rodent studies suggest circadian clocks coordinate hormonal and metabolic changes to support lactation. Molecular and environmental disruption of the circadian system decreases a dam’s ability to initiate lactation and negatively impacts milk production. Circadian and metabolic systems evolved to be functional and adaptive when lifestyles and environmental exposures were quite different from modern times. We now have artificial lights, longer work days, and increases in shift work. Disruption in the circadian system due to shift work, jet lag, sleep disorders and other modern life style choices are associated with metabolic disorders, obesity, and impaired reproduction. We hypothesize delayed lactogenesis II is related to disruption of the mother’s circadian system. Here we review literature that supports this hypothesis, and describe interventions that may help to increase breastfeeding success.

  9. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008449 A cross-sectional survey of occult hepatitis B virus infection in HIV-infected patients. MA Jianxin(马建新), et al.Dept Infect Dis, Shanghai Public Health Clin Center, Shanghai 201508. Chin J Intern Med 2008;47(7):574-577. Objective To assess the prevalence of occult HBV infection in HIV-infected patients.

  10. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008079 Relationship of HBV genotype and bcp and pc mutations with HBV DNA rebound after lamivudine therapy. SU Minghua(苏明华), et al. Dept Infect Dis Clin Hosp, Guangxi Med Univ, Nanning 530027. World Chin J Digestol 2007;15(33):3507-3513. Objective To investigate the relationship of HBV gene mutations with HBV DNA rebound after lamivudine therapy. Methods Twenty-seven hepatitis B patients with HBV DNA rebound after

  11. Circadian dysregulation disrupts bile acid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Ma

    Full Text Available BACKGROUND: Bile acids are potentially toxic compounds and their levels of hepatic production, uptake and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: Both restricted feeding, which phase shifts peripheral clocks, and genetic ablation in Per1(-/-/Per2(-/- (PERDKO mice disrupted normal bile acid control and resulted in hepatic cholestasis. Restricted feeding caused a dramatic, transient elevation in hepatic bile acid levels that was associated with activation of the xenobiotic receptors CAR and PXR and elevated serum aspartate aminotransferase (AST, indicative of liver damage. In the PERDKO mice, serum bile acid levels were elevated and the circadian expression of key bile acid synthesis and transport genes, including Cyp7A1 and NTCP, was lost. This was associated with blunted expression of a primary clock output, the transcription factor DBP, which transactivates the promoters of both genes. CONCLUSIONS/SIGNIFICANCE: We conclude that disruption of the circadian clock results in dysregulation of bile acid homeostasis that mimics cholestatic disease.

  12. Relationships between the circadian system and Alzheimer's disease-like symptoms in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dani M Long

    Full Text Available Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer's disease (AD, are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-β (Aβ peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aβ peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01. No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aβ peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aβ peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aβ peptides causes rhythm degradation downstream from the central clock mechanism.

  13. Circadian Systems and Metabolism

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    1999-01-01

    Circadian systems direct many metabolic parameters and, at the same time, they appear to be exquisitely shielded from metabolic variations. Although the recent decade of circadian research has brought insights into how circadian periodicity may be generated at the molecular level, little is known ab

  14. Circadian Rhythm Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Erhan Akinci

    2016-06-01

    Full Text Available The circadian rhythm sleep disorders define the clinical conditions where sleep and ndash;wake rhythm is disrupted despite optimum environmental and social conditions. They occur as a result of the changes in endogenous circadian hours or non-compatibility of environmental factors or social life with endogenous circadian rhythm. The sleep and ndash;wake rhythm is disrupted continuously or in repeating phases depending on lack of balance between internal and external cycles. This condition leads to functional impairments which cause insomnia, excessive sleepiness or both in people. Application of detailed sleep anamnesis and sleep diary with actigraphy record, if possible, will be sufficient for diagnosis. The treatment aims to align endogenous circadian rhythm with environmental conditions. The purpose of this article is to review pathology, clinical characteristics, diagnosis and treatment of circadian rhythm disorder. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 178-189

  15. Circadian physiology of metabolism.

    Science.gov (United States)

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark.

  16. Circadian clocks and breast cancer

    OpenAIRE

    Blakeman, Victoria; Jack L. Williams; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, an...

  17. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    in patients with lower than median pain levels for a three days period after laparoscopic cholecystectomy. In the series of studies included in this thesis we have systematically shown that circadian disturbances are found in the secretion of hormones, the sleep-wake cycle, core body temperature rhythm......An increasing number of studies have shown that circadian variation in the excretion of hormones, the sleep wake circle, the core body temperature rhythm, the tone of the autonomic nervous system and the activity rhythm are important both in health and in disease processes. An increasing attention...... has also been directed towards the circadian variation in endogenous rhythms in relation to surgery. The attention has been directed to the question whether the circadian variation in endogenous rhythms can affect postoperative recovery, morbidity and mortality. Based on the lack of studies where...

  18. Metabolic regulation of circadian clocks.

    Science.gov (United States)

    Haydon, Michael J; Hearn, Timothy J; Bell, Laura J; Hannah, Matthew A; Webb, Alex A R

    2013-05-01

    Circadian clocks are 24-h timekeeping mechanisms, which have evolved in plants, animals, fungi and bacteria to anticipate changes in light and temperature associated with the rotation of the Earth. The current paradigm to explain how biological clocks provide timing information is based on multiple interlocking transcription-translation negative feedback loops (TTFL), which drive rhythmic gene expression and circadian behaviour of growth and physiology. Metabolism is an important circadian output, which in plants includes photosynthesis, starch metabolism, nutrient assimilation and redox homeostasis. There is increasing evidence in a range of organisms that these metabolic outputs can also contribute to circadian timing and might also comprise independent circadian oscillators. In this review, we summarise the mechanisms of circadian regulation of metabolism by TTFL and consider increasing evidence that rhythmic metabolism contributes to the circadian network. We highlight how this might be relevant to plant circadian clock function.

  19. Circadian rhythm sleep disorders

    Directory of Open Access Journals (Sweden)

    Morgenthaler TI

    2012-05-01

    Full Text Available Bhanu P Kolla,1,2 R Robert Auger,1,2 Timothy I Morgenthaler11Mayo Center for Sleep Medicine, 2Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USAAbstract: Misalignment between endogenous circadian rhythms and the light/dark cycle can result in pathological disturbances in the form of erratic sleep timing (irregular sleep–wake rhythm, complete dissociation from the light/dark cycle (circadian rhythm sleep disorder, free-running type, delayed sleep timing (delayed sleep phase disorder, or advanced sleep timing (advanced sleep phase disorder. Whereas these four conditions are thought to involve predominantly intrinsic mechanisms, circadian dysrhythmias can also be induced by exogenous challenges, such as those imposed by extreme work schedules or rapid transmeridian travel, which overwhelm the ability of the master clock to entrain with commensurate rapidity, and in turn impair approximation to a desired sleep schedule, as evidenced by the shift work and jet lag sleep disorders. This review will focus on etiological underpinnings, clinical assessments, and evidence-based treatment options for circadian rhythm sleep disorders. Topics are subcategorized when applicable, and if sufficient data exist. The length of text associated with each disorder reflects the abundance of associated literature, complexity of management, overlap of methods for assessment and treatment, and the expected prevalence of each condition within general medical practice.Keywords: circadian rhythm sleep disorders, assessment, treatment

  20. [Circadian rhythm sleep disorder].

    Science.gov (United States)

    Mishima, Kazuo

    2013-12-01

    Primary pathophysiology of circadian rhythm sleep disorders(CRSDs) is a misalignment between the endogenous circadian rhythm phase and the desired or socially required sleep-wake schedule, or dysfunction of the circadian pacemaker and its afferent/efferent pathways. CRSDs consist of delayed sleep phase type, advanced sleep phase type, free-running type, irregular sleep-wake type, shift work type and jet lag type. Chronotherapy using strong zeitgebers (time cues), such as bright light and melatonin/ melatonin type 2 receptor agonist, is effective when administered with proper timing. Bright light is the strongest entraining agent of circadian rhythms. Bright light therapy (appropriately-timed exposure to bright light) for CRSDs is an effective treatment option, and can shift the sleep-wake cycle to earlier or later times, in order to correct for misalignment between the circadian system and the desired sleep-wake schedule. Timed administration of melatonin, either alone or in combination with light therapy has also been shown to be useful in the treatment of CRSDs.

  1. Circadian entrainment of Neurospora crassa

    NARCIS (Netherlands)

    Merrow, M.; Roenneberg, T.

    2007-01-01

    The circadian clock evolved under entraining conditions, yet most circadian experiments and much circadian theory are built around free-running rhythms. The interpretation of entrainment experiments is certainly more complex than that of free-running rhythms due to the relationship between exogenous

  2. Postoperative circadian disturbances

    DEFF Research Database (Denmark)

    Gögenur, Ismail

    2010-01-01

    An increasing number of studies have shown that circadian variation in the excretion of hormones, the sleep wake circle, the core body temperature rhythm, the tone of the autonomic nervous system and the activity rhythm are important both in health and in disease processes. An increasing attentio...

  3. Circadian rhythms regulate amelogenesis.

    Science.gov (United States)

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization.

  4. How pervasive are circadian oscillations?

    OpenAIRE

    2014-01-01

    Circadian oscillations play a critical role in coordinating the physiology, homeostasis, and behavior of biological systems. Once thought to only be controlled by a master clock, recent high-throughput experiments suggest many genes and metabolites in a cell are potentially capable of circadian oscillations. Each cell can reprogram itself and select a relatively small fraction of this broad repertoire for circadian oscillations, as a result of genetic, environmental, and even diet changes.

  5. Circadian Pacemaker – Temperature Compensation

    NARCIS (Netherlands)

    Gerkema, Menno P.; Binder, Marc D.; Hirokawa, Nobutaka; Windhorst, Uwe

    2009-01-01

    One of the defining characteristics of circadian pacemakers and indicates the independence of the speed of circadian clock processes of environmental temperature. Mechanisms involved, so far not elucidated in full detail, entail at least two processes that are similarly affected by temperature chang

  6. Circadian systems biology in Metazoa.

    Science.gov (United States)

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-11-01

    Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.

  7. Circadian rhythms in microalgae production

    NARCIS (Netherlands)

    Winter, de L.

    2015-01-01

    Abstract Thesis: Circadian rhythms in microalgae production Lenneke de Winter The sun imposes a daily cycle of light and dark on nearly all organisms. The circadian clock evolved to help organisms program their activities at an appropriate time during this daily cycle. For example,

  8. Circadian Regulation of Macronutrient Absorption.

    Science.gov (United States)

    Hussain, M Mahmood; Pan, Xiaoyue

    2015-12-01

    Various intestinal functions exhibit circadian rhythmicity. Disruptions in these rhythms as in shift workers and transcontinental travelers are associated with intestinal discomfort. Circadian rhythms are controlled at the molecular level by core clock and clock-controlled genes. These clock genes are expressed in intestinal cells, suggesting that they might participate in the circadian regulation of intestinal functions. A major function of the intestine is nutrient absorption. Here, we will review absorption of proteins, carbohydrates, and lipids and circadian regulation of various transporters involved in their absorption. A better understanding of circadian regulation of intestinal absorption might help control several metabolic disorders and attenuate intestinal discomfort associated with disruptions in sleep-wake cycles.

  9. Circadian rhythm and its role in malignancy

    OpenAIRE

    Rana, Sobia; Mahmood, Saqib

    2010-01-01

    Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circ...

  10. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  11. Neurobiology of Circadian Rhythm Regulation.

    Science.gov (United States)

    Rosenwasser, Alan M; Turek, Fred W

    2015-12-01

    Over the past few decades, multilevel research has elucidated the basic neuroanatomy, neurochemistry, and molecular neurobiology of the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). The circadian timing system is composed of a large number of cellular oscillators located in the SCN, in non-SCN brain structures, and throughout the body. Cellular-level oscillations are generated by a molecular feedback loop in which circadian clock genes rhythmically regulate their own transcription, as well as that of hundreds of clock-controlled genes. The maintenance of proper coordination within this network of cellular- and tissue-level clocks is essential for health and well-being.

  12. Circadian Rhythm Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The value of measuring sleep-wake cycles is significantly enhanced by measuring other physiological signals that depend on circadian rhythms (such as heart rate and...

  13. Circadian Influences on Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Jitka A. I. Virag

    2014-10-01

    Full Text Available Components of circadian rhythm maintenance, or clock genes, are found in all peripheral tissues, including the heart, and influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on cardiovascular disease incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and cardiovascular disease may provide insights into possible preventative and therapeutic strategies for susceptible populations.

  14. SRC-2 Is an Essential Coactivator for Orchestrating Metabolism and Circadian Rhythm

    Directory of Open Access Journals (Sweden)

    Erin Stashi

    2014-02-01

    Full Text Available Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:CLOCK transcriptional networks is largely unexplored. Here, we show diurnal hepatic steroid receptor coactivator 2 (SRC-2 recruitment to the genome that extensively overlaps with the BMAL1 cistrome during the light phase, targeting genes that enrich for circadian and metabolic processes. Notably, SRC-2 ablation impairs wheel-running behavior, alters circadian gene expression in several peripheral tissues, alters the rhythmicity of the hepatic metabolome, and deregulates the synchronization of cell-autonomous metabolites. We identify SRC-2 as a potent coregulator of BMAL1:CLOCK and find that SRC-2 targets itself with BMAL1:CLOCK in a feedforward loop. Collectively, our data suggest that SRC-2 is a transcriptional coactivator of the BMAL1:CLOCK oscillators and establish SRC-2 as a critical positive regulator of the mammalian circadian clock.

  15. Aircrew fatigue and circadian rhythmicity

    Science.gov (United States)

    Graeber, R. Curtis

    1988-01-01

    Recent statistical and experimental studies on the role of circadian rhythms in aircrew fatigue and aviation accidents are reviewed from a human-factors perspective, and typical data are presented in extensive graphs. Consideration is given to the biological clock and the limits of endurance, circadian desynchronization, sleep and sleepiness, short-haul and long-haul operational studies, and the potential advantages of cockpit automation.

  16. Autoimmune Hepatitis

    Science.gov (United States)

    ... Liver Disease & NASH Definition & Facts Symptoms & Causes Diagnosis Treatment Eating, Diet, & Nutrition Clinical Trials Biliary Atresia Cirrhosis Hemochromatosis Hepatitis A through E (Viral Hepatitis) Hepatitis ...

  17. Circadian rhythms synchronize mitosis in Neurospora crassa

    OpenAIRE

    Hong, Christian I.; Zámborszky, Judit; Baek, Mokryun; Labiscsak, Laszlo; Ju, Kyungsu; Lee, Hyeyeong; Luis F. Larrondo; Goity, Alejandra; Chong, Hin Siong; Belden, William J.; Csikász-Nagy, Attila

    2014-01-01

    Circadian rhythms provide temporal information to other cellular processes, such as metabolism. We investigate the coupling between the cell cycle and the circadian clock using mathematical modeling and experimentally validate model-driven predictions with a model filamentous fungus, Neurospora crassa. We demonstrate a conserved coupling mechanism between the cell cycle and the circadian clock in Neurospora as in mammals, which results in circadian clock-gated mitotic cycles. Furthermore, we ...

  18. Nutrition and the circadian system.

    Science.gov (United States)

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-08-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases.

  19. Circadian systems : different levels of complexity

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    2001-01-01

    After approximately 50 years of circadian research, especially in selected circadian model systems (Drosophila, Neurospora, Gonyaulax and, more recently, cyanobacteria and mammals), we appreciate the enormous complexity of the circadian programme in organisms and cells, as well as in physiological a

  20. Viral Hepatitis

    Science.gov (United States)

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  1. Circadian Insights into Motivated Behavior.

    Science.gov (United States)

    Antle, Michael C; Silver, Rae

    2016-01-01

    For an organism to be successful in an evolutionary sense, it and its offspring must survive. Such survival depends on satisfying a number of needs that are driven by motivated behaviors, such as eating, sleeping, and mating. An individual can usually only pursue one motivated behavior at a time. The circadian system provides temporal structure to the organism's 24 hour day, partitioning specific behaviors to particular times of the day. The circadian system also allows anticipation of opportunities to engage in motivated behaviors that occur at predictable times of the day. Such anticipation enhances fitness by ensuring that the organism is physiologically ready to make use of a time-limited resource as soon as it becomes available. This could include activation of the sympathetic nervous system to transition from sleep to wake, or to engage in mating, or to activate of the parasympathetic nervous system to facilitate transitions to sleep, or to prepare the body to digest a meal. In addition to enabling temporal partitioning of motivated behaviors, the circadian system may also regulate the amplitude of the drive state motivating the behavior. For example, the circadian clock modulates not only when it is time to eat, but also how hungry we are. In this chapter we explore the physiology of our circadian clock and its involvement in a number of motivated behaviors such as sleeping, eating, exercise, sexual behavior, and maternal behavior. We also examine ways in which dysfunction of circadian timing can contribute to disease states, particularly in psychiatric conditions that include adherent motivational states.

  2. Circadian modulation of sleep in rodents.

    Science.gov (United States)

    Yasenkov, Roman; Deboer, Tom

    2012-01-01

    Sleep is regulated by circadian and homeostatic processes. The sleep homeostat keeps track of the duration of prior sleep and waking and determines the intensity of sleep. In mammals, the homeostatic process is reflected by the slow waves in the non-rapid eye movement (NREM) sleep electroencephalogram (EEG). The circadian process is controlled by a pacemaker located in the suprachiasmatic nucleus of the hypothalamus and provides the sleep homeostat with a circadian framework. This review summarizes the changes in sleep obtained after different chronobiological interventions (changes in photoperiod, light availability, and running wheel availability), the influence of mutations or lesions in clock genes on sleep, and research on the interaction between sleep homeostasis and the circadian clock. Research in humans shows that the period of consolidated waking during the day is a consequence of the interaction between an increasing homeostatic sleep drive and a circadian signal, which promotes waking during the day and sleep during the night. In the rat, it was shown that, under constant homeostatic sleep pressure, with similar levels of slow waves in the NREM sleep EEG at all time points of the circadian cycle, still a small circadian modulation of the duration of waking and NREM sleep episodes was observed. Under similar conditions, humans show a clear circadian modulation in REM sleep, whereas in the rat, a circadian modulation in REM sleep was not present. Therefore, in the rat, the sleep homeostatic modulation in phase with the circadian clock seems to amplify the relatively weak circadian changes in sleep induced by the circadian clock. Knowledge about the interaction between sleep and the circadian clock and the circadian modulation of sleep in other species than humans is important to better understand the underlying regulatory mechanisms.

  3. ADHD, circadian rhythms and seasonality

    NARCIS (Netherlands)

    Wynchank, Dora S.; Bijlenga, Denise; Lamers, Femke; Bron, Tannetje I.; Winthorst, Wim H.; Vogel, Suzan W.; Penninx, Brenda W.; Beekman, Aartjan T.; Kooij, J. Sandra

    2016-01-01

    Objective: We evaluated whether the association between Adult Attention-Deficit/Hyperactivity Disorder (ADHD) and Seasonal Affective Disorder (SAD) was mediated by the circadian rhythm. Method: Data of 2239 persons from the Netherlands Study of Depression and Anxiety (NESDA) were used. Two groups we

  4. Plasma FGF21 displays a circadian rhythm during a 72-h fast in healthy female volunteers

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Beck-Nielsen, Henning; Højlund, Kurt

    2011-01-01

    Fibroblast growth factor (FGF21) is a potent regulator of glucose and lipid metabolism. In rodents, the hepatic expression of FGF21 is controlled by fasting and a circadian regulation, but the physiological role and regulation of FGF21 in humans is not well established. Therefore, the objective...... of this study was to elucidate the 24-h profiling of plasma FGF21 during a 72-h fast....

  5. Hepatitis A and HIV

    Science.gov (United States)

    ... Problems : Hepatitis A Subscribe Translate Text Size Print Hepatitis A What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis B and Hepatitis C . Hepatitis A and HIV Hepatitis A is preventable with ...

  6. Effect of melatonin on endogenous circadian rhythm

    Institute of Scientific and Technical Information of China (English)

    XU Feng; WANG Min; ZANG Ling-he

    2008-01-01

    Objective To further authenticate the role of melatonin on endogenous biologic clock system. Methods Pinealectomized mice were used in the experiments, a series of circadian rhythm of physiology index, such as glucocorticoid, amino acid neurotransmitter, immune function, sensitivity of algesia and body temperature were measured. Results Effects of melatonin on endogenous circadian rhythm roughly appeared four forms: 1) The model of inherent rhythm was invariant, but midvalue was removed. 2) Pacing function: pinealectomy and melatonin administration changed amplitude of the circadian vibration of aspartate, peripheral blood WBC and serum hemolysin. 3) Phase of rhythm changed, such as the effects on percentage of lymphocyte and sensitivity of algesia. 4) No effect, the circadian rhythm of body temperature belong to this form Conclusions Melatonin has effects some circadian rhythm, and it can adjust endogenous inherent rhythm and make the rhythm keep step with environmental cycle. Melatonin may be a kind of Zeitgeber, Pineal gland might being a rhythm bearing organ to some circadian rhythm.

  7. Circadian regulators of intestinal lipid absorption

    OpenAIRE

    Hussain, M. Mahmood; Pan, Xiaoyue

    2015-01-01

    Among all the metabolites present in the plasma, lipids, mainly triacylglycerol and diacylglycerol, show extensive circadian rhythms. These lipids are transported in the plasma as part of lipoproteins. Lipoproteins are synthesized primarily in the liver and intestine and their production exhibits circadian rhythmicity. Studies have shown that various proteins involved in lipid absorption and lipoprotein biosynthesis show circadian expression. Further, intestinal epithelial cells express circa...

  8. Hepatitis E

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Hepatitis E Fact sheet Updated July 2016 Key facts ... et al. Lancet 2012;380:2095-2128. World Hepatitis Day Know hepatitis - Act now Event notice Key ...

  9. Circadian clocks are designed optimally

    CERN Document Server

    Hasegawa, Yoshihiko

    2014-01-01

    Circadian rhythms are acquired through evolution to increase the chances for survival by synchronizing to the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. Since both properties have been tuned through natural selection, their adaptation can be formalized in the framework of mathematical optimization. By using a succinct model, we found that simultaneous optimization of regularity and entrainability entails inherent features of the circadian mechanism irrespective of model details. At the behavioral level we discovered the existence of a dead zone, a time during which light pulses neither advance nor delay the clock. At the molecular level we demonstrate the role-sharing of two light inputs, phase advance and delay, as is well observed in mammals. We also reproduce the results of phase-controlling experiments and predict molecular elements responsible for the clockwork...

  10. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    Vasu Sheeba

    2008-12-01

    As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools at our disposal over the past four decades has enabled discovery of the genetic and molecular bases of circadian rhythmicity. More recently, detailed investigation leading to the anatomical, neurochemical and electrophysiological characterization of the various neuronal subgroups that comprise the circadian machinery has revealed pathways through which these neurons come together to act as a neuronal circuit. Thus the D. melanogaster circadian pacemaker circuit presents a relatively simple and attractive model for the study of neuronal circuits and their functions.

  11. Chronic mild stress alters circadian expressions of molecular clock genes in the liver.

    Science.gov (United States)

    Takahashi, Kei; Yamada, Tetsuya; Tsukita, Sohei; Kaneko, Keizo; Shirai, Yuta; Munakata, Yuichiro; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Hasegawa, Yutaka; Sawada, Shojiro; Oka, Yoshitomo; Katagiri, Hideki

    2013-02-01

    Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.

  12. Diurnal variation of hepatic antioxidant gene expression in mice.

    Directory of Open Access Journals (Sweden)

    Yi-Qiao Xu

    Full Text Available BACKGROUND: This study was aimed to examine circadian variations of hepatic antioxidant components, including the Nrf2- pathway, the glutathione (GSH system, antioxidant enzymes and metallothionein in mouse liver. METHODS AND RESULTS: Adult mice were housed in light- and temperature-controlled facilities for 2 weeks, and livers were collected every 4 h during the 24 h period. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis. Hepatic mRNA levels of Nrf2, Keap1, Nqo1 and Gclc were higher in the light-phase than the dark-phase, and were female-predominant. Hepatic GSH presented marked circadian fluctuations, along with glutathione S-transferases (GST-α1, GST-µ, GST-π and glutathione peroxidase (GPx1. The expressions of GPx1, GST-µ and GST-π mRNA were also higher in females. Antioxidant enzymes Cu/Zn superoxide dismutase (Sod1, catalase (CAT, cyclooxygenase-2 (Cox-2 and heme oxygenase-1 (Ho-1 showed circadian rhythms, with higher expressions of Cox-2 and CAT in females. Metallothionein, a small non-enzymatic antioxidant protein, showed dramatic circadian variation in males, but higher expression in females. The circadian variations of the clock gene Brain and Muscle Arnt-like Protein-1(Bmal1, albumin site D-binding protein (Dbp, nuclear receptor Rev-Erbα (Nr1d1, period protein (Per1 and Per2 and cryptochrome 1(Cry1 were in agreement with the literature. Furthermore, acetaminophen hepatotoxicity is more severe when administered in the afternoon when hepatic GSH was lowest. CONCLUSIONS: Circadian variations and gender differences in transcript levels of antioxidant genes exist in mouse liver, which could affect body responses to oxidative stress at different times of the day.

  13. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  14. Circadian regulation of cell cycle: Molecular connections between aging and the circadian clock.

    Science.gov (United States)

    Khapre, Rohini V; Samsa, William E; Kondratov, Roman V

    2010-09-01

    The circadian clock generates oscillations in physiology and behavior, known as circadian rhythms. Links between the circadian clock genes Periods, Bmal1, and Cryptochromes and aging and cancer are emerging. Circadian clock gene expression is changed in human pathologies, and transgenic mice with mutations in clock genes develop cancer and premature aging. Control of genome integrity and cell proliferation play key roles in the development of age-associated pathologies and carcinogenesis. Here, we review recent data on the connection between the circadian clock and control of the cell cycle. The circadian clock regulates the activity and expression of several critical cell cycle and cell cycle check-point-related proteins, and in turn cell cycle-associated proteins regulate circadian clock proteins. DNA damage can reset the circadian clock, which provides a molecular mechanism for reciprocal regulation between the circadian clock and the cell cycle. This circadian clock-dependent control of cell proliferation, together with other known physiological functions of the circadian clock such as the control of metabolism, oxidative and genotoxic stress response, and DNA repair, opens new horizons for understanding the mechanisms behind aging and carcinogenesis.

  15. Hepatitis C: Managing Pain

    Science.gov (United States)

    ... Living with Hepatitis » Managing Pain: Entire Lesson Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the hepatitis C is worsening. Pain associated with hepatitis C Some patients with hepatitis C feel discomfort ...

  16. Hepatitis B and HIV

    Science.gov (United States)

    ... Problems : Hepatitis B Subscribe Translate Text Size Print Hepatitis B What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis C . Hepatitis B and HIV About 10% of people living ...

  17. Hepatitis C and HIV

    Science.gov (United States)

    ... Problems : Hepatitis C Subscribe Translate Text Size Print Hepatitis C What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis B . Hepatitis C and HIV About 25% of people living ...

  18. A circadian clock in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Eelderink-Chen, Zheng; Mazzotta, Gabriella; Sturre, Marcel; Bosman, Jasper; Roenneberg, Till; Merrow, Martha

    2010-01-01

    Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily cha

  19. Circadian dysfunction induces leptin resistance in mice

    Science.gov (United States)

    Circadian disruption is associated with obesity, implicating the central clock in body weight control. Our comprehensive screen of wild-type and three circadian mutant mouse models, with or without chronic jet lag, shows that distinct genetic and physiologic interventions differentially disrupt over...

  20. Development of cortisol circadian rhythm in infancy.

    NARCIS (Netherlands)

    Weerth, C. de; Zijl, R.H.

    2003-01-01

    BACKGROUND AND AIMS: Cortisol is the final product of the hypothalamus-pituitary-adrenal (HPA) axis. It is secreted in a pulsatile fashion that displays a circadian rhythm. Infants are born without a circadian rhythm in cortisol and they acquire it during their first year of life. Studies do not agr

  1. Circadian clocks: Omnes viae Romam ducunt.

    Science.gov (United States)

    Roenneberg, T; Merrow, M

    2000-10-19

    The circadian clock in all organisms is so intimately linked to light reception that it appears as if evolution has simply wired a timer into the mechanism that processes photic information. Several recent studies have provided new insights into the role of light input pathways in the circadian system of Arabidopsis.

  2. Using circadian entrainment to find cryptic clocks

    NARCIS (Netherlands)

    Eelderink-Chen, Zheng; Olmedo, Maria; Bosman, Jasper; Merrow, Martha

    2015-01-01

    Three properties are most often attributed to the circadian clock: a ca. 24-h free-running rhythm, temperature compensation of the circadian rhythm, and its entrainment to zeitgeber cycles. Relatively few experiments, however, are performed under entrainment conditions. Rather, most chronobiology pr

  3. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes......The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...

  4. Neurobiology of the circadian system: meeting metabolism

    Directory of Open Access Journals (Sweden)

    Mendoza, Jorge

    2009-06-01

    Full Text Available The basic principles of physiology postulated the necessity of the constancy of the internal environment to maintain a physiological equilibrium and do not front serious consequences in health. Now we know that physiology is rhythmic and that a break of this rhythmicity can generate serious consequences in health which even could be lethal. Circadian clocks, headed by the suprachiasmatic nucleus in the central nervous system, are the responsible for the generation of circadian rhythms. These clocks are affected by external signals as light (day-night cycles and feeding. This review examines the basic principles of the circadian system and the current knowledge in the neurobiology of biological clocks, making emphasis in the relationship between the circadian system, feeding behaviour, nutrition and metabolism, and the consequences that occur when these systems are not coordinated each other, as the development of metabolic and circadian pathologies.

  5. Circadian rhythms synchronize mitosis in Neurospora crassa.

    Science.gov (United States)

    Hong, Christian I; Zámborszky, Judit; Baek, Mokryun; Labiscsak, Laszlo; Ju, Kyungsu; Lee, Hyeyeong; Larrondo, Luis F; Goity, Alejandra; Chong, Hin Siong; Belden, William J; Csikász-Nagy, Attila

    2014-01-28

    The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.

  6. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  7. Weakly circadian cells improve resynchrony.

    Directory of Open Access Journals (Sweden)

    Alexis B Webb

    Full Text Available The mammalian suprachiasmatic nuclei (SCN contain thousands of neurons capable of generating near 24-h rhythms. When isolated from their network, SCN neurons exhibit a range of oscillatory phenotypes: sustained or damping oscillations, or arrhythmic patterns. The implications of this variability are unknown. Experimentally, we found that cells within SCN explants recover from pharmacologically-induced desynchrony by re-establishing rhythmicity and synchrony in waves, independent of their intrinsic circadian period We therefore hypothesized that a cell's location within the network may also critically determine its resynchronization. To test this, we employed a deterministic, mechanistic model of circadian oscillators where we could independently control cell-intrinsic and network-connectivity parameters. We found that small changes in key parameters produced the full range of oscillatory phenotypes seen in biological cells, including similar distributions of period, amplitude and ability to cycle. The model also predicted that weaker oscillators could adjust their phase more readily than stronger oscillators. Using these model cells we explored potential biological consequences of their number and placement within the network. We found that the population synchronized to a higher degree when weak oscillators were at highly connected nodes within the network. A mathematically independent phase-amplitude model reproduced these findings. Thus, small differences in cell-intrinsic parameters contribute to large changes in the oscillatory ability of a cell, but the location of weak oscillators within the network also critically shapes the degree of synchronization for the population.

  8. Nonphotic entrainment of the human circadian pacemaker

    Science.gov (United States)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  9. Circadian Clocks in the Immune System.

    Science.gov (United States)

    Labrecque, Nathalie; Cermakian, Nicolas

    2015-08-01

    The immune system is a complex set of physiological mechanisms whose general aim is to defend the organism against non-self-bodies, such as pathogens (bacteria, viruses, parasites), as well as cancer cells. Circadian rhythms are endogenous 24-h variations found in virtually all physiological processes. These circadian rhythms are generated by circadian clocks, located in most cell types, including cells of the immune system. This review presents an overview of the clocks in the immune system and of the circadian regulation of the function of immune cells. Most immune cells express circadian clock genes and present a wide array of genes expressed with a 24-h rhythm. This has profound impacts on cellular functions, including a daily rhythm in the synthesis and release of cytokines, chemokines and cytolytic factors, the daily gating of the response occurring through pattern recognition receptors, circadian rhythms of cellular functions such as phagocytosis, migration to inflamed or infected tissue, cytolytic activity, and proliferative response to antigens. Consequently, alterations of circadian rhythms (e.g., clock gene mutation in mice or environmental disruption similar to shift work) lead to disturbed immune responses. We discuss the implications of these data for human health and the areas that future research should aim to address.

  10. Circadian rhythms of women with fibromyalgia

    Science.gov (United States)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  11. Hepatitis C: Treatment

    Science.gov (United States)

    ... Public Home » Hepatitis C » Hepatitis C Treatment Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Enter ZIP code here Enter ZIP code here Hepatitis C Treatment for Veterans and the Public Treatment ...

  12. Hepatitis B

    Science.gov (United States)

    ... information on hepatitis, both in the context of HIV coinfection and as a separate illness. NATAP provides coverage of key conferences, maintains a selection of hepatitis articles, and features an ask-the-expert forum on ...

  13. Hepatitis B

    Science.gov (United States)

    ... personal items (such as toothbrush, razor, and nail clippers) with a person who has the virus Were ... B virus Digestive system Aggressive hepatitis Gianotti-Crosti syndrome on the leg Hepatitis B References Kim DK, ...

  14. Hepatitis A

    Science.gov (United States)

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  15. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription.

    Science.gov (United States)

    Chaves, Inês; van der Horst, Gijsbertus T J; Schellevis, Raymond; Nijman, Romana M; Koerkamp, Marian Groot; Holstege, Frank C P; Smidt, Marten P; Hoekman, Marco F M

    2014-06-02

    Circadian rhythms are responsive to external and internal cues, light and metabolism being among the most important. In mammals, the light signal is sensed by the retina and transmitted to the suprachiasmatic nucleus (SCN) master clock [1], where it is integrated into the molecular oscillator via regulation of clock gene transcription. The SCN synchronizes peripheral oscillators, an effect that can be overruled by incoming metabolic signals [2]. As a consequence, peripheral oscillators can be uncoupled from the master clock when light and metabolic signals are not in phase. The signaling pathways responsible for coupling metabolic cues to the molecular clock are being rapidly uncovered [3-5]. Here we show that insulin-phosphatidylinositol 3-kinase (PI3K)-Forkhead box class O3 (FOXO3) signaling is required for circadian rhythmicity in the liver via regulation of Clock. Knockdown of FoxO3 dampens circadian amplitude, an effect that is rescued by overexpression of Clock. Subsequently, we show binding of FOXO3 to two Daf-binding elements (DBEs) located in the Clock promoter area, implicating Clock as a transcriptional target of FOXO3. Transcriptional oscillation of both core clock and output genes in the liver of FOXO3-deficient mice is affected, indicating a disrupted hepatic circadian rhythmicity. Finally, we show that insulin, a major regulator of FOXO activity [6-9], regulates Clock levels in a PI3K- and FOXO3-dependent manner. Our data point to a key role of the insulin-FOXO3-Clock signaling pathway in the modulation of circadian rhythms.

  16. Circadian Rhythms, Sleep, and Disorders of Aging.

    Science.gov (United States)

    Mattis, Joanna; Sehgal, Amita

    2016-04-01

    Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders.

  17. Hepatitis C

    Science.gov (United States)

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  18. Circadian rhythms, sleep, and the menstrual cycle.

    Science.gov (United States)

    Baker, Fiona C; Driver, Helen S

    2007-09-01

    Women with ovulatory menstrual cycles have a circadian rhythm superimposed on the menstrual-associated rhythm; in turn, menstrual events affect the circadian rhythm. In this paper, we review circadian rhythms in temperature, selected hormone profiles, and sleep-wake behavior in healthy women at different phases of the menstrual cycle. The effects on menstrual cycle rhythmicity of disrupted circadian rhythms, for example, with shiftwork and altered circadian rhythms in women with menstrual-related mood disturbances, are discussed. Compared to the follicular phase, in the post-ovulation luteal phase, body temperature is elevated, but the amplitude of the temperature rhythm is reduced. Evidence indicates that the amplitude of other rhythms, such as melatonin and cortisol, may also be blunted in the luteal phase. Subjective sleep quality is lowest around menses, but the timing and composition of sleep remains relatively stable across the menstrual cycle in healthy women, apart from an increase in spindle frequency activity and a minor decrease in rapid eye movement (REM) sleep during the luteal phase. Disruption of circadian rhythms is associated with disturbances in menstrual function. Female shiftworkers compared to non-shiftworkers are more likely to report menstrual irregularity and longer menstrual cycles. There also is accumulating evidence that circadian disruption increases the risk of breast cancer in women, possibly due to altered light exposure and reduced melatonin secretion. Further investigations into the biological consequences of circadian disruption in women will offer insight into some menstrual-associated disorders, including mood changes, as well as reproductive function and possible links with breast cancer.

  19. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  20. Circadian Rhythm in Cytokines Administration.

    Science.gov (United States)

    Trufakin, Valery A; Shurlygina, Anna V

    2016-01-01

    In recent times, a number of diseases involving immune system dysfunction have appeared. This increases the importance of research aimed at finding and developing optimized methods for immune system correction. Numerous studies have found a positive effect in using cytokines to treat a variety of diseases, yet the clinical use of cytokines is limited by their toxicity. Research in the field of chronotherapy, aimed at designing schedules of medicine intake using circadian biorhythms of endogenous production of factors, and receptors' expression to the factors on the target cells, as well as chronopharmacodynamics and chronopharmacokinetics of medicines may contribute to the solution of this problem. Advantages of chronotherapy include a greater effectiveness of treatment, reduced dose of required drugs, and minimized adverse effects. This review presents data on the presence of circadian rhythms of spontaneous and induced cytokine production, as well as the expression of cytokine receptors in the healthy body and in a number of diseases. The article reviews various effects of cytokines, used at different times of the day in humans and experimental animals, as well as possible mechanisms underlying the chronodependent effects of cytokines. The article presents the results of chronotherapeutic modes of administering IL-2, interferons, G-CSF, and GM-CSF in treatment of various types of cancer as well as in experimental models of immune suppression and inflammation, which lead to a greater effectiveness of therapy, the possibility of reducing or increasing the dosage, and reduced drug toxicity. Further research in this field will contribute to the effectiveness and safety of cytokine therapy.

  1. Neuroimaging, cognition, light and circadian rhythms

    Directory of Open Access Journals (Sweden)

    Giulia eGaggioni

    2014-07-01

    Full Text Available In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning.

  2. Circadian genes, the stress axis, and alcoholism.

    Science.gov (United States)

    Sarkar, Dipak K

    2012-01-01

    The body's internal system to control the daily rhythm of the body's functions (i.e., the circadian system), the body's stress response, and the body's neurobiology are highly interconnected. Thus, the rhythm of the circadian system impacts alcohol use patterns; at the same time, alcohol drinking also can alter circadian functions. The sensitivity of the circadian system to alcohol may result from alcohol's effects on the expression of several of the clock genes that regulate circadian function. The stress response system involves the hypothalamus and pituitary gland in the brain and the adrenal glands, as well as the hormones they secrete, including corticotrophin-releasing hormone, adrenocorticotrophic hormone, and glucocorticoids. It is controlled by brain-signaling molecules, including endogenous opioids such as β-endorphin. Alcohol consumption influences the activity of this system and vice versa. Finally, interactions exist between the circadian system, the hypothalamic-pituitary-adrenal axis, and alcohol consumption. Thus, it seems that certain clock genes may control functions of the stress response system and that these interactions are affected by alcohol.

  3. Circadian clock proteins in prokaryotes: hidden rhythms?

    Directory of Open Access Journals (Sweden)

    Maria eLoza-Correa

    2010-12-01

    Full Text Available Circadian clock genes are vital features of eukaryotes that have evolved such that organisms can adapt to our planet’s rotation in order to anticipate the coming day or night as well as unfavorable seasons. This circadian clock uses oscillation as a timekeeping element. However, circadian clock mechanisms exist also in prokaryotes. The circadian clock of Cyanobacteria is well studied. It is regulated by a cluster of three genes: kaiA, kaiB and kaiC. In this review, we will discuss the circadian system in cyanobacteria, and provide an overview and up-dated phylogenetic analysis of prokaryotic organisms that contain the main circadian genes. It is evident that the evolution of the kai genes has been influenced by lateral transfers but further and deeper studies are needed to get an in depth understanding of the exact evolutionary history of these genes. Interestingly, Legionella pneumophila an environmental bacterium and opportunistic human pathogen that parasitizes protozoa in fresh water environments also contains kaiB and kaiC, but their functions are not known. All of the residues described for the biochemical functions of the main pacemaker KaiC in Synechoccous elongates are also conserved in the L. pneumophila KaiC protein.

  4. Personalized medicine for pathological circadian dysfunctions.

    Science.gov (United States)

    Skelton, Rachel L; Kornhauser, Jon M; Tate, Barbara A

    2015-01-01

    The recent approval of a therapeutic for a circadian disorder has increased interest in developing additional medicines for disorders characterized by circadian disruption. However, previous experience demonstrates that drug development for central nervous system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to identifying the right treatment for the right patient, has recently become the standard for drug development in the oncology field. In addition to utilizing Companion Diagnostics (CDx) that identify specific genetic biomarkers to prescribe certain targeted therapies, patient profiling is regularly used to enrich for a responsive patient population during clinical trials, resulting in fewer patients required for statistical significance and a higher rate of success for demonstrating efficacy and hence receiving approval for the drug. This personalized medicine approach may be one mechanism that could reduce the high clinical trial failure rate in the development of CNS drugs. This review will discuss current circadian trials, the history of personalized medicine in oncology, lessons learned from a recently approved circadian therapeutic, and how personalized medicine can be tailored for use in future clinical trials for circadian disorders to ultimately lead to the approval of more therapeutics for patients suffering from circadian abnormalities.

  5. Circadian clocks are resounding in peripheral tissues.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2006-03-01

    Full Text Available Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.

  6. Hypoksisk hepatitis

    DEFF Research Database (Denmark)

    Amadid, Hanan; Schiødt, Frank Vinholt

    2014-01-01

    Hypoxic hepatitis (HH), also known as ischaemic hepatitis or shock liver, is an acute liver injury caused by hepatic hypoxia. Cardiac failure, respiratory failure and septic shock are the main underlying conditions. In each of these conditions, several haemodynamic mechanisms lead to hepatic...... hypoxia. A shock state is observed in only 50% of cases. Thus, shock liver and ischaemic hepatitis are misnomers. HH can be a diagnostic pitfall but the diagnosis can be established when three criteria are met. Prognosis is poor and prompt identification and treatment of the underlying conditions...

  7. Social memory in the rat: circadian variation and effect of circadian rhythm disruption

    NARCIS (Netherlands)

    Reijmers, L.G.J.E.; Leus, I.E.; Burbach, J.P.H.; Spruijt, B.M.; Ree, van J.M.

    2001-01-01

    Disruption of circadian rhythm can impair long-term passive avoidance memory of rats and mice. The present study investigated whether disruption of circadian rhythm can also impair social memory of male rats. Social memory was assessed using the social discrimination test, in which a short-term olfa

  8. Hepatitis A through E (Viral Hepatitis)

    Science.gov (United States)

    ... Liver Disease & NASH Definition & Facts Symptoms & Causes Diagnosis Treatment Eating, Diet, & Nutrition Clinical Trials Biliary Atresia Cirrhosis Hemochromatosis Hepatitis A through E (Viral Hepatitis) Hepatitis ...

  9. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver.

    Directory of Open Access Journals (Sweden)

    Lenka Polidarová

    Full Text Available The mammalian timekeeping system generates circadian oscillations that rhythmically drive various functions in the body, including metabolic processes. In the liver, circadian clocks may respond both to actual feeding conditions and to the metabolic state. The temporal restriction of food availability to improper times of day (restricted feeding, RF leads to the development of food anticipatory activity (FAA and resets the hepatic clock accordingly. The aim of this study was to assess this response in a rat strain exhibiting complex pathophysiological symptoms involving spontaneous hypertension, an abnormal metabolic state and changes in the circadian system, i.e., in spontaneously hypertensive rats (SHR. The results revealed that SHR were more sensitive to RF compared with control rats, developing earlier and more pronounced FAA. Whereas in control rats, the RF only redistributed the activity profiles into two bouts (one corresponding to FAA and the other corresponding to the dark phase, in SHR the RF completely phase-advanced the locomotor activity according to the time of food presentation. The higher behavioral sensitivity to RF was correlated with larger phase advances of the hepatic clock in response to RF in SHR. Moreover, in contrast to the controls, RF did not suppress the amplitude of the hepatic clock oscillation in SHR. In the colon, no significant differences in response to RF between the two rat strains were detected. The results suggested the possible involvement of the Bmal2 gene in the higher sensitivity of the hepatic clock to RF in SHR because, in contrast to the Wistar rats, the rhythm of Bmal2 expression was advanced similarly to that of Bmal1 under RF. Altogether, the data demonstrate a higher behavioral and circadian responsiveness to RF in the rat strain with a cardiovascular and metabolic pathology and suggest a likely functional role for the Bmal2 gene within the circadian clock.

  10. [Autoimmune hepatitis].

    Science.gov (United States)

    Ostojić, Rajko

    2003-01-01

    Autoimmune hepatitis is an unresolving, hepatocellular inflammation of unknown cause that is characterized by the presence of periportal hepatitis on histologic examination, tissue autoantibodies in serum, and hypergammaglobulinemia. By international consensus, the designation autoimmune hepatitis has replaced alternative terms for the condition. Three types of autoimmune hepatitis have been proposed based on immunoserologic findings. Type 1 autoimmune hepatitis is characterized by the presence of antinuclear antibodies (ANA) or smooth muscle antibodies (SMA) (or both) in serum. Seventy percent of patients with type 1 of autoimmune hepatitis are women. This type is the most common form and accounts for at least 80% of cases. Type 2 is characterized by the presence of antibodies to liver-kidney microsome type 1 (anti-LKM1) in serum. Patients with this type of autoimmune hepatitis are predominantly children. Type 3 autoimmune hepatitis is characterized by the presence of antibodies to soluble liver antigen (anti-SLA) in serum. There are no individual features that are pathognomonic of autoimmune hepatitis, and its diagnosis requires the confident exclusion of other conditions. The large majority of patients show satisfactory response to corticosteroid (usually prednisone or prednisolone) therapy. For the past 30 years it has been customary to add azathioprine as a "steroid sparing" agent to allow lower doses of steroids to be used and remission, once achieved, can be sustained in many patients with azathioprine alone after steroid withdrawal. Patients with autoimmune hepatitis who have decompensated during or after corticosteroid therapy are candidates for liver transplantation.

  11. Cellular circadian clocks in mood disorders.

    Science.gov (United States)

    McCarthy, Michael J; Welsh, David K

    2012-10-01

    Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain's primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks

  12. The emerging roles of lipids in circadian control.

    Science.gov (United States)

    Adamovich, Yaarit; Aviram, Rona; Asher, Gad

    2015-08-01

    Lipids play vital roles in a wide variety of cellular functions. They act as structural components in cell membranes, serve as a major form of energy storage, and function as key signaling molecules. Mounting evidence points towards a tight interplay between lipids and circadian clocks. In mammals, circadian clocks regulate the daily physiology and metabolism, and disruption of circadian rhythmicity is associated with altered lipid homeostasis and pathologies such as fatty liver and obesity. Concomitantly, emerging evidence suggest that lipids are embedded within the core clock circuitry and participate in circadian control. Recent advances in lipidomics methodologies and their application in chronobiology studies have shed new light on the cross talk between circadian clocks and lipid homeostasis. We review herein the latest literature related to the involvement of lipids in circadian clock's function and highlight the contribution of circadian lipidomics studies to our understanding of circadian rhythmicity and lipid homeostasis. This article is part of a Special Issue entitled Brain Lipids.

  13. Isochron-Based Phase Response Analysis of Circadian Rhythms

    OpenAIRE

    Gunawan, Rudiyanto; Doyle, Francis J.

    2006-01-01

    Circadian rhythms possess the ability to robustly entrain to the environmental cycles. This ability relies on the phase synchronization of circadian rhythm gene regulation to different environmental cues, of which light is the most obvious and important. The elucidation of the mechanism of circadian entrainment requires an understanding of circadian phase behavior. This article presents two phase analyses of oscillatory systems for infinitesimal and finite perturbations based on isochrons as ...

  14. Circadian clocks and cell division: What's the pacemaker?

    OpenAIRE

    Johnson, Carl Hirschie

    2010-01-01

    Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to...

  15. Relationships between circadian rhythms and ethanol intake in mice

    OpenAIRE

    Trujillo, Jennifer L.

    2009-01-01

    This dissertation integrates methods from alcohol and circadian rhythms research to explore relationships between ethanol and circadian rhythms in mice. Ingesting alcohol at certain times of day differentially affects the body; circadian rhythms also impact preference for drinking alcohol at different times of day. The influence of circadian timing on development and maintenance of ethanol drinking patterns was studied in Chapter 2. This showed how establishing a history of ethanol exposure a...

  16. Circadian Regulation of Cortisol Release in Behaviorally Split Golden Hamsters

    OpenAIRE

    2011-01-01

    The master circadian clock located within the hypothalamic suprachiasmatic nucleus (SCN) is necessary for the circadian rhythm of glucocorticoid (GC) release. The pathways by which the SCN sustains rhythmic GC release remain unclear. We studied the circadian regulation of cortisol release in the behaviorally split golden hamster, in which the single bout of circadian locomotor activity splits into two bouts approximately12 h apart after exposing the animals to constant light conditions. We sh...

  17. Feature Hepatitis: Hepatitis Can Strike Anyone

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis Can Strike Anyone Past Issues / Spring 2009 Table ... from all walks of life are affected by hepatitis, especially hepatitis C, the most common form of ...

  18. Hepatic Leukemia Factor Promotes Resistance To Cell Death: Implications For Therapeutics and Chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.

  19. Natural selection against a circadian clock gene mutation in mice

    NARCIS (Netherlands)

    Spoelstra, K.; Wikelski, Martin; Daan, Serge; Loudon, Andrew; Hau, Michaela

    2016-01-01

    Circadian rhythms with an endogenous period close or equal to the natural light-dark cycle are considered evolutionarily adaptive (‘circadian resonance hypothesis’). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural c

  20. Natural selection against a circadian clock gene mutation in mice

    NARCIS (Netherlands)

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-01

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natura

  1. Circadian aspects of post-operative morbidity and mortality

    DEFF Research Database (Denmark)

    Kvaslerud, T.; Hansen, M.V.; Rosenberg, J.;

    2010-01-01

    concerning post-operative circadian disturbances. We also present the literature concerning circadian variation in post-operative morbidity and mortality. PubMed and the Cochrane database were searched for papers using a combination of 'circadian,' 'surgery,' 'post-operative,' 'mortality' and 'morbidity...

  2. Hepatitis (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Hepatitis KidsHealth > For Parents > Hepatitis Print A A A ... to Call the Doctor en español Hepatitis About Hepatitis The word hepatitis simply means an inflammation of ...

  3. Alcohol and Hepatitis

    Science.gov (United States)

    ... Home » Living with Hepatitis » Daily Living: Alcohol Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one of the ...

  4. Travelers' Health: Hepatitis B

    Science.gov (United States)

    ... Chapter 3 - Hepatitis A Chapter 3 - Hepatitis C Hepatitis B Francisco Averhoff INFECTIOUS AGENT Hepatitis B is ... their exposures. Map 3-04. Prevalence of chronic hepatitis B virus infection among adults PDF Version (printable) ...

  5. Travelers' Health: Hepatitis C

    Science.gov (United States)

    ... Chapter 3 - Hepatitis B Chapter 3 - Hepatitis E Hepatitis C Deborah Holtzman INFECTIOUS AGENT Hepatitis C virus ( ... human blood Map 3-05. Global epidemiology of hepatitis C virus infection 1 PDF Version (printable) 1 ...

  6. Hepatitis C: Clinical Trials

    Science.gov (United States)

    ... and Public Home » Hepatitis C » Treatment Decisions Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... can I find out about participating in a hepatitis C clinical trial? Many trials are being conducted ...

  7. Hepatitis C: Mental Health

    Science.gov (United States)

    ... the Public Home Hepatitis A Hepatitis B Hepatitis C Hepatitis C Home Getting Tested Just Diagnosed Treatment Choice Program ... Pain Mental Health Sex and Sexuality (for Hepatitis C) Success Stories FAQs For Health Care Providers Provider ...

  8. Hepatitis (For Parents)

    Science.gov (United States)

    ... of three viruses: the hepatitis A virus the hepatitis B virus the hepatitis C virus In some rare cases, ... also called serum hepatitis) is caused by the hepatitis B virus (HBV). HBV can cause a wide range of ...

  9. Exploitation of host clock gene machinery by hepatitis viruses B and C.

    Science.gov (United States)

    Vinciguerra, Manlio; Mazzoccoli, Gianluigi; Piccoli, Claudia; Tataranni, Tiziana; Andriulli, Angelo; Pazienza, Valerio

    2013-12-21

    Many aspects of cellular physiology display circadian (approximately 24-h) rhythms. Dysfunction of the circadian clock molecular circuitry is associated with human health derangements, including neurodegeneration, increased risk of cancer, cardiovascular diseases and the metabolic syndrome. Viruses triggering hepatitis depend tightly on the host cell synthesis machinery for their own replication, survival and spreading. Recent evidences support a link between the circadian clock circuitry and viruses' biological cycle within host cells. Currently, in vitro models for chronobiological studies of cells infected with viruses need to be implemented. The establishment of such in vitro models would be helpful to better understand the link between the clock gene machinery and viral replication/viral persistence in order to develop specifically targeted therapeutic regimens. Here we review the recent literature dealing with the interplay between hepatitis B and C viruses and clock genes.

  10. Circadian variation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in swine liver and ileum.

    Science.gov (United States)

    Rogers, D H; Kim, D N; Lee, K T; Reiner, J M; Thomas, W A

    1981-07-01

    The temporal variation of HMG-CoA reductase activity in the liver and intestine of swine was investigated. The thin-layer chromatographic method widely used in the assay of the reductase was successfully applied to the porcine enzymes. Parallel circadian rhythms were demonstrated in both hepatic and ileal reductases from mash-fed animals. Peak activity occurred approximately 6 hr after feeding, 2.7-fold over the basal level in the liver, and 1.6-fold in the ileum. A milk-cholesterol diet caused a marked depression of both rhythms (90% in liver, 50% in ileum); however, the hourly variation in activity persisted in both organs. Cholestyramine was found to elevate hepatic activity (2.7-fold throughout the rhythm) without affecting that of the intestine. Clofibrate had no effect on either enzyme at any time during the cycle despite a 34% reduction in serum cholesterol concentrations.

  11. Optimal Implementations for Reliable Circadian Clocks

    Science.gov (United States)

    Hasegawa, Yoshihiko; Arita, Masanori

    2014-09-01

    Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.

  12. The circadian variation of premature atrial contractions

    DEFF Research Database (Denmark)

    Strøier Larsen, Bjørn; Kumarathurai, Preman; Wendelboe Nielsen, Olav;

    2016-01-01

    AIMS: The aim of the study was to assess a possible circadian variation of premature atrial contractions (PACs) in a community-based population and to determine if the daily variation could be used to assess a more vulnerable period of PACs in predicting later incidence of atrial fibrillation (AF...... variation in heart rate. After adjusting for relevant risk factors, the risk of AF was equal in all time intervals throughout the day. CONCLUSION: Premature atrial contractions showed a circadian variation in subjects with frequent PACs. No specific time interval of the day was more predictive of AF than...

  13. Immunity's fourth dimension: approaching the circadian-immune connection.

    Science.gov (United States)

    Arjona, Alvaro; Silver, Adam C; Walker, Wendy E; Fikrig, Erol

    2012-12-01

    The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions.

  14. Modelling of intercellular synchronization in the Drosophila circadian clock

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Wei; Chen Ai-Min; Zhang Jia-Jun; Yuan Zhan-Jiang; Zhou Tian-Shou

    2009-01-01

    In circadian rhythm generation, intercellular signaling factors are shown to play a crucial role in both sustaining intrinsic cellular rhythmicity and acquiring collective behaviours across a population of circadian neurons. However, the physical mechanism behind their role remains to be fully understood. In this paper, we propose an indirectly coupled multicellular model for the synchronization of Drosophila circadian oscillators combining both intracellular and intercellular dynamics. By simulating different experimental conditions, we find that such an indirect coupling way can synchronize both heterogeneous self-sustained circadian neurons and heterogeneous mutational damped circadian neurons. Moreover, they can also be entrained to ambient light-dark (LD) cycles depending on intercellular signaling.

  15. Hepatitis A

    Science.gov (United States)

    ... inflammation of the liver.” This inflammation can be caused by a wide variety of toxins, drugs, and metabolic diseases, as well as infection. There are at least 5 hepatitis viruses. Hepatitis A is contracted when a child eats food or drinks water that is contaminated with the virus or has ...

  16. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    Science.gov (United States)

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  17. The Pentose Phosphate Pathway Regulates the Circadian Clock.

    Science.gov (United States)

    Rey, Guillaume; Valekunja, Utham K; Feeney, Kevin A; Wulund, Lisa; Milev, Nikolay B; Stangherlin, Alessandra; Ansel-Bollepalli, Laura; Velagapudi, Vidya; O'Neill, John S; Reddy, Akhilesh B

    2016-09-13

    The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved redox rhythms that can occur independently of transcriptional cycles. Here we identify the pentose phosphate pathway (PPP), a critical source of the redox cofactor NADPH, as an important regulator of redox and transcriptional oscillations. Our results show that genetic and pharmacological inhibition of the PPP prolongs the period of circadian rhythms in human cells, mouse tissues, and fruit flies. These metabolic manipulations also cause a remodeling of circadian gene expression programs that involves the circadian transcription factors BMAL1 and CLOCK, and the redox-sensitive transcription factor NRF2. Thus, the PPP regulates circadian rhythms via NADPH metabolism, suggesting a pivotal role for NADPH availability in circadian timekeeping.

  18. Circadian and Circalunar Clock Interactions in a Marine Annelid

    Directory of Open Access Journals (Sweden)

    Juliane Zantke

    2013-10-01

    Full Text Available Life is controlled by multiple rhythms. Although the interaction of the daily (circadian clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly clocks and characterize their interactions. The RNAs of likely core circadian oscillator genes localize to a distinct nucleus of the worm’s forebrain. The worm’s forebrain also harbors a circalunar clock entrained by nocturnal light. This monthly clock regulates maturation and persists even when circadian clock oscillations are disrupted by the inhibition of casein kinase 1δ/ε. Both circadian and circalunar clocks converge on the regulation of transcript levels. Furthermore, the circalunar clock changes the period and power of circadian behavior, although the period length of the daily transcriptional oscillations remains unaltered. We conclude that a second endogenous noncircadian clock can influence circadian clock function.

  19. Circadian systems biology: When time matters

    Directory of Open Access Journals (Sweden)

    Luise Fuhr

    2015-01-01

    In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.

  20. Circadian clocks - from genes to complex behaviour

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    1999-01-01

    Circadian clocks control temporal structure in practically all organisms and on all levels of biology, from gene expression to complex behaviour and cognition. Over the last decades, research has begun to unravel the physiological and, more recently, molecular mechanisms that underlie this endogenou

  1. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the f

  2. Circadian Variation in Coronary Stent Thrombosis

    NARCIS (Netherlands)

    Mahmoud, Karim D.; Lennon, Ryan J.; Ting, Henry H.; Rihal, Charanjit S.; Holmes, David R.

    2011-01-01

    Objectives We sought to determine the circadian, weekly, and seasonal variation of coronary stent thrombosis. Background Other adverse cardiovascular events such as acute myocardial infarction are known to have higher incidences during the early morning hours, Mondays, and winter months. Methods The

  3. Harmonics of circadian gene transcription in mammals.

    Directory of Open Access Journals (Sweden)

    Michael E Hughes

    2009-04-01

    Full Text Available The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.

  4. [Circadian rhythm of human lymphocyte subpopulations].

    Science.gov (United States)

    Pasqualetti, P; Colantonio, D; Casale, R; Colangeli, S; Natali, G

    1988-01-01

    Circadian rhythm of lymphocyte subsets was investigated in four healthy subjects, males, aged 35-58 years old. After a period of ambiental synchronization, venous blood samples were taken during a span of a day at 0.00 a.m., 4.00 a.m., 8.00 a.m., noon, 4.00 p.m. and 8.00 p.m. Lymphocyte subsets (OKT3, OKT4, OKT8, OKB7, OKJa1) were determined by monoclonal antibodies method, and serum level of cortisol by radioimmunoassay method. The OKT4/OKT8 ratio was also calculated. Data were analyzed by chronograms (mean +/- 1SD) and by cosinor method. Results show a significant circadian rhythm for each lymphocyte subset and for serum cortisol levels. The lowest levels of all circulating subsets were seen between noon and 4.00 p.m. and the highest levels around midnight, inversely related with the circadian rhythm of serum cortisol. The OKT4/OKT8 ratio, on the contrary, was relatively constant during the day, without a significant circadian rhythm. These observations have laboratoristic, clinical, and therapeutic implications and should be considered in the course of immunological studies.

  5. Impact of nutrients on circadian rhythmicity

    NARCIS (Netherlands)

    Oosterman, Johanneke E; Kalsbeek, A.; la Fleur, Susanne E; Belsham, Denise D

    2015-01-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to th

  6. Temperature compensation and entrainment in circadian rhythms

    Science.gov (United States)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2012-06-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles.

  7. Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice.

    Directory of Open Access Journals (Sweden)

    Yuki Yasumoto

    Full Text Available Behavioral and physiological circadian rhythms are controlled by endogenous oscillators in animals. Voluntary wheel-running in rodents is thought to be an appropriate model of aerobic exercise in humans. We evaluated the effects of chronic voluntary exercise on the circadian system by analyzing temporal profiles of feeding, core body temperature, plasma hormone concentrations and peripheral expression of clock and clock-controlled genes in mice housed under sedentary (SED conditions or given free access to a running-wheel (RW for four weeks. Voluntary wheel-running activity advanced the circadian phases of increases in body temperature, food intake and corticosterone secretion in the mice. The circadian expression of clock and clock-controlled genes was tissue- and gene-specifically affected in the RW mice. The temporal expression of E-box-dependent circadian clock genes such as Per1, Per2, Nr1d1 and Dbp were slightly, but significantly phase-advanced in the liver and white adipose tissue, but not in brown adipose tissue and skeletal muscle. Peak levels of Per1, Per2 and Nr1d1 expression were significantly increased in the skeletal muscle of RW mice. The circadian phase and levels of hepatic mRNA expression of the clock-controlled genes that are involved in cholesterol and fatty acid metabolism significantly differed between SED and RW mice. These findings indicated that endogenous clock-governed voluntary wheel-running activity provides feedback to the central circadian clock that systemically governs behavioral and physiological rhythms.

  8. Circadian adaptations to meal timing: Neuroendocrine mechanisms

    Directory of Open Access Journals (Sweden)

    Danica F Patton

    2013-10-01

    Full Text Available Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus is directly entrained by daily light-dark cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this

  9. Carcinogenic effects of circadian disruption: an epigenetic viewpoint.

    Science.gov (United States)

    Salavaty, Abbas

    2015-08-08

    Circadian rhythms refer to the endogenous rhythms that are generated to synchronize physiology and behavior with 24-h environmental cues. These rhythms are regulated by both external cues and molecular clock mechanisms in almost all cells. Disruption of circadian rhythms, which is called circadian disruption, affects many biological processes within the body and results in different long-term diseases, including cancer. Circadian regulatory pathways result in rhythmic epigenetic modifications and the formation of circadian epigenomes. Aberrant epigenetic modifications, such as hypermethylation, due to circadian disruption may be involved in the transformation of normal cells into cancer cells. Several studies have indicated an epigenetic basis for the carcinogenic effects of circadian disruption. In this review, I first discuss some of the circadian genes and regulatory proteins. Then, I summarize the current evidence related to the epigenetic modifications that result in circadian disruption. In addition, I explain the carcinogenic effects of circadian disruption and highlight its potential role in different human cancers using an epigenetic viewpoint. Finally, the importance of chronotherapy in cancer treatment is highlighted.

  10. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... is a condition that causes temporary worsening of brain function in people with advanced liver disease. When ... travel through your body until they reach your brain, causing mental and physical symptoms of HE. Hepatic ...

  11. Autoimmune hepatitis.

    Science.gov (United States)

    Heneghan, Michael A; Yeoman, Andrew D; Verma, Sumita; Smith, Alastair D; Longhi, Maria Serena

    2013-10-26

    Autoimmune hepatitis is a disease of the hepatic parenchyma that can present in acute or chronic forms. In common with many autoimmune diseases, autoimmune hepatitis is associated with non-organ-specific antibodies in the context of hepatic autoimmunity. This dichotomy has made definition of a unifying hypothesis in the pathophysiology of the disease difficult, although data from the past 8 years have drawn attention to the role of regulatory T cells. Several triggers have been identified, and the disease arises in genetically susceptible individuals. Clinical and biochemical remission is achievable in up to 85% of cases. For the remaining patients, alternative immunosuppression strategies are an option. Liver transplantation provides an excellent outcome for patients with acute liver failure or complications of end-stage liver disease, including hepatocellular carcinoma. Variant or overlapping syndromes are worthy of consideration when unexpected disease features arise.

  12. Hepatitis C

    Science.gov (United States)

    ... using an infected person’s razor, toothbrush, or nail clippers being born to a mother with hepatitis C ... sharing personal items such toothbrushes, razors, or nail clippers using a latex or polyurethane condom during sex ...

  13. Hepatitis B

    Science.gov (United States)

    ... using an infected person’s razor, toothbrush, or nail clippers You can’t get hepatitis B from being ... personal items such as toothbrushes, razors, or nail clippers using a latex or polyurethane condom during sex ...

  14. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... Get Worse? How is HE Diagnosed? Prior to Treatment Who treats HE? Preparing for your Medical Appointment Hepatic Encephalopathy Treatment Options Treatment Basics Treatment Medications Importance of Adhering ...

  15. Hepatitis autoinmune.

    OpenAIRE

    LOJA OROPEZA, David; VILCA VASQUEZ, Maricela; AVILES GONZAGA, Roberto

    2013-01-01

    Three patients with autoinmune hepatitis type 1 diagnosed at the Hospital Nacional Arzobispo Loayza in Lima-Perú, between 1993 and 1995, are here reported, emphasis is made on the clinical, histological and therapeutical aspects.

  16. Genome-wide analysis of SREBP1 activity around the clock reveals its combined dependency on nutrient and circadian signals.

    Directory of Open Access Journals (Sweden)

    Federica Gilardi

    2014-03-01

    Full Text Available In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1 is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4 were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1

  17. Hepatitis B Foundation

    Science.gov (United States)

    ... worldwide 2 Billion People have been infected with Hepatitis B Worldwide The Hepatitis B Foundation is working ... of people living with hepatitis B. Learn About Hepatitis B in 11 Other Languages . Resource Video See ...

  18. Hepatitis A FAQs

    Science.gov (United States)

    ... Professional Resources Patient Education Resources Quick Links to Hepatitis … A | B | C | D | E Viral Hepatitis Home ... Grantees Policy and Programs Resource Center Viral Hepatitis Hepatitis A Questions and Answers for the Public Recommend ...

  19. Travelers' Health: Hepatitis A

    Science.gov (United States)

    ... 3 - Helminths, Soil-Transmitted Chapter 3 - Hepatitis B Hepatitis A Noele P. Nelson, Trudy V. Murphy INFECTIOUS ... hepatitis/HAV Table 3-02. Vaccines to prevent hepatitis A VACCINE TRADE NAME (MANUFACTURER) AGE (Y) DOSE ...

  20. Delta agent (Hepatitis D)

    Science.gov (United States)

    Hepatitis D virus ... Hepatitis D virus (HDV) is found only in people who carry the hepatitis B virus. HDV may make liver ... B virus but who never had symptoms. Hepatitis D infects about 15 million people worldwide. It occurs ...

  1. Hepatitis A Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Hepatitis A Testing Share this page: Was this page ... HAV-Ab total; Anti-HAV Formal name: Viral Hepatitis A Antibody Related tests: Hepatitis B Testing ; Hepatitis ...

  2. Hepatitis B - children

    Science.gov (United States)

    ... of the liver due to infection with the hepatitis B virus (HBV). Other common hepatitis virus infections include hepatitis ... are able to rid their body of the hepatitis B virus and do not have a long-term infection. ...

  3. Feature Hepatitis: Hepatitis Symptoms, Diagnosis, Treatment & Prevention

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis: Symptoms, Diagnosis, Treatment & Prevention Past Issues / Spring 2009 ... No appetite Fever Headaches Diagnosis To check for hepatitis viruses, your doctor will test your blood. You ...

  4. Proteomics of the photoneuroendocrine circadian system of the brain

    DEFF Research Database (Denmark)

    Møller, Morten; Lund-Andersen, Casper; Rovsing, Louise

    2010-01-01

    The photoneuroendocrine circadian system of the brain consists of (a) specialized photoreceptors in the retina, (b) a circadian generator located in the forebrain that contains "clock genes," (c) specialized nuclei in the forebrain involved in neuroendocrine secretion, and (d) the pineal gland....... The circadian generator is a nucleus, called the suprachiasmatic nucleus (SCN). The neurons of this nucleus contain "clock genes," the transcription of which exhibits a circadian rhythm. Most circadian rhythms are generated by the neurons of this nucleus and, via neuronal and humoral connections, the SCN...... controls circadian activity of the brain and peripheral tissues. The endogenous oscillator of the SCN is each day entrained to the length of the daily photoperiod by light that reach the retina, and specialized photoreceptors transmit impulses to the SCN via the optic nerves. Mass screening for day...

  5. Circadian aspects of post-operative morbidity and mortality

    DEFF Research Database (Denmark)

    Kvaslerud, T.; Hansen, M.V.; Rosenberg, J.;

    2010-01-01

    concerning post-operative circadian disturbances. We also present the literature concerning circadian variation in post-operative morbidity and mortality. PubMed and the Cochrane database were searched for papers using a combination of 'circadian,' 'surgery,' 'post-operative,' 'mortality' and 'morbidity.......' Eleven relevant studies were found, and seven of these were excluded due to the use of time of surgery and not time of morbidity or mortality as the main variable. The results from the four articles showed a circadian distribution of morbidity and mortality that mimics the one seen without surgery....... There is a peak incidence of myocardial ischemia, fatal thromboembolism and sudden unexpected death in the morning hours. A circadian variation exists in post-operative morbidity and mortality. The observed circadian variation in post-operative morbidity and mortality may warrant a chronopharmacological approach...

  6. Mechanisms by which circadian rhythm disruption may lead to cancer

    Directory of Open Access Journals (Sweden)

    L. C. Roden

    2010-02-01

    Full Text Available Humans have evolved in a rhythmic environment and display daily (circadian rhythms in physiology, metabolism and behaviour that are in synchrony with the solar day. Modern lifestyles have compromised the exposure to bright light during the day and dark nights, resulting in the desynchronisation of endogenously generated circadian rhythms from the external environment and loss of coordination between rhythms within the body. This has detrimental effects on physical and mental health, due to the misregulation and uncoupling of important cellular and physiological processes. Long-term shift workers who are exposed to bright light at night experience the greatest disruption of their circadian rhythms. Studies have shown an association between exposure to light at night, circadian rhythm disruption and an increased risk of cancer. Previous reviews have explored the relevance of light and melatonin in cancer, but here we explore the correlation of circadian rhythm disruption and cancer in terms of molecular mechanisms affecting circadian gene expression and melatonin secretion.

  7. Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila

    Science.gov (United States)

    Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young

    2016-11-01

    Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.

  8. NONO couples the circadian clock to the cell cycle

    OpenAIRE

    Kowalska, Elzbieta; Ripperger, Juergen A.; Hoegger, Dominik C.; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Steven A Brown

    2013-01-01

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately n...

  9. Persistence, entrainment, and function of circadian rhythms in polar vertebrates.

    Science.gov (United States)

    Williams, Cory T; Barnes, Brian M; Buck, C Loren

    2015-03-01

    Polar organisms must cope with an environment that periodically lacks the strongest time-giver, or zeitgeber, of circadian organization-robust, cyclical oscillations between light and darkness. We review the factors influencing the persistence of circadian rhythms in polar vertebrates when the light-dark cycle is absent, the likely mechanisms of entrainment that allow some polar vertebrates to remain synchronized with geophysical time, and the adaptive function of maintaining circadian rhythms in such environments.

  10. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    OpenAIRE

    2015-01-01

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in...

  11. Expanding circadian input, output, and the clock through genomic screens

    OpenAIRE

    2011-01-01

    Many aspects of mammalian physiology display circadian--or once daily--rhythms, such as heart rate, blood pressure, activity levels, metabolism, and liver regeneration. These rhythms are regulated by an entrainable, self-sustaining, cell-autonomous mechanism found in nearly every cell of the body: the circadian clock. The circadian clock itself represents a regulatory network, composed of interlocking negative feedback loops, that in turn is influenced by two other types of regulatory network...

  12. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Uchida, Daisuke [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ohkura, Naoki [Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa (Japan); Horie, Shuichi [Department of Clinical Biochemistry, Kagawa Nutrition University, Sakado, Saitama (Japan)

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  13. Circadian clock circuitry in colorectal cancer.

    Science.gov (United States)

    Mazzoccoli, Gianluigi; Vinciguerra, Manlio; Papa, Gennaro; Piepoli, Ada

    2014-04-21

    Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer.

  14. Wheels within wheels: the plant circadian system.

    Science.gov (United States)

    Hsu, Polly Yingshan; Harmer, Stacey L

    2014-04-01

    Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs so that they occur at the most appropriate season or time of day. Recent studies using systems approaches, primarily in Arabidopsis, have expanded our understanding of the molecular regulation of the central circadian oscillator and its connections to input and output pathways. Similar approaches have also begun to reveal the importance of the clock for key agricultural traits in crop species. In this review, we discuss recent developments in the field, including a new understanding of the molecular architecture underlying the plant clock; mechanistic links between clock components and input and output pathways; and our growing understanding of the importance of clock genes for agronomically important traits.

  15. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  16. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  17. Hepatitis C: Diet and Nutrition

    Science.gov (United States)

    ... with Hepatitis » Daily Living: Diet and Nutrition Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... have high cholesterol and have fatty liver. How hepatitis C affects diet If you have hepatitis, you ...

  18. Hepatitis C: Sex and Sexuality

    Science.gov (United States)

    ... with Hepatitis » Sex and Sexuality: Entire Lesson Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... hepatitis C virus through sex. Can you pass hepatitis C to a sex partner? Yes, but it ...

  19. Liver Cancer and Hepatitis B

    Science.gov (United States)

    ... Our Accomplishments Annual Reports Our Videos What Is Hepatitis B? What Is Hepatitis B? The ABCs of Viral Hepatitis Liver Cancer and Hepatitis B Hepatitis Delta Coinfection Hepatitis C Coinfection HIV/AIDS ...

  20. Pathophysiology and pathogenesis of circadian rhythm sleep disorders

    Directory of Open Access Journals (Sweden)

    Hida Akiko

    2012-03-01

    Full Text Available Abstract Metabolic, physiological and behavioral processes exhibit 24-hour rhythms in most organisms, including humans. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues. The transcription and translation feedback loops of multiple clock genes are involved in the molecular mechanism of the circadian system. Disturbed circadian rhythms are known to be closely related to many diseases, including sleep disorders. Advanced sleep phase type, delayed sleep phase type and nonentrained type of circadian rhythm sleep disorders (CRSDs are thought to result from disorganization of the circadian system. Evaluation of circadian phenotypes is indispensable to understanding the pathophysiology of CRSD. It is laborious and costly to assess an individual's circadian properties precisely, however, because the subject is usually required to stay in a laboratory environment free from external cues and masking effects for a minimum of several weeks. More convenient measurements of circadian rhythms are therefore needed to reduce patients' burden. In this review, we discuss the pathophysiology and pathogenesis of CRSD as well as surrogate measurements for assessing an individual's circadian phenotype.

  1. NONO couples the circadian clock to the cell cycle.

    Science.gov (United States)

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  2. Circadian clock disruption in neurodegenerative diseases: Cause and effect?

    Directory of Open Access Journals (Sweden)

    Erik Steven Musiek

    2015-02-01

    Full Text Available Disturbance of the circadian system, manifested as disrupted daily rhythms of physiologic parameters such as sleep, activity, and hormone secretion, has long been observed as a symptom of several neurodegenerative diseases, including Alzheimer Disease. Circadian abnormalities have generally been considered consequences of the neurodegeneration. Recent evidence suggests, however, that circadian disruption might actually contribute to the neurodegenerative process, and thus might be a modifiable cause of neural injury. Herein we will review the evidence implicating circadian rhythms disturbances and clock gene dysfunction in neurodegeneration, with an emphasis on future research directions and potential therapeutic implications for neurodegenerative diseases.

  3. Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders.

    Science.gov (United States)

    Barandas, Rita; Landgraf, Dominic; McCarthy, Michael J; Welsh, David K

    2015-12-01

    Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms.

  4. Signaling to the circadian clock: plasticity by chromatin remodeling.

    Science.gov (United States)

    Nakahata, Yasukazu; Grimaldi, Benedetto; Sahar, Saurabh; Hirayama, Jun; Sassone-Corsi, Paolo

    2007-04-01

    Circadian rhythms govern several fundamental physiological functions in almost all organisms, from prokaryotes to humans. The circadian clocks are intrinsic time-tracking systems with which organisms can anticipate environmental changes and adapt to the appropriate time of day. In mammals, circadian rhythms are generated in pacemaker neurons within the suprachiasmatic nuclei (SCN), a small area of the hypothalamus, and are entrained by environmental cues, principally light. Disruption of these rhythms can profoundly influence human health, being linked to depression, insomnia, jet lag, coronary heart disease and a variety of neurodegenerative disorders. It is now well established that circadian clocks operate via transcriptional feedback autoregulatory loops that involve the products of circadian clock genes. Furthermore, peripheral tissues also contain independent clocks, whose oscillatory function is orchestrated by the SCN. The complex program of gene expression that characterizes circadian physiology involves dynamic changes in chromatin transitions. These remodeling events are therefore of great importance to ensure the proper timing and extent of circadian regulation. How signaling influences chromatin remodeling through histone modifications is therefore highly relevant in the context of circadian oscillation. Recent advances in the field have revealed unexpected links between circadian regulators, chromatin remodeling and cellular metabolism.

  5. [Circadian regulation of sleep-wake cycles and food anticipation].

    Science.gov (United States)

    Nakamura, Wataru

    2012-06-01

    The circadian clock is crucial for efficient physiological function and drives the temporal regulation of the sleep-wake state, metabolism, and behavior. The timing of food intake and the accompanying behavior are both controlled by the internal clock, which is located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. The SCN is considered as the master clock because the circadian rhythms for most physiological and behavioral processes are terminated after SCN ablation. The molecular framework of circadian oscillations can be best studied in the SCN. A "core" set of circadian clock genes form autoregulatory transcription-translation feedback loops that are believed to drive daily rhythms in individual cells. These clock genes are expressed in a circadian manner not only in the SCN but also in other parts of the brain and many peripheral tissues. Mammals can anticipate a predictable daily mealtime through entrainment of circadian oscillators. Because the restriction of food availability to a specific time of the day elicits anticipatory behavior even after ablation of the SCN, such behaviour is assumed to be controlled by another circadian oscillator. In this paper, we have (1) reviewed studies involving the identification of the circadian clock and (2) aimed to elucidate the complex mechanism underlying feeding-associated rhythms by achieving a deep understanding of the circadian phenotypes of the SCN.

  6. Autoimmune hepatitis

    Directory of Open Access Journals (Sweden)

    F Motamed

    2014-04-01

    Full Text Available Autoimmune hepatitis is (AIH is a chronic hepatitis that occurs in children and adults of all ages. It is characterized by immunologic and autoimmune features, including circulating auto antibodies and high serum globulin concentrations. It was first described in the 1950s by term of chronic active hepatitis. It has 2 types with different auto antibodies. Diagnosis is based upon serologic and histologic findings and exclusion of other forms of chronic liver disease.   A scoring system should be used in assessment based upon: 1 Auto anti bodie titer 2 Serum IgG level  3 Liver histology 4 Absence of viral and other causes of hepatitis. Clear indications for treatment: 1   rise of aminotrasferases 2   clinical symptoms of liver disease 3   histological features in liver biopsy 4   Children with AIH initial treatment involve glucocorticoid with or without azathioprine. For patients with fulminant hepatitis liver transplantation, should be kept in mind.   Remission is defined by: 1   Resolution of symptoms 2   Normalization of serum trasaminases 3   Normalization of serum bilirubin and gamma globuline levels. 4   Improvement in liver histology 5   Treatment is continued for at least 2-5 years, glucocorticoids are with drawn first, by tapering over six weeks. Azathioprine will be with drawn.  

  7. [Chronic hepatitis].

    Science.gov (United States)

    Figueroa Barrios, R

    1995-01-01

    Medical literature about chronic hepatitis is reviewed. This unresolving disease caused by viruses, drugs or unknown factors may progress to in cirrhosis and hepatocarcinoma. A classification based on liver biopsy histology into chronic persistent and chronic active types has been largely abandoned and emphasis is placed on recognizing the etiology of the various types. One is associated with continuing hepatitis B virus infection; another is related to chronic hepatitis C virus infection and the third is termed autoinmune, because of the association with positive serum autoantibodies. A fourth type with similar clinical functional and morphologic features is found with some drug reactions. Long term corticoesteroid therapy is usually successful in autoinmune type. Associations between antibodies to liver-kidney microsomes and the hepatitis C virus can cause diagnostic difficulties. Antiviral treatment of chronic hepatitis B and C with interpheron alfa is employed, controlling symptoms and abnormal biochemistry and the progression to cirrhosis and liver cancer in 30 to 40% patients. Alternative therapies or combinations with interpheron are being evaluated waiting for final results.

  8. Circadian Phase Preference in Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Kerri L. Kim

    2014-03-01

    Full Text Available Pediatric bipolar disorder (BD rates have notably increased over the past three decades. Given the significant morbidity and mortality associated with BD, efforts are needed to identify factors useful in earlier detection to help address this serious public health concern. Sleep is particularly important to consider given the sequelae of disrupted sleep on normative functioning and that sleep is included in diagnostic criteria for both Major Depressive and Manic Episodes. Here, we examine one component of sleep—i.e., circadian phase preference with the behavioral construct of morningness/eveningness (M/E. In comparing 30 BD and 45 typically developing control (TDC participants, ages 7–17 years, on the Morningness-Eveningness Scale for Children (MESC, no between-group differences emerged. Similar results were found when comparing three groups (BD−ADHD; BD+ADHD; TDC. Consistent with data available on circadian phase preference in adults with BD, however, we found that BD adolescents, ages 13 years and older, endorsed significantly greater eveningness compared to their TDC peers. While the current findings are limited by reliance on subjective report and the high-rate of comorbid ADHD among the BD group, this finding that BD teens demonstrate an exaggerated shift towards eveningness than would be developmentally expected is important. Future studies should compare the circadian rhythms across the lifespan for individuals diagnosed with BD, as well as identify the point at which BD youth part ways with their healthy peers in terms of phase preference. In addition, given our BD sample was overall euthymic, it may be that M/E is more state vs. trait specific in latency age youth. Further work would benefit from assessing circadian functioning using a combination of rating forms and laboratory-based measures. Improved understanding of sleep in BD may identify behavioral targets for inclusion in prevention and intervention protocols.

  9. Glaucoma alters the circadian timing system.

    Directory of Open Access Journals (Sweden)

    Elise Drouyer

    Full Text Available Glaucoma is a widespread ocular disease and major cause of blindness characterized by progressive, irreversible damage of the optic nerve. Although the degenerative loss of retinal ganglion cells (RGC and visual deficits associated with glaucoma have been extensively studied, we hypothesize that glaucoma will also lead to alteration of the circadian timing system. Circadian and non-visual responses to light are mediated by a specialized subset of melanopsin expressing RGCs that provide photic input to mammalian endogenous clock in the suprachiasmatic nucleus (SCN. In order to explore the molecular, anatomical and functional consequences of glaucoma we used a rodent model of chronic ocular hypertension, a primary causal factor of the pathology. Quantitative analysis of retinal projections using sensitive anterograde tracing demonstrates a significant reduction (approximately 50-70% of RGC axon terminals in all visual and non-visual structures and notably in the SCN. The capacity of glaucomatous rats to entrain to light was challenged by exposure to successive shifts of the light dark (LD cycle associated with step-wise decreases in light intensity. Although glaucomatous rats are able to entrain their locomotor activity to the LD cycle at all light levels, they require more time to re-adjust to a shifted LD cycle and show significantly greater variability in activity onsets in comparison with normal rats. Quantitative PCR reveals the novel finding that melanopsin as well as rod and cone opsin mRNAs are significantly reduced in glaucomatous retinas. Our findings demonstrate that glaucoma impacts on all these aspects of the circadian timing system. In light of these results, the classical view of glaucoma as pathology unique to the visual system should be extended to include anatomical and functional alterations of the circadian timing system.

  10. The Circadian Clock, Reward, and Memory

    OpenAIRE

    Urs eAlbrecht

    2011-01-01

    During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance, and reward may be related to one another. This review will summarize data that describe the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  11. The circadian clock, reward and memory

    Directory of Open Access Journals (Sweden)

    Urs eAlbrecht

    2011-11-01

    Full Text Available During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance and reward may be related to one another. This review will summarize data that describes the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  12. Circadian Metabolism in the Light of Evolution

    DEFF Research Database (Denmark)

    Gerhart-Hines, Zachary; Lazar, Mitchell A.

    2015-01-01

    -tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery...... energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health. [on SciFinder(R)]...

  13. Shift work and circadian dysregulation of reproduction

    Directory of Open Access Journals (Sweden)

    Karen L. Gamble

    2013-08-01

    Full Text Available Health impairments, including reproductive issues, are associated with working nights or rotating shifts. For example, shift work has been associated with an increased risk of irregular menstrual cycles, endometriosis, infertility, miscarriage, low birth weight or pre-term delivery, and reduced incidence of breastfeeding. Based on what is known about circadian regulation of endocrine rhythms in rodents (and much less in humans, the circadian clock is an integral regulatory part of the reproductive system. When this 24-h program is disordered by environmental perturbation (such as shift work or genetic alterations, the endocrine system can be impaired. The purpose of this review is to explore the hypothesis that misalignment of reproductive hormones with the environmental light-dark cycle and/or sleep wake rhythms can disrupt menstrual cycles, pregnancy, and parturition. We highlight the role of the circadian clock in regulating human reproductive physiology and shift work-induced pathology within each step of the reproductive axis while exploring potential mechanisms from the animal model literature. In addition to documenting the reproductive hazards of shift work, we also point out important gaps in our knowledge as critical areas for future investigation. For example, future studies should examine whether forced desynchronization disrupts gonadotropin secretion rhythms and whether there are sleep/wake schedules that are better or worse for the adaptation of the reproductive system to shift work. These studies are necessary in order to define not only whether or not shift-work induced circadian misalignment impairs reproductive capacity, but also to identify strategies for the future that can minimize this desynchronization.

  14. Imaging Multidimensional Therapeutically Relevant Circadian Relationships

    Directory of Open Access Journals (Sweden)

    Jamil Singletary

    2009-01-01

    Full Text Available Circadian clocks gate cellular proliferation and, thereby, therapeutically target availability within proliferative pathways. This temporal coordination occurs within both cancerous and noncancerous proliferating tissues. The timing within the circadian cycle of the administration of drugs targeting proliferative pathways necessarily impacts the amount of damage done to proliferating tissues and cancers. Concurrently measuring target levels and associated key pathway components in normal and malignant tissues around the circadian clock provides a path toward a fuller understanding of the temporal relationships among the physiologic processes governing the therapeutic index of antiproliferative anticancer therapies. The temporal ordering among these relationships, paramount to determining causation, is less well understood using two- or three-dimensional representations. We have created multidimensional multimedia depictions of the temporal unfolding of putatively causative and the resultant therapeutic effects of a drug that specifically targets these ordered processes at specific times of the day. The systems and methods used to create these depictions are provided, as well as three example supplementary movies.

  15. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  16. Circadian behaviour in neuroglobin deficient mice.

    Science.gov (United States)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  17. Links between circadian rhythms and psychiatric disease

    Directory of Open Access Journals (Sweden)

    Ilia N Karatsoreos

    2014-05-01

    Full Text Available Determining the cause of psychiatric disorders is a goal of modern neuroscience, and will hopefully lead to the discovery of treatments to either prevent or alleviate the suffering caused by these diseases. One roadblock to attaining this goal is the realization that neuropsychiatric diseases are rarely due to a single gene polymorphism, environmental exposure, or developmental insult. Rather, it is a complex interaction between these various influences that likely leads to the development of clinically relevant syndromes. Our lab is exploring the links between environmental exposures and neurobehavioral function by investigating how disruption of the circadian (daily clock alters the structure and function of neural circuits, with the hypothesis that disrupting this crucial homeostatic system can directly contribute to altered vulnerability of the organism to other factors that interact to produce psychiatric illness. This review explores some historical and more recent findings that link disrupted circadian clocks to neuropsychiatric disorders, particularly depression, mania, and schizophrenia. We take a comparative approach by exploring the effects observed in human populations, as well as some experimental models used in the laboratory to unravel mechanistic and causal relationships between disruption of the circadian clock and behavioral abnormalities. This is a rich area of research that we predict will contribute greatly to our understanding of how genes, environment, and development interact to modulate an individual’s vulnerability to psychiatric disorders.

  18. Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ron Weiss

    2014-04-01

    Full Text Available Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK and CYCLE (CYC initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60% or strongly (90% without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain.

  19. Influence of weeks of circadian misalignment on leptin levels

    Directory of Open Access Journals (Sweden)

    June Nguyen

    2009-12-01

    Full Text Available June Nguyen, Kenneth P Wright JrDepartment of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado, Boulder, CO, USAAbstract: The neurobiology of circadian, wakefulness–sleep, and feeding systems interact to influence energy homeostasis. Sleep and circadian disruptions are reported to be associated with increased risk of diabetes and obesity, yet the roles of energy balance hormones in these associations are largely unknown. Therefore, in the current study we aimed to assess the influence of several weeks of circadian misalignment (sleep and wakefulness occurring at an inappropriate biological time on the anorexigenic adipocyte hormone leptin. We utilized data from a previous study designed to assess physiological and cognitive consequences of changes in day length and light exposure as may occur during space flight, including exploration class space missions and exposure to the Martian Sol (day length. We hypothesized that circadian misalignment during an exploration class spaceflight simulation would reduce leptin levels. Following a three-week ~8 hours per night home sleep schedule, 14 healthy participants lived in the laboratory for more than one month. After baseline data collection, participants were scheduled to either 24.0 or 24.6 hours of wakefulness–sleep schedules for 25 days. Changes in the phase of the circadian melatonin rhythm, sleep, and leptin levels were assessed. Half of participants analyzed exhibited circadian misalignment with an average change in phase angle from baseline of ~4 hours and these participants showed reduced leptin levels, sleep latency, stage 2 and total sleep time (7.3 to 6.6 hours and increased wakefulness after sleep onset (all P < 0.05. The control group remained synchronized and showed significant increases in sleep latency and leptin levels. Our findings indicate that weeks of circadian misalignment, such as that which occurs in circadian sleep disorders, alters leptin

  20. Circadian arrhythmia dysregulates emotional behaviors in aged Siberian hamsters.

    Science.gov (United States)

    Prendergast, Brian J; Onishi, Kenneth G; Patel, Priyesh N; Stevenson, Tyler J

    2014-03-15

    Emotional behaviors are influenced by the circadian timing system. Circadian disruptions are associated with depressive-like symptoms in clinical and preclinical populations. Circadian rhythm robustness declines markedly with aging and may contribute to susceptibility to emotional dysregulation in aged individuals. The present experiments used a model of chronic circadian arrhythmia generated noninvasively, via a series of circadian-disruptive light treatments, to investigate interactions between circadian desynchrony and aging on depressive- and anxiety-like behaviors, and on limbic neuroinflammatory gene expression that has been linked with emotionality. We also examined whether a social manipulation (group housing) would attenuate effects of arrhythmia on emotionality. In aged (14-18 months of age) male Siberian hamsters, circadian arrhythmia increased behavioral despair and decreased social motivation, but decreased exploratory anxiety. These effects were not evident in younger (5-9 months of age) hamsters. Social housing (3-5 hamsters/cage) abolished the effects of circadian arrhythmia on emotionality. Circadian arrhythmia alone was without effect on hippocampal or cortical interleukin-1β (IL-1β) and indoleamine 2,3-dioxygenase (Ido) mRNA expression in aged hamsters, but social housing decreased hippocampal IL-1β and Ido mRNAs. The data demonstrate that circadian disruption can negatively impact affective state, and that this effect is pronounced in older individuals. Although clear associations between circadian arrhythmia and constitutive limbic proinflammatory activity were not evident, the present data suggest that social housing markedly inhibits constitutive hippocampal IL-1β and Ido activity, which may contribute to the ameliorating effects of social housing on a number of emotional behaviors.

  1. Hepatitis A vaccine associated with autoimmune hepatitis

    Institute of Scientific and Technical Information of China (English)

    PA Berry; G Smith-Laing

    2007-01-01

    To describe a case of probable relapsing autoimmune hepatitis associated with vaccination against hepatitis A virus (HAV). A case report and review of literature were written concerning autoimmune hepatitis in association with hepatitis A and other hepatotropic viruses. Soon after the administration of formalin-inactivated hepatitis A vaccine, a man who had recently recovered from an uncharacterized but self-limiting hepatitic illness,experienced a severe deterioration (AST 1687 U/L, INR 1.4). Anti-nuclear antibodies were detectable, and liver biopsy was compatible with autoimmune hepatitis. The observation supports the role of HAV as a trigger of autoimmune hepatitis. Studies in helper T-cell activity and antibody expression against hepatic proteins in the context of hepatitis A infection are summarized, and the concept of molecular mimicry with regard to other forms of viral hepatitis and autoimmunity is briefly explored.

  2. The cholinergic system, circadian rhythmicity, and time memory

    NARCIS (Netherlands)

    Hut, R. A.; Van der Zee, E. A.

    2011-01-01

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor

  3. Circadian rhythms and endocrine functions in adult insects.

    Science.gov (United States)

    Bloch, Guy; Hazan, Esther; Rafaeli, Ada

    2013-01-01

    Many behavioral and physiological processes in adult insects are influenced by both the endocrine and circadian systems, suggesting that these two key physiological systems interact. We reviewed the literature and found that experiments explicitly testing these interactions in adult insects have only been conducted for a few species. There is a shortage of measurements of hormone titers throughout the day under constant conditions even for the juvenile hormones (JHs) and ecdysteroids, the best studied insect hormones. Nevertheless, the available measurements of hormone titers coupled with indirect evidence for circadian modulation of hormone biosynthesis rate, and the expression of genes encoding proteins involved in hormone biosynthesis, binding or degradation are consistent with the hypothesis that the circulating levels of many insect hormones are influenced by the circadian system. Whole genome microarray studies suggest that the modulation of farnesol oxidase levels is important for the circadian regulation of JH biosynthesis in honey bees, mosquitoes, and fruit flies. Several studies have begun to address the functional significance of circadian oscillations in endocrine signaling. The best understood system is the circadian regulation of Pheromone Biosynthesis Activating Neuropeptide (PBAN) titers which is important for the temporal organization of sexual behavior in female moths. The evidence that the circadian and endocrine systems interact has important implications for studies of insect physiology and behavior. Additional studies on diverse species and physiological processes are needed for identifying basic principles underlying the interactions between the circadian and endocrine systems in insects.

  4. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  5. CRY links the circadian clock and CREB-mediated gluconeogenesis

    Institute of Scientific and Technical Information of China (English)

    Megumi Hatori; Satchidananda Panda

    2010-01-01

    @@ Circadian oscillators based on a transcriptional feedback loop exist in almost all cells of animals. The cellular oscillators synchronize each other via paracrine or systemic communications,resulting in rhythmic changes of tissue- and whole body-level physiologies and behaviors. Circadian regulation of metabolism is well documented and disruption of such temporal regulation is known to predispose organisms to metabolic diseases.

  6. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  7. Associations between circadian and stress response cortisol in children

    NARCIS (Netherlands)

    Simons, S.S.H.; Cillessen, A.H.N.; Weerth, C. de

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm i

  8. The Molecular Circadian Clock and Alcohol-Induced Liver Injury.

    Science.gov (United States)

    Udoh, Uduak S; Valcin, Jennifer A; Gamble, Karen L; Bailey, Shannon M

    2015-10-14

    Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  9. Assignment of circadian function for the Neurospora clock gene frequency

    NARCIS (Netherlands)

    Merrow, Martha; Brunner, Michael; Roenneberg, Till

    1999-01-01

    Circadian clocks consist of three elements: entrainment pathways (inputs), the mechanism generating the rhythmicity (oscillator), and the output pathways that control the circadian rhythms. It is difficult to assign molecular clock components to any one of these elements. Experiments show that input

  10. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Uduak S. Udoh

    2015-10-01

    Full Text Available Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  11. Heritable circadian period length in a wild bird population

    NARCIS (Netherlands)

    Helm, Barbara; Visser, Marcel E.

    2010-01-01

    Timing is essential, but circadian clocks, which play a crucial role in timekeeping, are almost unaddressed in evolutionary ecology. A key property of circadian clocks is their free-running period length (tau), i.e. the time taken for a full cycle under constant conditions. Under laboratory conditio

  12. Robustness of synthetic circadian clocks to multiple environmental changes.

    Science.gov (United States)

    Gurevich, Lilia; Cohen-Luria, Rivka; Wagner, Nathaniel; Ashkenasy, Gonen

    2015-04-04

    A molecular network that mimics circadian clocks from cyanobacteria is constructed in silico. Simulating its oscillatory behaviour under variable conditions reveals its robustness relative to networks of alternative topologies. The principles for synthetic chemical circadian networks to work properly are consequently highlighted.

  13. The circadian deadenylase Nocturnin is necessary for stabilization of the iNOS mRNA in mice.

    Directory of Open Access Journals (Sweden)

    Shuang Niu

    Full Text Available Nocturnin is a member of the CCR4 deadenylase family, and its expression is under circadian control with peak levels at night. Because it can remove poly(A tails from mRNAs, it is presumed to play a role in post-transcriptional control of circadian gene expression, but its target mRNAs are not known. Here we demonstrate that Nocturnin expression is acutely induced by the endotoxin lipopolysaccharide (LPS. Mouse embryo fibroblasts (MEFs lacking Nocturnin exhibit normal patterns of acute induction of TNFα and iNOS mRNAs during the first three hours following LPS treatment, but by 24 hours, while TNFα mRNA levels are indistinguishable from WT cells, iNOS message is significantly reduced 20-fold. Accordingly, analysis of the stability of the mRNAs showed that loss of Nocturnin causes a significant decrease in the half-life of the iNOS mRNA (t(1/2 = 3.3 hours in Nocturnin knockout MEFs vs. 12.4 hours in wild type MEFs, while having no effect on the TNFα message. Furthermore, mice lacking Nocturnin lose the normal nighttime peak of hepatic iNOS mRNA, and have improved survival following LPS injection. These data suggest that Nocturnin has a novel stabilizing activity that plays an important role in the circadian response to inflammatory signals.

  14. Phase advance of circadian rhythms in Smith-Magenis syndrome: a case study in an adult man.

    Science.gov (United States)

    Kocher, Laurence; Brun, Jocelyne; Devillard, Françoise; Azabou, Eric; Claustrat, Bruno

    2015-01-12

    Melatonin secretion is usually increased during the daytime and decreased at night in Smith-Magenis syndrome (SMS) and consequently is not a pertinent marker of the circadian phase of the clock in these cases. No data on temperature rhythm is available in SMS, another reliable marker of circadian clock activity. For this reason, we assessed the 24h profiles of core temperature, sleep-wake cycle, hormones (plasma cortisol and melatonin) and plasma and urine 6sulfatoxy-melatonin, the main hepatic melatonin metabolism in a 31-year-old man diagnosed with a SMS. All circadian rhythms, especially temperature rhythm showed a phase-advance, associated with reverse melatonin secretion. Plasma and urine 6sulfatoxy-melatonin profiles showed normal melatonin catabolism and confirmed the reversed melatonin secretion. Taking in consideration the reverse melatonin secretion and the phase-advanced temperature rhythm, which is driven by the suprachiasmatic nucleus, we hypothesize that the central clock is more sensitive to afternoon than to morning melatonin. This different responsiveness to melatonin according to the time of the day (i.e. chronaesthesia) corroborates the phase response curve of melatonin secretion to exogenous melatonin.

  15. Hepatic amebiasis

    Directory of Open Access Journals (Sweden)

    José Maria Salles

    2003-04-01

    Full Text Available Amebiasis can be considered the most aggressive disease of the human intestine, responsible in its invasive form for clinical syndromes, ranging from the classic dysentery of acute colitis to extra-intestinal disease, with emphasis on hepatic amebiasis, unsuitably named amebic liver abscess. Found worldwide, with a high incidence in India, tropical regions of Africa, Mexico and other areas of Central America, it has been frequently reported in Amazonia. The trophozoite reaches the liver through the portal system, provoking enzymatic focal necrosis of hepatocytes and multiple micro-abscesses that coalesce to develop a single lesion whose central cavity contains a homogeneous thick liquid, with typically reddish brown and yellow color similar to "anchovy paste". Right upper quadrant pain, fever and hepatomegaly are the predominant symptoms of hepatic amebiasis. Jaundice is reported in cases with multiple lesions or a very large abscess, and it affects the prognosis adversely. Besides chest radiography, ultrasonography and computerized tomography have brought remarkable contributions to the diagnosis of hepatic abscesses. The conclusive diagnosis is made however by the finding of Entamoeba histolytica trophozoites in the pus and by the detection of serum antibodies to the amoeba. During the evolution of hepatic amebiasis, in spite of the availability of highly effective drugs, some important complications may occur with regularity and are a result of local perforation with extension into the pleural and pericardium cavities, causing pulmonary abscesses and purulent pericarditis, respectively The ruptures into the abdominal cavity may lead to subphrenic abscesses and peritonitis. The treatment of hepatic amebiasis is made by medical therapy, with metronidazole as the initial drug, followed by a luminal amebicide. In patients with large abscesses, showing signs of imminent rupture, and especially those who do not respond to medical treatment, a

  16. Rhythmic Degradation Explains and Unifies Circadian Transcriptome and Proteome Data

    Directory of Open Access Journals (Sweden)

    Sarah Lück

    2014-10-01

    Full Text Available The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.

  17. Extraordinary behavioral entrainment following circadian rhythm bifurcation in mice.

    Science.gov (United States)

    Harrison, Elizabeth M; Walbeek, Thijs J; Sun, Jonathan; Johnson, Jeremy; Poonawala, Qays; Gorman, Michael R

    2016-12-08

    The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Entrainment to schedules that deviate significantly from 24 h (T24) has been viewed as unlikely because the circadian pacemaker appears capable only of small, incremental responses to brief light exposures. Challenging this view, we demonstrate that simple manipulations of light alone induce extreme plasticity in the circadian system of mice. Firstly, exposure to dim nocturnal illumination (entrainment. Continuation of dim light is unnecessary for T15/30 behavioral entrainment following bifurcation. Finally, neither dim light alone nor a shortened night is sufficient for the extraordinary entrainment observed under bifurcation. Thus, we demonstrate in a non-pharmacological, non-genetic manipulation that the circadian system is far more flexible than previously thought. These findings challenge the current conception of entrainment and its underlying principles, and reveal new potential targets for circadian interventions.

  18. Effects of Gravity on Insect Circadian Rhythmicity

    Science.gov (United States)

    Hoban-Higgins, Tana M.

    2000-01-01

    Circadian rhythms - endogenous daily rhythmic fluctuations in virtually all characteristics of life - are generated and coordinated by the circadian timing system (CTS). The CTS is synchronized to the external 24-hour day by time cues such as the light/dark cycle. In an environment without time cues, the length of an animal's day is determined by the period of its internal pacemaker (tau) and the animal is said to be free-running. All life on earth evolved under the solar day; the CTS exists as an adaptation that allows organisms to anticipate and to prepare for rhythmic environmental fluctuations. All life on earth also evolved under the force of earth's gravitational environment. While it is therefore not surprising that changes in the lighting environment affect the CTS, it is surprising that changes in the gravitational environment would do so. However, recent data from one of our laboratories using the brn-3.1 knockout mouse revealed that this model, which lacks the sensory receptor hair cells within the neurovestibular system, does not respond to exposure to a hyperdynamic environment in the same fashion as normal mice. The brn-3.1 mice did not show the expected suppression of circadian rhythmicity shown by control mice exposed to 2G. Exposure to altered ambient force environments affects the amplitude, mean and timing of circadian rhythms in species from unicellular organisms to man. In addition, there is a circadian influence on the homeostatic response to acute 2G acceleration and pulses of 2G can act as a time cue, synchronizing the CTS. This is of significance because maintenance of internal and external temporal coordination is critical for normal physiological and psychological function. Typically, during adaptation to an increased gravitational environment (+G), an initial acute reaction is followed by adaptation and, eventually, a new steady state (14-16), which can take weeks to months to establish. Until the development of space stations, exposure

  19. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  20. Circadian rhythms in floral scent emission

    Directory of Open Access Journals (Sweden)

    Myles eFenske

    2016-04-01

    Full Text Available To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the benzenoid/phenylpropanoid (FVBP pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT1 (ODO1, EMISSION OF BENZENOIDS I (EOBI, and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.

  1. Circadian molecular clock in lung pathophysiology.

    Science.gov (United States)

    Sundar, Isaac K; Yao, Hongwei; Sellix, Michael T; Rahman, Irfan

    2015-11-15

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.

  2. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan

    2013-01-01

    The circadian master clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the clock of the SCN is driven by a transcriptional/posttranslational autoregulatory network with clock gene products as core elements. Recent investigations...... have shown the presence of peripheral clocks in extra-hypothalamic areas of the central nervous system. However, knowledge on the clock gene network in the cerebral cortex is limited. We here show that the mammalian clock genes Per1, Per2, Per3, Cry1, Cry2, Bmal1, Clock, Nr1d1 and Dbp are expressed...

  3. Circadian Kisspeptin expression in human term placenta.

    Science.gov (United States)

    de Pedro, M A; Morán, J; Díaz, I; Murias, L; Fernández-Plaza, C; González, C; Díaz, E

    2015-11-01

    Kisspeptin is an essential gatekeeper of reproductive function. During pregnancy high circulating levels of kisspeptin have been described, however the clear role of this neuropeptide in pregnancy remains unknown. We tested the existence of rhythmic kisspeptin expression in human full-term placenta from healthy pregnant women at six different time points during the day. The data obtained by Western blotting were fitted to a mathematical model (Fourier series), demonstrating, for the first time, the existence of a circadian rhythm in placental kisspeptin expression.

  4. The mammalian circadian clock protein period counteracts cryptochrome in phosphorylation dynamics of circadian locomotor output cycles kaput (CLOCK).

    Science.gov (United States)

    Matsumura, Ritsuko; Tsuchiya, Yoshiki; Tokuda, Isao; Matsuo, Takahiro; Sato, Miho; Node, Koichi; Nishida, Eisuke; Akashi, Makoto

    2014-11-14

    The circadian transcription factor CLOCK exhibits a circadian oscillation in its phosphorylation levels. Although it remains unclear whether this phosphorylation contributes to circadian rhythm generation, it has been suggested to be involved in transcriptional activity, intracellular localization, and degradative turnover of CLOCK. Here, we obtained direct evidence that CLOCK phosphorylation may be essential for autonomous circadian oscillation in clock gene expression. Importantly, we found that the circadian transcriptional repressors Cryptochrome (CRY) and Period (PER) showed an opposite effect on CLOCK phosphorylation; CRY impaired BMAL1-dependent CLOCK phosphorylation, whereas PER protected the phosphorylation against CRY. Interestingly, unlike PER1 and PER2, PER3 did not exert a protective action, which correlates with the phenotypic differences among mice lacking the Per genes. Further studies on the regulatory mechanism of CLOCK phosphorylation would thus lead to elucidation of the mechanism of CRY-mediated transcriptional repression and an understanding of the true role of PER in the negative feedback system.

  5. Hepatic autoregulation

    DEFF Research Database (Denmark)

    Staehr, Peter; Hother-Nielsen, Ole; Beck-Nielsen, Henning

    2007-01-01

    The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1......-phosphate --> glucose 6-phosphate --> glucose. Healthy men (n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed approximately 90% to a GP of approximately 8 micromol.kg(-1).min(-1). Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP...... declined from approximately 90% to 65%, i.e., by approximately 2 micromol.kg(-1).min(-1). The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-(2)H]galactose (n = 4), was also approximately 2 micromol.kg(-1).min(-1). The 41st h GP rose by approximately 1...

  6. HIV and Hepatitis B

    Science.gov (United States)

    ... AIDS-Related Opportunistic Infections and Coinfections HIV and Hepatitis B (Last updated 8/31/2016; last reviewed ... should be treated for both diseases. What is hepatitis B? Hepatitis B is a liver disease caused ...

  7. Drug-induced hepatitis

    Science.gov (United States)

    Toxic hepatitis ... to get liver damage. Some drugs can cause hepatitis with small doses, even if the liver breakdown ... liver. Many different drugs can cause drug-induced hepatitis. Painkillers and fever reducers that contain acetaminophen are ...

  8. HIV and Hepatitis C

    Science.gov (United States)

    ... AIDS-Related Opportunistic Infections and Coinfections HIV and Hepatitis C (Last updated 8/31/2016; last reviewed ... the medicines for any side effects. What is hepatitis C? Hepatitis C is a liver disease caused ...

  9. Travelers' Health: Hepatitis E

    Science.gov (United States)

    ... Compartir Chapter 3 - Hepatitis C Chapter 3 - Histoplasmosis Hepatitis E Chong-Gee Teo INFECTIOUS AGENT Infection is ... factor for infection. Map 3-06. Distribution of hepatitis E virus infection 1 PDF Version (printable) 1 ...

  10. Hepatitis B Test

    Science.gov (United States)

    ... helpful? Also known as: HBV Tests; Hep B; anti-HBs; Hepatitis B Surface Antibody; HBsAg; Hepatitis B Surface ... including "HBV carrier" state. Hepatitis B surface antibody (anti-HBs) Detects antibody produced in response to HBV surface ...

  11. Preventing hepatitis A

    Science.gov (United States)

    Hepatitis A is inflammation (irritation and swelling) of the liver caused by the hepatitis A virus. You can take several steps to ... reduce your risk of spreading or catching the hepatitis A virus: Always wash your hands thoroughly after ...

  12. Hepatitis B virus (image)

    Science.gov (United States)

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  13. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster

    OpenAIRE

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M.; Giebultowicz, Jadwiga M.

    2013-01-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exerci...

  14. Zebrafish circadian clocks: cells that see light.

    Science.gov (United States)

    Tamai, T K; Carr, A J; Whitmore, D

    2005-11-01

    In the classical view of circadian clock organization, the daily rhythms of most organisms were thought to be regulated by a central, 'master' pacemaker, usually located within neural structures of the animal. However, with the results of experiments performed in zebrafish, mammalian cell lines and, more recently, mammalian tissues, this view has changed to one where clock organization is now seen as being highly decentralized. It is clear that clocks exist in the peripheral tissues of animals as diverse as Drosophila, zebrafish and mammals. In the case of Drosophila and zebrafish, these tissues are also directly light-responsive. This light sensitivity and direct clock entrainability is also true for zebrafish cell lines and early-stage embryos. Using luminescent reporter cell lines containing clock gene promoters driving the expression of luciferase and single-cell imaging techniques, we have been able to show how each cell responds rapidly to a single light pulse by being shifted to a common phase, equivalent to the early day. This direct light sensitivity might be related to the requirement for light in these cells to activate the transcription of genes involved in DNA repair. It is also clear that the circadian clock in zebrafish regulates the timing of the cell cycle, demonstrating the wide impact that this light sensitivity and daily rhythmicity has on the biology of zebrafish.

  15. Drugs of Abuse Can Entrain Circadian Rhythms

    Directory of Open Access Journals (Sweden)

    Ann E. K. Kosobud

    2007-01-01

    Full Text Available Circadian rhythms prepare organisms for predictable events during the Earth's 24-h day. These rhythms are entrained by a variety of stimuli. Light is the most ubiquitous and best known zeitgeber, but a number of others have been identified, including food, social cues, locomotor activity, and, most recently drugs of abuse. Given the diversity of zeitgebers, it is probably not surprising that genes capable of clock functions are located throughout almost all organs and tissues. Recent evidence suggests that drugs of abuse can directly entrain some circadian rhythms. We have report here that entrainment by drugs of abuse is independent of the suprachiasmatic nucleus and the light/dark cycle, is not dependent on direct locomotor stimulation, and is shared by a variety of classes of drugs of abuse. We suggest that drug-entrained rhythms reflect variations in underlying neurophysiological states. This could be the basis for known daily variations in drug metabolism, tolerance, and sensitivity to drug reward. These rhythms could also take the form of daily periods of increased motivation to seek and take drugs, and thus contribute to abuse, addiction and relapse.

  16. Crosstalk between circadian rhythmicity, mitochondrial dynamics and macrophage bactericidal activity

    Science.gov (United States)

    Oliva-Ramírez, Jacqueline; Moreno-Altamirano, María Maximina B; Pineda-Olvera, Benjamín; Cauich-Sánchez, Patricia; Sánchez-García, F Javier

    2014-01-01

    Biological functions show rhythmic fluctuations with 24-hr periodicity regulated by circadian proteins encoded by the so-called ‘clock’ genes. The absence or deregulation of circadian proteins in mice leads to metabolic disorders and in vitro models have shown that the synthesis of pro-inflammatory cytokines by macrophages follows a circadian rhythm so showing a link between circadian rhythmicity, metabolism and immunity. Recent evidence reveals that mitochondrial shape, position and size, collectively referred to as mitochondrial dynamics, are related to both cell metabolism and immune function. However, studies addressing the simultaneous crosstalk between circadian rhythm, mitochondrial dynamics and cell immune function are scarce. Here, by using an in vitro model of synchronized murine peritoneal macrophages, we present evidence that the mitochondrial dynamics and the mitochondrial membrane potential (Δψm) follow a circadian rhythmic pattern. In addition, it is shown that the fusion of mitochondria along with high Δψm, indicative of high mitochondrial activity, precede the highest phagocytic and bactericidal activity of macrophages on Salmonella typhimurium. Taken together, our results suggest a timely coordination between circadian rhythmicity, mitochondrial dynamics, and the bactericidal capacity of macrophages. PMID:24903615

  17. On the adaptive significance of circadian clocks for their owners.

    Science.gov (United States)

    Vaze, Koustubh M; Sharma, Vijay Kumar

    2013-05-01

    Circadian rhythms are believed to be an evolutionary adaptation to daily environmental cycles resulting from Earth's rotation about its axis. A trait evolved through a process of natural selection is considered as adaptation; therefore, rigorous demonstration of adaptation requires evidence suggesting evolution of a trait by natural selection. Like any other adaptive trait, circadian rhythms are believed to be advantageous to living beings through some perceived function. Circadian rhythms are thought to confer advantage to their owners through scheduling of biological functions at appropriate time of daily environmental cycle (extrinsic advantage), coordination of internal physiology (intrinsic advantage), and through their role in responses to seasonal changes. So far, the adaptive value of circadian rhythms has been tested in several studies and evidence indeed suggests that they confer advantage to their owners. In this review, we have discussed the background for development of the framework currently used to test the hypothesis of adaptive significance of circadian rhythms. Critical examination of evidence reveals that there are several lacunae in our understanding of circadian rhythms as adaptation. Although it is well known that demonstrating a given trait as adaptation (or setting the necessary criteria) is not a trivial task, here we recommend some of the basic criteria and suggest the nature of evidence required to comprehensively understand circadian rhythms as adaptation. Thus, we hope to create some awareness that may benefit future studies in this direction.

  18. Evolutionary links between circadian clocks and photoperiodic diapause in insects.

    Science.gov (United States)

    Meuti, Megan E; Denlinger, David L

    2013-07-01

    In this article, we explore links between circadian clocks and the clock involved in photoperiodic regulation of diapause in insects. Classical resonance (Nanda-Hamner) and night interruption (Bünsow) experiments suggest a circadian basis for the diapause response in nearly all insects that have been studied. Neuroanatomical studies reveal physical connections between circadian clock cells and centers controlling the photoperiodic diapause response, and both mutations and knockdown of clock genes with RNA interference (RNAi) point to a connection between the clock genes and photoperiodic induction of diapause. We discuss the challenges of determining whether the clock, as a functioning module, or individual clock genes acting pleiotropically are responsible for the photoperiodic regulation of diapause, and how a stable, central circadian clock could be linked to plastic photoperiodic responses without compromising the clock's essential functions. Although we still lack an understanding of the exact mechanisms whereby insects measure day/night length, continued classical and neuroanatomical approaches, as well as forward and reverse genetic experiments, are highly complementary and should enable us to decipher the diverse ways in which circadian clocks have been involved in the evolution of photoperiodic induction of diapause in insects. The components of circadian clocks vary among insect species, and diapause appears to have evolved independently numerous times, thus, we anticipate that not all photoperiodic clocks of insects will interact with circadian clocks in the same fashion.

  19. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  20. Sleep timing and circadian phase in delayed sleep phase syndrome.

    Science.gov (United States)

    Chang, Anne-Marie; Reid, Kathryn J; Gourineni, Ramadevi; Zee, Phyllis C

    2009-08-01

    Delayed sleep phase syndrome (DSPS) is a circadian rhythm sleep disorder in which the timing of the sleep episode occurs later than desired and is associated with difficulty falling asleep, problems awakening on time (e.g., to meet work or school obligations), and daytime sleepiness. The phase relationship between the timing of sleep and endogenous circadian rhythms is critical to the initiation and maintenance of sleep, and significant alteration leads to impairment of sleep quality and duration. The aim of this retrospective study was to determine the phase relationship between sleep-wake times and physiological markers of circadian timing in clinic patients with DSPS. Objective and subjective measures of sleep timing and circadian phase markers (core body temperature and melatonin) were measured in patients with DSPS and compared with age-matched controls. As expected, significant delays in the timing of the major sleep episode and circadian phase of body temperature and melatonin rhythms were seen in the DSPS group when allowed to sleep at their own habitual schedules, but the phase relationship between sleep-wake times and circadian phase was similar between the 2 groups. These results suggest that the symptoms of insomnia and excessive daytime sleepiness in DSPS patients living under entrained real-life conditions cannot be explained by an alteration in the phase relationship between sleep-wake patterns and other physiological circadian rhythms.

  1. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures

    Science.gov (United States)

    Skene, Debra J.; Arendt, Josephine; Cade, Janet E.; Grant, Peter J.; Hardie, Laura J.

    2016-01-01

    Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important. PMID:27763782

  2. A circadian rhythm regulating hyphal melanization in Cercospora kikuchii.

    Science.gov (United States)

    Bluhm, Burton H; Burnham, A Michele; Dunkle, Larry D

    2010-01-01

    Many metabolic and developmental processes in fungi are controlled by biological rhythms. Circadian rhythms approximate a daily (24 h) cycle and have been thoroughly studied in the model fungus, Neurospora crassa. However relatively few examples of true circadian rhythms have been documented among other filamentous fungi. In this study we describe a circadian rhythm underlying hyphal melanization in Cercospora kikuchii, an important pathogen of soybean. After growth in light or light : dark cycles, colonies transferred to darkness produced zonate bands of melanized hyphae interspersed with bands of hyaline hyphae. Rhythmic production of bands was remarkably persistent in the absence of external cues, lasting at least 7 d after transfer to darkness, and was compensated over a range of temperatures. As in N. crassa, blue light but not red light was sufficient to entrain the circadian rhythm in C. kikuchii, and a putative ortholog of white collar-1, one of the genes required for light responses in N. crassa, was identified in C. kikuchii. Circadian regulation of melanization is conserved in other members of the genus: Similar rhythms were identified in another field isolate of C. kikuchii as well as field isolates of C. beticola and C. sorghi, but not in wild-type strains of C. zeae-maydis or C. zeina. This report represents the first documented circadian rhythm among Dothideomycete fungi and provides a new opportunity to dissect the molecular basis of circadian rhythms among filamentous fungi.

  3. Interplay between the endocrine and circadian systems in fishes.

    Science.gov (United States)

    Isorna, Esther; de Pedro, Nuria; Valenciano, Ana I; Alonso-Gómez, Ángel L; Delgado, María J

    2017-03-01

    The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.

  4. A New Perspective for Parkinson's Disease: Circadian Rhythm.

    Science.gov (United States)

    Li, Siyue; Wang, Yali; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-02-01

    Circadian rhythm is manifested by the behavioral and physiological changes from day to night, which is controlled by the pacemaker and its regulator. The former is located at the suprachiasmatic nuclei (SCN) in the anterior hypothalamus, while the latter is composed of clock genes present in all tissues. Circadian desynchronization influences normal patterns of day-night rhythms such as sleep and alertness cycles, rest and activity cycles. Parkinson's disease (PD) exhibits diurnal fluctuations. Circadian dysfunction has been observed in PD patients and animal models, which may result in negative consequences to the homeostasis and even exacerbate the disease progression. Therefore, circadian therapies, including light stimulation, physical activity, dietary and social schedules, may be helpful for PD patients. However, the cellular and molecular mechanisms that underlie the circadian dysfunction in PD remain elusive. Further research on circadian patterns is needed. This article summarizes the existing research on the circadian rhythms in PD, focusing on the clinical symptom variations, molecular changes, as well as the available treatment options.

  5. Circadian regulation of cortisol release in behaviorally split golden hamsters.

    Science.gov (United States)

    Lilley, Travis R; Wotus, Cheryl; Taylor, Daniel; Lee, Jennifer M; de la Iglesia, Horacio O

    2012-02-01

    The master circadian clock located within the hypothalamic suprachiasmatic nucleus (SCN) is necessary for the circadian rhythm of glucocorticoid (GC) release. The pathways by which the SCN sustains rhythmic GC release remain unclear. We studied the circadian regulation of cortisol release in the behaviorally split golden hamster, in which the single bout of circadian locomotor activity splits into two bouts approximately 12 h apart after exposing the animals to constant light conditions. We show that unsplit control hamsters present a single peak of cortisol release that is concomitant with a single peak of ACTH release. In contrast, split hamsters show two peaks of cortisol release that are approximately 12 h appart and are appropriately phased to each locomotor activity bout but surprisingly do not rely on rhythmic release of ACTH. Our results are consistent with a model in which the circadian pacemaker within the SCN regulates the circadian release of GC via input to the hypothalamo-pituitary-adrenal axis and via a second regulatory pathway, which likely involves sympathetic innervation of the adrenal and can operate even in the absence of ACTH circadian rhythmic release. Furthermore, we show that although the overall 24-h cortisol output in split hamsters is lower than in unsplit controls, split hamsters release constant low levels of ACTH. This result suggests that the timing, rather than the absolute amount, of cortisol release is more critical for the induction of negative feedback effects that regulate the hypothalamo-pituitary-adrenal axis.

  6. Hepatitis B Vaccine

    Science.gov (United States)

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  7. Circadian-independent cell mitosis in immortalized fibroblasts.

    Science.gov (United States)

    Yeom, Mijung; Pendergast, Julie S; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-05-25

    Two prominent timekeeping systems, the cell cycle, which controls cell division, and the circadian system, which controls 24-h rhythms of physiology and behavior, are found in nearly all living organisms. A distinct feature of circadian rhythms is that they are temperature-compensated such that the period of the rhythm remains constant (approximately 24 h) at different ambient temperatures. Even though the speed of cell division, or growth rate, is highly temperature-dependent, the cell-mitosis rhythm is temperature-compensated. Twenty-four-hour fluctuations in cell division have also been observed in numerous species, suggesting that the circadian system is regulating the timing of cell division. We tested whether the cell-cycle rhythm was coupled to the circadian system in immortalized rat-1 fibroblasts by monitoring cell-cycle gene promoter-driven luciferase activity. We found that there was no consistent phase relationship between the circadian and cell cycles, and that the cell-cycle rhythm was not temperature-compensated in rat-1 fibroblasts. These data suggest that the circadian system does not regulate the cell-mitosis rhythm in rat-1 fibroblasts. These findings are inconsistent with numerous studies that suggest that cell mitosis is regulated by the circadian system in mammalian tissues in vivo. To account for this discrepancy, we propose two possibilities: (i) There is no direct coupling between the circadian rhythm and cell cycle but the timing of cell mitosis is synchronized with the rhythmic host environment, or (ii) coupling between the circadian rhythm and cell cycle exists in normal cells but it is disconnected in immortalized cells.

  8. Circadian activity rhythms in the spiny mouse, Acomys cahirinus.

    Science.gov (United States)

    Weber, E T; Hohn, V M

    2005-11-15

    Circadian locomotor rhythms were examined in adult common spiny mice, Acomys cahirinus. Spiny mice demonstrated nocturnal activity, with onset of activity coinciding promptly with onset of darkness. Re-entrainment to 6-h delays of the light-dark cycle was accomplished faster than to 6-h advances. Access to running wheels yielded significant changes in period and duration of daily activity. Novelty-induced wheel running had no effect on phase of activity rhythms. Circadian responses to light at various times of the circadian cycle were temporally similar to those observed in other nocturnal rodent species. No gender differences were observed in any of the parameters measured.

  9. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.

    Science.gov (United States)

    Ramsey, Kathryn Moynihan; Yoshino, Jun; Brace, Cynthia S; Abrassart, Dana; Kobayashi, Yumiko; Marcheva, Biliana; Hong, Hee-Kyung; Chong, Jason L; Buhr, Ethan D; Lee, Choogon; Takahashi, Joseph S; Imai, Shin-Ichiro; Bass, Joseph

    2009-05-01

    The circadian clock is encoded by a transcription-translation feedback loop that synchronizes behavior and metabolism with the light-dark cycle. Here we report that both the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and levels of NAD+ display circadian oscillations that are regulated by the core clock machinery in mice. Inhibition of NAMPT promotes oscillation of the clock gene Per2 by releasing CLOCK:BMAL1 from suppression by SIRT1. In turn, the circadian transcription factor CLOCK binds to and up-regulates Nampt, thus completing a feedback loop involving NAMPT/NAD+ and SIRT1/CLOCK:BMAL1.

  10. Prolonged acute hepatitis A mimicking autoimmune hepatitis

    Institute of Scientific and Technical Information of China (English)

    Rintaro Mikata; Osamu Yokosuka; Fumio Imazeki; Kenichi Fukai; Tatsuo Kanda; Hiromitsu Saisho

    2005-01-01

    AIM: We report a case with a prolonged course of hepatitisA, with alanine aminotransferase (ALT) higher than 500 IU/Lfor more than 2 mo.METHODS: A middle-aged woman had an elevated IgG level of more than 2 000 mg/dL, positive arti-nudear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), but no evidence of persistent hepatitis A virus (HAV) infection. Liver biopsy findings were compatible with prolonged acute hepatitis, although acute onset of autoimmune hepatitis could not be ruled out.RESULTS: It was assumed that she developed a course of hepatitis similar to autoimmune hepatitis triggered by HAV infection. Ursodeoxycholic acid (UDCA) treatment was initiated and a favorable outcome was obtained. CONCLUSION: We describe a case of a middle-aged woman who showed a prolonged course of acute hepatitis A mimicking autoimmune hepatitis. Treatment with UDCAproved to be effective.

  11. Integrative Analysis of Circadian Transcriptome and Metabolic Network Reveals the Role of De Novo Purine Synthesis in Circadian Control of Cell Cycle

    OpenAIRE

    Ying Li; Guang Li; Benjamin Görling; Burkhard Luy; Jiulin Du; Jun Yan

    2015-01-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an inter...

  12. Circadian Disruption Leads to Loss of Homeostasis and Disease

    Directory of Open Access Journals (Sweden)

    Carolina Escobar

    2011-01-01

    Full Text Available The relevance of a synchronized temporal order for adaptation and homeostasis is discussed in this review. We present evidence suggesting that an altered temporal order between the biological clock and external temporal signals leads to disease. Evidence mainly based on a rodent model of “night work” using forced activity during the sleep phase suggests that altered activity and feeding schedules, out of phase from the light/dark cycle, may be the main cause for the loss of circadian synchrony and disease. It is proposed that by avoiding food intake during sleep hours the circadian misalignment and adverse consequences can be prevented. This review does not attempt to present a thorough revision of the literature, but instead it aims to highlight the association between circadian disruption and disease with special emphasis on the contribution of feeding schedules in circadian synchrony.

  13. [Melatonin as a regulator of human sleep and circadian systems].

    Science.gov (United States)

    Mishima, Kazuo

    2012-07-01

    Melatonin(N-acetyl-5-methoxytryptamine) is synthesized from tryptophan and is intensively secreted into the blood only in darkness (nighttime) by the pineal gland. Melatonin is not only the most reliable marker of internal circadian phase but also a potent sleep-promoting and circadian phase regulatory agent in humans. There is evidence that daytime administered melatonin is able to exhibit short-acting hypnagogic effect and phase-shifting of the circadian rhythms such that sleep timing and associated various physiological functions realign at a new desired phase. Under favor of these properties, melatonin and melatonin receptor agonists have been shown to be potent therapeutic agents for the treatment of circadian rhythm sleep disorders and some type of insomnia.

  14. The circadian clock and cell cycle: interconnected biological circuits.

    Science.gov (United States)

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-12-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the 'gating' controls of the circadian clock at various checkpoints of the cell cycle and also how the cell cycle can influence biological rhythms. The reciprocal influence that the circadian clock and cell cycle exert on each other suggests that these intertwined biological circuits are essential and multiple regulatory/control steps have been instated to ensure proper timekeeping.

  15. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice.

    Science.gov (United States)

    Peek, Clara Bien; Affinati, Alison H; Ramsey, Kathryn Moynihan; Kuo, Hsin-Yu; Yu, Wei; Sena, Laura A; Ilkayeva, Olga; Marcheva, Biliana; Kobayashi, Yumiko; Omura, Chiaki; Levine, Daniel C; Bacsik, David J; Gius, David; Newgard, Christopher B; Goetzman, Eric; Chandel, Navdeep S; Denu, John M; Mrksich, Milan; Bass, Joseph

    2013-11-01

    Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.

  16. Sensory Conflict Disrupts Activity of the Drosophila Circadian Network

    Directory of Open Access Journals (Sweden)

    Ross E.F. Harper

    2016-11-01

    Full Text Available Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conflicting environmental inputs. We show that misaligned light and temperature cycles can lead to dramatic changes in the daily locomotor activities of wild-type flies during and after exposure to sensory conflict. This altered behavior is associated with a drastic reduction in the amplitude of PERIOD (PER oscillations in brain clock neurons and desynchronization between light- and temperature-sensitive neuronal subgroups. The behavioral disruption depends heavily on the phase relationship between light and temperature signals. Our results represent a systematic quantification of multisensory integration in the Drosophila circadian system and lend further support to the view of the clock as a network of coupled oscillatory subunits.

  17. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  18. Hepatitis B (HBV)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hepatitis B (HBV) KidsHealth > For Teens > Hepatitis B (HBV) Print A A A What's in this ... poisons). There are several different types of hepatitis . Hepatitis B is a type that can move from one ...

  19. Hepatitis B (HBV)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hepatitis B (HBV) KidsHealth > For Teens > Hepatitis B (HBV) A A A What's in this article? ... poisons). There are several different types of hepatitis . Hepatitis B is a type that can move from one ...

  20. Circadian variation in unexpected postoperative death

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H; Ramsing, T

    1992-01-01

    Unexpected deaths still occur following major surgical procedures. The cause is often unknown but may be cardiac or thromboembolic in nature. Postoperative ischaemia, infarction and sudden cardiac death may be triggered by episodic or constant arterial hypoxaemia, which increases during the night....... This study examined the circadian variation of sudden unexpected death following abdominal surgery between 1985 and 1989 inclusive. Deaths were divided into those occurring during the day (08.00-16.00 hours), evening (16.00-24.00 hours) and night (24.00-08.00 hours). Twenty-three deaths were considered...... to have been totally unexpected. Of 16 such patients undergoing autopsy, pulmonary embolism was the cause of death in five. In the remaining 11 patients, death occurred at night in eight (P

  1. The circadian system in higher plants.

    Science.gov (United States)

    Harmer, Stacey L

    2009-01-01

    The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.

  2. Synchronization and entrainment of coupled circadian oscillators

    CERN Document Server

    Komin, Niko; Hernandez-Garcia, Emilio; Toral, Raul

    2010-01-01

    Circadian rhythms in mammals are controlled by the neurons located in the suprachiasmatic nucleus of the hypothalamus. In physiological conditions, the system of neurons is very efficiently entrained by the 24-hour light-dark cycle. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light dark cycle in neuronal synchronization. Nevertheless, heterogeneity as a natural and permanent ingredient of these cellular interactions is seemingly to play a major role in these biochemical processes. In this paper we use a model that considers the neurons of the suprachiasmatic nucleus as chemically-coupled modified Goodwin oscillators, and introduce non-negligible heterogeneity in the periods of all neurons in the form of quenched noise. The system response to the light-dark cycle periodicity is studied as a function of the interneuronal coupling strength, external forcing amplitude and neuronal heterogeneity. Our results indicate that the right amount of heterogeneity hel...

  3. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis.

    Science.gov (United States)

    Cheng, Bo; Anea, Ciprian B; Yao, Lin; Chen, Feng; Patel, Vijay; Merloiu, Ana; Pati, Paramita; Caldwell, R William; Fulton, David J; Rudic, R Daniel

    2011-10-11

    The suprachiasmatic nucleus of the brain is the circadian center, relaying rhythmic environmental and behavioral information to peripheral tissues to control circadian physiology. As such, central clock dysfunction can alter systemic homeostasis to consequently impair peripheral physiology in a manner that is secondary to circadian malfunction. To determine the impact of circadian clock function in organ transplantation and dissect the influence of intrinsic tissue clocks versus extrinsic clocks, we implemented a blood vessel grafting approach to surgically assemble a chimeric mouse that was part wild-type (WT) and part circadian clock mutant. Arterial isografts from donor WT mice that had been anastamosed to common carotid arteries of recipient WT mice (WT:WT) exhibited no pathology in this syngeneic transplant strategy. Similarly, when WT grafts were anastamosed to mice with disrupted circadian clocks, the structural features of the WT grafts immersed in the milieu of circadian malfunction were normal and absent of lesions, comparable to WT:WT grafts. In contrast, aortic grafts from Bmal1 knockout (KO) or Period-2,3 double-KO mice transplanted into littermate control WT mice developed robust arteriosclerotic disease. These lesions observed in donor grafts of Bmal1-KO were associated with up-regulation in T-cell receptors, macrophages, and infiltrating cells in the vascular grafts, but were independent of hemodynamics and B and T cell-mediated immunity. These data demonstrate the significance of intrinsic tissue clocks as an autonomous influence in experimental models of arteriosclerotic disease, which may have implications with regard to the influence of circadian clock function in organ transplantation.

  4. Circadian-independent cell mitosis in immortalized fibroblasts

    OpenAIRE

    Yeom, Mijung; Pendergast, Julie S.; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-01-01

    Two prominent timekeeping systems, the cell cycle, which controls cell division, and the circadian system, which controls 24-h rhythms of physiology and behavior, are found in nearly all living organisms. A distinct feature of circadian rhythms is that they are temperature-compensated such that the period of the rhythm remains constant (~24 h) at different ambient temperatures. Even though the speed of cell division, or growth rate, is highly temperature-dependent, the cell-mitosis rhythm is ...

  5. SLEEP TIMING AND CIRCADIAN PHASE IN DELAYED SLEEP PHASE

    OpenAIRE

    2009-01-01

    Delayed sleep phase syndrome (DSPS) is a circadian rhythm sleep disorder in which the timing of the sleep episode occurs later than desired and is associated with difficulty falling asleep, problems awakening on time (e.g., to meet work or school obligations), and daytime sleepiness. The phase relationship between the timing of sleep and endogenous circadian rhythms is critical to the initiation and maintenance of sleep, and significant alteration leads to impairment of sleep quality and dura...

  6. Circadian rhythm of heart rate and heart rate variability

    OpenAIRE

    Massin, M; Maeyns, K.; Withofs, N.; Ravet, F.; Gerard, P.; Healy, M.

    2000-01-01

    BACKGROUND—Measurements of heart rate variability (HRV) are increasingly used as markers of cardiac autonomic activity.
AIM—To examine circadian variation in heart rate and HRV in children.
SUBJECTS—A total of 57 healthy infants and children, aged 2 months to 15 years, underwent ambulatory 24 hour Holter recording. Monitoring was also performed on five teenagers with diabetes mellitus and subclinical vagal neuropathy in order to identify the origin of the circadian variat...

  7. System identification of the Arabidopsis plant circadian system

    Science.gov (United States)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  8. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    Science.gov (United States)

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity.

  9. Spectral sensitivity of the circadian system

    Science.gov (United States)

    Figueiro, Mariana G.; Bullough, John D.; Rea, Mark S.

    2004-01-01

    Light exposure regulates several circadian functions in normal humans including the sleep-wake cycle. Individuals with Alzheimer"s Disease (AD) often do not have regular patterns of activity and rest, but, rather, experience random periods of sleep and agitation during both day and night. Bright light during the day and darkness at night has been shown to consolidate activity periods during the day and rest periods at night in AD patients. The important characteristics of bright light exposure (quantity, spectrum, distribution, timing and duration) for achieving these results in AD patients is not yet understood. Recent research has shown that moderate (~18 lx at the cornea) blue (~470 nm) light is effective at suppressing melatonin in normal humans. It was hypothesized that blue light applied just before AD patients retire to their beds for the night would have a measurable impact on their behavior. A pilot study was conducted for 30 days in a senior health care facility using four individuals diagnosed with mild to moderate levels of dementia. Four AD patients were exposed to arrays of blue light from light emitting diodes (max wavelength = 470 nm) in two-hour sessions (18:00 to 20:00 hours) for 10 days. As a control, they were exposed to red light (max wavelength = 640 nm) in two-hour sessions for 10 days prior to the blue light exposure. Despite the modest sample size, exposure to blue LEDs has shown to affect sleep quality and median body temperature peak of these AD patients. Median body temperature peak was delayed by approximately 2 hours after exposure to blue LEDs compared to exposure to red LEDs and sleep quality was improved. This pilot study demonstrated that light, especially LEDs, can be an important contribution to helping AD patients regulate their circadian functions.

  10. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  11. Circadian control sheds light on fungal bioluminescence.

    Science.gov (United States)

    Oliveira, Anderson G; Stevani, Cassius V; Waldenmaier, Hans E; Viviani, Vadim; Emerson, Jillian M; Loros, Jennifer J; Dunlap, Jay C

    2015-03-30

    Bioluminescence, the creation and emission of light by organisms, affords insight into the lives of organisms doing it. Luminous living things are widespread and access diverse mechanisms to generate and control luminescence [1-5]. Among the least studied bioluminescent organisms are phylogenetically rare fungi-only 71 species, all within the ∼ 9,000 fungi of the temperate and tropical Agaricales order-are reported from among ∼ 100,000 described fungal species [6, 7]. All require oxygen [8] and energy (NADH or NADPH) for bioluminescence and are reported to emit green light (λmax 530 nm) continuously, implying a metabolic function for bioluminescence, perhaps as a byproduct of oxidative metabolism in lignin degradation. Here, however, we report that bioluminescence from the mycelium of Neonothopanus gardneri is controlled by a temperature-compensated circadian clock, the result of cycles in content/activity of the luciferase, reductase, and luciferin that comprise the luminescent system. Because regulation implies an adaptive function for bioluminescence, a controversial question for more than two millennia [8-15], we examined interactions between luminescent fungi and insects [16]. Prosthetic acrylic resin "mushrooms," internally illuminated by a green LED emitting light similar to the bioluminescence, attract staphilinid rove beetles (coleopterans), as well as hemipterans (true bugs), dipterans (flies), and hymenopterans (wasps and ants), at numbers far greater than dark control traps. Thus, circadian control may optimize energy use for when bioluminescence is most visible, attracting insects that can in turn help in spore dispersal, thereby benefitting fungi growing under the forest canopy, where wind flow is greatly reduced.

  12. CCL2 mediates the circadian response to low dose endotoxin.

    Science.gov (United States)

    Duhart, José M; Brocardo, Lucila; Mul Fedele, Malena L; Guglielmotti, Angelo; Golombek, Diego A

    2016-09-01

    The mammalian circadian system is mainly originated in a master oscillator located in the suprachiasmatic nuclei (SCN) in the hypothalamus. Previous reports from our and other groups have shown that the SCN are sensitive to systemic immune activation during the early night, through a mechanism that relies on the action of proinflammatory factors within this structure. Chemokine (C-C motif) ligand 2 (CCL2) is induced in the brain upon peripheral immune activation, and it has been shown to modulate neuronal physiology. In the present work we tested whether CCL2 might be involved in the response of the circadian clock to peripheral endotoxin administration. The CCL2 receptor, C-C chemokine receptor type 2 (CCR2), was detected in the SCN of mice, with higher levels of expression during the early night, when the clock is sensitive to immune activation. Ccl2 was induced in the SCN upon intraperitoneal lipopolysaccharide (LPS) administration. Furthermore, mice receiving an intracerebroventricular (Icv) administration of a CCL2 synthesis inhibitor (Bindarit), showed a reduction LPS-induced circadian phase changes and Icv delivery of CCL2 led to phase delays in the circadian clock. In addition, we tested the possibility that CCL2 might also be involved in the photic regulation of the clock. Icv administration of Bindarit did not modify the effects of light pulses on the circadian clock. In summary, we found that CCL2, acting at the SCN level is important for the circadian effects of immune activation.

  13. Glucocorticoids play a key role in circadian cell cycle rhythms.

    Directory of Open Access Journals (Sweden)

    Thomas Dickmeis

    2007-04-01

    Full Text Available Clock output pathways play a pivotal role by relaying timing information from the circadian clock to a diversity of physiological systems. Both cell-autonomous and systemic mechanisms have been implicated as clock outputs; however, the relative importance and interplay between these mechanisms are poorly understood. The cell cycle represents a highly conserved regulatory target of the circadian timing system. Previously, we have demonstrated that in zebrafish, the circadian clock has the capacity to generate daily rhythms of S phase by a cell-autonomous mechanism in vitro. Here, by studying a panel of zebrafish mutants, we reveal that the pituitary-adrenal axis also plays an essential role in establishing these rhythms in the whole animal. Mutants with a reduction or a complete absence of corticotrope pituitary cells show attenuated cell-proliferation rhythms, whereas expression of circadian clock genes is not affected. We show that the corticotrope deficiency is associated with reduced cortisol levels, implicating glucocorticoids as a component of a systemic signaling pathway required for circadian cell cycle rhythmicity. Strikingly, high-amplitude rhythms can be rescued by exposing mutant larvae to a tonic concentration of a glucocorticoid agonist. Our work suggests that cell-autonomous clock mechanisms are not sufficient to establish circadian cell cycle rhythms at the whole-animal level. Instead, they act in concert with a systemic signaling environment of which glucocorticoids are an essential part.

  14. Circadian rhythms in cognitive performance: implications for neuropsychological assessment

    Directory of Open Access Journals (Sweden)

    Valdez P

    2012-12-01

    Full Text Available Pablo Valdez, Candelaria Ramírez, Aída GarcíaLaboratory of Psychophysiology, School of Psychology, University of Nuevo León, Monterrey, Nuevo León, MéxicoAbstract: Circadian variations have been found in human performance, including the efficiency to execute many tasks, such as sensory, motor, reaction time, time estimation, memory, verbal, arithmetic calculations, and simulated driving tasks. Performance increases during the day and decreases during the night. Circadian rhythms have been found in three basic neuropsychological processes (attention, working memory, and executive functions, which may explain oscillations in the performance of many tasks. The time course of circadian rhythms in cognitive performance may be modified significantly in patients with brain disorders, due to chronotype, age, alterations of the circadian rhythm, sleep deprivation, type of disorder, and medication. This review analyzes the recent results on circadian rhythms in cognitive performance, as well as the implications of these rhythms for the neuropsychological assessment of patients with brain disorders such as traumatic head injury, stroke, dementia, developmental disorders, and psychiatric disorders.Keywords: human circadian rhythms, cognitive performance, neuropsychological assessment, attention, working memory, executive functions

  15. Hippocampal-dependent learning requires a functional circadian system.

    Science.gov (United States)

    Ruby, Norman F; Hwang, Calvin E; Wessells, Colin; Fernandez, Fabian; Zhang, Pei; Sapolsky, Robert; Heller, H Craig

    2008-10-01

    Decades of studies have shown that eliminating circadian rhythms of mammals does not compromise their health or longevity in the laboratory in any obvious way. These observations have raised questions about the functional significance of the mammalian circadian system, but have been difficult to address for lack of an appropriate animal model. Surgical ablation of the suprachiasmatic nucleus (SCN) and clock gene knockouts eliminate rhythms, but also damage adjacent brain regions or cause developmental effects that may impair cognitive or other physiological functions. We developed a method that avoids these problems and eliminates rhythms by noninvasive means in Siberian hamsters (Phodopus sungorus). The present study evaluated cognitive function in arrhythmic animals by using a hippocampal-dependent learning task. Control hamsters exhibited normal circadian modulation of performance in a delayed novel-object recognition task. By contrast, arrhythmic animals could not discriminate a novel object from a familiar one only 20 or 60 min after training. Memory performance was not related to prior sleep history as sleep manipulations had no effect on performance. The GABA antagonist pentylenetetrazol restored learning without restoring circadian rhythms. We conclude that the circadian system is involved in memory function in a manner that is independent of sleep. Circadian influence on learning may be exerted via cyclic GABA output from the SCN to target sites involved in learning. Arrhythmic hamsters may have failed to perform this task because of chronic inhibitory signaling from the SCN that interfered with the plastic mechanisms that encode learning in the hippocampus.

  16. Circadian dysfunction in a rotenone-induced parkinsonian rodent model.

    Science.gov (United States)

    Lax, Pedro; Esquiva, Gema; Esteve-Rudd, Julian; Otalora, Beatriz Baño; Madrid, Juan Antonio; Cuenca, Nicolás

    2012-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder that also involves circadian rhythm alterations. Modifications of circadian rhythm parameters have been shown to occur in both PD patients and toxin-induced PD animal models. In the latter case, rotenone, a potent inhibitor of mitochondrial complex I (nicotinamide adenine dinucleotide [NADH]-quinone reductase), has been used to elicit degeneration of dopaminergic neurons and development of parkinsonian syndrome. The present work addresses alterations induced by rotenone on both locomotor and body temperature circadian rhythms in rats. Rotenone-treated rats exhibited abnormalities in equilibrium, postural instability, and involuntary movements. Long-term subcutaneous administration of rotenone significantly reduced mean daily locomotor activity in most animals. During rotenone administration, mean body temperatures (BTs) and BT rhythm amplitudes were significantly lower than those observed in the control group. After long-term rotenone administration, the circadian rhythms of both locomotor activity (LA) and BT displayed decreased amplitudes, lower interdaily phase stability, and higher rhythm fragmentation, as compared to the control rats. The magnitude of the LA and BT circadian rhythm alterations induced by rotenone positively correlated with degree of motor impairment. These results indicate that rotenone induces circadian dysfunction in rats through some of the same mechanisms as those responsible for the development of motor disturbances.

  17. Circadian rhythms of fetal liver transcription persist in the absence of canonical circadian clock gene expression rhythms in vivo.

    Directory of Open Access Journals (Sweden)

    Chengwei Li

    Full Text Available The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture. To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny.

  18. Hepatitis Information for the Public

    Science.gov (United States)

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis … A | B | C | D | E Viral Hepatitis Home ... Local Partners & Grantees Policy and Programs Resource Center Hepatitis Information for the Public Recommend on Facebook Tweet ...

  19. Diabetes and Hepatitis B Vaccination

    Science.gov (United States)

    Diabetes and Hepatitis B Vaccination Information for Diabetes Educators What is hepatitis B? Hepatitis B is a contagious liver disease that results from infection with the hepatitis B virus. When first infected, a person can develop ...

  20. Circadian rhythms and new options for novel anticancer therapies

    Directory of Open Access Journals (Sweden)

    Prosenc Zmrzljak U

    2015-01-01

    Full Text Available Ursula Prosenc ZmrzljakFaculty of Medicine, Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, SloveniaAbstract: The patterns of activity/sleep, eating/fasting, etc show that our lives are under the control of an internal clock. Cancer is a systemic disease that affects sleep, feeding, and metabolism. All these processes are regulated by the circadian clock on the one hand, but on the other hand, they can serve as signals to tighten up the patient's circadian clock by robust daily routine. Usually, anticancer treatments take place in hospitals, where the patient's daily rest/activity pattern is changed. However, it has been shown that oncology patients with a disturbed circadian clock have poorer survival outcomes. The administration of different anticancer therapies can disturb the circadian cycle, but many cases show that circadian rhythms in tumors are deregulated per se. This fact can be used to plan anticancer therapies in such a manner that they will be most effective in antitumor action, but least toxic for the surrounding healthy tissue. Metabolic processes are highly regulated to prevent waste of energy and to ensure sufficient detoxification; as a consequence, xenobiotic metabolism is under tight circadian control. This gives the rationale for planning the administration of anticancer therapies in a chronomodulated manner. We review some of the potentially useful clinical praxes of anticancer therapies and discuss different possible approaches to be used in drug development and design in the future.Keywords: circadian rhythms, cancer, chronotherapy, detoxification metabolism

  1. Interactions between the circadian clock and metabolism: there are good times and bad times

    Institute of Scientific and Technical Information of China (English)

    Mi Shi; Xiangzhong Zheng

    2013-01-01

    An endogenous circadian (~24 h) clock regulates rhythmic processes of physiology,metabolism and behavior in most living organisms.While able to free-run under constant conditions,the circadian clock is coupled to day:night cycles to increase its amplitude and align the phase of circadian rhythms to the right time of the day.Disruptions of the circadian clock are correlated with brain dysfunctions,cardiovascular diseases and metabolic disorders.In this review,we focus on the interactions between the circadian clock and metabolism.We discuss recent findings on circadian clock regulation of feeding behavior and rhythmic expression of metabolic genes,and present evidence of metabolic input to the circadian clock.We emphasize how misalignment of circadian clocks within the body and with environmental cycles or daily schedules leads to the increasing prevalence of metabolic syndromes in modern society.

  2. Non-circadian expression masking clock-driven weak transcription rhythms in U2OS cells.

    Directory of Open Access Journals (Sweden)

    Julia Hoffmann

    Full Text Available U2OS cells harbor a circadian clock but express only a few rhythmic genes in constant conditions. We identified 3040 binding sites of the circadian regulators BMAL1, CLOCK and CRY1 in the U2OS genome. Most binding sites even in promoters do not correlate with detectable rhythmic transcript levels. Luciferase fusions reveal that the circadian clock supports robust but low amplitude transcription rhythms of representative promoters. However, rhythmic transcription of these potentially clock-controlled genes is masked by non-circadian transcription that overwrites the weaker contribution of the clock in constant conditions. Our data suggest that U2OS cells harbor an intrinsically rather weak circadian oscillator. The oscillator has the potential to regulate a large number of genes. The contribution of circadian versus non-circadian transcription is dependent on the metabolic state of the cell and may determine the apparent complexity of the circadian transcriptome.

  3. The CREB-binding protein affects the circadian regulation of behaviour.

    Science.gov (United States)

    Maurer, Christian; Winter, Tobias; Chen, Siwei; Hung, Hsiu-Cheng; Weber, Frank

    2016-09-01

    Rhythmic changes in light and temperature conditions form the primary environmental cues that synchronize the molecular circadian clock of most species with the external cycles of day and night. Previous studies established a role for the CREB-binding protein (CBP) in molecular clock function by coactivation of circadian transcription. Here, we report that moderately increased levels of CBP strongly dampen circadian behavioural rhythms without affecting molecular oscillations of circadian transcription. Interestingly, light-dark cycles as well as high temperature facilitated a circadian control of behavioural activity. Based on these observations we propose that in addition to its coactivator function for circadian transcription, CBP is involved in the regulation of circadian behaviour down-stream of the circadian clock.

  4. 'The clocks that time us'-circadian rhythms in neurodegenerative disorders

    NARCIS (Netherlands)

    Videnovic, A.; Lazar, A.S.; Barker, R.A.; Overeem, S.

    2014-01-01

    Circadian rhythms are physiological and behavioural cycles generated by an endogenous biological clock, the suprachiasmatic nucleus. The circadian system influences the majority of physiological processes, including sleep-wake homeostasis. Impaired sleep and alertness are common symptoms of neurodeg

  5. Microbiological diagnostics of viral hepatitis

    OpenAIRE

    HASDEMİR, Ufuk

    2016-01-01

    Viral hepatitis is an infection that primarily affects the liverbut may also have systemic clinical manifestations. The vastmajority of viral hepatitis are caused by one of five hepatotropicviruses: hepatitis A virus (HAV), hepatitis B virus (HBV),hepatitis C virus (HCV), hepatitis D (delta) virus (HDV), andhepatitis E virus (HEV) (Table I) [1]. HBV, HCV, and HDValso cause chronic hepatitis, whereas HAV does not. HEVcauses acute hepatitis in normal hosts but can cause protractedand chronic he...

  6. Dissociation of circadian and light inhibition of melatonin release through forced desynchronization in the rat

    OpenAIRE

    2009-01-01

    Pineal melatonin release exhibits a circadian rhythm with a tight nocturnal pattern. Melatonin synthesis is regulated by the master circadian clock within the hypothalamic suprachiasmatic nucleus (SCN) and is also directly inhibited by light. The SCN is necessary for both circadian regulation and light inhibition of melatonin synthesis and thus it has been difficult to isolate these two regulatory limbs to define the output pathways by which the SCN conveys circadian and light phase informati...

  7. Analysis of the redox oscillations in the circadian clockwork

    Science.gov (United States)

    Milev, Nikolay B.; Rey, Guillaume; Valekunja, Utham K.; Edgar, Rachel S.; O’Neill, John S.; Reddy, Akhilesh B.

    2016-01-01

    The evolution of tight coupling between the circadian system and redox homeostasis of the cell has been proposed to coincide roughly with the appearance of the first aerobic organisms, around 3 billion years ago. The rhythmic production of oxygen and its effect on core metabolism are thought to have exerted selective pressure for the temporal segregation of numerous metabolic pathways. Until recently, the only evidence for such coupling came from studies showing circadian cycles in the abundance of various redox metabolites, with many arguing that these oscillations are simply an output from the transcription/translation-feedback loop (TTFL). The recent discovery that the peroxiredoxin (PRX) proteins exhibit circadian cycles in their oxidation status, even in the absence of transcription, demonstrated the existence of autonomous oscillations in the redox status of the cell. The PRXs are a family of cellular thiol peroxidases whose abundance and high reaction rate make them the major cellular sink for cellular peroxides. Interestingly, as part of the normal catalytic cycle, PRXs become inactivated by their own substrate via over-oxidation of the catalytic residue, with the inactivated form of the enzyme displaying circadian accumulation. Here, we describe the biochemical properties of the PRX system, with particular emphasis on the features important for the experimental analysis of these enzymes. We will also present a detailed protocol for measuring PRX over-oxidation across circadian time in adherent cell cultures, red blood cells and fruit flies (Drosophila melanogaster), providing practical suggestions for ensuring consistency and reproducibility of the results. PMID:25707278

  8. Blood transcriptome based biomarkers for human circadian phase

    Science.gov (United States)

    Laing, Emma E; Möller-Levet, Carla S; Poh, Norman; Santhi, Nayantara; Archer, Simon N; Dijk, Derk-Jan

    2017-01-01

    Diagnosis and treatment of circadian rhythm sleep-wake disorders both require assessment of circadian phase of the brain’s circadian pacemaker. The gold-standard univariate method is based on collection of a 24-hr time series of plasma melatonin, a suprachiasmatic nucleus-driven pineal hormone. We developed and validated a multivariate whole-blood mRNA-based predictor of melatonin phase which requires few samples. Transcriptome data were collected under normal, sleep-deprivation and abnormal sleep-timing conditions to assess robustness of the predictor. Partial least square regression (PLSR), applied to the transcriptome, identified a set of 100 biomarkers primarily related to glucocorticoid signaling and immune function. Validation showed that PLSR-based predictors outperform published blood-derived circadian phase predictors. When given one sample as input, the R2 of predicted vs observed phase was 0.74, whereas for two samples taken 12 hr apart, R2 was 0.90. This blood transcriptome-based model enables assessment of circadian phase from a few samples. DOI: http://dx.doi.org/10.7554/eLife.20214.001 PMID:28218891

  9. CREB influences timing and entrainment of the SCN circadian clock.

    Science.gov (United States)

    Lee, Boyoung; Li, Aiqing; Hansen, Katelin F; Cao, Ruifeng; Yoon, Jae Hwa; Obrietan, Karl

    2010-12-01

    The transcriptional feedback circuit, which is at the core of the suprachiasmatic nucleus (SCN) circadian (i.e., 24 h) clock, is tightly coupled to both external entrainment cues, such as light, as well as rhythmic cues that arise on a system-wide level within the SCN. One potential signaling pathway by which these cues are conveyed to the molecular clock is the CREB/CRE transcriptional cascade. In this study, we employed a tetracycline-inducible CREB repressor mouse strain, in which approximately 60% of the SCN neurons express the transgene, to test CREB functionality in the clock and its effects on overt rhythmicity. We show that attenuated CREB signaling in the SCN led to a significant reduction in light-evoked clock entrainment. An examination of circadian timing revealed that CREB repressor mice exhibited normal free-running rhythms in the absence of external lighting cues. However, under conditions of constant light, which typically leads to a lengthening of the circadian period, CREB repressor mice exhibited a dramatic arrhythmic phenotype, which could be reversed with doxycycline. At a cellular level, the repression of CREB led to a significant reduction in both the expression of the circadian clock proteins PERIOD1 and PERIOD2 and the clock output hormones AVP and VIP. Together, these data support the idea that the CRE transcriptional pathway orchestrates transcriptional events that are essential for both the maintenance of SCN timing and light entrainment of the circadian clock.

  10. Circadian typology and emotional intelligence in healthy adults.

    Science.gov (United States)

    Antúnez, Juan Manuel; Navarro, José Francisco; Adan, Ana

    2013-10-01

    Several aspects related to health, such as satisfaction with life, perceived well-being, and psychopathological symptomatology have been associated with circadian typology and with emotional intelligence. Nevertheless, the relationships between circadian typology and emotional intelligence have not been explored yet. The purpose of the present study is to examine the relationships between circadian typology and emotional intelligence, taking into account the possible interactions between sex and physical exercise, and controlling for age. A sample of 1011 participants (649 women), aged between 18 and 50 yrs (26.92 ± 6.53) completed the reduced Morningness-Eveningness Questionnaire (rMEQ) and the Trait Meta-Mood Scale-24 (TMMS-24). The TMMS-24 considers three dimensions of emotional intelligence: emotional attention, emotional clarity, and emotional repair. Women showed higher values for emotional attention, whereas men showed higher values for emotional repair (p physical exercise weekly showed higher values for emotional repair (p = 0.001) regardless of circadian typology or sex. Circadian typology presents differences in all scores of emotional intelligence dimensions. Morning-type had lower emotional attention than evening- and neither-type; neither-type had lower emotional repair than morning-type, and lower emotional clarity than both evening- and morning-type (p intelligence we can conclude that morning typology may be a protective factor in terms of general health, whereas we should be aware that the neither-type may present a possible vulnerability to develop psychological problems.

  11. GRK2: putting the brakes on the circadian clock

    Science.gov (United States)

    Mendoza-Viveros, Lucia; Cheng, Arthur H.

    2016-01-01

    G protein-coupled receptor kinases (GRKs) are a family of serine/threonine protein kinases that terminate G protein-coupled receptor (GPCR) signaling by phosphorylating the receptor and inducing its internalization. In addition to their canonical function, some GRKs can phosphorylate non-GPCR substrates and regulate GPCR signaling in a kinase-independent manner. GPCRs are abundantly expressed in the suprachiasmatic nucleus (SCN), a structure in the mammalian brain that serves as the central circadian pacemaker. Various facets of circadian timekeeping are under the influence of GPCR signaling, and thus are potential targets for GRK regulation. Despite this, little attention has been given to the role of GRKs in circadian rhythms. In this research highlight, we discuss our latest findings on the functional involvement of GRK2 in mammalian circadian timekeeping in the SCN. Using grk2 knockout mice, we demonstrate that GRK2 is critical for maintaining proper clock speed and ensuring that the clock is appropriately synchronized to environmental light cycles. Although grk2 deficiency expectedly alters the expression of a key GPCR in the SCN, our study also reveals that GRK2 has a more direct function that touches the heart of the circadian clock. PMID:27088110

  12. Temperature regulates transcription in the zebrafish circadian clock.

    Directory of Open Access Journals (Sweden)

    Kajori Lahiri

    2005-11-01

    Full Text Available It has been well-documented that temperature influences key aspects of the circadian clock. Temperature cycles entrain the clock, while the period length of the circadian cycle is adjusted so that it remains relatively constant over a wide range of temperatures (temperature compensation. In vertebrates, the molecular basis of these properties is poorly understood. Here, using the zebrafish as an ectothermic model, we demonstrate first that in the absence of light, exposure of embryos and primary cell lines to temperature cycles entrains circadian rhythms of clock gene expression. Temperature steps drive changes in the basal expression of certain clock genes in a gene-specific manner, a mechanism potentially contributing to entrainment. In the case of the per4 gene, while E-box promoter elements mediate circadian clock regulation, they do not direct the temperature-driven changes in transcription. Second, by studying E-box-regulated transcription as a reporter of the core clock mechanism, we reveal that the zebrafish clock is temperature-compensated. In addition, temperature strongly influences the amplitude of circadian transcriptional rhythms during and following entrainment by light-dark cycles, a property that could confer temperature compensation. Finally, we show temperature-dependent changes in the expression levels, phosphorylation, and function of the clock protein, CLK. This suggests a mechanism that could account for changes in the amplitude of the E-box-directed rhythm. Together, our results imply that several key transcriptional regulatory elements at the core of the zebrafish clock respond to temperature.

  13. Circadian phase has profound effects on differential expression analysis.

    Directory of Open Access Journals (Sweden)

    Polly Yingshan Hsu

    Full Text Available Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that are generated by an endogenous clock, or oscillator. Found in diverse organisms, they are precisely controlled and provide growth and fitness benefits. Numerous microarray studies examining circadian control of gene expression have reported that a substantial fraction of the genomes of many organisms is clock-controlled. Here we show that a long-period mutant in Arabidopsis, rve8-1, has a global alteration in phase of all clock-controlled genes. After several days in constant environmental conditions, at which point the mutant and control plants have very different circadian phases, we found 1557 genes to be differentially expressed in rve8-1, almost all of which are clock-regulated. However, after adjusting for this phase difference, only a handful show overall expression level differences between rve8-1 and wild type. Thus the apparent differential expression is mainly due to the phase difference between these two genotypes. These findings prompted us to examine the effect of phase on gene expression within a single genotype. Using samples of wild-type plants harvested at thirty-minute intervals, we demonstrated that even this small difference in circadian phase significantly influences the results of differential expression analysis. Our study demonstrates the robust influence of the circadian clock on the transcriptome and provides a cautionary note for all biologists performing genome-level expression analysis.

  14. Calculating activation energies for temperature compensation in circadian rhythms

    Science.gov (United States)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  15. [Circadian variations of performances and basic rhythms].

    Science.gov (United States)

    Querrioux-Coulombier, G; Rossi, J P

    1995-12-01

    Difficulties with chronopsychology studies include a masking effect of variables, the combination of different rhythms and variations of strategies. An experiment is conducted to analyze the role of circadian variations of elementary processes in the variations of performance for a complex task. Twenty-four subjects solved anagrams and tried to find the rule of anagram construction, during two sessions, at 10 am and 5 pm. Responses were classified in three groups: (a) discovery of the anagram construction rule (R2 responses); (b) resolution of anagram without discovery of rule (R1 responses); (c) failure, no resolution of anagram (R0 responses). During the second session, R2 performances were better at 10 am than at 5 pm. In contrast, R1 performances were better at 5 pm than at 10 am. Rule application was faster at 10 am than at 5 pm. Results are discussed in terms of variations of short-term memory capacity (Folkard and Monk, 1980). Using chronopsychology to analyze the role of elementary processes in a complex task is discussed.

  16. Woolfian border poetics and contemporary circadian novels

    Directory of Open Access Journals (Sweden)

    Anka Ryall

    2014-07-01

    Full Text Available Virginia Woolf’s circadian novel Mrs Dalloway (1925 has inspired many successors, some of them important works in their own right. Although few of these novels are as explicitly linked to Mrs Dalloway as Michael Cunningham’s The Hours (1998, more recent novels such as Ian McEwan’s Saturday (2005 and Gail Jones’ Five Bells (2011 clearly pay homage to Woolf’s use of the one-day format to reveal whole lives and show how those individual private lives are entangled in history. The essay highlights one particular aspect of these three works, their imaginative and often transformative reworking of elements of Woolfian border poetics, particularly the predominance in Mrs Dalloway of boundary tropes – windows, doors, thresholds – that create a sense of synchronicity between present and past. Adapting Woolf’s boundary tropes to representations of contemporary realities, all three novels in different ways suggest how the present is deepened ”when backed by the past”, as Woolf puts it her memoirs; that is, when the present is not only informed by a remembered past but experienced in terms of both re-enactment and renewal, continuity and change.

  17. Timing of circadian genes in mammalian tissues

    Science.gov (United States)

    Korenčič, Anja; Košir, Rok; Bordyugov, Grigory; Lehmann, Robert; Rozman, Damjana; Herzel, Hanspeter

    2014-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology. The cell-autonomous clock is governed by an interlocked network of transcriptional feedback loops. Hundreds of clock-controlled genes (CCGs) regulate tissue specific functions. Transcriptome studies reveal that different organs (e.g. liver, heart, adrenal gland) feature substantially varying sets of CCGs with different peak phase distributions. To study the phase variability of CCGs in mammalian peripheral tissues, we develop a core clock model for mouse liver and adrenal gland based on expression profiles and known cis-regulatory sites. ‘Modulation factors’ associated with E-boxes, ROR-elements, and D-boxes can explain variable rhythms of CCGs, which is demonstrated for differential regulation of cytochromes P450 and 12 h harmonics. By varying model parameters we explore how tissue-specific peak phase distributions can be generated. The central role of E-boxes and ROR-elements is confirmed by analysing ChIP-seq data of BMAL1 and REV-ERB transcription factors. PMID:25048020

  18. A Circadian Surface of Entrainment : Varying T, tau, and Photoperiod in Neurospora crassa

    NARCIS (Netherlands)

    Remi, Jan; Merrow, Martha; Roenneberg, Till

    2010-01-01

    The two major prerequisites for a functional circadian system are the generation of an internal day (circadian cycle) and adjusting its length- and phase-to that of the external day (zeitgeber cycle). The generation of circadian cycles can be observed in constant conditions where organisms show a se

  19. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    Science.gov (United States)

    Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...

  20. Domestication selected for deceleration of the circadian clock in cultivated tomato

    NARCIS (Netherlands)

    Müller, Niels A.; Wijnen, Cris L.; Srinivasan, Arunkumar; Ryngajllo, M.; Ofner, I.; Lin, Tao; Ranjan, Aashish; West, Donelly; Maloof, J.N.; Sinha, Neelima R.; Huang, Sanwen; Zamir, Dani; Jimenez-Gomez, J.M.

    2015-01-01

    The circadian clock is a critical regulator of plant physiology and development, controlling key agricultural traits in crop plants1. In addition, natural variation in circadian rhythms is important for local adaptation2, 3, 4. However, quantitative modulation of circadian rhythms due to artificial

  1. Integrative analysis of circadian transcriptome and metabolic network reveals the role of de novo purine synthesis in circadian control of cell cycle.

    Science.gov (United States)

    Li, Ying; Li, Guang; Görling, Benjamin; Luy, Burkhard; Du, Jiulin; Yan, Jun

    2015-02-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an intermediate metabolite in de novo purine synthesis, showed significant circadian oscillation in larval zebrafish. We focused on IMP dehydrogenase (impdh), a rate-limiting enzyme in de novo purine synthesis, with three circadian oscillating gene homologs: impdh1a, impdh1b and impdh2. Functional analysis revealed that impdh2 contributes to the daily rhythm of S phase in the cell cycle while impdh1a contributes to ocular development and pigment synthesis. The three zebrafish homologs of impdh are likely regulated by different circadian transcription factors. We propose that the circadian regulation of de novo purine synthesis that supplies crucial building blocks for DNA replication is an important mechanism conferring circadian rhythmicity on the cell cycle. Our method is widely applicable to study the impact of circadian transcriptome on metabolism in complex organisms.

  2. Hepatitis B Foundation Newsletter: B Informed

    Science.gov (United States)

    ... Our Accomplishments Annual Reports Our Videos What Is Hepatitis B? What Is Hepatitis B? The ABCs of Viral Hepatitis Liver Cancer and Hepatitis B Hepatitis Delta Coinfection Hepatitis C Coinfection HIV/AIDS ...

  3. Hepatitis Foundation International

    Science.gov (United States)

    ... million people globally. admin / 03/17/2015 Viral Hepatitis An estimated 4.4 million Americans from all ... Events section below. EVENTS FULL CALENDAR Loading… VIRAL HEPATITIS DISPARITIES HARD TO REACH, HARD TO TREAT™ AFRICAN ...

  4. Hepatitis C Test

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Hepatitis C Testing Share this page: Was this page helpful? Also known as: Hepatitis C Antibody; Anti-HCV; HCV-PCR; HCV-RNA; ...

  5. Hepatitis C (image)

    Science.gov (United States)

    Hepatitis C is a virus-caused liver inflammation which may cause jaundice, fever and cirrhosis. Persons who are most at risk for contracting and spreading hepatitis C are those who share needles for injecting drugs ...

  6. Hepatitis B Vaccination Protection

    Science.gov (United States)

    Fact Sheet Hepatitis B Vaccination Protection Hepatitis B virus (HBV) is a pathogenic microorganism that can cause potentially life- threatening disease in humans. HBV infection is transmitted through exposure ...

  7. Hepatitis virus panel

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003558.htm Hepatitis virus panel To use the sharing features on this page, please enable JavaScript. The hepatitis virus panel is a series of blood tests used ...

  8. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding.

    Science.gov (United States)

    Tong, Xin; Muchnik, Marina; Chen, Zheng; Patel, Manish; Wu, Nan; Joshi, Shree; Rui, Liangyou; Lazar, Mitchell A; Yin, Lei

    2010-11-19

    Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding.

  9. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    Science.gov (United States)

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  10. What Is Hepatitis?

    Science.gov (United States)

    ... عربي 中文 English Français Русский Español What is hepatitis? Online Q&A Reviewed July 2016 Q: What ... Question and answer archives Submit a question World Hepatitis Day Know hepatitis - Act now Event notice Key ...

  11. Hepatic (Liver) Function Panel

    Science.gov (United States)

    ... 1- to 2-Year-Old Blood Test: Hepatic (Liver) Function Panel KidsHealth > For Parents > Blood Test: Hepatic (Liver) Function Panel Print A A A What's in ... Is The hepatic function panel, also known as liver function tests, is a group of seven tests ...

  12. Circadian rhythms in biologically closed electrical circuits of plants.

    Science.gov (United States)

    Volkov, Alexander; Waite, Astian J; Wooten, Joseph D; Markin, Vladislav S

    2012-02-01

    The circadian clock regulates a wide range of electrophysiological and developmental processes in plants. Here, we discuss the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), Aloe vera and Mimosa pudica, which regulate their physiology, were analyzed using the charge stimulation method. Plants are able to memorize daytime and nighttime. Even at continuous light or darkness, plants recognize nighttime or daytime and change the input resistance. The circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge, and the speed of transmission of electrical energy from the electrostimulator to plants.

  13. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  14. Relationship between Oxidative Stress, Circadian Rhythms, and AMD

    Science.gov (United States)

    Fanjul-Moles, María Luisa; López-Riquelme, Germán Octavio

    2016-01-01

    This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed. PMID:26885250

  15. Relationship between circadian typology and big five personality domains.

    Science.gov (United States)

    Tonetti, Lorenzo; Fabbri, Marco; Natale, Vincenzo

    2009-02-01

    We explored the relationship between personality, based on the five-factor model, and circadian preference. To this end, 503 participants (280 females, 223 males) were administered the Morningness-Eveningness Questionnaire (MEQ) and the self-report version of the Big Five Observer (BFO) to determine circadian preference and personality features, respectively. Morning types scored significantly higher than evening and intermediate types on the conscientiousness factor. Evening types were found to be more neurotic than morning types. With reference to the big five personality model, our data, together with those of all the previous studies, indicate that the conscientiousness domain is the one that best discriminates among the three circadian types. Results are discussed with reference to neurobiological models of personality.

  16. Development of the circadian clockwork in the kidney

    DEFF Research Database (Denmark)

    Mészáros, Krisztina; Pruess, Linda; Szabó, Attila J.

    2014-01-01

    The circadian molecular clock is an internal time-keeping system composed of centrally synchronized tissue-level pacemakers. Here, we explored the ontogeny of the clock machinery in the developing kidney. Pregnant rats were housed at 12-12 h light-dark cycles. Offsprings were killed at 4-h...... was modified postpartum. Clock, Rev-erbα, Per2, αENaC, SGK1, NHE3, and AVPR2 showed circadian expression at the end of intrauterine development. By 1 week, all genes oscillated with a distinct acrophase shift toward the time of peak feeding activity. Daily 4-hour withdrawal of mothers induced a 12-hour phase...... shift of Clock and Bmal1 expression, while disrupting oscillations of the other genes. After weaning, oscillation phases shifted back toward the adult pattern, which was fully expressed at 12 weeks. Thus, functional circadian molecular clockwork evolves in the late fetal and early postnatal kidney...

  17. Crosstalk between components of circadian and metabolic cycles in mammals.

    Science.gov (United States)

    Asher, Gad; Schibler, Ueli

    2011-02-02

    In mammals, most metabolic processes are influenced by biological clocks and feeding rhythms. The mechanisms that couple metabolism to circadian oscillators are just emerging. NAD-dependent enzymes (e.g., Sirtuins and poly[ADP-ribose] polymerases), redox- and/or temperature-dependent transcription factors (e.g., CLOCK, NPAS2, and HSF1), nutrient-sensing transcriptional regulatory proteins (e.g., CREB-CBP-CRCT2, FOXO-p300, nuclear receptors, PGC-1, and SP1 family members) and protein kinases (e.g., AMPK), are plausible candidates for conveying a cell's metabolic state to the core clock circuitry. The intertwining between these acute regulators and circadian clock components is so tight that the discrimination between metabolic and circadian oscillations may be somewhat arbitrary.

  18. Inositols affect the mating circadian rhythm of Drosophila melanogaster

    Science.gov (United States)

    Sakata, Kazuki; Kawasaki, Haruhisa; Suzuki, Takahiro; Ito, Kumpei; Negishi, Osamu; Tsuno, Takuo; Tsuno, Hiromi; Yamazaki, Youta; Ishida, Norio

    2015-01-01

    Accumulating evidence indicates that the molecular circadian clock underlies the mating behavior of Drosophila melanogaster. However, information about which food components affect circadian mating behavior is scant. The ice plant, Mesembryanthemum crystallinum has recently become a popular functional food. Here, we showed that the close-proximity (CP) rhythm of D. melanogaster courtship behavior was damped under low-nutrient conditions, but significantly enhanced by feeding the flies with powdered ice plant. Among various components of ice plants, we found that myo-inositol increased the amplitude and slightly shortened the period of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells. These data suggest that the ice plant is a useful functional food and that the ability of inositols to shorten rhythms is a general phenomenon in insects as well as mammals. PMID:26097456

  19. Inositols affect the mating circadian rhythm of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kazuki eSakata

    2015-06-01

    Full Text Available Accumulating evidence indicates that the molecular circadian clock underlies the mating behavior of D. melanogaster. However, information about which food components affect circadian mating behavior is scant. The ice plant, Mesembryanthemum crystallinum has recently become a popular functional food. Here, we showed that the close-proximity (CP rhythm of Drosophila melanogaster courtship behavior was damped under low-nutrient conditions, but significantly enhanced by feeding the flies with powdered ice plant. Among various components of ice plants, we found that myo-inositol increased the amplitude and slightly shortened the period of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells. These data suggest that the ice plant is a useful functional food and that the ability of inositols to shorten rhythms is a general phenomenon in insects as well as mammals.

  20. Activity in the ferret: oestradiol effects and circadian rhythms

    Science.gov (United States)

    Stockman, E. R.; Albers, H. E.; Baum, M. J.; Wurtman, R. J. (Principal Investigator)

    1985-01-01

    The present study was conducted to determine whether oestradiol increases activity in the European ferret (Mustela furo), whether this effect is sexually dimorphic, and whether a 24-h rhythm is present in the ferret's daily activity. The activity of male and female adult, postpubertally gonadectomized ferrets was monitored while they were maintained singly on a 13:11 light-dark cycle, before and after implantation with oestradiol-17 beta. Gonadectomized male and female ferrets exhibited equal levels of activity, and neither sex exhibited a significant change in activity following oestradiol implantation. None of the ferrets exhibited a strong circadian rhythm, although weak 24-h rhythms and shorter harmonic rhythms were present. Golden hamsters (Mesocricetus auratus), monitored in an identical manner, exhibited strong circadian rhythms. It was concluded that oestradiol administration may not cause an increase in activity in the ferret, and that this species lacks a strong circadian activity rhythm.

  1. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and Humans123

    Science.gov (United States)

    Johnston, Jonathan D; Scheer, Frank A; Turek, Fred W

    2016-01-01

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial responses. Recent work has elucidated the metabolic roles of circadian clocks in key metabolic tissues, including liver, pancreas, white adipose, and skeletal muscle. For example, tissue-specific clock disruption in a single peripheral organ can cause obesity or disruption of whole-organism glucose homeostasis. This review explains mechanistic insights gained from transgenic animal studies and how these data are being translated into the study of human genetics and physiology. The principles of chrononutrition have already been demonstrated to improve human weight loss and are likely to benefit the health of individuals with metabolic disease, as well as of the general population. PMID:26980824

  2. Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Laura M Beaver

    Full Text Available Circadian clocks generate daily rhythms in neuronal, physiological, and metabolic functions. Previous studies in mammals reported daily fluctuations in levels of the major endogenous antioxidant, glutathione (GSH, but the molecular mechanisms that govern such fluctuations remained unknown. To address this question, we used the model species Drosophila, which has a rich arsenal of genetic tools. Previously, we showed that loss of the circadian clock increased oxidative damage and caused neurodegenerative changes in the brain, while enhanced GSH production in neuronal tissue conferred beneficial effects on fly survivorship under normal and stress conditions. In the current study we report that the GSH concentrations in fly heads fluctuate in a circadian clock-dependent manner. We further demonstrate a rhythm in activity of glutamate cysteine ligase (GCL, the rate-limiting enzyme in glutathione biosynthesis. Significant rhythms were also observed for mRNA levels of genes encoding the catalytic (Gclc and modulatory (Gclm subunits comprising the GCL holoenzyme. Furthermore, we found that the expression of a glutathione S-transferase, GstD1, which utilizes GSH in cellular detoxification, significantly fluctuated during the circadian day. To directly address the role of the clock in regulating GSH-related rhythms, the expression levels of the GCL subunits and GstD1, as well as GCL activity and GSH production were evaluated in flies with a null mutation in the clock genes cycle and period. The rhythms observed in control flies were not evident in the clock mutants, thus linking glutathione production and utilization to the circadian system. Together, these data suggest that the circadian system modulates pathways involved in production and utilization of glutathione.

  3. Relationship between Human Pupillary Light Reflex and Circadian System Status

    Science.gov (United States)

    Bonmati-Carrion, Maria Angeles; Hild, Konstanze; Isherwood, Cheryl; Sweeney, Stephen J.; Revell, Victoria L.; Skene, Debra J.; Rol, Maria Angeles; Madrid, Juan Antonio

    2016-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluating PLR under short wavelength light (λmax ≤ 500 nm) and creating an integrated PLR parameter, as a possible tool to indirectly assess the status of the circadian system, becomes of interest. Nine monochromatic, photon-matched light stimuli (300 s), in 10 nm increments from λmax 420 to 500 nm were administered to 15 healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-Östberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations between the different PLR parameters and circadian status index obtained from WT, WA and L recordings and scores from questionnaires were calculated. In summary, we found markers of robust circadian rhythms, namely high stability, reduced fragmentation, high amplitude, phase advance and low internal desynchronization, were correlated with a reduced PLR to 460–490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR) parameters are proposed, that also showed an inverse correlation. These results demonstrate, for the first time, the existence of a close relationship between the circadian system robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC input. PMID:27636197

  4. Circadian rhythms of photorefractory siberian hamsters remain responsive to melatonin.

    Science.gov (United States)

    Butler, Matthew P; Paul, Matthew J; Turner, Kevin W; Park, Jin Ho; Driscoll, Joseph R; Kriegsfeld, Lance J; Zucker, Irving

    2008-04-01

    Short day lengths increase the duration of nocturnal melatonin (Mel) secretion, which induces the winter phenotype in Siberian hamsters. After several months of continued exposure to short days, hamsters spontaneously revert to the spring-summer phenotype. This transition has been attributed to the development of refractoriness of Mel-binding tissues, including the suprachiasmatic nucleus (SCN), to long-duration Mel signals. The SCN of Siberian hamsters is required for the seasonal response to winter-like Mel signals, and becomes refractory to previously effective long-duration Mel signals restricted to this area. Acute Mel treatment phase shifts circadian locomotor rhythms of photosensitive Siberian hamsters, presumably by affecting circadian oscillators in the SCN. We tested whether seasonal refractoriness of the SCN to long-duration Mel signals also renders the circadian system of Siberian hamsters unresponsive to Mel. Males manifesting free-running circadian rhythms in constant dim red light were injected with Mel or vehicle for 5 days on a 23.5-h T-cycle beginning at circadian time 10. Mel injections caused significantly larger phase advances in activity onset than did the saline vehicle, but the magnitude of phase shifts to Mel did not differ between photorefractory and photosensitive hamsters. Similarly, when entrained to a 16-h light/8-h dark photocycle, photorefractory and photosensitive hamsters did not differ in their response to Mel injected 4 h before the onset of the dark phase. Activity onset in Mel-injected hamsters was masked by light but was revealed to be significantly earlier than in vehicle-injected hamsters upon transfer to constant dim red light. The acute effects of melatonin on circadian behavioral rhythms are preserved in photorefractory hamsters.

  5. Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms.

    Science.gov (United States)

    Causton, Helen C; Feeney, Kevin A; Ziegler, Christine A; O'Neill, John S

    2015-04-20

    Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock.

  6. Methods to study the mechanism of the Neurospora Circadian Clock

    Science.gov (United States)

    Cha, Joonseok; Zhou, Mian; Liu, Yi

    2015-01-01

    Eukaryotic circadian clocks are comprised of interlocked auto-regulatory feedback loops that control gene expression at the levels of transcription and translation. The filamentous fungus Neurospora crassa is an excellent model for the complex molecular network of regulatory mechanisms that are common to all eukaryotes. In the heart of the network, post-translational regulations and functions of the core clock elements are of major interest. This chapter will discuss the methods that were recently used to study the Neurospora circadian oscillator mechanisms at the molecular level. PMID:25662455

  7. Best practices for fluorescence microscopy of the cyanobacterial circadian clock

    Science.gov (United States)

    Cohen, Susan E.; Erb, Marcella L.; Pogliano, Joe; Golden, Susan S.

    2015-01-01

    Summary This chapter deals with methods of monitoring the subcellular localization of proteins in single cells in the circadian model system Synechococcus elongatus PCC 7942. While genetic, biochemical and structural insights into the cyanobacterial circadian oscillator have flourished, difficulties in achieving informative subcellular imaging in cyanobacterial cells have delayed progress of the cell biology aspects of the clock. Here, we describe best practices for using fluorescent protein tags to monitor localization. Specifically we address how to vet fusion proteins and overcome challenges in microscopic imaging of very small autofluorescent cells. PMID:25662459

  8. The effects of chronic marijuana use on circadian entrainment.

    Science.gov (United States)

    Whitehurst, Lauren N; Fogler, Kethera; Hall, Kate; Hartmann, Matthew; Dyche, Jeff

    2015-05-01

    Animal literature suggests a connection between marijuana use and altered circadian rhythms. However, the effect has not yet been demonstrated in humans. The present study examined the effect of chronic marijuana use on human circadian function. Participants consisted of current users who reported smoking marijuana daily for at least a year and non-marijuana user controls. Participants took a neurocognitive assessment, wore actigraphs and maintained sleep diaries for three weeks. While no significant cognitive changes were found between groups, data revealed that chronic marijuana use may act as an additional zeitgeber and lead to increased entrainment in human users.

  9. Torpor shortens the period of Siberian hamster circadian rhythms.

    Science.gov (United States)

    Thomas, E M; Jewett, M E; Zucker, I

    1993-10-01

    We investigated the influence of ambient and body temperature (Ta and Tb) on circadian rhythms of gonadectomized male Siberian hamsters. Animals that entered torpor (Tb circadian periods (tau s) than did nontorpid hamsters at a Ta of 13 degrees C (24.17 +/- 0.05 vs. 24.33 +/- 0.04 h). The tau s of homeothermic hamsters were not affected by Ta change. Short-term decreases in Tb, rather than changes in Ta, appear to affect tau. Access to activity wheels inhibited expression of torpor in short daylengths and was associated with significant increases in body mass. Running wheel activity can mask or block specific short-day responses.

  10. Chamber-dependent circadian expression of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Georg, Birgitte; Jørgensen, Henrik L

    2010-01-01

    OFF. Eight animals (4 males and 4 females) were included at each time point. Another 48 animals were killed during the second cycle of dark/dark (designated Circadian Time or CT: CT 4, CT 8, CT 12, CT 16, CT 20, and CT 24). The cellular contents of the clock genes Per1 and Bmal1 as well as ANP, BNP......Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) have important local functions within the myocardium, where they protect against accelerated fibrosis. As circadian expression of cardiac natriuretic peptides could be of importance in local cardiac protection against disease, we...

  11. The molecular clock regulates circadian transcription of tissue factor gene.

    Science.gov (United States)

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  12. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks.

    Science.gov (United States)

    Farré, Eva M; Liu, Tiffany

    2013-10-01

    Circadian clocks are internal time-keeping mechanisms that provide an adaptive advantage by enabling organisms to anticipate daily changes and orchestrate biological processes accordingly. Circadian regulated pseudo-response regulators are key components of transcription/translation circadian networks in green alga and plants. Recent studies in Arabidopsis thaliana have shown that most of them act as transcriptional repressors and directly regulate output pathways suggesting a close relationship between the central oscillator and circadian regulated processes. Moreover, phylogenetic studies on this small gene family have shed light on the evolution of circadian clocks in the green lineage.

  13. Pathogenesis of Hepatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Irena Ciećko-Michalska

    2012-01-01

    Full Text Available Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy.

  14. VIRAL HEPATITIS E DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    E. Yu. Malinnikova

    2013-01-01

    Full Text Available Abstract. The results of clinical and epidemiological studies conducted in the M.P. Chumakov’ Research Institute of Poliomyelitis and Viral Encephalitis and in the different research institutions of the world have been summarized in the current article. Data on etiology, pathogenesis, clinical symptoms, epidemiology and prevention of hepatitis E are presented. Increasing of significance of this infection for health care system in Russia is emphasized . The actual problems of hepatitis E (autochthonic hepatitis E, hepatitis E as zoonosis, chronic hepatitis E are discussed.

  15. Cross-talk between the circadian clock and the cell cycle in cancer.

    Science.gov (United States)

    Soták, Matúš; Sumová, Alena; Pácha, Jiří

    2014-06-01

    The circadian clock is an endogenous timekeeper system that controls the daily rhythms of a variety of physiological processes. Accumulating evidence indicates that genetic changes or unhealthy lifestyle can lead to a disruption of circadian homeostasis, which is a risk factor for severe dysfunctions and pathologies including cancer. Cell cycle, proliferation, and cell death are closely intertwined with the circadian clock, and thus disruption of circadian rhythms appears to be linked to cancer development and progression. At the molecular level, the cell cycle machinery and the circadian clocks are controlled by similar mechanisms, including feedback loops of genes and protein products that display periodic activation and repression. Here, we review the circadian rhythmicity of genes associated with the cell cycle, proliferation, and apoptosis, and we highlight the potential connection between these processes, the circadian clock, and neoplastic transformations. Understanding these interconnections might have potential implications for the prevention and therapy of malignant diseases.

  16. PDF Signaling Is an Integral Part of the Drosophila Circadian Molecular Oscillator

    Directory of Open Access Journals (Sweden)

    Shaul Mezan

    2016-10-01

    Full Text Available Circadian clocks generate 24-hr rhythms in physiology and behavior. Despite numerous studies, it is still uncertain how circadian rhythms emerge from their molecular and neural constituents. Here, we demonstrate a tight connection between the molecular and neuronal circadian networks. Using fluorescent transcriptional reporters in a Drosophila ex vivo brain culture system, we identified a reciprocal negative regulation between the master circadian regulator CLK and expression of pdf, the main circadian neuropeptide. We show that PDF feedback is required for maintaining normal oscillation pattern in CLK-driven transcription. Interestingly, we found that CLK and neuronal firing suppresses pdf transcription, likely through a common pathway involving the transcription factors DHR38 and SR, establishing a direct link between electric activity and the circadian system. In sum, our work provides evidence for the existence of an uncharacterized CLK-PDF feedback loop that tightly wraps together the molecular oscillator with the circadian neuronal network in Drosophila.

  17. Stretch, Shrink, and Shatter the Rhythms: The Intrinsic Circadian Period in Mania and Depression.

    Science.gov (United States)

    Martynhak, Bruno Jacson; Pereira, Marcela; de Souza, Camila Pasquini; Andreatini, Roberto

    2015-01-01

    Disturbances in the circadian rhythms have long been associated with depression and mania. Animal models of mania and depression exhibit differential effects upon the intrinsic circadian period and the same occurs with antidepressants and mood stabilizers treatment. The intrinsic circadian period is expressed when there are no time clues or when the light/dark cycle length is beyond the capacity of synchronization. In summary, while there is no clear association between the circadian period and mania, depressive-like behaviour is generally associated either with lengthening of the circadian period or with arrythmicity, and the improvement of depressive-like behaviour is associated with shortening of the circadian period. Thus, this review is an attempt to summarize data regarding these correlations and find a putative role of the circadian intrinsic period in mood regulation, particularly concerning the switch from depression to mania.

  18. Advanced Circadian Phase in Mania and Delayed Circadian Phase in Mixed Mania and Depression Returned to Normal after Treatment of Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Joung-Ho Moon, M.S.

    2016-09-01

    Full Text Available Disturbances in circadian rhythms have been suggested as a possible cause of bipolar disorder (BD. Included in this study were 31 mood episodes of 26 BD patients, and 18 controls. Circadian rhythms of BD were evaluated at admission, at 2-week intervals during hospitalization, and at discharge. All participants wore wrist actigraphs during the studies. Saliva and buccal cells were obtained at 8:00, 11:00, 15:00, 19:00, and 23:00 for two consecutive days. Collected saliva and buccal cells were used for analysis of the cortisol and gene circadian rhythm, respectively. Circadian rhythms had different phases during acute mood episodes of BD compared to recovered states. In 23 acute manic episodes, circadian phases were ~7 hour advanced (equivalent to ~17 hour delayed. Phases of 21 out of these 23 cases returned to normal by ~7 hour delay along with treatment, but two out of 23 cases returned to normal by ~17 hour advance. In three cases of mixed manic episodes, the phases were ~6–7 hour delayed. For five cases of depressive episodes, circadian rhythms phases were ~4–5 hour delayed. After treatment, circadian phases resembled those of healthy controls. Circadian misalignment due to circadian rhythm phase shifts might be a pathophysiological mechanism of BD.

  19. Advanced Circadian Phase in Mania and Delayed Circadian Phase in Mixed Mania and Depression Returned to Normal after Treatment of Bipolar Disorder.

    Science.gov (United States)

    Moon, Joung-Ho; Cho, Chul-Hyun; Son, Gi Hoon; Geum, Dongho; Chung, Sooyoung; Kim, Hyun; Kang, Seung-Gul; Park, Young-Min; Yoon, Ho-Kyoung; Kim, Leen; Jee, Hee-Jung; An, Hyonggin; Kripke, Daniel F; Lee, Heon-Jeong

    2016-09-01

    Disturbances in circadian rhythms have been suggested as a possible cause of bipolar disorder (BD). Included in this study were 31 mood episodes of 26 BD patients, and 18 controls. Circadian rhythms of BD were evaluated at admission, at 2-week intervals during hospitalization, and at discharge. All participants wore wrist actigraphs during the studies. Saliva and buccal cells were obtained at 8:00, 11:00, 15:00, 19:00, and 23:00 for two consecutive days. Collected saliva and buccal cells were used for analysis of the cortisol and gene circadian rhythm, respectively. Circadian rhythms had different phases during acute mood episodes of BD compared to recovered states. In 23 acute manic episodes, circadian phases were ~7hour advanced (equivalent to ~17hour delayed). Phases of 21 out of these 23 cases returned to normal by ~7hour delay along with treatment, but two out of 23 cases returned to normal by ~17hour advance. In three cases of mixed manic episodes, the phases were ~6-7hour delayed. For five cases of depressive episodes, circadian rhythms phases were ~4-5hour delayed. After treatment, circadian phases resembled those of healthy controls. Circadian misalignment due to circadian rhythm phase shifts might be a pathophysiological mechanism of BD.

  20. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring.

    Directory of Open Access Journals (Sweden)

    Sarah J Borengasser

    Full Text Available The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosis, and lipogenic gene expression in the liver at weaning. However, the precise underlying mechanisms leading to metabolic dysregulation in the offspring remains unclear. Using a rat model of overfeeding-induced obesity, we previously demonstrated that exposure to maternal obesity from pre-conception to birth, is sufficient to program increased obesity risk in the offspring. Offspring of obese rat dams gain greater body weight and fat mass when fed high fat diet (HFD as compared to lean dam. Since, disruptions of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver, we examined the hypothesis that maternal obesity leads to perturbations of core clock components and thus energy metabolism in offspring liver. Offspring from lean and obese dams were examined at post-natal day 35, following a short (2 wk HFD challenge. Hepatic mRNA expression of circadian (CLOCK, BMAL1, REV-ERBα, CRY, PER and metabolic (PPARα, SIRT1 genes were strongly suppressed in offspring exposed to both maternal obesity and HFD. Using a mathematical model, we identified two distinct biological mechanisms that modulate PPARα mRNA expression: i decreased mRNA synthesis rates; and ii increased non-specific mRNA degradation rate. Moreover, our findings demonstrate that changes in PPARα transcription were associated with epigenomic alterations in H3K4me3 and H3K27me3 histone marks near the PPARα transcription start site. Our findings indicated that offspring from obese rat dams have detrimental alternations to circadian machinery that may contribute to impaired liver metabolism in response to HFD, specifically via reduced PPAR

  1. Therapeutic applications of circadian rhythms for the cardiovascular system

    Directory of Open Access Journals (Sweden)

    Elena V Tsimakouridze

    2015-04-01

    Full Text Available The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach towards cardiovascular (and other diseases. Here we describe leading-edge therapeutic applications of circadian biology including 1 timing of therapy to maximize efficacy in treating heart disease (chronotherapy; 2 novel biomarkers discovered by testing for genomic, proteomic, metabolomic or other factors at different times of day and night (chronobiomarkers; and 3 novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs. Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically.

  2. The circadian control of skin and cutaneous photodamage.

    Science.gov (United States)

    Desotelle, Joshua A; Wilking, Melissa J; Ahmad, Nihal

    2012-01-01

    Biologically, light including ultraviolet (UV) radiation is vital for life. However, UV exposure does not come without risk, as it is a major factor in the development of skin cancer. Natural protections against UV damage may have been affected by lifestyle changes over the past century, including changes in our sun exposure due to working environments, and the use of sunscreens. In addition, extended "day time" through the use of artificial light may contribute to the disruption of our circadian rhythms; the daily cycles of changes in critical bio-factors including gene expression. Circadian disruption has been implicated in many health conditions, including cardiovascular, metabolic and psychiatric diseases, as well as many cancers. Interestingly, the pineal hormone melatonin plays a role in both circadian regulation as well as protection from UV skin damage, and is therefore an important factor to consider when studying the impact of UV light. This review discusses the beneficial and deleterious effects of solar exposure, including UV skin damage, Vitamin D production, circadian rhythm disruption and the impact of melatonin. Understanding these benefits and risks is critical for the development of protective strategies against solar radiation.

  3. Experience-independent development of the hamster circadian visual system.

    Directory of Open Access Journals (Sweden)

    August Kampf-Lassin

    Full Text Available Experience-dependent functional plasticity is a hallmark of the primary visual system, but it is not known if analogous mechanisms govern development of the circadian visual system. Here we investigated molecular, anatomical, and behavioral consequences of complete monocular light deprivation during extended intervals of postnatal development in Syrian hamsters. Hamsters were raised in constant darkness and opaque contact lenses were applied shortly after eye opening and prior to the introduction of a light-dark cycle. In adulthood, previously-occluded eyes were challenged with visual stimuli. Whereas image-formation and motion-detection were markedly impaired by monocular occlusion, neither entrainment to a light-dark cycle, nor phase-resetting responses to shifts in the light-dark cycle were affected by prior monocular deprivation. Cholera toxin-b subunit fluorescent tract-tracing revealed that in monocularly-deprived hamsters the density of fibers projecting from the retina to the suprachiasmatic nucleus (SCN was comparable regardless of whether such fibers originated from occluded or exposed eyes. In addition, long-term monocular deprivation did not attenuate light-induced c-Fos expression in the SCN. Thus, in contrast to the thalamocortical projections of the primary visual system, retinohypothalamic projections terminating in the SCN develop into normal adult patterns and mediate circadian responses to light largely independent of light experience during development. The data identify a categorical difference in the requirement for light input during postnatal development between circadian and non-circadian visual systems.

  4. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  5. Enhanced Phenotyping of Complex Traits with a Circadian Clock Model

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2005-01-01

    Models of biological systems are increasingly used to generate and test predictions in silico. This article explores the basic workings of a multifeedback network model of a circadian clock. In a series of in silico experiments, we investigated the influence of the number of feedbacks by adding and

  6. The role of the circadian system in fractal neurophysiological control.

    Science.gov (United States)

    Pittman-Polletta, Benjamin R; Scheer, Frank A J L; Butler, Matthew P; Shea, Steven A; Hu, Kun

    2013-11-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.

  7. Circadian regulation of metabolic homeostasis: causes and consequences

    Directory of Open Access Journals (Sweden)

    McGinnis GR

    2016-05-01

    Full Text Available Graham R McGinnis, Martin E Young Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA Abstract: Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. ­Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony invariably increases the risk of cardiometabolic disease. The objectives of this paper are to provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid metabolism, the relative influence of extrinsic (eg, neurohumoral factors versus intrinsic (eg, cell autonomous circadian clocks mediators, the physiologic roles of these rhythms in terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic consequences of dyssynchrony. Keywords: circadian rhythm, circadian clocks, metabolic homeostasis, neurohumoral factors, dyssynchrony, time-of-day-dependent rhythms

  8. Circadian control of the sleep-wake cycle

    NARCIS (Netherlands)

    Beersma, Domien G. M.; Gordijn, Marijke C. M.

    2007-01-01

    It is beyond doubt that the timing of sleep is under control of the circadian pacemaker. Humans are a diurnal species; they sleep mostly at night, and they do so at approximately 24-h intervals. If they do not adhere to this general pattern, for instance when working night shifts or when travelling

  9. My Path from Chemistry to Phytochrome and Circadian Rhythms

    Science.gov (United States)

    Tobin, Elaine M.

    2016-01-01

    I summarize my scientific journey from my first interest in science to my career investigating how plants use the phytochrome photoreceptor to regulate what genes they express. I then describe how this work led to an understanding of how circadian rhythms function in plants and to the discovery of CCA1, a component of the plant central oscillator. PMID:27014288

  10. The circadian clock regulates auxin signaling and responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Michael F Covington

    2007-08-01

    Full Text Available The circadian clock plays a pervasive role in the temporal regulation of plant physiology, environmental responsiveness, and development. In contrast, the phytohormone auxin plays a similarly far-reaching role in the spatial regulation of plant growth and development. Went and Thimann noted 70 years ago that plant sensitivity to auxin varied according to the time of day, an observation that they could not explain. Here we present work that explains this puzzle, demonstrating that the circadian clock regulates auxin signal transduction. Using genome-wide transcriptional profiling, we found many auxin-induced genes are under clock regulation. We verified that endogenous auxin signaling is clock regulated with a luciferase-based assay. Exogenous auxin has only modest effects on the plant clock, but the clock controls plant sensitivity to applied auxin. Notably, we found both transcriptional and growth responses to exogenous auxin are gated by the clock. Thus the circadian clock regulates some, and perhaps all, auxin responses. Consequently, many aspects of plant physiology not previously thought to be under circadian control may show time-of-day-specific sensitivity, with likely important consequences for plant growth and environmental responses.

  11. Dissection of a circadian oscillation into discrete domains

    NARCIS (Netherlands)

    Merrow, Martha W.; Garceau, Norman Y.; Dunlap, Jay C.; Giles, Norman H.

    1997-01-01

    The circadian oscillator in Neurospora is a negative feedback loop involving as principal players the products of the frequency (frq) locus. frq encodes multiple forms of its protein product FRQ, which act to depress the amounts of frq transcript. In this scheme there are two discrete and separable

  12. Disrupting circadian rhythms in rats induces retrograde amnesia

    NARCIS (Netherlands)

    Fekete, Mátyás; Ree, J.M. van; Niesink, Raymond J.M.; Wied, D. de

    1985-01-01

    Disrupting circadian organization in rats by phase-shifting the illumination cycle or by exposure to a reversed day/night cycle or to continuous light, resulted in retrograde amnesia for passive avoidance behavior. This retrograde amnesia induced by phase-shifting lasted at least 2 days, and gradual

  13. Circadian secretion patterns of ß-endorphin and leucine enkephalin

    Directory of Open Access Journals (Sweden)

    E. H. de Wet

    1992-07-01

    Full Text Available ß-endorphin and leucine enkephalin are neuropeptides with potent opioid activity. In a study to investigate the circadian secretion patterns of the above-mentioned, blood samples were collected hourly from 12 healthy males who were subjected to the experiment for 24 hours. Radioimmunoassays were used in the analysis of plasma samples for ß-endorphin and leucine enkephalin. Peak concentrations of ß-endorphin were demonstrated from 08:00-09:00, while peak concentrations of leucine enkephalin occured from 23:00-07:00. Trough concentrations of ß-endorphin occurred from 24:00-05:00, while trough con­centrations of leucine enkephalin were demonstrated from 09:00-12:00. The illustrated circadian secretion pattern for ß-endorphin simulates the well-known circadian rhythm of cortisol. The answer to this may be in the fact that ß-endorphin and corticotropin stem from the same precursor. The illustrated circadian secretion pattern for leucine enkephalin simulates that of melatonin. The reason for this is unclear.

  14. Transcripts from the Circadian Clock: Telling Time and Season

    NARCIS (Netherlands)

    K. Brand (Karl)

    2011-01-01

    textabstractWe all know it when we wake mere moments before an alarm clock is scheduled to wake us: our body clock made the alarm clock redundant. This phenomenon is driven by an endogenous timer known as the biological, or circadian clock. Each revolution of the Earth about its own axis produces pe

  15. Circadian changes in long noncoding RNAs in the pineal gland

    DEFF Research Database (Denmark)

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F;

    2012-01-01

    pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian...

  16. Caffeine increases light responsiveness of the mouse circadian pacemaker.

    Science.gov (United States)

    van Diepen, Hester C; Lucassen, Eliane A; Yasenkov, Roman; Groenen, Inske; Ijzerman, Adriaan P; Meijer, Johanna H; Deboer, Tom

    2014-11-01

    Caffeine is the most commonly used psychoactive stimulant worldwide. It reduces sleep and sleepiness by blocking access to the adenosine receptor. The level of adenosine increases during sleep deprivation, and is thought to induce sleepiness and initiate sleep. Light-induced phase shifts of the rest-activity circadian rhythms are mediated by light-responsive neurons of the suprachiasmatic nucleus (SCN) of the hypothalamus, where the circadian clock of mammals resides. Previous studies have shown that sleep deprivation reduces circadian clock phase-shifting capacity and decreases SCN neuronal activity. In addition, application of adenosine agonists and antagonists mimics and blocks, respectively, the effect of sleep deprivation on light-induced phase shifts in behaviour, suggesting a role for adenosine. In the present study, we examined the role of sleep deprivation in and the effect of caffeine on light responsiveness of the SCN. We performed in vivo electrical activity recordings of the SCN in freely moving mice, and showed that the sustained response to light of SCN neuronal activity was attenuated after 6 h of sleep deprivation prior to light exposure. Subsequent intraperitoneal application of caffeine was able to restore the response to light. Finally, we performed behavioural recordings in constant conditions, and found enhanced period lengthening during chronic treatment with caffeine in drinking water in constant light conditions. The data suggest that increased homeostatic sleep pressure changes circadian pacemaker functioning by reducing SCN neuronal responsiveness to light. The electrophysiological and behavioural data together provide evidence that caffeine enhances clock sensitivity to light.

  17. The Network of Time : Understanding the Molecular Circadian System

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    2003-01-01

    The circadian clock provides a temporal structure that modulates biological functions from the level of gene expression to performance and behaviour. Pioneering work on the fruitfly Drosophila has provided a basis for understanding how the temporal sequence of daily events is controlled in mammals.

  18. Acute light exposure suppresses circadian rhythms in clock gene expression.

    Science.gov (United States)

    Grone, Brian P; Chang, Doris; Bourgin, Patrice; Cao, Vinh; Fernald, Russell D; Heller, H Craig; Ruby, Norman F

    2011-02-01

    Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We therefore investigated whether loss of rhythms in behavior was due to arrhythmia within the suprachiasmatic nucleus (SCN). SCN tissue samples were obtained at 6 time points across 24 h in constant darkness from entrained and arrhythmic hamsters, and per1, per2 , bmal1, and cry1 mRNA were measured by quantitative RT-PCR. The light treatment eliminated circadian expression of clock genes within the SCN, and the overall expression of these genes was reduced by 18% to 40% of entrained values. Arrhythmia in per1, per2, and bmal1 was due to reductions in the amplitudes of their oscillations. We suggest that these data are compatible with an amplitude suppression model in which light induces singularity in the molecular circadian pacemaker.

  19. Control of Circadian Behavior by Transplanted Suprachiasmatic Nuclei.

    Science.gov (United States)

    1994-09-02

    Switzerland, April 5 University of Pisa, Dipartimento di Scienze del Comportamento Animale e dell’Uomo, invited lecture: "Circadian Organization in the...meeting, Amelia Island, FL, Chair of Workshop: "What do SCN transplant really do?" May 7 University of Virginia College of Arts & Sciences reunion

  20. Circadian distribution of sleep phases after major abdominal surgery

    DEFF Research Database (Denmark)

    Gogenur, I.; Wildschiotz, G.; Rosenberg, J.

    2008-01-01

    decided to study the circadian distribution of sleep phases before and after surgery. Methods. Eleven patients undergoing elective major abdominal surgery were included in the study. Continuous ambulatory polysomnographic monitoring was made 24 h before surgery and 36 h after surgery, thus including two...... be involved in the development of postoperative sleep disturbances Udgivelsesdato: 2008/1...

  1. Circadian clocks - the fall and rise of physiology

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    2005-01-01

    Circadian clocks control the daily life of most light-sensitive organisms- from cyanobacteria to humans. Molecular processes generate cellular rhythmicity, and cellular clocks in animals coordinate rhythms through interaction ( known as coupling). This hierarchy of clocks generates a complex, simila

  2. Circadian remodeling of neuronal circuits involved in rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    María Paz Fernández

    2008-03-01

    Full Text Available Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.

  3. Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.

    Science.gov (United States)

    Cui, Ming; Xiao, Huiwen; Luo, Dan; Zhang, Xin; Zhao, Shuyi; Zheng, Qisheng; Li, Yuan; Zhao, Yu; Dong, Jiali; Li, Hang; Wang, Haichao; Fan, Saijun

    2016-10-26

    Modern lifestyles, such as shift work, nocturnal social activities, and jet lag, disturb the circadian rhythm. The interaction between mammals and the co-evolved intestinal microbiota modulates host physiopathological processes. Radiotherapy is a cornerstone of modern management of malignancies; however, it was previously unknown whether circadian rhythm disorder impairs prognosis after radiotherapy. To investigate the effect of circadian rhythm on radiotherapy, C57BL/6 mice were housed in different dark/light cycles, and their intestinal bacterial compositions were compared using high throughput sequencing. The survival rate, body weight, and food intake of mice in diverse cohorts were measured following irradiation exposure. Finally, the enteric bacterial composition of irradiated mice that experienced different dark/light cycles was assessed using 16S RNA sequencing. Intriguingly, mice housed in aberrant light cycles harbored a reduction of observed intestinal bacterial species and shifts of gut bacterial composition compared with those of the mice kept under 12 h dark/12 h light cycles, resulting in a decrease of host radioresistance. Moreover, the alteration of enteric bacterial composition of mice in different groups was dissimilar. Our findings provide novel insights into the effects of biological clocks on the gut bacterial composition, and underpin that the circadian rhythm influences the prognosis of patients after radiotherapy in a preclinical setting.

  4. The Cell Cycle & Circadian Clock: a tale of two cycles

    NARCIS (Netherlands)

    E. Destici (Eugin)

    2010-01-01

    textabstractMost organisms have evolved an internal timekeeper to anticipate and coordinate internal processes with the external 24-h environment imposed upon all living creatures due to rotation of the Earth around its axis. At the cellular level, the circadian clock is generated by a genetic progr

  5. Living by the clock: the circadian pacemaker in older people.

    NARCIS (Netherlands)

    Hofman, M.A.; Swaab, D.F.

    2006-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be a critical component of a neural oscillator system implicated in the timing of a wide variety of biological processes. The circadian cycles established by this biological clock occur throughout nature and have a period of appr

  6. Synchronization of the Drosophila circadian clock by temperature cycles.

    Science.gov (United States)

    Glaser, F T; Stanewsky, R

    2007-01-01

    The natural light/dark and temperature cycles are considered to be the most prominent factors that synchronize circadian clocks with the environment. Understanding the principles of temperature entrainment significantly lags behind our current knowledge of light entrainment in any organism subject to circadian research. Nevertheless, several effects of temperature on circadian clocks are well understood, and similarities as well as differences to the light-entrainment pathways start to emerge. This chapter provides an overview of the temperature effects on the Drosophila circadian clock with special emphasis on synchronization by temperature cycles. As in other organisms, such temperature cycles can serve as powerful time cues to synchronize the clock. Mutants that specifically interfere with aspects of temperature entrainment have been isolated and will likely help to reveal the underlying mechanisms. These mechanisms involve transcriptional and posttranscriptional regulation of clock genes. For synchronization of fly behavior by temperature cycles, the generation of a whole organism or systemic signal seems to be required, even though individual fly tissues can be synchronized under isolated culture conditions. If true, the requirement for such a signal would reveal a fundamental difference to the light-entrainment mechanism.

  7. The circadian clock mutation alters sleep homeostasis in the mouse.

    Science.gov (United States)

    Naylor, E; Bergmann, B M; Krauski, K; Zee, P C; Takahashi, J S; Vitaterna, M H; Turek, F W

    2000-11-01

    The onset and duration of sleep are thought to be primarily under the control of a homeostatic mechanism affected by previous periods of wake and sleep and a circadian timing mechanism that partitions wake and sleep into different portions of the day and night. The mouse Clock mutation induces pronounced changes in overall circadian organization. We sought to determine whether this genetic disruption of circadian timing would affect sleep homeostasis. The Clock mutation affected a number of sleep parameters during entrainment to a 12 hr light/dark (LD 12:12) cycle, when animals were free-running in constant darkness (DD), and during recovery from 6 hr of sleep deprivation in LD 12:12. In particular, in LD 12:12, heterozygous and homozygous Clock mutants slept, respectively, approximately 1 and approximately 2 hr less than wild-type mice, and they had 25 and 51% smaller increases in rapid eye movement (REM) sleep during 24 hr recovery, respectively, than wild-type mice. The effects of the mutation on sleep are not readily attributable to differential entrainment to LD 12:12 because the baseline sleep differences between genotypes were also present when animals were free-running in DD. These results indicate that genetic alterations of the circadian clock system and/or its regulatory genes are likely to have widespread effects on a variety of sleep and wake parameters, including the homeostatic regulation of sleep.

  8. Glutamate phase shifts circadian activity rhythms in hamsters

    NARCIS (Netherlands)

    Meijer, J.H.; van der Zee, E.A.; Dietz, M.

    1988-01-01

    The suprachiasmatic nuclei (SCN) have been identified as a pacemaker for many circadian rhythms in mammals. Photic entrainment of this pacemaker can be accomplished via the direct retino-hypothalamic tract (RHT). Glutamate is a putative transmitter of the RHT. In the present study it is demonstrated

  9. The circadian modulation of leptin-controlled bone formation

    Science.gov (United States)

    Mice with circadian gene Period and Cryptochrome mutations develop high bone mass early in life. Such a phenotype is accompanied by an increase in osteoblast numbers in mutant bone and cannot be corrected by leptin intracerebroventricular infusion. Thus, the molecular clock plays a key role in lepti...

  10. Studies on circadian rhythm disturbances and melatonin in delirium

    NARCIS (Netherlands)

    de Jonghe, A.-M.

    2014-01-01

    The circadian sleep/wake rhythm disturbances that are seen in delirium and the role of melatonin supplementation provide a new angle in delirium research. More research is needed to determine the role of melatonin in the pathophysiological mechanisms of delirium and to determine whether the restorat

  11. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  12. Circadian activity rhythms for mothers with an infant in ICU

    Directory of Open Access Journals (Sweden)

    Shih-Yu eLee

    2010-12-01

    Full Text Available Circadian rhythms influence sleep and wakefulness. Circadian activity rhythms (CAR are altered in individuals with dementia or seasonal affective disorder. To date, studies exploring CAR and sleep in postpartum women are rare. The purpose of this report is to describe relationships between CAR, sleep disturbance, and fatigue among 72 first-time mothers during their 2nd week postpartum while their newborn remain hospitalized in intensive care unit (ICU. Seventy two mothers were included in this secondary data analysis sample from three separate studies. Participants completed the General Sleep Disturbance Scale (GSDS, Numerical Rating Scale for Fatigue (NRS-F, and a sleep diary. The objective sleep data included total sleep time (TST, wake after sleep onset (WASO, and CAR determined by the circadian quotient (amplitude/mesor averaged from at least 48-hours of wrist actigraphy monitoring. The TST of mothers who self-reported as poor sleepers was 354 minutes (SEM= 21.9, with a mean WASO of 19.5% (SEM= 2.8. The overall sleep quality measured by the GSDS was clinically, significantly disrupted (M= 5.5, SD= 1.2. The mean score for morning fatigue was 5.8 (SD= 2.0, indicating moderate fatigue severity. The CAR was .62 (SEM= .04, indicating poor synchronization. The self-reported good sleepers (GSDS < 3 had better CAR (M= .71, SEM= .02 than poor sleepers (GSDS > 3 (t [70] = 2.0, p< .05. A higher circadian equation was associated with higher TST (r= .83, p<.001, less WASO (r= -.50, p< .001, lower self-reported sleep disturbance scores (r= -.35, p= .01, and less morning fatigue (r= -.26. Findings indicate that mothers with a hospitalized infant have both nocturnal sleep problems and disturbed circadian activity rhythms. Factors responsible for these sleep and rhythm disturbances, the adverse effects on mother’s physical and mental well-being, and mother-infant relationship require further study.

  13. Exploration of Circadian Rhythms in Patients with Bilateral Vestibular Loss.

    Directory of Open Access Journals (Sweden)

    Tristan Martin

    Full Text Available New insights have expanded the influence of the vestibular system to the regulation of circadian rhythmicity. Indeed, hypergravity or bilateral vestibular loss (BVL in rodents causes a disruption in their daily rhythmicity for several days. The vestibular system thus influences hypothalamic regulation of circadian rhythms on Earth, which raises the question of whether daily rhythms might be altered due to vestibular pathology in humans. The aim of this study was to evaluate human circadian rhythmicity in people presenting a total bilateral vestibular loss (BVL in comparison with control participants.Nine patients presenting a total idiopathic BVL and 8 healthy participants were compared. Their rest-activity cycle was recorded by actigraphy at home over 2 weeks. The daily rhythm of temperature was continuously recorded using a telemetric device and salivary cortisol was recorded every 3 hours from 6:00AM to 9:00PM over 24 hours. BVL patients displayed a similar rest activity cycle during the day to control participants but had higher nocturnal actigraphy, mainly during weekdays. Sleep efficiency was reduced in patients compared to control participants. Patients had a marked temperature rhythm but with a significant phase advance (73 min and a higher variability of the acrophase (from 2:24 PM to 9:25 PM with no correlation to rest-activity cycle, contrary to healthy participants. Salivary cortisol levels were higher in patients compared to healthy people at any time of day.We observed a marked circadian rhythmicity of temperature in patients with BVL, probably due to the influence of the light dark cycle. However, the lack of synchronization between the temperature and rest-activity cycle supports the hypothesis that the vestibular inputs are salient input to the circadian clock that enhance the stabilization and precision of both external and internal entrainment.

  14. Circadian rhythms, the molecular clock, and skeletal muscle.

    Science.gov (United States)

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A

    2011-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1(-/-) and Clock(Δ19) mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle.

  15. Autophagy in Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Yang Song

    2014-01-01

    Full Text Available Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future.

  16. Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia.

    Science.gov (United States)

    Rana, Sobia; Munawar, Mustafa; Shahid, Adeela; Malik, Meera; Ullah, Hafeez; Fatima, Warda; Mohsin, Shahida; Mahmood, Saqib

    2014-01-01

    Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P circadian clock genes can lead to aberrant expression of their downstream targets that are involved in cell proliferation and apoptosis and hence may result in manifestation of CLL. Moreover, shift-work and low melatonin levels may also contribute in etiology of CLL by further perturbing of circadian clock.

  17. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases.

    Science.gov (United States)

    McMahon, Douglas G; Iuvone, P Michael; Tosini, Gianluca

    2014-03-01

    The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data

  18. Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation.

    Science.gov (United States)

    Kang, Bin; Li, Yuan-Yuan; Chang, Xiao; Liu, Lei; Li, Yi-Xue

    2008-03-28

    Circadian clocks are endogenous time-keeping systems that temporally organize biological processes. Gating of cell cycle events by a circadian clock is a universal observation that is currently considered a mechanism serving to protect DNA from diurnal exposure to ultraviolet radiation or other mutagens. In this study, we put forward another possibility: that such gating helps to insulate the circadian clock from perturbations induced by transcriptional inhibition during the M phase of the cell cycle. We introduced a periodic pulse of transcriptional inhibition into a previously published mammalian circadian model and simulated the behavior of the modified model under both constant darkness and light-dark cycle conditions. The simulation results under constant darkness indicated that periodic transcriptional inhibition could entrain/lock the circadian clock just as a light-dark cycle does. At equilibrium states, a transcriptional inhibition pulse of certain periods was always locked close to certain circadian phases where inhibition on Per and Bmal1 mRNA synthesis was most balanced. In a light-dark cycle condition, inhibitions imposed at different parts of a circadian period induced different degrees of perturbation to the circadian clock. When imposed at the middle- or late-night phase, the transcriptional inhibition cycle induced the least perturbations to the circadian clock. The late-night time window of least perturbation overlapped with the experimentally observed time window, where mitosis is most frequent. This supports our hypothesis that the circadian clock gates the cell cycle M phase to certain circadian phases to minimize perturbations induced by the latter. This study reveals the hidden effects of the cell division cycle on the circadian clock and, together with the current picture of genome stability maintenance by circadian gating of cell cycle, provides a more comprehensive understanding of the phenomenon of circading gating of cell cycle.

  19. Modeling the effects of cell cycle M-phase transcriptional inhibition on circadian oscillation.

    Directory of Open Access Journals (Sweden)

    Bin Kang

    2008-03-01

    Full Text Available Circadian clocks are endogenous time-keeping systems that temporally organize biological processes. Gating of cell cycle events by a circadian clock is a universal observation that is currently considered a mechanism serving to protect DNA from diurnal exposure to ultraviolet radiation or other mutagens. In this study, we put forward another possibility: that such gating helps to insulate the circadian clock from perturbations induced by transcriptional inhibition during the M phase of the cell cycle. We introduced a periodic pulse of transcriptional inhibition into a previously published mammalian circadian model and simulated the behavior of the modified model under both constant darkness and light-dark cycle conditions. The simulation results under constant darkness indicated that periodic transcriptional inhibition could entrain/lock the circadian clock just as a light-dark cycle does. At equilibrium states, a transcriptional inhibition pulse of certain periods was always locked close to certain circadian phases where inhibition on Per and Bmal1 mRNA synthesis was most balanced. In a light-dark cycle condition, inhibitions imposed at different parts of a circadian period induced different degrees of perturbation to the circadian clock. When imposed at the middle- or late-night phase, the transcriptional inhibition cycle induced the least perturbations to the circadian clock. The late-night time window of least perturbation overlapped with the experimentally observed time window, where mitosis is most frequent. This supports our hypothesis that the circadian clock gates the cell cycle M phase to certain circadian phases to minimize perturbations induced by the latter. This study reveals the hidden effects of the cell division cycle on the circadian clock and, together with the current picture of genome stability maintenance by circadian gating of cell cycle, provides a more comprehensive understanding of the phenomenon of circading gating of

  20. Hepatitis isquémica Ischemic hepatitis

    Directory of Open Access Journals (Sweden)

    Marcos Amuchástegui (h

    2006-10-01

    Full Text Available La hepatitis isquémica es una complicación sumamente infrecuente de cirugía cardiovascular. Las biopsias muestran necrosis centrolobulillar. El término de "hepatitis" fue propuesto debido al aumento de transaminasas similar a aquellas de origen infeccioso, e "isquémica" por falla en la perfusión hepática. Posteriormente se definió el término de hepatitis isquémica como cuadro de elevación aguda y reversible (dentro de las 72 horas de transaminasas de hasta 20 veces el valor normal, asociado a trastornos en la perfusión hepática, luego de haber excluido otras causas de hepatitis aguda o daño hepatocelular. Se describe el caso de un paciente de 53 años que consulta por dolor epigástrico de 12 h de evolución sin fiebre, náuseas ni vómitos, resistente a la medicación. Tenía antecedentes inmediatos de reemplazo de válvula aórtica, y estaba anticoagulado. Evolucionó con shock y fallo multiorgánico. El examen evidenció marcada ictericia y signos de taponamiento pericárdico, asociado a un aumento considerable de enzimas hepáticas. Un ecocardiograma informó signos de taponamiento cardíaco y ausencia de disección aórtica. Se decidió pericardiocentesis, extrayéndose 970 cc. de líquido sanguinolento, y hemodiálisis, con notable mejoría de su estado hemodinámico. Los valores enzimáticos disminuyeron. Los marcadores virales fueron negativos.Ischemic hepatitis is an uncommon cardiovascular surgery complication. Hepatic biopsies show centrolobulillar necrosis. The term "hepatitis" was proposed because of a raise in hepatic enzymes similar with infectious disease, and "ischemic" because of failure in hepatic perfusion. Ischemic hepatitis was then defined as an acute and reversible elevation of hepatic enzymes (within 72 h, associated with disturbance in hepatic perfusion after excluding other causes of acute hepatitis. A 53 year-old male presented complaining of a 12 h epigastric pain, without nausea or vomiting, resistant

  1. Preventing hepatitis B or C

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000401.htm Preventing hepatitis B or C To use the sharing features on this page, please enable JavaScript. Hepatitis B and hepatitis C infections cause irritation and swelling ...

  2. Hepatitis C Virus Genotypes

    OpenAIRE

    Kayhan Azadmanesh; Safie Amini; Seyed-Moayed Alavian; Malek Hossein Ahmadipour

    2005-01-01

    IntroductionHepatitis C virus (HCV) is an important cause of chronic liver disease. HCV causes 20% of acute hepatitis cases, 70% of all chronic hepatitis cases, 40% of all cases of liver cirrhosis, 60% of hepatocellular carcinomas, and 30% of liver transplants in Europe(1). It is also recognized as the leading cause of liver transplantation in the world(2). Only 20% of infected individuals will recover from this viral infection, while the rest become chronically infected(3). While the majorit...

  3. A circadian biosignature in the labeled release data from Mars?

    Science.gov (United States)

    Van Dongen, Hans P. A.; Miller, Joseph D.; Levin, Gilbert V.; Straat, Patricia A.

    2005-09-01

    Organisms on Earth commonly exhibit a circadian rhythm, which is synchronized to the 24-hour day-night (diurnal) cycle of the planet. However, if isolated from strong environmental time cues (e.g., light-dark, temperature, etc.), many organisms revert to a "free-running" rhythm that is close to, but significantly different from, the diurnal cycle. Such a free-running rhythm is a distinct biological feature, as it requires an endogenous pacemaker that is not just passively driven by rhythms in the environment. On Mars, a free-running rhythm (i.e., significantly different from the Martian diurnal cycle of 24.66 hours) would constitute independent proof of the presence of living organisms. Evidence for such a circadian biosignature from Mars has been sought in the data sent by the 1976 Viking Labeled Release (LR) life detection experiment . In the search for circadian rhythmicity, oscillatory fluctuations in the amount of radiolabeled gas in the headspace of the LR test cell of Viking Lander 2, test cycle 3, were studied. The cycle duration of the LR oscillations examined did not differ significantly from that of the daily cell temperature oscillations controlled ultimately by the Martian diurnal cycle. Thus, these specific LR oscillations produced no independent evidence for an endogenous biological origin. However, it was found that the amplitudes of the oscillations in the gas (presumably CO2) were greater than could be accounted for by the most likely non-biological mechanism (i.e., temperature-induced changes in soil solubility of CO2). The possibility thus remained that biological activity, synchronized to the Martian diurnal cycle, could be responsible for at least part of the oscillatory activity in the LR signals. We now propose to consider all data from the nine active and control cycles of the Martian LR experiment. A comprehensive set of null and alternative hypotheses is proposed for statistical testing using the digitized data. Advanced, statistically

  4. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.

    Directory of Open Access Journals (Sweden)

    Taishi Yoshii

    2009-04-01

    Full Text Available Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 muT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cry(b and cry(OUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system

  5. Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture.

    Science.gov (United States)

    Matsu-Ura, Toru; Dovzhenok, Andrey; Aihara, Eitaro; Rood, Jill; Le, Hung; Ren, Yan; Rosselot, Andrew E; Zhang, Tongli; Lee, Choogon; Obrietan, Karl; Montrose, Marshall H; Lim, Sookkyung; Moore, Sean R; Hong, Christian I

    2016-12-01

    Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle and circadian clock in 3D murine intestinal organoids (enteroids). The circadian clock gates a population of cells with heterogeneous cell-cycle times that emerge as 12-hr synchronized cell division cycles. Remarkably, we observe reduced-amplitude oscillations of circadian rhythms in intestinal stem cells and progenitor cells, indicating an intercellular signal arising from differentiated cells governing circadian clock-dependent synchronized cell division cycles. Stochastic simulations and experimental validations reveal Paneth cell-secreted WNT as the key intercellular coupling component linking the circadian clock and cell cycle in enteroids.

  6. Disconnected circadian and cell cycles in a tumor-driven cell line.

    Science.gov (United States)

    Pendergast, Julie S; Yeom, Mijung; Reyes, Bryan A; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-11-01

    Cell division occurs at a specific time of day in numerous species, suggesting that the circadian and cell cycles are coupled in vivo. By measuring the cell cycle rhythm in real-time, we recently showed that the circadian and cell cycles are not coupled in immortalized fibroblasts, resulting in a rapid rate of cell division even though the circadian rhythm is normal in these cells. Here we report that tumor-driven Lewis lung carcinoma (LLC) cells have perfectly temperature compensated circadian clocks, but the periods of their cell cycle gene expression rhythms are temperature-dependent, suggesting that their circadian and cell cycles are not connected. These data support our hypothesis that decoupling of the circadian and cell cycles may underlie aberrant cell division in tumor cells.

  7. Effect of melatonin on antioxidant status and circadian activity rhythm during hepatocarcinogenesis in mice

    OpenAIRE

    Devi Verma; Onn Haji Hashim; Jaime Jacqueline Jayapalan; Perumal Subramanian

    2014-01-01

    Aim: Alteration of circadian systems can cause cancer and affects its development and response to therapeutics. The present study investigates whether cancer can disrupt circadian locomotor rhythms and evaluated the influence of melatonin (MLT) and oxaliplatin on the levels of antioxidants and circadian locomotor activity rhythms in N-nitrosodiethylamine (NDEA)-induced liver tumor in Indian field mouse (Mus booduga). Materials and Methods: Effects of NDEA, NDEA, and MLT, as well as NDEA an...

  8. The Islet Circadian Clock: Entrainment Mechanisms, Function and Role in Glucose Homeostasis

    OpenAIRE

    Rakshit, Kuntol; Qian, Jingyi; Colwell, Christopher S; Matveyenko, Aleksey V.

    2015-01-01

    Circadian regulation of glucose homeostasis and insulin secretion has long been appreciated as an important feature of metabolic control in humans. Circadian disruption is becoming increasingly prevalent in today’s society and is likely responsible in part for the considerable rise in Type 2 diabetes (T2DM) and metabolic syndrome worldwide. Thus, understanding molecular mechanisms driving the inter-relationship between circadian disruption and T2DM is important in context of disease preventio...

  9. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Depression

    OpenAIRE

    Roberto Salgado-Delgado; Araceli Tapia Osorio; Nadia Saderi; Carolina Escobar

    2011-01-01

    Circadian factors might play a crucial role in the etiology of depression. It has been demonstrated that the disruption of circadian rhythms by lighting conditions and lifestyle predisposes individuals to a wide range of mood disorders, including impulsivity, mania and depression. Also, associated with depression, there is the impairment of circadian rhythmicity of behavioral, endocrine, and metabolic functions. Inspite of this close relationship between both processes, the complex relationsh...

  10. Cross-talk between Circadian clocks, Sleep-wake Cycles and Metabolic Networks: Dispelling the Darkness

    OpenAIRE

    Ray, Sandipan; Reddy, Akhilesh B.

    2016-01-01

    This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/bies.201500056 Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent i...

  11. Disconnected circadian and cell cycles in a tumor-driven cell line

    OpenAIRE

    Pendergast, Julie S.; Yeom, Mijung; Bryan A. Reyes; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-01-01

    Cell division occurs at a specific time of day in numerous species, suggesting that the circadian and cell cycles are coupled in vivo. By measuring the cell cycle rhythm in real-time, we recently showed that the circadian and cell cycles are not coupled in immortalized fibroblasts, resulting in a rapid rate of cell division even though the circadian rhythm is normal in these cells. Here we report that tumor-driven Lewis lung carcinoma (LLC) cells have perfectly temperature compensated circadi...

  12. Hepatitis E og graviditet

    DEFF Research Database (Denmark)

    Mannheimer, Ebba Elisabeth; Harritshøj, Lene Holm; Katzenstein, Terese Lea

    2016-01-01

    Hepatitis E virus (HEV) infection among pregnant women is severe, often leading to fulminant hepatic failure and death, with mortality rates up to 15-25%. Studies suggest that differences in genotypes/subgenotypes, hormonal and immunological changes during pregnancy may contribute to the severe...

  13. Cytomegalovirus Hepatitis During Pregnancy

    Directory of Open Access Journals (Sweden)

    Ying Chan

    1995-01-01

    Full Text Available Background: Although cytomegalovirus (CMV is an uncommon cause of viral hepatitis during pregnancy, a definitive diagnosis is important because of the potential for congenital CMV. In the case reported here, a diagnosis of hepatitis caused by CMV was made after the more common viral pathogens had been ruled out.

  14. Hepatic angiosarcoma: CT findings

    Institute of Scientific and Technical Information of China (English)

    余日胜; 章士正; 华建明

    2003-01-01

    @@ Hepatic angiosarcoma is a rare malignant vascular tumor. Accurate preoperative diagnosis of this tumor is very difficult if the patient does not have any history of exposure to specific carcinogens including thorotrast, arsenicals and vinyl chloride monomer. We describe CT findings in two cases of hepatic angiosarcoma in combination with a review of the literature.

  15. Circadian regulation of abiotic stress tolerance in plants.

    Science.gov (United States)

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants' ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress.

  16. Glucocorticosteroid injection is a circadian zeitgeber in the laboratory rat

    Energy Technology Data Exchange (ETDEWEB)

    Horseman, N.D.; Ehret, C.F.

    1982-09-01

    Intraperitoneal temperatures were monitored by radiotelemetry to observe the thermoregulatory rhythm of male laboratory rats (Rattus norvegicus albinus). Rats received single injections of dexamethasone (as dexamethasone sodium phosphate) during constant darkness (0.1 lx) with food freely available or no food available. No phase shifts occurred following saline injection or dexamethasone at 1 mg/kg body wt. Depending on the phase of injection relative to the circadian cycle, dexamethasone at 10 mg/kg caused thermoregulatory peaks to be either delayed or advanced on the 4th and 5th days after injection. There was an insensitive interval which corresponded to subjective day. Phase shifts induced by dexamethasone during ad libitum feeding were of less magnitude than those induced during starvation. The determination of phase-shifting parameters (i.e., a phase-response curve) for hormonal substances represents a rigorous and broadly applicable technique for determining endogenous mechanisms for circadian phase control and entrainment.

  17. Timing of Photoperiodic Flowering:Light Perception and Circadian Clock

    Institute of Scientific and Technical Information of China (English)

    Yun Zhou; Xiao-Dong Sun; Min Ni

    2007-01-01

    Flowering symbolizes the transition of a plant from vegetative phase to reproductive phase and is controlled by fairly complex and highly coordinated regulatory pathways. Over the last decade, genetic studies in Arabidopsis have aided the discovery of many signaling components involved in these pathways. In this review, we discuss how the timing of flowering is regulated by photoperiod and the involvement of light perception and the circadian clock in this process. The specific regulatory mechanisms on CONSTANS expression and CONSTANS stability by the circadian clock and photoreceptors are described in detail. In addition, the roles of CONSTANS, FLOWERING LOCUS T, and several other light signaling and circadiandependent components in photoperiodic flowering are also highlighted.

  18. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits.

    Science.gov (United States)

    Atamian, Hagop S; Creux, Nicky M; Brown, Evan A; Garner, Austin G; Blackman, Benjamin K; Harmer, Stacey L

    2016-08-05

    Young sunflower plants track the Sun from east to west during the day and then reorient during the night to face east in anticipation of dawn. In contrast, mature plants cease movement with their flower heads facing east. We show that circadian regulation of directional growth pathways accounts for both phenomena and leads to increased vegetative biomass and enhanced pollinator visits to flowers. Solar tracking movements are driven by antiphasic patterns of elongation on the east and west sides of the stem. Genes implicated in control of phototropic growth, but not clock genes, are differentially expressed on the opposite sides of solar tracking stems. Thus, interactions between environmental response pathways and the internal circadian oscillator coordinate physiological processes with predictable changes in the environment to influence growth and reproduction.

  19. Circadian pattern and burstiness in human communication activity

    CERN Document Server

    Jo, Hang-Hyun; Kertész, János; Kaski, Kimmo

    2011-01-01

    The temporal pattern of human communication is inhomogeneous and bursty, as reflected by the heavy tail distribution of the inter-event times. For the origin of this behavior two main mechanisms have been suggested: a) Externally driven inhomogeneities due to the circadian and weekly activity patterns and b) intrinsic correlation based inhomogeneity rooted deeply in the task handling strategies of humans. Here we address this question by providing systematic de-seasoning methods to remove the circadian and weekly patterns from the time series of communication events. We find that the heavy tails of the inter-event time distributions are robust with respect to this procedure indicating that burstiness is mostly caused by the latter mechanism b). Moreover, we find that our de-seasoning procedure improves the scaling behavior of the distribution.

  20. Cell "circadian" cycle: new role for mammalian core clock genes.

    Science.gov (United States)

    Borgs, Laurence; Beukelaers, Pierre; Vandenbosch, Renaud; Belachew, Shibeshih; Nguyen, Laurent; Malgrange, Brigitte

    2009-03-15

    In mammals, 24 hours rhythms are organized as a biochemical network of molecular clocks that are operative in all tissues, with the master clock residing in the hypothalamic suprachiasmatic nucleus (SCN). The core pacemakers of these clocks consist of auto-regulatory transcriptional/post-transcriptional feedback loops. Several lines of evidence suggest the existence of a crosstalk between molecules that are responsible for the generation of circadian rhythms and molecules that control the cell cycle progression. In addition, highly specialized cell cycle checkpoints involved in DNA repair after damage seem also, at least in part, mediated by clock proteins. Recent studies have also highlighted a putative connection between clock protein dysfunction and cancer progression. This review discusses the intimate relation that exists between cell cycle progression and components of the circadian machinery.

  1. Strong feedback limit of the Goodwin circadian oscillator

    Science.gov (United States)

    Woller, Aurore; Gonze, Didier; Erneux, Thomas

    2013-03-01

    The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop. It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks because of its relative simplicity compared to other biophysical models involving a large number of variables and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable leaky integrated-and-fire model.

  2. Identified Circadian Rhythm Genes of Ciliary Epithelium with Differential Display

    Institute of Scientific and Technical Information of China (English)

    Yanxia Li; Dongcheng Lu; Jian Ge; Yanna Li; Yehong Zhuo; Sears ML

    2001-01-01

    Purpose:To identify differential genes expressed in the rabbit ciliary epithelium duringthe circadian cycle of aqueous flow.Methods: Total RNA from ciliary epithelium of rabbits at 8AM (light on 1 hour) and8PM(light off 1 hour) were compared by differential display reverse transcription-polymerase chain reaetion(DD RT-PCR), using 6 % denaturing polyacrylamide electro-phoresis, choose differential display bands, cut and reamplify with the same primer, cloneand sequence. Search the database of Genbank, prolong them with 5' RACE and 3'RACE technique then clone, sequence and search database of Genbank.Results: 93 Significant differences gene expression were detected between light on andlight off in the rabbit ciliary epithelium.Conclusion: Differential display is a powerful tool to screen differentially expressedgenes in circadian rhythm of ciliary epithelium.

  3. Serotoninergic and circadian systems: driving mammary gland development and function

    Directory of Open Access Journals (Sweden)

    Aridany Suárez-Trujillo

    2016-07-01

    Full Text Available Since lactation is one of the most metabolically demanding states in adult female mammals, beautifully complex regulatory mechanisms are in place to time lactation to begin after birth and cease when the neonate is weaned. Lactation is regulated by numerous different homeorhetic factors, all of them tightly coordinated with the demands of milk production. Emerging evidence support that among these factors are the serotonergic and circadian clock systems. Here we review the serotoninergic and circadian clock systems and their roles in the regulation of mammary gland development and lactation physiology. We conclude by presenting our hypothesis that these two systems interact to accommodate the metabolic demands of lactation and thus adaptive changes in these systems occur to maintain mammary and systemic homeostasis through the reproductive cycles of female mammals.

  4. Circadian clocks optimally adapt to sunlight for reliable synchronization

    CERN Document Server

    Hasegawa, Yoshihiko

    2014-01-01

    Circadian oscillation provides selection advantages through synchronization to the daylight cycle. However, a reliable clock must be designed through two conflicting properties: entrainability to properly respond to external stimuli such as sunlight, and regularity to oscillate with a precise period. These two aspects do not easily coexist because better entrainability favors higher sensitivity, which may sacrifice the regularity. To investigate conditions for satisfying the two properties, we analytically calculated the optimal phase-response curve with a variational method. Our result indicates an existence of a dead zone, i.e., a time during which external stimuli neither advance nor delay the clock. This result is independent of model details and a dead zone appears only when the input stimuli obey the time course of actual insolation. Our calculation demonstrates that every circadian clock with a dead zone is optimally adapted to the daylight cycle. Our result also explains the lack of a dead zone in osc...

  5. Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities

    Energy Technology Data Exchange (ETDEWEB)

    Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J

    2003-07-01

    The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)

  6. Hepatitis G virus

    Institute of Scientific and Technical Information of China (English)

    Vasiliy Ivanovich Reshetnyak; Tatiana Igorevna Karlovich; Ljudmila Urievna Ilchenko

    2008-01-01

    A number of new hepatitis viruses (G,TT,SEN) were discovered late in the past century.We review the data available in the literature and our own findings suggesting that the new hepatitis G virus (HGV),disclosed in the late 1990s,has been rather well studied.Analysis of many studies dealing with HGV mainly suggests the lymphotropicity of this virus.HGV or GBV-C has been ascertained to influence course and prognosis in the HIV-infected patient.Until now,the frequent presence of GBV-C in coinfections,hematological diseases,and biliary pathology gives no grounds to determine it as an "accidental tourist" that is of no significance.The similarity in properties of GBV-C and hepatitis C virus (HCV) offers the possibility of using HGV,and its induced experimental infection,as a model to study hepatitis C and to develop a hepatitis C vaccine.

  7. Pentoxifylline for alcoholic hepatitis

    DEFF Research Database (Denmark)

    Whitfield, Kate; Rambaldi, Andrea; Wetterslev, Jørn

    2009-01-01

    BACKGROUND: Alcoholic hepatitis is a life-threatening disease, with an average mortality of approximately 40%. There is no widely accepted, effective treatment for alcoholic hepatitis. Pentoxifylline is used to treat alcoholic hepatitis, but there has been no systematic review to assess its effects....... OBJECTIVES: To assess the benefits and harms of pentoxifylline in alcoholic hepatitis. SEARCH STRATEGY: The Cochrane Hepato-Biliary Group Controlled Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, LILACS......, clinicaltrials.gov, and full text searches were conducted until August 2009. Manufacturers and authors were contacted. SELECTION CRITERIA: All randomised clinical trials of pentoxifylline in participants with alcoholic hepatitis compared to control were selected for inclusion. DATA COLLECTION AND ANALYSIS: Two...

  8. The period length of fibroblast circadian gene expression varies widely among human individuals.

    Directory of Open Access Journals (Sweden)

    Steven A Brown

    2005-10-01

    Full Text Available Mammalian circadian behavior is governed by a central clock in the suprachiasmatic nucleus of the brain hypothalamus, and its intrinsic period length is believed to affect the phase of daily activities. Measurement of this period length, normally accomplished by prolonged subject observation, is difficult and costly in humans. Because a circadian clock similar to that of the suprachiasmatic nucleus is present in most cell types, we were able to engineer a lentiviral circadian reporter that permits characterization of circadian rhythms in single skin biopsies. Using it, we have determined the period lengths of 19 human individuals. The average value from all subjects, 24.5 h, closely matches average values for human circadian physiology obtained in studies in which circadian period was assessed in the absence of the confounding effects of light input and sleep-wake cycle feedback. Nevertheless, the distribution of period lengths measured from biopsies from different individuals was wider than those reported for circadian physiology. A similar trend was observed when comparing wheel-running behavior with fibroblast period length in mouse strains containing circadian gene disruptions. In mice, inter-individual differences in fibroblast period length correlated with the period of running-wheel activity; in humans, fibroblasts from different individuals showed widely variant circadian periods. Given its robustness, the presented procedure should permit quantitative trait mapping of human period length.

  9. Dissociation of ultradian and circadian phenotypes in female and male Siberian hamsters.

    Science.gov (United States)

    Prendergast, Brian J; Cisse, Yasmine M; Cable, Erin J; Zucker, Irving

    2012-08-01

    Three experiments addressed whether pronounced alterations in the circadian system yielded concomitant changes in ultradian timing. Female Siberian hamsters were housed in a 16L:8D photoperiod after being subjected to a disruptive phase-shifting protocol that produced 3 distinct permanent circadian phenotypes: some hamsters entrained their circadian rhythms (CRs) with predominantly nocturnal locomotor activity (ENTR), others displayed free-running CRs (FR), and a third cohort was circadian arrhythmic (ARR). The period of the ultradian locomotor rhythm (UR) did not differ among the 3 circadian phenotypes; neuroendocrine generation of URs remains viable in the absence of coherent circadian organization and appears to be mediated by substrates functionally and anatomically distinct from those that generate CRs. Pronounced light-dark differences in several UR characteristics in ENTR hamsters were completely absent in circadian arrhythmic hamsters. The disruptive phase-shifting protocol may compromise direct visual input to ultradian oscillators but more likely indirectly affects URs by interrupting visual afference to the circadian system. Additional experiments documented that deuterium oxide and constant light, each of which substantially lengthened the period of free-running CRs, failed to change the period of concurrently monitored URs. The resistance of URs to deuteration contrasts with the slowing of virtually all other biological timing processes, including CRs. Considered together, the present results point to the existence of separable control mechanisms for generation of circadian and ultradian rhythms.

  10. Independence of genetic variation between circadian rhythm and development time in the seed beetle, Callosobruchus chinensis.

    Science.gov (United States)

    Harano, Tomohiro; Miyatake, Takahisa

    2011-03-01

    A positive genetic correlation between periods of circadian rhythm and developmental time supports the hypothesis that circadian clocks are implicated in the timing of development. Empirical evidence for this genetic correlation in insects has been documented in two fly species. In contrast, here we show that there is no evidence of genetic correlation between circadian rhythm and development time in the adzuki bean beetle, Callosobruchus chinensis. This species has variation that is explained by a major gene in the expression and period length of circadian rhythm between strains. In this study, we found genetic variation in development time between the strains. The development time was not covaried with either the incidence or the period length of circadian rhythm among the strains. Crosses between strains suggest that development time is controlled by a polygene. In the F(2) individuals from the crosses, the circadian rhythm is attributable to allelic variation in the major gene. Across the F(2) individuals, development time was not correlated with either the expression or the period length of circadian rhythm. Thus, we found no effects of major genes responsible for variation in the circadian rhythm on development time in C. chinensis. Our findings collectively give no support to the hypothesis that the circadian clock is involved in the regulation of development time in this species.

  11. Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health.

    Science.gov (United States)

    Micó, Víctor; Díez-Ricote, Laura; Daimiel, Lidia

    2016-02-26

    Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future.

  12. Autoimmune hepatitis triggered by acute hepatitis A

    Institute of Scientific and Technical Information of China (English)

    Hiroto Tanaka; Hiroto Tujioka; Hiroki Ueda; Hiroko Hamagami; Youhei Kida; Masakazu Ichinose

    2005-01-01

    The patient was a 57-year-old woman presenting with jaundice as the chief complaint. She began vomiting on July 10, 2003.Jaundice was noted and admitted to our hospital for thorough testing. Tests on admission indicated severe hepatitis, based on: aspartate aminotransferase (AST), 1 076 IU/L; alanine aminotransferase (ALT), 1 400 IU/L; total bilirubin (TB), 20.9 mg/dL; and prothrombin time rate (PT%), 46.9%. Acute hepatitis A (HA) was diagnosed based on negative hepatitis B surface antigen and hepatitis C virus RNA and positive immunoglobulin (Ig) M HA antibody, but elevation of anti-nuclear antigen (×320) and IgG (3 112 mg/dL) led to suspicion of autoimmune hepatitis (AIH). Plasma exchange was performed for 3 d from July 17, and steroid pulse therapy was performed for 3 d starting on July 18, followed by oral steroid therapy. Liver biopsy was performed on August 5, and the results confirmed acute hepatitis and mild chronic inflammation. Levels of AST and ALT normalized,so dose of oral steroid was markedly reduced. Steroid therapy was terminated after 4 mo, as the patient had glaucoma. Starting 3 mo after cessation of steroid therapy,levels of AST and ALT began to increase again. Another liver biopsy was performed and AIH was diagnosed based on serum data and biopsy specimen. Oral steroid therapy was reinitiated. Levels of AST and ALT again normalized.The present case was thus considered to represent AIH triggered by acute HA.

  13. Circadian activity rhythms for mothers with an infant in ICU.

    Science.gov (United States)

    Lee, Shih-Yu; Lee, Kathryn A; Aycock, Dawn; Decker, Michael

    2010-01-01

    Circadian rhythms influence sleep and wakefulness. Circadian activity rhythms (CAR) are altered in individuals with dementia or seasonal affective disorder. To date, studies exploring CAR and sleep in postpartum women are rare. The purpose of this report is to describe relationships between CAR, sleep disturbance, and fatigue among 72 first-time mothers during their second week postpartum while their newborn remain hospitalized in intensive care unit. Seventy-two mothers were included in this secondary data analysis sample from three separate studies. Participants completed the general sleep disturbance scale (GSDS), numerical rating scale for fatigue, and a sleep diary. The objective sleep data included total sleep time (TST), wake after sleep onset (WASO), and CAR determined by the circadian quotient (amplitude/mesor) averaged from at least 48-h of wrist actigraphy monitoring. The TST of mothers who self-reported as poor sleepers was 354 min (SEM = 21.9), with a mean WASO of 19.5% (SEM = 2.8). The overall sleep quality measured by the GSDS was clinically, significantly disrupted (M = 5.5, SD = 1.2). The mean score for morning fatigue was 5.8 (SD = 2.0), indicating moderate fatigue severity. The CAR was 0.62 (SEM = 0.04), indicating poor synchronization. The self-reported good sleepers (GSDS  3) (t[70] = 2.0, p sleep disturbance scores (r = -0.35, p = 0.01), and less morning fatigue (r = -0.26). Findings indicate that mothers with a hospitalized infant have both nocturnal sleep problems and disturbed circadian activity rhythms. Factors responsible for these sleep and rhythm disturbances, the adverse effects on mother's physical and mental well-being, and mother-infant relationship require further study.

  14. The Effect of Cataract Surgery on Circadian Photoentrainment

    DEFF Research Database (Denmark)

    Brøndsted, Adam Elias; Sander, Birgit; Haargaard, Birgitte

    2015-01-01

    -illumination pupil response (PIPR) to blue light from 10 to 30 seconds after light exposure as a surrogate measure. Secondary outcomes were circadian rhythm analysis using actigraphy and 24-hour salivary melatonin measurements. Finally, objective and subjective sleep quality were determined by actigraphy...... and the Pittsburgh Sleep Quality Index. RESULTS: The blue light PIPR increased 2 days (17%) and 3 weeks (24%) after surgery (P

  15. Aging, circadian rhythms and depressive disorders: a review

    OpenAIRE

    2013-01-01

    Introduction: Aging is typically associated with impairing behavioral patterns that are frequently and inappropriately seen as normal. Circadian rhythm changes and depressive disorders have been increasingly proposed as the two main overlapping and interpenetrating changes that take place in older age. This study aims to review the state of the art on the subject concerning epidemiology, pathophysiological mechanism, clinical findings and relevance, as well as available treatment options. Mat...

  16. A stochastic model for circadian rhythms from coupled ultradian oscillators

    Directory of Open Access Journals (Sweden)

    Illner Reinhard

    2007-01-01

    Full Text Available Abstract Background Circadian rhythms with varying components exist in organisms ranging from humans to cyanobacteria. A simple evolutionarily plausible mechanism for the origin of such a variety of circadian oscillators, proposed in earlier work, involves the non-disruptive coupling of pre-existing ultradian transcriptional-translational oscillators (TTOs, producing "beats," in individual cells. However, like other TTO models of circadian rhythms, it is important to establish that the inherent stochasticity of the protein binding and unbinding does not invalidate the finding of clear oscillations with circadian period. Results The TTOs of our model are described in two versions: 1 a version in which the activation or inhibition of genes is regulated stochastically, where the 'unoccupied" (or "free" time of the site under consideration depends on the concentration of a protein complex produced by another site, and 2 a deterministic, "time-averaged" version in which the switching between the "free" and "occupied" states of the sites occurs so rapidly that the stochastic effects average out. The second case is proved to emerge from the first in a mathematically rigorous way. Numerical results for both scenarios are presented and compared. Conclusion Our model proves to be robust to the stochasticity of protein binding/unbinding at experimentally determined rates and even at rates several orders of magnitude slower. We have not only confirmed this by numerical simulation, but have shown in a mathematically rigorous way that the time-averaged deterministic system is indeed the fast-binding-rate limit of the full stochastic model.

  17. Effects of microgravity on circadian rhythms in insects

    Science.gov (United States)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Fuller, C. A.; Lazarev, A. O.; Rietveld, W. J.; Tschernyshev, V. B.; Tumurova, E. G.; Wassmer, G.; Zotov, V. A.

    1998-01-01

    The desert beetle Trigonoscelis gigas Reitt. was used as a biological model in studies that examined the effects of space flight on the circadian timing system. Results from studies aboard the Bion-10, Bion-11, and Photon-11 missions are reported. The control study is an ongoing Mir experiment. The studies indicate that the free-running period in beetles may be longer during space flight.

  18. Circadian profile of cardiac autonomic nervous modulation in healthy subjects

    DEFF Research Database (Denmark)

    Bonnemeier, Hendrik; Richardt, Gert; Potratz, Jürgen

    2003-01-01

    , awoke around 7 A.M., and had 6 to 8 hours of sleep. Circadian profiles of vagus-associated HRV parameters revealed a marked day-night pattern, with a peak at nighttime and a plateau at daytime. The characteristic nocturnal peak and the day-night amplitude diminished with aging by decade. Estimates...... for vagus-associated parameters (root mean square successive difference [rMSSD], P

  19. Chronobiology of micturition: putative role of the circadian clock.

    OpenAIRE

    Negoro, Hiromitsu; Kanematsu, Akihiro; Yoshimura, Koji; Ogawa, Osamu

    2013-01-01

    [Purpose]Mammals urinate less frequently during the sleep period than the awake period. This is modulated by a triad of factors, including decreased arousal in the brain, a decreased urine production rate in the kidneys and increased functional bladder capacity during sleep. The circadian clock is genetic transcription-translation feedback machinery. It exists in most organs and cells, termed the peripheral clock, which is orchestrated by the central clock in the suprachiasmatic nucleus of th...

  20. Circadian rhythms in electrical circuits of Clivia miniata.

    Science.gov (United States)

    Volkov, Alexander G; Wooten, Joseph D; Waite, Astian J; Brown, Corydon R; Markin, Vladislav S

    2011-10-15

    The biological clock regulates a wide range of physiological processes in plants. Here we show circadian variation of the Clivia miniata responses to electrical stimulation. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), which regulate its physiology, were analyzed in vivo using the charge stimulation method. The electrostimulation was provided with different voltages and electrical charges. Resistance between Ag/AgCl electrodes in the leaf of C. miniata was higher at night than during the day or the following day in the darkness. The biologically closed electrical circuits with voltage gated ion channels in C. miniata are activated the next day, even in the darkness. C. miniata memorizes daytime and nighttime. At continuous light, C. miniata recognizes nighttime and increases the input resistance to the nighttime value even under light. These results show that the circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate voltage gated ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge and speed of transmission of electrical energy from the electrostimulator to the C. miniata leaves. We present the equivalent electrical circuits in C. miniata and its circadian variation to explain the experimental data.

  1. Prolactin circadian rhythm persists throughout lactation in women.

    Science.gov (United States)

    Stern, J M; Reichlin, S

    1990-01-01

    To determine whether the prolactin (PRL) circadian rhythm, with its characteristic nocturnal rise, persists during the hyperprolactinemia of lactation, PRL levels were analyzed in blood samples collected hourly for 24 h from 20 mothers, 4-46 months postpartum. The circadian rhythm of PRL persisted throughout lactation as manifested by: (1) significantly higher mean nighttime than daytime PRL levels in the whole sample, despite higher daytime nursing durations; (2) the distribution of zenith levels which most frequently occur between 23.00 and 07.00 h, when nursing duration is lowest, and which are almost absent between 07.00 and 23.00 h, when nursing duration is highest, and of nadir levels, which have an opposite pattern; (3) spontaneous PRL surges that are more frequent, longer, and of higher magnitude at night than during the day, and (4) the larger magnitude of suckling-induced PRL release from late afternoon through the night compared to the morning in some women. Our data suggest that the mechanisms responsible for the circadian rhythm in PRL secretion are relatively independent of the mechanisms of suckling-induced release. We propose that the nocturnal rise in PRL during lactation functions to ensure a robust milk supply during an extensive nonsuckling interval.

  2. Sleep habits and circadian preference in Italian children and adolescents.

    Science.gov (United States)

    Russo, Paolo M; Bruni, Oliviero; Lucidi, Fabio; Ferri, Raffaele; Violani, Cristiano

    2007-06-01

    Sleep habits and circadian preference (morningness/eveningness, M/E) have been extensively analyzed in adolescents and young adults, while few studies were conducted on children and early adolescents. Aim of the present study was to investigate the developmental changes of circadian preference and to analyze its relationship with sleep habits, sleep problems and circadian preference in a large sample by means of a school-based survey. One thousand seventy-three participants (50.8% boys and 49.2% girls; mean age = 10.6; range = 8-14 years), recruited from four schools randomly extracted within the district of Rome, completed a modified version of School Sleep Habits Survey developed by Carskadon et al. The questionnaire included items about sleep habits during schooldays and weekends; a Sleepiness Scale; a Sleep-Wake Problems Behaviour Scale; a Morningness/Eveningness scale. The results show a consistent age-related change in sleep habits, particularly in the weekends. The difference in sleep duration between schooldays and weekends increases linearly with age. No gender difference was observed in morningness/eveningness, while a significant linear increase in evening preference was found with increasing ages. M/E total scores correlated significantly with both self-reported sleep/wake problems and daytime sleepiness indicating a higher prevalence of sleep complaints in evening-type subjects. Overall, the present results support the existence of consistent age-related changes in sleep habits and M/E dimension in the 8- to 14-year age range.

  3. Regulated DNA Methylation and the Circadian Clock: Implications in Cancer

    Directory of Open Access Journals (Sweden)

    Tammy M. Joska

    2014-09-01

    Full Text Available Since the cloning and discovery of DNA methyltransferases (DNMT, there has been a growing interest in DNA methylation, its role as an epigenetic modification, how it is established and removed, along with the implications in development and disease. In recent years, it has become evident that dynamic DNA methylation accompanies the circadian clock and is found at clock genes in Neurospora, mice and cancer cells. The relationship among the circadian clock, cancer and DNA methylation at clock genes suggests a correlative indication that improper DNA methylation may influence clock gene expression, contributing to the etiology of cancer. The molecular mechanism underlying DNA methylation at clock loci is best studied in the filamentous fungi, Neurospora crassa, and recent data indicate a mechanism analogous to the RNA-dependent DNA methylation (RdDM or RNAi-mediated facultative heterochromatin. Although it is still unclear, DNA methylation at clock genes may function as a terminal modification that serves to prevent the regulated removal of histone modifications. In this capacity, aberrant DNA methylation may serve as a readout of misregulated clock genes and not as the causative agent. This review explores the implications of DNA methylation at clock loci and describes what is currently known regarding the molecular mechanism underlying DNA methylation at circadian clock genes.

  4. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    Science.gov (United States)

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  5. Circadian changes in long noncoding RNAs in the pineal gland.

    Science.gov (United States)

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F; Sugden, David; Rath, Martin F; Møller, Morten; Clokie, Samuel J H; Fu, Cong; Olanich, Mary E; Rangel, Zoila; Werner, Thomas; Mullikin, James C; Klein, David C

    2012-08-14

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the rat pineal gland, which is the source of melatonin, the hormone of the night. Approximately one-half of these changes reflect nocturnal increases. Studies of eight lncRNAs with 2- to >100-fold daily rhythms indicate that, in most cases, the change results from neural stimulation from the central circadian oscillator in the suprachiasmatic nucleus (doubling time = 0.5-1.3 h). Light exposure at night rapidly reverses (halving time = 9-32 min) levels of some of these lncRNAs. Organ culture studies indicate that expression of these lncRNAs is regulated by norepinephrine acting through cAMP. These findings point to a dynamic role of lncRNAs in the circadian system.

  6. Chronobesity: role of the circadian system in the obesity epidemic.

    Science.gov (United States)

    Laermans, J; Depoortere, I

    2016-02-01

    Although obesity is considered to result from an imbalance between energy uptake and energy expenditure, the strategy of dietary changes and physical exercise has failed to tackle the global obesity epidemic. In search of alternative and more adequate treatment options, research has aimed at further unravelling the mechanisms underlying this excessive weight gain. While numerous studies are focusing on the neuroendocrine alterations that occur after bariatric Roux-en-Y gastric bypass surgery, an increasing amount of chronobiological studies have started to raise awareness concerning the pivotal role of the circadian system in the development and exacerbation of obesity. This internal timekeeping mechanism rhythmically regulates metabolic and physiological processes in order to meet the fluctuating demands in energy use and supply throughout the 24-h day. This review elaborates on the extensive bidirectional interaction between the circadian system and metabolism and explains how disruption of body clocks by means of shift work, frequent time zone travelling or non-stop consumption of calorie-dense foods can evoke detrimental metabolic alterations that contribute to obesity. Altering the body's circadian rhythms by means of time-related dietary approaches (chrononutrition) or pharmacological substances (chronobiotics) may therefore represent a novel and interesting way to prevent or treat obesity and associated comorbidities.

  7. Circadian control of antigen-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Nobis CC

    2016-09-01

    Full Text Available Chloé C Nobis,1–3 Nathalie Labrecque,2–4 Nicolas Cermakian1,5–8 1Douglas Mental Health University Institute, 2Maisonneuve-Rosemont Hospital Research Centre, 3Department of Microbiology, Infectious Diseases and Immunology, 4Department of Medicine, University of Montreal, 5Department of Psychiatry, 6Department of Microbiology and Immunology, 7Department of Neurology and Neurosurgery, 8Department of Physiology, McGill University, Montreal, QC, Canada Abstract: The immune system is composed of two arms, the innate and the adaptive immunity. While the innate response constitutes the first line of defense and is not specific for a particular pathogen, the adaptive response is highly specific and allows for long-term memory of the pathogen encounter. T lymphocytes (or T cells are central players in the adaptive immune response. Various aspects of T cell functions vary according to the time of day. Circadian clocks located in most tissues and cell types generate 24-hour rhythms of various physiological processes. These clocks are based on a set of clock genes, and this timing mechanism controls rhythmically the expression of numerous other genes. Clock genes are expressed in cells of the immune system, including T cells. In this review, we provide an overview of the circadian control of the adaptive immune response, with emphasis on T cells, including their development, trafficking, response to antigen, and effector functions. Keywords: circadian clock, adaptive immune response, T lymphocyte, antigen, cytokine, proliferation

  8. Chronic electromyographic analysis of circadian locomotor activity in crayfish.

    Science.gov (United States)

    Tomina, Yusuke; Kibayashi, Akihiro; Yoshii, Taishi; Takahata, Masakazu

    2013-07-15

    Animals generally exhibit circadian rhythms of locomotor activity. They initiate locomotor behavior not only reflexively in response to external stimuli but also spontaneously in the absence of any specific stimulus. The neuronal mechanisms underlying circadian locomotor activity can, therefore, be based on the rhythmic changes in either reflexive efficacy or endogenous activity. In crayfish Procambarus clarkii, it can be determined by analyzing electromyographic (EMG) patterns of walking legs whether the walking behavior is initiated reflexively or spontaneously. In this study, we examined quantitatively the leg muscle activity that underlies the locomotor behavior showing circadian rhythms in crayfish. We newly developed a chronic EMG recording system that allowed the animal to freely behave under a tethered condition for more than 10 days. In the LD condition in which the animals exhibited LD entrainment, the rhythmic burst activity of leg muscles for stepping behavior was preceded by non-rhythmic tonic activation that lasted for 1323±488ms when the animal initiated walking. In DD and LL free-running conditions, the pre-burst activation lasted for 1779±31 and 1517±39ms respectively. In the mechanical stimulus-evoked walking, the pre-burst activation ended within 79±6ms. These data suggest that periodic changes in the crayfish locomotor activity under the condition of LD entrainment or free-running are based on activity changes in the spontaneous initiation mechanism of walking behavior rather than those in the sensori-motor pathway connecting mechanoreceptors with leg movements.

  9. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  10. Entrainment of circadian rhythm by ambient temperature cycles in mice.

    Science.gov (United States)

    Refinetti, Roberto

    2010-08-01

    Much is known about how environmental light-dark cycles synchronize circadian rhythms in animals. The ability of environmental cycles of ambient temperature to synchronize circadian rhythms has also been investigated extensively but mostly in ectotherms. In the present study, the synchronization of the circadian rhythm of running-wheel activity by environmental cycles of ambient temperature was studied in laboratory mice. Although all mice were successfully entrained by a light-dark cycle, only 60% to 80% of the mice were entrained by temperature cycles (24-32 degrees C or 24-12 degrees C), and attainment of stable entrainment seemed to take longer under temperature cycles than under a light-dark cycle. This suggests that ambient temperature cycles are weaker zeitgebers than light-dark cycles, which is consistent with the results of the few previous studies using mammalian species. Whereas 80% of the mice were entrained by 24-h temperature cycles, only 60% were entrained by 23-h cycles, and none was entrained by 25-h cycles. The results did not clarify whether entrainment by temperature cycles is caused directly by temperature or indirectly through a temperature effect on locomotor activity, but it is clear that the rhythm of running-wheel activity in mice can be entrained by ambient temperature cycles in the nonnoxious range.

  11. Occult hepatitis B among Iranian hepatitis C patients

    OpenAIRE

    Ahmad shavakhi; Babak Norinaier; Fatomeh Esteghamat; Mohamad Seghatoleslami; Mahsa Khodadustan; Mohamad hossein Somi; Mohsen Masoodi; Mohamad reza Zali

    2009-01-01

    • BACKGROUND: Occult hepatitis B is defined as presence of HBV DNA in tissue or serum without hepatitis B surface antigen. The aim of this study is to determine frequency of occult hepatitis B among hepatitis C patients in Tehran and compare the route of transmission and liver enzymes between positive and negative HBV DNA patients.
    • METHODS: In a cross sectional study, serum of 103 hepatitis C cas...

    • Four waves of hepatocyte proliferation linked with three waves of hepatic fat accumulation during partial hepatectomy-induced liver regeneration.

      Directory of Open Access Journals (Sweden)

      Yuhong Zou

      Full Text Available Partial hepatectomy (PH triggers hepatocyte proliferation-mediated liver repair and is widely used to study the mechanisms governing liver regeneration in mice. However, the dynamics of the hepatocyte proliferative response to PH remain unclear. We found that PH-induced mouse liver regrowth was driven by four consecutive waves of hepatocyte replication. The first wave exhibited the highest magnitude followed by two moderate waves and one minor wave. Underlying this continuous hepatocyte replication was persistent activation of cell cycle components throughout the period of liver regeneration. Hepatocyte mitotic activity in the first three proliferative cycles showed a circadian rhythm manifested by three corresponding mitosis peaks, which were always observed at Zeitgeber time 0. The Bmal1-Clock/Wee1/Cdc2 pathway has been proposed by others to govern the circadian rhythm of hepatocyte mitosis during liver regeneration. However, we did not observe the correlations in the expression or phosphorylation of these proteins in regenerating livers. Notably, Bmal1 protein displayed frequent changes in hepatic distribution and cellular localization as the liver regrowth progressed. Further, three waves of hepatic fat accumulation occurred during hepatic regeneration. The first started before and lasted through the first round of hepatocyte proliferation, whereas the second and third occurred concomitantly with the second and third mitotic peaks, respectively.PH-induced liver regeneration consists of four continuous waves of hepatocyte proliferation coupled with three waves of hepatic fat accumulation. Bmal1, Wee1, and Cdc2 may not form a pathway regulating the circadian rhythm of hepatocyte mitosis during liver regeneration.

    • Circadian- and Light-Dependent Regulation of Resting Membrane Potential and Spontaneous Action Potential Firing of Drosophila Circadian Pacemaker Neurons

      OpenAIRE

      Sheeba, Vasu; Gu, Huaiyu; Sharma, Vijay K.; O'Dowd, Diane K.; Holmes, Todd C

      2007-01-01

      The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential: tonic and burst firing of sodium-dependent action potentials. Resting membrane potential and spontaneous action potential firing are rapidly ...

    • Temporal shift of circadian-mediated gene expression and carbon fixation contributes to biomass heterosis in maize hybrids

      Science.gov (United States)

      Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIAT...

    • Pengaruh Ritma Circadian Terhadap Produksi Volatile Sulfur Compounds (VSC Oral

      Directory of Open Access Journals (Sweden)

      Supriatno Supriatno

      2013-06-01

      Full Text Available Volatile sulfur compounds (VSCs oral dihasilkan dari produk putrifikasi mikroba gas hidrogen sulfida (H2S, metil merkaptan (CH3SH dan dimetil sulfida [(CH32S] yang merupakan gas utama penyebab halitosis. Ritma circadian mempunyai pengaruh terhadap fungsi beberapa organ tubuh termasuk sekresi saliva, produksi hormon, fungsi sistem tubuh, dan aktivitas mikroorganisma. Penelitian bertujuan menguji pengaruh ritma circadian terhadap produksi VSC oral yang diukur menggunakan OralChroma portable. Penelitian dilakukan dengan mengukur gas VSC individu yang sama pada pagi, siang dan malam hari di laboratorium riset terpadu FKG UGM. Hasil pengukuran H2S, CH3SH dan (CH32S diuji menggunakan analisis statistik Anava dua jalur dilanjutkan uji LSD dan uji korelasi Pearson dengan derajat kemaknaan 95%. Hasil penelitian menunjukkan terdapat perbedaan yang sangat bermakna antara produksi gas H2S, CH3SH dan (CH32S dengan waktu pengukuran (efek circadian (p=0,000. Perbedaan sangat bermakna diketahui pula pada pengukuran gas H2S dan (CH32S antara pagi, siang dan malam (p=0,01 dan p= 0,00, serta pengukuran gas CH3SH siang dan malam (p=0,006, tetapi tidak pada CH3SH pagi hari (p=0,061. Produksi gas H2S tertinggi diketahui pada pagi hari (mean 1,198 ng/10 ml, CH3SH pada malam hari (mean 0,099 ng/10 ml, dan (CH32S pada siang hari (mean 1,216 ng/10 ml. Kekuatan hubungan pengukuran antara ke tiga gas dengan efek circadian diketahui sebesar r=0,738. Disimpulkan bahwa ritma circadian berpengaruh terhadap produksi VSCs oral. Produksi gas H2S dan (CH32S berbeda antara pagi, siang dan malam hari, sedangkan produksi gas CH3SH berbeda hanya pengukuran siang dan malam hari. Produksi gas H2S tertinggi diketahui pada pagi hari, gas CH3SH pada malam hari, dan gas (CH32S pada siang hari. Maj Ked Gi. Juni 2013; 20(1: 14 - 20. The Effect Of Circadian Rhythm To Oral Volatile Sulfur Compounds Production. Oral volatile sulfur compound (VSC is produced from microbial purification

    • TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation

      OpenAIRE

      Greenham, Kathleen; Lou, Ping; Remsen, Sara E; Farid, Hany; McClung, C. Robertson

      2015-01-01

      Background A well characterized output of the circadian clock in plants is the daily rhythmic movement of leaves. This process has been used extensively in Arabidopsis to estimate circadian period in natural accessions as well as mutants with known defects in circadian clock function. Current methods for estimating circadian period by leaf movement involve manual steps throughout the analysis and are often limited to analyzing one leaf or cotyledon at a time. Results In this study, we describ...

    • Feature Hepatitis: The Dangers of Hepatitis: What you should know from A to E

      Science.gov (United States)

      ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis The Dangers of Hepatitis: What you should know from A to E ... drugs. In some cases, hepatitis lasts a lifetime. Hepatitis: Acute or Chronic? Acute hepatitis is the initial ...

    • Hepatic microcirculatory disturbances in patients with chronic hepatitis B

      Institute of Scientific and Technical Information of China (English)

      郝菁华; 石军; 任万华; 韩国庆; 朱菊人; 王书运; 谢英渤

      2002-01-01

      Objective To document morphological changes in hepatic microcirculation in liver tissue with hepatitis B and the pathogenesis of hepatic microcirculatory disturbances. Methods Liver tissue samples were obtained from patients with hepatitis B by liver biopsy. These samples were examined with a light microscope and transmission electron microscope. Results Hepatic microcirculatory disturbances existed in patients with hepatitis B, including those with normal liver function, manifested by red blood cell aggregation in sinusoids seen under light microscope and sinusoidal capillarization seen under electron microscope. Weibel-Palade bodies in sinusoidal endothelial cells were seen in 26 out of 53 cases. Intimate contacts were found between lymphocyte/Kupffer cells and sinusoidal endothelial cells. Conclusions Hepatic microcirculatory disturbances exist in patients with hepatitis B .The appearance of Weibel-Palade bodies in sinusoidal endothelial cells may be a key step in the development of hepatic microcirculatory disturbances.

    • Viral hepatitis and hepatitis B antigen: recent advances

      Science.gov (United States)

      Krugman, Saul

      1974-01-01

      Recent advances in hepatitis research have shed new light on the etiology, pathogenesis, epidemiology and prevention of type B hepatitis infection. The so-called ‘Dane’ particle is probably the complete hepatitis B virion; its outer coat is the hepatitis B (Australia) antigen (HB Ag) and its inner core is an immunologically distinct particle. Subtypes of HB Ag (a, d, y, w and r) are useful indices for epidemiological surveys. Concepts of epidemiology have changed: type B hepatitis is transmissible by contact as well as by inoculation. The presence of HB Ag in blood is indicative of the presence of hepatitis B virus. Tests to detect antigen and use of voluntary blood donors have played a major role in the decreased incidence of post transfusion hepatitis. A special hepatitis B gammaglobulin preparation and a heat-inactivated hepatitis B vaccine have proved to be effective in preliminary studies. PMID:4219230

    • Restoration of self-sustained circadian rhythmicity by the mutant Clock allele in mice in constant illumination

      NARCIS (Netherlands)

      Spoelstra, K; Oklejewicz, M; Daan, S

      2002-01-01

      Mice mutant for the Clock gene display abnormal circadian behavior characterized by long circadian periods and a tendency to become rapidly arrhythmic in constant darkness (DID). To investigate whether this result is contingent on the absence of light, the authors studied the circadian behavior of h

  1. Development of the cortisol circadian rhythm in the light of stress early in life

    NARCIS (Netherlands)

    Simons, S.S.H.; Beijers, R.; Cillessen, A.H.N.; Weerth, C. de

    2015-01-01

    The secretion of the stress hormone cortisol follows a diurnal circadian rhythm. There are indications that this rhythm is affected by stress early in life. This paper addresses the development of the cortisol circadian rhythm between 1 and 6 years of age, and the role of maternal stress and anxiety

  2. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption.

    Science.gov (United States)

    Buxton, Orfeu M; Cain, Sean W; O'Connor, Shawn P; Porter, James H; Duffy, Jeanne F; Wang, Wei; Czeisler, Charles A; Shea, Steven A

    2012-04-11

    Epidemiological studies link short sleep duration and circadian disruption with higher risk of metabolic syndrome and diabetes. We tested the hypotheses that prolonged sleep restriction with concurrent circadian disruption, as can occur in people performing shift work, impairs glucose regulation and metabolism. Healthy adults spent >5 weeks under controlled laboratory conditions in which they experienced an initial baseline segment of optimal sleep, 3 weeks of sleep restriction (5.6 hours of sleep per 24 hours) combined with circadian disruption (recurring 28-hour "days"), followed by 9 days of recovery sleep with circadian re-entrainment. Exposure to prolonged sleep restriction with concurrent circadian disruption, with measurements taken at the same circadian phase, decreased the participants' resting metabolic rate and increased plasma glucose concentrations after a meal, an effect resulting from inadequate pancreatic insulin secretion. These parameters normalized during the 9 days of recovery sleep and stable circadian re-entrainment. Thus, in humans, prolonged sleep restriction with concurrent circadian disruption alters metabolism and could increase the risk of obesity and diabetes.

  3. An observational study on disturbed peripheral circadian rhythms in hemodialysis patients

    NARCIS (Netherlands)

    Russcher, Marije; Chaves, Ines; Lech, Karolina; Koch, Birgit C. P.; Nagtegaal, J. Elsbeth; Dorsman, Kira F.; Jong, Anke't; Kayser, Manfred; van Faassen, H. (Martijn) J. R.; Kema, Ido P.; van der Horst, Gijsbertus T. J.; Gaillard, Carlo A. J. M.

    2015-01-01

    The quality of life of hemodialysis (HD) patients is hampered by reduced nocturnal sleep quality and excessive daytime sleepiness. In addition to the sleep/wake cycle, levels of circadian biomarkers (e.g. melatonin) are disturbed in end-stage renal disease (ESRD). This suggests impaired circadian cl

  4. Environmental circadian disruption elevates the IL-6 response to lipopolysaccharide in blood.

    Science.gov (United States)

    Adams, Kandis L; Castanon-Cervantes, Oscar; Evans, Jennifer A; Davidson, Alec J

    2013-08-01

    The immune system is regulated by circadian clocks within the brain and immune cells. Environmental circadian disruption (ECD), consisting of a 6-h phase advance of the light:dark cycle once a week for 4 weeks, elevates the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. This indicates that circadian disruption adversely affects immune function; however, it remains unclear how the circadian system regulates this response under ECD conditions. Here, we develop an assay using ex vivo whole-blood LPS challenge to investigate the circadian regulation of immune responses in mice and to determine the effects of ECD on these rhythms. LPS-induced IL-6 release in whole blood was regulated in a circadian manner, peaking during subjective day under both entrained and free-running conditions. This LPS-induced IL-6 release rhythm was associated with daily variation in both white blood cell counts and immune cell responsiveness. ECD increased the overall level of LPS-induced IL-6 release by increasing immune cell responsiveness and not by affecting immune cell number or the circadian regulation of this rhythm. This indicates that ECD produces pathological immune responses by increasing the proinflammatory responses of immune cells. Also, this newly developed whole blood assay can provide a noninvasive longitudinal method to quantify potential health consequences of circadian disruption in humans.

  5. Selective Influence of Circadian Modulation and Task Characteristics on Motor Imagery Time

    Science.gov (United States)

    Debarnot, Ursula; Sahraoui, Djafar; Champely, Stephane; Collet, Christian; Guillot, Aymeric

    2012-01-01

    In this study, we examined the effect of circadian modulation on motor imagery (MI) time while also considering the effects of task complexity and duration. The ability to imagine in real time was influenced by circadian modulation in a simple walking condition, with longer MI times in the morning and evening sessions. By contrast, there was no…

  6. “What watch?... such much!” Complexity and evolution of circadian clocks

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    2002-01-01

    This review uses three examples to summarise our knowledge about the complexity and the evolution of circadian systems. The first example describes the ecology of unicellular algae, which use their circadian system to optimise the daily exploitation of resources that are spatially separated. The sec

  7. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation

    Science.gov (United States)

    Graf, Alexander; Coman, Diana; Walsh, Sean; Flis, Anna; Stitt, Mark; Gruissem, Wilhelm

    2017-01-01

    The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes. PMID:28250106

  8. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovari...

  9. Administration of Melatonin and Metformin Prevents Deleterious Effects of Circadian Disruption and Obesity in Male Rats.

    Science.gov (United States)

    Thomas, Anthony P; Hoang, Jonathan; Vongbunyong, Kenny; Nguyen, Andrew; Rakshit, Kuntol; Matveyenko, Aleksey V

    2016-12-01

    Circadian disruption and obesity synergize to predispose to development of type 2 diabetes mellitus (T2DM), signifying that therapeutic targeting of both circadian and metabolic dysfunctions should be considered as a potential treatment approach. To address this hypothesis, we studied rats concomitantly exposed to circadian disruption and diet-induced obesity (CDO), a rat model recently shown to recapitulate phenotypical aspects of obese T2DM (eg, circadian disruption, obesity, insulin resistance, and islet failure). CDO rats were subsequently treated daily (for 12 wk) by timed oral gavage with vehicle, melatonin (a known chronobiotic), metformin, or combination treatment of both therapeutics. Melatonin treatment alone improved circadian activity rhythms, attenuated induction of β-cell failure, and enhanced glucose tolerance. Metformin alone did not modify circadian activity but enhanced insulin sensitivity and glucose tolerance. Importantly, the combination of melatonin and metformin had synergistic actions to modify progression of metabolic dysfunction in CDO rats through improved adiposity, circadian activity, insulin sensitivity, and islet cell failure. This study suggests that management of both circadian and metabolic dysfunctions should be considered as a potential preventative and therapeutic option for treatment of obesity and T2DM.

  10. Forced desynchrony of circadian rhythms of body temperature and activity in rats

    NARCIS (Netherlands)

    Strijkstra, AM; Meerlo, P; Beersma, DGM

    1999-01-01

    The daily rhythm in body temperature is thought to be the result of the direct effects of activity and the effects of an endogenous circadian clock. Forced desynchrony (FD) is a tool used in human circadian rhythm research to disentangle endogenous and activity-related effects on daily rhythms. In t

  11. PRR3 Is a Vascular Regulator of TOC1 Stability in the Arabidopsis Circadian Clock

    Science.gov (United States)

    The pseudoresponse regulators (PRRs) participate in the progression of the circadian clock in Arabidopsis thaliana. The founding member of the family, TIMING OF CAB EXPRESSION1 (TOC1), is an essential component of the transcriptional network that constitutes the core mechanism of the circadian oscil...

  12. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Depression

    Directory of Open Access Journals (Sweden)

    Roberto Salgado-Delgado

    2011-01-01

    Full Text Available Circadian factors might play a crucial role in the etiology of depression. It has been demonstrated that the disruption of circadian rhythms by lighting conditions and lifestyle predisposes individuals to a wide range of mood disorders, including impulsivity, mania and depression. Also, associated with depression, there is the impairment of circadian rhythmicity of behavioral, endocrine, and metabolic functions. Inspite of this close relationship between both processes, the complex relationship between the biological clock and the incidence of depressive symptoms is far from being understood. The efficiency and the timing of treatments based on chronotherapy (e.g., light treatment, sleep deprivation, and scheduled medication indicate that the circadian system is an essential target in the therapy of depression. The aim of the present review is to analyze the biological and clinical data that link depression with the disruption of circadian rhythms, emphasizing the contribution of circadian desynchrony. Therefore, we examine the conditions that may lead to circadian disruption of physiology and behavior as described in depressive states, and, according to this approach, we discuss therapeutic strategies aimed at treating the circadian system and depression.

  13. Disruption of circadian rhythms: a crucial factor in the etiology of depression.

    Science.gov (United States)

    Salgado-Delgado, Roberto; Tapia Osorio, Araceli; Saderi, Nadia; Escobar, Carolina

    2011-01-01

    Circadian factors might play a crucial role in the etiology of depression. It has been demonstrated that the disruption of circadian rhythms by lighting conditions and lifestyle predisposes individuals to a wide range of mood disorders, including impulsivity, mania and depression. Also, associated with depression, there is the impairment of circadian rhythmicity of behavioral, endocrine, and metabolic functions. Inspite of this close relationship between both processes, the complex relationship between the biological clock and the incidence of depressive symptoms is far from being understood. The efficiency and the timing of treatments based on chronotherapy (e.g., light treatment, sleep deprivation, and scheduled medication) indicate that the circadian system is an essential target in the therapy of depression. The aim of the present review is to analyze the biological and clinical data that link depression with the disruption of circadian rhythms, emphasizing the contribution of circadian desynchrony. Therefore, we examine the conditions that may lead to circadian disruption of physiology and behavior as described in depressive states, and, according to this approach, we discuss therapeutic strategies aimed at treating the circadian system and depression.

  14. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  15. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Møller, Morten

    2012-01-01

    The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. Howev...

  16. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila

    NARCIS (Netherlands)

    Schlichting, Matthias; Menegazzi, Pamela; Lelito, Katharine R.; Yao, Zepeng; Buhl, Edgar; Dalla Benetta, Elena; Bahle, Andrew; Denike, Jennifer; Hodge, James John; Helfrich-Förster, Charlotte; Shafer, Orie Thomas

    2016-01-01

    A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these

  17. Of switches and hourglasses: regulation of subcellular traffic in circadian clocks by phosphorylation

    OpenAIRE

    Tataroğlu, Özgür; Schafmeier, Tobias

    2011-01-01

    A major aspect of molecular timekeeping is the daytime-specific nuclear accumulation of circadian clock proteins. The authors discuss recent insights into the regulation of subcellular shuttling and consider the importance of these cycles in regulating circadian period in different organisms.

  18. Genetic Disruption of the Core Circadian Clock Impairs Hippocampus-Dependent Memory

    Science.gov (United States)

    Wardlaw, Sarah M.; Phan, Trongha X.; Saraf, Amit; Chen, Xuanmao; Storm, Daniel R.

    2014-01-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1[superscript -/-] mice, which are arrhythmic…

  19. Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction.

    Science.gov (United States)

    Miller, Jae-Eun Kang; Granados-Fuentes, Daniel; Wang, Thomas; Marpegan, Luciano; Holy, Timothy E; Herzog, Erik D

    2014-04-23

    Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in olfactory performance. However, the cells and signals in the olfactory system that generate and coordinate these circadian rhythms are unknown. Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar, sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP) or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from the OB to maintain circadian rhythms in the mammalian olfactory system.

  20. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion

    Science.gov (United States)

    The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g., cardiomyocytes, vascular smooth muscle cells) and possess...

  1. Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters

    NARCIS (Netherlands)

    Oklejewicz, M; Hut, RA; Daan, S; Loudon, ASI; Stirland, AJ; Loudon, Andrew S.I.; Stirland, Anne J.

    1997-01-01

    The tau mutation in Syrian hamsters (Mesocricetus auratus) is phenotypically expressed in a period of the circadian rhythm of about 20 h in homozygotes (SS) and about 22 h in heterozygotes (S+). The authors investigate whether this well-defined model for variation in circadian period exhibits associ

  2. Circadian timed wakefulness at dawn opposes compensatory sleep responses after sleep deprivation in Octodon degus

    NARCIS (Netherlands)

    Kas, M J; Edgar, D M

    1999-01-01

    The circadian timing system in mammals is thought to promote wakefulness and oppose sleep drive that accumulates across the activity phase in diurnal and nocturnal species. Whether the circadian system actively opposes compensatory sleep responses in mammals with episodes of alertness consolidated a

  3. Phase-Shifting Effect of Light and Exercise on the Human Circadian Clock.

    Science.gov (United States)

    1992-02-29

    E. A twin study of the circadian and pulsatile variations of plasma cortisol: evidence for genetic control of the human circadian clock. Am J Physiol...Conference on Chronobiology , Irsee, Germany, September 29-October 4, 1991. Van Cauter, E. Effects of sleep on glucose regulation. Invited Speaker. Founding

  4. Aggressive hepatitis (image)

    Science.gov (United States)

    Chronic active hepatitis is a liver disease caused by infection, drug ingestion, metabolic or autoimmune disorders. Necrosis (death) of liver cells, inflammation and fibrosis may lead to liver failure. Death within 5 years of onset occurs in ...

  5. Alcohol and Hepatitis

    Science.gov (United States)

    ... code here Enter ZIP code here Daily Living: Alcohol for Veterans and the Public Alcohol and Hepatitis: Entire Lesson Overview Alcohol is one ... related to choices you make about your lifestyle . Alcohol and fibrosis Fibrosis is the medical term for ...

  6. Hepatitis C and sex.

    Science.gov (United States)

    Page, Emma E; Nelson, Mark

    2016-04-01

    An outbreak of acute hepatitis C among HIV-positive men who have sex with men (MSM) in the last decade has been shown to be sexually transmitted. Initially recreational drug use, in particular drug injection, was not prevalent among those becoming infected with hepatitis C. However more recently chemsex (the use of drugs to enhance sexual experience) and its associated drugs, which are not uncommonly injected, have become more frequently reported among those diagnosed with hepatitis C. It is hoped that the widespread -introduction of direct-acting antivirals and upscaling of numbers treated may have a positive impact on this epidemic. However their introduction may negatively impact on the perceived risk of acquiring hepatitis C and in conjunction with the introduction of HIV transmission prevention strategies may result in increased transmissions and spread to the HIV-negative MSM population.

  7. Human hereditary hepatic porphyrias.

    Science.gov (United States)

    Nordmann, Yves; Puy, Hervé

    2002-11-01

    The human hereditary hepatic porphyrias are diseases due to marked deficiencies of enzymes in the heme biosynthetic pathway. Porphyrias can be classified as either hepatic or erythroid, depending on the major production site of porphyrins or their precursors. The pathogenesis of inherited hepatic porphyrias has now been defined at the molecular level. Some gene carriers are vulnerable to a range of exogenous and endogenous factors, which may trigger neuropsychiatric and/or cutaneous symptoms. Early diagnosis is of prime importance since it makes way for counselling. In this article we present an overview of recent advances on hepatic porphyrias: 5-aminolevulinic acid dehydratase deficiency porphyria, acute intermittent porphyria (AIP), porphyria cutanea tarda (PCT), hereditary coproporphyria (HC), and variegate porphyria (VP).

  8. Imaging of hepatic infections

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, D.J. [Department of Medical Imaging, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ont. (Canada)]. E-mail: doyledj@hotmail.com; Hanbidge, A.E. [Department of Medical Imaging, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ont. (Canada); O' Malley, M.E. [Department of Medical Imaging, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ont. (Canada)

    2006-09-15

    Imaging plays a significant role in the detection, characterization and treatment of hepatic infections. Infectious diseases of the liver include pyogenic and amoebic abscesses and parasitic, fungal, viral and granulomatous infections. With increases in worldwide travel, immunosuppression and changing population demographics, identification of cases of hepatic infection is becoming more common in daily practice. Knowledge of the imaging features seen with hepatic infections can assist in early diagnosis and timely initiation of appropriate therapy. This review presents the imaging appearances of hepatic infections, emphasizing specific features that may contribute to the diagnosis. Examples of the imaging findings seen with pyogenic and amoebic abscesses, infection with Echinococcus granulosus (Hydatid), schistosomiasis, candidiasis and tuberculosis (TB) are presented.

  9. Hepatitis A - children

    Science.gov (United States)

    ... fulminant hepatitis (liver failure) is rare in healthy children. The symptoms are often easy to manage and include: Dark urine Tiredness Loss of appetite Fever Nausea and vomiting Pale stools Abdominal pain ( ...

  10. Minimal hepatic encephalopathy.

    Science.gov (United States)

    Zamora Nava, Luis Eduardo; Torre Delgadillo, Aldo

    2011-06-01

    The term minimal hepatic encephalopathy (MHE) refers to the subtle changes in cognitive function, electrophysiological parameters, cerebral neurochemical/neurotransmitter homeostasis, cerebral blood flow, metabolism, and fluid homeostasis that can be observed in patients with cirrhosis who have no clinical evidence of hepatic encephalopathy; the prevalence is as high as 84% in patients with hepatic cirrhosis. Physician does generally not perceive cirrhosis complications, and neuropsychological tests and another especial measurement like evoked potentials and image studies like positron emission tomography can only make diagnosis. Diagnosis of minimal hepatic encephalopathy may have prognostic and therapeutic implications in cirrhotic patients. The present review pretends to explore the clinic, therapeutic, diagnosis and prognostic aspects of this complication.

  11. Hepatitis C pada Anak

    Directory of Open Access Journals (Sweden)

    Yusri Dianne Jurnalis

    2014-05-01

    Full Text Available AbstrakInfeksi virus hepatitis C saat ini masih merupakan persoalan yang serius. Penularan infeksi HCV pada anak yang utama adalah melalui transfusi darah atau produk darah yang saat ini bertanggung jawab menyebabkan kasus hepatitis C kronis. Selain itu infeksi HCV pada anak dapat disebabkan oleh transmisi perinatal (vertikal. Infeksi HCV akut dapat berakhir dengan sirosis dan karsinoma hepatoselular setelah dekade ketiga (sekitar 20%, karena progresivitas infeksi HCV lebih lambat dari infeksi hepatitis B virus. Pada umumnya infeksi HCV bersifat asimptomatik termasuk pada anak. Karena tidak ada gejala yang jelas pada infeksi HCV tersebut maka diagnosis infeksi HCV hanya dapat ditegakkan dengan pemeriksaan awal laboratorium dan uji serologi, dan bila perlu dengan uji molekuler pada pasien dengan risiko tinggi. Kebijakan kuratif khusus terhadap HCV adalah terapi antivirus berupa interferon dan ribavirin yang diberikan bila diagnosis HCV sudah ditegakkanKata kunci: Hepatitis C, diagnosis and management problem, childrenAbstractHepatitis C virus infection is still a serious problem. Transmission of HCV infection in children is a major blood transfusion or blood products that are currently responsible for causing chronic hepatitis C cases. Additionally HCV infection in children can be caused by perinatal transmission (vertical. Acute HCV infection may end up with cirrhosis and hepatocellular carcinoma after the third decade (around 20%, due to a slower progression of HCV infection of hepatitis B virus infection. In most cases of HCV infection are asymptomatic, including in children. Since there are no obvious symptoms in the diagnosis of HCV infection HCV infection can only be confirmed by laboratory examinations and serologic testing early, and if necessary with molecular testing in patients at high risk. Curative policy is specific to HCV antiviral therapy such as interferon and ribavirin are given when the diagnosis of HCV has been establishedKeywords:Hepatitis

  12. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response.

    Science.gov (United States)

    Nogueira, Tatiane C; Lellis-Santos, Camilo; Jesus, Daniel S; Taneda, Marco; Rodrigues, Sandra C; Amaral, Fernanda G; Lopes, Ana Maria S; Cipolla-Neto, José; Bordin, Silvana; Anhê, Gabriel F

    2011-04-01

    It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-α serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats.

  13. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    Science.gov (United States)

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.

  14. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes.

    Science.gov (United States)

    Paulose, Jiffin K; Cassone, Vincent M

    2016-09-02

    Circadian clocks are fundamental properties of all eukaryotic organisms and at least some prokaryotic organisms. Recent studies in our laboratory have shown that the gastrointestinal system contains a circadian clock that controls many, if not all, aspects of gastrointestinal function. We now report that at least one species of intestinal bacteria, Enterobacter aerogenes, responds to the pineal and gastrointestinal hormone melatonin by an increase in swarming activity. This swarming behavior is expressed rhythmically, with a period of approximately 24 hrs. Transformation of E. aerogenes to express luciferase with a MotA promoter reveals circadian patterns of bioluminescence that are synchronized by melatonin and whose periods are temperature compensated from 26°C to 40°C. Bioinformatics suggest similarities between the E. aerogenes and cyanobacterial clocks, suggesting the circadian clock may have evolved very early in the evolution of life. They also point to a coordination of host circadian clocks with those residing in the microbiota themselves.

  15. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila

    Science.gov (United States)

    Nagoshi, Emi; Sugino, Ken; Kula, Ela; Okazaki, Etsuko; Tachibana, Taro; Nelson, Sacha; Rosbash, Michael

    2013-01-01

    Behavioral circadian rhythms are controlled by a neuronal circuit consisting of diverse neuronal subgroups. To understand the molecular mechanisms underlying the roles of neuronal subgroups within the Drosophila circadian circuit, we used cell-type specific gene-expression profiling and identified a large number of genes specifically expressed in all clock neurons or in two important subgroups. Moreover, we identified and characterized two circadian genes, which are expressed specifically in subsets of clock cells and affect different aspects of rhythms. The transcription factor Fer2 is expressed in ventral lateral neurons; it is required for the specification of lateral neurons and therefore their ability to drive locomotor rhythms. The Drosophila melanogaster homolog of the vertebrate circadian gene nocturnin is expressed in a subset of dorsal neurons and mediates the circadian light response. The approach should also enable the molecular dissection of many different Drosophila neuronal circuits. PMID:19966839

  16. Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality.

    Science.gov (United States)

    Souêtre, E; Salvati, E; Belugou, J L; Pringuey, D; Candito, M; Krebs, B; Ardisson, J L; Darcourt, G

    1989-06-01

    Circadian rhythms of body temperature, plasma cortisol, norepinephrine (NE), thyroid stimulating hormone (TSH), and melatonin were compared in 16 endogenously depressed, 15 recovered (after 3 weeks of anti-depressant treatment), and 16 normal subjects. The depressed patients showed clear circadian rhythm abnormalities, consisting mainly in amplitude reduction. This amplitude reduction was significantly correlated with the patients' Hamilton depression scores. Normal circadian profiles were restored after recovery when amplitude, in particular, was increased. Features of the circadian rhythms observed in remission may be associated with antidepressant drug effects, whereas those observed in depression resemble the circadian rhythms observed in normal subjects living under conditions of temporal isolation and those of blind subjects. Our findings suggest that depression may be related both to a weakening of the coupling processes between internal pacemakers and to an abnormal sensitivity to environmental information.

  17. Domestication selected for deceleration of the circadian clock in cultivated tomato.

    Science.gov (United States)

    Müller, Niels A; Wijnen, Cris L; Srinivasan, Arunkumar; Ryngajllo, Malgorzata; Ofner, Itai; Lin, Tao; Ranjan, Aashish; West, Donnelly; Maloof, Julin N; Sinha, Neelima R; Huang, Sanwen; Zamir, Dani; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a critical regulator of plant physiology and development, controlling key agricultural traits in crop plants. In addition, natural variation in circadian rhythms is important for local adaptation. However, quantitative modulation of circadian rhythms due to artificial selection has not yet been reported. Here we show that the circadian clock of cultivated tomato (Solanum lycopersicum) has slowed during domestication. Allelic variation of the tomato homolog of the Arabidopsis gene EID1 is responsible for a phase delay. Notably, the genomic region harboring EID1 shows signatures of a selective sweep. We find that the EID1 allele in cultivated tomatoes enhances plant performance specifically under long day photoperiods, suggesting that humans selected slower circadian rhythms to adapt the cultivated species to the long summer days it encountered as it was moved away from the equator.

  18. Time for a Nuclear Meeting: Protein Trafficking and Chromatin Dynamics Intersect in the Plant Circadian System

    Institute of Scientific and Technical Information of China (English)

    Eva Herrero; Seth J. Davis

    2012-01-01

    Circadian clocks mediate adaptation to the 24-h world.In Arabidopsis,most circadian-clock components act in the nucleus as transcriptional regulators and generate rhythmic oscillations of transcript accumulation.In this review,we focus on post-transcriptional events that modulate the activity of circadian-clock components,such as phosphorylation,ubiquitination and proteasome-mediated degradation,changes in cellular localization,and protein-protein interactions.These processes have been found to be essential for circadian function,not only in plants,but also in other circadian systems.Moreover,light and clock signaling networks are highly interconnected.In the nucleus,light and clock components work together to generate transcriptional rhythms,leading to a general control of the timing of plant physiological processes.

  19. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    Science.gov (United States)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  20. The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock

    Directory of Open Access Journals (Sweden)

    Raphaela Heussen

    2015-01-01

    Full Text Available The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.

  1. Mathematical modeling of the circadian dynamics of the neuroendocrine-immune network in experimentally induced arthritis.

    Science.gov (United States)

    Rao, R; DuBois, D; Almon, R; Jusko, W J; Androulakis, I P

    2016-08-01

    The circadian dynamics of important neuroendocrine-immune mediators have been implicated in progression of rheumatoid arthritis pathophysiology, both clinically as well as in animal models. We present a mathematical model that describes the circadian interactions between mediators of the hypothalamic-pituitary-adrenal (HPA) axis and the proinflammatory cytokines. Model predictions demonstrate that chronically elevated cytokine expression results in the development of adrenal insufficiency and circadian variability in paw edema. Notably, our model also predicts that an increase in mean secretion of corticosterone (CST) after the induction of the disease is accompanied by a decrease in the amplitude of the CST oscillation. Furthermore, alterations in the phase of circadian oscillation of both cytokines and HPA axis mediators are observed. Therefore, by incorporating the circadian interactions between the neuroendocrine-immune mediators, our model is able to simulate important features of rheumatoid arthritis pathophysiology.

  2. Cycles in spatial and temporal chromosomal organization driven by the circadian clock.

    Science.gov (United States)

    Aguilar-Arnal, Lorena; Hakim, Ofir; Patel, Vishal R; Baldi, Pierre; Hager, Gordon L; Sassone-Corsi, Paolo

    2013-10-01

    Dynamic transitions in the epigenome have been associated with regulated patterns of nuclear organization. The accumulating evidence that chromatin remodeling is implicated in circadian function prompted us to explore whether the clock may control nuclear architecture. We applied the chromosome conformation capture on chip technology in mouse embryonic fibroblasts (MEFs) to demonstrate the presence of circadian long-range interactions using the clock-controlled Dbp gene as bait. The circadian genomic interactions with Dbp were highly specific and were absent in MEFs whose clock was disrupted by ablation of the Bmal1 gene (also called Arntl). We establish that the Dbp circadian interactome contains a wide variety of genes and clock-related DNA elements. These findings reveal a previously unappreciated circadian and clock-dependent shaping of the nuclear landscape.

  3. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness.

    Science.gov (United States)

    Ray, Sandipan; Reddy, Akhilesh B

    2016-04-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non-transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24-hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems-level investigations implementing integrated multi-omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems.

  4. The hormonal Zeitgeber melatonin: Role as a circadian modulator in memory processing

    Directory of Open Access Journals (Sweden)

    Oliver eRawashdeh

    2012-03-01

    Full Text Available The neuroendocrine substance melatonin is a hormone synthesized rhythmically by the pineal gland under the influence of the circadian system and alternating light/dark cycles. Melatonin has been shown to have broad applications, and consequently becoming a molecule of great controversy. Undoubtedly, however, melatonin plays an important role as a time cue for the endogenous circadian system. This review focuses on melatonin as a regulator in the circadian modulation of memory processing. Memory processes (acquisition, consolidation and retrieval are modulated by the circadian system. However, the mechanism by which the biological clock is rhythmically influencing cognitive processes remains unknown. We also discuss, how the circadian system by generating cycling melatonin levels can implant information about daytime into memory processing, depicted as day and nighttime differences in acquisition, memory consolidation and/or retrieval.

  5. Circadian rhythms of ocular melatonin in the wrasse Halichoeres tenuispinnis, a labrid teleost.

    Science.gov (United States)

    Iigo, Masayuki; Ikeda, Emi; Sato, Masaru; Kawasaki, Shigekatsu; Noguchi, Fumitaka; Nishi, Genjirou

    2006-01-01

    Using in vivo and in vitro methods we studied the regulation of ocular melatonin rhythms in the wrasse Halichoeres tenuispinnis, by either light or the circadian clock. Rhythmic changes in ocular melatonin levels under light-dark (LD) cycles were persistent under constant darkness (DD), and had a circadian periodicity of approximately 24h. However, ocular melatonin levels remained low under constant light conditions. When wrasse were exposed to a single 6-h light pulse at three different circadian phases under DD, phase-dependent phase shifts in the circadian rhythms of ocular melatonin were observed. When eyecups were prepared during mid-light periods or at the onset of darkness, and incubated in vitro in either light or dark periods, both time and light conditions affected melatonin release. These results indicate that the melatonin rhythms in the wrasse eye are driven by an ocular circadian clock that is entrained to LD cycles via local photoreceptors.

  6. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  7. Immigration and viral hepatitis.

    Science.gov (United States)

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants.

  8. FELINE HEPATIC LIPIDOSIS

    Directory of Open Access Journals (Sweden)

    C. Masotti

    2016-11-01

    Full Text Available Since the first description of feline hepatic lipidosis occurred in 1977, it becames the most diagnosed liver disease in cats. Several factors have been proposed as causes of disease, and obesity being a predisposing factor. The disease can be considered primary or idiopathic when its underlying cause is unknown, or secondary when there is another concomitant disease lipidosis. Cats with hepatic lipidosis have anorexia usually ranging from several days to weeks and weight loss, followed by jaundice and varying degrees of dehydration, diarrhea and vomiting episodes may occur. A worsening of the disease shows signs of hepatic encephalopathy, drooling and retroflexion of the neck. In clinical examination can be observed depression, lethargy and hepatomegaly. The definitive diagnosis of the disease can be performed by fine needle aspiration biopsy guided by ultrasound and cytology or biopsy. The treatment of hepatic lipidosis is based on stabilizing the patient by supplying water and electrolyte losses and provide adequate nutritional support. The diet is usually provided through feeding tubes for a period ranging from 4 to 6 weeks may occur depending on the patient's condition. The prognosis for cats with hepatic lipidosis is favored in cases of identification followed by intensive treatment of underlying causes and for patients receiving therapy necessary in cases of idiopathic hepatic lipidosis.

  9. Drug Use and Viral Infections (HIV, Hepatitis)

    Science.gov (United States)

    ... HIV, Hepatitis) Drug Use and Viral Infections (HIV, Hepatitis) Email Facebook Twitter Revised March 2017 What's the ... HIV and of worsening its consequences. What is hepatitis? Photo by ©iStock.com/ Skarie20 Hepatitis is an ...

  10. Hepatitis C FAQs for the Public

    Science.gov (United States)

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis … A | B | C | D | E Viral Hepatitis Home ... Local Partners & Grantees Policy and Programs Resource Center Hepatitis C FAQs for the Public Recommend on Facebook ...

  11. Hepatitis B FAQs for the Public

    Science.gov (United States)

    ... Professional Resources Patient Education Resources Quick Links to Hepatitis … A | B | C | D | E Viral Hepatitis Home ... Grantees Policy and Programs Resource Center Viral Hepatitis Hepatitis B FAQs for the Public Recommend on Facebook ...

  12. Later endogenous circadian temperature nadir relative to an earlier wake time in older people

    Science.gov (United States)

    Duffy, J. F.; Dijk, D. J.; Klerman, E. B.; Czeisler, C. A.

    1998-01-01

    The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.

  13. Sex differences in the circadian regulation of sleep and waking cognition in humans.

    Science.gov (United States)

    Santhi, Nayantara; Lazar, Alpar S; McCabe, Patrick J; Lo, June C; Groeger, John A; Dijk, Derk-Jan

    2016-05-10

    The sleep-wake cycle and circadian rhythmicity both contribute to brain function, but whether this contribution differs between men and women and how it varies across cognitive domains and subjective dimensions has not been established. We examined the circadian and sleep-wake-dependent regulation of cognition in 16 men and 18 women in a forced desynchrony protocol and quantified the separate contributions of circadian phase, prior sleep, and elapsed time awake on cognition and sleep. The largest circadian effects were observed for reported sleepiness, mood, and reported effort; the effects on working memory and temporal processing were smaller. Although these effects were seen in both men and women, there were quantitative differences. The amplitude of the circadian modulation was larger in women in 11 of 39 performance measures so that their performance was more impaired in the early morning hours. Principal components analysis of the performance measures yielded three factors, accuracy, effort, and speed, which reflect core performance characteristics in a range of cognitive tasks and therefore are likely to be important for everyday performance. The largest circadian modulation was observed for effort, whereas accuracy exhibited the largest sex difference in circadian modulation. The sex differences in the circadian modulation of cognition could not be explained by sex differences in the circadian amplitude of plasma melatonin and electroencephalographic slow-wave activity. These data establish the impact of circadian rhythmicity and sex on waking cognition and have implications for understanding the regulation of brain function, cognition, and affect in shift-work, jetlag, and aging.

  14. Impact of the human circadian system, exercise, and their interaction on cardiovascular function.

    Science.gov (United States)

    Scheer, Frank A J L; Hu, Kun; Evoniuk, Heather; Kelly, Erin E; Malhotra, Atul; Hilton, Michael F; Shea, Steven A

    2010-11-23

    The risk of adverse cardiovascular events peaks in the morning (≈9:00 AM) with a secondary peak in the evening (≈8:00 PM) and a trough at night. This pattern is generally believed to be caused by the day/night distribution of behavioral triggers, but it is unknown whether the endogenous circadian system contributes to these daily fluctuations. Thus, we tested the hypotheses that the circadian system modulates autonomic, hemodynamic, and hemostatic risk markers at rest, and that behavioral stressors have different effects when they occur at different internal circadian phases. Twelve healthy adults were each studied in a 240-h forced desynchrony protocol in dim light while standardized rest and exercise periods were uniformly distributed across the circadian cycle. At rest, there were large circadian variations in plasma cortisol (peak-to-trough ≈85% of mean, peaking at a circadian phase corresponding to ≈9:00 AM) and in circulating catecholamines (epinephrine, ≈70%; norepinephrine, ≈35%, peaking during the biological day). At ≈8:00 PM, there was a circadian peak in blood pressure and a trough in cardiac vagal modulation. Sympathetic variables were consistently lowest and vagal markers highest during the biological night. We detected no simple circadian effect on hemostasis, although platelet aggregability had two peaks: at ≈noon and ≈11:00 PM. There was circadian modulation of the cardiovascular reactivity to exercise, with greatest vagal withdrawal at ≈9:00 AM and peaks in catecholamine reactivity at ≈9:00 AM and ≈9:00 PM. Thus, the circadian system modulates numerous cardiovascular risk markers at rest as well as their reactivity to exercise, with resultant profiles that could potentially contribute to the day/night pattern of adverse cardiovascular events.

  15. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Susie Lee

    Full Text Available BACKGROUND: Cell proliferation in all rapidly renewing mammalian tissues follows a circadian rhythm that is often disrupted in advanced-stage tumors. Epidemiologic studies have revealed a clear link between disruption of circadian rhythms and cancer development in humans. Mice lacking the circadian genes Period1 and 2 (Per or Cryptochrome1 and 2 (Cry are deficient in cell cycle regulation and Per2 mutant mice are cancer-prone. However, it remains unclear how circadian rhythm in cell proliferation is generated in vivo and why disruption of circadian rhythm may lead to tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: Mice lacking Per1 and 2, Cry1 and 2, or one copy of Bmal1, all show increased spontaneous and radiation-induced tumor development. The neoplastic growth of Per-mutant somatic cells is not controlled cell-autonomously but is dependent upon extracellular mitogenic signals. Among the circadian output pathways, the rhythmic sympathetic signaling plays a key role in the central-peripheral timing mechanism that simultaneously activates the cell cycle clock via AP1-controlled Myc induction and p53 via peripheral clock-controlled ATM activation. Jet-lag promptly desynchronizes the central clock-SNS-peripheral clock axis, abolishes the peripheral clock-dependent ATM activation, and activates myc oncogenic potential, leading to tumor development in the same organ systems in wild-type and circadian gene-mutant mice. CONCLUSIONS/SIGNIFICANCE: Tumor suppression in vivo is a clock-controlled physiological function. The central circadian clock paces extracellular mitogenic signals that drive peripheral clock-controlled expression of key cell cycle and tumor suppressor genes to generate a circadian rhythm in cell proliferation. Frequent disruption of circadian rhythm is an important tumor promoting factor.

  16. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nana N Takasu

    Full Text Available In the mammalian brain, the suprachiasmatic nucleus (SCN of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA, a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/- mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/- mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/- mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.

  17. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Catharine E Boothroyd

    2007-04-01

    Full Text Available Circadian clocks are aligned to the environment via synchronizing signals, or Zeitgebers, such as daily light and temperature cycles, food availability, and social behavior. In this study, we found that genome-wide expression profiles from temperature-entrained flies show a dramatic difference in the presence or absence of a thermocycle. Whereas transcript levels appear to be modified broadly by changes in temperature, there is a specific set of temperature-entrained circadian mRNA profiles that continue to oscillate in constant conditions. There are marked differences in the biological functions represented by temperature-driven or circadian regulation. The set of temperature-entrained circadian transcripts overlaps significantly with a previously defined set of transcripts oscillating in response to a photocycle. In follow-up studies, all thermocycle-entrained circadian transcript rhythms also responded to light/dark entrainment, whereas some photocycle-entrained rhythms did not respond to temperature entrainment. Transcripts encoding the clock components Period, Timeless, Clock, Vrille, PAR-domain protein 1, and Cryptochrome were all confirmed to be rhythmic after entrainment to a daily thermocycle, although the presence of a thermocycle resulted in an unexpected phase difference between period and timeless expression rhythms at the transcript but not the protein level. Generally, transcripts that exhibit circadian rhythms both in response to thermocycles and photocycles maintained the same mutual phase relationships after entrainment by temperature or light. Comparison of the collective temperature- and light-entrained circadian phases of these transcripts indicates that natural environmental light and temperature cycles cooperatively entrain the circadian clock. This interpretation is further supported by comparative analysis of the circadian phases observed for temperature-entrained and light-entrained circadian locomotor behavior. Taken

  18. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.

    Science.gov (United States)

    Takasu, Nana N; Kurosawa, Gen; Tokuda, Isao T; Mochizuki, Atsushi; Todo, Takeshi; Nakamura, Wataru

    2012-01-01

    In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/-) mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/-) mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/-) mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.

  19. Hepatic manifestations of celiac disease

    Directory of Open Access Journals (Sweden)

    Hugh James Freeman

    2010-05-01

    Full Text Available Hugh James FreemanDepartment of Medicine (Gastroenterology, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Different hepatic and biliary tract disorders may occur with celiac disease. Some have been hypothesized to share genetic or immunopathogenetic factors, such as primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis. Other hepatic changes in celiac disease may occur with malnutrition resulting from impaired nutrient absorption, including hepatic steatosis. In addition, celiac disease may be associated with rare hepatic complications, such as hepatic T-cell lymphoma.Keywords: celiac disease, autoimmune liver disease, primary biliary cirrhosis, fatty liver, gluten-free diet

  20. Machine learning helps identify CHRONO as a circadian clock component.

    Directory of Open Access Journals (Sweden)

    Ron C Anafi

    2014-04-01

    Full Text Available Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3. One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator. Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.