WorldWideScience

Sample records for cinnamic acid

  1. A green Hunsdiecker reaction of cinnamic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sodre, Leonardo R.; Esteves, Pierre M.; Mattos, Marcio C. S. de, E-mail: pesteves@iq.ufrj.br, E-mail: mmattos@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica. Departamento de Quimica

    2013-02-15

    Tribromo- and trichloroisocyanuric acids react with cinnamic acids in NaOH/H{sub 2}O/Et{sub 2}O at room temperature to produce (E)-2-halostyrenes regioselectively in 25-95% yield. Mechanism studies using Hammett correlations and DFT (density functional theory) calculations have shown that this reaction has as rate determining step the electrophilic addition of chlorine atom to the double bond. (author)

  2. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    OpenAIRE

    Victor Hugo Salvador; Rogério Barbosa Lima; Wanderley Dantas dos Santos; Anderson Ricardo Soares; Paulo Alfredo Feitoza Böhm; Rogério Marchiosi; Maria de Lourdes Lucio Ferrarese; Osvaldo Ferrarese-Filho

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean ( Glycine max ) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical in...

  3. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  4. Cinnamic acid increases lignin production and inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Victor Hugo Salvador

    Full Text Available Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA oxidase and cinnamate 4-hydroxylase (C4H activities and lignin monomer composition in soybean (Glycine max roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H, guaiacyl (G, and syringyl (S lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  5. Effects of Exogenous Cinnamic Acids on the Growth and Physiological Characteristics of Cucumber Seedlings

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to study the effects of exogenous cinnamic acids on plant growth, contents of photosynthetic pigment, root activities and ATPase activities of root membrane at cucumber seedling stage, the seedlings of Shandong Mici cucumber were tested. The results showed that seedlings growth, contents of photosynthetic pigment, root activities and ATPase activities of root membrane were inhibited by cinnamic acids. The growth and root activities of seedlings were significantly cinnamic acids, whereas ATPase activities exhibited a higher sensitivity and greatly decreased in the soil amended with 50 mg kg-1 cinnamic acids. These results suggested that cinnamic acids could induce a stress condition, and the stress intensities increased with enhanced cinnamic acid concentration.

  6. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    OpenAIRE

    Sirintorn Yibchok-anun; Sirichai Adisakwattana; Weerachat Sompong; Sathaporn Ngamukote; Aramsri Meeprom

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by...

  7. [Regulation effects of grafting on cinnamic acid and vanillin in eggplant root exudates].

    Science.gov (United States)

    Chen, Shao-li; Zhou, Bao-li; Wang, Ru-hua; Fu, Ya-wen

    2008-11-01

    Cinnamic acid and vanillin are the allelochemicals commonly existed in eggplant root exudates. With pot culture experiment, the regulation effects of grafting on the cinnamic acid and vanillin in eggplant root exudates were studied, and the results showed that grafting decreased the amount of the two substances, especially of vanillin, in eggplants root system. The maximum reduction amount of cinnamic acid reached 68.96%, and that of vanillin reached 100%. Under the stress of exotic cinnamic acid and vanillin, especially of exotic cinnamic acid, grafting relieved the autotoxicity of the two substances on eggplants. Compared with own-rooted eggplant, grafted eggplant had a higher plant height and a larger stem diameter, its leaf chlorophyll content increased by 5.26%-13.12%, root electric conductivity and MDA content decreased, and root SOD activity enhanced.

  8. Determination of cinnamic acid in human urine by flow injection chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xuemei Fan

    2011-01-01

    Full Text Available It was found that cinnamic acid can react with potassium permanganate in the acidic medium and produce chemiluminescence, which was greatly enhanced by glyoxal. Under the optimum conditions, the linear range for the determination of cinnamic acid was 1.0×10-8 to 1.0×10-4 mol L-1 with a detection limit of 8.0×10-9 mol L-1, the relative standard deviation was 1.7% for 2.0×10-6 mol L-1 cinnamic acid solution in nine repeated measurements. This method was found to be novel0simple0fast and sensitive, it was successfully applied to the determination of cinnamic acid in human urine. Furthermore, the possible reaction mechanism was also discussed.

  9. Effects of cinnamic acid on the physiological characteristics of cucumber seedlings under salt stress

    Institute of Scientific and Technical Information of China (English)

    WANG Xuezheng; WANG Hua; WU Fengzhi; LIU Bo

    2007-01-01

    Effects of cinnamic acid on the physiological characteristics of cucumber(Shandong Mici)seedlings under salt stress were studied,and the best concentration and treatment time were ascertained.The results showed that cinnamic acid relatively increased the leaf relative water content and the chlorophyll content,decreased plasma membrane permeability,mitigated membrane damage,inhibited the accumulation of malondialdehyde(product of membrane lipid peroxidation),and promoted the activity of membrane protective enzymes such as super oxide dismutase and peroxidase,therefore improving the adaptabilities of cucumber to salt stress.It is concluded that the best treatment time of cinnamic acid is in the two euphylla period,and the best treatment concentration of cinnamic acid is 50 μmol/L.

  10. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    Directory of Open Access Journals (Sweden)

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  11. cis-Cinnamic acid selective suppressors distinct from auxin inhibitors.

    Science.gov (United States)

    Okuda, Katsuhiro; Nishikawa, Keisuke; Fukuda, Hiroshi; Fujii, Yoshiharu; Shindo, Mitsuru

    2014-01-01

    The activity of cis-cinnamic acid (cis-CA), one of the allelochemicals, in plants is very similar to that of indole-3-acetic acid (IAA), a natural auxin, and thus cis-CA has long been believed to be an analog of auxin. We have reported some structure-activity relationships studies by synthesizing over 250 cis-CA derivatives and estimating their inhibitory activities on root growth inhibition in lettuce. In this study, the compounds that showed low- or no-activity on root growth inhibition were recruited as candidates suppressors against cis-CA and/or auxin and tested for their activity. In the presence of cis-CA, lettuce root growth was inhibited; however, the addition of some cis-CA derivatives restored control-level root growth. Four compounds, (Z)-3-(4-isopropylphenyl)acrylic acid, (Z)-3-(3-butoxyphenyl)acrylic acid, (Z)-3-[3-(pentyloxy)phenyl]acrylic acid, and (Z)-3-(naphthalen-1-yl)acrylic acid were selected as candidates for a cis-CA selective suppressor they allowed the recovery of root growth from inhibition by cis-CA treatment without any effects on the IAA-induced effect or elongating activity by themselves. Three candidates significantly ameliorated the root shortening by the potent inhibitor derived from cis-CA. In brief, we have found some cis-CA selective suppressors which have never been reported from inactive cis-CA derivatives for root growth inhibition. cis-CA selective suppressors will play an important role in elucidating the mechanism of plant growth regulation. PMID:24881667

  12. RP-HPLC Determination and Pharmacokinetic Comparison of Cinnamic Acid in Rat Plasma After Administration of Di-Gu-Pi Decoction and Pure Cinnamic Acid

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A sensitive, simple, and accurate method was developed for the determination and pharmacokinetic comparison of cinnamic acid in rat plasma after the administration of a Traditional Chinese Medicinal preparation, Di-Gu-Pi decoction, and pure cinnamic acid using RP-HPLC. Di-Gu-Pi was extracted with 5% aqueous sodium bicarbonate, which was followed by purification with ion exchange column chromatography. The plasma samples taken from rats were deproteinized with methanol. The reversed-phase(HPLC) system with a Diamonsil C18 column and methanol-acetonitrile-water (8∶32∶60, volume ratio) (adjusted to pH=3.0 with glacial acetic acid) as the mobile phase was employed for the separation of cinnamic acid in the plasma samples. The detection was set at 272 nm and 3-(p-fluorophenyl)-2-propenoic acid was chosen as the internal standard. The calibration curve was linear in a range from 0.10 to 25.0 μg/mL (R2=0.9988, n=9). The precision was 3.42%-10.10%; the between-day precision was 2.84%-8.91%; the accuracy was -1.51%-1.26%; the mean recovery was 99.9%. The method was found to be sensitive, simple, accurate and appropriate for the determination of cinnamic acid.

  13. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    Science.gov (United States)

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  14. Inactivation of peptidylglycine α-hydroxylating monooxygenase by cinnamic acid analogs.

    Science.gov (United States)

    McIntyre, Neil R; Lowe, Edward W; Battistini, Matthew R; Leahy, James W; Merkler, David J

    2016-08-01

    Peptidylglycine α-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the final reaction in the maturation of α-amidated peptide hormones. Peptidylglycine α-hydroxylating monooxygenase (PHM) is the PAM domain responsible for the copper-, ascorbate- and O2-dependent hydroxylation of a glycine-extended peptide. Peptidylamidoglycolate lyase is the PAM domain responsible for the Zn(II)-dependent dealkylation of the α-hydroxyglycine-containing precursor to the final α-amidated peptide. We report herein that cinnamic acid and cinnamic acid analogs are inhibitors or inactivators of PHM. The inactivation chemistry exhibited by the cinnamates exhibits all the attributes of a suicide-substrate. However, we find no evidence for the formation of an irreversible linkage between cinnamate and PHM in the inactivated enzyme. Our data support the reversible formation of a Michael adduct between an active site nucleophile and cinnamate that leads to inactive enzyme. Our data are of significance given that cinnamates are found in foods, perfumes, cosmetics and pharmaceuticals. PMID:26024288

  15. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  16. Degradation of phenol, cinnamic and quinic acid in the terrestrial crustacean, Oniscus asellus

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.; Hartenstein, R.

    1976-01-01

    In experiments involving feeding, significant amounts of ring radioactively-labeled cinnamic and quinic acids were respired as /sup 14/CO/sub 2/ by the terrestrial isopod Oniscus asellus L. In experiments involving injection, approximately 25 percent of ring radioactively-labeled cinnamic acid, phenol and quinic acid were recovered as respiratory /sup 14/CO/sub 2/ during 7 days at 15/sup 0/C. Less than, or about, 1 percent of the dose was present in feces and sand occupied by the animal. Only 0, 10 and 4 percent respectively of the cinnamic acid, phenol and quinic acid were recovered from the body unchanged after 7 days. It is not known whether the test compounds were metabolized by animal oxidases or internal microbes.

  17. Microwave-assisted base-free synthesis of trans-cinnamic acids using hypervalent iodonium salts

    Institute of Scientific and Technical Information of China (English)

    Min Zhu; Chao Shentu; Zhong Shi Zhou

    2007-01-01

    A fast and convenient base-free Heck reaction of acrylic acid with hypervalent iodonium salts was achieved under microwave irradiation in water, providing a simple method for the synthesis of trans-cinnamic acids in good yields in short time.

  18. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    Science.gov (United States)

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  19. Cross-sensitization patterns in guinea pigs between cinnamaldehyde, cinnamyl alcohol and cinnamic acid

    DEFF Research Database (Denmark)

    Weibel, H; Hansen, J; Andersen, Klaus Ejner

    1989-01-01

    Guinea pig maximization tests (GPMT) were performed with cinnamon substances. There was a certain degree of cross-reactivity between cinnamaldehyde, cinnamyl alcohol and cinnamic acid as animals sensitized to cinnamaldehyde reacted to the challenge with the three substances. Animals sensitized to...

  20. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    Science.gov (United States)

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  1. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose

    NARCIS (Netherlands)

    Nijkamp, K.; Luijk, N. van; Bont, J.A.M. de; Wery, J.

    2005-01-01

    A Pseudomonas putida S12 strain was constructed that efficiently produced thefine chemical cinnamic acid from glucose or glycerol via the central metabolite phenylalanine. The gene encoding phenylalanine ammonia lyase from the yeast Rhodosporidium toruloides was introduced. Phenylalanine availabilit

  2. Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against Dactylogyrus intermedius.

    Science.gov (United States)

    Ling, Fei; Jiang, Chao; Liu, Guanglu; Li, Mingshuang; Wang, Gaoxue

    2015-12-01

    Utilization of chemical pesticide to control monogenean diseases is often restricted in many countries due to the development of pesticide resistance and concerns of chemical residues and environmental contamination. Thus, the use of antiparasitic agents from plants has been explored as a possible way for controlling monogenean infections. Extracts from Cinnamomum cassia were investigated under in vivo conditions against Dactylogyrus intermedius in goldfish. The two bioactive compounds, cinnamaldehyde and cinnamic acid, were identified using nuclear magnetic resonance and electrospray ionization mass spectrometry. The 48 h median effective concentrations (EC(50)) for these compounds against D. intermedius were 0·57 and 6·32 mg L(-1), respectively. The LD(50) of cinnamaldehyde and cinnamic acid were 13·34 and 59·66 mg L(-1) to goldfish in 48 h acute toxicity tests, respectively. These data confirm that cinnamaldehyde is effective against D. intermedius, and the cinnamaldehyde exhibits potential for the development of a candidate antiparasitic agent.

  3. Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against Dactylogyrus intermedius.

    Science.gov (United States)

    Ling, Fei; Jiang, Chao; Liu, Guanglu; Li, Mingshuang; Wang, Gaoxue

    2015-12-01

    Utilization of chemical pesticide to control monogenean diseases is often restricted in many countries due to the development of pesticide resistance and concerns of chemical residues and environmental contamination. Thus, the use of antiparasitic agents from plants has been explored as a possible way for controlling monogenean infections. Extracts from Cinnamomum cassia were investigated under in vivo conditions against Dactylogyrus intermedius in goldfish. The two bioactive compounds, cinnamaldehyde and cinnamic acid, were identified using nuclear magnetic resonance and electrospray ionization mass spectrometry. The 48 h median effective concentrations (EC(50)) for these compounds against D. intermedius were 0·57 and 6·32 mg L(-1), respectively. The LD(50) of cinnamaldehyde and cinnamic acid were 13·34 and 59·66 mg L(-1) to goldfish in 48 h acute toxicity tests, respectively. These data confirm that cinnamaldehyde is effective against D. intermedius, and the cinnamaldehyde exhibits potential for the development of a candidate antiparasitic agent. PMID:26442478

  4. Adsorption-parallel catalytic waves of cinnamic acid in hydrogen peroxide-tetra-n-butylammonium bromide-acetate system

    Institute of Scientific and Technical Information of China (English)

    亢晓峰; 过玮; 赵川; 宋俊峰

    2000-01-01

    The mechanism of the adsorption-parallel catalytic wave of cinnamic acid (C6H5—CH = CH—COOH) in acetate buffer (pH = 4.0)-H2O2-tetra-n-butylammonium bromide (Bu4N · Br) solution was studied by the linear-sweep polarography, cyclic voltammetry and digital simulation approach. Experimental results indicate that the reduction mechanism of cinnamic acid is ECdimE’ process, in which the C = C double bond of cinnamic acid first undergoes 1 e, 1H+ reduction to produce an intermediate free radical C6H5—CH—CH2—COOH(E), then the further reduction of the free radical in 1e,1H+ addition (E’) occurs simultaneously with a dimerization reaction between two free radicals (Cdim). Bu4N · Br enhances the polarographic current of cinnamic acid and shifts the peak potential to positive direction. The enhancement action of Bu4N · Br is due to the adsorption of cinnamic acid induced by Bu4N+ species. In addition, H2O2 causes the parallel catalytic wave of cinnamic acid. The mechanism of the catalytic wave is EC’ proce

  5. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet- induced obese rats.

    Science.gov (United States)

    Mnafgui, Kais; Derbali, Amal; Sayadi, Sami; Gharsallah, Neji; Elfeki, Abdelfattah; Allouche, Noureddine

    2015-07-01

    Obesity is a chronic metabolic disorder that is associated with numerous diseases including hyperlipidemia, diabetes mellitus, hypertension, atherosclerosis, cardiovascular disease, and cancer. Cinnamic acid is a phytochemical compound having many biological effects and could be considered for the management of obesity. This study is aimed to assess the possible anti-obesity and cardioprotective properties of cinnamic acid (CA) in high fat diet-fed rats (HFD). Male Wistar rats were divided into 4 groups. They received normal diet, HFD diet, HFD supplemented with fluvastatin (2 mg/kg/day) or cinnamic acid (30 mg/kg/day) for 7 weeks. The results showed an increase in body weight of HFD rats by ~27 % as compared to control group. Moreover, serum lipase activity underwent a significant rise by 103 % which led to an increase in the levels of total cholesterol (T-Ch), triglycerides (TG), LDL-cholesterol in serum of untreated HFD-fed rats. Furthermore, the concentration of leptin and angiotensin-converting enzyme (ACE) activity exhibited remarkable increases in serum of HFD-fed rats as compared to controls. Whereas, the administration of CA to HFD-fed rats improved the body weight gain and serum lipid profile and reverted back near to normal the activities of lipase and ACE. In addition, the echocardiography evidenced that CA is able to protect the aorta and aortic arch and avoided vasoconstriction by increasing their diameters and improved liver steatosis and kidney indices of toxicity. Overall, these results suggest that cinnamic acid exerts anti-obesity and antihypertensive effects through inhibition of lipid digestive enzymes and ACE. PMID:26139902

  6. Bioavailability of flavonoids and cinnamic acids and their effect on plasma homocysteine in humans

    OpenAIRE

    Olthof, M.R.

    2001-01-01

    Dietary antioxidants might prevent oxidative damage to tissues and therefore protect against cardiovascular disease and cancer. Dietary phenols are strong antioxidants in vitro but their role in vivo is uncertain. Furthermore, there are only limited data on their bioavailability in humans. The aim of this thesis was to investigate whether bioavailability data on flavonoids and cinnamic acids support the hypothesis that they can affect health in humans . Because the group of phenols in foods i...

  7. Combined experimental and computational investigation of the absorption spectra of E- and Z-cinnamic acids in solution: The peculiarity of Z-cinnamics.

    Science.gov (United States)

    Salum, María L; Arroyo Mañez, Pau; Luque, F Javier; Erra-Balsells, Rosa

    2015-07-01

    Cinnamic acids are present in all kinds of plant tissues and hence in herbs and derived medicines, cosmetics and foods. The interest in their role in plants and their therapeutic applications has grown exponentially. Because of their molecular structure they can exist in E- and Z-forms, which are both found in plants. However, since only the E-forms are commercially available, very few in vitro and in vivo studies of the Z-form have been reported. In this work the physico-chemical properties of Z-cinnamic acids in solution have been examined by means of UV-absorption spectroscopy and high-level quantum mechanical computations. For each isomer similar absorption spectra were obtained in methanol and acetonitrile. However, distinct trends were found for Z- and E forms of cinnamic acids in water, where a higher hypsochromic shift of the Z-isomer relative to the E-form was observed. In general the wavelength of maximal absorption of the Z-form is dramatically blue shifted (-30 to -40 nm) to λ<280 nm, while a slightly blue shift of the absorption maxima for the corresponding E-form (+3 to -4 nm) was observed. This difference is associated with the non-planar, largely distorted, Z-structure and to the almost complete flat structure of the E-form. The results provide a basis for the study of functional and biotechnological roles of cinnamic acids and for the analysis of samples containing mixture of both geometric isomers. PMID:25911983

  8. Free and bound cinnamic acid derivatives in corsica sweet blond oranges.

    Science.gov (United States)

    Carrera, Eric; El Kebir, Mohamed Vall Ould; Jacquemond, Camille; Luro, François; Lozano, Yves; Gaydou, Emile M

    2010-03-01

    Total determination of cinnamic acids (CA), including hydroxycinnamic acid derivatives is generally not accurate since, during hydrolysis, a possible degradation of dihydroxy CA such as caffeic acid could occur. Evaluations of CA (ferulic, p-coumaric, sinapic, cinnamic and caffeic acids) before and after hydrolysis have been undertaken using standards and either with or without addition of ascorbic acid and EDTA. The method was then applied to the determination of free and bound CA in five blond cultivars (Navelina, Washington navel, Pera, Salustiana and Valencia late) of sweet oranges [Citrus sinensis (L.) Osb.]. Four parts of the fruits (peel juice, flavedo, albedo and juice) have been investigated. Results show that CA are mainly bound (86% up to 92%) in the four fruit parts. The mean of total CA contents was found to be higher in peel juice (1.5 g kg(-1)) in comparison with flavedo (0.7 g kg(-1)), albedo (0.1 g kg(-1)) and juice (0.6 g kg(-1)). Free and bound ferulic acid represented 55-70% of CA in juices, followed by p-coumaric acid (20%), sinapic acid (10%) and caffeic acid (9%). Total contents of each CA in the four fruit parts are discussed and show the potential interest in orange peel wastes. PMID:20420324

  9. Adsorption-parallel catalytic waves of cinnamic acid in hydrogen peroxide-tetra-n-butylammonium bromide-acetate system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of the adsorption-parallel catalytic wave of cinnamic acid (C6H5-CH == CH-COOH) in acetate buffer (pH = 4.0)-H2O2-tetra-n-butylammonium bromide (Bu4N.Br) solution was studied by the linear-sweep polarography, cyclic voltammetry and digital simulation approach. Experimental results indicate that the reduction mechanism of cinnamic acid is ECdimE'process, in which the C == C double bond of cinnamic acid first undergoes 1e, 1H+ reduction to produce an intermediate free radical C6H5-C.H-CH2-COOH(E'), then the further reduction of the free radical in 1e,1H+ addition (E') occurs simultaneously with a dimerization reaction between two free radicals (Cdim). Bu4N.Br enhances the polarographic current of cinnamic acid and shifts the peak potential to positive direction. The enhancement action of Bu4N.Br is due to the adsorption of cinnamic acid induced by Bu4N+ species. In addition, H2O2 causes the parallel catalytic wave of cinnamic acid. The mechanism of the catalytic wave is EC'process because H2O2 oxidizes the free radical of cinnamic acid to regenerate the original C == C bond(C'), preventing both the further reduction and the dimerization of the free radicals. The apparent rate constant kf of the oxidation reaction is 1.35×102 mol.L-1.s-1. A new class of catalytic waves for organic compounds, the adsorption-parallel catalytic waves upon the dual enhancement action of both the surfactant and oxidant, has been presented.

  10. Production of cinnamic and p-hydroxycinnamic acids in engineered microbes

    Directory of Open Access Journals (Sweden)

    Alejandra eVargas-Tah

    2015-08-01

    Full Text Available The aromatic compounds cinnamic and p-hydroxycinnamic acids are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and p-hydroxycinnamic acids by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of L-phenylalanine and L-tyrosine to cinnamic acid and p-hydroxycinnamic acid, respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the L-phenylalanine or L-tyrosine biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  11. Anticancer Activities of Substituted Cinnamic Acid Phenethyl Esters on Human Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIShu-chun; LIHui; ZHANGFa; LIZhong-jun; CUIJing-rong

    2003-01-01

    Caffeic acid phenethyl ester (CAPE) and sixteen substituted cinnamic acid phenethyl esters were prepared via conventional procedures in order to test their in vitro anticancer activities by either MTT assay or SRB assay on six different human cancer cell lines. The results indicated that in the concentration of 10μmol·L-1 the lead compmuM CAPE possessed anficancer activities against human HL-60, Bel-7402, and Hela cell lines, and two other compounds possessed potent anticancer activities against Bel-7402 and Hela cell lines.

  12. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    Science.gov (United States)

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  13. [Effects of cinnamic acid and vanillin on grafted eggplant root growth and physiological characteristics].

    Science.gov (United States)

    Chen, Shao-Li; Zhou, Bao-Li; Lin, Shan-Shan; Li, Xia; Ye, Xue-Ling

    2010-06-01

    Choosing Solanum torvum as rootstock and cultivated Xi'anlü eggplant as scion, a pot culture experiment was conducted to study the effects of autotoxic substances (cinnamic acid and vanillin) on the root growth, antioxidase activity, and osmoregulation substances content of grafted eggplant, own-rooted eggplant, and rootstock eggplant. Cinnamic acid and vanillin had allelopathic effects on the root system of test eggplants, with low concentration promoting and higher concentration inhibiting the root growth and physiological metabolism. For own-rooted eggplant, the critical concentration of cinnamic acid and vanillin for promotion or inhibition was 0.1 mmol x kg(-1) and 0.5 mmol x kg(-1), respectively; whereas for grafted and rootstock eggplants, it was 0.5 mmol x kg(-1) and 1 mmol x kg(-1), respectively. The root resistance to autotoxic substances was in the order of root-stock eggplant > grafted eggplant > own-rooted eggplant. Higher concentration cinamic acid (0.5-4 mmol x kg(-1)) and vanillin (1-4 mmol x kg(-1)) enhanced the SOD enzyme activity and the proline and soluble sugar contents of grafted eggplant root by 8.50%-24.50%; 9.39%-27.64%, and 12.77%-81.81%, respectively, compared with own-rooted eggplant. The soluble protein content, fresh mass, dry mass, and root activity of grafted eggplant roots were significantly higher than those of own-rooted eggplant, suggesting that grafted eggplant had a strong resistance of rootstocks to autotoxic substances, which alleviated the negative effect of autotoxic substances on root growth.

  14. Enzymatic synthesis of enantiopure alpha- and beta-amino acids by phenylalanine aminomutase-catalysed amination of cinnamic acid derivatives.

    Science.gov (United States)

    Wu, Bian; Szymanski, Wiktor; Wietzes, Piet; de Wildeman, Stefaan; Poelarends, Gerrit J; Feringa, Ben L; Janssen, Dick B

    2009-01-26

    The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of alpha-phenylalanine to beta-phenylalanine, an important step in the biosynthesis of the N-benzoyl phenylisoserinoyl side-chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)-cinnamic acid is an intermediate in the mutase reaction and that it can be released from the enzyme's active site. Here we describe a novel synthetic strategy that is based on the finding that ring-substituted (E)-cinnamic acids can serve as a substrate in PAM-catalysed ammonia addition reactions for the biocatalytic production of several important beta-amino acids. The enzyme has a broad substrate range and a high enantioselectivity with cinnamic acid derivatives; this allows the synthesis of several non-natural aromatic alpha- and beta-amino acids in excellent enantiomeric excess (ee >99 %). The internal 5-methylene-3,5-dihydroimidazol-4-one (MIO) cofactor is essential for the PAM-catalysed amination reactions. The regioselectivity of amination reactions was influenced by the nature of the ring substituent.

  15. Phytotoxic Effects of Cinnamic Acid on Cabbage (Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Singh, N. B.

    2013-04-01

    Full Text Available The present study deals with the effects of exogenous application of cinnamic acid (CA on growth and metabolism in growing seedlings of Brassica oleracea var. capitata (cabbage in hydroponic culture. CA was added at 0.5, 1.0 and 1.5 mM concentrations. CA has shown inhibitory effects on shoot and root length, fresh and dry weight of seedlings. CA significantly decreased the photosynthetic pigments, nitrate reductase activity and protein content. Graded concentrations of CA increased lipid peroxidation and sugar content. The increasing concentrations of CA significantly increased the antioxidative enzyme activities viz. superoxide dismutase, catalase, peroxidase against the oxidative stress caused by CA.

  16. Self-assembly of 4-(amyloxy) cinnamic acid on HOPG and its photoinduced transformation: An STM study

    Institute of Scientific and Technical Information of China (English)

    GUAN Jing; TAN Zhongyin; XU Liping; LI Shanshan; YANG Zhiyong; WAN Lijun

    2006-01-01

    Light-induced structural transformation of 4-(amyloxy)cinnamic acid (AOCA) on the surface of highly oriented pyrolytic graphite (HOPG) was investigated with scanning tunneling microscopy (STM). AOCA molecules form highly-ordered adlayer on HOPG spontaneously, stabilized by hydrogen bonding between neighboring molecules. After UV-light irradiation onto the adlayer, the ordered adlayer was disrupted and a new disordered structure was observed, which indicated that dimerization of AOCA molecules took place. The STM results reveal the direct evidence for the photoisomerization of cinnamic acid at atom level.

  17. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors. PMID:26974386

  18. Toxicity of Some Cinnamic Acid Derivatives to Common Bean (Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Alexandra JITĂREANU

    2011-11-01

    Full Text Available Cinnamic acid derivatives are an important class of biologically active compounds, playing an important role in the plants’ development, but may also present a wide range of actions: antimicrobial, antioxidant, antiinflamatory, antitumoral. The present study investigated the toxicity of ten cinnamic acid derivatives on Phaseolus vulgaris, this being the first step in evaluating their pharmacotoxicological potential (usually, plant toxicity tests are used for ecotoxicity assessment, but they can also provide some useful general information about the toxic potential of a pharmaceutical substance to living organisms. The bean seeds were exposed to three different concentrations of each substance (28.6 μg/cm2, 57.3 μg/cm2, 114.6 μg/cm2. All the tests were conducted in Petri dishes, using an artificial substrate (Whatman filter paper impregnated with the investigated compounds. The analyzed elements were seedling length, root length, percentage of seeds that developed into seedlings, fresh seedling weight and the total polyphenols content. The tested compounds showed phytotoxic effects, inhibiting the growth of the plants and the biosynthesis of polyphenols as compared to the control. The substances with high logP values showed greater phytotoxic potential, but to establish an exact correlation between hydrophobicity and toxicity of the molecules a QSAR analysis must be further done.

  19. Changes in Cinnamic Acid Derivatives Associated with the Habituation of Maize Cells to Dichlobenil

    Institute of Scientific and Technical Information of China (English)

    Hugo Mélida; Jesús .(A)lvarez; José Luis Acebes; Antonio Encina; Stephen C. Fry

    2011-01-01

    The habituation of cell cultures to cellulose biosynthesis inhibitors such as dichlobenil (DCB) represents a valuable tool to improve our knowledge of the mechanisms involved in plant cell wall structural plasticity.Maize cell lines habituated to lethal concentrations of DCB were able to grow through the acquisition of a modified cell wall in which cellulose was partially replaced by a more extensive network of arabinoxylans.The aim of this work was to investigate the phenolic metabolism of non-habituated and DCB-habituated maize cell cultures.Maize cell cultures were fed [14C]cinnamate and the fate of the radioactivity in different intra-protoplasmic and wall-localized fractions throughout the culture cycle was analyzed by autoradiography and scintillation counting.Non-habituated and habituated cultures did not markedly differ in their ability to uptake exogenous [14C]cinnamic acid.However,interesting differences were found in the radiolabeling of low- and high-Mr metabolites.Habituated cultures displayed a higher number and amount of radiolabeled low-Mr compounds,which could act as reserves later used for polysaccharide feruloylation.DCB-habituated cultures were highly enriched in esterified [14C]dehydrodiferulates and larger coupling products.In conclusion,an extensive and early cross-linking of hydroxycinnamates was observed in DCB-habituated cultures,probably strengthening their cellulose-deficient walls.

  20. Synthesis of Cinnamic Acid%肉桂酸的合成工艺研究

    Institute of Scientific and Technical Information of China (English)

    刘鸿雁; 于丽颖

    2012-01-01

    研究了以吡啶为缩合剂,通过苯甲醛与丙二酸的Knoevenagel缩合反应合成肉桂酸的路线,以产物的收率作为考察指标,采用单因素多水平方法,分别研究了反应物配比、缩合剂用量、反应温度、反应时间等因素对收率的影响,确定了最佳工艺条件。最佳工艺条件下的肉桂酸收率达95%以上,并采用红外光谱对目标产物结构进行表征。该路线具有工艺简单,产率高,反应污染小,产物分离纯化容易,操作方便等优点。%The characters of the paths were summarized,and the path of using pyridine as condensation agent,benzaldehyde and malonic acid by Knoevenagel condensation reaction was mainly studied.By using the method of single-factor and multi-levels,the yield of cinnamic acid as an index,the reaction conditions such as catalyst ratio,reactant ratio,reaction temperature,reaction time were examined to give the preferable process.In the preferable process,the yield of cinnamic acid was 95%.The result was characterized by infrared spectrum and the structure was verified with HPLC.This path was simple,with high yield and less pollution.

  1. Radio-protective effect of cinnamic acid, a phenolic phytochemical, on genomic instability induced by X-rays in human blood lymphocytes in vitro.

    Science.gov (United States)

    Cinkilic, Nilufer; Tüzün, Ece; Çetintaş, Sibel Kahraman; Vatan, Özgür; Yılmaz, Dilek; Çavaş, Tolga; Tunç, Sema; Özkan, Lütfi; Bilaloğlu, Rahmi

    2014-08-01

    The present study was designed to determine the protective activity of cinnamic acid against induction by X-rays of genomic instability in normal human blood lymphocytes. This radio-protective activity was assessed by use of the cytokinesis-block micronucleus test and the alkaline comet assay, with human blood lymphocytes isolated from two healthy donors. A Siemens Mevatron MD2 (Siemens AG, USA, 1994) linear accelerator was used for the irradiation with 1 or 2 Gy. Treatment of the lymphocytes with cinnamic acid prior to irradiation reduced the number of micronuclei when compared with that in control samples. Treatment with cinnamic acid without irradiation did not increase the number of micronuclei and did not show a cytostatic effect in the lymphocytes. The results of the alkaline comet assay revealed that cinnamic acid reduces the DNA damage induced by X-rays, showing a significant radio-protective effect. Cinnamic acid decreased the frequency of irradiation-induced micronuclei by 16-55% and reduced DNA breakage by 17-50%, as determined by the alkaline comet assay. Cinnamic acid may thus act as a radio-protective compound, and future studies may focus on elucidating the mechanism by which cinnamic acid offers radioprotection.

  2. Biologically active cis-cinnamic acid occurs naturally in Brassica parachinensis

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The biologically active cis-cinnamic acid (cis-CA) has been perceived as a synthetic plant growth regulator for decades. However, in the present study, we found that cis-CA actually exists as a naturally occurring compound in a Brassica plant. This natural growth- regulating substance presents in both the sunlight-irradiated leaf tissue and the non-irradiated root tissue. The concentrations of cis-CA in both tissues are comparable to the biologically effective levels of those major plant hormones. The presence of cis-CA in root tissue suggests that it may be produced through both light-dependent and -independent path- ways or it can be transported from a plant organ to another.

  3. Analysis of benzoic and cinnamic acid derivatives of some medicinal plants in Serbia

    Directory of Open Access Journals (Sweden)

    Đurđević L.

    2013-01-01

    Full Text Available Natural phenolics, which are ubiquitously distributed in plants, have been reported as functional factors in phytotherapy. We have examined phenolic compounds in the leaves and inflorescences of five significant medicinal plants of different plant families: Salvia officinalis (Lamiaceae; Achillea clypeolata (Asteraceae; Nymphaea alba (Nymphaeaceae; Rumex acetosella (Polygonaceae and Allium ursinum (Alliaceae. The examined species were rich in total phenolics (up to 30.88 mg/g dry weight. According to their total phenolics contents, the plants can be arranged in the following order: A. clypeolata>N. alba>S. officinalis>R. acetosella>A. ursinum. Free phenolics prevailed in all species in comparison to the bound forms (63.72-82.68% of total phenolics. The highest content of total free phenolics was measured in the tissues of A. clypeolata and N. alba, and the lowest in A. ursinum. Five phenolic acids were isolated and measured. p-Coumaric and ferulic acids as derivatives of cinnamic acid prevailed in the leaves of R. acetosella and A. ursinum (up to 4.81%. [Projekat Ministarstva nauke Republike Srbije, br. 173018

  4. Phenylalanine Aminomutase-Catalyzed Addition of Ammonia to Substituted Cinnamic Acids : a Route to Enantiopure alpha- and beta-Amino Acids

    NARCIS (Netherlands)

    Szymanski, Wiktor; Wu, Bian; Weiner, Barbara; Wildeman, Stefaan de; Feringa, Ben L.; Janssen, Dick B.

    2009-01-01

    An approach is described for the synthesis of aromatic alpha- and beta-amino acids that Uses phenylalanine aminomutase to catalyze a highly enantioselective addition of ammonia to substituted cinnamic acids. The reaction has a broad scope and yields Substituted alpha- and beta-phenylalanines with ex

  5. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    Science.gov (United States)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.

  6. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    Science.gov (United States)

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders. PMID:27322226

  7. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Der Jiun Ooi

    2016-06-01

    Full Text Available Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF isolated from M. latifolia rhizome methanolic extract (RME contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  8. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    Science.gov (United States)

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  9. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE.

    Science.gov (United States)

    Van de Wouwer, Dorien; Vanholme, Ruben; Decou, Raphaël; Goeminne, Geert; Audenaert, Dominique; Nguyen, Long; Höfer, René; Pesquet, Edouard; Vanholme, Bartel; Boerjan, Wout

    2016-09-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  10. Anti-biofilm activity of ultrashort cinnamic acid peptide derivatives against medical device-related pathogens.

    Science.gov (United States)

    Laverty, Garry; McCloskey, Alice P; Gorman, Sean P; Gilmore, Brendan F

    2015-10-01

    The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes). Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied. PMID:26310860

  11. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory, and anticancer activity.

    Science.gov (United States)

    Hadjipavlou-Litina, Dimitra; Pontiki, Eleni

    2015-01-01

    Cinnamic acids have been identified as interesting compounds with cytotoxic, anti-inflammatory, and antioxidant properties. Lipoxygenase pathway, catalyzing the first two steps of the transformation of arachidonic acid into leukotrienes is implicated in several processes such as cell differentiation, inflammation and carcinogenesis. Development of drugs that interfere with the formation or effects of these metabolites would be important for the treatment of various diseases like asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer, and blood vessel disorders. Till now, asthma consists of the only pathological case in which improvement has been shown by lipoxygenase LO inhibitors. Thus, the research has been directed towards the development of drugs that interfere with the formation of leukotrienes. In order to explore the anti-inflammatory and cytotoxic effects of antioxidant acrylic/cinnamic acids a series of derivatives bearing the appropriate moieties have been synthesized via the Knoevenagel condensation and evaluated for their biological activities. The compounds have shown important antioxidant activity, anti-inflammatory activity and very good inhibition of soybean lipoxygenase while some of them were tested for their anticancer activity.

  12. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation.

    Science.gov (United States)

    van Beek, S; Priest, F G

    2000-12-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.

  13. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine.

    Science.gov (United States)

    Zang, Ying; Jiang, Ting; Cong, Ying; Zheng, Zhaojuan; Ouyang, Jia

    2015-06-01

    Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the L-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.

  14. Cinnamic acid 4-hydroxylase of sorghum [Sorghum biocolor (L.) Moench] gene SbC4H1 restricts lignin synthesis in Arabidopsis

    Science.gov (United States)

    Cinnamic acid 4-hydroxylase (C4H) is the first hydroxylase enzyme of the phenylpropanoid pathway, and its content and activity affects the lignin synthesis. In this study, we isolated a C4H gene SbC4H1 from the suppression subtractive hybridization library of brown midrib (bmr) mutants of Sorghum b...

  15. An investigation of the photo-reactive and unreactive polymorphs of -ethoxy cinnamic acid and of its photodimer

    Indian Academy of Sciences (India)

    R Srinivasa Gopalan; G U Kulkarni

    2001-08-01

    Detailed X-ray crystallographic investigation of the reactive - and the unreactive -polymorphs of -ethoxy cinnamic acid has been carried out along with that of the photodimer, -truxillic acid. The molecule is quite planar in the -form, but in the -form, the side groups deviate significantly from the plane of the benzene ring. The carboxylic groups form normal cyclic hydrogen bonds in the -form and near-symmetric hydrogen bonds in the -form. The infrared spectrum of the -form shows the characteristic features of the cyclic dimer, but that of the -form is entirely different, marked by the absence of the O-H stretching band in the 3000 cm-1 region. Charge density analysis throws some light on the structure and reactivity of the molecule in the two forms. The near-symmetric hydrogen bond in the -form is ionic and appears to restrict conjugation by way of distorting the molecule. This unusual feature keeps the cinnamoyl double bonds away from each other, rendering it photochemically unreactive. In the -form, however, the double bonds have a closer approach. The cyclobutyl ring of the photodimer consists of weak single bonds, with the new pair being slightly longer

  16. Catalytic Synthesis of Butyl Cinnamate by Nanometer Complex Tungstophosphoric Acid%纳米复合磷钨酸催化合成桂酸丁酯的研究

    Institute of Scientific and Technical Information of China (English)

    贠嫣茹; 司晗

    2012-01-01

    Butyl cinnamate is synthesized from cinnamic acid and butyl alcohol using nanometer comptex tungstophosphoric acid as catalyst. The results show that nanometer complex tungstophosphoric acid is a good catalyst for synthesizing butyl cinnamate. The yield of butyl cinnamate is up to 94% when molar ratio of cinnamic acid to butyl alcohol is 1:2.0, amount of catalyst is 1.2g/0.05mol cinnamic acid, water-carrying agent is 10 mL,and reaction time is 100min.%以纳米复合磷钨酸为催化剂,以桂酸和丁醇反应合成桂酸丁酯.结果表明,纳米复合磷钨酸是合成桂酸丁酯的良好催化剂;酸醇物质的量比为1:2.0,催化剂用量为1.2 g/0.05 mol桂酸,带水剂环己烷为10 mL,反应时间为100 min条件下,桂酸丁酯的酯化率可达94%.

  17. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale Extract: Role of Gallic Acid and Cinnamic Acid in H+, K+-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2011-01-01

    Full Text Available Zinger officinale has been used as a traditional source against gastric disturbances from time immemorial. The ulcer-preventive properties of aqueous extract of ginger rhizome (GRAE belonging to the family Zingiberaceae is reported in the present study. GRAE at 200 mg kg−1 b.w. protected up to 86% and 77% for the swim stress-/ethanol stress-induced ulcers with an ulcer index (UI of 50 ± 4.0/46 ± 4.0, respectively, similar to that of lansoprazole (80% at 30 mg kg−1 b.w. Increased H+, K+-ATPase activity and thiobarbituric acid reactive substances (TBARS were observed in ulcer-induced rats, while GRAE fed rats showed normalized levels and GRAE also normalized depleted/amplified anti-oxidant enzymes in swim stress and ethanol stress-induced animals. Gastric mucin damage was recovered up to 77% and 74% in swim stress and ethanol stress, respectively after GRAE treatment. GRAE also inhibited the growth of H. pylori with MIC of 300 ± 38 μg and also possessed reducing power, free radical scavenging ability with an IC50 of 6.8 ± 0.4 μg mL−1 gallic acid equivalent (GAE. DNA protection up to 90% at 0.4 μg was also observed. Toxicity studies indicated no lethal effects in rats fed up to 5 g kg−1 b.w. Compositional analysis favored by determination of the efficacy of individual phenolic acids towards their potential ulcer-preventive ability revealed that between cinnamic (50% and gallic (46% phenolic acids, cinnamic acid appear to contribute to better H+, K+-ATPase and Helicobacter pylori inhibitory activity, while gallic acid contributes significantly to anti-oxidant activity.

  18. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    Science.gov (United States)

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  19. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock 'GiSelA 5' leafy cuttings.

    Science.gov (United States)

    Trobec, Mateja; Stampar, Franci; Veberic, Robert; Osterc, Gregor

    2005-05-01

    The relationship between the phenol composition of rooting zones and rootability was studied in the first days after the establishment of cuttings. The trial included two different types of cuttings (basal and terminal). Additionally, the influence of exogenously applied auxin (IBA) was observed. The best rooting results (55.6%) were achieved with terminal IBA treated cuttings, while only 1.9% of basal cuttings formed roots. The auxin treatment increased the root formation in terminal, but not in basal cuttings. Low rooting rate of basal cuttings was probably due to higher lignification rate of the basal tissue which can represent a mechanical barrier for root emergence. When measuring phenolic compounds and cinnamic acid, terminal cuttings contained higher (rutin, vanillic acid, (-)-epicatechin, caffeic acid and sinapinic acid) or equal concentrations of detected phenols as basal cuttings, while applied auxin did not influence the level of any of discussed phenolics, neither of cinnamic acid. It is to assume that cuttings for starting of root induction phase should contain certain levels of several phenolic compounds, but higher influence on rooting success is to be ascribed to the impact of the auxin level. During the time of the experiment concentrations of monophenols sinapinic acid and vanillic acid rapidly decreased. This decrease was more pronounced in terminal cuttings, which might have a better mechanism of lowering those two compounds to which a negative influence on rooting is ascribed. Fluctuations and differences between treatments of other phenolics were not significant enough to influence the rooting process.

  20. Impact of Cinnamic Acid on Physiological and Anatomical Changes in Maize Plants (Zea mays L. Grown under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2014-05-01

    Full Text Available The environmental contamination with high salt is the elementary intimidation to the agriculture. Maize plants were deeply affected due to salinity worldwide and a severe problem to scientists. A probable survival strategy of the plants under unpleasant environmental circumstances is to use of endogenous metabolites that could ameliorate the harsh effect of salinity. Current study was under taken to observe the effect of cinnamic acid (CA, a central molecule of phenylpropanoid pathway (Secondary metabolism on the growth and development of maize plants under NaCl stress conditions. CA is rapidly produced by plants in response to stressful condition. Response to maize seed to the presoaking treatment 0.05mM CA was deliberated under different concentration of NaCl stress such as 50, 100, 150, 200, mM NaCl for 14 days. The injurious effects of salinity on growth and development were manifested by decreased fresh weight, dry weight, and relative water content (RWC and chlorophyll pigment contents. Degree of lipid peroxidation turned down through the significant decrease in MDA content in maize seedlings. CA induced the anatomical properties under salinity .In present exploration. The cortical cells were induced in root in response to CA than stress. Here, the present study was undertaken with the aim of determining salt induced anatomical and morphological alteration in the presence of exogenous CA. The major reduction in dimension of cortical cells was observed which indicate that salt stress reduced the tolerance of cortical cell more than treatment in maize root. We conclude that CA is a potential phenylpyranoid for protecting crop plant under saline environment.

  1. Electrochemical Synthesis of Zn-Al-based Layered Double Hydroxides Intercalated with 4-hydroxy-3-methoxy Cinnamic Acid as a UV-ray Absorbent

    OpenAIRE

    Hario, Naoyuki; Kamada, Kai; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira, Makoto

    2009-01-01

    One-step electrochemical synthesis of Zn-Al-based layered double hydroxides intercalated with 4-hydroxy-3-methoxy cinnamic acid as a UV-ray absorbent (Zn-Al/HMCA LDH) was attempted in this study. Among various preparation conditions, it was confirmed that HMCA was intercalated into the interlayers of Zn-Al-based layered double hydroxide (Zn-Al LDH) by potentiometric electrolysis at -1.5 V for 1 h at RT. The Zn-Al/HMCA LDH films prepared on a Pt plate showed an excellent UV-ray absorption prop...

  2. Quantitative Structure-Property Relationship (QSPR) Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted-Cinnamic Acid Esterification.

    Science.gov (United States)

    Rodrigues-Santos, Cláudio E; Echevarria, Aurea; Sant'Anna, Carlos M R; Bitencourt, Thiago B; Nascimento, Maria G; Bauerfeldt, Glauco F

    2015-01-01

    In this work, the theoretical description of the 4- and 3-substituted-cinnamic acid esterification with different electron donating and electron withdrawing groups was performed at the B3LYP and M06-2X levels, as a two-step process: the O-protonation and the nucleophile attack by ethanol. In parallel, an experimental work devoted to the synthesis and characterization of the substituted-cinnamate esters has also been performed. In order to quantify the substituents effects, quantitative structure-property relationship (QSPR) models based on the atomic charges, Fukui functions and the Frontier Effective-for-Reaction Molecular Orbitals (FERMO) energies were investigated. In fact, the Fukui functions, ƒ⁺C and ƒ(-)O, indicated poor correlations for each individual step, and in contrast with the general literature, the O-protonation step is affected both by the FERMO energies and the O-charges of the carbonyl group. Since the process was shown to not be totally described by either charge- or frontier-orbitals, it is proposed to be frontier-charge-miscere controlled. Moreover, the observed trend for the experimental reaction yields suggests that the electron withdrawing groups favor the reaction and the same was observed for Step 2, which can thus be pointed out as the determining step. PMID:26402661

  3. Quantitative Structure–Property Relationship (QSPR Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted-Cinnamic Acid Esterification

    Directory of Open Access Journals (Sweden)

    Cláudio E. Rodrigues-Santos

    2015-09-01

    Full Text Available In this work, the theoretical description of the 4- and 3-substituted-cinnamic acid esterification with different electron donating and electron withdrawing groups was performed at the B3LYP and M06-2X levels, as a two-step process: the O-protonation and the nucleophile attack by ethanol. In parallel, an experimental work devoted to the synthesis and characterization of the substituted-cinnamate esters has also been performed. In order to quantify the substituents effects, quantitative structure–property relationship (QSPR models based on the atomic charges, Fukui functions and the Frontier Effective-for-Reaction Molecular Orbitals (FERMO energies were investigated. In fact, the Fukui functions, ƒ+C and ƒ−O, indicated poor correlations for each individual step, and in contrast with the general literature, the O-protonation step is affected both by the FERMO energies and the O-charges of the carbonyl group. Since the process was shown to not be totally described by either charge- or frontier-orbitals, it is proposed to be frontier-charge-miscere controlled. Moreover, the observed trend for the experimental reaction yields suggests that the electron withdrawing groups favor the reaction and the same was observed for Step 2, which can thus be pointed out as the determining step.

  4. Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate

    Science.gov (United States)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2013-10-01

    Two organic cocrystals namely, caffeine:cinnamic acid [(caf)(ca)] (1) and caffeine:eosin dihydrate [(caf)(eos)]·2H2O (2) were synthesized and studied by FT-IR, TGA/DTA, and single crystal XRD. The crystal system of cocrystal 1 is triclinic with space group P-1 and Z = 2 and that of cocrystal 2 is monoclinic with space group P21/C and Z = 4. An imidazole-carboxylic acid synthon is observed in the cocrystal 1. The intermolecular hydrogen bond, O-H⋯N and π-π interactions play a major role in stabilizing 1 whereas the intermolecular hydrogen bonds, O-H⋯O, O-H⋯N, and intramolecular hydrogen bond, O-H⋯Br; along with π-π interactions together play a vital role in stabilizing the structure of 2. The antimicrobial- and DPPH radical scavenging activities of both the cocrystals were studied.

  5. Cis-and Trans-Cinnamic Acids Have Different Effects on the Catalytic Properties of Arabidopsis Phenylalanine Ammonia Lyases PAL1, PAL2, PAL4

    Institute of Scientific and Technical Information of China (English)

    Ming-Jie CHEN; Veerappan VIJAYKUMAR; Bing-Wen LU; Bing XIA; Ning LI

    2005-01-01

    Cis-cinnamic acid (CA) is a naturally occurring compound, presumably converted from transCA in higher plants. To investigate the effect of cis-CA on the activity of Arabidopsis phenylalanine ammonia lyase (PAL), AtPAL1, AtPAL2, and AtPAL4 genes were isolated using reverse transcription polymerase chain reaction. These genes were fused to a glutathione S-transferase gene and overexpressed in a heterologous prokaryotic system of Escherichia coli. The purified PAL1, PAL2 and PAL4 enzymes were characterized biochemically to determine the effects of cis-CA on the kinetic parameter Km. The results showed that cis-CA is a competitive inhibitor for PAL1, but not PAL2 and PAL4, whereas trans-CA acts as a competitive inhibitor for all three PAL isomers, suggesting that cis- and trans-CA have different effects on the catalytic activity of PAL.

  6. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp.

    Science.gov (United States)

    Cha, Thye-San; Chen, Chin-Fong; Yee, Willy; Aziz, Ahmad; Loh, Saw-Hong

    2011-03-01

    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.

  7. 勾桂酸分子的密度泛函理论研究%DFT Research into the Cinnamic Acid Molecule

    Institute of Scientific and Technical Information of China (English)

    宋正恩

    2012-01-01

    采用Gaussian09程序包中的密度泛函理论(DFT),在B3LYP/6--311+G}。水平上,对肉桂酸分子进行了几何构型优化和频率与热力学性质的计算,得到肉桂酸的红外光谱和不同温度下的热力学性质,并对红外光谱进行了归属.结果显示肉桂酸分子E型构型比Z型稳定,二者能量相差27.53625KJ.mol^-1;在标准压力下和298-1000K温度范围内,肉桂酸分子的标准摩尔焓(Hm)、标准摩尔热容(Cpm)、标准摩尔熵(Sm)与温度(T)之间呈现二次函数关系.%The Geometry structure optimization and frequency calculation of cinnamic acid have been studied by using density functional theory at B3LYP/6-311 +G** level. Infrared spectrum and thermodynamic properties at different temperatures have been obtained and the infrared spectrum has been assigned. The result shows that E- cinnamic acid molecular structure is more stable than the Z-type, the energy difference between them is 27.53625KJ.mol-1. There are function relation formula between the temperature and the thermodynamic properties such as heat capacity, entropy and enthalpy under standard pressure and temperature range 298-1000K.

  8. Flavonols, leuco-anthocyanins, cinnamic acids, and alkaloids in dried leaves of some Asiatic and Malesian Simaroubaceae

    NARCIS (Netherlands)

    Nooteboom, H.P.

    1966-01-01

    Herbarium specimens of 13 species of the Simaroubaceae were investigated on phenolic compounds present in their hydrolised leaf extracts and on the presence of alkaloids (table 2). Leucoanthocyanins, myricetin, gallic acid, ellagic acid, as well as alkaloids were demonstrated to occur rather frequen

  9. Binding, tuning and mechanical function of the 4-hydroxy-cinnamic acid chromophore in photoactive yellow protein

    NARCIS (Netherlands)

    Horst, M.A. van der; Arents, J.C.; Kort, R.; Hellingwerf, K.J.

    2007-01-01

    The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor

  10. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    Science.gov (United States)

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome. PMID:26283281

  11. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    Science.gov (United States)

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome.

  12. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    Science.gov (United States)

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H. PMID:27220407

  13. Evaluation of Antioxidant Ability In Vitro and Bioavailability of trans-Cinnamic Acid Nanoparticle by Liquid Antisolvent Precipitate

    Directory of Open Access Journals (Sweden)

    Wengang Li

    2016-01-01

    Full Text Available TCD is a kind of organic acid that is isolated from cinnamon bark or benzoin. TCD has significant antioxidant activity and is widely used in pharmaceutical, cosmetic, and food additives. But TCD has shortcomings of low bioavailability due to poor water solubility. Therefore, we use ethanol as a solvent, deionized water as antisolvent, and hydroxypropyl methylcellulose (HPMC as the surfactant to prepare TCD nanoparticle powder. The optimum preparation conditions were determined as follows: TCD-ethanol solution concentration was 170 mg/mL, the volume ratio of antisolvent was 4 times that of solvent, and the amount of the surfactant was 0.3% stirred for 10 min by 2500 rpm; TCD nanoparticle with a mean particle size (MPS of 130±12.5 nm is obtained under the optimum conditions. SEM, FT-IR, LC-MS/MS, XRD, and DSC were used to characterize the TCD nanoparticle. The results showed that the chemical structure of TCD nanoparticle was not changed, but the crystallization was significantly reduced. Solubility, dissolution rate, antioxidant activity, the in vitro transdermal penetration, and bioavailability of TCD nanoparticles were all much better than these of the raw TCD. These results suggested that TCD nanoparticle might have potential value to become a new oral or transdermal TCD formulation with high bioavailability.

  14. A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.

    Science.gov (United States)

    Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun

    2016-09-01

    In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (Ptrials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate. PMID:27041296

  15. Isolation and characterization of Halomonas sp strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions

    OpenAIRE

    Abdelkafi, Slim; Labat, Marc; Casalot, Laurence; Chamkha, M.; Sayadi, S.

    2006-01-01

    A moderately halophilic, mesophilic, Gram-negative, motile, nonsporulating bacterium, designated strain IMPC, was isolated from a table-olive fermentation rich in aromatic compounds, after enrichment on p-coumaric acid under halophilic conditions. Strain IMPC was able to degrade p-coumaric acid. p-hydroxybenzaldehyde and p-hydroxybenzoic acid were detected as breakdown products from p-coumaric acid. Protocatechuic acid was identified as the final aromatic product of p-coumaric acid catabolism...

  16. Effect of Cinnamic Acid on Physiological Characteristics of Tomato Seedlings and Alleviation by Carbonized Maize Cob Application%碳化玉米芯缓解肉桂酸对番茄幼苗生长的抑制作用

    Institute of Scientific and Technical Information of China (English)

    李亮亮; 李天来; 张恩平; 吴正超; 臧健; 陈彬; 刘文娥; 席联敏

    2012-01-01

    研究不同浓度肉桂酸对番茄苗期生长抑制作用以及加入碳化玉米芯缓解肉桂酸对番茄苗期生长抑制作用的效果.以肉桂酸作为番茄的连作障碍自毒物质,珍珠岩为基质进行盆栽试验,并就生物量、光合作用、根尖超微结构和MDA含量等指标的变化进行了讨论.结果表明,施用肉桂酸对幼苗的光合作用指标、生物量及叶绿素的含量具有显著的抑制作用.高浓度的肉桂酸处理使根尖的超微结构受到破坏.同时使幼苗体内MDA的含量显著增加.加入碳化玉米芯有效地缓解了肉桂酸对番茄幼苗的毒害作用.因此,施用碳化玉米芯可作为防止番茄连作障碍的措施之一.%We examined the effects of cinnamic acid on the growth of tomato seedlings, and its alleviation of applied carbonized maize cob was shown. The tomato seedlings were transplanted in the hydroponic system with perlite as substrate, and the biomass, photosynthesis, ultrastructure of root and MDA were investigated. The results showed that cinnamic acid inhibited the biomass, photosynthesis and chlorophyll contents of tomato seedlings. Deformation of the ultrastructures of root was observed and the MDA content was increased by the treatment of high content cinnamic acid. But the inhabitations were alleviated by applied carbonized maize cob. Carbonized corn cob can be used to prevent the plants from monocropping obstacles.

  17. DNA Photolithography with Cinnamate Crosslinkers

    Science.gov (United States)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  18. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation.

    Science.gov (United States)

    Gravot, Antoine; Larbat, Romain; Hehn, Alain; Lièvre, Karine; Gontier, Eric; Goergen, Jean Louis; Bourgaud, Frédéric

    2004-02-01

    Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) complete cDNA was cloned from the leaves of Ruta graveolens, a psoralen producing plant. The recombinant enzyme (classified CYP73A32) was expressed in Saccharomyces cerevisiae. Mechanism-based inactivation was investigated using various psoralen derivatives. Only psoralen and 8-methoxypsoralen were found to inactivate C4H. The inactivation was dependent on the presence of NADPH, time of pre-incubation, and inhibitor concentration. Inactivation stoichiometry was 0.9 (+/-0.2) for CYP73A1 and 1.1 (+/-0.2) for CYP73A32. SDS-PAGE analysis demonstrated that [3H]psoralen was irreversibly bound to the C4H apoprotein. K(i) and k(inact) for psoralen and 8-methoxypsoralen inactivation on the two C4H revealed a lower sensitivity for CYP73A32 compared to CYP73A1. Inactivation kinetics were also determined for CYP73A10, a C4H from another furocoumarin-producing plant, Petroselinum crispum. This enzyme was found to behave like CYP73A32, with a weak sensitivity to psoralen and 8-MOP inactivation. Cinnamic acid hydroxylation is a key step in the biosynthesis of phenylpropanoid compounds, psoralen derivatives included. Our results suggest a possible evolution of R. graveolens and P. crispum C4H that might tolerate substantial levels of psoralen derivatives in the cytoplasmic compartment without a depletive effect on C4H and the general phenylpropanoid metabolism.

  19. 肉桂酸等4种单体对细菌生物膜的影响%Effects of Cinnamic Acid and Several Monomers on Bacterial Biofilm

    Institute of Scientific and Technical Information of China (English)

    徐多多; 高阳; 潘志; 刘艳; 高其品

    2011-01-01

    The effects of einnamic acid, phillyrin, emodin and sulfite andrographolide on bacterial biofilm (BBF) formation were studied by BBF model of Escherichia coli and Staphylococcus aureus. When bacteria formed into BBF at 37 ℃ after 24 hours, samples were added and then cultured for 24 hours. The absorbanee was measured to examine the impact of monomers on BBF after crystal violet staining. Results showed that the inhibition rates of emodin, phillyrin, cinnamic acid and sulfite andrographolide against BBF of Staphylococcus aureus under the concentration of 1.000 mg/mL were 67.26%, 10.91%, 18.26% and 17.05%, respectively, and the inhibition rates against BBF of Escherichia coli were 32.99%, 36.13%, 49.79% and 17.05%, respectively. Emodin had stronger inhibition to BBF of Staphylococcus aureus, while cinnamic acid had stronger inhibition to BBF of Escherichia coll.%通过大肠杆菌和金黄色葡萄球菌BBF的模型,考察肉桂酸、连翘苷、大黄素、亚硫酸穿心莲内酯对BBF形成的影响。在37℃下将细菌培养24h使其形成BBF后加入样品继续培养24h,用结晶紫染色。通过测量吸光度来考察单体对BBF的影响。结果表明,大黄素、连翘苷、肉桂酸、亚硫酸穿心莲内酯(浓度为1.000mg/mL)对金黄色葡萄球菌BBF的抑制率分别为67.26%、10.91%、18.26%、17.05%;对大肠杆菌BBF的抑制率分别为32。99%、36.13%、49.79%、17.05%。由此可见,大黄素对金黄色葡萄球菌BBF的抑制作用较强,肉桂酸对大肠杆菌BBF的抑制作用较强。

  20. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2016-04-01

    A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. PMID:26838445

  1. Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose: Cinnamate glucosyltransferase from strawberry

    NARCIS (Netherlands)

    Lunkenbein, S.; Bellido, M.L.; Aharoni, A.; Salentijn, E.M.J.; Kaldenhoff, R.; Coiner, H.; Munoz-Blanco, J.; Schwab, W.

    2006-01-01

    Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Gl

  2. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum.

    Science.gov (United States)

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming

    2015-08-19

    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China. PMID:26230212

  3. A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology.

    Science.gov (United States)

    Zhang, Dong-Hao; Zhang, Jiang-Yan; Che, Wen-Cai; Wang, Yun

    2016-09-01

    In this work, the new approach to synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid with benzyl alcohol is optimized by response surface methodology. The effects of various reaction conditions, including temperature, enzyme loading, substrate molar ratio of benzyl alcohol to cinnamic acid, and reaction time, are investigated. A 5-level-4-factor central composite design is employed to search for the optimal yield of benzyl cinnamate. A quadratic polynomial regression model is used to analyze the experimental data at a 95% confidence level (P<0.05). The coefficient of determination of this model is found to be 0.9851. Three sets of optimum reaction conditions are established, and the verified experimental trials are performed for validating the optimum points. Under the optimum conditions (40°C, 31mg/mL enzyme loading, 2.6:1 molar ratio, 27h), the yield reaches 97.7%, which provides an efficient processes for industrial production of benzyl cinnamate.

  4. Simultaneous determination of dopamine (DA) and ascorbic acid (AA) at cinnamic acidmodified electrode%肉桂酸修饰电极同时测定多巴胺和抗坏血酸的研究

    Institute of Scientific and Technical Information of China (English)

    任旺; 张英

    2011-01-01

    A cinnamic acid-modified electrode (PCA/GC) was constructed by electropolymerization and was used for the determination of dopamine (DA), ascorbic acid (AA), and their mixture by difference pulse voltammetry (DPV). This modified electrode exhibited a potential and persistent electron-transfer mediating behavior followed by well-separated oxidation peaks toward DA and AA with a potential difference of 200 mV,which was large enough to determine DA and AA individually and simultaneously. The catalytic peak currents obtained were linearly dependent on the DA and AA concentrations in the range of 2. 0 × 10 -6 ~ 8.0 × 10 -5mol/L, 2.0 × 10-5 ~ 1.5 × 10-3mol/Lin phosphate buffer (0.03 mol/LpH 7.0), respectively. The PCA/GC electrode showed good repeatability and it can be used for the determination of DA and AA in real samples.%用电化学聚合方法制备肉桂酸(CA)修饰的玻碳电极(PCA/GC),研究多巴胺(DA)和抗坏血酸(AA)在修饰电极上的电化学行为.结果表明,在DA和AA共存体系中,DA、AA在PCA/GC电极上氧化峰电流增大且氧化峰电位相差200 mV,据此可同时检测DA和AA.在pH 7.0磷酸盐缓冲液中,DA和AA的氧化峰电流与其浓度分别在2.0×10-6~8.0×10-5mol/L,2.0×10-5~1.5×10-3mol/,L范围内呈线性关系.该电极重现性好,可用于多巴胺注射液中DA、维生素C片剂中从及DA和从混合体系的测定.

  5. NaCl胁迫下苯丙烯酸对黄瓜幼苗根际土壤微生物及产量的影响%Effects of Cinnamic Acid on Micro-organisms and Yield of Cucumber Seedlings under NaCl Stress

    Institute of Scientific and Technical Information of China (English)

    李雪峤; 吴凤芝

    2011-01-01

    Salt-tolerant cucumber cultivar(Jinyou No.5) and salt-sensitive cucumber cultivar(Jinyou No.1) were used as materials,and NaCl(585 mg kg^-1) as the salt-stress condition,the effects of different concentrations of cinnamic acid(0,25,50,200 mg kg^-1) under salt stress condition on cucumber seedlings growth and rhizosphere soil enzymes activities were studied.Results showed that salt-stress treatment reduced the biomass of soil bacteria,epiphyte and actinomyces but increased the quantify of fusarium in the cucumber rhizosphere.Salt-stress treatment also reduced the yield of cucumber.Low concentration of cinnamic acid(25 mg kg^-1) had stimulating effects on soil bacteria,epiphyte,actinomyces quantities but inhibited the fusarium growth,and it also lessened the salt-stress.High concentrations of cinnamic acid(200 mg kg^-1) had the opposite effects on the above parameters and worsened the salt-stress and reduced the yield of cucumber.Salt-stress had greater effects on the quantities of bacteria,fungi,actinomycetes and fusarium than cinnamic acid.While cinnamic acid had greater effects on bacterial DGGE bands and yield of cucumber than salt stress.%实验以耐盐的津绿5号和盐敏感的津优1号黄瓜品种为试材,以NaCl(585 mg kg^-1)为盐胁迫条件,研究了盐胁迫下不同浓度的苯丙烯酸(0、25、50、200 mg kg^-1)对黄瓜幼苗根际土壤微生物及产量的影响。结果表明,盐胁迫处理降低了黄瓜幼苗土壤根际细菌、真菌、放线菌的数量,而对镰孢菌数量有促进作用,并降低了黄瓜产量。低浓度的苯丙烯酸对黄瓜幼苗土壤根际细菌、真菌、放线菌的数量具有促进作用,对镰孢菌有抑制作用,对盐胁迫有一定的缓解作用,并对黄瓜产量具有促进作用;高浓度苯丙烯酸(200 mg kg^-1)则相反,进一步加重了盐害的胁迫程度,抑制了黄瓜产量。盐胁迫对细菌、真菌、放线菌和镰孢菌数量的影响强度

  6. 电位滴定结合偏最小二乘算法用于溶液中肉桂酸和L-苯丙氨酸的同时测定%A Chemometrics-Assisted Potentiometric Method for Simultaneous Determination of Cinnamic Acid and L-Phenylalanine

    Institute of Scientific and Technical Information of China (English)

    何阳春; 房升

    2012-01-01

    In this work, we proposed a new method for the simultaneous determination of cinnamic acid, L-phenylalanine and amonium sulfate in solution using combined potentiometric titration and chemometrics. The partial least squares (PLS) algo- rithm was applied and 25 standard mixtures of the compounds were prepared according to orthogonal experimental design for calibration set. The commonly used leave-one-out cross-validiation method was used to select the optimum number of factors in the PLS model. An independent set of synthetic raw mixtures was employed to evaluate the prediction performance of the resulting models. The results showed that the recovery values ranged from 92.9% to 104.4% for cinnamic acid, 94.9% to 101.5% for L-phenylalanine, and 96.6% to 105.1% for amonium sulfate respectively. The study proves the feasibility of simultaneous spectrometric determination of cinnamic acid, L-phenylalanine and ammonium salts in raw mixtures without preliminary separation steps.%结合自动电位滴定和化学计量学算法,建立同时测定溶液中肉桂酸、L-苯丙氨酸和硫酸铵的方法。通过正交设计25组校正集溶液,通过留一验证法对校正集最佳主成分进行选择,得到偏最小二乘法较佳模型,并对模拟样品进行分析。结果显示:肉桂酸、L.苯丙氨酸、硫酸铵的回收率分别在92.9%-104.4%、94.9%-101.5%、96.6%-105.1%之间。基于PLS的方法可以方便解析重叠的滴定图谱,不需要预先分离即可预测成分浓度。

  7. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Kong

    2014-01-01

    Full Text Available OSW-1, isolated from the bulbs of Ornithogalum saundersiae Baker, is a steroidal saponin endowed with considerable antitumor properties. Biosynthesis of the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1 is known to take place biochemically via the phenylpropanoid biosynthetic pathway, but molecular biological characterization of the related genes has been insufficient. Cinnamic acid 4-hydroxylase (C4H, EC 1.14.13.11, catalyzing the hydroxylation of trans-cinnamic acid to p-coumaric acid, plays a key role in the ability of phenylpropanoid metabolism to channel carbon to produce the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1. Molecular isolation and functional characterization of the C4H genes, therefore, is an important step for pathway characterization of 4-methoxybenzoyl group biosynthesis. In this study, a gene coding for C4H, designated as OsaC4H, was isolated according to the transcriptome sequencing results of Ornithogalum saundersiae. The full-length OsaC4H cDNA is 1,608-bp long, with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 55-bp 5′ non-coding region and a 35-bp 3'-untranslated region. OsaC4H was functionally characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of trans-cinnamic acid to p-coumaric acid, which was identified by high performance liquid chromatography with diode array detection (HPLC-DAD, HPLC-MS and nuclear magnetic resonance (NMR analysis. The identification of the OsaC4H gene was expected to open the way to clarification of the biosynthetic pathway of OSW-1.

  8. Hydrothermal Synthesis, Characterization and Natural Bond Orbital(NBO) Analysis of a Binuclear Lead(Ⅱ) Complex with Cinnamic Acid and Medpq Ligands%由肉桂酸和甲基联吡啶喹喔啉配体构筑的双核铅(Ⅱ)的配合物的水热合成、表征及自然键轨道(NBO)分析

    Institute of Scientific and Technical Information of China (English)

    方燕; 王蕾; 倪良; 姚加

    2013-01-01

    采用水热法合成了一种新型双核铅(Ⅱ)配合物[Pb2(CA)4(Medpq)2](HCA=cinnamic acid,Medpq=2-methyldipyrido[3,2-f:2,3'-h]quinoxaline),并对其进行了元素分析、红外光谱、紫外可见光光谱、热重表征、荧光光谱、X射线单晶衍射测定和理论计算.标题配合物属于三斜晶系,空间群为P(1).在晶体中,铅与来自Medpq配体的2个氮原子和3个肉桂酸配体的5个氧原子形成七配位.应用Gaussian 03程序,对标题配合物进行了自然键轨道(NBO)分析,结果表明Pb(Ⅱ)与配位原子间的价键类型都属于共价键范畴.%A binuclear Pb(Ⅱ) complex [Pb2(CA)4(Medpq)2] (HCA=cinnamic acid,Medpq=2-methyldipyrido[3,2-f:2,3'-h]quinoxaline) has been hydrothermally synthesized and structurally characterized by elemental analysis,IR spectrum,UV-Vis spectrum,TG,fluorescent emission,single-crystal X-ray diffraction and theoretical calculations.Title compound crystallizes in triclinic,space group P(1) with a=0.854 35(17) nm,b=1.250 9(3) nm,c=1.436 6 (3) nm,α=107.45 (3)°,β=105.63 (3)°,y=97.04 (3)°.In the crystal structure,the lead atom is sevencoordinated with two nitrogen atoms from Medpq ligand and five oxygen atoms from three cinnamic acid ligands.Natural bond orbital (NBO) analysis was performed by using the NBO method built in Gaussian 03 Program.The calculation results shown an covalent interaction between the coordinated atoms and Pb(Ⅱ) ion.CCDC:859036.

  9. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    Directory of Open Access Journals (Sweden)

    Jerzy Zakrzewski

    2015-07-01

    Full Text Available Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II acetate coordinated with a tri(o-tolylphosphine ligand immobilized in a polyurea matrix.

  10. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki-Heck cross-coupling reaction.

    Science.gov (United States)

    Zakrzewski, Jerzy; Huras, Bogumiła

    2015-01-01

    Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30-100% yield using a Mizoroki-Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  11. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    OpenAIRE

    Jerzy Zakrzewski; Bogumiła Huras

    2015-01-01

    Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix.

  12. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus John; Yuk, Heung Joo; Wang, Yan; Zhuang, Ningning; Lee, Kon Ho; Jeon, Kwon Seok; Park, Ki Hun

    2014-01-01

    Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS). PMID:24882413

  13. Studies on Different Response of Cinnamic Acid to Root Border Cells in Cucumber and Figleaf Gourd Seedlings%黄瓜和黑籽南瓜幼苗根系边缘细胞对肉桂酸胁迫的应答差异

    Institute of Scientific and Technical Information of China (English)

    乔永旭

    2015-01-01

    为了探索肉桂酸(cinnamic acid,CA)对黄瓜和黑籽南瓜根系边缘细胞(root border cell,RBC)生理特性的影响,以其幼苗为试材,研究了0、0.125和0.250 mmol·L-1 CA对两者RBC的数量、活率、黏胶层厚度、凋亡率以及幼苗根系活力的影响.结果表明:CA胁迫降低了黄瓜和黑籽南瓜RBC数、活率和根系活力,这种抑制效果在黄瓜上比在黑籽南瓜上更加明显;CA胁迫增加了两者RBC的黏胶层厚度和凋亡率,黑籽南瓜黏胶层厚度的增加量较黄瓜明显,RBC凋亡率的增加程度低于黄瓜.0.125mmol· Lq CA对黄瓜和黑籽南瓜RBC的影响趋势与0.250 mmol.L-1 CA一致,其影响程度低于后者.RBC附着根尖时,0.250 mmol.L-1 CA处理的黄瓜的根系活力明显降低,为对照的83.3%,而黑籽南瓜则无显著变化.去除RBC后,0.250 mmol·L-1 CA明显降低了黄瓜和黑籽南瓜的根系活力,且黄瓜的根系活力显著低于黑籽南瓜.RBC能增强植物抵御CA胁迫的能力;黑籽南瓜RBC因具有凋亡率低及较厚的黏胶层等特性,在抵御CA胁迫的能力方面强于黄瓜.

  14. Electrochemical Reduction and Carboxylation of Ethyl Cinnamate in MeCN

    Institute of Scientific and Technical Information of China (English)

    WANG Huan; DU Yan-Fang; LIN Mei-Yu; ZHANG Kai; LU Jia-Xing

    2008-01-01

    The electrochemical reduction and carboxylation of ethyl cinnamate have been carded out in an undivided cell equipped with a Mg sacrificial anode using MeCN as solvent.Direct electroreduction led to the formation of the hydrodimers and saturated ester.And electrocarboxylation was carried out in the presence of CO2.The global yield and the ratio of mono- to dicarboxylic acids were strongly affected by various factors:electrode material,electrolysis potential,the substrate concentration and temperature.The high yield (78%) was obtained under an optimized reaction condition (cathode:Ni;electrolysis potential:-1.7V;substrate concentration:0.1 mol·L-1;and temperature:-10℃).

  15. Antibacterial effect of cinnamic aldehyde and its derivatives on four pathogens%肉桂醛及其衍生物对四种病原菌的抑菌效果

    Institute of Scientific and Technical Information of China (English)

    张永帅; 王淼焱; 孙俊良; 梁新红; 王田林

    2014-01-01

    测定了肉桂醛及其衍生物对4种致病菌(金黄色葡萄球菌、大肠杆菌、沙门氏菌、炭疽杆菌)的最小抑菌浓度(MIC).结果表明:肉桂醛、α-溴代肉桂醛、肉桂酸对4种致病菌都有明显的抑菌效果,肉桂醇仅对金黄色葡萄球菌有抑菌效果.4种化合物中抑菌效果最好的是肉桂酸,对金黄色葡萄球菌、大肠杆菌、沙门氏菌、炭疽杆菌的抑菌浓度分别为0.4、0.4、0.6、0.4 mmol/L.%The minimum inhibitory concentratio of cinnamaldehyde and its derivatives on four pathogens (Staphylococcus aureus,Escherichia coli,Salmonella,Bacillus anthracis) were determined in this paper.The results showed that:cinnamic aldehyde,α-bromo cinnamic aldehyde,cinnamic acid alcohol had significant antibacterial effect on four pathogens,cinnamic alcohol only had antibacterial effect on S. aureus.The antibacterial effect of cinnamic acid was the best.The antibacterial concentrations of cinnamic acid on S. aureus,E. coli,Salmonella,B. anthracis were 0.4,0.4,0.6,0.4 mmol/L,respectively.

  16. Threshold responses in cinnamic-aldehyde-sensitive subjects: results and methodological aspects

    DEFF Research Database (Denmark)

    Johansen, J D; Andersen, Klaus Ejner; Rastogi, S C;

    1996-01-01

    Cinnamic aldehyde is an important fragrance material and contact allergen. The present study was performed to provide quantitative data on the eliciting capacity of cinnamic aldehyde, to be considered in assessment of clinical relevance and health hazard. The skin response to serial dilution patc...

  17. Preparation of photocrosslinkable polystyrene methylene cinnamate nanofibers via electrospinning.

    Science.gov (United States)

    Yi, Chuan; Nirmala, R; Navamathavan, R; Li, Xiang-Dan; Kim, Hak-Yong

    2011-10-01

    Nanoscaled photocrosslinkable polystyrene methylene cinnamate (PSMC) nanofibers were fabricated by electrospinning. The PSMC was prepared by the modification of polystyrene as a starting material via a two-step reaction process, chloromethylation and esterification. The chemical structure of PSMC was confirmed by 1H NMR and Fourier transform infrared spectroscopy (FT-IR). The photosensitivity of the PSMC was investigated using ultraviolet (UV) spectroscopic methods. Electrospun PSMC nanofiber mat showed excellent solubility in many organic solvents. UV irradiation of the electrospun mats led to photodimerization to resist dissolving in organic solvents. The morphology of the nanofiber was observed by scanning electron microscopy (SEM) and the result indicated that the average diameter of nanofibers is 350 nm and the crosslinked nanofibers were not collapsed after dipping into organic solvent showing good solvent-stability. This photocrosslinked nanofibers has the potential application in filtration, catalyst carrier and protective coating.

  18. A density functional theory study on the molecular mechanism of the cycloaddition between (E)-methyl cinnamate and cyclopentadiene

    Energy Technology Data Exchange (ETDEWEB)

    Alves, C.N. [Departamento de Quimica, Centro de Ciencias Exatas e Naturais Universidade Federal do Para, CP 11101, 66075-110, Belem, Para (Brazil)]. E-mail: nahum@ufpa.br; Camilo, F.F. [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, CP 26077, 05513-970 Sao Paulo SP (Brazil); Gruber, J. [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, CP 26077, 05513-970 Sao Paulo SP (Brazil); Silva, A.B.F. da [Departamento de Quimica e Fisica Molecular, Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, CP 780, 13560-970 Sao Carlos SP (Brazil)

    2004-11-15

    The molecular mechanism of the Diels-Alder reaction between (E)-methyl cinnamate and cyclopentadiene has been characterized by means of density functional theory method at the B3LYP/6-31G* theory level. Stationary points for two reactive channels, endo-cis and exo-cis, on potential energy surfaces, have been characterized. Three Lewis acids, boron trifluoride (BF{sub 3}), aluminum trichloride (AlCl{sub 3}) and catechol boron bromide (CBB), have been used as catalysts taking into account the formation of a complex between the boron or aluminum atom and the carbonyl oxygen of (E)-methyl cinnamate. The molecular mechanism of the uncatalyzed reaction corresponds to a concerted process. In the presence of BF{sub 3} and AlCl{sub 3}, enhancement of both the asynchronicity and charge transfer between diene and the dienophile, with small decreased energy barriers, were obtained. With CBB, the molecular mechanism changes and the reaction takes place along a stepwise mechanism. The inclusion of the CBB catalyst drastically decreases the energy barrier associated with the carbon-carbon bond formation of the first step relative to the concerted process. The results obtained in this work are compared with experimental data and AM1 semiempirical calculation.

  19. 根系边缘细胞对肉桂酸胁迫下黄瓜和黑籽南瓜活性氧代谢与根系活力的影响%Effect of Root Border Cells on Reactive Oxygen Metabolism and Root Activity of Cucumber and Figleaf Gourd Seedlings Under Cinnamic Acid Stress

    Institute of Scientific and Technical Information of China (English)

    乔永旭; 张永平; 高丽红

    2015-01-01

    [Objective]The aim of this paper was to clarify the defensive mechanism of root border cells (RBC) against cinnamic acid (CA) stress by analyzing the reactive oxygen metabolism and root activity of seedling RBC in cucumber (Cucumis sativus L.) and figleaf gourd (Cururbita ficifolia) under CA stress. [Method] The 5 mm length of aeroponicly cultured roots of cucumber cultivar Zhongnong No. 16 and figleaf gourd cultivar bouche were divided into two groups: one group was used to investigate reactive oxygen metabolism by spraying with 0 and 0.25 mmol·L-1 CA at 1 h interval, another group rinsing root tips of distilled water once every 4 h firstly and RBC were removed, then spraying 0 and 0.25 mmol·L-1 CA every 1 h. The metabolic index of active oxygen was measured after treatment for 0, 12, 24 and 36 hours of CA stress, root fresh weight, root respiration rate and root activity of the seedlings were measured after 24 hours. [Result]The root fresh weight and physiological metabolism were not affected significantly by RBC without CA stress. If the RBC were not removed, the root fresh weight and root activity decreased and the level of reactive oxygen species (ROS) and malonaldehyde (MDA), total respiration rate, CN-resistant respiration rate, the activities of superoxide dismutase (SOD), catalase (CAT) and guaiacol-dependent peroxidase (POD) increased significantly in cucumber under CA stress. However, the root fresh weight, root activity, the level of ROS and MDA, total respiration rate, CN-resistant respiration rate, the activities of SOD, CAT and POD were not affected significantly in figleaf gourd seedlings. If RBC were removed, the effect of CA stress on figleaf gourd was similar with cucumber, but significantly than RBC not removing. [Conclusion] RBC possibly attenuated the CA toxicity to the roots of cucumber and figleaf gourd through decreasing ROS and MDA content. The defensive ability of RBCs against CA on figleaf gourd was stronger than that of cucumber

  20. Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-11-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²⁺ and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.

  1. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Naik, D.N.; PrabhaDevi

    dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring...

  2. Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Jérémie A. Doiron

    2014-01-01

    Full Text Available 5-Lipoxygenase (5-LO is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM. Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

  3. Cloning and characterization of cinnamate-4-hydroxylase gene from Rubus occidentalis L

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Mi; Lee, Seung Sik; An, Byung Chull; Barampuram, Shyamkuma; Kim, Jae Sung; Chung, Byung Yeoup [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Cho, Jae Young [Dept. of Applied Life Sciences, Chonbuk National University, Jeonju (Korea, Republic of); Lee, In Chul [Senior Industry Cluster Agency, Youngdong University, Youngdong (Korea, Republic of)

    2008-08-15

    Cinnamate-4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which leads a variety of secondary metabolites to participate in differentiation and protection of plant against environmental stresses. In this study, we isolated a full-length cDNA of the C4H gene from a black raspberry (Rubus occidentalis L.), using a reverse transcriptase-PCR and rapid amplification of the cDNA ends (RACE)-PCR. The full-length cDNA of the RocC4H gene contained a 1,515 bp open reading frame (ORF) encoding a 504 amino acid protein with a calculated molecular weight of about 57.9 kDa and an isoelectric point (pI) value of 9.1. The genomic DNA analysis revealed that RocC4H gene had three exons and two introns. By multiple sequence alignment, RocC4H protein was highly homologous with other plant C4Hs, and the cytochrome P450-featured motifs, such as the heme-binding domain, the T-containing binding pocket motif (AAIETT), the ERR triad, and the tetrapeptide (PPGP) hinge motif, were highly conserved. Southern blot analysis revealed that RocC4H is a single copy gene in R. occidentalis.

  4. Efficient Debromination of Vicinal (, (-Dibromo Carboxylic Acid Derivatives with the Sm/HOAc System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The α, β vicinal dibromo carboxylic acid and its derivatives were debrominated with Sm/HOAc system to afford the corresponding cinnamic acid and its derivatives in good yields under mild conditions.

  5. Witting Reaction Using a Stabilized Phosphorus Ylid: An Efficient and Stereoselective Synthesis of Ethyl Trans-Cinnamate

    Science.gov (United States)

    Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.

    2004-01-01

    An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…

  6. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco

    Science.gov (United States)

    Blee, K.; Choi, J. W.; O'Connell, A. P.; Jupe, S. C.; Schuch, W.; Lewis, N. G.; Bolwell, G. P.

    2001-01-01

    A number of plant species contain the class II of genes encoding the cytochrome P450, CYP73, the cognate protein of which cinnamic acid 4-hydroxylase, is the second enzyme of the phenylpropanoid pathway. In order to begin to determine possible functionality, tobacco has been transformed with a truncated French bean class II cinnamate hydroxylase (CYP73A15) in the sense and antisense orientations. Signals for C4H protein could be detected in vascular tissue from wild-type plants using heterologous probes. The transformed plants showed a normal phenotype, even though detectable C4H protein was much reduced in tissue prints. Young propagated transformants displayed a range of reduced C4H activities, as well as either reduced or no phloroglucinol-stainable lignin. However, all mature tobacco plants showed the accumulation of lignin, even though its deposition was apparently delayed. This was not due to induction of tyrosine ammonia-lyase activity, which was not detected, but instead it is presumed due to sufficient C4H residual activity. Analysis of the lignin content of the plants showed reductions of up to 30% with a slightly reduced syringyl to guaiacyl ratio as compared to wild type. This reduction level was favourable in comparison with some other targets in the lignification pathway that have been manipulated including that of class I cinnamate 4-hydroxylase. It is proposed that the class II cinnamate 4-hydroxylase might also function in lignification in a number of species including French bean and tobacco, based on these data.

  7. The corrosion inhibition mechanism of new rare earth cinnamate compounds - Electrochemical studies

    International Nuclear Information System (INIS)

    A combination of linear polarisation resistance (LPR) and cyclic potentiodynamic polarisation (CPP) measurements demonstrated that the lanthanum-4 hydroxy cinnamate compound could inhibit both the cathodic and anodic corrosion reactions on mild steel surfaces exposed to 0.01 M NaCl solutions. However, the dominating response was shown to vary with inhibitor concentration. At the concentrations for which the highest level of protection was achieved, both REM-4 hydroxy cinnamate (REM being lanthanum and mischmetal) displayed a strong anodic behaviour for mild steel and their inhibition performance, including their resistance against localised attack, improved with time. Electrochemical impedance spectroscopy (EIS) measurements and modelling were carried out so as to propose a simple electrical model and correlate the extracted parameters to the inhibition mechanism put forward for REM-cinnamate based compounds. The results supported the high corrosion inhibition performance of the compounds as well as the build-up of a protective film with time. Based on a two-layer model the results suggested that the upper layer of the inhibitor film seemed to offer less resistance to the diffusion of electrochemically active species than the highly resistive inner layer at the film/metal interface

  8. Cloning and sequence analysis of a mutation-type cinnamate 4-hydroxylase gene from Brassica oleracea L. var. acephala DC.

    Institute of Scientific and Technical Information of China (English)

    Anhe CHEN; Jiana LI; Yourong CHAI; Rui WANG; Jun LU

    2008-01-01

    A 2431-bp full-length cinnamate 4-hydroxylase gene, BoC4H, was cloned from Brassica oleracea L. var. acephala DC.. It contains 2 introns. Its mRNA is 1715 bp, encoding a deduced 481-amino-acid polypeptide with wide homologies to C4Hs from other plants. It possesses cytochrome P450 conserved domains and motifs such as the haem-iron binding motif, the E-R-R triad, the T-con-taining binding pocket motif and the hinge motif neces-sary for optimal orientation of the enzyme. It also has most of the canonical C4H/CYP73A5-featured sub-strate-recognition sites (SRSs) and active site residues. However, owing to a single-base deletion at C2242 and subsequent frame shift within the 3' coding region as com-pared with C4H genes from Arabidopsis thaliana and other plants, BoC4H shows a 36-aa deletion/variation at its C-terminus and the SRS6 motif together with active site residues therein are absent. Thus BoC4H may be of no function or low activity. BoC4H is a membrane protein and is probably associated with the endoplasmic reticu-lure. Its secondary structure is dominated by alpha helices and random coils. The Swiss-Model could not predict its tertiary structure. B. oleracea contains a C4H gene family with at least 5 members.

  9. Effects of Phenolic Acids on Growth and Activities of Membrane Protective Enzymes of Cucumber Seedlings

    Institute of Scientific and Technical Information of China (English)

    WU Feng-zhi; HUANG Cai-hong; ZHAO Feng-yan

    2002-01-01

    Two phenolic acids P-hydroxy benzoic acid and cinnamic acid were designated as four concentrations (0, 50μmol/L, 100μmol/L, 150μmol/L) to investigate the effects of phenoic acids on the growth and the activities of membrane protective enzymes of cucumber seedlings. The results showed that both phenolic acids inhibited the seedlings growth. The inhibitory effects were increased with the concentration of phenolic acids increasing and the time of treatment prolonging. Seedlings treated with A150 (P-hydroxy benzoic acid, 150μmol/L), B50 (cinnamic acid, 50 μmol/L), B100 (cinnamic acid,100μmol/L), B150 (cinnamic acid, 150μmol/L) showed significantly shorter in plant height , smaller in leaf area. and lighter in fresh weight. The inhibitory effect of cinnamic acid was comparatively stronger than that of P-hydroxy benzoic acid. For protective enzymes system, compared to control, the POD activity increased at all concentrations of P-hydroxy benzoic acid during the treatment but increased at first then decreased before increased again at last at all concentrations of cinnamic acid . In the case of CAT, its activity increased at first, then decreased, and increased again at lower concentrations of phenolic acids. However, at higher concentrations the activities decreased at first, then increased a little, decreased continuously at last. In addition, the treatments of phenolic acids led to an increase then a decreaseof SOD activity and an increase of MDA content in the seedlings. All above indicated the accumulating of free radicalsand destruction of protective enzymes at higher concentrations of phenolic acids.

  10. New cinnamic - N-benzylpiperidine and cinnamic - N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties.

    Science.gov (United States)

    Estrada, Martín; Herrera-Arozamena, Clara; Pérez, Concepción; Viña, Dolores; Romero, Alejandro; Morales-García, José A; Pérez-Castillo, Ana; Rodríguez-Franco, María Isabel

    2016-10-01

    Here we describe new families of multi-target directed ligands obtained by linking antioxidant cinnamic-related structures with N-benzylpiperidine (NBP) or N,N-dibenzyl(N-methyl)amine (DBMA) fragments. Resulting hybrids, in addition to their antioxidant and neuroprotective properties against mitochondrial oxidative stress, are active at relevant molecular targets in Alzheimer's disease, such as cholinesterases (hAChE and hBuChE) and monoamine oxidases (hMAO-A and hMAO-B). Hybrids derived from umbellic - NBP (8), caffeic - NBP (9), and ferulic - DBMA (12) displayed balanced biological profiles, with IC50s in the low-micromolar and submicromolar range for hChEs and hMAOs, and an antioxidant potency comparable to vitamin E. Moreover, the caffeic - NBP hybrid 9 is able to improve the differentiation of adult SGZ-derived neural stem cells into a neuronal phenotype in vitro. PMID:27267007

  11. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids

    OpenAIRE

    Prashant Kaushik; Isabel Andújar; Santiago Vilanova; Mariola Plazas; Pietro Gramazio; Francisco Javier Herraiz; Navjot Singh Brar; Jaime Prohens

    2015-01-01

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been f...

  12. Creatininium cinnamate

    Directory of Open Access Journals (Sweden)

    A. Jahubar Ali

    2011-06-01

    Full Text Available The crystal structure of the title compound (systematic name: 2-amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 3-phenylprop-2-enoate, C4H8N3O+·C9H7O2−, is stabilized by N—H...O hydrogen bonding. Cations are linked to anions to form ion pairs with an R22(8 ring motif. These ion pairs are connected through a C22(6 chain motif extending along the c axis of the unit cell. This crystal packing is characterized by hydrophobic layers at x ∼ 1/2 packed between hydrophilic layers at x ∼ 0.

  13. Developmental Characteristics and Cinnamic Acid Resistance of Root Border Cells in Cucumber and Figleaf Gourd Seedlings

    Institute of Scientific and Technical Information of China (English)

    QIAO Yong-xu; ZHANG Yong-ping; ZHANG Hong-xin; TIAN Yong-qiang; GAO Li-hong

    2013-01-01

    Root border cells (RBCs) originate from the root tip epidermis and surround the root apices. In this study, we evaluated the developmental characteristics and the roles of RBCs in protection of root apices of cucumber and ifgleaf gourd seedlings from CA toxicity. The formation of RBCs and the emergence of the root tip occurred almost simultaneously in root apices of cucumber and ifgleaf gourd seedlings. CA ranging from 0 to 0.25 mol L-1 inhibited root elongation and decreased root cell viability in the root tip, moreover the inhibitory effects of CA were more signiifcant in the CA-sensitive cucumber than in the CA-tolerant ifgleaf gourd. Removal of RBCs from root tips led to more severe CA induced inhibition of root elongation and decline in root cell viability. Increasing CA levels and treatment time decreased the relative viability of attached and detached RBCs. CA also induced a thicker mucilage layer surrounding attached RBCs of both species. Additionally, a signiifcantly higher relative cell viability of attached RBCs and thicker mucilage layers were observed in ifgleaf gourd. These results suggest that RBCs play an important role in protecting root tips from CA toxicity.

  14. Interaction between Ternary Rare Earth Complexes of Cinnamic Acid and Phenanthroline with DNA by Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Guo Dongfang; Ye Yan; Zeng Zhengzhi

    2005-01-01

    The interaction of ternary complexes [RE(phen)(cin)3(H2O)](RE= Nd (III),Ce(III),Eu(III))with calf thymus DNA was investigated by electronic absorption spectroscopy, ethidium bromide(EB)-DNA quenching fluorescent spectra and resonance light scattering. All experimental results indicate that the three complexes bind to DNA by the electrostatic mode and the intercalative mode. It is predicted that these complexes show high anticancer activity or other biologic activity.

  15. Bioavailability of flavonoids and cinnamic acids and their effect on plasma homocysteine in humans

    NARCIS (Netherlands)

    Olthof, M.R.

    2001-01-01

    Dietary antioxidants might prevent oxidative damage to tissues and therefore protect against cardiovascular disease and cancer. Dietary phenols are strong antioxidants in vitro but their role in vivo is uncertain. Furthermore, there are only limited data on their bioavailability in humans. The aim o

  16. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2015-01-01

    Full Text Available The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, Fv/Fm (maximal photochemical efficiency of PSII, ФPSII (actual photochemical efficiency of PSII in the light, FDA, and PI staining fluorescence, were measured. The results showed the following: (1 The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94–2.20 and 1.89 mg/L (1.82–1.97. (2 After 24 h of exposure to 2–4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ФPSII being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the Fv/Fm of C. vulgaris dropped to zero. (3 Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable.

  17. The nature of the surface film on steel treated with cerium and lanthanum cinnamate based corrosion inhibitors

    International Nuclear Information System (INIS)

    The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400-1500 cm-1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM-cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface

  18. Synthesis of -acylurea derivatives from carboxylic acids and ,' -dialkyl carbodiimides in water

    Indian Academy of Sciences (India)

    Ali Ramazani; Fatemeh Zeinali Nasrabadi; Aram Rezaei; Morteza Rouhani; Hamideh Ahankar; Pegah Azimzadeh Asiabi; Sang Woo Joo; Katarzyna Ślepokura; Tadeusz Lis

    2015-12-01

    Reactions of benzoic acid derivatives and ()-cinnamic acid derivatives with , '-dialkyl carbodiimide proceed smoothly at room temperature and in neutral conditions to afford -acylurea derivatives in high yields. The reaction proceeds smoothly and cleanly under mild conditions and no side reactions were observed.

  19. Cinnamate-4-hydroxylase expression in arabidopsis. Regulation in response to development and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Bell-Lelong, D.A.; Cusumano, J.C.; Meyer, K.; Chapple, C. [Purdue Univ., West Lafayette, IN (United States)

    1997-03-01

    Cinnamate-r-hydroxylase (C4H) is the first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. To study the expression of this gene in Arabidopsis thaliana, a C4H cDNA clone from the Arabidopsis expressed sequence tag database was identified and used to isolate its corresponding genomic clone. The entire C4H coding sequence plus 2.9 kb of its promoter were isolated on a 5.4-kb HindIII fragment of this cosmid. Inspection of the promoter sequence revealed the presence of a number of putative regulatory motifs previously identified in the promoters of other phenylpropanoid pathway genes. The expression of C4H was analyzed by RNA blot hybridization analysis and in transgenic Arabidopsis carrying a C4H-{beta}-glucuronidase transcriptional fusion. C4H message accumulation was light-dependent, but was detectable even in dark-grown seedlings. Consistent with these data, C4H mRNA was accumulated to light-grown levels in etiolated det1-1 mutant seedlings. C4H is widely expressed in various Arabidopsis tissues, particularly in roots and cells undergoing lignification. The C4H-driven {beta}-glucuronidase expression accurately reflected the tissue-specificity and wound-inducibility of the C4H promoter indicated by RNA blot hybridization analysis. A modest increase in C4H expression was observed in the tt8 mutant of Arabidopsis. 77 refs., 5 figs.

  20. Enzymatic Synthesis of Enantiopure α- and β-Amino Acids by Phenylalanine Aminomutase-Catalysed Amination of Cinnamic Acid Derivatives

    NARCIS (Netherlands)

    Wu, Bian; Szymanski, Wiktor; Wietzes, Pieter; Wildeman, Stefaan de; Poelarends, Gerrit J.; Feringa, Ben L.; Janssen, Dick B.

    2009-01-01

    The phenylalanine aminomutase (PAM) from Taxus chinensis catalyses the conversion of alpha-phenylalanine to beta-phenylalanine, an important step in the biosynthesis of the N-benzoyl phenylisoserinoyl side-chain of the anticancer drug taxol. Mechanistic studies on PAM have suggested that (E)-cinnami

  1. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    OpenAIRE

    Dominik Szwajgier; Anna Jakubczyk

    2011-01-01

    Background. Ferulic acid esterases (FAE, EC 3.1.1.73), also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB) strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflo...

  2. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    Science.gov (United States)

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  3. Metabolism of sinapic acid and related compounds in the rat.

    Science.gov (United States)

    Griffiths, L A

    1969-07-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  4. 肉桂酸丁酯的抑菌活性的研究%On Antibacterial Activity of Butyl Cinnamate

    Institute of Scientific and Technical Information of China (English)

    范芳; 陈桂珍

    2012-01-01

    With fruit perfume, butyl cinnamate may find its application in food preservation if it was proved to possess significant antibacteri- al activity. The antibacterial activity of butyl cinnamate is evaluated on colibacillus, staphylococcus aureus, bacillus subtilis and saccharo- myces cerevisiae in the condition of different PH circumstances at minimum antibacterial concentration. The result shows that butyl cin- namate has antibacterial capacity but it can not extend the adaptive growing period of those bacteria above mentioned and the pH of the cir- cumstances has an effect on the minimum antibacterial concentration.%肉桂酸丁酯具有水果清香,若实验能证明它具有良好的抗菌性,则能更好地运用于食品防腐。实验以大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌和酿酒酵母为试验菌种,进行了抑菌谱试验及在不同pH介质和最低抑菌浓度下细菌的生长趋势抑菌活性试验。实验结果表明:肉桂酸丁酯的有一定的抗菌效果,但不能很好地延长上述菌类的生长适应期;pH大小对其最低抑菌浓度有一定影响。

  5. Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab

    Science.gov (United States)

    Pecan scab (caused by Fusicladium effusum) is the major disease that limits the productivity and quality of pecan in the southeastern US. Alternatives to conventional fungicides are desirable and should be biorational, of low environmental risk with a reduced risk for fungicide resistance developing...

  6. Cytotoxicity of Coprinopsis atramentaria extract, organic acids and their synthesized methylated and glucuronate derivatives

    OpenAIRE

    Heleno, Sandrina A.; Isabel C. F. R. Ferreira; Calhelha, Ricardo C.; Esteves, Ana P.; Martins, Anabela; Queiroz, Maria João R. P.

    2014-01-01

    Coprinopsis atramentaria is a wild edible mushroom whose methanolic extract revealed a marked antioxidant activity; p-hydroxybenzoic (HA), p-coumaric (CoA) and cinnamic (CA) acids were identified in the extract. In the present work, the cytotoxicity of C. atramentaria extract, previously identified organic acids and their synthesized derivatives (methylated compounds and protected glucuronides) was evaluated. Among all the tested cell lines (MCF-7—breast adenocarcinoma, NCI-H460—non-small cel...

  7. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid

    OpenAIRE

    Cristina Cattò; Silvia Dell'Orto; Federica Villa; Stefania Villa; Arianna Gelain; Alberto Vitali; Valeria Marzano; Sara Baroni; Fabio Forlani; Francesca Cappitelli

    2015-01-01

    The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and...

  8. Synthesis and evaluation of substituted 4-(N-benzylamino)cinnamate esters as potential anti-cancer agents and HIV-1 integrase inhibitors.

    Science.gov (United States)

    Faridoon; Edkins, Adrienne L; Isaacs, Michelle; Mnkandhla, Dumisani; Hoppe, Heinrich C; Kaye, Perry T

    2016-08-01

    Encouraging selectivity and low micromolar activity against HeLa cervical carcinoma (IC50⩾3.0μM) and the aggressive MDA-MB-231 triple negative breast carcinoma (IC50⩾9.6μM) cell lines has been exhibited by a number of readily accessible 4-(N-benzylamino)cinnamate esters. The potential of the ligands as HIV-1 integrase inhibitors has also been examined. PMID:27317645

  9. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Science.gov (United States)

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  10. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Science.gov (United States)

    Wahidullah, Solimabi; Naik, Deepak N; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3-8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment.

  11. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Directory of Open Access Journals (Sweden)

    Solimabi Wahidullah

    Full Text Available As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl with salicylic acid (3-8 were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12, metabolites produced by the bacterium include antimicrobial indole (13 and β-carbolines, norharman (14, harman (15 and methyl derivative (16, which are beneficial to the host and the environment.

  12. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  13. Pulse radiolysis and 77 K matrix γ irradiation of dimethyl truxinates and trans-methyl cinnamate in 2-methyltetrahydrofuran

    International Nuclear Information System (INIS)

    One-electron reduction of dimethyl μ-truxinate (μ-DMT), dimethyl β-truxinate (β-DMT), and dimethyl α-truxillate (α-DMT) has been investigated by pulse radiolysis and 77 K matrix γ irradiation of the 2-methyltetrahydrofuran solutions. Cycloreversion of the radical anions formed by an electron attachment to these cyclobutanes was observed in all cases, even at 77 K. The orientation of the cycloreversion was dependent on the stereochemistry of the cyclobutanes, and the selectivity was reasonably explained by a so-called cis effect; the best possible release of steric hindrance decides the primary step of the reaction. In 77 K matrix γ irradiation of α-DMT, an intense IR absorption was found after the photobleaching of trapped electrons with light > 690 nm. In other DMTs, the IR absorption band was not observed while the cycloreversion of DMT by mobile electrons occurred. Thus, the IR band in the case of α-DMT was assigned to an associated dimer anion due to the interaction between the radical anion and the neutral molecule pair of trans-methyl cinnamate orginally formed by the cycloreversion of α-DMT. The dimer anion was presumed to be oriented in a head-to-tail structure in a solvent cage on the basis of the original configuration of α-DMT

  14. Synthesis, characterization, thermal behavior, and antifungal activity of La(III) complexes with cinnamates and 4-methoxyphenylacetate

    Institute of Scientific and Technical Information of China (English)

    Alberto Aragón-Muriel; Dorian Polo-Cerón

    2013-01-01

    In this study a series of trivalent lanthanum complexes with 4-(R)-cinnamate (4-Rcinn, R=H(1), MeO(2), Cl(3)) and 4-methoxyphenylacetate ligands (4) were prepared and their antifungal activity against Candida albicans, Aspergillus niger and Trichophyton mentagrophytes were examined. Compounds 1-4 were synthesized by a metathesis reaction and fully characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, fluorescence spectra, thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns. In emission studies, it was observed that lu-minescence intensity was enhanced in the presence of lanthanide ion. The results of X-ray diffraction patterns indicated that all com-plexes studied exhibited crystalline structure. Thermal behavior by TG, DTG, and DSC studies permitted to estimating the hydration degree of the compounds and showed the formation of decomposition products like lanthanum oxide. Determined by antifungal stud-ies, lanthanum complexes 1-4 demonstrated antifungal activity toward all pathogenic fungal strains tested. Compounds 2 and 4 showed significant growth inhibition for A. niger and C. albicans, respectively.

  15. The biosynthesis of salicylic acid in potato plants

    International Nuclear Information System (INIS)

    Spraying potato (Solanum tuberosum L.) leaves with arachidonic acid (AA) at 1500 micrograms mL-1 led to a rapid local synthesis of salicylic acid (SA) and accumulation of a SA conjugate, which was shown to be 2-O-beta-glucopyranosylsalicylic acid. Radiolabeling studies with untreated leaves showed that SA was synthesized from phenylalanine and that both cinnamic and benzoic acid were intermediates in the biosynthesis pathway. Using radiolabeled phenylalanine as a precursor, the specific activity of SA was found to be lower when leaves were treated with AA than in control leaves. Similar results were obtained when leaves were fed with the labeled putative intermediates cinnamic acid and benzoic acid. Application of 2-aminoindan-2-phosphonic acid at 40 micromolar, an inhibitor of phenylalanine ammonia-lyase, prior to treatment with AA inhibited the local accumulation of SA. When the putative intermediates were applied to leaves in the presence of 2-aminoindan-2-phosphonic acid, about 40% of the expected accumulation of free SA was recovered, but the amount of the conjugate remained constant

  16. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. PMID:26282740

  17. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    Science.gov (United States)

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde.

  18. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives

    OpenAIRE

    Ayodele, Oludemi Taofiq; Calhelha, Ricardo C.; Heleno, Sandrina A.; Barros, Lillian; Martins, Anabela; Santos-Buelga, Celestino; Queiroz, Maria João R. P.; Isabel C. F. R. Ferreira

    2015-01-01

    In the present study, the ethanolic extracts of fourteen edible mushrooms were investigated for their anti-inflammatory potential in LPS (lipopolysaccharide) activated RAW 264.7 macrophages. Furthermore the extracts were chemically characterized in terms of phenolic acids and related compounds. The identified molecules (p-hydroxybenzoic, p-coumaric and cinnamic acids) and their glucuronated and methylated derivatives obtained by chemical synthesis were also evaluated for the same bioactivity,...

  19. Analysis of phenolic acids in barley by high-performance liquid chromatography.

    Science.gov (United States)

    Yu, J; Vasanthan, T; Temelli, F

    2001-09-01

    Phenolic acids from 30 barley varieties (combination of hulled/hulless/two-row/six-row/regular/waxy) were investigated by HPLC following four different sample treatments: (a) simple hot water extraction, (b) extraction after acid hydrolysis, (c) acid plus alpha-amylase hydrolysis, and (d) acid plus alpha-amylase plus cellulase hydrolysis treatments. The benzoic acid (p-hydroxybenzoic, vanillic, and protocatechuic acids) and cinnamic acid derivatives (coumaric, caffeic, ferulic, and chlorogenic acids) were identified, and some of the phenolic acids were quantified after each above-mentioned treatment. The data indicated that a combination of sequential acid, alpha-amylase, and cellulase hydrolysis treatments might be applicable for release of more phenolic acids from barley. PMID:11559137

  20. Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger.

    Science.gov (United States)

    Stratford, Malcolm; Plumridge, Andrew; Pleasants, Mike W; Novodvorska, Michaela; Baker-Glenn, Charles A G; Pattenden, Gerald; Archer, David B

    2012-07-16

    Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from

  1. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole.

    Science.gov (United States)

    Chan, Jeannine; Oshiro, Tyler; Thomas, Sarah; Higa, Allyson; Black, Stephen; Todorovic, Aleksandar; Elbarbry, Fawzy; Harrelson, John P

    2016-04-01

    Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (K(I) = 18.0 µM; k(inact) = 0.056 minute(-1)), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes). PMID:26851241

  2. The effect of methyl jasmonate and phenolic acids on growth of seedlings and accumulation of anthocyanins in common buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2012-12-01

    Full Text Available The effect of methyl jasmonate (JA-Me and phenolic acids: trans-cinnamic acid (t-CA, p-coumaric acid (p-CA, salicylic acid (SA as well as naringenine (NAR on growth of seedlings and accumulation of anthocyanins in common buckwheat (Fagopyrum esculentum Moench were studied. JA-Me and phenolics were applied to growth medium of 4-days etiolated buckwheat seedlings before their exposition to day/night (16h/8h conditions. The increase of primary roots and hypocotyls length were measured after 3 days of seedling growth in such conditions. At the end of experiment the total anthocyanins contents were measured as well. Methyl jasmonate (JA-Me and trans-cinnamic acid (t-CA inhibited growth of the primary root in young buckwheat seedlings, while naringenine (NAR had a stimulatory influence, and p-coumaric acid had no effect at all. None of investigated phenolics or JA-Me had an effect on the growth of buckwheat hypocotyls, except the mixture of JA-Me and p-coumarcic acid. JA-Me significantly decreased the anthocyanins level in buckwheat hypocototyls, but not in cotyledons. trans-Cinnamic acid, p-coumaric acid and naringenine had no significant influence on the anthocyanin level in hypocotyls and cotyledons of buckwheat seedlings. Simultaneous treatment of buckwheat seedlings with JA-Me and t-CA or p-CA did not change the inhibition of anthocyanins accumulation in buckwheat hypocotyls by JA-Me. In the hypocotyls of buckwheat treated with a mixture of JA-Me and NAR, or SA, a synergistic reduction of anthocyanins was observed.

  3. Reduced Lignin Content and Altered Lignin Composition in Transgenic Tobacco Down-Regulated in Expression of L-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase.

    Science.gov (United States)

    Sewalt, VJH.; Ni, W.; Blount, J. W.; Jung, H. G.; Masoud, S. A.; Howles, P. A.; Lamb, C.; Dixon, R. A.

    1997-09-01

    We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors. PMID:12223790

  4. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids

    Directory of Open Access Journals (Sweden)

    Prashant Kaushik

    2015-10-01

    Full Text Available Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.

  5. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    Science.gov (United States)

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-01-01

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids. PMID:26473812

  6. Derivado cinamoílico com atividade no reparo de DNA e outras substâncias de Cinnamomum australe (Lauraceae) DNA-damaging activity of a cinnamate derivative and further compounds from Cinnamomum australe (Lauraceae)

    OpenAIRE

    Carlos Alberto Carbonezi; Márcia Nasser Lopes; Dulce Helena Siqueira Silva; Ângela Regina Araújo; Vanderlan da Silva Bolzani; Maria Claudia Marx Young; Marcelo Rogério da Silva

    2004-01-01

    The bioactive compound trans-3'-methylsulphonylallyl trans-cinnamate (1) along with the inactives iryelliptin (2) and (7R,8S,1'S)-delta8'-3',5'-dimethoxy-1',4'-dihydro-4'-oxo-7.0.2',8.1'-neolignan (3) were isolated from the leaves of Cinnamomum australe. The structures of these compounds were assigned by analysis of 1D and 2D NMR data and comparison with data registered in the literature for these compounds. The DNA-damaging activity of 1 is being described for the first time.

  7. DNA-damaging activity of a cinnamate derivative and further compounds from Cinnamomum australe (Lauraceae); Derivado cinamoilico com atividade no reparo de DNA e outras substancias de Cinnamomum australe (Lauraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Carbonezi, Carlos Alberto; Lopes, Marcia Nasser; Silva, Dulce Helena Siqueira; Araujo, Angela Regina; Bolzani, Vanderlan da Silva [UNESP, Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: bolzaniv@iq.unesp.br; Young, Maria Claudia Marx; Silva, Marcelo Rogerio da [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2004-04-01

    The bioactive compound trans-3'-methylsulphonylallyl trans-cinnamate (1) along with the inactive iryelliptin (2) and (7R,8S,1'S)-{delta}{sup 8'}-3',5'-dimethoxy-1',4'-dihydro-4'-oxo-7.0.2',8.1'-neoli= gnan (3) were isolated from the leaves of Cinnamomum australe. The structures of these compounds were assigned by analysis of 1D and 2D NMR data and comparison with data registered in the literature for these compounds. The DNA-damaging activity of 1 is being described for the first time. (author)

  8. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

    Science.gov (United States)

    Cattò, Cristina; Dell'Orto, Silvia; Villa, Federica; Villa, Stefania; Gelain, Arianna; Vitali, Alberto; Marzano, Valeria; Baroni, Sara; Forlani, Fabio; Cappitelli, Francesca

    2015-01-01

    The natural compound zosteric acid, or p-(sulfoxy)cinnamic acid (ZA), is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i) the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii) the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii) the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process. PMID:26132116

  9. Inhibition of fungal spore adhesion by zosteric Acid as the basis for a novel, nontoxic crop protection technology.

    Science.gov (United States)

    Stanley, Michele S; Callow, Maureen E; Perry, Ruth; Alberte, Randall S; Smith, Robert; Callow, James A

    2002-04-01

    ABSTRACT To explore the potential for nontoxic crop protection technologies based on the inhibition of fungal spore adhesion, we have tested the effect of synthetic zosteric acid (p-(sulfo-oxy) cinnamic acid), a naturally occurring phenolic acid in eelgrass (Zostera marina L.) plants, on spore adhesion and infection in two pathosystems: rice blast caused by Magnaporthe grisea and bean anthracnose caused by Colletotrichum lindemuthianum. We have shown that zosteric acid inhibits spore adhesion to model and host leaf surfaces and that any attached spores fail to develop appressoria, and consequently do not infect leaf cells. Low concentrations of zosteric acid that are effective in inhibiting adhesion are not toxic to either fungus or to the host. The inhibition of spore adhesion in the rice blast pathogen is fully reversible. On plants, zosteric acid reduced (rice) or delayed (bean) lesion development. These results suggest that there is potential for novel and environmentally benign crop protection technologies based on manipulating adhesion.

  10. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    Science.gov (United States)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  11. Simultaneous and selective decarboxylation of L-serine and deamination of L-phenylalanine in an amino acid mixture--a means of separating amino acids for synthesizing biobased chemicals.

    Science.gov (United States)

    Teng, Yinglai; Scott, Elinor L; Witte-van Dijk, Susan C M; Sanders, Johan P M

    2016-01-25

    Amino acids (AAs) obtained from the hydrolysis of biomass-derived proteins are interesting feedstocks for the chemical industry. They can be prepared from the byproduct of biofuel production and agricultural wastes. They are rich in functionalities needed in petrochemicals, providing the opportunity to save energy, reagents, and process steps. However, their separation is required before they can be applied for further applications. Electrodialysis (ED) is a promising separation method, but its efficiency needs to be improved when separating AAs with similar isoelectric points. Thus, specific conversions are required to form product with different charges. Here we studied the enzymatic conversions which can be used as a means to aid the ED separation of neutral AAs. A model mixture containing L-serine, L-phenylalanine and L-methionine was used. The reactions of L-serine decarboxylase and L-phenylalanine ammonia-lyase were employed to specifically convert serine and phenylalanine into ethanolamine and trans-cinnamic acid. At the isoelectric point of methionine (pH 5.74), the charge of ethanolamine and trans-cinnamic acid are +1 and -1, therefore facilitating potential separation into three different streams by electrodialysis. Here the enzyme kinetics, specificity, inhibition and the operational stabilities were studied, showing that both enzymes can be applied simultaneously to aid the ED separation of neutral AAs.

  12. Simultaneous and selective decarboxylation of L-serine and deamination of L-phenylalanine in an amino acid mixture--a means of separating amino acids for synthesizing biobased chemicals.

    Science.gov (United States)

    Teng, Yinglai; Scott, Elinor L; Witte-van Dijk, Susan C M; Sanders, Johan P M

    2016-01-25

    Amino acids (AAs) obtained from the hydrolysis of biomass-derived proteins are interesting feedstocks for the chemical industry. They can be prepared from the byproduct of biofuel production and agricultural wastes. They are rich in functionalities needed in petrochemicals, providing the opportunity to save energy, reagents, and process steps. However, their separation is required before they can be applied for further applications. Electrodialysis (ED) is a promising separation method, but its efficiency needs to be improved when separating AAs with similar isoelectric points. Thus, specific conversions are required to form product with different charges. Here we studied the enzymatic conversions which can be used as a means to aid the ED separation of neutral AAs. A model mixture containing L-serine, L-phenylalanine and L-methionine was used. The reactions of L-serine decarboxylase and L-phenylalanine ammonia-lyase were employed to specifically convert serine and phenylalanine into ethanolamine and trans-cinnamic acid. At the isoelectric point of methionine (pH 5.74), the charge of ethanolamine and trans-cinnamic acid are +1 and -1, therefore facilitating potential separation into three different streams by electrodialysis. Here the enzyme kinetics, specificity, inhibition and the operational stabilities were studied, showing that both enzymes can be applied simultaneously to aid the ED separation of neutral AAs. PMID:25976628

  13. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    Science.gov (United States)

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism.

  14. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    Science.gov (United States)

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature.

  15. Antimicrobial Efficacy of an Array of Essential Oils Against Lactic Acid Bacteria.

    Science.gov (United States)

    Dunn, Laurel L; Davidson, P Michael; Critzer, Faith J

    2016-02-01

    The essential oils of clove bud, cinnamon bark and thyme, and their individual compounds including allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde, cinnamic acid, eugenol, and thymol were initially assessed for antimicrobial activity against 9 lactic acid bacteria (LAB) species. Carvacrol and thymol were the most inhibitory with MICs of 0.1% (v/v and w/v, respectively). Cinnamaldehyde, cinnamon bark oil, clove bud oil, eugenol, and thyme oil were moderately inhibitive (MICs = 0.2% v/v), while cinnamic acid required a concentration of 0.5% (w/v). AIT was not effective with MICs in excess of concentrations tested (0.75% v/v). The bactericidal capability of the oil components carvacrol, cinnamaldehyde, eugenol, and thymol were further examined against Pediococcus acidilactici, Lactobacillus buchneri, and Leuconostoc citrovorum. Thymol at 0.1% (w/v) was bactericidal against L. citrovorum (>4-log reduction), but resulted in a 2-log CFU/mL reduction against L. buchneri and P. acidilactici. Cinnamaldehyde at 0.2% to 0.25% (v/v) was effective against L. citrovorum, L. buchneri, and P. acidilactici, resulting in a >2-log reduction. All 3 organisms were susceptible to 0.2% carvacrol with >3-log reduction observed after exposure for 6 h. Eugenol was the least effective. Concentrations of 0.2% and 0.25% (v/v) were needed to achieve an initial reduction in population, >3-log CFU/mL after 6 h exposure. However, at 0.2%, P. acidilactici and L. buchneri recovered to initial populations in 48 to 72 h. Results indicate essential oils have the capacity to inactivate LAB that are commonly associated with spoilage of shelf stable low-acid foods.

  16. Antimicrobial Efficacy of an Array of Essential Oils Against Lactic Acid Bacteria.

    Science.gov (United States)

    Dunn, Laurel L; Davidson, P Michael; Critzer, Faith J

    2016-02-01

    The essential oils of clove bud, cinnamon bark and thyme, and their individual compounds including allyl isothiocyanate (AIT), carvacrol, cinnamaldehyde, cinnamic acid, eugenol, and thymol were initially assessed for antimicrobial activity against 9 lactic acid bacteria (LAB) species. Carvacrol and thymol were the most inhibitory with MICs of 0.1% (v/v and w/v, respectively). Cinnamaldehyde, cinnamon bark oil, clove bud oil, eugenol, and thyme oil were moderately inhibitive (MICs = 0.2% v/v), while cinnamic acid required a concentration of 0.5% (w/v). AIT was not effective with MICs in excess of concentrations tested (0.75% v/v). The bactericidal capability of the oil components carvacrol, cinnamaldehyde, eugenol, and thymol were further examined against Pediococcus acidilactici, Lactobacillus buchneri, and Leuconostoc citrovorum. Thymol at 0.1% (w/v) was bactericidal against L. citrovorum (>4-log reduction), but resulted in a 2-log CFU/mL reduction against L. buchneri and P. acidilactici. Cinnamaldehyde at 0.2% to 0.25% (v/v) was effective against L. citrovorum, L. buchneri, and P. acidilactici, resulting in a >2-log reduction. All 3 organisms were susceptible to 0.2% carvacrol with >3-log reduction observed after exposure for 6 h. Eugenol was the least effective. Concentrations of 0.2% and 0.25% (v/v) were needed to achieve an initial reduction in population, >3-log CFU/mL after 6 h exposure. However, at 0.2%, P. acidilactici and L. buchneri recovered to initial populations in 48 to 72 h. Results indicate essential oils have the capacity to inactivate LAB that are commonly associated with spoilage of shelf stable low-acid foods. PMID:26749216

  17. Biological evaluation of ferulic acid as potent immunomodulator: An in vitro study

    Directory of Open Access Journals (Sweden)

    Aditya Ganeshpurkar

    2014-01-01

    Full Text Available Objective: The development of immunity and suppression of undesired immune reaction are two of the strategies that are responsible to control the disease. Immunomodulators, which are devoid of any untoward effects, can be administered for a long period for prevention of variety of diseases. Ferulic acid, a hydroxylated cinnamic acid is an abundant phenolic phytochemical found in cell wall of plants. It is one of the important phyto-molecule with diverse therapeutic effects. The current work was proposed to determine in vitro immunomodulatory effects of ferulic acid. Materials and Methods: Nitroblue tetrazolium test, phagocytosis of killed Candida albicans, neutrophil locomotion and chemotaxis test and membrane stabilisation studies were performed to determine immunomodulatory effect of ferulic acid. Results: Ferulic acid caused stimulation of neutrophils causing phagocytotic activity to significant degree. Ferulic acid aroused the process of phagocytosis of killed C. albicans and demonstrated a significant (P < 0.05 chemotactic activity at all tested concentrations. Ferulic acid at concentrations of 50-300 μg/ml demonstrated protection to goat erythrocytes membrane against lysis induced by heat solution. Conclusion: The present study suggests that ferulic acid could be regarded as potential immunomodulatory compound. However, it would be interesting to understand in vivo behaviour of ferulic acid under varied experimental conditions.

  18. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation.

    Science.gov (United States)

    Ghasemzadeh, Ali; Ashkani, Sadegh; Baghdadi, Ali; Pazoki, Alireza; Jaafar, Hawa Z E; Rahmat, Asmah

    2016-01-01

    Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV

  19. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils

    Directory of Open Access Journals (Sweden)

    Beloborodova Natalia

    2012-10-01

    Full Text Available Abstract Background Several low-molecular-weight phenolic acids are present in the blood of septic patients at high levels. The microbial origin of the most of phenolic acids in the human body was shown previously, but pathophysiological role of the phenolic acids is not clear. Sepsis is associated with the excessive production of reactive oxygen species (ROS in both the circulation and the affected organs. In this work the influence of phenolic acids on ROS production in mitochondria and neutrophils was investigated. Methods ROS production in mitochondria and neutrophils was determined by MCLA- and luminol-dependent chemiluminescence. The rate of oxygen consumption by mitochondria was determined polarographically. The difference of electric potentials on the inner mitochondrial membrane was registered using a TPP+-selective electrode. The formation of phenolic metabolites in monocultures by the members of the main groups of the anaerobic human microflora and aerobic pathogenic bacteria was investigated by the method of gas chromatography–mass spectrometry. Results All phenolic acids had impact on mitochondria and neutrophils, the main producers of ROS in tissues and circulation. Phenolic acids (benzoic and cinnamic acids producing the pro-oxidant effect on mitochondria inhibited ROS formation in neutrophils. Their effect on mitochondria was abolished by dithiothreitol (DTT. Phenyllactate and p-hydroxyphenyllactate decreased ROS production in both mitochondria and neutrophils. Bifidobacteria and lactobacilli produced in vitro considerable amounts of phenyllactic and p-hydroxyphenyllactic acids, Clostridia s. produced great quantities of phenylpropionic and p-hydroxyphenylpropionic acids, p-hydroxyphenylacetic acid was produced by Pseudomonas aeruginosa and Acinetobacter baumanii; and benzoic acid, by Serratia marcescens. Conclusions The most potent activators of ROS production in mitochondria are phenolic acids whose effect is mediated via the

  20. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Directory of Open Access Journals (Sweden)

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  1. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Zhang, Li; Li, Xin; Yong, Qiang; Yang, Shang-Tian; Ouyang, Jia; Yu, Shiyuan

    2016-03-01

    Inhibitors generated in the pretreatment and hydrolysis of corn stover and corn cob were identified. In general, they inhibited cell growth, lactate dehydrogenase, and lactic acid production but with less or no adverse effect on alcohol dehydrogenase and ethanol production in batch fermentation by Rhizopus oryzae. Furfural and 5-hydroxymethyl furfural (HMF) were highly toxic at 0.5-1 g L(-1), while formic and acetic acids at less than 4 g L(-1) and levulinic acid at 10 g L(-1) were not toxic. Among the phenolic compounds at 1 g L(-1), trans-cinnamic acid and syringaldehyde had the highest toxicity while syringic, ferulic and p-coumaric acids were not toxic. Although these inhibitors were present at concentrations much lower than their separately identified toxic levels, lactic acid fermentation with the hydrolysates showed much inferior performance compared to the control without inhibitor, suggesting synergistic or compounded effects of the lignocellulose-degraded compounds on inhibiting lactic acid fermentation. PMID:26724548

  2. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    International Nuclear Information System (INIS)

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  3. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  4. 过山蕨中有机酸类化学成分研究%Chemical constituents of organic acid part from Camptosorus sibiricus

    Institute of Scientific and Technical Information of China (English)

    李宁; 李铣; 冯志国; 李雪征; 张鹏

    2007-01-01

    目的 研究过山蕨Camptosorus sibiricus中有机酸类化学成分.方法 采用反复硅胶柱色谱分离纯化,通过理化常数测定和光谱分析鉴定其化学结构.结果 从过山蕨中分离得到了10个有机酸类化合物,即11,12,15-三羟基-13-烯十八碳酸(11,12,15-trihydroxy-13-en-octadecenoic acid Ⅰ)、咖啡酸(caffeic acid,Ⅱ)、香豆酸(courmaric acid,Ⅲ)、原儿茶酸(protocatechuic acid,Ⅳ)、对羟基苯甲酸(4-hydroxybenzoic acid,Ⅴ)、异香草酸(isovanillic acid,Ⅵ)、2,4-二羟基苯甲酸(2,4-dihydroxybenzoic acid,Ⅶ)、肉桂酸(cinnamic acid,Ⅷ)、丁二酸(succinic acid,Ⅸ)、棕榈酸(palmitic acid,Ⅹ).结论 化合物Ⅰ为新化合物,将其命名为过山蕨酸(camptosoric acid),化合物Ⅲ~Ⅹ均为首次从该属植物中分离得到.

  5. 过山蕨中有机酸类化学成分%Chemical constituents of organic acid part from Camptosorus sibiricus Rupr.

    Institute of Scientific and Technical Information of China (English)

    李宁; 李铣; 杨世林

    2006-01-01

    目的研究过山蕨(Camptosorus sibiricus Rupr.)中有机酸类化学成分.方法采用反复硅胶柱层析分离纯化,通过理化常数测定和光谱分析鉴定其化学结构.结果从过山蕨中分离得到了11个有机酸类化合物,即咖啡酸(caffeic acid,1)、香豆酸(courmaric acid,2)、原儿茶酸(protocate-chuic acid,3)、对羟基苯甲酸(4-hydroxybenzoic acid,4)、异香草酸(isovanillic acid,5)、2,4-二羟基苯甲酸(2,4-dihydroxybenzoic acid,6)、肉桂酸(cinnamic acid,7)、丁二酸(succinic acid,8)、棕榈酸(palmitic acid,9)、香豆酸4-O-β-D-吡喃葡萄糖苷(trans-p-coumaric acid-4-O-β-D-glucopyranoside,10)、咖啡酸4-O-β-D-吡喃葡萄糖苷(caffeic acid-4-O-β-D-glucopyranoside,11).结论化合物2~11,均为首次从该属植物中分离得到.

  6. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    Science.gov (United States)

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo. PMID:27181598

  7. Determination of phenolic acids in olive oil by capillary electrophoresis.

    Science.gov (United States)

    Buiarelli, Francesca; Di Berardino, Sonia; Coccioli, Franco; Jasionowska, Renata; Russo, Mario Vincenzo

    2004-01-01

    A CZE method for the separation and quantitation of phenolic acids (cinnamic, syringic, p-coumaric, vanillic, caffeic, 3,4-dihydroxyphenylacetic, protocatechuic), extracted from extra virgin olive oil, was developed. The sample preparation involved the LLE and SPE extraction methods. CE separation was performed in a fused silica capillary of I.D.= 50microm using as a BGE 40 mM borate buffer at pH=9.2. The separation voltage was 18kV with corresponding current of 27-28 microA. Detection was accomplished with UV-detector at lambda=200nm. The proposed method was fully validated. A good repeatability of migration time (RSD% ranged from 0.81 to 1.63) and of corrected peak area (RSD% from 2.89 to 5.77) was obtained. The linearity of detector response in the range from 5 to 50 ppm was checked, obtaining the correlation coefficient R2 values in the range: 0.9919-0.9997. Some phenolic acids in real oil samples were detected and quantified with the proposed method. PMID:15506620

  8. Study of Cinnamic aldehyde effects on expression of E-cadherin and MMP-9 through SHH signaling pathway in lung adenocarcinoma A549 cells%肉桂醛通过Hedgehog信号通路影响人肺腺癌A549细胞的E-cadherin、MMP-9的表达

    Institute of Scientific and Technical Information of China (English)

    郑晓文; 陈一强; 孔晋亮; 张剑锋; 经庆玲

    2014-01-01

    Objective:To investigate Cinnamic aldehyde effects on expression of E-cadherin and MMP-9 and proliferation of lung adenocarcinoma A549 cells,and explore the possible mechanism of Sonic Hedgehog (SHH) signaling transduction.Methods:After co-cultured with Cinnamic aldehyde at the concentration of 0,10,20 and 40 μg/ml for 24 h,48 h and 72 h respectively,A549 cells were tested for their proliferation by MTT assay;E-cadherin and MMP-9 level in the supernatant by ELISA;expression of E-cadherin and MMP-9 mRNA by realtime-PCR with SYBR GreenⅠ;and protein expression by Western blot.Results: ①Cinnamic adehyde with concentration at 10 μg/ml would inhibited proliferation of A 549 cells after 24 hours′treatment;with concentration at 10, 20 and 40μg/ml can affect the proliferation significantly ( P<0.05 );with concentration of 40μg/ml cinnamic adehyde for 72 h,the re-markably inhibition of proliferation in A 549 cells was observed , the highest inhibitory rate was ( 93.782 ±5.036 )%.②Cinnamic aldehyde also increased migration rate of A 549 cells.③Expression of components on Hedgehog signaling pathway in A 549 was higher than that in human HBE cells.Cinnamic aldehyde could increase further upregulate of components expression in Hedgehog signaling pathway of A549 cells.④Secretion level of E-cadherin,mRNA and protein were decreased in A549 cells co-cultured with Cinnamic al-dehyde,while secretion level of MMP-9,mRNA and protein level in A549 cells co-cultured with cinnamic aldehyde were increased.Pre-treatment with 2 nmol/ml cyclopamine,an increasing of secretion level of E-cadherin ,mRNA and protein level in A549 cells was observed,decreasing of secretion level of E-cadhein,mRNA and protein level was also observed in A 549 cells.Conclusion:Cinnamic aldehyde inhibits the proliferation in a time-and dose-dependent manner and effected expression of E-cadherin and MMP-9 through sonic hedgehog signaling pathway in lung adenocarcinoma A 549 cells.%目的:

  9. Synthesis and Antioxidant Activity of Polyhydroxylated trans-Restricted 2-Arylcinnamic Acids

    Directory of Open Access Journals (Sweden)

    Mitko Miliovsky

    2015-02-01

    Full Text Available A series of sixteen polyhydroxylated trans-restricted 2-arylcinnamic acid analogues 3a–p were synthesized through a one-pot reaction between homophthalic anhydrides and various aromatic aldehydes, followed by treatment with BBr3. The structure of the newly synthesized compounds was confirmed by spectroscopic methods and the configuration around the double bond was unequivocally estimated by means of gated decoupling 13C-NMR spectra. It was shown that the trans-cinnamic acid fragment incorporated into the target compounds’ structure ensures the cis-configuration of the stilbene backbone and prevents further isomerization along the carbon–carbon double bond. The antioxidant activity of compounds 3a–p was measured against 1,1-diphenyl-2-picrylhydrazyl (DPPH●, hydroxyl (OH● and superoxide (O2●▬ radicals. The results obtained showed that the tested compounds possess higher activities than natural antioxidants such as protocatechuic acid, caffeic acid and gallic acid. Moreover, it was shown that a combination of two different and independently acting fragments of well-known pharmacological profiles into one covalently bonded hybrid molecule evoke a synergistic effect resulting in higher than expected activity. To rationalize the apparent antioxidant activity and to establish the mechanism of action, a SAR analysis and DFT quantum chemical computations were also performed.

  10. HPLC测定肉桂配方颗粒中的桂皮醛和桂皮酸%Determination of cinnamaldehyde and cinnamic acid in Cinnamon formula granule by HPLC

    Institute of Scientific and Technical Information of China (English)

    成差群; 魏燕华; 谭秀芬; 曾锐

    2009-01-01

    目的 建立测定肉桂配方颗粒中桂皮醛和肉桂酸含量的方法.方法 采用HPLC法,色谱柱为Hydrosphere C_(18)(250mm×4.6 mn,5 μm),流动相为乙腈-水-0.1%磷酸溶液(35:25:40),流速为1.0 mL·min~(-1),检测波长为287 nm.结果 桂皮醛的线性范围为0.75~7.50μg(r=0.9995),平均回收率为98.2%(RSD=1.61%);肉桂酸的线性范围为0.22~1.32μg(r=0.9992),平均回收率为97.9%(RSD=1.32%).结论 所建方法简便、灵敏、准确,专属性较强,可有效地控制肉桂配方颗粒的质量.

  11. HPLC法测定桂枝茯苓丸中桂皮酸、桂皮醛及丹皮酚的含量%Determination of Cinnamic Acid, Cinnamaldehyde and Paeonol in Guizhifuling Pill With HPLC Mehtod

    Institute of Scientific and Technical Information of China (English)

    冯传平

    2009-01-01

    目的:测定桂枝茯苓丸中桂皮酸、桂皮醛及丹皮酚的含量.方法:采用HPLC法,使用Shim-pack CLC-ODS色谱柱(4.6min×150mm;5 μm),乙腈-0.1%磷酸溶液(22:78)为流动相;流速为1.0mL·min-1;检测波长为284nm;柱温为25℃.结果:桂皮酸在0.25-2.50μg·mL-1,桂皮醛在3.60-36.0μg·mL-1,丹皮酚在6.05-60.5μg·L-1呈现良好的线性关系;相关系数分别为0.9998,0.9998,0.9999.桂皮酸的加样回收率为99.1%,RSD%=0.98%n=5);桂皮醛为96.7%,RSD%=0.71%(n=5);丹皮酚为98.8%,RSD%=1.6%(n=5).结论:本方法简便、准确、重复性好,可用于桂枝茯苓丸的质量控制.

  12. 含肉桂酸的聚丁二炔的合成及其可逆热致变色性能研究%Synthesis and Reversible Thermochromic Properties of Polydiacetylenes with Cinnamic Acid Groups

    Institute of Scientific and Technical Information of China (English)

    张磊; 元以中; 田晓慧; 孙金煜

    2015-01-01

    将4-氨基肉桂酸和10,12-二十五碳二炔酸的酰氯衍生物反应得到标题化合物,通过1HNMR、13CNMR、EI-MS和元素分析对其结构进行了表征.将单体超声分散,使其自组装形成囊泡,紫外光照之后得到聚丁二炔溶胶,其变色温度范围为20 ~ 90℃,颜色在紫色和红色之间可逆的变化.采用紫外-可见光谱研究了其热致变色性能,实验结果表明,聚丁二炔溶胶具有完全可逆的、稳定的热致变色性能.

  13. 聚乳酸/肉桂醛复合纳米纤维膜的制备及表征%Preparation and Characterization of ploy(lactic acid)/Cinnamic Aldehyde Composite Nanofiber Membrane

    Institute of Scientific and Technical Information of China (English)

    李林建; 刘俊渤; 唐珊珊; 常海波; 梁大栋

    2014-01-01

    采用水溶液饱和法制备了肉桂醛/β-环糊精包合物,将其添加到聚乳酸(PLA)溶液中,利用静电纺丝技术制备PLA/肉桂醛复合纳米纤维膜.利用扫描电子显微镜(SEM)探讨了静电纺丝条件对PLA纳米纤维膜纤维直径及表面形貌的影响,通过傅里叶变换红外光谱(FTIR)对PLA/肉桂醛复合纳米纤维膜做了特征官能团分析,并对其热力学性能、力学性能及抗菌性能进行了表征.结果表明,制备的PLA/肉桂醛复合纳米纤维膜纤维形态良好,平均直径为175 nm,FT-IR研究显示肉桂醛与PLA之间属于物理混合.该复合纳米纤维膜热分解温度265.52℃,拉伸强度为2.45 MPa,对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌都具有抑菌性,其中对金黄色葡萄球菌的抑菌性最强.

  14. Solubilities of p-coumaric and caffeic acid in ionic liquids and organic solvents

    International Nuclear Information System (INIS)

    Highlights: ► New solubility data of p-coumaric and caffeic acid in ionic liquids and organic solvents. ► Normal melting point temperature and enthalpy of fusion of p-coumaric and caffeic acid. ► Thermogravimetric analysis for p-coumaric and caffeic acid. ► Correlation with UNIQUAC and NRTL. -- Abstract: The solubilities of two cinnamic acid derivatives, namely p-coumaric acid and caffeic acid, in six 1-alkyl-3-methyl imidazolium based ionic liquids composed of the PF6−, BF4−, TFO− and TF2N− anions, and in two organic solvents, t-pentanol and ethyl acetate, have been measured at the temperature range of about (303 to 317) K. The p-coumaric acid was found to be more soluble than caffeic acid in all studied solvents. Higher solubilities of both acids were observed in the ionic liquids composed of the BF4− and TFO− anions. The increase of the alkyl chain length on the cation invokes a decrease in solubility in the case of hydrophilic ionic liquids composed of BF4− anion, while in the case of hydrophobic ones composed of PF6− anion an increase in the solubility is observed. Between the two organic solvents t-pentanol is better solvent than ethyl acetate for both acids. Moreover, using the van’t Hoff equations the apparent Gibbs energy, enthalpy, and entropy of solution were calculated. Finally, successful correlation of the experimental data was achieved with the UNIQUAC and the NRTL activity coefficient models, while poor predictions of the solubility of the two acids in the organic solvents were obtained with two UNIFAC models

  15. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    Directory of Open Access Journals (Sweden)

    Dominik Szwajgier

    2011-09-01

    Full Text Available Background. Ferulic acid esterases (FAE, EC 3.1.1.73, also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflora composed among others also of Lactobacillus strains. The aim of this study was to examine four Lactobacillus strains (L. acidophilus K1, L. rhamnosus E/N, PEN, OXYfor the ability to produce extracellular FAE on different synthetic and natural carbon sources. Material and methods. The LAB strains were grown in the minimal growth media using German wheat bran, rye bran, brewers’ spent grain, isolated larchwood arabinogalactan, apple pectin, corn pectin, methyl ferulate, methyl p-coumarate, methyl syringate or methyl vanillate as the sole carbon source. FAE activity was determined using the post-cultivation supernatants, methyl ferulate and HPLC with UV detection. Results. The highest FAE activity was obtained with L. acidophilus K1 and methyl ferulate (max. 23.34 ±0.05 activity units and methyl p-coumarate (max. 14.96 ±0.47 activity units as carbon sources. L. rhamnosus E/N, OXY and PEN exhibited the limited ability to produce FAE with cinnamic acids methyl esters. Methyl syringate and methyl vanillate (MS and MV were insufficient carbon sources for FAE production. Brewers’ spent grain was the most suitable substrate for FAE production by L. acidophilus K1 (max. 2.64 ±0.06 activity units and L. rhamnosus E/N, OXY and PEN. FAE was also successfully induced by natural substrates rye bran, corn pectin (L. acidophilus K1, German wheat bran and larchwood arabinogalactan (E/N, PEN or German wheat bran and corn pectin (OXY. Conclusions. This study proved the

  16. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Directory of Open Access Journals (Sweden)

    Dongdong Li

    Full Text Available A comprehensive investigation of abscisic acid (ABA biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  17. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Science.gov (United States)

    Li, Dongdong; Li, Li; Luo, Zisheng; Mou, Wangshu; Mao, Linchun; Ying, Tiejin

    2015-01-01

    A comprehensive investigation of abscisic acid (ABA) biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker) treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA) and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  18. Folic Acid

    Science.gov (United States)

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  19. Amino acids

    Science.gov (United States)

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  20. Effect of Cooking on Isoflavones, Phenolic Acids, and Antioxidant Activity in Sprouts of Prosoy Soybean (Glycine max).

    Science.gov (United States)

    Kumari, Shweta; Chang, Sam K C

    2016-07-01

    Soy sprouts possess health benefits and is required to be cooked before consumption. The effects of cooking on the phenolic components and antioxidant properties of soy sprouts with different germination days were investigated. A food-grade cultivar Prosoy with a high protein content was germinated for 1, 2, 3, 5, and 7 d and cooked till palatable for 20, 20, 5, 5, and 7 min, respectively. Total phenolic content (TPC), total flavonoids content (TFC), condensed tannins content (CTC), individual phenolic acids, isoflavones, DPPH, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) of raw and cooked sprouts were measured. Cooking caused significant losses in phenolic content and antioxidant activities, and maximum loss was on day 3 > 5 > 7, including TPC (32%, 23%, and 15%), TFC (50%, 44%, and 20%), CTC (73%, 47%, and 12%), DPPH (31%, 15%, and 5%), FRAP (34%, 25%, and 1%), and ORAC (34%, 22%, 32%), respectively. Cooking caused significant losses in most individual phenolic acid, benzoic group, cinnamic group, total phenolic composition, individual isoflavones, and total isoflavones. The losses of phenolic acids such as gallic, protocatechuic, hydroxybenzoic, syringic, chlorogenic, or sinapic acids during cooking were not compensated by the increases in trihydroxybenzoic, vanillic or coumaric acids on certain days of germination. Cooking caused minimal changes in phenolic acid composition of day 1 and 2 sprouts compared to 3, 5, and 7 d sprouts. PMID:27258930

  1. Preparation of a graphene oxide/silica composite modified with nitro-substituted tris(indolyl)methane as a solid-phase extraction sorbent for the extraction of organic acids.

    Science.gov (United States)

    Wang, Na; Yu, Hui; Shao, Shijun

    2016-05-01

    This paper describes the use of graphene oxide/silica modified with nitro-substituted tris(indolyl)methane as a solid-phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro-substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid-phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1-100 μg/L for benzoic acid, p-methoxybenzoic acid, and salicylic acid and 5-100 μg/L for the remaining organic acids (cinnamic acid, p-chlorobenzoic acid, and p-bromobenzoic acid) with coefficients of determination (r(2) ) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples. PMID:26969351

  2. Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity.

    Science.gov (United States)

    Tao, Li; Wang, Sheng; Zhao, Yang; Sheng, Xiaobo; Wang, Aiyun; Zheng, Shizhong; Lu, Yin

    2014-09-25

    Integrated research of herbs and formulas characterized by functions of promoting blood circulation and removing blood stasis is one of the most active fields in traditional Chinese medicine. This paper strives to demonstrate the roles of a homologous series of phenolcarboxylic acids from these medicinal herbs in cancer treatment via targeting cyclooxygenase-2 (COX-2), a well-recognized mediator in tumorigenesis. We selected thirteen typical phenolcarboxylic acids (benzoic acid derivatives, cinnamic acid derivatives and their dehydration-condensation products), and found gallic acid, caffeic acid, danshensu, rosmarinic acid and salvianolic acid B showed 50% inhibitory effects on hCOX-2 activity and A549 cells proliferation. 2D-quantitative method was introduced to describe the potential structural features that contributed to certain bioactivities. We also found these compounds underwent responsible hydrogen bonding to Arg120 and Ser353 in COX-2 active site residues. We further extensively focused on danshensu [d-(+)-β-(3,4-dihydoxy-phenylalanine)] or DSS, which exerted COX-2 dependent anticancer manner. Both genetic and pharmacological inhibition of COX-2 could enhance the ability of DSS inhibiting A549 cells growth. Additionally, COX-2/PGE2/ERK signaling axis was essential for the anticancer effect of DSS. Furthermore, combined treatment with DSS and celecoxib could produce stronger anticancer effects in experimental lung metastasis of A549 cells in vivo. All these findings indicated that phenolcarboxylic acids might possess anticancer effects through jointly targeting COX-2 activity in cancer cells and provided strong evidence in cancer prevention and therapy for the herbs characterized by blood-activating and stasis-resolving functions in clinic. PMID:24916702

  3. Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure.

    Science.gov (United States)

    Kim, Min Young; Lee, Sang Hoon; Jang, Gwi Yeong; Li, Meishan; Lee, Youn Ri; Lee, Junsoo; Jeong, Heon Sang

    2017-02-15

    This study was performed to investigate changes in the phenolic acid and vitamin E profiles of germinated rough rice following high hydrostatic pressure treatment (HPT). Rough rice was germinated at 37°C for two days and subjected to 0.1, 10, 30, 50, and 100MPa pressures for 24h. The total phenolic acid content increased from 85.37μg/g at 0.1MPa to 183.52μg/g at 100MPa. The highest gallic acid (4.29μg/g), catechin (9.55μg/g), p-coumaric acid (8.36μg/g), ferulic acid (14.99μg/g), salicylic acid (14.88μg/g), naringin (6.18μg/g), trans-cinnamic acid (45.23μg/g), and kaempferol (40.95μg/g) contents occurred in the sample treated at 100MPa after germination. The maximum vitamin E content of about 2.56 (BG) and 4.34mg/100g (AG) were achieved at 30MPa. These result suggest that a combination of HPT and germination are efficient method for enhancement of functionality in rough rice, and clarify the influence of HPT conditions on the vitamin E and phenolic acid in germination rough rice. PMID:27664614

  4. Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species

    Institute of Scientific and Technical Information of China (English)

    Ilkay Erdogan Orhan; Nilgun Ozturk; Bilge Sener

    2015-01-01

    Objective: To explore some Fumaria species which were recorded to be traditionally used against malaria and other protozoal diseases. Methods: Consequently, in the current study, antiprotozoal effect of the ethanol extracts obtained from five Fumaria species (Fumaria densiflora, Fumaria cilicica, Fumaria rostellata, Fumaria kralikii, and Fumaria parviflora) was investigated against the parasites; Plasmodium falciparum (malaria) and Trypanosoma bruceirhodesiense (human African trypanosomiasis) at 0.81 and 4.85 μg/mL concentrations. Results: Among them, Fumaria densiflora extract exerted the highest antiplasmodial (93.80%) and antitrypanasomal effect (55.40%), while the ethanol extracts of Fumaria kralikii (43.45%) and Fumaria rostellata (41.65%) showed moderate activity against Plasmodium falciparum. Besides, phenolic acid contents of the extracts were analyzed using high performance liquid chromatography (HPLC) and trans-cinnamic (4.32 mg/g) and caffeic (3.71 mg/g) acids were found to be the dominant phenolic acids in Fumaria densiflora. Conclusions: According to our results, Fumaria densiflora deserve further study for its promising antiprotozoal activity.

  5. Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid.

    Directory of Open Access Journals (Sweden)

    Cristina Cattò

    Full Text Available The natural compound zosteric acid, or p-(sulfoxycinnamic acid (ZA, is proposed as an alternative biocide-free agent suitable for preventive or integrative anti-biofilm approaches. Despite its potential, the lack of information concerning the structural and molecular mechanism of action involved in its anti-biofilm activity has limited efforts to generate more potent anti-biofilm strategies. In this study a 43-member library of small molecules based on ZA scaffold diversity was designed and screened against Escherichia coli to understand the structural requirements necessary for biofilm inhibition at sub-lethal concentrations. Considerations concerning the relationship between structure and anti-biofilm activity revealed that i the para-sulfoxy ester group is not needed to exploit the anti-biofilm activity of the molecule, it is the cinnamic acid scaffold that is responsible for anti-biofilm performance; ii the anti-biofilm activity of ZA derivatives depends on the presence of a carboxylate anion and, consequently, on its hydrogen-donating ability; iii the conjugated aromatic system is instrumental to the anti-biofilm activities of ZA and its analogues. Using a protein pull-down approach, combined with mass spectrometry, the herein-defined active structure of ZA was matrix-immobilized, and was proved to interact with the E. coli NADH:quinone reductase, WrbA, suggesting a possible role of this protein in the biofilm formation process.

  6. Folic Acid

    Science.gov (United States)

    ... found naturally in some foods, including leafy vegetables, citrus fruits, beans (legumes), and whole grains. Folic acid ... mcg of folic acid every day for good health. But older adults need to be sure they ...

  7. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies.

    Science.gov (United States)

    Kanski, Jaroslaw; Aksenova, Marina; Stoyanova, Antonia; Butterfield, D Allan

    2002-05-01

    In this study, free radical scavenging abilities of ferulic acid in relation to its structural characteristics were evaluated in solution, cultured neurons, and synaptosomal systems exposed to hydroxyl and peroxyl radicals. Cultured neuronal cells exposed to the peroxyl radical initiator AAPH die in a dose-response manner and show elevated levels of protein carbonyls. The presence of ferulic acid or similar phenolic compounds, however, greatly reduces free radical damage in neuronal cell systems without causing cell death by themselves. In addition, synaptosomal membrane systems exposed to oxidative stress by hydroxyl and peroxyl radical generators show elevated levels of oxidation as indexed by protein oxidation, lipid peroxidation, and ROS measurement. Ferulic acid greatly attenuates these changes, and its effects are far more potent than those obtained for vanillic, coumaric, and cinnamic acid treatments. Moreover, ferulic acid protects against free radical mediated changes in conformation of synaptosomal membrane proteins as monitored by EPR spin labeling techniques. The results presented in this study suggest the importance of naturally occurring antioxidants such as ferulic acid in therapeutic intervention methodology against neurodegenerative disorders such as Alzheimer's disease in which oxidative stress is implicated.

  8. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte;

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  9. Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo

    OpenAIRE

    Jung-Chun Liao; Jeng-Shyan Deng; Chuan-Sung Chiu; Wen-Chi Hou; Shyh-Shyun Huang; Pei-Hsin Shie; Guang-Jhong Huang

    2012-01-01

    We have investigated the anti-inflammatory effects of Cinnamomum cassia constituents (cinnamic aldehyde, cinnamic alcohol, cinnamic acid, and coumarin) using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) and carrageenan (Carr)-induced mouse paw edema model. When RAW264.7 macrophages were treated with cinnamic aldehyde together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF- α ), and prostaglandin E2 (PGE2) levels p...

  10. Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection.

    Science.gov (United States)

    Irakli, Maria N; Samanidou, Victoria F; Biliaderis, Costas G; Papadoyannis, Ioannis N

    2012-07-01

    An analytical method based on an optimized solid-phase extraction procedure and followed by high-performance liquid chromatography (HPLC) separation with diode array detection was developed and validated for the simultaneous determination of phenolic acids (gallic, protocatechuic, 4-hydroxy-benzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, and cinnamic acids), flavanols (catechin and epicatechin), flavonols (myricetin, quercetin, kaempferol, quercetin-3-O-glucoside, hyperoside, and rutin), flavones (luteolin and apigenin) and flavanones (naringenin and hesperidin) in rice flour (Oryza sativa L.). Chromatographic separation was carried out on a PerfectSil Target ODS-3 (250 mm × 4.6 mm, 3 μm) column at temperature 25°C using a mobile phase, consisting of 0.5% (v/v) acetic acid in water, methanol, and acetonitrile at a flow rate 1 mL min(-1) , under gradient elution conditions. Application of optimum extraction conditions, elaborated on both Lichrolut C(18) and Oasis HLB cartridges, have led to extraction of phenolic acids and flavonoids from rice flour with mean recoveries 84.3-113.0%. The developed method was validated in terms of linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 5) and inter-day precision (n = 4) revealed relative standard deviation (RSD) acids and flavonoids in pigmented (red and black rice) and non-pigmented rice (brown rice) samples. PMID:22761138

  11. 太白米的酚酸类成分研究%PHENOLIC ACIDS FROM THE BULBS OF NOTHOLIRION BULBULIFERUM

    Institute of Scientific and Technical Information of China (English)

    屠鹏飞; 吴卫中; 郑俊华

    1999-01-01

    目的: 研究太白米Notholirion bulbuliferum(Lingelish.) Stearn干燥小鳞茎的化学成分.方法: 采用硅胶柱色谱分离化学成分,IR,1HNMR,13CNMR,MS等方法进行结构鉴定.结果: 从正丁醇萃取物中分离鉴定了6个酚酸类成分,分别为对香豆酸甲酯(methyl p-coumarate,I)、对甲氧基肉桂酸(p-methoxy cinnamic acid,II)、对香豆酸(p-coumaric acid,III)、阿魏酸(ferulic acid,IV)、咖啡酸乙酯(ethyl caffeate,V)、1-O-咖啡酰甘油酯(1-O-caffeoyl glycerol,VI);另外,从其石油醚萃取物和氯仿萃取物中分离鉴定了β-谷甾醇(VII)、β-谷甾醇葡萄糖苷(IX)和正二十八酸(VIII).结论: 化合物VI为新化合物,其它化合物均为首次从本植物中分离得到.

  12. [Gastric Acid].

    Science.gov (United States)

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  13. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    Science.gov (United States)

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin. PMID:25921651

  14. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    Science.gov (United States)

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  15. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    Science.gov (United States)

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  16. Sensitive determination of organic acid preservatives in juices and soft drinks treated by monolith-based stir cake sorptive extraction and liquid chromatography analysis.

    Science.gov (United States)

    Lin, Fuhua; Nong, Shuyu; Huang, Xiaojia; Yuan, Dongxing

    2013-02-01

    A simple, efficient, and sensitive method for simultaneous determination of sorbic acid (SA), benzoic acid (BA), and cinnamic acid (CA) in juices and soft drinks was developed by stir cake sorptive extraction (SCSE) coupling to high-performance liquid chromatography with diode array detection. The SCSE based on polymeric ionic liquid-based monolith (PILM) as extractive medium was used to concentrate these three organic acid preservatives. Because hydrophobic and ion-exchange interactions co-contributed to the extraction, the PILM-SCSE exhibited a high extractive capability towards analytes. To obtain optimum extraction performance, several SCSE parameters were investigated and discussed, including desorption solvent, pH value, ionic strength in the sample matrix, and the extraction and desorption time. Under the optimized extraction conditions, limits of detection of 0.16, 1.08, and 0.18 μg/L (S/N=3) and quantification limits of 0.52, 3.42, and 0.61 (S/N=10) were obtained for SA, BA, and CA, respectively. The method also showed good linearity and reproducibility, as well as advantages such as simplicity, low cost, and high feasibility. Finally, the proposed method was successfully applied to the determination of SA, BA, and CA in real juices and soft drinks, and the recoveries ranged from 63.0 to 107 %.

  17. Lignan enhancement in hairy root cultures of Linum album using coniferaldehyde and methylenedioxycinnamic acid.

    Science.gov (United States)

    Ahmadian Chashmi, Najmeh; Sharifi, Mohsen; Behmanesh, Mehrdad

    2016-07-01

    Feeding experiments with hairy root cultures of Linum album have established that the extracellular coniferaldehyde is a good precursor for production of two lignans: lariciresinol (LARI) and pinoresinol (PINO). The accumulation of the LARI, PINO, and podophyllotoxin (PTOX) in hairy roots were enhanced about 14.8-, 8.7-, and 1.5-fold (107.61, 8.7 and 6.42 µg g(-1) Fresh Wight), respectively, by the addition of coniferaldehyde (2 mM) to the culture media (after 24 hr). This result was correlated with an increase pinoresinol/lariciresinol reductase (PLR) expression gene and cinnamyl alcohol dehydrogenase (CAD) activity in the fed hairy roots. Adding 3,4-(methylendioxy)cinnamic acid (MDCA) precursor did not influence on the lignans accumulation, but the lignin content of the hairy roots was increased. Moreover, the expression genes of phenylalanine ammonialyase (PAL), CAD, and cinnamoyl-CoA reductase (CCR) were influenced after feeding hairy roots with MDCA.

  18. Fluorescence spectroscopy as a means of distinguishing fulvic and humic acids from dissolved and sedimentary aquatic sources and terrestrial sources

    Science.gov (United States)

    Senesi, Nicola; Miano, Teodoro M.; Provenzano, Maria Rosaria

    Thirteen fulvic acids (FA) and humic acids (HA) isolated from river waters and sediment, marine sediments, leonardite, soils, and paleosol, have been investigated by fluorescence spectroscopy in the emission, excitation and, partly, synchronous scan excitation modes. Emission spectra are generally characterized by a unique broad band, whereas excitation spectra exhibit a variable number of peaks or shoulders of various intensity; these peaks are particularly well-resolved for sedimentary HA samples. A decrease in the relative intensity of fluorescence, which is associated with a red-shift (longer wavelengths) of both the emission maximum and the main excitation peaks, is observed when passing from dissolved aquatic and soil FA to river and marine sedimentary HA, to leonardite and soil HA, and, finally, to paleosol HA. Evident differences are shown in the relative intensity and wavelength maxima, measured in any mode, between soil FA and HA from the same source. For FA and HA of various nature and origin, the fluorescence is suggested to be caused by chemically different structural units. These units fluoresce from the blue-violet to the green and consist of variously extended, condensed, aromatic and/or heterocyclic ring systems, with a high degree of electronic conjugation and bearing suitable hydroxyl, alkoxyl and carbonyl groups (e.g. salicyl, cinnamic and hydroxybenzoic derivatives, naphtols, naphtoquinones, coumarin), and quinoline-derivatives, flavonoids and Schiffbase derivatives. Fluorescence properties of humic substances may represent an additional diagnostic criterium useful in distinguishing between FA and HA from the same or various natural sources.

  19. Production of tranilast [N-(3',4'-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Eudes, Aymerick; Baidoo, Edward E K; Yang, Fan; Burd, Helcio; Hadi, Masood Z; Collins, F William; Keasling, Jay D; Loqué, Dominique

    2011-02-01

    Biological synthesis of therapeutic drugs beneficial for human health using microbes offers an alternative production strategy to the methods that are commonly employed such as direct extraction from source organisms or chemical synthesis. In this study, we evaluated the potential for yeast (Saccharomyces cerevisiae) to be used as a catalyst for the synthesis of tranilast and various tranilast analogs (cinnamoyl anthranilates). Several studies have demonstrated that these phenolic amides have antioxidant properties and potential therapeutic benefits including antiinflammatory, antiproliferative, and antigenotoxic effects. The few cinnamoyl anthranilates naturally produced in plants such as oats and carnations result from the coupling of various hydroxycinnamoyl-CoAs to anthranilic acid. In order to achieve the microbial production of tranilast and several of its analogs, we engineered a yeast strain to co-express a 4-coumarate/CoA ligase (4CL, EC 6.2.1.12) from Arabidopsis thaliana and a hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT, EC 2.3.1.144) from Dianthus caryophyllus. This modified yeast strain allowed us to produce tranilast and 26 different cinnamoyl anthranilate molecules within a few hours after exogenous supply of various combinations of cinnamic acids and anthranilate derivatives. Our data demonstrate the feasibility of rapidly producing a wide range of defined cinnamoyl anthranilates in yeast and underline a potential for the biological designed synthesis of naturally and non-naturally occurring molecules.

  20. Stearic Acid

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  1. Perfluorooctanoic acid

    NARCIS (Netherlands)

    P. de Voogt

    2014-01-01

    Perfluorooctanoic acid (PFOA, 335-67-1) is used in fluoropolymer production and firefighting foams and persists in the environment. Human exposure to PFOA is mostly through the diet. PFOA primarily affects the liver and can cause developmental and reproductive toxic effects in test animals.

  2. Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae).

    Science.gov (United States)

    Skrzypczak-Pietraszek, Ewa; Pietraszek, Jacek

    2012-07-01

    Melittis melissophyllum L. is an old medicinal plant. Nowadays it is only used in the folk medicine but formerly it has been applied in the official medicine as a natural product described in French Pharmacopoeia. M. melissophyllum herbs used in our studies were collected from two localities in Poland in May and September. Methanolic plant extracts were purified by means of solid-phase extraction and then analysed by HPLC-DAD for their phenolic acid profile. Eleven compounds were identified in all plant samples and quantitatively analysed as: protocatechuic, chlorogenic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, o-coumaric and cinnamic acid. Plant materials contained free and bound phenolic acids. The main compounds were: p-hydroxybenzoic acid (30.21-54.16 mg/100 g dw and 37.04-56.75 mg/100 g dw, free and bound, respectively) and p-coumaric acid (40.48-80.55 mg/100 g dw and 28.09-40.85 mg/100 g dw, free and bound, respectively). The highest amounts of the investigated compounds were found in all samples collected in September, e.g. p-hydroxybenzoic acid (September 51.72-54.16 mg/100 g dw vs. May 30.21-34.07 mg/100 g dw), p-coumaric acid (September 77.14-80.55 mg/100 g dw vs. May 40.48-43.2 5mg/100 g dw). Multivariate statistical and data mining techniques, such as cluster analysis (CA) and principal component analysis (PCA), were used to characterize the sample populations according to the geographical localities, vegetation period and compound form (free or bound). To the best of our knowledge we report for the first time the results of quantitative analysis of M. melissophyllum phenolic acids and seasonal variation of their content. Plant herbs are usually collected at flowering for plant derived medical preparations. Our results show that it is not always the optimal time for the highest contents of active compounds. PMID:22513117

  3. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  4. Hydrofluoric acid poisoning

    Science.gov (United States)

    Fluorhydric acid ... stomach, or intestine have holes (perforations) from the acid. ... Hydrofluoric acid is especially dangerous. The most common accidents involving hydrofluoric acid cause severe burns on the skin ...

  5. Understanding Acid Rain

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  6. Okadaic acid

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K

    2014-01-01

    was studied at the electron microscopic level using the membrane-impermeable marker Ruthenium Red (RR). Like FM dye, RR was taken up into TWEEs and multivesicular bodies (MVBs). However, OA induced the formation of a large number of lamellar bodies (LBs), a type of lysosome-related organelles. LBs...... hyper protein phosphorylation, but no detectable loss of cell polarity or cytoskeletal integrity of the enterocytes. Using a fluorescent membrane marker, FM dye, endocytosis from the brush border was affected by the toxin. Although constitutive uptake into subapical terminal web-localized early...... in acidic organelles, implying a different toxic mechanism of action. We propose that rapid induction of LBs, an indicator of phospholipidosis, should be included in the future toxicity profile of OA....

  7. Dehydroabietic acid

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rao

    2009-10-01

    Full Text Available The title compound [systematic name: (1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent molecules exist in the asymmetric unit. In each molecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by intermolecular O—H...O hydrogen bonds.

  8. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  9. Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

    International Nuclear Information System (INIS)

    Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with α-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of 10-5-10-4 for peptides and 10-8-10-7 for matrices are far smaller than 10.3-10.1 for peptides and 10-5-10-3 for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase

  10. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast

    Science.gov (United States)

    Keil, Richard G.; Tsamakis, Elizabeth; Giddings, J. Calvin; Hedges, John I.

    1998-04-01

    In order to examine relationships of organic matter source, composition, and diagenesis with particle size and mineralogy in modern marine depositional regimes, sediments from the continental shelf and slope along the Northwest Pacific rim (Washington coast, USA) were sorted into hydrodynamic size fractions (sand: >250, 63-250 μm; silt: 35-63, 17-35, 8-17, 3-8 μm; and clay-sized: 1-3, 0.5-1, fucose and rhamnose. Organic matter in the silt fractions, though degraded, is not as diagenetically altered as in the clay fractions. Enrichment of pollen grains in the silt-size material is reflected by high cinnamic acid to ferulic acid lignin phenol ratios. The highest pollen biochemical signal is observed in the silt fractions of the deepest station (1835 m), where pollen abundances are also highest. Organic matter tightly bound in the silt and sand-sized fractions are enriched in aldoses and show indications of enhanced microbial biomass as reflected by high weight percentages of ribose. Distinct organic debris was composed of relatively unaltered vascular plant remains as reflected by high lignin phenol yields and low acid/aldehyde ratios. Clay-size fractions are enriched in nitrogenous components, as reflected by elevated yields of total and basic amino acids (especially lysine). Silt- and sand-size fractions rich in quartz and albite show slightly higher yields of neutral amino acids. Consistent trends across all size classes and among the different depositional settings illustrates that only a small portion of the organic matter is present as distinct organic debris (e.g. pollen, vascular plant tissues, etc.), but that this debris can be isolated in specific size classes. The data for surface-associated organic matter are consistent with, but not conclusive of, selective partitioning of some organic matter to specific mineral surfaces. The dominant size class-specific trends in organic matter composition are due to changes in both source and diagenetic alteration.

  11. Retarded acid emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Fast, C.R.; Rixe, F.H.; Duffield, E.L. Jr.

    1972-08-01

    Compositions for use in acidizing hydrocarbon-bearing formations are described. Retarded acid emulsions of prolonged stability make it possible for the acid in this form to be displaced substantial distances out into the formation before becoming spent. The action of acid emulsions for use in acidizing hydrocarbon-bearing formations is prolonged by employing as the principal emulsifying agent an amine salt of dodecylbenzene sulfonic acid. Acid emulsions employing the amine salt of dodecylbenzene sulfonic acid exhibit greater stability than those employing the free acid. (8 claims)

  12. 外源酚酸对盆栽大豆苗期生长发育影响研究%Effects of Exogenous Phenolic Acids on Allelo-pathy of Potted Soybean Seedlings

    Institute of Scientific and Technical Information of China (English)

    陈龙; 张美玲; 辛明月; 李建东

    2015-01-01

    In this study, several general y reported exogenous phenolic acids were selected as regents for potting experiments, aiming at revealing the effects of differ-ent concentrations of exogenous phenolic acids on the growth and development of soybean seedlings. The growth and development indicators of soybean seedlings treated with five different concentrations of exogenous phenolic acids, such as plant height, leaf area, root nodule number and root-shoot ratio, were determined and compared. According to the experimental results, three exogenous phenolic acids with different concentrations exhibited slight effects on plant height of potted soy-bean seedlings. The leaf area of potted soybean seedlings treated with 1.0 g/kg benzoic acid and cinnamic acid varied extremely significantly compared with the control. Root nodule number of potted soybean seedlings treated with 1.0 g/kg ben-zoic acid and vanil ic acid increased remarkably, but 1.0 g/kg cinnamic acid had lit-tle effects on root nodule number. When the concentration of phenolic acids was 1.0 g/kg, three phenolic acids exhibited the maximum effects on root-shoot ratio of potted soybean seedlings. Overal , low concentrations of exogenous phenolic acids exhibited no significant effects on the growth and development of potted soybean seedlings; high concentrations of exogenous phenolic acids inhibited the growth and development of potted soybean shoots, increased root nodule number and improved root-shoot ratio.%以普遍报道的几种外源酚酸为试剂,通过盆栽实验,旨在探讨不同浓度外源酚酸对苗期大豆生长发育的影响。通过设置5种不同浓度外源酚酸的盆栽试验,测定不同浓度外源酚酸对盆栽大豆苗期生长发育指标影响。结果表明不同浓度3种外源酚酸对苗期大豆株高的影响总体较小。1.09 g/kg苯甲酸处理和肉桂处理的苗期大豆叶面积与对照差异达到极显著水平。1.09 g/kg苯甲酸处理和香草酸处理均

  13. Acid Lipase Disease

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage Disease, ... Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs when ...

  14. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  15. POLYELEOSTEARIC ACID VESICLES

    Institute of Scientific and Technical Information of China (English)

    LI Zichen; XIE Ximng; FAN Qinghua; FANG Yifei

    1992-01-01

    α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solutionofeleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.

  16. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  17. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    Science.gov (United States)

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (

  18. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    Science.gov (United States)

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (

  19. Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jung-Chun Liao

    2012-01-01

    Full Text Available We have investigated the anti-inflammatory effects of Cinnamomum cassia constituents (cinnamic aldehyde, cinnamic alcohol, cinnamic acid, and coumarin using lipopolysaccharide (LPS-stimulated mouse macrophage (RAW264.7 and carrageenan (Carr-induced mouse paw edema model. When RAW264.7 macrophages were treated with cinnamic aldehyde together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO, tumor necrosis factor (TNF-α, and prostaglandin E2 (PGE2 levels productions were detected. Western blotting revealed that cinnamic aldehyde blocked protein expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, nuclear transcription factor kappa B (NF-κB, and IκBα, significantly. In the anti-inflammatory test, cinnamic aldehyde decreased the paw edema after Carr administration, and increased the activities of catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx in the paw tissue. We also demonstrated cinnamic aldehyde attenuated the malondialdehyde (MDA level and myeloperoxidase (MPO activity in the edema paw after Carr injection. Cinnamic aldehyde decreased the NO, TNF-α, and PGE2 levels on the serum level after Carr injection. Western blotting revealed that cinnamic aldehyde decreased Carr-induced iNOS, COX-2, and NF-κB expressions in the edema paw. These findings demonstrated that cinnamic aldehyde has excellent anti-inflammatory activities and thus has great potential to be used as a source for natural health products.

  20. 蝉翼藤茎中有机酸成分的研究%Organic Acid Constituents from the Stem of Securidaca inappendiculata Hassk.

    Institute of Scientific and Technical Information of China (English)

    杨学东; 徐丽珍; 杨世林

    2001-01-01

    Objective:To investigate the organic acid constituents from the stem of Securidaca inappendiculata.Method:Column chromatographic techniques were used to isolate and purify the constituents.The structures were elucidated by spectra analysis.Result:Five compounds were isolated and identified as ferulic acid(Ⅰ), cinnamic acid(Ⅱ), palmic acid(Ⅲ), salicylic acid(Ⅳ) and benzoic acid(Ⅴ).Conclusion:Compounds Ⅰ~Ⅳ were isolated from the plant for the first time.%目的:对蝉翼藤茎中有机酸成分进行化学研究。方法:各种色谱技术进行分离纯化,理化性质和光谱分析进行结构鉴定。结果:分离得到5个有机酸类化合物,分别鉴定为阿魏酸(Ⅰ)、肉桂酸(Ⅱ)、棕榈酸(Ⅲ)、水杨酸(Ⅳ) 和苯甲酸(Ⅴ)。结论:化合物Ⅰ~Ⅳ为首次从该属植物中分离得到。

  1. AcEST: DK961272 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ydroxylase OS=Agastache ... 263 7e-69 tr|Q0QDS3|Q0QDS3_9BORA Cinnamic acid 4-hydroxylase OS=Arnebia eu... 26...GIVLRRRLQLMM 182 >tr|Q0QDS3|Q0QDS3_9BORA Cinnamic acid 4-hydroxylase OS=Arnebia euchroma PE=2 SV=2 Length =

  2. Simultaneous Determination of Cumarin,Cinnamyl Alcohol,Cinnamic Acid and Cinnamaldehyde in Cortex Cinnamomi by HPLC%HPLC同时测定肉桂中香豆素、桂皮醇、桂皮酸、桂皮醛的含量

    Institute of Scientific and Technical Information of China (English)

    陈行敏; 吴春敏; 谢敏

    2010-01-01

    目的 建立反相高效液相色谱法测定肉桂药材中香豆素、桂皮醇、桂皮酸、桂皮醛的含量.方法 色谱柱为Hypersil C18(4.6 mm×250 mm,5 μm);流动相:乙腈-0.1%磷酸(28:72);流速:1 mL·min-1;测定波长:280,254 nm;柱温:30℃.结果 4种成分分离良好,均有良好的线性范围,分别为香豆素0.035 4~1.768μg(r=1.000),桂皮醇0.020 2~1.008μg(r=1.000),桂皮酸0.026 4~1.318 μg(r=1.000),桂皮醛0.113~5.637μg(r=1.000),平均回收率分别为101.4%(RSD为0.56%),103.7%(RSD为1.42%),100.2%(RSD为0.73%),97.4%(RSD为1.16%).结论 本方法简便、灵敏、准确,适用于肉桂药材的质量评价.

  3. Acid Thunder: Acid Rain and Ancient Mesoamerica

    Science.gov (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  4. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOx). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H2SO4) and nitric acids (HNO3), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  5. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof

    DEFF Research Database (Denmark)

    2006-01-01

    A recombinant micro-organism producing resveratrol by a pathway in which phenylalanine ammonia lyase (PAL) produces trans-cinnamic acid from phenylalanine, cinnamate 4- hydroxylase (C4H) produces 4-coumaric acid from said trans- cinnamic acid, 4-coumarate-CoA ligase (4CL) produces 4- coumaroyl Co......A from said 4-coumaric acid, and resveratrol synthase (VST) produces said resveratrol from said 4- coumaroyl CoA, or in which L-phenylalanine- or tyrosine- ammonia lyase (PAL/TAL) produces 4-coumaric acid, 4- coumarate-CoA ligase (4CL) produces 4-coumaroyl CoA from said 4-coumaric acid, and resveratrol...

  6. Plasma amino acids

    Science.gov (United States)

    Plasma amino acids is a screening test done on infants that looks at the amounts of amino ... Laboratory error High or low amounts of individual plasma amino acids must be considered with other information. ...

  7. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic...: This regulation establishes an exemption from the requirement of a tolerance for residues of castor oil... residues of castor oil, polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid on food...

  8. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  9. Acid Rain Study Guide.

    Science.gov (United States)

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  10. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie;

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form fr...

  11. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  12. Cleavage of nucleic acids

    Science.gov (United States)

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  13. Acidizing carbonate reservoirs with chlorocarboxylic acid salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.F.; Templeton, C.C.

    1978-10-31

    A carbonate reservoir is acidized slowly by injecting an aqueous solution of a chlorocarboxylic acid salt so that the rate of the acidization is limited to the rate at which an acid is formed by the hydrolyzing of the chlorocarboxylate ions. The rate at which a chlorocarboxylic acid salt hydrolyzes to form an acid provides the desired rate of acid-release. A more complete acid-base reaction by chloroacetic acid, as compared to formic, acetic, and proprionic, is due to its being a much stronger acid. The pKa of chloroacetic acid is 2.86, whereas that of formic acid is 3.75, and that of acetic acid is 4.75. The pKa of a solution of a weak acid is the pH exhibited when the concentration of undissociated acid equals the concentration of the acid anion. 14 claims.

  14. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  15. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  16. Microorganisms for producing organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  17. Acid-Base Homeostasis.

    Science.gov (United States)

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  18. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  19. Citric Acid Alternative to Nitric Acid Passivation

    Science.gov (United States)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  20. Docosahexaenoic Acid Neurolipidomics

    OpenAIRE

    Niemoller, Tiffany D.; Bazan, Nicolas G.

    2009-01-01

    Mediator lipidomics is a field of study concerned with the characterization, structural elucidation and bioactivity of lipid derivatives generated by enzymatic activity. Omega-3 fatty acids have beneficial effects for vision, brain function, cardiovascular function, and immune-inflammatory responses. Docosahexaenoic acid [DHA; 22:6(n-3)], the most abundant essential omega-3 fatty acid in the human body, is selectively enriched and avidly retained in the central nervous system as an acyl chain...

  1. The acid rain primer

    International Nuclear Information System (INIS)

    Acid rain continues to be a major problem in North America, and particularly in eastern Canada. This report introduced the topic of acid rain and discussed its formation, measurement, sources, and geographic distribution. The major sources of sulphur dioxide in Canada are smelting metals, burning coal for electrical power generation, industrial emissions (e.g., pulp and paper, petroleum and aluminum industry), and oil and gas extraction and refining. In Canada, the largest source of nitrogen oxide is the burning of fossil fuels by the transportation sector. Problem areas for acid rain in Canada were identified. The effects of acid rain were examined on lakes and aquatic ecosystems, forests and soils, human-made structures and materials, human health, and on visibility. Acid rain policies and programs were then presented from a historical and current context. Ecosystem recovery from acid rain was discussed with reference to acid rain monitoring, atmospheric response to reductions in acid-causing emissions, and ecosystem recovery of lakes, forests, and aquatic ecosystems. Challenges affecting ecosystem recovery were also presented. These challenges include drought and dry weather, decrease of base cations in precipitation, release of sulphate previously stored in soil, mineralization and immobilization of sulphur/sulphates. Last, the report discussed what still needs to be done to improve the problem of acid rain as well as future concerns. These concerns include loss of base cations from forested watersheds and nitrogen deposition and saturation. 21 refs., 2 tabs., 17 figs

  2. USGS Tracks Acid Rain

    Science.gov (United States)

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  3. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    Science.gov (United States)

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  4. Evidence for health benefits of plant phenols: local or systemic effects?

    NARCIS (Netherlands)

    Hollman, P.C.H.

    2001-01-01

    Plant phenols are mostly products of the phenylpropanoid pathway and comprise a large variety of compounds: cinnamic acids, benzoic acids, flavonoids, proanthocyanidins, stilbenes, coumarins, lignans and lignins. They are strong antioxidants and might prevent oxidative damage to biomolecules such as

  5. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides ( ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  6. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Locked nucleic acid

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Sørensen, Mads D; Wengel, Jesper;

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic...

  8. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  9. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  10. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  12. Uric acid - blood

    Science.gov (United States)

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test if you have had or are about to have certain types of chemotherapy. Rapid weight loss, which may occur with such treatments, can increase the amount of uric acid in ...

  13. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  14. Carbolic acid poisoning

    Science.gov (United States)

    ... you to. If the person swallowed the carbolic acid, give them water or milk right away, if a provider tells ... well someone does depends on how much carbolic acid they swallowed and how quickly they receive treatment. The faster medical help is given, the better ...

  15. Neurotoxicity of Folic Acid

    NARCIS (Netherlands)

    Amsterdam van JGC; Jansen EHJM; A Opperhuizen; TOX

    2004-01-01

    The present review summarises the neurotoxicological effects of folic acid. Some studies in animals have shown that folic acid is neurotoxic and epileptogenic when applied directly to the brain. One poorly controlled and not further reproduced study from 1970 reported neurotoxic symptoms like malais

  16. Salicylic Acid Topical

    Science.gov (United States)

    ... skin blemishes in people who have acne. Topical salicylic acid is also used to treat skin conditions that involve scaling or overgrowth of skin ... water for 15 minutes.Do not apply topical salicylic acid to skin that is broken, red, swollen, irritated, or infected. ...

  17. Fusidic acid in dermatology

    DEFF Research Database (Denmark)

    Schöfer, Helmut; Simonsen, Lene

    1995-01-01

    Studies on the clinical efficacy of fusidic acid in skin and soft-tissue infections (SSTIs), notably those due to Staphylococcus aureus, are reviewed. Oral fusidic acid (tablets dosed at 250 mg twice daily, or a suspension for paediatric use at 20 mg/kg/day given as two daily doses) has shown good...... efficacy and tolerability. Similarly, plain fusidic acid cream or ointment used two or three times daily in SSTIs such as impetigo are clinically and bacteriologically effective, with minimal adverse events. Combination formulations of fusidic acid with 1% hydrocortisone or 0.1% betamethasone achieve...... excellent results in infected eczema by addressing both inflammation and infection. A new lipid-rich combination formulation provides an extra moisturizing effect. Development of resistance to fusidic acid has remained generally low or short-lived and can be minimized by restricting therapy to no more than...

  18. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... acid, caprylic acid, lauric acid, myristic acid, oleic acid, palmitic acid, and stearic acid. (b) The... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and...

  19. Gluconic acid production.

    Science.gov (United States)

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  20. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    , chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids......Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also...

  1. [Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f. sp. melonis].

    Science.gov (United States)

    Yang, Rui-Xiu; Gao, Zeng-Gui; Yao, Yuan; Liu, Xian; Sun, Shu-Qing; Wang, Ying

    2014-08-01

    In this study, the phenolic compounds of melon root exudates were identified by HPLC and seven phenolic compounds including gallic acid, phthalic acid, syringic acid, salicylic acid, ferulic acid, benzoic acid and cinnamic acid were observed. The laboratory experiment showed that ferulic acid, benzoic acid and cinnamic acid of 0.1 and 0.25 mmol x L(-1) could significantly promote the germination of Fusarium oxysporum f. sp. melonis spore while salicylic acid inhibited the spore germination to some degree. Syringic acid and ferulic acid significantly promoted the mycelium growth at the late stage of incubation. The pot experiments demonstrated that cinnamic acid, benzoic acid and ferulic acid enhanced melon infection at concentrations of 0.5, 0.1 and 0.5 mmol x L(-1).

  2. [Hydrofluoric acid burns].

    Science.gov (United States)

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  3. Difficult Decisions: Acid Rain.

    Science.gov (United States)

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  4. Folic acid in diet

    Science.gov (United States)

    ... green leafy vegetables Dried beans and peas (legumes) Citrus fruits and juices Fortified means that vitamins have ... A.D.A.M. Editorial team. Related MedlinePlus Health Topics Folic Acid Browse the Encyclopedia A.D. ...

  5. Omega-6 Fatty Acids

    Science.gov (United States)

    ... are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of ... in black currant seed, borage seed, and evening primrose oils. Omega-6 fatty acids are used for ...

  6. Acid rain: An overview

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of the effects of acid rain and related processes, sources, issues, corrective actions, research, current law, potential solutions, political solutions,...

  7. Stomach acid test

    Science.gov (United States)

    Gastric acid secretion test ... The test is done after you have not eaten for a while so fluid is all that remains in ... injected into your body. This is done to test the ability of the cells in the stomach ...

  8. Citric acid urine test

    Science.gov (United States)

    ... usually done while you are on a normal diet. Ask your provider for more information. ... acidosis and a tendency to form calcium kidney stones. The ... acid levels: A high carbohydrate diet Estrogen therapy Vitamin D

  9. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  10. Amino Acid Metabolism Disorders

    Science.gov (United States)

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  11. Azelaic Acid Topical

    Science.gov (United States)

    ... pores and by decreasing production of keratin, a natural substance that can lead to the development of ... acid controls acne and rosacea but does not cure these conditions. It may take 4 weeks or ...

  12. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  13. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  14. Method for isolating nucleic acids

    Science.gov (United States)

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  15. Acidification and Acid Rain

    Science.gov (United States)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  16. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  17. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  18. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele;

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  19. Physicochemical properties, phenolic acids and volatile compounds of oil extracted from dry alhydwan (Boerhavia elegana Choisy seeds

    Directory of Open Access Journals (Sweden)

    Al-Farga, A.

    2015-09-01

    Full Text Available In this study, the chemical composition, physicochemical properties, phenolic acids and volatile compounds of alhydwan (Boerhavia elegana Choisy seed oil were evaluated. The crude oil content was 11.49%, ash 6.88%, moisture 6.12%, protein content 14.60%, total carbohydrate 24.77% and fiber 36.13%. The oil contain a high quantity of unsaturated fatty acids (74.63 mg·100 g−1 with oleic (C18:1 (57.77%, palmitic (C16:0 (18.65% and linoleic (C18:2 (12.88% acids as the most abundant. The relative density was 0.88 and the iodine value 105.59. The color analysis showed a value of 28.33 Y+1.43 R. The oil also had a high relative oxidative stability. The tocol composition showed that α-tocotrienol, γ-tocopherol and γ-tocotrienol were in a higher concentration than the rest. Seven phenolic acids (caffeic, vanillic, galic, p-coumaric, ascorbic, cinnamic and ferulic were detected, with ascorbic acid as the predominant one (5.44 mg·100 g−1. In relation to the volatile composition, 48 compounds were found with Z-10-Pentadecen-1-ol (56.73%; Hexadecenoic acid, Z-11- (18.52%; 9,12-Octadecadienoic acid (Z,Z- (3.93% and 9,12-Octadecadienoic acid (Z,Z-, 2-hydroxy-1-(hydroxymethyl ethyl ester (3.04% as the most abundant. These findings demonstrated the potential of alhydwan seeds to be used as a good source of quality edible oil.En este estudio se ha determinado la composición química, las propiedades físico-químicas, ácidos fenólicos y compuestos volátiles de aceites de semillas de alhydwan (Boerhavia elegana Choisy. Las semillas contenían un 11.49% de aceite, 6.88% de cenizas, 6,12% de humedad, 14.60% de proteínas, 24.77% de carbohidratos totales y 36.13% de fibra. El aceite contiene 74,63 mg·100 g−1 de ácidos grasos insaturados, con oleico (C18: 1 (57,77%, palmítico (C16: 0 (18,65% y linoleico (C18: 2 (12,88% como los más abundantes. La densidad relativa fue de 0,88 y el índice de yodo de 105,59. El análisis del color mostró un valor de

  20. EFFECT OF ACIDITY ON ACID-SENSITIVE UV CURING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Qi-dao Chen; Bing Wu; Xiao-yin Hong

    1999-01-01

    By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required.However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.

  1. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    International Nuclear Information System (INIS)

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF3(CH3COOH)2. The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF3COOH and CH3COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation

  2. Determination of Sialic Acids by Acidic Ninhydrin Reaction

    Directory of Open Access Journals (Sweden)

    Yao,Kenzabroh

    1987-12-01

    Full Text Available A new acidic ninhydrin method for determining free sialic acids is described. The method is based on the reaction of sialic acids with Gaitonde's acid ninhydrin reagent 2 which yields a stable color with an absorption maximum at 470 nm. The standard curve is linear in the range of 5 to 500 nmol of N-acetylneuraminic acid per 0.9 ml of reaction mixture. The reaction was specific only for sialic acids among the various sugars and sugar derivatives examined. Some interference of this method by cysteine, cystine and tryptophan was noted, although their absorption maxima differed from that of sialic acids. The interference by these amino acids was eliminated with the use of a small column of cation-exchange resin. The acidic ninhydrin method provides a simple and rapid method for the determination of free sialic acids in biological materials.

  3. Domoic Acid Epileptic Disease

    Directory of Open Access Journals (Sweden)

    John S. Ramsdell

    2014-03-01

    Full Text Available Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis.

  4. A Demonstration of Acid Rain

    Science.gov (United States)

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  5. Amino acid analysis.

    Science.gov (United States)

    Crabb, J W; West, K A; Dodson, W S; Hulmes, J D

    2001-05-01

    Amino acid analysis (AAA) is one of the best methods to quantify peptides and proteins. Two general approaches to quantitative AAA exist, namely, classical postcolumn derivatization following ion-exchange chromatography and precolumn derivatization followed by reversed-phase HPLC (RP-HPLC). Excellent instrumentation and several specific methodologies are available for both approaches, and both have advantages and disadvantages. This unit focuses on picomole-level AAA of peptides and proteins using the most popular precolumn-derivatization method, namely, phenylthiocarbamyl amino acid analysis (PTC-AAA). It is directed primarily toward those interested in establishing the technology with a modest budget. PTC derivatization and analysis conditions are described, and support and alternate protocols describe additional techniques necessary or useful for most any AAA method--e.g., sample preparation, hydrolysis, instrument calibration, data interpretation, and analysis of difficult or unusual residues such as cysteine, tryptophan, phosphoamino acids, and hydroxyproline. PMID:18429107

  6. Biodegradation of cyanuric acid.

    Science.gov (United States)

    Saldick, J

    1974-12-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO(2) and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand.

  7. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  8. Calorimetry of Nucleic Acids.

    Science.gov (United States)

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  9. [Nicotinic acid and nicotinamide].

    Science.gov (United States)

    Kobayashi, M; Shimizu, S

    1999-10-01

    Nicotinic acid and nicotinamide are called niacin. They are the antipellagra vitamin essential to many animals for growth and health. In human being, niacin is believed necessary together with other vitamins for the prevention and cure of pellagra. Niacin is widely distributed in nature; appreciable amounts are found in liver, fish, yeast and cereal grains. Nicotinamide is a precursor of the coenzyme NAD and NADP. Some of the most understood metabolic processes that involve niacin are glycolysis, fatty acid synthesis and respiration. Niacin is also related to the following diseases: Hartnup disease; blue diaper syndrome; tryptophanuria; hydroxykynureninuria; xanthurenic aciduria; Huntington's disease. PMID:10540864

  10. Whither Acid Rain?

    OpenAIRE

    Peter Brimblecombe

    2000-01-01

    Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and s...

  11. 2-arylureidobenzoic acids

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Nielsen, Elsebet Ø; Peters, Dan;

    2003-01-01

    A series of 2-arylureidobenzoic acids (AUBAs) was prepared by a short and effective synthesis, and the pharmacological activity at glutamate receptors was evaluated in vitro and in vivo. The compounds showed noncompetitive antagonistic activity at the kainate receptor subtype GluR5. The most potent...... on the benzoic acid moiety (ring A), whereas ring B tolerated a variety of substituents, but with a preference for lipophilic substituents. The most potent compounds had a 4-chloro substituent on ring A and 3-chlorobenzene (6b), 2-naphthalene (8h), or 2-indole (8k) as ring B and had IC(50) values of 1.3, 1...

  12. NITRIC ACID PICKLING PROCESS

    Science.gov (United States)

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  13. Whither Acid Rain?

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2000-01-01

    Full Text Available Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  14. Polyunsaturated fatty acids and inflammation

    OpenAIRE

    Calder Philip C

    2004-01-01

    The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites) and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and ...

  15. Fatty acids of Thiobacillus thiooxidans.

    Science.gov (United States)

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  16. Lactic acid bacterial cell factories for gamma-aminobutyric acid.

    Science.gov (United States)

    Li, Haixing; Cao, Yusheng

    2010-11-01

    Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.

  17. Acid Rain Classroom Projects.

    Science.gov (United States)

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  18. The Acid Rain Game.

    Science.gov (United States)

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  19. The Acid Rain Debate.

    Science.gov (United States)

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  20. Koetjapic acid chloroform hemisolvate

    Directory of Open Access Journals (Sweden)

    Z. D. Nassar

    2010-06-01

    Full Text Available The asymmetric unit of the title compound, C30H46O4·0.5CHCl3, consists of one koetjapic acid [systematic name: (3R,4aR,4bS,7S,8S,10bS,12aS-7-(2-carboxyethyl-3,4b,7,10b,12a-pentamethyl-8-(prop-1-en-2-yl-1,2,3,4,4a,4b,5,6,7,8,9,10,10b,11,12,12a-hexadecahydrochrysene-3-carboxylic acid] molecule and one half-molecule of chloroform solvent, which is disordered about a twofold rotation axis. The symmetry-independent component is further disordered over two sites, with occupancies of 0.30 and 0.20. The koetjapic acid contains a fused four-ring system, A/B/C/D. The A/B, B/C and C/D junctions adopt E/trans/cis configurations, respectively. The conformation of ring A is intermediate between envelope and half-chair and ring B adopts an envelope conformation whereas rings C and D adopt chair conformations. A weak intramolecular C—H...O hydrogen bond is observed. The koetjapic acid molecules are linked into dimers by two pairs of intermolecular O—H...O hydrogen bonds. The dimers are stacked along the c axis.

  1. Acid Rain Investigations.

    Science.gov (United States)

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  2. Lactic acid and lactates

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.

    2010-01-01

    This review aims to integrate the present state of knowledge on lactate metabolism in human and mammalian physiology as far as it could be subject to nutritional interventions. An integrated view on the nutritional, metabolic and physiological aspects of lactic acid and lactates might open a perspec

  3. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis Skovsgaard; Kirkby, Nikolai S; Bestle, Morten H;

    2015-01-01

    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  4. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  5. Acid Ceramidase in Melanoma

    DEFF Research Database (Denmark)

    Realini, Natalia; Palese, Francesca; Pizzirani, Daniela;

    2016-01-01

    Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphing...

  6. Zoledronic Acid Injection

    Science.gov (United States)

    ... blood cells that produce substances needed to fight infection)] or by cancer that began in another part of the body but has spread to the bones. Zoledronic acid (Zometa) is not cancer chemotherapy, and it will not slow or stop the ...

  7. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  8. Origin of fatty acids

    International Nuclear Information System (INIS)

    The appearance of fatty acids and membranes is one of the most important events of the prebiotic world because genesis of life required the compartmentalization of molecules. Membranes allowed cells to become enriched with molecules relevant for their evolution and gave rise to gradients convertible into energy. By virtue of their hydrophobic/hydrophilic interface, membranes developed certain enzymatic activities impossible in the aqueous phase. A prebiotic cell is an energy unit but it is also an information unit. It has a past, a present and a future. The biochemistry of fatty acids involves acetylCoA, malonylCoA and an enzyme, acyl synthetase, which joins both molecules. After substitution of the acetyl group in place of the carboxyl group of malonyl derivatives, the chain is reduced and dehydrated to crotonyl derivatives. These molecules can again react with malonylCoA to form unsaturated chain; they can also undergo a new reduction step to form butyryl derivatives which can react with malonylCoA to form a longer aliphatic chain. The formation of malonylCoA consumes ATP. The reduction step needs NADPH and proton. Dehydration requires structural information because the reduction product is chiral (D configuration). It is unlikely that these steps were possible in a prebiotic environment. Thus we have to understand how fatty acids could appear in the prebiotic era. This hypothesis about the origin of fatty acids is based on the chemistry of sulfonium ylides and sulfonium salts. The most well-known among these molecules are S-melthyl-methionine and S-adenosyl methionine. The simplest sulfonium cation is the trimethylsulfonium cation. Chemists have evidence that these products can produce olefin when they are heated or flashed with UV light in some conditions. I suggest that these volatile products can allow the formation of fatty acids chains in atmospheric phase with UV and temperature using methanol as starting material. Different synthetic pathways will be

  9. Incresing antioxidant activity and reducing decay of blueberries by essential oils

    Science.gov (United States)

    Several naturally occurring essential oils including carvacrol, anethole, cinnamaldehyde, cinnamic acid, perillaldehyde, linalool, and p-cymene were evaluated for their effectiveness in reducing decay and increasing antioxidant levels and activities in ‘Duke’ blueberries (Vaccinium corymbosum). Carv...

  10. Isolation and Structural Determination of an Anti Bacterial Constituent from the Leaves of Cassia alata Linn.

    Directory of Open Access Journals (Sweden)

    Barnali Paul

    2013-05-01

    Full Text Available By different solvent extractions and chromatographic techniques an antibacterial constituent was isolated from leaves of Cassia alata Linn. Infra red spectroscopy, mass spectroscopy and nuclear magnetic resonance studies showed that the isolated compound was chemically 3,4 dihydroxy cinnamic acid. In vitro antibacterial activity of 3,4 dihydroxy cinnamic acid was studied against four Gram-positive and four Gram-negative bacteria using disc diffusion method. Minimum inhibitory concentration (MIC of 3,4 dihydroxy cinnamic acid was also recorded against those bacteria by serial dilution technique. Kanamycin was used as positive control. Results showed that 3,4 dihydroxy cinnamic acid had antibacterial activity against the tested bacteria.

  11. Potentiometric determination of peroxodisulfuric acid during electrolysis sulfuric acid

    Directory of Open Access Journals (Sweden)

    Fedor Malchik

    2013-09-01

    Full Text Available Was proposed two potentiometric methods for determining peroxodisulfuric acid during electrolysis of sulfuric acid (potentiometric titration method and direct potentiometry, based on its interaction with a known excess of a solution Fe2+.

  12. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    OpenAIRE

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium.

  13. Efeitos da interação de ácido ferúlico e glifosate em soja Interaction of ferulic acid and glyphosate on soybeans

    Directory of Open Access Journals (Sweden)

    Elemar Voll

    1993-01-01

    Full Text Available Um experimento foi conduzido com soja [Glycine max (L. Merr.] cv. Ramson, em condições de casa-de-vegetação, com o objetivo de obter resposta de crescimento ao herbicida glifosate [N-(fosfonometil glicina] (GLI, com atividades hormonais, em interação com ácido ferúlico (ácido 4-hidróxi-3-metóxi-t-cinâmico (AF, substância alelopática encontrada na resteva de trigo em situações de semeadura direta, que pudessem favorecer sua competição com as espécies daninhas. Glifosate foi usado nas doses de 0,0, 0,75, 1,5, 2,25 e 3,0 kg/ha e ácido ferúlico nas doses de 0,75, 150, 225 e 300 ppm. O delineamento experimental foi de blocos ao acaso em um arranjo fatorial 5x5 dos tratamentos, com quatro repetições. Vasos de papel encerado continham 1,0 kg de terra na proporção de 3:2 (argila/areia, com duas plantas/vasos. A duração do experimento foi de 22 dias. Aplicações de AF e GLI causaram estiolamento da parte aérea das plantas de soja e redução da biomassa das raízes. Foram observados aumentos de biomassa a parte aérea da soja por AF e reduções por CLI.An experiment was carried out for soybeans [Glycine max (L. Merr.] cv. Ramson, under greenhouse conditions, to evaluate its growing responses to glyphosate [N-(phosphonomethyl glycine] (GLY, a herbicide with hormonal action, in interaction with ferulic acid (4-hydroxy-3-methoxy-t-cinnamic acid (FA, an allelopathic substance found in wheat straw under no-till plantings, which in combination could favour competition against weeds Doses of 0.00, 0.75, 1.50, 2.25 and 3.00 kg/ha of glyphosate and 0,75, 150, 225 and 300 ppm pf ferulic acid were used. A randomized block design in factorial 5x5, with four replications was used. Paper pots were filled with 1,0 kg of mixed soil (3:2 clay/sand, with two plants/pot. The duration of experiment was 22 days. Applications of FA and GLY caused etiolation of soybean shoots and decrease of root biomass. Increases of soybean shoot biomass

  14. AGGREGATION BEHAVIOR OF UNSATURATED CARBOXYLIC ACID SALTS OF CHITOSAN%壳聚糖不饱和羧酸盐聚集行为的研究

    Institute of Scientific and Technical Information of China (English)

    林宝凤; 黎演明; 周妤莲; 杜予民

    2011-01-01

    Five kinds of unsaturated carboxylic acid salts of chitosan were prepared by the semidry way including chitosan salicylate ( al ) , chitosan benzoate (a2) , chitosan cinnamate ( a3 ) , chitosan acrylate ( a4 ) and chitosan itaconate (a5). The products were characterized via FTIR and UV,the content of carboxylic acid in the unsaturated carboxylic acid salt of chitosan was determinated by the Kjeldahl method. The results showed that unsaturated carboxylic acid salts of chitosan were combined with salt bond between amino and carboxyl,the content of carboxylic acid in the unsaturated carboxylic acid salts was ranged from 40% to 70%. The crystalline morphology of these unsaturated carboxylic acid salts of chitosan were obtained by polarized optical microscopy. The results showed that the films of a2 and a5 obtained by a casting solvent vaporation technique had formed fractal crystal at 25℃ and RH = 65%. The crystalline morphology was closely related to the structures of unsaturated carboxylic acid salts of chitosan. The fractal crystal of a2 showed that the extendedmolecular chains were parallel to the long axis. The fractal crystal of a5 showed that the extended molecularchains were perpendicular to the long axis. The methods for controlling aggregation behavior of unsaturated carboxylic acid salts of chitosan had also been studied. It was feasible for the inter-conversion between aggregation and crystallization. The crystallization process of chitosan unsaturated carboxylic acid salts was explained by fractal theory, and the results showed that its aggregation behavior abide by the model of diffusions-limited aggregation.%以半干法制备了一系列壳聚糖不饱和羧酸盐--壳聚糖水杨酸盐(a1)、壳聚糖苯甲酸盐(a2)、壳聚糖肉桂酸盐(a3)壳聚糖丙烯酸盐(a4)和壳聚糖衣康酸盐(a5).用红外光谱和紫外光谱表征了该产品的结构,以凯氏定氮法测定了羧酸的结合量.结果表明壳聚糖和不饱和羧酸盐是

  15. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  16. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Directory of Open Access Journals (Sweden)

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  17. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  18. [Progress in glucaric acid].

    Science.gov (United States)

    Qiu, Yuying; Fang, Fang; Du, Guocheng; Chen, Jian

    2015-04-01

    Glucaric acid (GA) is derived from glucose and commonly used in chemical industry. It is also considered as one of the "Top value-added chemicals from biomass" as carbohydrate monomers to produce various synthetic polymers and bioenergy. The demand for GA in food manufacture is increasing. GA has also attracted public attentions due to its therapeutic uses such as regulating hormones, increasing the immune function and reducing the risks of cancers. Currently GA is produced by chemical oxidation. Research on production of GA via microbial synthesis is still at preliminary stage. We reviewed the advances of glucaric acid applications, preparation and quantification methods. The prospects on production of GA by microbial fermentation were also discussed. PMID:26380405

  19. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2007-01-01

    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  20. Influence of Forage Phenolics on Ruminal Fibrolytic Bacteria and In Vitro Fiber Degradation

    OpenAIRE

    Varel, Vincent H.; Jung, Hans-Joachim G.

    1986-01-01

    In vitro cultures of ruminal microorganisms were used to determine the effect of cinnamic acid and vanillin on the digestibility of cellulose and xylan. Cinnamic acid and vanillin depressed in vitro dry matter disappearance of cellulose 14 and 49%, respectively, when rumen fluid was the inoculum. The number of viable Bacteroides succinogenes cells, the predominant cellulolytic organism, was threefold higher for fermentations which contained vanillin than for control fermentations. When xylan ...

  1. Phytotoxicity of the organic phase and major compound obtained from the fruit pulp of Crescentia cujete L. (Bignoniaceae)

    OpenAIRE

    Sinval Garcia Pereira; Giselle Maria Skelding Pinheiro Guilhon; Lourivaldo da Silva Santos; Luidi Cardoso Pacheco; Antônio José Cantanhede Filho; Antônio Pedro da Silva Souza Filho

    2015-01-01

    The phytotoxity of ethanol extracts, of the organic phase and major compound (cinnamic acid) obtained from the fruit pulp of Crescentia cujete L., were evaluated for their potential to inhibit seed germination, hypocotyl development and radicle development of the invasive weeds Senna obtusifolia (L.) Irwin & Barneby and Mimosa pudica Mill. The organic phase at a concentration of 0.5% inhibited 100% seed germination of both weeds. Cinnamic acid obtained from the organic phase inhibited seed ge...

  2. AcEST: DK962436 [AcEST

    Lifescience Database Archive (English)

    Full Text Available xylase OS=Lithosperm... 224 2e-57 tr|Q0QDS3|Q0QDS3_9BORA Cinnamic acid 4-hydroxylase OS=Arnebia eu... 224 2e...W 555 W Sbjct: 150 W 150 >tr|Q0QDS3|Q0QDS3_9BORA Cinnamic acid 4-hydroxylase OS=Arnebia euchroma PE=2 SV=2 L

  3. AcEST: DK955834 [AcEST

    Lifescience Database Archive (English)

    Full Text Available sperm... 47 4e-04 tr|Q0QDS3|Q0QDS3_9BORA Cinnamic acid 4-hydroxylase OS=Arnebia eu... 47 4e-04 tr|B5LAX7|B5L...PIPVPIFGNWLQVGDDLNHRNLTEYAKKFGEIFLLRMGQ 75 >tr|Q0QDS3|Q0QDS3_9BORA Cinnamic acid 4-hydroxylase OS=Arnebi

  4. Retinoic acid and cancer treatment

    OpenAIRE

    Chen, Mei-Chih; Hsu, Shih-Lan; Lin, Ho; Yang, Tsung-Ying

    2014-01-01

    Retinoic acid which belongs to the retinoid class of chemical compounds is an important metabolite of vitamin A in diets. It is currently understood that retinoic acid plays important roles in cell development and differentiation as well as cancer treatment. Lung, prostate, breast, ovarian, bladder, oral, and skin cancers have been demonstrated to be suppressed by retinoic acid. Our results also show that low doses and high doses of retinoic acid may respectively cause cell cycle arrest and a...

  5. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  6. Pantothenic acid biosynthesis in zymomonas

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  7. An Umbrella for Acid Rain.

    Science.gov (United States)

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  8. Self-neutralizing well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.F.

    1974-07-30

    A process for acidizing a subterranean region by contacting it with an acidic solution is improved by dissolving in the solution a pH-increasing reactant that subsequently adjusts the pH of the solution to a selected relatively neutral value. Urea is an example of the acid neutralizer. (10 claims)

  9. Acid Rain Limits Global Warming

    Institute of Scientific and Technical Information of China (English)

    Will Knight; 张林玲

    2004-01-01

    @@ Acid rain restricts global warming by reducing methane① emissions from natural wetland areas, suggests a global climate study. Acid rain is the result of industrial pollution,which causes rainwater to carry small quantities of acidic compoumds② such as sulphuric and nitric acid③. Contaminated rainwater can upset rivers and lakes, killing fish and other organisms and also damage plants, trees and buildings.

  10. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    -negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  11. Heterogeneous uptake of amines by citric acid and humic acid.

    Science.gov (United States)

    Liu, Yongchun; Ma, Qingxin; He, Hong

    2012-10-16

    Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.

  12. Molecular interaction of pinic acid with sulfuric acid

    DEFF Research Database (Denmark)

    Elm, Jonas; Kurtén, Theo; Bilde, Merete;

    2014-01-01

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated...... from the corresponding ΔG values. The first two additions of sulfuric acid to pinic acid are found to be favorable with ΔG values of -9.06 and -10.41 kcal/mol. Addition of a third sulfuric acid molecule is less favorable and leads to a structural rearrangement forming a bridged sulfuric acid-pinic acid...... cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures...

  13. Ionic liquid supported acid-catalysed esterification of lauric acid

    International Nuclear Information System (INIS)

    Ionic Liquid (IL) based on 1-n-butyl-3-methylimidazolium bis(trifluoro methylsulfonyl)imide (BMI.NTf2) under acidic condition was used as catalyst for the esterification reaction of fatty acid. Various acids namely sulphuric acid, perchloric acid, p-toulene sulphonic acid and various chloride salts such as zinc chloride (ZnCl2) and iron (III) chloride (FeCl3) immobilized in ionic liquid BMI.NTf2 gave acidic ILs. These acidic ILs were tested as catalysts for esterification reactions. Esterification of alcohol (methanol) with fatty acid (lauric acid) using ionic liquid BMI.NTf2 combined with H2SO4 (BMI.NTf2(H2SO4)) gave high activity (>85 %) and selectivity (100 %) observed over a period of 2 hours reaction with reaction temperature 70 degree Celsius. The ester became easily separated due to IL forming biphasic with product after the reaction where ester accumulated as the upper phase and IL with water produced after reaction at lower phase. Catalytic activities comparison also be studied between acidic ionic liquid BMI.NTf2 with acidic ionic liquid ChCl.2ZnCl2 and conventional acid catalyst. These ILs were characterised by using FTIR, NMR and TGA. Results from FTIR were showed no significant difference between ILs with ILs in acidic condition. The TGA curve show BMI.NTf2 thermals decomposition is ≥400 degree Celsius but when BMI.NTf2 combination with H2SO4, TGA curve show weight loss increase and becomes unstable. The advantages of ILs as catalyst are clean process and green chemistry due to its behaviour such as non-volatile, no loss of solvent through evaporation and reduced environmentally impact. This ILs-catalyst system can be recycle for further reaction. (author)

  14. Microbial transformations of isocupressic acid.

    Science.gov (United States)

    Lin, S J; Rosazza, J P

    1998-07-01

    Microbial transformations of the labdane-diterpene isocupressic acid (1) with different microorganisms yielded several oxygenated metabolites that were isolated and characterized by MS and NMR spectroscopic analyses. Nocardia aurantia (ATCC 12674) catalyzed the cleavage of the 13,14-double bond to yield a new nor-labdane metabolite, 2. Cunninghamella elegans (-) (NRRL 1393) gave 7beta-hydroxyisocupressic acid (3) and labda-7,13(E)-diene-6beta,15, 17-triol-19-oic acid (4), and Mucor mucedo (ATCC 20094) gave 2alpha-hydroxyisocupressic acid (5) and labda-8(17),14-diene-2alpha, 13-diol-19-oic acid (6).

  15. Invasive cleavage of nucleic acids

    Science.gov (United States)

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Polyunsaturated fatty acids and inflammation

    Directory of Open Access Journals (Sweden)

    Calder Philip C.

    2004-01-01

    Full Text Available The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and so available for eicosanoid production. Thus, n-3 polyunsaturated fatty acids act as arachidonic acid antagonists. Components of both natural and acquired immunity, including the production of key inflammatory cytokines, can be affected by n-3 polyunsaturated fatty acids. Although some of the effects of n-3 fatty acids may be brought about by modulation of the amount and types of eicosanoids made, it is possible that these fatty acids might elicit some of their effects by eicosanoid-independent mechanisms. Such n-3 fatty acid-induced effects may be of use as a therapy for acute and chronic inflammation, and for disorders that involve an inappropriately-activated immune response.

  17. Mycophenolic Acid in Silage

    Science.gov (United States)

    Schneweis, Isabell; Meyer, Karsten; Hörmansdorfer, Stefan; Bauer, Johann

    2000-01-01

    We examined 233 silage samples and found that molds were present in 206 samples with counts between 1 × 103 and 8.9 × 107 (mean, 4.7 × 106) CFU/g. Mycophenolic acid, a metabolite of Penicillium roqueforti, was detected by liquid chromatography-mass spectrometry in 74 (32%) of these samples at levels ranging from 20 to 35,000 (mean, 1,400) μg/kg. This compound has well-known immunosuppressive properties, so feeding with contaminated silage may promote the development of infectious diseases in livestock. PMID:10919834

  18. Synthesis of aminoaldonic acids

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea

    With the aim of synthesising aminoaldonic acids, two 2-acetamido-2-deoxyaldonolactones with D-galacto (6) and D-arabino (11) configuration were prepared from acetylated sugar formazans in analogy with a known procedure. Empolying the same procedure to acetylated sugar phenylhydrazones gave mixtures...... and 82, respectively. The aminolactone 84 was converted into the corresponding amino sugar 89.With the aim of synthesising substrates for the Pictet-Spengler reaction three 4-aldehydo acetamidodideoxytetronolactones 92, 97 and 103 were prepared by periodate cleavage of the corresponding hexonolactones...

  19. Nucleic Acid Vaccines

    Institute of Scientific and Technical Information of China (English)

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  20. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    OpenAIRE

    B. Syama Sundar; P.S.Radhakrishna murti

    2014-01-01

    Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation wi...

  1. Growth of nitric acid hydrates on thin sulfuric acid films

    Science.gov (United States)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-05-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1 - 3 × 10-4 Torr H2O and 1 - 2.5 × 10-6 Torr HNO3) and subjected to cooling and heating cycles. FTIR spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  2. Caro's acid - its introduction to uranium acid leaching in Australia

    International Nuclear Information System (INIS)

    After extensive testing and plant trials to establish the benefits of Caro's acid (H2SO5) as an alternative oxidant, Queensland Mines Limited decided to replace pyrolusite with Caro's acid in its acid leach uranium treatment plant at Nabarlek. The decision was based on the reagent savings and environmental gains associated with the removal of manganese from the process liquors, as well as the labour savings and improved oxidation reduction potential control possible in leaching using the Caro's acid system. Some changes in operating parameters were necessary with the introduction of Caro's acid to the treatment plant. Operating results have confirmed the relationship between oxidant demand and uranium content of ore established during the trials. Acid savings have been as predicted from the plant trials. The major saving has been of hydrated lime required for tailings neutralisation

  3. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  4. Molar extinction coefficients of some fatty acids

    DEFF Research Database (Denmark)

    Sandhu, G.K.; Singh, K.; Lark, B.S.;

    2002-01-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH2O2), acetic acid (C2H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), n-hexanoic acid (C6H12O2), n-caprylic acid (C8H16O2), lauric acid (C12H24O2), myristic acid (C14H28O2), palmitic acid (C16H32O2), oleic acid (C18H34O2...

  5. Therapeutic targeting of bile acids

    Science.gov (United States)

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  6. Synthesis of stearic acid triethanolamine ester over solid acid catalysts

    Institute of Scientific and Technical Information of China (English)

    Tao Geng; Qiu Xiao Li; Ya Jie Jiang; Wei Wang

    2010-01-01

    The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm)is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).

  7. Bile acid interactions with cholangiocytes

    Institute of Scientific and Technical Information of China (English)

    Xuefeng Xia; Heather Francis; Shannon Glaser; Gianfranco Alpini; Gene LeSage

    2006-01-01

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2)is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3,an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, OstαOstβ. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliaryplexus back to hepatocytes for re-secretion into bile.This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5'-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines.Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogenactivated protein (MAP) kinase and extracellular signalregulated protein kinase (ERK) intracellular signals.Bile acids significantly alter cholangiocyte secretion,proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals,and in some instances trigger opposing effects on cholangiocyte secretion

  8. Molecular Simulation of Naphthenic Acid Removal on Acidic Catalyst Ⅱ. Experimental results of catalytic decarboxylation over acidic catalysts

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaoqin; Tian Songbai; Hou Shuandi; Longjun; Wang Xieqing

    2008-01-01

    The energy barriers of thermal decarboxylation reactions of petroleum acids and catalytic decarboxylation reactions of Br(o)nsted acid and Lewis acid were analyzed using molecular simulation technology.Compared with thermal decarboxylation reactions of petroleum acids, the decarboxylation reactions by acid catalysts were easier to occur. The decarboxylaton effect by Lewis acid was better than Br(o)nsted acid. The mechanisms of catalytic decarboxylation over acid catalyst were also verified by experiments on a fixed bed and a fluidized bed, the experimental results showed that the rate of acid removal could reach up to 97% over the acidic catalyst at a temperature above 400℃.

  9. Kojic acid in organic synthesis

    OpenAIRE

    ZIRAK, MARYAM; Eftekhari-Sis, Bagher

    2015-01-01

    The reactions of kojic acid in organic synthesis are reviewed. The aim of this review is to cover the literature up to the end of 2014, showing the distribution of publications involving kojic acid chemistry in the synthesis of various pyrone containing compounds, pyridine and pyridone heterocycles, and also other organic compounds. First, introductory text about the preparation, biological, and industrial applications, and the chemical properties of kojic acid is given. Then its uses in orga...

  10. Polyunsaturated Fatty Acids in Children

    OpenAIRE

    Lee, Ji-Hyuk

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-im...

  11. Fatty acid biosynthesis in actinomycetes

    OpenAIRE

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation fo...

  12. [Hydrofluoric acid poisoning: case report].

    Science.gov (United States)

    Cortina, Tatiana Judith; Ferrero, Hilario Andrés

    2013-01-01

    Hydrofluoric acid is a highly dangerous substance with industrial and domestically appliances. Clinical manifestations of poisoning depend on exposure mechanism, acid concentration and exposed tissue penetrability. Gastrointestinal tract symptoms do not correlate with injury severity. Patients with history of hydrofluoric acid ingestion should undergo an endoscopy of the upper gastrointestinal tract. Intoxication requires immediate intervention because systemic toxicity can take place. We present a 5 year old girl who accidentally swallowed 5 ml of 20% hydrofluoric acid. We performed gastrointestinal tract endoscopy post ingestion, which revealed erythematous esophagus and stomach with erosive lesions. Two months later, same study was performed and revealed esophagus and stomach normal mucous membrane.

  13. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  14. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  15. Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid

    Science.gov (United States)

    Edwards, Howell G. M.; Newton, Emma M.; Wynn-Williams, David D.

    2003-06-01

    The FT-Raman and infrared vibrational spectra of some important lichen compounds from two metabolic pathways are characterised. Key biomolecular marker bands have been suggested for the spectroscopic identification of atranorin, gyrophoric acid, fumarprotocetraric acid rhizocarpic acid, calycin, pulvinic dilactone and usnic acid. A spectroscopic protocol has been defined for the detection of these molecules in organisms subjected to environmental stresses such as UV-radiation exposure, desiccation and low temperatures. Use of the protocol will be made for the assessment of survival strategies used by stress-tolerant lichens in Antarctic cold deserts.

  16. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting of nat...

  17. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Directory of Open Access Journals (Sweden)

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  18. Carbonic Acid Retreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  19. Carbonic Acid Pretreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  20. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  1. Ghrelin and gastric acid secretion

    Institute of Scientific and Technical Information of China (English)

    Koji Yakabi; Junichi Kawashima; Shingo Kato

    2008-01-01

    Ghrelin, a novel growth hormone-releasing peptide, was originally isolated from rat and human stomach. Ghrelin has been known to increase the secretion of growth hormone (GH), food intake, and body weight gain when administered peripherally or centrally. Ghrelin is also known to stimulate the gastric motility and the secretion of gastric acid. In the previous studies, the action of ghrelin on acid secretion was shown to be as strong as that of histamine and gastrin in-vivo experiment. In the studies, the mechanism for the action of ghrelin was also investigated. It was shown that vagotomy completely inhibited the action of ghrelin on the secretion of gastric acid suggesting that vagal nerve is involved in the mechanism for the action of ghrelin on acid secretion. As famotidine did not inhibit ghrelin-in-duced acid secretion in the study by Masuda et al, they concluded that histamine was not involved in the action of ghrelin on acid secretion. However, we have shown that famotidine completely inhibited ghrelin-induced acid secretion and histidine decarboxylase (HDC) mRNA was increased in gastric mucosa by ghrelin injection which is inhibited by vagotomy Our results indicate that histamine is involved in the action of ghrelin on acid secretion. Furthermore synergistic action of gastrin and ghrelin on gastric add secretion was shown. Although gastrin has important roles in postprandial secretion of gastric acid, ghrelin may be related to acid secretion during fasting period or at night. However, further studies are needed to elucidate the physiological role of ghrelin in acid secretion.

  2. Origin of nucleic acids

    International Nuclear Information System (INIS)

    The appearance of nucleic acids is the first event after the birth of membranes which made it possible to assure the perenniality of information. The complexity of these molecules has led some scientists to propose that they were not prebiotic but rather derived a more simple and achiral primitive ancestor. This hypothesis suggests that ribose possesses properties that allowed the formation of certain polysaccharides which evolved to RNA. The first step of the hypothesis is the selection and concentration of ribofuranose. This sugar has chelating properties and its alpha-ribofuranose is favoured in the chelating position. The density of the sugar with a heavy cation is greater than water and thus the complex can escape the UV radiation at the surface of the ocean. The particularity of ribose is to be able to form a homochiral regular array of these basic chelating structures with pyrophosphite. These arrays evolve towards the formation of polysaccharides (poly ribose phosphate) which have a very organized structure. These polysaccharides in turn evolve to RNA by binding of adenine and deoxyguanine which are HCN derivatives that can react with the polysaccharides. The primitive RNA is methylated and oxidized to form prebiotic RNA with adenosine, cytidine, 7methyl-guanosine and ribothymidine as nucleic bases. The pathway of biosynthesis of DNA form RNA will be studied. I suggest that the appearance of DNA results form the interaction between prebiotic double stranded RNA and proteins. DNA could be a product of RNA degradation by proteins. The catabolism of RNA to DNA requires a source of free radicals, protons and hydrides. RNA cannot produce free radicals, which are provided by the phenol group of the amino acid tyrosien. Protons are provided by the medium and hydrides are provided by 7-methyl-guanosine which can fix hydrides coming from hydrogen gas and donate them for the transformation of a riboside to a deoxyriboside. This pathway suggests that DNA appeared at

  3. Folic Acid: Data and Statistics

    Science.gov (United States)

    ... acid fortification in the United States Recently, the American Journal of Preventive Medicine published a new study looking at the costs ... acid fortification and spina bifida in the U.S. American Journal of Preventive Medicine. January 2016 [epub ahead of print]. Related Links ...

  4. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega- ... fish including tuna, salmon, and mackerel. Other important omega 3 fatty acids are found in dark green leafy vegetables, flaxseed ...

  5. Acid Rain: The Scientific Challenge.

    Science.gov (United States)

    Godfrey, Paul J.

    1991-01-01

    Documents the workings and findings of the Massachusetts Acid Rain Monitoring Project, which has pooled the volunteer efforts of more than 1,000 amateur and professional scientists since 1983. Reports on the origins of air pollution, the prediction of acid rain, and its effects on both water life and land resources. (JJK)

  6. Acid Rain: An Educational Opportunity?

    Science.gov (United States)

    Marion, James I.

    1984-01-01

    Deals with how educators can handle the subject of acid rain; illustrates suggestions with experiences of grade nine students visiting Frost Valley Environmental Education Center (Oliverea, New York) to learn scientific concepts through observation of outdoor phenomena, including a stream; and discusses acid rain, pH levels, and pollution control…

  7. Acid Rain: What's the Forecast?

    Science.gov (United States)

    Bybee, Rodger

    1984-01-01

    Discusses various types of acid rain, considered to be a century-old problem. Topics include: wet and dry deposition, effects on a variety of environments, ecosystems subject to detrimental effects, and possible solutions to the problem. A list of recommended resources on acid rain is provided. (BC)

  8. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  9. Cocrystals of fenamic acids with nicotinamide

    OpenAIRE

    Fábián, László; Hamill, Noel; Eccles, Kevin S; Moynihan, Humphrey A; Maguire, Anita R.; McCausland, Linda; Lawrence, Simon E.

    2011-01-01

    Cocrystal formation between nicotinamide and five fenamic acid derivative drugs (flufenamic acid, niflumic tolfenamic acid, mefenamic acid and meclofenamic acid) was investigated using solution-based and solid-state preparation methods. It was anticipated that the well-known acid-aromatic nitrogen heterosynthon would provide a sufficient driving force for cocrystallization. The experiments yielded cocrystals with four of the five acids. Although the structures of these molecules are similar, ...

  10. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    Directory of Open Access Journals (Sweden)

    B.Syama Sundar

    2014-06-01

    Full Text Available Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation with Mn (VII in case of DL-Mandelic acid. The following order of reactivity is observed: DL-Mandelic acid > Phenyl acetic acid. The high reactivity of DL-Mandelic acid over phenyl acetic acid may be due to different mechanisms operating with the two substrates and benzaldehyde is the final product in both the cases.

  11. N-(3-Nitrophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available In the title compound, C10H8N2O5, the molecule is slightly distorted from planarity. The molecular structure is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond (H...O distance = 1.57 Å within the maleamic acid unit and the second is a C—H...O hydrogen bond (H...O distance = 2.24 Å which connects the amide group with the benzene ring. The nitro group is twisted by 6.2 (2° out of the plane of the benzene ring. The crystal structure manifests a variety of hydrogen bonding. The packing is dominated by a strong intermolecular N—H...O interaction which links the molecules into chains running along the b axis. The chains within a plane are further assembled by three additional types of intermolecular C—H...O hydrogen bonds to form a sheet parallel to the (overline{1}01 plane.

  12. Microfluidics in amino acid analysis.

    Science.gov (United States)

    Pumera, Martin

    2007-07-01

    Microfluidic devices have been widely used to derivatize, separate, and detect amino acids employing many different strategies. Virtually zero-dead volume interconnections and fast mass transfer in small volume microchannels enable dramatic increases in on-chip derivatization reaction speed, while only minute amounts of sample and reagent are needed. Due to short channel path, fast subsecond separations can be carried out. With sophisticated miniaturized detectors, the whole analytical process can be integrated on one platform. This article reviews developments of lab-on-chip technology in amino acid analysis, it shows important design features such as sample preconcentration, precolumn and postcolumn amino acid derivatization, and unlabeled and labeled amino acid detection with focus on advanced designs. The review also describes important biomedical and space exploration applications of amino acid analysis on microfluidic devices. PMID:17542043

  13. Cinnamon: A Multifaceted Medicinal Plant

    OpenAIRE

    Pasupuleti Visweswara Rao; Siew Hua Gan

    2014-01-01

    Cinnamon (Cinnamomum zeylanicum, and Cinnamon cassia), the eternal tree of tropical medicine, belongs to the Lauraceae family. Cinnamon is one of the most important spices used daily by people all over the world. Cinnamon primarily contains vital oils and other derivatives, such as cinnamaldehyde, cinnamic acid, and cinnamate. In addition to being an antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, lipid-lowering, and cardiovascular-disease-lowering compound, cinnamon...

  14. Molten fatty acid based microemulsions.

    Science.gov (United States)

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  15. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid.

  16. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507

  17. Biophysical properties of phenyl succinic acid derivatised hyaluronic acid

    DEFF Research Database (Denmark)

    Neves-Petersen, Maria Teresa; Klitgaard, Søren; Skovsen, Esben;

    2010-01-01

    Modification of hyaluronic acid (HA) with aryl succinic anhydrides results in new biomedical properties of HA as compared to non-modified HA, such as more efficient skin penetration, stronger binding to the skin, and the ability to blend with hydrophobic materials. In the present study, hyaluronic...... acid has been derivatised with the anhydride form of phenyl succinic acid (PheSA). The fluorescence of PheSA was efficiently quenched by the HA matrix. HA also acted as a singlet oxygen scavenger. Fluorescence lifetime(s) of PheSA in solution and when attached to the HA matrix has been monitored...

  18. Hypocholesterolemic Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid in Rats

    OpenAIRE

    KANAZAWA, Akio; TESHIMA, Shin-ichi; TOKIWA, Shigeru; IMATANAKA, Nobuya; カナザワ, アキオ; テシマ, シンイチ; トキワ, シゲル; イマタナカ, ノブヤ; 金沢, 昭夫; 手島, 新一; 常盤, 繁; 今田中, 伸哉

    1984-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) methylesters (ME) were preparedfrom a squid-liver oil and their hypocholesterolemic activities examined with rats. The supplementof 0.3% EPA-ME to the diet containing 1.0% cholesterol and 4.0% butter as lipids reduced a serum-cholesterollevel markedly, whereas DHA-ME gave almost no effect on the serum-cholesterol level.Both EPA-ME and DHA-ME reduced the liver-cholesterol level as effectively as linoleic acid did.The supplement of smal...

  19. Analytical application of aminohydroxamic acids

    International Nuclear Information System (INIS)

    Anthranilic hydroxamic acid was prepared by coupling of methylanthranilate (prepared by esterification of anthranilic acid with methyl alcohol using the fisher-speir method) with freshly prepared hydroxylamine. The lignad was characterized by the usual reaction of hydroxamic acid with acidic V(V) and Fe(III) solutions that gives blood-red colour in amyl alcohol and deep-violet colour in aqueous solution, respectively. The absorbance of Fe(III)-hydroxamic acids complexes increases with increase of pH. In this study, the effect of pH on the absorbance of Fe(III)-anthranilic hydroxamic acid was in accordance with this trend. The maximum absorbance was obtained at pH 5.0 at maximum wavelength of 482 nm. For Cu(II)-anthranilic hydroxamic acid complex, the use of acidic basic pH lead to precipitation of Cu(II)-ligand complex. But when using buffer pH (acetic acid/sodium acetate) a clear green colour of Cu(II)-ligand complex was obtained. The maximum wavelength of 390 nm. V(V)-anthranilic hydroxamic acid complex was extracted in acidic medium in amyl alcohol at pH 2.0 because in aqueous solution V(V)-anthranilic hydroxamic acid complex has not clear colour. It was observed the the maximum extraction in acidic medium decrease sharply with the increasing of pH value. The maximum wavelength for maximum absorbance was recorded at 472 nm. V(V) interfered with determination of Fe(III)) above concentration of 2 ppm, whereas Cu(II) interferes slightly with the determination of Fe(III) ions even at a high concentration of the Cu(II) ions. Both Cu(II) and Ni(II) do not interfere with the determination of V(V) ions even at high concentrations, Fe(III) ion produced slight interference, while Mo(VI) ions have a pronounced interference. Both V(V) and Fe(III) ions interfered markedly with the determination of Cu(II) ions, and made impractical under conditions. However, the calibration curves for the three metal ions produced a practical linear dynamic range.(Author)

  20. The Property and Application of Arachidonic Acid

    Institute of Scientific and Technical Information of China (English)

    王相勤; 姚建铭; 袁成凌; 王纪; 余增亮

    2002-01-01

    Arachidonic acid (AA) is one of the most important PUFAs (polyunsaturated fatty acids) in human body. A high-yield arachidonic acid-producing strain (mortierella alpina) was selected by ion implantation (the relative content of arachidonic acid is 70.2% among all fatty acids). This paper mainly introduced the structure, distribution, source, physiologic healthcare function and application of AA.

  1. Cycloadditions for Studying Nucleic Acids.

    Science.gov (United States)

    Kath-Schorr, Stephanie

    2016-02-01

    Cycloaddition reactions for site-specific or global modification of nucleic acids have enabled the preparation of a plethora of previously inaccessible DNA and RNA constructs for structural and functional studies on naturally occurring nucleic acids, the assembly of nucleic acid nanostructures, therapeutic applications, and recently, the development of novel aptamers. In this chapter, recent progress in nucleic acid functionalization via a range of different cycloaddition (click) chemistries is presented. At first, cycloaddition/click chemistries already used for modifying nucleic acids are summarized, ranging from the well-established copper(I)-catalyzed alkyne-azide cycloaddition reaction to copper free methods, such as the strain-promoted azide-alkyne cycloaddition, tetrazole-based photoclick chemistry and the inverse electron demand Diels-Alder cycloaddition reaction between strained alkenes and tetrazine derivatives. The subsequent sections contain selected applications of nucleic acid functionalization via click chemistry; in particular, site-specific enzymatic labeling in vitro, either via DNA and RNA recognizing enzymes or by introducing unnatural base pairs modified for click reactions. Further sections report recent progress in metabolic labeling and fluorescent detection of DNA and RNA synthesis in vivo, click nucleic acid ligation, click chemistry in nanostructure assembly and click-SELEX as a novel method for the selection of aptamers. PMID:27572987

  2. PHARMACOLOGICAL ACTIVITIES OF PROTOCATECHUIC ACID.

    Science.gov (United States)

    Khan, Abida Kalsoom; Rashid, Rehana; Fatima, Nighat; Mahmood, Sadaf; Mir, Sadullah; Khan, Sara; Jabeen, Nyla; Murtaza, Ghulam

    2015-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a simple phenolic acid. It is found in a large variety of edible plants and possesses various pharmacological activities. This article aims to review the modern trends in phytochemical isolation and extraction of PCA from plants and other natural resources. Moreover, this article also encompasses pharmacological and biological activities of PCA. It is well known to have anti-inflammatory, antioxidant, anti-hyperglycemia, antibacterial, anticancer, anti-ageing, anti-athro- genic, anti-tumoral, anti-asthma, antiulcer, antispasmodic and neurological properties. PMID:26647619

  3. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  4. Molar extinction coefficients of some fatty acids

    Science.gov (United States)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  5. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  6. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    A study has been carried out for the extraction of uranium from phosphoric acid produced in Algeria. First of all, the Algerian phosphoric acid produced in Algeria by SONATRACH has been characterised. This study helped us to synthesize a phosphoric acid that enabled us to pass from laboratory tests to pilot scale tests. We have then examined extraction and stripping parameters: diluent, DZEPHA/TOPO ratio and oxidising agent. The laboratory experiments enabled us to set the optimum condition for the choice of diluent, extractant concentration, ratio of the synergic mixture, oxidant concentration, redox potential. The equilibrium isotherms lead to the determination of the number of theoretical stages for the uranium extraction and stripping of uranium, then the extraction from phosphoric acid has been verified on a pilot scale (using a mixer-settler)

  7. Biotechnological production of citric acid

    Directory of Open Access Journals (Sweden)

    Belén Max

    2010-12-01

    Full Text Available This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid.

  8. Pantothenic acid (Vitamin B5)

    Science.gov (United States)

    ... It is widely found in both plants and animals including meat, vegetables, cereal grains, legumes, eggs, and ... vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin/niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), ...

  9. Low acid producing solid propellants

    Science.gov (United States)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  10. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  11. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.

    2012-01-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  12. Alternative to Nitric Acid Passivation

    Science.gov (United States)

    Kessel, Kurt R.

    2016-01-01

    Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner. The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.

  13. Aqueous Photochemistry of Glyoxylic Acid.

    Science.gov (United States)

    Eugene, Alexis J; Xia, Sha-Sha; Guzman, Marcelo I

    2016-06-01

    Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging of photoproducts is studied by UV-visible and fluorescence spectroscopies to reveal that the optical properties are altered by the glyoxal produced. The optical properties display periodicity in the time domain of the UV-visible spectrum of chromophores with absorption enhancement (thermochromism) or loss (photobleaching) during nighttime and daytime cycles, respectively. During irradiation, excited state glyoxylic acid can undergo α-cleavage or participate in hydrogen abstractions. The use of (13)C nuclear magnetic resonance spectroscopy (NMR) analysis shows that glyoxal is an important intermediate produced during direct photolysis. Glyoxal quickly reaches a quasi-steady state as confirmed by UHPLC-MS analysis of its corresponding (E) and (Z) 2,4-dinitrophenylhydrazones. The homolytic cleavage of glyoxylic acid is proposed as a fundamental step for the production of glyoxal. Both carbon oxides, CO2(g) and CO(g) evolving to the gas-phase, are quantified by FTIR spectroscopy. Finally, formic acid, oxalic acid, and tartaric acid photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection and (1)H NMR spectroscopy. A reaction mechanism is proposed based on all experimental observations. PMID:27192089

  14. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  15. SATURATED PICRIC ACID PREVENTS AUTOPHAGIA

    Directory of Open Access Journals (Sweden)

    V Rahimi-Movaghar

    2008-08-01

    Full Text Available "nThe dysesthesia and paresthesia that occurs in laboratory rats after spinal cord injury (SCI results in autophagia. This self-destructive behavior interferes with functional assessments in designed studies and jeopardizes the health of the injured rat. In this study, we evaluated role of saturated picric acid in the prevention of autophagia and self-mutilation. All rats were anesthetized with an intraperitoneal injection of a mixture of ketamine (100 mg/kg and xylazine (10 mg/kg for the SCI procedures. In the first 39 rats, no solution applied to the hind limbs, but in the next 26 cases, we smeared the saturated picric acid on the tail, lower extremities, pelvic, and abdomen of the rats immediately after SCI. In the rats without picric acid, 23 rats died following autophagia, but in the 26 rats with picric acid, there was no autophagia (P < 0.001. Picric acid side effects in skin and gastrointestinal signs such as irritation, redness and diarrhea were not seen in any rat. Saturated picric acid is a topical solution that if used appropriately and carefully, might be safe and effectively prevents autophagia and self-mutilation. When the solution is applied to the lower abdomen and limbs, we presume that its bitterness effectively prevents the rat from licking and biting the limb.

  16. Performance of Different Acids on Sandstone Formations

    Directory of Open Access Journals (Sweden)

    M. A. Zaman

    2013-12-01

    Full Text Available Stimulation of sandstone formations is a challenging task, which involves several chemicals and physical interactions of the acid with the formation. Some of these reactions may result in formation damage. Mud acid has been successfully used to stimulate sandstone reservoirs for a number of years. It is a mixture of hydrofluoric (HF and hydrochloric (HCl acids designed to dissolve clays and siliceous fines accumulated in the near-wellbore region. Matrix acidizing may also be used to increase formation permeability in undamaged wells. The change may be up to 50% to 100% with the mud acid. For any acidizing process, the selection of acid (Formulation and Concentration and the design (Pre-flush, Main Acid, After-flush is very important. Different researchers are using different combinations of acids with different concentrations to get the best results for acidization. Mainly the common practice is combination of Hydrochloric Acid – Hydrofluoric with Concentration (3% HF – 12% HCl. This paper presents the results of a laboratory investigation of Orthophosphoric acid instead of hydrochloric acid in one combination and the second combination is Fluoboric and formic acid and the third one is formic and hydrofluoric acid. The results are compared with the mud acid and the results calculated are porosity, permeability, and FESEM Analysis and Strength tests. All of these new combinations shows that these have the potential to be used as acidizing acids on sandstone formations.

  17. An Efficient Procedure for Esterification of Aryloxyacetic Acid and Arylthioacetic Acid Catalyzed by Silica Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    LI,Hong-Ya; LI,Ji-Tai; LI,Hui-Zhang

    2004-01-01

    @@ Aryloxyacetate and arylthioacetate are wildly used in herbicides, plant regulator and insecticides. Recently, Wille et al. have reported that methyl aryloxyacetate is an efficient agent to prevent and treat allergic contact dermatitis.[1] The most popular synthesis is by heating sodium phenoxide (mercaptide) with ethyl chloroacetate in DMF,[2] or by the esterification of acid with alcohol using concentrated H2SO4 as catalyst.[3] In this paper, synthesis of aryloxyacetate and aryl thioacetate from aryloxyacetic acid and arylthioacetic acid respectively in ether catalyzed by silica sulfuric acid in 83%~94% yields is described. The catalyst is reused for 3 times without significant loss of activity (Entry 4). Compared with common procedures, the present procedure possesses the advantages of the operational simplicity, short reaction time,less-corrosion, high yield and reusable catalyst.

  18. Vanadocene reactions with hydroxy acids. [Hydroxy acids: acetylsalicylic, gallic, lactic, salicyclic, orotic,. gamma. -hydroxybutyric acids

    Energy Technology Data Exchange (ETDEWEB)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Ehllert, O.G.; Arsen' eva, T.I. (Gor' kovskij Meditsinskij Inst. (USSR))

    1984-03-01

    To prepare a series of vanadium cyclopentadienylcarboxylates soluble in water, the vanadocene reactions with lactic, ..gamma..-oxybutyric-, salicylic,- gallic-, orotic-, and acetylsalicylic acids have been studied. To determine the influence of cyclopentadienyl groups, bound with a vanadium atom, on the physiological activity of the complexes formed, vanadium halides are made to react with lactic acid. Only the vanadocene reaction with orotic acid was conducted in an aqueous medium, other interactions were realized in the diethyl ether, toluene, T, H, P medium. The interaction of vanadocene and vanadium halides with lactic-, salicylic-, acetylsalicylic- and gallic acids was found to lead to the formation of water-soluble vanadium complexes of Cp/sub 2/, VOCOR or CpV (OCOR)/sub 2/ type. The data on the produced compounds yield, their IR spectra, decomposition temperatures, solubility, effective magnetic moments are presented.

  19. Fluorotelomer acids are more toxic than perfluorinated acids.

    Science.gov (United States)

    Phillips, Michelle M MacDonald; Dinglasan-Panlilio, Mary Joyce A; Mabury, Scott A; Solomon, Keith R; Sibley, Paul K

    2007-10-15

    Saturated and unsaturated fluorotelomer carboxylic acids have been identified as intermediates in the degradation of fluorotelomer alcohols to perfluorinated carboxylic acids (PFCAs). Although surface waters are the likely environmental sink for telomer acids, no fate or toxicity data exist for this matrix. We assessed the acute toxicity of the 4:2, 6:2, 8:2, and 10:2 saturated (FTCA) and unsaturated (FTUCA) fluorotelomer carboxylic acids to Daphnia magna, Chironomus tentans, and Lemna gibba. In general, toxicity increased with increasing fluorocarbon (FC) chain length, particularly for telomer acids of > or =8 FCs. In addition, the FTCAs were generally more toxic than the corresponding FTUCAs. Acute EC50s ranged from 0.025 mg/L (0.04 micromol/L) for D. magna (10:2 FTCA, immobility) to 63 mg/L (167 micromol/L) for C. tentans (6:2 FTCA, growth). While chain-length trends observed in the current study agree with those previously reported for PFCAs, the toxicity thresholds generated here are up to 10,000 times smaller. Our data provide the first evidence that PFCA precursors are more toxic than the PFCAs themselves. PMID:17993163

  20. Nucleic Acid Backbone Structure Variations: Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    Nielsen, Peter E.

    2010-01-01

    Synthetic analogues and mimics of the natural genetic material deoxyribonucleic acid (DNA) are potential gene therapeutic (antisense or antigene) drugs. One of these mimics, peptide nucleic acids (PNAs), are chemically closer to peptides and proteins than to DNA, but nonetheless have retained many...... of the structural properties of DNA. These molecules have found applications as probes in genetic diagnostics and are also being developed into antisense (RNA (ribonucleic acid) interference) gene therapeutic drugs, targeting selected genes through sequence-specific recognition of (messenger or micro......)RNA and in the future also antigene applications targeting the double-stranded DNA of the genes themselves leading to gene silencing or guiding specific gene repair. Finally, the special chemical and structural properties of PNA suggest that these or similar molecules might have played a role in the prebiotic origin...

  1. Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid

    Science.gov (United States)

    Sierra-Alvarez, R.; Yenal, U.; Feld, J.A.; Kopplin, M.; Gandolfi, A.J.; Garbarino, J.R.

    2006-01-01

    Monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) are extensively utilized as pesticides, introducing large quantities of arsenic into the environment. Once released into the environment, these organoarsenicals are subject to microbial reactions. Aerobic biodegradation of MMAV and DMAV has been evaluated, but little is known about their fate in anaerobic environments. The objective of this study was to evaluate the biotransformation of MMAV and DMAV in anaerobic sludge. Biologically mediated conversion occurred under methanogenic or sulfate-reducing conditions but not in the presence of nitrate. Monomethylarsonous acid (MMAIII) was consistently observed as an important metabolite of MMAV degradation, and it was recovered in molar yields ranging from 5 to 47%. The main biotransformation product identified from DMAV metabolism was MMAV, which was recovered in molar yields ranging from 8 to 65%. The metabolites indicate that reduction and demethylation are important steps in the anaerobic bioconversion of MMAV and DMAV, respectively. ?? 2006 American Chemical Society.

  2. Boronic acid-based autoligation of nucleic acids

    DEFF Research Database (Denmark)

    Barbeyron, R.; Vasseur, J.-J.; Smietana, M.;

    2013-01-01

    Abstract: The development of synthetic systems displaying dynamic and adaptive characteristics is a formidable challenge with wide applications from biotechnology to therapeutics. Recently, we described a dynamic and programmable nucleic acid-based system relying on the formation of reversible...... boronate internucleosidic linkages. The DNA- or RNA-templated system comprises a 5′-ended boronic acid probe connecting a 3′-ended ribonucleosidic oligonucleotide partner. To explore the dominant factors that control the reversible linkage, we synthesized a series of 3′-end modified ribonucleotidic strands...

  3. Conjugated Linoleic Acid Accumulation via 10-Hydroxy-12-Octadecaenoic Acid during Microaerobic Transformation of Linoleic Acid by Lactobacillus acidophilus

    OpenAIRE

    Ogawa, Jun; Matsumura, Kenji; Kishino, Shigenobu; Omura, Yoriko; Shimizu, Sakayu

    2001-01-01

    Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadie...

  4. 21 CFR 184.1007 - Aconitic acid.

    Science.gov (United States)

    2010-04-01

    ... salt from cane sugar or molasses. It may be synthesized by sulfuric acid dehydration of citric acid.... 102-103, test for citric acid, which is incorporated by reference in accordance with 5 U.S.C. 552(a... carbonizable substances. Passes the test for citric acid of the “Food Chemicals Codex,” 4th ed. (1996), pp....

  5. How does Listeria monocytogenes combat acid conditions?

    Science.gov (United States)

    Listeria monocytogenes, a major foodborne pathogen, possesses a number of mechanisms which enable it to combat the challenges posed by acidic environments such as acidic foods and the acidity in the gastrointestinal tract. These mechanisms include the acid tolerance response, a two-component regula...

  6. Veal fatty acid composition of different breeds

    OpenAIRE

    Ivica Kos; Jelena Ramljak; Ante Ivanković; Miljenko Konjačić; Nikolina Kelava

    2010-01-01

    Veal fatty acid composition in M. Longissimus thoracis was investigated in different calf breeds (Simmental, Holstein, Simmental x Holstein). Calves were reared on the same farm under identical feeding and handling conditions. Simmental calves had higher polyunsaturated fatty acid (PUFA) but lower saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) values than Holstein and crossbreed calves (P

  7. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  8. [Circulating nucleic acids and infertility].

    Science.gov (United States)

    Scalici, E; Mullet, T; Ferrières Hoa, A; Gala, A; Loup, V; Anahory, T; Belloc, S; Hamamah, S

    2015-09-01

    Circulating nucleic acids (cell-free DNA and microRNAs) have for particularity to be easily detectable in the biological fluids of the body. Therefore, they constitute biomarkers of interest in female and male infertility care. Indeed, in female, they can be used to detect ovarian reserve disorders (polycystic ovary syndrome and low functional ovarian reserve) as well as to assess follicular microenvironment quality. Moreover, in men, their expression levels can vary in case of spermatogenesis abnormalities. Finally, circulating nucleic acids have also the ability to predict successfully the quality of in vitro embryo development. Their multiple contributions during assisted reproductive technology (ART) make of them biomarkers of interest, for the development of new diagnostic and/or prognostic tests, applied to our specialty. Circulating nucleic acids would so offer the possibility of personalized medical care for infertile couples in ART. PMID:26298813

  9. Toxicologic Study of Monochloroacetic Acid

    Institute of Scientific and Technical Information of China (English)

    Lu Bo; Zhan Ping

    2006-01-01

    @@ Monochloroacetic Acid (MCA) is a chlorinated analog of acetic acids. MCA and its sodium salt (SMCA) are widely used as a chemical intermediate (primarily in the manufacture of chlorophenoxy herbicides,carboxymethylcelluose, glycine and indigoid dyes).Moreover, MCA has been found as a common by-product of the chlorination of drinking water. Chloroacetates are ubiquitous in the environment, and MCA is the most abundant among chloroacetates. A background level of 0.1 - 1μg/L is expected to occur in precipitation[1]. Total world wide annual production of MCA reported was about 400 000 tons[2]. Many studies have showed that MCA not only caused acute or chronic damage to the skin , liver, kidney, heart, brain and other organs, but also caused acute death systemically under high concentration[2,3]. So this article will discuss the toxic effect of Monochloroacetic Acid in Toxicology.

  10. Nitric Acid Poisoning: Case Report

    International Nuclear Information System (INIS)

    Nitric acid (HNO3) is a corrosive fluid that, when in contact with reducing agents, generates nitrogen oxides that are responsible for inhalation poisoning. We present two cases of poisoning from nitric acid gas inhalation resulting from occupational exposure. Imaging findings were similar in both cases, consistent with adult respiratory distress syndrome (ARDS): bilaterally diffuse alveolar opacities on the chest X-ray and a cobblestone pattern on computed tomography (CT).one of the patients died while the other evolved satisfactorily after treatment with n-acetyl cysteine and mechanical ventilation. The diagnosis of nitric acid poisoning was made on the basis of the history of exposure and the way in which the radiological findings evolved.

  11. Fauna of an acid stream

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, M.E.

    1922-01-01

    The hydrogen-ion concentration of the water of the big muddy river was found to vary between pH 5.8 and pH 6.8 to 7.2, the higher acidity occurring during the winter. The bottom fauna was characterized by the abundance of clams and shrimp, and by the absence of branchiate snails and ephemerid nymphs. Fish fry and fingerlings were found in large numbers during the summer in weakly acid water, pH 6.8. Observations on our acid streams, continued over a considerable period of time, would tell us much concerning the adaptability of various species to different hydrogen-ion concentrations and are greatly needed in the interpretation of experimental data.

  12. Tumor Acidity as Evolutionary Spite

    Directory of Open Access Journals (Sweden)

    Mohammed E. A. Shayoub

    2011-01-01

    Full Text Available Most cancer cells shift their metabolic pathway from a metabolism reflecting the Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic microenvironment around the tumor and becomes the driving force for a positive carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor microenvironment encourages a selection of certain cell phenotypes that are able to survive in this caustic environment to the detriment of other cell types. This selection can be described by a process which can be modeled upon spite: the tumor cells reduce their own fitness by making an acidic environment, but this reduces the fitness of their competitors to an even greater extent. Moreover, the environment is an important dimension that further drives this spite process. Thus, diminishing the selective environment most probably interferes with the spite process. Such interference has been recently utilized in cancer treatment.

  13. Tumor Acidity as Evolutionary Spite

    Energy Technology Data Exchange (ETDEWEB)

    Alfarouk, Khalid O., E-mail: khalid.alfarouk@act.sd [Department of Biotechnology, Africa City of Technology, Khartoum (Sudan); Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan); Muddathir, Abdel Khalig [Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan); Shayoub, Mohammed E. A. [Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan)

    2011-01-20

    Most cancer cells shift their metabolic pathway from a metabolism reflecting the Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic microenvironment around the tumor and becomes the driving force for a positive carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor microenvironment encourages a selection of certain cell phenotypes that are able to survive in this caustic environment to the detriment of other cell types. This selection can be described by a process which can be modeled upon spite: the tumor cells reduce their own fitness by making an acidic environment, but this reduces the fitness of their competitors to an even greater extent. Moreover, the environment is an important dimension that further drives this spite process. Thus, diminishing the selective environment most probably interferes with the spite process. Such interference has been recently utilized in cancer treatment.

  14. Influence of acidified acidity to uranium bioleaching

    International Nuclear Information System (INIS)

    The relationship between the acidified acidity and the acid consumption and uranium leaching rate in the process of uranium bioleaching is investigated. Results indicate that higher uranium leaching rate is obtained when the relatively high acidity was applied at beginning. For different minerals, although the original acidity should be different, lower original acidity was not better for shortening leaching period and improving uranium leaching rate. It confirms 30-40 g/L sulfuric acid as the original acidity was more suitable and more than 30 g/ L should be applied if the mineral particle sizes were larger. (authors)

  15. Solubilities of Isophthalic Acid in Acetic Acid + Water Solvent Mixtures

    Institute of Scientific and Technical Information of China (English)

    CHENG Youwei; HUO Lei; LI Xi

    2013-01-01

    The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel.The temperature range was from 373.2 to 473.2K and the range of the mole fraction of acetic acid in the solvent mixtures was from x2 =0 to 1.A new method to measure the solubility was developed,which solved the problem of sampling at high temperature.The experimental results indicated that within the temperature range studied,the solubilities of isophthalic acid in all mixtures showed an increasing trend with increasing temperature.The experimental solubilities were correlated by the Buchowski equation,and the calculate results showed good agreement with the experimental solubilities.Furthermore,the mixed solvent systems were found to exhibit a maximum solubility effect on the solubility,which may be attributed to the intermolecular association between the solute and the solvent mixture.The maximum solubility effect was well modeled by the modified Wilson equation.

  16. Bipolar lead acid battery development

    Science.gov (United States)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    1991-01-01

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  17. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø;

    2011-01-01

    Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing......-specifically, for instance with vastly different affinities to zymogen and active enzyme forms. Furthermore, aptamers can be selected to inhibit the enzyme activity of the target proteases, but also to inhibit functionally important exosite interactions, for instance cofactor binding. Several protease-inhibiting aptamers...... strategies and of new principles for regulating the activity of the inhibitory action of aptamers of general interest to researchers working with nucleic acid aptamers...

  18. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  19. 21 CFR 184.1033 - Citric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Citric acid. 184.1033 Section 184.1033 Food and... Substances Affirmed as GRAS § 184.1033 Citric acid. (a) Citric acid (C6H8O7, CAS Reg. No. 77-92-9) is the... mole of water per mole of citric acid. Citric acid may be produced by recovery from sources such...

  20. General consideration on sialic acid chemistry.

    Science.gov (United States)

    Cao, Hongzhi; Chen, Xi

    2012-01-01

    Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.

  1. Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: the E-Z-isomerisation stage.

    Science.gov (United States)

    Bayoumi, Soad A L; Rowan, Michael G; Blagbrough, Ian S; Beeching, John R

    2008-12-01

    Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic-3,2',3',4',5',6'-d(5) acid gave scopoletin-d(2). However, feeding with E-cinnamic-3,2',3',4',5',6'-d(6) and E-cinnamic-2,3,2',3',4',5',6'-d(7) acids, both gave scopoletin-d(3), the latter not affording the expected scopoletin-d(4). We therefore synthesised and fed with E-cinnamic-2-d(1) when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by sigma-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic-2,3,2',3',4',5',6'-d(7) acid gave scopoletin-d(3) with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.

  2. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  3. Citric Acid Passivation of Stainless Steel

    Science.gov (United States)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  4. [Alpha-linolenic acid and cardiovascular diseases].

    Science.gov (United States)

    Ristić-Medić, Danijela; Ristić, Gordana; Tepsić, Vesna

    2003-01-01

    IMPORTANCE AND METABOLISM OF ALPHA-LINOLENIC ACID: Alpha-linolenic acid is an essential fatty acid which cannot be produced in the body and must be taken by food. Both in animals and humans, alpha-linolenic acid is desaturated and elongated into eicosapentaenoic and docosahexaenoic acid. It is also incorporated into plasma and tissue lipids and its conversion is affected by levels of linoleic acid. POTENTIAL ROLE IN PATHOGENESIS OF CARDIOVASCULAR DISEASES: Diet enriched in n-3 fatty acids, especially alpha-linolenic acid, reduces the incidence of cardiac death. Studies have shown that alpha linolenic acid prevents ventricular fibrillation which is the main cause of cardiac death. Studies in rats suggest that alpha-linolenic acid may be more effective in preventing ventricular fibrillations than eicosapentaenoic and docosahexaenoic acid. Furthermore, alpha-linolenic acid is the main fatty acid decreasing platalet aggregation which is an important step in thrombosis i.e. non-fatal myocardial infarction and stroke. DIETARY SOURCES AND NUTRITION RECOMMENDATIONS: Dietary sources include flaxseed and flaxseed oil, canola oil, soybean and soybean oil, pumpkin seed and pumpkin oil, walnuts and walnut oil. Strong evidence supports beneficial effects of alpha-linolenic acid and its dietary sources should be incorporated into balanced diet for prevention of cardiovascular diseases. The recommended daily intake is 2 g with a ratio of 5/1 for linoleic/alpha-linolenic acid. PMID:15510909

  5. Hydroxylated analogues of 5-aminovaleric acid as 4-aminobutyric acidB receptor antagonists

    DEFF Research Database (Denmark)

    Kristiansen, U; Hedegaard, A; Herdeis, C;

    1992-01-01

    The (R) and (S) forms of 5-amino-2-hydroxyvaleric acid (2-OH-DAVA) and 5-amino-4-hydroxyvaleric acid (4-OH-DAVA) were designed as structural hybrids of the 4-aminobutyric acidB (GABAB) agonist (R)-(-)-4-amino-3-hydroxybutyric acid [(R)-(-)-3-OH-GABA] and the GABAB antagonist 5-aminovaleric acid...

  6. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Coco acid triamine condensate... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts. (a... coco acid triamine condensate, poly-car-box-ylic acid salts. (PMN P-92-446) is subject to...

  7. Peptide Nucleic Acids Complexes of Two Peptide Nucleic Acid Strands and One

    DEFF Research Database (Denmark)

    1999-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  8. 5-Caffeoylquinic acid and caffeic acid orally administered suppresses P-selectin expression on mouse platelets

    Science.gov (United States)

    Caffeic acid and 5-caffeoylquinic acid are a naturally occurring phenolic acid and its ester found in human diets. In this paper, potential effects of caffeic acid and 5-caffeoylquinic acid found in coffee and other plant sources on platelet activation were studied via investigating P-selectin expre...

  9. Determination of acetylsalicylic acid and salicylic acid in foods, using HPLC with fluorescence detection.

    NARCIS (Netherlands)

    Venema, D.P.; Hollman, P.C.H.; Janssen, P.L.T.M.K.; Katan, M.B.

    1996-01-01

    We developed a specific and sensitive HPLC method with fluorescence detection for the determination of free acetylsalicylic acid, free salicylic acid, and free salicylic acid plus salicylic acid after alkaline hydrolysis (free-plus-bound) in foods. Acetylsalicylic acid was detected after postcolumn

  10. Acid Rain: What It Is -- How You Can Help!

    Science.gov (United States)

    National Wildlife Federation, Washington, DC.

    This publication discusses the nature and consequences of acid precipitation (commonly called acid rain). Topic areas include: (1) the chemical nature of acid rain; (2) sources of acid rain; (3) geographic areas where acid rain is a problem; (4) effects of acid rain on lakes; (5) effect of acid rain on vegetation; (6) possible effects of acid rain…

  11. 2-(3-Hydroxybenzylaminoacetic acid

    Directory of Open Access Journals (Sweden)

    Li-Hua Zhi

    2011-07-01

    Full Text Available There are two independent 2-(3-hydroxybenzylaminoacetic acid molecules, C9H11NO3, in the asymmetric unit of the title compound. The dihedral angle between the benzene rings of the two independent molecules is 58.12 (4°. The crystal packing is stablized by intermolecular O—H...O and N—H...O hydrogen bonds.

  12. Getting folic acid nutrition right

    Science.gov (United States)

    The two articles in this issue of the journal provide some definitive answers to questions relating to folic acid exposure and folate nutritional status of the US population in the post-fortification era, and, by implication, pose other questions. Most convincingly, these reports, which are based la...

  13. Adipic Acid: Vigorous Import Growth

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Adipic acid is mainly used to manufacture nylon 6,6, plasticizers, grease, polyurethane etc. There are three major commercial production processes: cyclohexane process, cyclohexanol process, butadiene carbonylation process, and the air oxidation of cyclohexane process constitute 93% of the total.

  14. Boric Acid in Kjeldahl Analysis

    Science.gov (United States)

    Cruz, Gregorio

    2013-01-01

    The use of boric acid in the Kjeldahl determination of nitrogen is a variant of the original method widely applied in many laboratories all over the world. Its use is recommended by control organizations such as ISO, IDF, and EPA because it yields reliable and accurate results. However, the chemical principles the method is based on are not…

  15. Combinatorics of aliphatic amino acids.

    Science.gov (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  16. Engineering robust lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.

    2011-01-01

    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  17. Uric acid in multiple sclerosis

    NARCIS (Netherlands)

    Koch, M; De Keyser, J

    2006-01-01

    Peroxynitrite, a reactive oxidant formed by the reaction of nitric oxide with superoxide at sites of inflammation in multiple sclerosis (MS), is capable of damaging tissues and cells. Uric acid, a natural scavenger of peroxynitrite, reduces inflammatory demyelination in experimental allergic encepha

  18. Alternative to Nitric Acid Passivation

    Science.gov (United States)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys. This project is a direct follow-on to United Space Alliance (USA) work at KSC to optimize the parameters for the use of citric acid and verify effectiveness. This project will build off of the USA study to further evaluate citric acids effectiveness and suitability for corrosion protection of a number of stainless steels alloys used by NASA, the Department of Defense (DoD), and the European Space Agency (ESA).

  19. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    Science.gov (United States)

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues. PMID:26572799

  20. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  1. Eskimo plasma constituents, dihomo-gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid inhibit the release of atherogenic mitogens.

    Science.gov (United States)

    Smith, D L; Willis, A L; Nguyen, N; Conner, D; Zahedi, S; Fulks, J

    1989-01-01

    Studies in man and laboratory animals suggest that omega 3 polyunsaturated fatty acid constituents of fish oils have antiatherosclerotic properties. We have studied the effects of several such polyunsaturated fatty acids for ability to modify the in vitro release of mitogens from human platelets. Such mitogens may produce the fibro-proliferative component of atherosclerotic plaques. Both 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) and 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3), major constituents of fish oils, inhibited adenosine diphosphate-induced aggregation of platelets and the accompanying release of mitogens. These effects are dose dependent. Linolenic acid (18:3 omega 3), the biosynthetic precursor of eicosapentaenoic acid, also inhibited platelet aggregation and mitogen release. Eicosapentaenoic acid also inhibited mitogen release from human monocyte-derived macrophages, which, in vivo, are an additional source of mitogens during atherogenesis. Potent inhibition of human platelet aggregation and mitogen release was also seen with dihomo-gamma-linolenic acid (8,11,14-eicosatrienoic acid 20:3 omega 6), whose levels are reportedly elevated in Eskimos subsisting on marine diets. We conclude that diets that elevate plasma and/or tissue levels of eicosapentaenoic acid, docosahexaenoic acid and dihomo-gamma-linolenic acid precursor gamma-linolenic acid (18:3 omega 6) may exert antiatherosclerotic effects by inhibiting the release of mitogens from platelets and other cells.

  2. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    Science.gov (United States)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  3. Cinnamate of inulin as a vehicle for delivery of colonic drugs.

    Science.gov (United States)

    López-Molina, Dorotea; Chazarra, Soledad; How, Chee Wun; Pruidze, Nikolov; Navarro-Perán, Enma; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio; Rojas-Melgarejo, Francisco; Rodríguez-López, José Neptuno

    2015-02-01

    Colon diseases are difficult to treat because oral administrated drugs are absorbed at the stomach and intestine levels and they do not reach colon; in addition, intravenous administrated drugs are eliminated from the body before reaching colon. Inulin is a naturally occurring polysaccharide found in many plants. It consists of β 2-1 linked D-fructose molecules having a glucosyl unit at the reducing end. Various inulin and dextran hydrogels have been developed that serve as potential carrier for introduction of drugs into the colon. Because inulin is not absorbed in the stomach or in the small intestine, and inulin is degraded by colonic bacteria, drugs encapsulated in inulin-coated vesicles could be specifically liberated in the colon. Therefore, the use of inulin-coated vesicles could represent an advance for the treatment of colon diseases. Here, we study the use of a cinnamoylated derivative of chicory inulin as a vehicle for the controlled delivery of colonic drugs. The encapsulation of methotrexate in inulin vesicles and its release and activity was studied in colon cancer cells in cultures.

  4. Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films

    Science.gov (United States)

    Shelf life of strawberries (Fragaria x ananassa) is limited by decay due to microbial growth that negatively impacts their color, texture, and weight. Plant natural volatile compounds, such as terpenoids and esters, have been reported to have antimicrobial properties. The effect of carvacrol (C) and...

  5. Cinnamate of inulin as a vehicle for delivery of colonic drugs.

    Science.gov (United States)

    López-Molina, Dorotea; Chazarra, Soledad; How, Chee Wun; Pruidze, Nikolov; Navarro-Perán, Enma; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio; Rojas-Melgarejo, Francisco; Rodríguez-López, José Neptuno

    2015-02-01

    Colon diseases are difficult to treat because oral administrated drugs are absorbed at the stomach and intestine levels and they do not reach colon; in addition, intravenous administrated drugs are eliminated from the body before reaching colon. Inulin is a naturally occurring polysaccharide found in many plants. It consists of β 2-1 linked D-fructose molecules having a glucosyl unit at the reducing end. Various inulin and dextran hydrogels have been developed that serve as potential carrier for introduction of drugs into the colon. Because inulin is not absorbed in the stomach or in the small intestine, and inulin is degraded by colonic bacteria, drugs encapsulated in inulin-coated vesicles could be specifically liberated in the colon. Therefore, the use of inulin-coated vesicles could represent an advance for the treatment of colon diseases. Here, we study the use of a cinnamoylated derivative of chicory inulin as a vehicle for the controlled delivery of colonic drugs. The encapsulation of methotrexate in inulin vesicles and its release and activity was studied in colon cancer cells in cultures. PMID:25550210

  6. Chemical peeling - Glycolic acid versus trichloroacetic acid in melasma

    Directory of Open Access Journals (Sweden)

    Kalla G

    2001-01-01

    Full Text Available Melasma continues to be a therapeutic challenge. 100 patients of melasma not responding to conventional depigmenting agents were divided into 2 groups, one treated with 55 - 75% glycolic acid (68 patients and the other with 10-15% trichloroacetic acid (32 patients. Applications were made after every 15 days and response assessed clinically along with relapse or hyperpigmentation after 3 month follow up period. More than 75% improvement was seen in 30%, and 50-75% improvement in 24% patients. Response with TCA was more rapid as compared to GA. Chronic pigmentation responded more favourably to TCA. Relapse and hyperpigmentation was more-25% in TCA as compared to 5.9% GA. Sun exposure was the most important precipitating factor followed by pregnancy and drugs.

  7. Quinone-amino acid conjugates targeting Leishmania amino acid transporters.

    Science.gov (United States)

    Prati, Federica; Goldman-Pinkovich, Adele; Lizzi, Federica; Belluti, Federica; Koren, Roni; Zilberstein, Dan; Bolognesi, Maria Laura

    2014-01-01

    The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes) and intracellular (amastigotes) forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively). Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives. PMID:25254495

  8. Quinone-Amino Acid Conjugates Targeting Leishmania Amino Acid Transporters

    OpenAIRE

    Federica Prati; Adele Goldman-Pinkovich; Federica Lizzi; Federica Belluti; Roni Koren; Dan Zilberstein; Maria Laura Bolognesi

    2014-01-01

    The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxi...

  9. Quinone-amino acid conjugates targeting Leishmania amino acid transporters.

    Directory of Open Access Journals (Sweden)

    Federica Prati

    Full Text Available The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7 to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III with amino acids (i.e. arginine and lysine by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes and intracellular (amastigotes forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively. Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives.

  10. Bioisosteric modifications of 2-arylureidobenzoic acids

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Nielsen, Elsebet O; Peters, Dan;

    2004-01-01

    2-Arylureidobenzoic acids (AUBAs) have recently been presented as the first series of selective noncompetitive GluR5 antagonists. In this paper we have modified the acidic moiety of the AUBAs by introducing different acidic and neutral groups, and similarly, we have replaced the urea linker...... of the AUBAs with other structurally related linkers. Replacing the acid with neutral substituents led to inactive compounds in all instances, showing that an acidic moiety is necessary for activity. Replacing the carboxylic moiety in 2a with a sulfonic acid (5c) or a tetrazole ring (5d) improved the potency...

  11. Endocrine and paracrine role of bile acids

    Institute of Scientific and Technical Information of China (English)

    Verena Keitel; Ralf Kubitz; Dieter H(a)ussinger

    2008-01-01

    Bile acids are not only important for the absorption of dietary lipids and fat soluble vitamins but are signalling molecules with diverse endocrine and paracrine functions.Bile acids regulate bile acid,lipid and glucose metabolism and modulate temperature and energy homeostasis.Furthermore,bile acids can not only promote cell proliferation and liver regeneration but can also induce programmed cell death.Bile acid functions are mediated through different pathways which comprise the activation of nuclear hormone receptors,of intracellular kinases and of the plasma membranebound,G-protein coupled bile acid receptor TGR5/Gpbar-1.

  12. Oxidation-reduction reactions of simple hydroxamic acids and plutonium(IV) ions in nitric acid

    OpenAIRE

    Carrott, M. J.; Fox, O. D.; LeGurun, G.; Jones, C J; Mason, C; Taylor, Robin; Andrieux, Fabrice; Boxall, Colin

    2008-01-01

    Simple hydroxamic acids such as formo- and aceto-hydroxamic acids have been proposed as suitable reagents for the separation of either Pu and/or Np from U in modified or single cycle Purex based solvent extraction processes designed to meet the emerging requirements of advanced fuel cycles. The stability of these hydroxamic acids is dominated by their decomposition through acid hydrolysis. Kinetic studies of the acid hydrolysis of formo- and acetohydroxamic acids are reported in the absence a...

  13. Accidental intoxication with hydrochloric acid and hydrofluoric acid mixture

    Directory of Open Access Journals (Sweden)

    Anna Smędra-Kaźmirska

    2014-08-01

    Full Text Available The paper describes a fatal case of accidental ingestion of a mixture of hydrochloric acid and hydrofluoric acid. The man was admitted to hospital, where appropriate treatment, adequate to his condition, was instituted. Numerous ventricular fibrillation episodes, for which the patient was defibrillated repeatedly, were observed during the period of hospitalization. The patient was in a critical condition, with progressive symptoms of hypovolemic shock and multiorgan failure. On the next day after admission, signs of electromechanical dissociation progressing to asystole were noted. The instituted resuscitation procedure proved ineffective and the patient died. Autopsy revealed brownish discoloration of the esophageal, gastric, and small intestinal mucous membranes. Numerous ulcerations without signs of perforation were found both in the esophagus and in the stomach. The mucous membrane of the small intestine demonstrated focal rubefactions, whereas no focal lesions of the large intestinal mucosa were seen. Microscopic investigation of the biopsy specimens collected from the stomach, duodenum and small intestine revealed mucous membrane necrosis foci, reaching the deeper layers of the wall of these organs. The mucous membrane of the large intestine was congested. Bioptates obtained from the lungs indicated the presence of hemorrhagic infarcts and focal extravasations. Poisoning with the aforementioned acids with consequent necrosis of the esophageal, gastric, duodenal and small intestinal walls with hemorrhages to the gastrointestinal tract, as well as extravasations and hemorrhagic infarcts in the lungs was considered to be the cause of death.

  14. Accidental intoxication with hydrochloric acid and hydrofluoric acid mixture.

    Science.gov (United States)

    Smędra-Kaźmirska, A; Kędzierski, M; Barzdo, M; Jurczyk, Ap; Szram, S; Berent, J

    2014-01-01

    The paper describes a fatal case of accidental ingestion of a mixture of hydrochloric acid and hydrofluoric acid. The man was admitted to hospital, where appropriate treatment, adequate to his condition, was instituted. Numerous ventricular fibrillation episodes, for which the patient was defibrillated repeatedly, were observed during the period of hospitalization. The patient was in a critical condition, with progressive symptoms of hypovolemic shock and multiorgan failure. On the next day after admission, signs of electromechanical dissociation progressing to asystole were noted. The instituted resuscitation procedure proved ineffective and the patient died. Autopsy revealed brownish discoloration of the esophageal, gastric, and small intestinal mucous membranes. Numerous ulcerations without signs of perforation were found both in the esophagus and in the stomach. The mucous membrane of the small intestine demonstrated focal rubefactions, whereas no focal lesions of the large intestinal mucosa were seen. Microscopic investigation of the biopsy specimens collected from the stomach, duodenum and small intestine revealed mucous membrane necrosis foci, reaching the deeper layers of the wall of these organs. The mucous membrane of the large intestine was congested. Bioptates obtained from the lungs indicated the presence of hemorrhagic infarcts and focal extravasations. Poisoning with the aforementioned acids with consequent necrosis of the esophageal, gastric, duodenal and small intestinal walls with hemorrhages to the gastrointestinal tract, as well as extravasations and hemorrhagic infarcts in the lungs was considered to be the cause of death.

  15. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid.

    Science.gov (United States)

    Kooijman, Edgar E; Chupin, Vladimir; Fuller, Nola L; Kozlov, Michael M; de Kruijff, Ben; Burger, Koert N J; Rand, Peter R

    2005-02-15

    The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission. PMID:15697235

  16. Anti-Diabetic Effects of Madecassic Acid and Rotundic Acid

    Directory of Open Access Journals (Sweden)

    Yuan-Man Hsu

    2015-12-01

    Full Text Available Anti-diabetic effects of madecassic acid (MEA and rotundic acid (RA were examined. MEA or RA at 0.05% or 0.1% was supplied to diabetic mice for six weeks. The intake of MEA, not RA, dose-dependently lowered plasma glucose level and increased plasma insulin level. MEA, not RA, intake dose-dependently reduced plasminogen activator inhibitor-1 activity and fibrinogen level; as well as restored antithrombin-III and protein C activities in plasma of diabetic mice. MEA or RA intake decreased triglyceride and cholesterol levels in plasma and liver. Histological data agreed that MEA or RA intake lowered hepatic lipid droplets, determined by ORO stain. MEA intake dose-dependently declined reactive oxygen species (ROS and oxidized glutathione levels, increased glutathione content and maintained the activity of glutathione reductase and catalase in the heart and kidneys of diabetic mice. MEA intake dose-dependently reduced interleukin (IL-1β, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels in the heart and kidneys of diabetic mice. RA intake at 0.1% declined cardiac and renal levels of these inflammatory factors. These data indicated that MEA improved glycemic control and hemostatic imbalance, lowered lipid accumulation, and attenuated oxidative and inflammatory stress in diabetic mice. Thus, madecassic acid could be considered as an anti-diabetic agent.

  17. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    Science.gov (United States)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  18. Linoleic acid: between doubts and certainties.

    Science.gov (United States)

    Choque, Benjamin; Catheline, Daniel; Rioux, Vincent; Legrand, Philippe

    2014-01-01

    Linoleic acid is the most abundant polyunsaturated fatty acid in human nutrition and represents about 14 g per day in the US diet. Following the discovery of its essential functions in animals and humans in the early 1920's, studies are currently questioning the real requirement of linoleic acid. It seems now overestimated and creates controversy: how much linoleic acid should be consumed in a healthy diet? Beyond the necessity to redefine the dietary requirement of linoleic acid, many questions concerning the consequences of its excessive consumption on human health arise. Linoleic acid is a direct precursor of the bioactive oxidized linoleic acid metabolites. It is also a precursor of arachidonic acid, which produces pro-inflammatory eicosanoids and endocannabinoids. A majority of the studies on linoleic acid and its derivatives show a direct/indirect link with inflammation and metabolic diseases. Many authors claim that a high linoleic acid intake may promote inflammation in humans. This review tries to (i) highlight the importance of reconsidering the actual requirement of linoleic acid (ii) point out the lack of knowledge between dietary levels of linoleic acid and the molecular mechanisms explaining its physiological roles (iii) demonstrate the relevance of carrying out further human studies on the single variable linoleic acid.

  19. Thermochemistry of aqueous pyridine-3-carboxylic acid (nicotinic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Elsa M. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto Politecnico de Setubal, ESTBarreiro, Rua Americo da Silva Marinho, 2839-001 Lavradio (Portugal); Rego, Talita S. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Minas da Piedade, Manuel E., E-mail: memp@fc.ul.p [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2011-06-15

    Research highlights: {yields} We determined the {Delta}{sub sol}H{sub m} of solid nicotinic acid (NA) in water by solution calorimetry. {yields} We determined {Delta}{sub dil}H{sub m} of an aqueous nicotinic acid solution by flow calorimetry. {yields} We determined (aq, {infinity}) for the 3 NA species involved in acid/base equilibria. {yields} We determined the enthalpy of formation of NA(aq) under saturation conditions.. - Abstract: The molar enthalpy of solution of solid nicotinic acid (NA) at T = 298.15 K, to give an aqueous solution of molality m = 3.748 . 10{sup -3} mol {center_dot} kg{sup -1}, was determined as {Delta}{sub sol}H{sub m} = (19,927 {+-} 48) J {center_dot} mol{sup -1}, by solution calorimetry. Enthalpies of dilution, {Delta}{sub dil}H{sub m}, of 0.1005 mol {center_dot} kg{sup -1} aqueous nicotinic acid to yield final solutions with molality in the approximate range (0.03 to 0.09) mol {center_dot} kg{sup -1} were also measured by flow calorimetry. Combining the two sets of data and the results of pH measurements, with values of proton dissociation enthalpies and {Delta}{sub f}H{sub m}{sup 0}(NA, cr) selected from the literature, it was possible to derive the standard molar enthalpies of formation of the three nicotinic acid species involved in protonation/deprotonation equilibria, at infinite dilution: {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COOH.{infinity}H{sub 2}O,aq) = (328.2 {+-} 1.2) kJ {center_dot} mol{sup -1}, {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (325.0 {+-} 1.2) kJ {center_dot} mol{sup -1}, and {Delta}{sub f}H{sub m}{sup 0}(NC{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (313.7 {+-} 1.2) kJ {center_dot} mol{sup -1}. Finally, the enthalpy of solution of nicotinic acid at T = 298.15 K, under saturation conditions (m = 0.138 mol {center_dot} kg{sup -1}), and the standard molar enthalpy of formation of the corresponding solution could also be obtained as {Delta

  20. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  1. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    2000-01-01

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg e

  2. [Inherited amino acid transport disorders].

    Science.gov (United States)

    Igarashi, Y; Tada, K

    1992-07-01

    Disorders due to inherited amino acids transport defect are reviewed. The disorders were categorized into three types of transport defects, namely, brush-border membrane of epithelial cells of small intestine and kidney tubules (Hartnup disease, blue diaper syndrome, cystinuria, iminoglycinuria and lysine malabsorption syndrome), basolateral membrane (lysinuric protein intolerance) and membrane of intracellular organelles (cystinosis and hyperornitinemia-hyperammonemia-homocitrullinuria syndrome). Pathogenesis, clinical feature, laboratory findings, diagnosis, genetics and treatment of these disorders are described, briefly. There is not much data for the transport systems themselves, so that further investigation in molecular and gene levels for transport systems is necessary to clarify the characteristics of the transport and heterogeneity of phenotypes in inherited amino acids transport disorders. PMID:1404888

  3. Nucleic acid based logical systems.

    Science.gov (United States)

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  4. Europium complexes with trifluoroacetic acid

    International Nuclear Information System (INIS)

    Synthesis conditions and spectra-luminescent properties of different-ligand europium complexes of the composition Eu (TFA)2x2D, where TFA = anion of trifluoroacetic acid, D = 1,10-phenanthroline, 2,2-dipyridyl, triphenylphosphinoxide, hexamethyl-phosphotriamide, were studied. The compounds prepared have been characterized by the methods of elementary chemical analysis, IR and luminescence spectroscopy. It is shown that in the complex compounds two methods of coordination of the acid residue functional groups are realized, i.e. monodentate and bridge functions. The compounds were tested for resistance to UV light effect and to heating in the air. Complex with 2,2-dipyridyl proved the most thermally stable complex in the series studied, its decomposition temperature being 240 deg C

  5. Ursodeoxycholic acid and superoxide anion

    Institute of Scientific and Technical Information of China (English)

    Predrag Ljubuncic; Omar Abu-Salach; Arieh Bomzon

    2005-01-01

    AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.

  6. Palmitic Acid and Health: Introduction.

    Science.gov (United States)

    Agostoni, Carlo; Moreno, Luis; Shamir, Raanan

    2016-09-01

    Interest in the dietary role and metabolic effect of saturated fatty acids has been recently renewed on the basis of epidemiologic observations and economical approach to health and well-being. Saturated fats may favorably increase blood HDL-Cholesterol levels without significant changes of the total cholesterol/HDL-Cholesterol ratio. Also, the negative effect of saturated fat on cardiovascular diseases risk has recently been challenged. Palmitic acid, among all, may have special structural and functional roles in utero and in infancy, and indeed is it is being delivered in a unique form in human milk. Future research should include objective cost-benefit analyses when disentangling the role of saturated fats in dietary recommendations. PMID:25764181

  7. Nucleic Acid Aptamers Against Proteases

    OpenAIRE

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø; Andreasen, P A

    2011-01-01

    Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of...

  8. Rechargeable lead-acid batteries.

    Science.gov (United States)

    1990-09-01

    Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages.

  9. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14CO2. None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14CO2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  10. Thermal Stability Of Formohydroxamic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.; Rudisill, T. S.

    2011-10-21

    The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}C and thermally decomposed at 90 {degree}C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

  11. Acid Rain: The Silent Environmental Threat.

    Science.gov (United States)

    Zmud, Mia

    1992-01-01

    Describes the silent environmental threat posed by acid rain. Caused mainly by manmade pollutants, acid rain damages water and trees, decreases visibility, corrodes monuments, and threatens public health. The article includes guidelines for action. (SM)

  12. Nature in the Classroom: Acid Rain.

    Science.gov (United States)

    Doyle, Charles

    1982-01-01

    As a lesson topic, acid rain is defined, its chemistry given, and its development since the 1950s described. The worldwide effects of acid rain are discussed along with the available technology for controlling the problem. (CM)

  13. How Acid Reflux Disease Damages Teeth

    Science.gov (United States)

    ... more Seniors' Oral Health How to Keep Your Teeth for a Lifetime Tooth loss is simply the ... your desktop! more... How Acid Reflux Disease Damages Teeth Article Chapters How Acid Reflux Disease Damages Teeth ...

  14. Acid rain information book. Second edition

    International Nuclear Information System (INIS)

    Potential consequences of widespread acid precipitation are reviewed through an extensive literature search. Major aspects of the acid rain phenomena are discussed, areas of uncertainty identified, and current research summarized

  15. Bile acids for primary sclerosing cholangitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Gluud, C

    2003-01-01

    Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear.......Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear....

  16. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  17. Role of succinic acid in chemical evolution

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1982-01-01

    Succinic acid is converted into other carboxylic acids by ionizing radiation. The results obtained have been correlated with the ready formation of this compound in prebiotic experiments. Its role in biological systems may be related to its prebiotic occurrence.

  18. RETINOIC ACID ALTERS EPITHELIAL DIFFERENTIATION DURING PALATOGENESIS

    Science.gov (United States)

    Retinoids are teratogenic in humans and animals, producing a syndrome of craniofacial malformations which includes cleft palate. his study investigates the mechanism through which retinoic acid induces cleft palate. urine palatogenesis after exposure to retinoic acid in utero is ...

  19. Self-breaking retarded acid emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Scherubel, G.A.

    1979-02-20

    A subterranean formation is acidized with an acid-in-oil emulsion consisting of an aqueous acidizing solution, an oil, an alkyl C/sub 8/ to C/sub 18/ primary fatty amine, and at least one diethanolamide of at least one C/sub 8/ to C/sub 18/ fatty acid. The present invention is an improved acid-in-oil acidizing emulsion, and acidizing method such as an emulsion, the emulsion being of the type containing an effective amount of at least one C/sub 8/ to C/sub 18/ primary amine as a cationic surfactant to increase the normal reaction. The diethanolamine is a nonionic surfactant which causes the emulsion to break as the acidizing capacity of the emulsion becomes substantially depleted, i.e., spent, on the formation. 41 claims.

  20. Profile of Fatty Acids, Amino Acids, Carotenoid Total, and α-Tocopherol from Flying Fish Eggs

    Directory of Open Access Journals (Sweden)

    Aulia Azka

    2015-12-01

    Full Text Available Flying fish are found in waters of eastern Indonesia, which until now is still limited information about nutritional content. The purpose of this research was determine the composition of fatty acids, amino acids, total carotenoids, α-tocopherol flying fish eggs (Hyrundicthys sp.. The composition of fatty acid was measured by gas chromatography (GC, while amino acids, total carotenoids, α-tocopherol was measured by High performanced Liquid Chromatography (HPLC. Egg contained 22 fatty acids such as saturated fatty acid 29.71%, monounsaturated fatty acid 7.86%, and polysaturated fatty acid 13.64%. The result showed that eggs flying fish contained 17 amino acids, such as essential amino acid 14.96% and non-essential amino acids 20.27%. Eggs contained a total carotenoid of 245.37 ppm. α-tocopherol content of flying fish eggs by 1.06 ppm.

  1. Capture and release of acid-gasses with acid-gas binding organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  2. The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Inoculant for Soybean Grown on Acid Soils

    Directory of Open Access Journals (Sweden)

    ANGELIA REZTY FITRIANI SITUMORANG

    2009-12-01

    Full Text Available Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max cultivation, although the production is low. The use of acid tolerant soybean and acid-Al tolerant nitrogen-fixing bacteria was an alternative way to increase soybean productivity on acid soils. This research was conducted to study the influence of acid-Al tolerant Bradyrhizobium japonicum on growth of Slamet cultivar soybean planted on acid soils in greenhouse. Three strains of acid-Al tolerant B. japonicum, i.e. BJ 11 (19, BJ 11 (5, and BJ 11 (wt, were used in this experiment. The result showed that inoculation of all acid-Al tolerant B. japonicum strains could increase plant height, shoot and root weight, number of flowers, pods, seeds, seeds dry weight, and shoot and seed nitrogen content.

  3. Analysis of the apple fruit acid/low-acid trait by SSR markers

    Institute of Scientific and Technical Information of China (English)

    Yuxin YAO; Heng ZHAI; Lingling ZHAO; Kai YI; Zhi LIU; Ye SONG

    2008-01-01

    It is necessary to find out the genetic character-istics of malic acid in the course of apple genomic research and breeding. In this study, the SSR marker linked to the acid/low-acid trait in apple fruit was identified from 140 SSR primer pairs, using 91 F1 population hybrids from the intra-specific cross between apple cultivar 'Dongguang' and 'Fuji' as the experimental materials. Of 140 SSR primer pairs, only primer SDY085 produced a polymorphic band linked to acid trait, and the linkage distance was 8.89 cM. Also, the titrated acid and malic acid in different developmental stages were determined. The SSR marker analysis, coupled with the change of the total acid and malic acid contents, revealed that the acid/low-acid trait was governed by a major gene and acid trait was completely dominant.

  4. Incorporation of conjugated linoleic acid (CLA and α-linolenic acid (LNA in pacu fillets

    Directory of Open Access Journals (Sweden)

    Deoclécio José Barilli

    2014-03-01

    Full Text Available The objective of this study was to evaluate the incorporation of conjugated linoleic acid and α-linolenic acid in fillets of pacu fish raised in net cages and fed diets enriched with these acids. The fish were fed for 49 days, and at the end of this period the fatty acid content in the fillets was determined by gas chromatography. Concentrations of α-linolenic acid, eicosapentaenoic acid, and the total omega-3 (n-3 fatty acid in the fillets increased, improving the n-6/n-3 ratio. In addition, the incorporation of conjugated linoleic acid in the fish fillets proved well established. This study showed that the use of diets enriched with conjugated linoleic acid and α-linolenic acid results in the incorporation of these acids in the of pacu fish fillets, improving their nutritional quality.

  5. Synthesis and Characterization of Thermally Stable Photocurable Polymer with Cyclohexane Moiety.

    Science.gov (United States)

    Kim, Dong Mm; Yu, Seong Hun; Lee, Jun Young

    2016-03-01

    Photocurable polymers with high transparency and thermal stability were synthesized by reaction between a commercial epoxy resin (NC9110) containing cyclohexane moiety and various kinds of cinnamic acids such as trans-cinnamic acid (CA), 3-hydroxy-trans-cinnamic acid (HCA) and 4-methoxy-trans-cinnamic acid (MCA). The photocurable polymers were synthesized with equal equivalent weight ratio of epoxy and cinnamate group. The chemical structures of the synthesized polymers were confirmed by 1H-NMR and FT-IR spectroscopies. Optical transmittance and thermal stability of the photocured polymers were investigated using UV-Visible spectroscopy and thermogravimetric analysis (TGA), respectively. It was confirmed that the polymers could form thin films with very smooth surface and could be efficiently cured by UV irradiation. It was also found that the polymer after curing showed a good thermal stability and optical transmittance. There was no significant transmittance change after heat treatment at 250 degrees C for 1 h and showed no noticeable weight loss up to 360 degrees C.

  6. Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives

    OpenAIRE

    Kunikazu Moribe; Waree Limwikrant; Kenjirou Higashi; Keiji Yamamoto

    2011-01-01

    Drug nanoparticle formulation using ascorbic acid derivatives and its therapeutic uses have recently been introduced. Hydrophilic ascorbic acid derivatives such as ascorbyl glycoside have been used not only as antioxidants but also as food and pharmaceutical excipients. In addition to drug solubilization, drug nanoparticle formation was observed using ascorbyl glycoside. Hydrophobic ascorbic acid derivatives such as ascorbyl mono- and di-n-alkyl fatty acid derivatives are used either as drugs...

  7. 21 CFR 184.1005 - Acetic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acetic acid. 184.1005 Section 184.1005 Food and... Substances Affirmed as GRAS § 184.1005 Acetic acid. (a) Acetic acid (C2H4O2, CAS Reg. No. 64-19-7) is known as ethanoic acid. It occurs naturally in plant and animal tissues. It is produced by fermentation...

  8. Enhancement of colposcopic image by sulphosalicylic acid.

    Directory of Open Access Journals (Sweden)

    Khilnani P

    1993-01-01

    Full Text Available Acetic acid is used conventionally for enhancement of the colposcopic image. We used sulphosalicylic acid instead of acetic acid in 50 normal cases. The normal appearance was enhanced in all cases. The image was also enhanced in 70% cases of cervical intraepithelial neoplasia and 90% cases of cervical condyloma accuminata. The image was not inferior to that with acetic acid in any of the cases.

  9. Complicated Composting: Persistent Pyridine Carboxylic Acid Herbicides

    OpenAIRE

    Reimer, Julie

    2013-01-01

    This paper reviews pyridine carboxylic acid herbicide impacts on compost. Pyridine carboxylic acid herbicides are not completely broken down during grass growth, harvest and drying of hay, in the digestive tract of livestock, or during composting. These herbicides are a popular choice for broadleaf weed control because of this persistence: they remain effective for months or years. Pyridine carboxylic acids are also more effective than the common herbicide 2, 4-dichlorophenoxyacetic acid and ...

  10. Direct Channeling of Retinoic Acid between Cellular Retinoic Acid-Binding Protein II and Retinoic Acid Receptor Sensitizes Mammary Carcinoma Cells to Retinoic Acid-Induced Growth Arrest

    OpenAIRE

    Budhu, Anuradha S.; Noy, Noa

    2002-01-01

    Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid to this receptor. Here, the mechanisms underlying the effects of CRABP-II on the transcriptional ac...

  11. Microbial production of natural poly amino acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three kinds of poly amino acids, poly-γ-glutamic acid, poly(ε-L-lysine) and multi-L-arginyl-poly (L-aspartic acid) can be synthesized by enzymatic process independently from ribosomal protein biosynthesis pathways in microorganism. These biosynthesized polymers have attracted more and more attentions because of their unique properties and various applications. In this review, the current knowledge on the biosynthesis, biodegradations and applications of these three poly amino acids are summarized.

  12. Fatty Acid Composition of Agaricus bisporus (Lange) Sing.

    OpenAIRE

    Aktümsek, Abdurrahman; ÖZTÜRK, Celâleddin; KAŞIK, Giyasettin

    1998-01-01

    Fatty acid compositions of fruit body, stem, lamellae and total of Agaricus bisporus were seperately analysed by GLC. In the all fatty acid compositions of A. bisporus, linoleic acid were predominant. Percentages of linoleic acid were varied between 53.45 - 68.78%. It was showed that the other major fatty acids were palmitic, oleic and stearic acid in the fatty acid compositions.

  13. Strain Improvement of Rhodotorula graminis for Production of a Novel l-Phenylalanine Ammonia-Lyase

    OpenAIRE

    Orndorff, Steve A.; Costantino, Nina; Stewart, David; Durham, Don R.

    1988-01-01

    l-Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) from Rhodotorula rubra has been used in the commercial manufacture of l-phenylalanine from trans-cinnamic acid. In this study, R. graminis PAL was investigated. Mutant strain GX6000 was isolated after ethyl methanesulfonate mutagenesis of wild-type R. graminis GX5007 by selecting for resistance to phenylpropiolic acid, an analog of trans-cinnamic acid. Mutant strain GX6000 produced inducible PAL at levels four- to fivefold higher than had wild-t...

  14. Acrylic Acid and Esters Will Be Oversupply

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  15. Treating burns caused by hydrofluoric acid.

    Science.gov (United States)

    Summers, Anthony

    2011-06-01

    Hydrofluoric acid is an ingredient of many common household and industrial solutions. Even seemingly minor burns caused by this acid can have catastrophic effects if they are treated inappropriately or late. This article describes the signs and symptoms, the pathophysiology and the emergency management of hydrofluoric acid burns.

  16. Hydrofluoric acid on dentin should be avoided.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Mine, A.; Roeters, F.J.M.; Opdam, N.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2010-01-01

    Hydrofluoric acid can be used for intra-oral repair of restorations. Contamination of tooth substrate with hydrofluoric acid cannot always be avoided. OBJECTIVES: To investigate the bonding effectiveness to hydrofluoric acid contaminated dentin by, micro-tensile bond strength testing, SEM and TEM. M

  17. Lipoxygenase inhibitory activity of anacardic acids.

    Science.gov (United States)

    Ha, Tae Joung; Kubo, Isao

    2005-06-01

    6[8'(Z)-pentadecenyl]salicylic acid, otherwise known as anacardic acid (C15:1), inhibited the linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, type 1) with an IC50 of 6.8 microM. The inhibition of the enzyme by anacardic acid (C15:1) is a slow and reversible reaction without residual activity. The inhibition kinetics analyzed by Dixon plots indicates that anacardic acid (C15:1) is a competitive inhibitor and the inhibition constant, KI, was obtained as 2.8 microM. Although anacardic acid (C15:1) inhibited the linoleic acid peroxidation without being oxidized, 6[8'(Z),11'(Z)-pentadecadienyl]salicylic acid, otherwise known as anacardic acid (C15:2), was dioxygenated at low concentrations as a substrate. In addition, anacardic acid (C15:2) was also found to exhibit time-dependent inhibition of lipoxygenase-1. The alk(en)yl side chain of anacardic acids is essential to elicit the inhibitory activity. However, the hydrophobic interaction alone is not enough because cardanol (C15:1), which possesses the same side chain as anacardic acid (C15:1), acted neither as a substrate nor as an inhibitor. PMID:15913294

  18. 21 CFR 582.6033 - Citric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Citric acid. 582.6033 Section 582.6033 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6033 Citric acid. (a) Product. Citric acid. 2 For the purpose of this subpart, no attempt has been made...

  19. 21 CFR 582.1033 - Citric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Citric acid. 582.1033 Section 582.1033 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1033 Citric acid. (a) Product. Citric acid. (b) Conditions of use. This substance is...

  20. Acid Rain: What We Must Do.

    Science.gov (United States)

    Gorham, Eville

    1983-01-01

    Addresses questions about the nature, source, and history of acid rain. In addition, discusses the questions: Why is acid rain a problem? Is acid rain getting worse? What is the threat of further problems? Concludes that it is time to act on the problem and recommends an appropriate course of action. (JN)