WorldWideScience

Sample records for cingulate motor areas

  1. Functional and structural alterations in the cingulate motor area relate to decreased fronto-striatal coupling in major depressive disorder with psychomotor disturbances

    Directory of Open Access Journals (Sweden)

    Benny eLiberg

    2014-12-01

    Full Text Available Psychomotor disturbances are a classic feature of major depressive disorders. These can manifest as lack of facial expressions and decreased speech production, reduced body posture and mobility, and slowed voluntary movement. The neural correlates of psychomotor disturbances in depression are poorly understood but it has been suggested that outputs from the cingulate motor area (CMA to striatal motor regions, including the putamen, could be involved. We used functional and structural magnetic resonance imaging to conduct a region-of-interest analysis to test the hypotheses that neural activation patterns related to motor production and gray matter volumes in the CMA would be different between depressed subjects displaying psychomotor disturbances (n=13 and matched healthy controls (n=13. In addition, we conducted a psychophysiological interaction analysis to assess the functional coupling related to self-paced finger-tapping between the caudal CMA and the posterior putamen in patients compared to controls. We found a cluster of increased neural activation, adjacent to a cluster of decreased gray matter volume in the caudal CMA in patients compared to controls. The functional coupling between the left caudal CMA and the left putamen during finger-tapping task performance was additionally decreased in patients compared to controls. In addition, the strength of the functional coupling between the left caudal CMA and the left putamen was negatively correlated with the severity of psychomotor disturbances in the patient group. In conclusion, we found converging evidence for involvement of the caudal CMA and putamen in the generation of psychomotor disturbances in depression.

  2. Visual processing of optic flow and motor control in the human posterior cingulate sulcus.

    Science.gov (United States)

    Field, David T; Inman, Laura A; Li, Li

    2015-10-01

    Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.

  3. Functional lateralization in cingulate cortex predicts motor recovery after basal ganglia stroke.

    Science.gov (United States)

    Li, Yao; Chen, Zengai; Su, Xin; Zhang, Xiaoliu; Wang, Ping; Zhu, Yajing; Xu, Qun; Xu, Jianrong; Tong, Shanbao

    2016-02-01

    The basal ganglia (BG) is involved in higher order motor control such as movement planning and execution of complex motor synergies. Neuroimaging study on stroke patients specifically with BG lesions would help to clarify the consequence of BG damage on motor control. In this paper, we performed a longitudinal study in the stroke patients with lesions in BG regions across three motor recovery stages, i.e., less than 2week (Session 1), 1-3m (Session 2) and more than 3m (Session 3). The patients showed an activation shift from bilateral hemispheres during early sessions (3m), suggesting a compensation effect from the contralesional hemisphere during motor recovery. We found that the lateralization of cerebellum(CB) for affected hand task correlated with patients' concurrent Fugl-Meyer index (FMI) in Session 2. Moreover, the cingulate cortex lateralization index in Session 2 was shown to significantly correlate with subsequent FMI change between Session 3 and Session 2, which serves as a prognostic marker for motor recovery. Our findings consolidated the close interactions between BG and CB during the motor recovery after stroke. The dominance of activation in contralateral cingulate cortex was associated with a better motor recovery, suggesting the important role of ipsilesional attention modulation in the early stage after BG stroke. PMID:26742641

  4. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  5. Evidence of a posterior cingulate involvement (Brodmann area 31) in dyslexia: a study based on source localization algorithm of event-related potentials.

    Science.gov (United States)

    Stoitsis, John; Giannakakis, Giorgos A; Papageorgiou, Charalabos; Nikita, Konstantina S; Rabavilas, Andreas; Anagnostopoulos, Dimitris

    2008-04-01

    The study investigates the differences regarding the position of intracranial generators of P50 component of ERPs in 38 dyslexic children aged 11.47+/-2.12 years compared with their 19 healthy siblings aged 12.21+/-2.25. The dipoles were extracted by solving the inverse electromagnetic problem according to the recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm approach. For improved localization of the main dipole the solutions were optimized using genetic algorithms. The statistical analysis revealed differences regarding the position of intracranial generators of low frequency of P50. Particularly, dyslexics showed main activity being located at posterior cingulate cortex (Brodmann's area 31) while controls exhibited main activity being located at retrosplenial cortex (Brodmann's area 30). These results may indicate a role for the posterior cingulate cortex in the pre-attentive processing operation of dyslexia beyond of its traditional function in terms of spatial attention and motor intention. PMID:18180091

  6. Hippocampal CA1/subiculum-prefrontal cortical pathways induce plastic changes of nociceptive responses in cingulate and prelimbic areas

    Directory of Open Access Journals (Sweden)

    Nakamura Hiroyuki

    2010-08-01

    Full Text Available Abstract Background Projections from hippocampal CA1-subiculum (CA1/SB areas to the prefrontal cortex (PFC, which are involved in memory and learning processes, produce long term synaptic plasticity in PFC neurons. We examined modifying effects of these projections on nociceptive responses recorded in the prelimbic and cingulate areas of the PFC. Results Extracellular unit discharges evoked by mechanical noxious stimulation delivered to the rat-tail and field potentials evoked by a single stimulus pulse delivered to CA1/SB were recorded in the PFC. High frequency stimulation (HFS, 100 Hz delivered to CA1/SB, which produced long-term potentiation (LTP of field potentials, induced long-term enhancement (LTE of nociceptive responses in 78% of cases, while, conversely, in 22% responses decreased (long-term depression, LTD. These neurons were scattered throughout the cingulate and prelimbic areas. The results obtained for field potentials and nociceptive discharges suggest that CA1/SB-PFC pathways can produce heterosynaptic potentiation in PFC neurons. HFS had no effects on Fos expression in the cingulated cortex. Low frequency stimulation (LFS, 1 Hz, 600 bursts delivered to the CA1/SB induced LTD of nociceptive discharges in all cases. After recovery from LTD, HFS delivered to CA1/SB had the opposite effect, inducing LTE of nociceptive responses in the same neuron. The bidirectional type of plasticity was evident in these nociceptive responses, as in the homosynaptic plasticity reported previously. Neurons inducing LTD are found mainly in the prelimbic area, in which Fos expression was also shown to be inhibited by LFS. The electrophysiological results closely paralleled those of immunostaining. Our results indicate that CA1/SB-PFC pathways inhibit excitatory pyramidal cell activities in prelimbic areas. Conclusion Pressure stimulation (300 g applied to the rat-tail induced nociceptive responses in the cingulate and prelimbic areas of the PFC, which

  7. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  8. Regional Metabolic Changes in the Hippocampus and Posterior Cingulate Area Detected with 3-Tesla Magnetic Resonance Spectroscopy in Patients with Mild Cognitive Impairment and Alzheimer Disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqun Wang; Cheng Zhao; Kuncheng Li (Dept. of Radiology, Xuanwu Hospital, Capital Medical Univ., Beijing (China)); Lei Yu; Weidong Zhou (Dept. of Neurology, Xuanwu Hospital, Capital Medical Univ., Beijing (China))

    2009-04-15

    Background: Magnetic resonance spectroscopy (MRS) plays an important role in early diagnosis of Alzheimer disease (AD). There are many reports on MRS studies among individuals with AD and mild cognitive impairment (MCI). However, very few studies have compared spectroscopic data of different limbic regions among AD and MCI subjects. Purpose: To compare metabolite changes of different regions in the brain of AD and MCI patients by using 3.0T short-echo-time MRS. Material and Methods: Metabolite ratios in the hippocampus and posterior cingulate area were compared in a group of patients with AD (n=16), MCI (n=16), and normal subjects as a control group (n=16). Clinical neuropsychological tests were measured in all subjects. Results: In the hippocampus, there were significant differences in N-acetylaspartate (NAA)/creatine (Cr), myo-inositol (mI)/Cr, and mI/NAA ratios among the three groups. However, there were no significant differences in choline (Cho)/Cr ratio among the three groups. In the posterior cingulate area, there were no significant differences in the NAA/Cr, Cho/Cr, and mI/Cr ratios among the three groups. However, there were significant differences in mI/NAA ratio between patients with AD and the control group, and between the AD and MCI groups. In addition, there was significant correlation between mI/NAA ratio and Mini Mental Status Exam (MMSE) score in subjects with AD and MCI. Conclusion: The study reveals that the elevation of mI/NAA ratio in the hippocampus is more significant than that in the posterior cingulate area, which corresponds to the pathologic procession of AD. The ratios of mI/NAA in the hippocampus and in the posterior cingulate area together provide valuable discrimination among the three groups (AD, MCI, and controls). There is a significant correlation between mI/NAA ratio and cognitive decline.

  9. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  10. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure

    OpenAIRE

    Migliorini, R; Moore, EM; Glass, L.; Infante, MA; Tapert, SF; Jones, KL; Mattson, SN; Riley, EP

    2015-01-01

    © 2015 Elsevier B.V. Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n=. 32) and non-exposed controls (CON, n=. 21). Adolescents (12-17 years) underwent structural magnetic resonance imaging ...

  11. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output.

    Science.gov (United States)

    Akkal, Dalila; Dum, Richard P; Strick, Peter L

    2007-10-01

    We used retrograde transneuronal transport of neurotropic viruses in Cebus monkeys to examine the organization of basal ganglia and cerebellar projections to two cortical areas on the medial wall of the hemisphere, the supplementary motor area (SMA) and the pre-SMA. We found that both of these cortical areas are the targets of disynaptic projections from the dentate nucleus of the cerebellum and from the internal segment of the globus pallidus (GPi). On average, the number of pallidal neurons that project to the SMA and pre-SMA is approximately three to four times greater than the number of dentate neurons that project to these cortical areas. GPi neurons that project to the pre-SMA are located in a rostral, "associative" territory of the nucleus, whereas GPi neurons that project to the SMA are located in a more caudal and ventral "sensorimotor" territory. Similarly, dentate neurons that project to the pre-SMA are located in a ventral, "nonmotor" domain of the nucleus, whereas dentate neurons that project to the SMA are located in a more dorsal, "motor" domain. The differential origin of subcortical projections to the SMA and pre-SMA suggests that these cortical areas are nodes in distinct neural systems. Although both systems are the target of outputs from the basal ganglia and the cerebellum, these two cortical areas seem to be dominated by basal ganglia input. PMID:17913900

  12. Integration of motor traffic in residential areas.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1977-01-01

    In stead of banning the cars from residential areas, the plan is to integrate them in such a way that they can still be used, but that they will loose their predominant position. The areas where this integration is to take place are called residential yards. This paper concentrates on the lighting r

  13. Instructive signals for motor learning from visual cortical area MT

    OpenAIRE

    Carey, Megan R; Medina, Javier F.; Lisberger, Stephen G.

    2005-01-01

    Sensory error signals have long been proposed to act as instructive signals to guide motor learning. Here we have exploited the temporal specificity of learning in smooth pursuit eye movements and the well-defined anatomical structure of the neural circuit for pursuit to identify a part of sensory cortex that provides instructive signals for motor learning in monkeys. We show that electrical microstimulation in the motion-sensitive middle temporal area (MT) of extrastriate visual cortex instr...

  14. Neurofeedback of the difference in activation of the anterior cingulate cortex and posterior insular cortex: two functionally connected areas in the processing of pain

    Directory of Open Access Journals (Sweden)

    Mariela eRance

    2014-10-01

    Full Text Available The aim of this study was the analysis of the effect of a learned increase in the dissociation between the rostral anterior cingulate cortex (rACC and the left posterior insula (pInsL on pain intensity and unpleasantness and the contribution of each region to the effect, exploring the possibility to influence the perception of pain with neurofeedback methods. We trained ten healthy subjects to increase the difference in the blood oxygenation level-dependent response between the rACC and pInsL to painful electric stimuli. Subjects learned to increase the dissociation with either the rACC (state 1 or the pInsL (state 2 being higher. For feedback we subtracted the signal of one region from the other and provided feedback in four conditions with six trials each yielding two different states: (rACC – pInsL increase (state 1, rACC – pInsL decrease (state 2, pInsL – rACC increase (state 2, pInsL – rACC decrease (state 1. Significant changes in the dissociation from trial one to six were seen in all conditions. There were significant changes from trial one to six in the pInsL in three of the four conditions, the rACC showed no significant change. Pain intensity or unpleasantness ratings were unrelated to the dissociation between the regions and the activation in each region. Learning success in the conditions did not significantly correlate and there was no significant correlation between the two respective conditions of one state, i.e. learning to achieve a specific state is not a stable ability. The pInsL seems to be the driving force behind changes in the learned dissociation between the regions. Despite successful differential modulation of activation in areas responsive to the painful stimulus, no corresponding changes in the perception of pain intensity or unpleasantness emerged. Learning to induce different states of dissociation between the areas is not a stable ability since success did not correlate overall or between two conditions of

  15. Supplementary motor area and other cortical areas in organization of voluntary movements in man

    DEFF Research Database (Denmark)

    Roland, P E; Larsen, B; Lassen, N A;

    1980-01-01

    1. Previous studies in man have revealed a coupling between the regional cerebral blood flow (rCBF) and the regional cerebral metabolic rate for oxygen. In normal man, increases in the regional cerebral metabolic rate for oxygen leads to proportional increases in the rCBF(34). We have measured...... the rCBF as an expression of the level of cortical activity simultaneously from 254 cortical regions in 28 patients with no major neurological defects, during rest and during planning and execution of a few types of learned voluntary movements with the hand. 2. We found that the rCBF increases...... it projects to by itself can control ongoing simple ballistic movements with the self-same body part. A sequence of different isolated finger movements requires programming in the supplementary motor areas. We suggest that the supplementary motor areas are programming areas for motor subroutines...

  16. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    Directory of Open Access Journals (Sweden)

    Jared B Smith

    2013-01-01

    Full Text Available Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor (MI cortex, but the relative topography of these afferent projections has not been established. Intracranial microstimulation (ICMS evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC and in the primary (SI and secondary (SII somatosensory cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial (AGm and lateral agranular (AGl cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker motor cortex is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor output region located more medially in AGm proper.

  17. Anomia produced by direct cortical stimulation of the pre-supplementary motor area in a patient undergoing preoperative language mapping.

    Science.gov (United States)

    Rozanski, Verena Eveline; Peraud, Aurelia; Noachtar, Soheyl

    2015-06-01

    There is sparse data on the analysis of supplementary motor area in language function using direct cortical stimulation of the supplementary motor area. Here, we report a patient who experienced isolated anomia during stimulation of the anterior supplementary motor area and discuss the role of the supplementary motor area in speech production. The role of the pre-supplementary motor· area in word selection, observed in fMRI studies, can be confirmed by direct cortical stimulation.

  18. The Cingulate Cortex and Human Memory Processes

    Directory of Open Access Journals (Sweden)

    Maria M.Pyasik

    2012-01-01

    Full Text Available This study presents data from a magnetic-resonance morphometric (MRMM analysisof the main regions of the cingulate cortex (in both hemispheres and theirrole in memory processes in a group of healthy, females of older age. The resultsdemonstrate a statistically reliable correlation between overall performance andthe type of errors in different neuropsychological memory tests and the relativesize of these regions. The discovered pattern of correlations can be explained byhypothesizing the reciprocal functional influence of the two major areas of thecingulate cortex – its anterior and posterior dorsal parts – on performance in neuropsychologicalmemory tests.

  19. Supplementary motor area deactivation impacts the recovery of hand function from severe peripheral nerve injury

    Institute of Scientific and Technical Information of China (English)

    Ye-chen Lu; Han-qiu Liu; Xu-yun Hua; Yun-dong Shen; Wen-dong Xu; Jian-guang Xu; Yu-dong Gu

    2016-01-01

    Although some patients have successful peripheral nerve regeneration, a poor recovery of hand function often occurs after peripheral nerve injury. It is believed that the capability of brain plasticity is crucial for the recovery of hand function. The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury. In this study, we explored the activation mode of the supplementary motor area during a motor imagery task. We investigated the plasticity of the central nervous system after brachial plexus injury, using the motor imagery task. Results from functional magnetic resonance imaging showed that after brachial plexus injury, the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas. This result indicates that it is dififcult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task, thereby impacting brain remodeling. Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing, initiating and executing certain movements, which may be partly responsible for the unsatisfactory clinical recovery of hand function.

  20. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2015-04-01

    Full Text Available We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline and after each intervention (post-local, post-global, we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI.Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  1. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    OpenAIRE

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke wh...

  2. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  3. Involvement of the larynx motor area in singing-voice perception: a TMS study

    OpenAIRE

    Yohana eLévêque; Neil eMuggleton; Lauren eStewart; Daniele eSchön

    2013-01-01

    Recent evidence has reported that the motor system has a role in speech or emotional vocalization discrimination. In the present study we investigated the involvement of the larynx motor representation in singing perception. Twenty-one non-musicians listened to short tones sung by a human voice or played by a machine and performed a categorization task. Thereafter continuous theta-burst transcranial magnetic stimulation was applied over the right larynx pre-motor area or on the vertex and the...

  4. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram;

    2014-01-01

    Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitiv...

  5. Understanding the conflicting values associated with motorized recreation in protected areas.

    Science.gov (United States)

    Jones, Cheryl; Newsome, David; Macbeth, Jim

    2016-04-01

    The International Union for the Conservation of Nature World Parks Congress in 2014 reported that the quality of management of protected areas is crucial in halting the loss of the world's biodiversity and meeting global environmental challenges. However, increasingly high-impact activities, including motorized recreation are occurring in protected areas such as national parks, creating an ongoing clash of values and further compromising protected area management. This paper discusses the values of protected areas in the context of increasingly high-impact motorized usage, the impact of divergent values placed on green spaces such as national parks, and perceptions about these spaces. Given the changing global context of this millennium, and increasing populations requiring space for high-impact activities including motorized recreation, rethinking recreation in protected areas is needed. A protected area classification to accommodate high-impact activities away from vulnerable natural areas may assist in maintaining protected area quality. PMID:26508175

  6. Understanding the conflicting values associated with motorized recreation in protected areas.

    Science.gov (United States)

    Jones, Cheryl; Newsome, David; Macbeth, Jim

    2016-04-01

    The International Union for the Conservation of Nature World Parks Congress in 2014 reported that the quality of management of protected areas is crucial in halting the loss of the world's biodiversity and meeting global environmental challenges. However, increasingly high-impact activities, including motorized recreation are occurring in protected areas such as national parks, creating an ongoing clash of values and further compromising protected area management. This paper discusses the values of protected areas in the context of increasingly high-impact motorized usage, the impact of divergent values placed on green spaces such as national parks, and perceptions about these spaces. Given the changing global context of this millennium, and increasing populations requiring space for high-impact activities including motorized recreation, rethinking recreation in protected areas is needed. A protected area classification to accommodate high-impact activities away from vulnerable natural areas may assist in maintaining protected area quality.

  7. Increased perfusion in motor areas after constraint-induced movement therapy in chronic stroke: a single-photon emission computerized tomography study.

    Science.gov (United States)

    Könönen, Mervi; Kuikka, Jyrki T; Husso-Saastamoinen, Minna; Vanninen, Esko; Vanninen, Ritva; Soimakallio, Seppo; Mervaala, Esa; Sivenius, Juhani; Pitkänen, Kauko; Tarkka, Ina M

    2005-12-01

    Hemiparesis is the most common deficit after cerebral stroke. Constraint-induced movement therapy (CIMT) is a new neurorehabilitation method that emphasizes task-relevant repetitive training for the stroke hand. Twelve chronic stroke patients were studied with single-photon emission computerized tomography at rest before and after the two-week CIMT period. Increased perfusion was found in motor control related areas. The specific areas with an increase in perfusion in the affected hemisphere were in the precentral gyrus, premotor cortex (Brodmann's area 6 (BA6)), frontal cortex, and superior frontal gyrus (BA10). In the nonaffected hemisphere, perfusion was increased in the superior frontal gyrus (BA6) and cingulate gyrus (BA31). In the cerebellum increased perfusion was seen bilaterally. The brain areas with increased perfusion receive and integrate the information from different sensory systems and plan the movement execution. Regional cerebral perfusion decreased in the lingual gyrus (BA18) in the affected hemisphere. In the nonaffected frontal cortex, two areas with decreased perfusion were found in the middle frontal gyrus (BA8/10). Also, the fusiform gyrus (BA20) and inferior temporal gyrus (BA37) in the nonaffected hemisphere showed decreased perfusion. Intensive movement therapy appears to change local cerebral perfusion in areas known to participate in movement planning and execution. These changes might be a sign of active reorganization processes after CIMT in the chronic state of stroke. PMID:15931162

  8. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area.

    Science.gov (United States)

    Coco, Marinella; Perciavalle, Vincenzo; Cavallari, Paolo; Perciavalle, Valentina

    2016-03-01

    We examined, on 28 healthy adult subjects, the possible correlations of an exhaustive exercise, and the consequent high blood lactate levels, on immediate (explicit) and delayed (implicit) motor execution of sequential finger movements (cognitive task). Moreover, we determined with transcranial magnetic stimulation whether changes in motor performance are associated with variations in excitability of primary motor area (M1) and supplementary motor area (SMA). We observed that, after an acute exhaustive exercise, the large increase of blood lactate is associated with a significant worsening of both explicit and implicit sequential visuomotor task paradigms, without gender differences. We also found that, at the end of the exhaustive exercise, there is a change of excitability in both M1 and SMA. In particular, the excitability of M1 was increased whereas that of SMA decreased and, also in this case, without gender differences. These results support the idea that an increase of blood lactate after an exhaustive exercise appears to have a protective effect at level of primary cortical areas (as M1), although at the expense of efficiency of adjacent cortical regions (as SMA). PMID:26986109

  9. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    OpenAIRE

    Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor (MI) cortex, but the relative topography of these afferent projections has not been established. Intracranial microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements....

  10. Poor supplementary motor area activation differentiates auditory verbal hallucination from imagining the hallucination ☆

    OpenAIRE

    Raij, Tuukka T.; Riekki, Tapani J.J.

    2012-01-01

    Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to th...

  11. Dopamine and serotonin imbalances in the left anterior cingulate and pyriform cortices following the repeated intermittent administration of cocaine.

    Science.gov (United States)

    Heidbreder, C A; Oertle, T; Feldon, J

    1999-03-01

    Studies on the neurobiology of cocaine abuse suggest that cocaine directly modifies the activity of dopamine neurons projecting from the dopamine-synthesizing cells of the ventral tegmental area to the nucleus accumbens. The repeated use of cocaine produces persistent adaptations within the mesocorticolimbic system and the resulting changes in monoamine neurotransmission may lead to behavioral sensitization. The present series of experiments sought to determine the effects of the repeated, intermittent challenge that took place two days after discontinuation of the pretreatment regimen; (ii) the ex vivo levels of biogenic monoamines, choline and acetylcholine in the nucleus accumbens, the dorsolateral caudate nucleus, as well as the anterior cingulate, frontal motor, frontal somatosensory and pyriform cortices; and (iii) the degree of neurochemical relationship between the left and right hemispheres. The repeated administration of cocaine produced sensitized behavioral responses to a subsequent challenge. Neurochemical correlates of repeated cocaine administration were observed at the cortical level and included a significant decrease in serotonin levels in the left anterior cingulate and pyriform cortices and an increase in dopamine metabolism in the left pyriform cortex. Furthermore, a shift in the interhemispheric coupling coefficient matrix for dopamine neurotransmission was observed in both the pyriform cortex and nucleus accumbens of cocaine-sensitized animals suggesting that, in these structures, the two hemispheres are operating independently. These results demonstrate that cocaine produces alterations in specific dopaminergic and serotonergic pathways that arise from the mesencephalon and project towards both the anterior cingulate and pyriform cortices. PMID:10199606

  12. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas

    Directory of Open Access Journals (Sweden)

    Riichiro eHira

    2013-04-01

    Full Text Available Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA and the caudal forelimb area (CFA. The RFA is thought to be an equivalent of the premotor cortex in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b, of the CFA. Further, the CFA receives strong projections from layer 5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections.

  13. Involvement of the larynx motor area in singing-voice perception: a TMS study

    Directory of Open Access Journals (Sweden)

    Yohana eLévêque

    2013-07-01

    Full Text Available Recent evidence has reported that the motor system has a role in speech or emotional vocalization discrimination. In the present study we investigated the involvement of the larynx motor representation in singing perception. Twenty-one non-musicians listened to short tones sung by a human voice or played by a machine and performed a categorization task. Thereafter continuous theta-burst transcranial magnetic stimulation was applied over the right larynx pre-motor area or on the vertex and the test administered again. Overall, reaction times were shorter after stimulation over both sites. Nonetheless and most importantly, reaction times became longer for sung than for machine sounds after stimulation on the larynx area. This effect suggests that the right premotor region is functionally involved in singing perception and that sound humanness modulates motor resonance.

  14. Involvement of the larynx motor area in singing-voice perception: a TMS study†

    OpenAIRE

    Lévêque, Yohana; Muggleton, Neil; Stewart, Lauren; Schön, Daniele

    2013-01-01

    Recent evidence has reported that the motor system has a role in speech or emotional vocalization discrimination. In the present study we investigated the involvement of the larynx motor representation in singing perception. Twenty-one non-musicians listened to short tones sung by a human voice or played by a machine and performed a categorization task. Thereafter continuous theta-burst transcranial magnetic stimulation was applied over the right larynx premotor area or on the vertex and the ...

  15. Poor supplementary motor area activation differentiates auditory verbal hallucination from imagining the hallucination.

    Science.gov (United States)

    Raij, Tuukka T; Riekki, Tapani J J

    2012-01-01

    Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to the sense of ownership of one's verbal thought remains poorly known. We hypothesized that the supplementary motor area is related to the distinction between one's own mental processing (auditory verbal imagery) and similar processing that is attributed to non-self author (auditory verbal hallucination). To test this hypothesis, we asked patients to signal the onset and offset of their auditory verbal hallucinations during functional magnetic resonance imaging. During non-hallucination periods, we asked the same patients to imagine the hallucination they had previously experienced. In addition, healthy control subjects signaled the onset and offset of self-paced imagery of similar voices. Both hallucinations and the imagery of hallucinations were associated with similar activation strengths of the fronto-temporal language-related circuitries, but the supplementary motor area was activated more strongly during the imagery than during hallucination. These findings suggest that auditory verbal hallucination resembles verbal imagery in language processing, but without the involvement of the supplementary motor area, which may subserve the sense of ownership of one's own verbal imagery. PMID:24179739

  16. Poor supplementary motor area activation differentiates auditory verbal hallucination from imagining the hallucination☆

    Science.gov (United States)

    Raij, Tuukka T.; Riekki, Tapani J.J.

    2012-01-01

    Neuronal underpinnings of auditory verbal hallucination remain poorly understood. One suggested mechanism is brain activation that is similar to verbal imagery but occurs without the proper activation of the neuronal systems that are required to tag the origins of verbal imagery in one's mind. Such neuronal systems involve the supplementary motor area. The supplementary motor area has been associated with awareness of intention to make a hand movement, but whether this region is related to the sense of ownership of one's verbal thought remains poorly known. We hypothesized that the supplementary motor area is related to the distinction between one's own mental processing (auditory verbal imagery) and similar processing that is attributed to non-self author (auditory verbal hallucination). To test this hypothesis, we asked patients to signal the onset and offset of their auditory verbal hallucinations during functional magnetic resonance imaging. During non-hallucination periods, we asked the same patients to imagine the hallucination they had previously experienced. In addition, healthy control subjects signaled the onset and offset of self-paced imagery of similar voices. Both hallucinations and the imagery of hallucinations were associated with similar activation strengths of the fronto-temporal language-related circuitries, but the supplementary motor area was activated more strongly during the imagery than during hallucination. These findings suggest that auditory verbal hallucination resembles verbal imagery in language processing, but without the involvement of the supplementary motor area, which may subserve the sense of ownership of one's own verbal imagery. PMID:24179739

  17. Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system

    Science.gov (United States)

    Carlsen, Anthony N.; Eagles, Jeremy S.; MacKinnon, Colum D.

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that can induce transient polarity-specific neuroplastic changes in cortical excitability lasting up to 1 h post-stimulation. While excitability changes with stimulation over the primary motor cortex have been well documented, the functional effects of stimulation over premotor regions are less well understood. In the present experiment, we tested how cathodal and anodal tDCS applied over the region of the supplementary motor area (SMA) affected preparation and initiation of a voluntary movement. Participants performed a simple reaction time (RT) task requiring a targeted wrist-extension in response to a go-signal. In 20% of RT trials a startling acoustic stimulus (SAS) was presented 500 ms prior to the “go” signal in order to probe the state of motor preparation. Following the application of cathodal, anodal, or sham tDCS (separate days) over SMA for 10 min, participants performed blocks of RT trials at 10 min intervals. While sham stimulation did not affect RT or incidence of early release by the SAS, cathodal tDCS led to a significant slowing of RT that peaked 10 min after the end of stimulation and was associated with a marked decrease in the incidence of movement release by the SAS. In contrast, anodal tDCS resulted in faster RTs, but the incidence of release was unchanged. These results are consistent with the SMA playing a role in the pre-planning of movements and that modulating its activity with tDCS can lead to polarity-specific changes in motor behavior. PMID:25446764

  18. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  19. Cortical dysfunction of the supplementary motor area in a spasmodic dysphonia patient.

    Science.gov (United States)

    Hirano, S; Kojima, H; Naito, Y; Tateya, I; Shoji, K; Kaneko, K; Inoue, M; Nishizawa, S; Konishi, J

    2001-01-01

    The etiology of spasmodic dysphonia (SD) is still unknown. In the present study, cortical function of a 59-year-old male patient with adductor type SD was examined during phonation with positron emission tomography (PET). Magnetic resonance imaging showed no organic abnormality in the brain. However, PET showed remarkable activities during phonation in the left motor cortex, Broca's area, the cerebellum, and the auditory cortices, whereas the supplementary motor area (SMA) was not activated. The SMA is known to function for motor planning and programming and is usually activated in normal phonation. Several previous reports have shown that the damage of the SMA caused a severe disturbance of voluntary vocalization. In the present case, it was suggested that the functional deficit of the SMA might be related to SD.

  20. Involvement of the larynx motor area in singing-voice perception: a TMS study(†).

    Science.gov (United States)

    Lévêque, Yohana; Muggleton, Neil; Stewart, Lauren; Schön, Daniele

    2013-01-01

    Recent evidence has reported that the motor system has a role in speech or emotional vocalization discrimination. In the present study we investigated the involvement of the larynx motor representation in singing perception. Twenty-one non-musicians listened to short tones sung by a human voice or played by a machine and performed a categorization task. Thereafter continuous theta-burst transcranial magnetic stimulation was applied over the right larynx premotor area or on the vertex and the test administered again. Overall, reaction times (RTs) were shorter after stimulation over both sites. Nonetheless and most importantly, RTs became longer for sung than for "machine" sounds after stimulation on the larynx area. This effect suggests that the right premotor region is functionally involved in singing perception and that sound humanness modulates motor resonance. PMID:23874314

  1. Control of a specific motor program by a small brain area in zebrafish

    Directory of Open Access Journals (Sweden)

    Otto eFajardo

    2013-04-01

    Full Text Available Complex motor behaviors are thought to be coordinated by networks of brain nuclei that may control different elementary motor programs. Transparent zebrafish larvae offer the opportunity to analyze the functional organization of motor control networks by optical manipulations of neuronal activity during behavior. We examined motor behavior in transgenic larvae expressing channelrhodopsin-2 throughout many neurons in the brain. Wide-field optical stimulation triggered backward and rotating movements caused by the repeated execution of J-turns, a specific motor program that normally occurs during prey capture. Although optically evoked activity was widespread, behavioral responses were highly coordinated and lateralized. 3-D mapping of behavioral responses to local optical stimuli revealed that J-turns can be triggered specifically in the anterior-ventral optic tectum and/or the adjacent pretectum. These results suggest that the execution of J-turns is controlled by a small group of neurons in the midbrain that may act as a command center. The identification of a brain area controlling a defined motor program involved in prey capture is a step towards a comprehensive analysis of neuronal circuits mediating sensorimotor behaviors of zebrafish.

  2. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area.

    Science.gov (United States)

    Raffin, Estelle; Pellegrino, Giovanni; Di Lazzaro, Vincenzo; Thielscher, Axel; Siebner, Hartwig Roman

    2015-10-15

    Motor representations express some degree of somatotopy in human primary motor hand area (M1HAND), but within-M1HAND corticomotor somatotopy has been difficult to study with transcranial magnetic stimulation (TMS). Here we introduce a "linear" TMS mapping approach based on the individual shape of the central sulcus to obtain mediolateral corticomotor excitability profiles of the abductor digiti minimi (ADM) and first dorsal interosseus (FDI) muscles. In thirteen young volunteers, we used stereotactic neuronavigation to stimulate the right M1HAND with a small eight-shaped coil at 120% of FDI resting motor threshold. We pseudorandomly stimulated six targets located on a straight mediolateral line corresponding to the overall orientation of the central sulcus with a fixed coil orientation of 45° to the mid-sagittal line (STRAIGHT-450FIX) or seven targets in the posterior part of the crown of the central sulcus following the bending of the central sulcus (CURVED). CURVED mapping employed a fixed (CURVED-450FIX) or flexible coil orientation producing always a current perpendicular to the sulcal wall (CURVED-900FLEX). During relaxation, CURVED but not STRAIGHT mapping revealed distinct corticomotor excitability peaks in M1HAND with the excitability maximum of ADM located medially to the FDI maximum. This mediolateral somatotopy was still present during tonic contraction of the ADM or FDI. During ADM contraction, cross-correlation between the spatial excitability profiles of ADM and FDI was lowest for CURVED-900FLEX. Together, the results show that within-M1HAND somatotopy can be readily probed with linear TMS mapping aligned to the sulcal shape. Sulcus-aligned linear mapping will benefit non-invasive studies of representational plasticity in human M1HAND.

  3. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area.

    Science.gov (United States)

    Raffin, Estelle; Pellegrino, Giovanni; Di Lazzaro, Vincenzo; Thielscher, Axel; Siebner, Hartwig Roman

    2015-10-15

    Motor representations express some degree of somatotopy in human primary motor hand area (M1HAND), but within-M1HAND corticomotor somatotopy has been difficult to study with transcranial magnetic stimulation (TMS). Here we introduce a "linear" TMS mapping approach based on the individual shape of the central sulcus to obtain mediolateral corticomotor excitability profiles of the abductor digiti minimi (ADM) and first dorsal interosseus (FDI) muscles. In thirteen young volunteers, we used stereotactic neuronavigation to stimulate the right M1HAND with a small eight-shaped coil at 120% of FDI resting motor threshold. We pseudorandomly stimulated six targets located on a straight mediolateral line corresponding to the overall orientation of the central sulcus with a fixed coil orientation of 45° to the mid-sagittal line (STRAIGHT-450FIX) or seven targets in the posterior part of the crown of the central sulcus following the bending of the central sulcus (CURVED). CURVED mapping employed a fixed (CURVED-450FIX) or flexible coil orientation producing always a current perpendicular to the sulcal wall (CURVED-900FLEX). During relaxation, CURVED but not STRAIGHT mapping revealed distinct corticomotor excitability peaks in M1HAND with the excitability maximum of ADM located medially to the FDI maximum. This mediolateral somatotopy was still present during tonic contraction of the ADM or FDI. During ADM contraction, cross-correlation between the spatial excitability profiles of ADM and FDI was lowest for CURVED-900FLEX. Together, the results show that within-M1HAND somatotopy can be readily probed with linear TMS mapping aligned to the sulcal shape. Sulcus-aligned linear mapping will benefit non-invasive studies of representational plasticity in human M1HAND. PMID:26188259

  4. Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies.

    Science.gov (United States)

    Arce-McShane, Fritzie I; Ross, Callum F; Takahashi, Kazutaka; Sessle, Barry J; Hatsopoulos, Nicholas G

    2016-05-01

    Skilled movements rely on sensory information to shape optimal motor responses, for which the sensory and motor cortical areas are critical. How these areas interact to mediate sensorimotor integration is largely unknown. Here, we measure intercortical coherence between the orofacial motor (MIo) and somatosensory (SIo) areas of cortex as monkeys learn to generate tongue-protrusive force. We report that coherence between MIo and SIo is reciprocal and that neuroplastic changes in coherence gradually emerge over a few days. These functional networks of coherent spiking and local field potentials exhibit frequency-specific spatiotemporal properties. During force generation, theta coherence (2-6 Hz) is prominent and exhibited by numerous paired signals; before or after force generation, coherence is evident in alpha (6-13 Hz), beta (15-30 Hz), and gamma (30-50 Hz) bands, but the functional networks are smaller and weaker. Unlike coherence in the higher frequency bands, the distribution of the phase at peak theta coherence is bimodal with peaks near 0° and ±180°, suggesting that communication between somatosensory and motor areas is coordinated temporally by the phase of theta coherence. Time-sensitive sensorimotor integration and plasticity may rely on coherence of local and large-scale functional networks for cortical processes to operate at multiple temporal and spatial scales. PMID:27091982

  5. Plasticity of motor function and surgical outcomes in patients with cerebral arteriovenous malformation involving primary motor area:insight from fMRI and DTI

    Institute of Scientific and Technical Information of China (English)

    Lijun Wang; Fuxin Lin; Jun Wu; Yuming Jiao; Yong Cao; Yuanli Zhao; Shuo Wang

    2016-01-01

    Background:Patients who have a cerebral arteriovenous malformation (cAVMs) in the motor cortex can have displaced function. The finding and its relationship to recovery from surgery is not known. Methods:We present the five cases with cAVMs involving precentral knob and/or paracentral lobule and without preoperative motor deficits. We used motor activation areas derived from Functional functional MRI (fMRI) as a region of interesting (ROI) to launch the plasticity of cerebrospinal tracts (CST). All the results were incorporated into the neuronavigation platform for surgical treatment. Intraoperative electric cortical stimulation (ECS) was used to map motor areas. Modified Rankin Scale (mRS) of hands and feets were performed on postoperative day 2, 7 and at month 3, 6 during follow-up period. All the patients suffered from motor deficits regardless of cortical activation patterns. Results:Three patients showed functionally seeded CST in or around the AVM, and were validated by intraoperative electrical stimulation (ECS). Patient 4 had two aberrant functionally seeded fiber tracts away from the lesion, but were proved to be non-functional by postoperative motor deficits. Patient 3 with motor cortex and fiber tract within a diffuse AVMs nidus, complete paralysis of upper extremity after operation and has a persistent motor deficit during 6-month follow-up period. Conclusions:The plasticity of motor cortex on fMRI doesn’t prevent post-operative motor deficits. Functionally mapped fiber tract within or abutting AVM nidus predicts transient and persistent motor deficit.

  6. Interactions between visual and motor areas during the recognition of plausible actions as revealed by magnetoencephalography.

    Science.gov (United States)

    Pavlidou, Anastasia; Schnitzler, Alfons; Lange, Joachim

    2014-02-01

    Several studies have shown activation of the mirror neuron system (MNS), comprising the temporal, posterior parietal, and sensorimotor areas when observing plausible actions, but far less is known on how these cortical areas interact during the recognition of a plausible action. Here, we recorded neural activity with magnetoencephalography while subjects viewed point-light displays of biologically plausible and scrambled versions of actions. We were interested in modulations of oscillatory activity and, specifically, in coupling of oscillatory activity between visual and motor areas. Both plausible and scrambled actions elicited modulations of θ (5-7 Hz), α (7-13 Hz), β (13-35 Hz), and γ (55-100 Hz) power within visual and motor areas. When comparing between the two actions, we observed sequential and spatially distinct increases of γ (∼65 Hz), β (∼25 Hz), and α (∼11 Hz) power between 0.5 and 1.3 s in parieto-occipital, sensorimotor, and left temporal areas. In addition, significant clusters of γ (∼65 Hz) and α/β (∼15 Hz) power decrease were observed in right temporal and parieto-occipital areas between 1.3 and 2.0 s. We found β-power in sensorimotor areas to be positively correlated on a trial-by-trial basis with parieto-occipital γ and left temporal α-power for the plausible but not for the scrambled condition. These results provide new insights in the neuronal oscillatory activity of the areas involved in the recognition of plausible action movements and their interaction. The power correlations between specific areas underscore the importance of interactions between visual and motor areas of the MNS during the recognition of a plausible action.

  7. Generation of theta activity (RSA) in the cingulate cortex of the rat

    OpenAIRE

    Holsheimer, J.

    1982-01-01

    Unit activity recorded from the cingulate cortex during theta rhythm shows periodic trains of spikes which are phase-locked to the local theta field potential waves. These cortical theta units were also shown to be correlated with hippocampal theta units. These findings, along with the fact that theta field potentials show a phase reversal within the cingulate cortex, lead to the conclusion that this cortical area is a source of theta activity.

  8. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    International Nuclear Information System (INIS)

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  9. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China); Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong [Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Liu, Chen; Yang, Jun [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China); Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Zheng, Xiaolin [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China)

    2014-04-15

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  10. Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Svensson Leif

    2002-09-01

    Full Text Available Abstract Background Mild cognitive impairment (MCI was recently described as a heterogeneous group with a variety of clinical outcomes and high risk to develop Alzheimer's disease (AD. Regional cerebral blood flow (rCBF as measured by single photon emission computed tomography (SPECT was used to study the heterogeneity of MCI and to look for predictors of future development of AD. Methods rCBF was investigated in 54 MCI subjects using Tc-99m hexamethylpropyleneamine oxime (HMPAO. An automated analysis software (BRASS was applied to analyze the relative blood flow (cerebellar ratios of 24 cortical regions. After the baseline examination, the subjects were followed clinically for an average of two years. 17 subjects progressed to Alzheimer's disease (PMCI and 37 subjects remained stable (SMCI. The baseline SPECT ratio values were compared between PMCI and SMCI. Receiver operating characteristic (ROC analysis was applied for the discrimination of the two subgroups at baseline. Results The conversion rate of MCI to AD was 13.7% per year. PMCI had a significantly decreased rCBF in the left posterior cingulate cortex, as compared to SMCI. Left posterior cingulate rCBF ratios were entered into a logistic regression model for ROC curve calculation. The area under the ROC curve was 74%–76%, which indicates an acceptable discrimination between PMCI and SMCI at baseline. Conclusion A reduced relative blood flow of the posterior cingulate gyrus could be found at least two years before the patients met the clinical diagnostic criteria of AD.

  11. Identification by [{sup 99m}Tc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Varrone, Andrea [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Karolinska Hospital, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Pagani, Marco; Salmaso, Dario [National Research Council, Institute of Cognitive Sciences and Technologies, Rome and Padua (Italy); Salvatore, Elena; Amboni, Marianna; De Michele, Giuseppe; Filla, Alessandro; Barone, Paolo [University Federico II, Department of Neurological Sciences, Napoli (Italy); Sansone, Valeria; Pappata, Sabina; Salvatore, Marco [University Federico II, Biostructure and Bioimaging Institute, National Research Council/Department of Biomorphological and Functional Sciences, Napoli (Italy); Nobili, Flavio [University of Genoa, Clinical Neurophysiology, Department of Endocrinological and Metabolic Sciences, Genoa (Italy)

    2007-07-15

    Progressive supranuclear palsy (PSP) is an akinetic-rigid syndrome that can be difficult to differentiate from Parkinson's disease (PD), particularly at an early stage. [{sup 99m}Tc]ethyl cysteinate dimer (ECD) SPECT could represent a widely available tool to assist in the differential diagnosis. In this study we used voxel-based analysis and Computerised Brain Atlas (CBA)-based principal component analysis (PCA) of [{sup 99m}Tc]ECD SPECT data to test whether: (1) specific patterns of rCBF abnormalities can differentiate PSP from controls and PD; (2) networks of dysfunctional brain regions can be found in PSP vs controls and PD. Nine PD patients, 16 PSP patients and ten controls were studied with [{sup 99m}Tc]ECD SPECT using a brain-dedicated device (Ceraspect). Voxel-based analysis was performed with statistical parametric mapping. PCA was applied to volume of interest data after spatial normalisation to CBA. The voxel-based analysis showed hypoperfusion of the anterior cingulate and medial frontal cortex in PSP compared with controls and PD. In PSP patients the rCBF impairment extended to the pre-supplementary motor area and prefrontal cortex, areas involved in executive function and motor networks. Compared with PSP patients, PD patients showed a mild rCBF decrease in associative visual areas which could be related to the known impairment of visuospatial function. The PCA identified three principal components differentiating PSP patients from controls and/or PD patients that included groups of cortical and subcortical brain regions with relatively decreased (cingulate cortex, prefrontal cortex and caudate) or increased (parietal cortex) rCBF, representing distinct functional networks in PSP. Anterior cingulate hypoperfusion seems to be an early, distinct brain abnormality in PSP as compared with PD. (orig.)

  12. The development of the thalamic motor learning area is regulated by Fgf8 expression

    OpenAIRE

    Martínez-Ferre, Almudena; Martínez, Salvador

    2009-01-01

    Habenular nuclei play a key role in the control of motor and cognitive behavior, processing emotion, motivation, and reward values in the brain. Thus, analysis of the molecular and cellular mechanisms underlying the development and evolution of this region will contribute to a better understanding of brain function. The Fgf8 gene is expressed in the dorsal midline of the diencephalon, close to the area in which the habenular region will develop. Given that Fgf8 is an important morphogenetic s...

  13. The role of the supplementary motor area for speech and language processing.

    Science.gov (United States)

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2016-09-01

    Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.

  14. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  15. Involvement of secondary motor areas in externally-triggered single-finger movements of dominant and non-dominant hands

    Institute of Scientific and Technical Information of China (English)

    GU Yun; ZANG Yufeng; WENG Xuchu; JIA Fucang; LI Enzhong; WANG Jiangjun

    2003-01-01

    Whether the secondary motor areas are involved in simple voluntary movements remains controversial. Differences in the neural substrates of movements with the dominant and the non-dominant hands have not been well documented. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the hemodynamic response in the primary motor cortex (M1), supplementary motor area (SMA) and premotor cortex (PMC) in six healthy right-handed subjects while performing a visually-guided finger-tapping task with their dominant or non-dominant hands. Significant activation was observed in M1, SMA and PMC during this externally triggered simple voluntary movement task. While dominant hand movements only activated contralateral motor areas, non-domi- nant hand movements also activated ipsilateral SMA and PMC. The results provide strong evidence for the involvement of the secondary motor areas in simple voluntary movements, and also suggest that movements of the dominant hand primarily engage the contralateral secondary motor areas, whereas movements of the non-dominant hand engage bilateral secondary motor areas.

  16. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex.

    Science.gov (United States)

    Coffman, Keith A; Dum, Richard P; Strick, Peter L

    2011-09-20

    The cerebellum has a medial, cortico-nuclear zone consisting of the cerebellar vermis and the fastigial nucleus. Functionally, this zone is concerned with whole-body posture and locomotion. The vermis classically is thought to be included within the "spinocerebellum" and to receive somatic sensory input from ascending spinal pathways. In contrast, the lateral zone of the cerebellum is included in the "cerebro-cerebellum" because it is densely interconnected with the cerebral cortex. Here we report the surprising result that a portion of the vermis receives dense input from the cerebral cortex. We injected rabies virus into lobules VB-VIIIB of the vermis and used retrograde transneuronal transport of the virus to define disynaptic inputs to it. We found that large numbers of neurons in the primary motor cortex and in several motor areas on the medial wall of the hemisphere project to the vermis. Thus, our results challenge the classical view of the vermis and indicate that it no longer should be considered as entirely isolated from the cerebral cortex. Instead, lobules VB-VIIIB represent a site where the cortical motor areas can influence descending control systems involved in the regulation of whole-body posture and locomotion. We argue that the projection from the cerebral cortex to the vermis is part of the neural substrate for anticipatory postural adjustments and speculate that dysfunction of this system may underlie some forms of dystonia. PMID:21911381

  17. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Science.gov (United States)

    2010-07-01

    ... motor vehicle use on designated roads and trails and in designated areas. 212.57 Section 212.57 Parks... Roads, Trails, and Areas for Motor Vehicle Use § 212.57 Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas. For each administrative unit of the National...

  18. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Science.gov (United States)

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it. PMID:25301352

  19. Digital morphometric study of the extrasulcal surface of the cingulate gyrus in man

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2010-01-01

    Full Text Available Introduction. The frequency of different morphological types and extrasulcal (visible surface area of the cingulate gyms, were measured and analyzed in order to obtain more precise data about morphology, right/left and sex differences in the human brain. Material and methods. The study included 42 brains (84 hemispheres from persons of both sexes and of different age (26 males, 16 females, 20-65 years old, without neuropathological changes. After fixation in 10% formaline (3-4 weeks and removal of meninges the brains were photographed under standard conditions by digital camera. Following determination of morphological type, regions of interest of cingulate gyrus were determined in stereotactic system system of coordinates and the extrasulcal surface was measured by digital AutoCAD planimetry. Results and discussion. Three basic morphological types of cingulate gyrus were found: the continuous type (34.5%, segmented type (35.7% and double paralel type (29.8%. There was no statistically significant difference in the frequency of morphological types related to the side (right/left or sex (p>0.05. The area of extrasulcal cortex of cingulate gyrus was statistically significantly (p<0.O5 larger on the left hemispheres (for 1.13 cm than on the right (left: 14.58 cm; right: 13.45 cm. The extrasulcal surface of the left cingulate gyrus was significantly larger (p0.05 in males (males 15.9 cm: females - 13.6 cm, while for the right cingulate gyrus this difference was not significant. Conclusion. Morphometry indicated sex and right/left differences of extrasulcal surface area of the human cingulate gyrus. However, the morphological analysis itself did not indicate corresponding differences, suggesting complexity of the problem of sex dimorphism and of right/left asymmetries in the domain of limbic cortex.

  20. Motor development in children living within resource poor areas of the Western Cape

    Directory of Open Access Journals (Sweden)

    J. Jelsma

    2007-02-01

    Full Text Available Introduction: In 1986, Irwin-Carruthers tested 681 BlackAfrican babies from the Western Cape and concluded that the South African sample was in advance of the Denver sample both in fine and gross motor behaviour. This study was to determine whether the motor development of isiXhosa speaking children from the same area was still advanced compared to their North American counterparts.Method: The Bayley Scales of Infant Development-II were administered to 86 children attending well baby clinics, between the ages of 1-36 months.Results: The mean motor developmental quotient was 92 (SD=15. Twenty eight percent of the sample was either significantly or mildly delayed. No socio-economic or maternal characteristics were associated with this score.Conclusion: The reasons for the decrease in performance are not clear. The socio-economic situation of the mothers was poor and there were a large number of single mothers whose sole source of income was government child support grants.  It is likely that the cause of the decrease is multi-factorial. The mothers are clearly in need of emotional and financial support. It is suggested that the introduction of stimulation programmes might be useful inreducing the long term impact of this delayed development.

  1. Robust control of integrated motor-transmission powertrain system over controller area network for automotive applications

    Science.gov (United States)

    Zhu, Xiaoyuan; Zhang, Hui; Cao, Dongpu; Fang, Zongde

    2015-06-01

    Integrated motor-transmission (IMT) powertrain system with directly coupled motor and gearbox is a good choice for electric commercial vehicles (e.g., pure electric buses) due to its potential in motor size reduction and energy efficiency improvement. However, the controller design for powertrain oscillation damping becomes challenging due to the elimination of damping components. On the other hand, as controller area network (CAN) is commonly adopted in modern vehicle system, the network-induced time-varying delays that caused by bandwidth limitation will further lead to powertrain vibration or even destabilize the powertrain control system. Therefore, in this paper, a robust energy-to-peak controller is proposed for the IMT powertrain system to address the oscillation damping problem and also attenuate the external disturbance. The control law adopted here is based on a multivariable PI control, which ensures the applicability and performance of the proposed controller in engineering practice. With the linearized delay uncertainties characterized by polytopic inclusions, a delay-free closed-loop augmented system is established for the IMT powertrain system under discrete-time framework. The proposed controller design problem is then converted to a static output feedback (SOF) controller design problem where the feedback control gains are obtained by solving a set of linear matrix inequalities (LMIs). The effectiveness as well as robustness of the proposed controller is demonstrated by comparing its performance against that of a conventional PI controller.

  2. Control and Monitoring of a Stepper Motor through a Local Area Network

    Directory of Open Access Journals (Sweden)

    POPOVICI, D.

    2007-11-01

    Full Text Available In these days due to the information technology there are many ways to control a remote servomotor. In the paper it is shown a simple and reliable way to handle the control and monitoring of a remote stepper motor using a Local Area Network (LAN. The hardware uses a common PIC microcontroller and a stand-alone Ethernet controller. The main program located in the flash program memory solves the following tasks: read packs through SPI (Serial Peripheral Interface from the Ethernet controller's buffer and decode them, encapsulate data to be sent with the Ethernet controller, control the on-off state of the transistors from the static converter and receive feedback directly from the optical sensor to monitor the actual position of the shaft. The microcontroller supervises also the Ethernet controller. The Ethernet controller's job is to receive data from the main application remote program that runs on a computer, via UTP cable. Then it stores the data for a short time in a buffer from which the microcontroller can read it. The microcontroller stores data on this Ethernet controller too and can command it to send data to the main application program running remotely. The main remote program is written in Visual C++ and has a friendly interface allowing to the operator to send commands to the stepper motor drive and monitor in a dedicated window position, speed or the control sequences for the power transistor drivers of the stepper motor. The operator can send specific commands to the drive such as Start, Stop, Accelerate, Decelerate, Spin Clockwise/Counter clockwise and the number of steps. The microcontroller stepper motor drive system shows good performance and reliability.

  3. HARMONIC DISTORTION ASSESSMENT BY AREA BASED APPROACH AT SINGLE PHASING OF AN INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    Surajit Chattopadhyay

    2013-11-01

    Full Text Available ABSTRACT: This paper presents harmonic distortion assessment by area based approach at single phasing of an induction motor. This has been achieved by assessing voltage and current signals using area based approach. Some specific reference signals have been defined, after which, real power system data are plotted with this reference signal and areas thus formed by the real power system data with the reference signal have been calculated wherefrom contributions of fundamental waveform and harmonic components in real and reactive powers have been assessed separately. Single phasing is done on induction machine and total harmonic distortion factors have then been calculated. Significant change is observed in harmonic distortion due to single phasing. ABSTRAK: Kertas kerja ini membentangkan penilaian herotan harmonik menggunakan kaedah keluasan kawasan pada pemfasaan tunggal motor aruhan. Menggunakan kaedah keluasan kawasan, penilaian terhasil dengan memantau isyarat arus dan voltan. Sesetengah isyarat rujukan tertentu dikenal pasti, di mana, data sistem kuasa sebenar diplotkan berdasarkan isyarat rujukan ini. Kawasan kemudiannya dibentuk dengan adanya data sistem kuasa sebenar dengan menggunakan pengiraan isyarat rujukan. Pengiraan ini memberikan bentuk gelombang asas dan komponen harmonik sebenar di mana kuasa reaktif ditentukan secara berasingan. Pemfasaan tunggal ditentukan menggunakan mesin aruhan dan faktor jumlah herotan harmonik diambil kira .Perubahan yang ketara dikenal pasti dalam herotan harmonik yang disebabkan oleh pemfasaan tunggal.

  4. Functional MRI activation of primary and secondary motor areas in healthy subjects

    Institute of Scientific and Technical Information of China (English)

    Donghai Li; Honghan Gong; Xiangzuo Xiao; Jinhua Wan

    2008-01-01

    BACKGROUND:Functional MRI(fMRI)demonstrates the localization of hand representation in the motor cortex,thereby providing feasible noninvasive mapping of functional activities in the human brain.OBJECTIVE:To observe cortical activation within different cortical motor regions during repetitive hand movements in healthy subjects through the use of fMRI.DESIGN:An observational study,with each subject acting as his own control.SETTING:Department of Radiology,the First Affiliated Hospital of Nanchang University.PARTICIPANTS:Seven healthy volunteers,4 males and 3/females,aged 19 to 38 years,participated in the study.All subjects were right-handed,with no neurological or psychological disorders.Informed written consent was obtained from all subjects,and the study was approved by the Institutional Review Board of the First Affiliated Hospital of Nanchang University.METHODS:The study was performed at the Department of Radiology between June-August 2005.A 1.5 Tesla Siemens MRI scanner(Symphony,Germany)was used to acquire Tl-weighted structural images,which were oriented parallel to the line running through the anterior and the posterior commissures.Subjects were instructed on a task and were allowed to practice briefly prior to the imaging procedure.The motor activation task consisted of the right hand performing a clenching movement.The T1-W images were acquired from six alternating epochs of rest and activation from all seven healthy subjects.Data were collected with echoplanar imaging of brain oxygen level dependent(BOLD)sequence.Each series comprised six cycles of task pertormance(30 seconds),alternating with rest(30 seconds) periods,and 3-second time intervals.The differences between active and baseline fMRI imaging were calculated using the student t-test.Differential maps were overlaid on the high resolution T1-W structural image for neuroanatomical correlation of activation areas.MAIN OUTCOME MEASURES:The omega-shaped hand knobs were recognized on T1-W structural

  5. Identification of the sensory/motor area and pathologic regions using ECoG coherence.

    Science.gov (United States)

    Towle, V L; Syed, I; Berger, C; Grzesczcuk, R; Milton, J; Erickson, R K; Cogen, P; Berkson, E; Spire, J P

    1998-01-01

    An electrophysiologic mapping technique which enables identification of the central sulcus and pathologic cortical regions is described. Electrocorticographic recordings of 1 min duration were recorded from 25 patients who were undergoing resection of tumors in the sensory-motor region or being evaluated for temporal lobectomy for epilepsy. Analysis of the patterns of subdural inter-electrode coherence revealed low coherence across the central sulcus for 11/12 cases where its location could be verified with direct cortical stimulation and/or somatosensory evoked potential mapping. Regions of high coherence identified the location of tumors in the sensory-motor region for 10/10 cases. Over the temporal lobe, localized areas of high coherence were evident in 8/9 epilepsy patients, but were not indicative of the location of mesial temporal lobe tumors or inter-ictal spiking, when present. We conclude that analysis of cortical coherence patterns may be helpful for revealing the location of pathologic processes relative to critical cortical areas.

  6. Life Cycle Assessment of Motor Bike and Electric Bike in Urban Areas of China

    Institute of Scientific and Technical Information of China (English)

    DAI Du; LENG Ru-bo; ZHANG Cheng; WANG Cheng-tao

    2005-01-01

    Motor bikes (m-bike) and electric bikes (e-bike) are widely used in urban areas of China. Life cycle assessment of m-bike and e-bike are presented to compare their energy use and environmental emission in a life cycle span. An m-bike and an e-bike are disassembled to collect material composition data for the life cycle assessment. The results show that e-bike consumes less energy and has less global warming potential (GWP), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), dissolved solids (DS), hydrocarbons (HC) than m-bike during life cycle. But e-bike generates more solid wastes, and more acidification potential (AP), heavy metal (HM) than m-bike. Advanced batteries and clean coal fired power plant technologies are recommended to promote e-bike use in urban area.

  7. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    Science.gov (United States)

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  8. Effects of coil orientation on the electric field induced by TMS over the hand motor area.

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field).

  9. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    Science.gov (United States)

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system.

  10. Modulation of hand motor-related area during motor imagery and motor execution before and after middle 2/5 of the MS6 line scalp acupuncture stimulation: An fMRI study.

    Science.gov (United States)

    Romeo, Zanardi; Marta, Maieron; Barbara, Tomasino

    2016-03-01

    Scalp acupuncture (SA) combines the concept of cerebral cortex organization with the principles of acupuncture. The SA stimulates sections of the cerebral cortex. We studied the functional modulation of the left hand sensorimotor area induced by SA in order to investigate the specificity of the SA-related functional effects of the middle 2/5 of the MS6 line of the left side, which corresponds to the upper limb motor segment of the primary motor area. To this purpose, we compared the pre- and post-SA functional activation patterns during an implicit motor imagery task (handedness decision in which participants simulated rotational hand movements) and an explicit manual motor execution task. Feet and mouth movements, and the fMRI changes in their respective representations were used as control conditions. Only SA on the hand area of the left side (as compared to the mouth and the foot representations which were used as control conditions) exerted a release effect on the right hand area. In addition, an increased activation of the superior parietal lobe was seen, which is involved in movement control and planning. Taken together, these preliminary findings may shed light on the SA effects and confirm a prolonged effect of SA even after cessation of needling stimulation. PMID:26799679

  11. Functional MRI evaluation of supplementary motor area language dominance in right- and left-handed subjects.

    Science.gov (United States)

    Dalacorte, Amauri; Portuguez, Mirna Wetters; Maurer das Neves, Carlos Magno; Anes, Maurício; Dacosta, Jaderson Costa

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique widely used in the evaluation of the brain function that provides images with high temporal and spatial resolution. Investigation of the supplementary motor area (SMA) function is critical in the pre-surgical evaluation of neurological patients, since marked individual differences and complex overlapping with adjacent cortical areas exist, and it is important to spare the SMA from lesions when adjacent cortical tissue is surgically removed. We used fMRI to assess the activity of SMA in six right-handed and six left-handed healthy volunteers when a task requiring silent repetition of a series of words was given. Brain activation areas in each of the subjects were localized according to the standard Talairach coordinate space, and the individual voxels for each map were compared after 3D sagittal images were created and SMA was delimited. Quantitative analysis of hemispheric and bilateral SMA activation was described as mean ± standard deviation of hot points/total points. The results show that the language task induced bilateral SMA activation. Left SMA activation was significantly higher than right SMA activation in both right-handed and left-handed subjects.

  12. No volumetric differences in the anterior cingulate of psychopathic individuals

    OpenAIRE

    Glenn, Andrea L.; Yang, Yaling; Raine, Adrian; Colletti, Patrick

    2010-01-01

    Functional imaging studies of psychopathy have demonstrated reduced activity in the anterior cingulate, yet it is unclear whether this region is structurally impaired. In this study, we used structural MRI to examine whether volumetric differences exist in the anterior cingulate between psychopathic (n=24) and control (n=24) male participants. We found no group differences in the volume of the anterior cingulate or its dorsal and ventral subregions. Our findings call into question whether the...

  13. Bringing transcranial mapping into shape: Sulcus-aligned mapping captures motor somatotopy in human primary motor hand area

    DEFF Research Database (Denmark)

    Raffin, Estelle; Pellegrino, Giovanni; Di Lazzaro, Vincenzo;

    2015-01-01

    of the central sulcus to obtain mediolateral corticomotor excitability profiles of the abductor digiti minimi (ADM) and first dorsal interosseus (FDI) muscles. In thirteen young volunteers, we used stereotactic neuronavigation to stimulate the right M1HAND with a small eight-shaped coil at 120% of FDI resting...... motor threshold. We pseudorandomly stimulated six targets located on a straight mediolateral line corresponding to the overall orientation of the central sulcus with a fixed coil orientation of 45° to the mid-sagittal line (STRAIGHT-450 FIX) or seven targets in the posterior part of the crown...... of the central sulcus following the bending of the central sulcus (CURVED). CURVED mapping employed a fixed (CURVED-450 FIX) or flexible coil orientation producing always a current perpendicular to the sulcal wall (CURVED-900 FLEX). During relaxation, CURVED but not STRAIGHT mapping revealed distinct...

  14. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  15. The Effect of Residence Area and Mother's Education on Motor Development of Preschool-Aged Children in Greece

    Science.gov (United States)

    Giagazoglou, Paraskevi; Kyparos, Antonios; Fotiadou, Eleni; Angelopoulou, Nickoletta

    2007-01-01

    Development occurs according to the rhythm that is established by the genetic potential and the influence of environmental factors. The purpose of this study was to examine the effect of the child's residence area and maternal education on child's motor development. Eight hundred children (384 boys and 416 girls, aged 37-72 months), randomly…

  16. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with gliomas involving the motor cortical areas

    Institute of Scientific and Technical Information of China (English)

    XIE Jian; CHEN Xu-zhu; JIANG Tao; LI Shou-wei; LI Zi-xiao; ZHANG Zhong; DAI Jian-ping; WANG Zhong-cheng

    2008-01-01

    Background Blood oxygen level-dependent(BOLD)functional magnetic resonance imaging(fMRI)plays an important role in identifying functional cortical areas of the brain.especially In patients with gliomas.This study aimed to assess the value of fMRI in presurgical planning and functional outcome of patients with gliomas in the motor cortical areas.Methods Twenty-six patients with gliomas in the motor cortex were recruited in the study.Before operation.fMRI was performed in each patient to obtain the mapping of bilateral hands area on the primary sensorimotor cortex.This examination was performed on a 3.0T scanner with a bilateral hands movement paradigm.During microsurgery under awake anesthesia,the motor area was identified using direct electrical stimulation and compared with preoperative mapping.Finally the tumor was resected as much as possible with the motor cortex preserved in each patlent.Karnofsky performance status(KPS)was evaluated in all patients before and after operation.Results Twenty-three patients showed a successful fMRI mapping.Among them,19 were calssified to be grade Ⅲ;4,grade Ⅱ;3,grade Ⅰ.The operation time was about 7 hours in the 23 patients,8.5 hours in the other 3.The pre- and pOstODerative KPS score was 82.3±8.6 and 94.2±8.1,respectively.Conclusions Preoperative fMRI of the hand motor area shows a high consistency with intraoperative cortical electronic stimulation.Combined use of the two methods shows a maximum benefit in surgical treatment.

  17. The human frontal oculomotor cortical areas contribute asymmetrically to motor planning in a gap saccade task.

    Directory of Open Access Journals (Sweden)

    Paul van Donkelaar

    Full Text Available BACKGROUND: Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control of cortical oculomotor areas on the brainstem saccade generation circuitry. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper, we directly tested this assumption by using single pulse transcranial magnetic stimulation (TMS to transiently disrupt neuronal activity in the frontal eye fields (FEF and supplementary eye fields (SEF in adults performing a gap saccade task. The results showed that the incidence of multiple saccades was increased for ispiversive but not contraversive directions for the right and left FEF, the left SEF, but not for the right SEF. Moreover, this disruption was most substantial during the approximately 50 ms period around the appearance of the peripheral target. A control condition in which the dorsal motor cortex was stimulated demonstrated that this was not due to any non-specific effects of the TMS influencing the spatial distribution of attention. CONCLUSIONS/SIGNIFICANCE: Taken together, the results are consistent with a direction-dependent role of the FEF and left SEF in delaying the release of saccadic eye movements until they have been fully planned.

  18. Different contributions of visual and motor brain areas during liking judgments of same- and different-gender bodies.

    Science.gov (United States)

    Cazzato, V; Mele, S; Urgesi, C

    2016-09-01

    Previous neuroimaging studies have shown that body aesthetic appreciation involves the activation of both visual and motor areas, supporting a role of sensorimotor embodiment in aesthetic processing. Causative evidence, however, that neural activity in these areas is crucial for reliable aesthetic body appreciation has so far provided only for extrastriate body area (EBA), while the functional role played by premotor regions remained less clear. Here, we applied short trains of repetitive transcranial magnetic stimulation (rTMS) over bilateral dorsal premotor cortex (dPMC) and EBA during liking judgments of female and male bodies varying in weight and implied motion. We found that both dPMC and EBA are necessary for aesthetic body appreciation, but their relative contribution depends on the model's gender. While dPMC-rTMS decreased the liking judgments of same-, but not of different-gender models, EBA-rTMS increased the liking judgments of different-, but not of same-gender models. Relative contributions of motor and visual areas may reflect processing of diverse aesthetic properties, respectively implied motion vs. body form, and/or greater sensorimotor embodiment of same- vs. different-gender bodies. Results suggest that aesthetic body processing is subserved by a network of motor and visual areas, whose relative contribution may depend on the specific stimulus and task. PMID:27235869

  19. Passive reading and motor imagery about hand actions and tool-use actions: an fMRI study.

    Science.gov (United States)

    Yang, Jie; Shu, Hua

    2014-02-01

    Recent studies have shown that motor activations in action verb comprehension can be modulated by task demands (e.g., motor imagery vs. passive reading) and the specificity of action verb meaning. However, how the two factors work together to influence the involvement of the motor system during action verb comprehension is still unclear. To address the issue, the current study investigated the brain activations in motor imagery and passive reading of verbs about hand actions and tool-use actions. Three types of Chinese verbs were used, including hand-action verbs and two types of tool-use verbs emphasizing either the hand or tools information. Results indicated that all three types of verbs elicited common activations in hand motor areas during passive reading and motor imagery. Contrast analyses showed that in the hand verbs and the tool verbs where the hand information was emphasized, motor imagery elicited stronger effects than passive reading in the superior frontal gyrus, supplemental motor area and cingulate cortex that are related to motor control and regulation. For tool-use verbs emphasizing tools information, the motor imagery task elicited stronger activity than passive reading in occipital regions related to visual imagery. These results suggest that motor activations during action verb comprehension can be modulated by task demands and semantic features of action verbs. The sensorimotor simulation during language comprehension is flexible and determined by the interactions between linguistic and extralinguistic contexts.

  20. A direct anterior cingulate pathway to the primate primary olfactory cortex may control attention to olfaction

    Science.gov (United States)

    García-Cabezas, Miguel Á.; Barbas, Helen

    2016-01-01

    Behavioral and functional studies in humans suggest that attention plays a key role in activating the primary olfactory cortex through an unknown circuit mechanism. We report that a novel pathway from the anterior cingulate cortex, an area which has a key role in attention, projects directly to the primary olfactory cortex in rhesus monkeys, innervating mostly the anterior olfactory nucleus. Axons from the anterior cingulate cortex formed synapses mostly with spines of putative excitatory pyramidal neurons and with a small proportion of a neurochemical class of inhibitory neurons that are thought to have disinhibitory effect on excitatory neurons. This novel pathway from the anterior cingulate is poised to exert a powerful excitatory effect on the anterior olfactory nucleus, which is a critical hub for odorant processing via extensive bilateral connections with primary olfactory cortices and the olfactory bulb. Acting on the anterior olfactory nucleus, the anterior cingulate may activate the entire primary olfactory cortex to mediate the process of rapid attention to olfactory stimuli. PMID:23797208

  1. Improved Discriminability of Spatiotemporal Neural Patterns in Rat Motor Cortical Areas as Directional Choice Learning Progresses

    Directory of Open Access Journals (Sweden)

    Hongwei eMao

    2015-03-01

    Full Text Available Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2-3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats’ behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.

  2. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  3. Pleasant human touch is represented in pregenual anterior cingulate cortex.

    Science.gov (United States)

    Lindgren, Lenita; Westling, Göran; Brulin, Christine; Lehtipalo, Stefan; Andersson, Micael; Nyberg, Lars

    2012-02-15

    Touch massage (TM) is a form of pleasant touch stimulation used as treatment in clinical settings and found to improve well-being and decrease anxiety, stress, and pain. Emotional responses reported during and after TM have been studied, but the underlying mechanisms are still largely unexplored. In this study, we used functional magnetic resonance (fMRI) to test the hypothesis that the combination of human touch (i.e. skin-to-skin contact) with movement is eliciting a specific response in brain areas coding for pleasant sensations. The design included four different touch conditions; human touch with or without movement and rubber glove with or without movement. Force (2.5 N) and velocity (1.5 cm/s) were held constant across conditions. The pleasantness of the four different touch stimulations was rated on a visual analog scale (VAS-scale) and human touch was rated as most pleasant, particularly in combination with movement. The fMRI results revealed that TM stimulation most strongly activated the pregenual anterior cingulate cortex (pgACC). These results are consistent with findings showing pgACC activation during various rewarding pleasant stimulations. This area is also known to be activated by both opioid analgesia and placebo. Together with these prior results, our finding furthers the understanding of the basis for positive TM treatment effects.

  4. Modulation of Motor Area Activity during Observation of Unnatural Body Movements

    Science.gov (United States)

    Shimada, Sotaro; Oki, Kazuma

    2012-01-01

    The mirror neuron system (MNS) is activated when observing the actions of others. However, it remains unclear whether the MNS responds more strongly to natural bodily actions in the observer's motor repertoire than to unnatural actions. We investigated whether MNS activity is modulated by the unnaturalness of an observed action by inserting short…

  5. [Role of different projection areas of the motor cortex in reorganization of the innate head-forelimb coordination in dogs].

    Science.gov (United States)

    Pavlova, O G; Mats, V N

    2005-01-01

    Dogs were trained to perform the forelimb tonic flexion in order to lift a cup with meat from a bottom of the foodwell and hold it during eating with the head bent down to the cup. It is known that conditioning of the instrumental reaction is based on reorganization of the innate head-forelimb coordination into the opposite one. In untrained dogs, the forelimb flexion is accompanied by the anticipatory lifting of the head bent down to the foodwell. The following lowering of the head leads to an extension of the flexed forelimb. Tonic forelimb flexion is possible if the head is in the up position. Simultaneous holding of the flexed forelimb and lowered head providing food reinforcement is achieved only by learning. It was shown earlier that the lesion of the motor cortex contralateral to the "working" forelimb led to a prolonged disturbance of the elaborated coordination and reappearance of the innate coordination. In the present work we studied the influence of local lesions of the projection areas in the motor cortex, such as a "working" forelimb area, bilateral representation of the neck, and the medial part of the motor cortex, on the learned instrumental feeding reaction. It was found that only the lesion of the forelimb but not neck projection led to a disturbance of the learned head-forelimb movement coordination. PMID:16396488

  6. Infantile autism: a chronic psychosis since infancy due to synaptic pruning of the supplementary motor area.

    Science.gov (United States)

    Saugstad, Letten F

    2008-01-01

    The rise in Infantile Autism, learning problems, cognitive decline with age, Alzheimer's, Parkinson's Diseases and the SIDS epidemic, has a common cause in the rising dietary deficit in Omega-3 brain-food. This paper suggests that aside from the wider concept of Autism Spectrum Disorders (ASD) and Pervasive Developmental Disorders (PDD), the rise in Infantile Autism (IA) in the last decade is the effect of deficient brain-food (Omega-3). The consequent delay of development prolongs the 2nd regressive event in infancy to pruning of the centre in the Medial Frontal Lobe System that connects Hippocampus and Cingulum. With a consequently defective Supplementary Motor Area (SMA), the Delayed Response Function is affected leading to persistent psychosis. Post-Pubertal Episodic Psychoses are associated with acute reduction of excitation, a risk of breakdown of circuitry, insufficient fill-in mechanisms, and silent spots. An acute psychosis occurs if the silent spots comprise of SMA. Only two brain areas have continuous neurogenesis, indicating their important functions: the Hippocampus and Olfactory Bulb that belongs to the Lateral Frontal Lobe System essential to survival. Concerned with necessity of action in response to the environment, it relies upon short-term memory and Acute Feedback Mechanisms influenced by emotion and motivation from the external world. In contrast, the Medial Frontal Lobe network is controlled by Feed-Forward Predictive Mechanisms related to storage of information. The Delayed Response Function is mastered at 7 months, when 2nd event occurs with pruning of axons and dendrites. An abolished or defective Delayed Response Function seriously incapacitates an individual: A defective "Social Brain" with an inability for conscious action and to communicate, predominates in IA. There is a near lack of speech, despite normal vision and hearing in the minority without marked adversity in pregnancy, at delivery or in infancy. I propose that the recent rise

  7. Fine motor skills in adult Tourette patients are task-dependent

    Directory of Open Access Journals (Sweden)

    Neuner Irene

    2012-10-01

    Full Text Available Abstract Background Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player. Methods For the investigation of fine motor skills we conducted a motor performance test battery in an adult Tourette sample and an age matched group of healthy controls. Results The Tourette patients showed a significant lower performance in the categories steadiness of both hands and aiming of the right hand in comparison to the healthy controls. A comparison of patients’ subgroup without comorbidities or medication and healthy controls revealed a significant difference in the category steadiness of the right hand. Conclusions Our results show that steadiness and visuomotor integration of fine motor skills are altered in our adult sample but not precision and speed of movements. This alteration pattern might be the clinical vignette of complex adaptations in the excitability of the motor system on the basis of altered cortical and subcortical components. The structurally and functionally altered neuronal components could encompass orbitofrontal, ventrolateral prefrontal and parietal cortices, the anterior cingulate, amygdala, primary motor and sensorimotor areas including altered corticospinal projections, the corpus callosum and the basal ganglia.

  8. Low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring.

    Science.gov (United States)

    Matsubayashi, Yoshito; Asakawa, Yasuyoshi; Yamaguchi, Haruyasu

    2016-01-01

    [Purpose] This study examined whether low-frequency group exercise improved the motor functions of community-dwelling elderly people in a rural area when combined with home exercise with self-monitoring. [Subjects] The subjects were community-dwelling elderly people in a rural area of Japan. [Methods] One group (n = 50) performed group exercise combined with home exercise with self-monitoring. Another group (n = 37) performed group exercise only. Low-frequency group exercise (warm-up, exercises for motor functions, and cool-down) was performed in seven 40 to 70-minute sessions over 9 weeks by both groups. Five items of motor functions were assessed before and after the intervention. [Results] Significant interactions were observed between groups and assessment times for all motor functions. Improvements in motor functions were significantly greater in the group that performed group exercise combined with home exercise with self-monitoring than in the group that performed group exercise only. Post-hoc comparisons revealed significant differences in 3 items of motor functions. No significant improvements were observed in motor functions in the group that performed group exercise only. [Conclusions] Group exercise combined with home exercise with self-monitoring improved motor functions in the setting of low-frequency group exercise for community-dwelling elderly people in a rural area. PMID:27065520

  9. Reduced muscarinic receptors in the cingulate cortex in mild Alzheimer's disease demonstrated with 123I iodo-dexetamide SPECT

    International Nuclear Information System (INIS)

    Full text: Parietal hypoperfusion/hypometabolism is a feature of Alzheimer's disease (AD). In early AD this may be preceded by changes in the posterior cingulate cortex, part of the cortico-limbic circuit with connections to the medial temporal lobes. Because cholinergic function is affected in early AD, we aimed to investigate the binding of the muscarinic receptor label, I-123 iodo-dexetamide (IDEX). We recruited 11 mild (MiniMental State Examination 27-24) and 11 moderate (MMSE 23-16) Alzheimer's patients and 10 age and sex-matched normal subjects. SPECT was performed six hours after injection of 185 MBq IDEX. Sections were reconstructed with attenuation correction using an iterative algorithm (OSEM). Statistical Parametric Mapping (SPM 99) was used to analyse the data. Because there is very little IDEX uptake in the cerebellum and thalamus it was necessary to edit them from the SPM PET template. Facial and scalp activity was also edited. Global scaling relative to the basal ganglia was used. Significant areas of decreased IDEX binding were found in the mild Alzheimer's group in the cingulate cortex with pvoxel = .08 and pcluster < 0.001, (particularly the posterior cingulate), left parietotemporal junction (pcluster = 0.01) and posteromedial left temporal lobe (pcluster = 0.03). In moderate AD extensive areas of decreased binding were found in the posterior cingulate, parietal and temporal lobes. The difference between the group-means at the posterior cingulate was 14% (mild AD) and 22% (moderate AD). Hypoperfusion, hypometabolism and now reduced cholinergic receptors have been demonstrated in the posterior cingulate in mild AD. Greater attention to this area may enhance the diagnostic value of functional imaging in early AD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  10. Functional localization of the cortical motor area in the brain Electrocorticogram analysis

    Institute of Scientific and Technical Information of China (English)

    Tao Jiang; Xiaoming Wu; Binggang Ye; Sijuan Huang

    2010-01-01

    The method for rapidly,precisely and non-invasively localizing functional regions of the brain is a problem in neuromedicine research.Cortical electrostimulation is the optimal localization method during brain surgery,with a degree of accuracy of approximately 5 mm.However,electrostimulation can damage the cerebral cortex,trigger epilepsy,and extend the operation time.Studies are required to determine whether cortical motor regions can be localized by wavelet analysis from electrocorticograms.In this study,based on wavelet analysis of electrocorticograms,a selection of algorithms for classification of the mu rhythm in the motor regions utilizing experimental data was verified.Results demonstrated that a characteristic quantity of energy ratio in the reconstructed signal was filtered in the d6(7.81-15.62 Hz)band prior to and following motion events.A characteristic threshold was considered to be 40%.The accuracy of localization detection was 93%.The degree of accuracy was less than 5 mm.The present study avoided the problems of cerebral cortex injury and epilepsy onset,with an operation time of 60 seconds.Therefore,wavelet analysis on electrocorticogram is feasible for localizing cortical motor regions.Furthermore,this localization technique is accurate,safe and rapid.

  11. Modulation of motor area activity by the outcome for a player during observation of a baseball game.

    Directory of Open Access Journals (Sweden)

    Sotaro Shimada

    Full Text Available BACKGROUND: Observing competitive games such as sports is a pervasive entertainment among humans. The inclination to watch others play may be based on our social-cognitive ability to understand the internal states of others. The mirror neuron system, which is activated when a subject observes the actions of others, as well as when they perform the same action themselves, seems to play a crucial role in this process. Our previous study showed that activity of the mirror neuron system was modulated by the outcome of the subject's favored player during observation of a simple competitive game (rock-paper-scissors. However, whether the mirror neuron system responds similarly in a more complex and naturalistic sports game has not yet been fully investigated. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we measured the activity of motor areas when the subjects, who were amateur baseball field players (non-pitchers, watched short movie clips of scenes in professional baseball games. The subjects were instructed to support either a batter or a pitcher when observing the movie clip. The results showed that activity in the motor area exhibited a strong interaction between the subject's supported side (batter or pitcher and the outcome (a hit or an out. When the subject supported the batter, motor area activity was significantly higher when the batter made an out than when he made a hit. However, such modulation was not apparent when the subject supported the pitcher. CONCLUSIONS/SIGNIFICANCE: This result indicates that mirror neuron system activity is modulated by the outcome for a particular player in a competitive game even when observing a complex and naturalistic sports game. We suggest that our inclination to watch competitive games is facilitated by this characteristic of the mirror neuron system.

  12. The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans.

    Directory of Open Access Journals (Sweden)

    Louis Laviolette

    Full Text Available INTRODUCTION: In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe". METHODS: The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory and 5 Hz conventional rTMS (5 Hz, excitatory. The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3" up to 15 minutes following conditioning of the SMA. RESULTS: cTBS reduced the amplitude of DiMEPs from 327.5 ± 159.8 µV at baseline to 243.3 ± 118.7 µV, 217.8 ± 102.9 µV and 240.6 ± 123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002. 5 Hz conditioning increased the amplitude of DiMEPs from 184.7 ± 96.5 µV at baseline to 270.7 ± 135.4 µV at post 3 (F = 4.844, p = 0.009. CONCLUSIONS: The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.

  13. Magnetic resonance diffusion tensor imaging with fluorescein sodium dyeing for surgery of gliomas in brain motor functional areas

    Institute of Scientific and Technical Information of China (English)

    LIU Jia-gang; YANG Shuai-feng; LIU Yan-hui; WANG Xiang; MAO Qing

    2013-01-01

    Background Tumor surgery in brain motor functional areas remains challenging.Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery.Herein,we assessed the magnetic resonance diffusion tensor imaging (MR-DTI) and fluorescein sodium dyeing (FLS) guiding technique for surgery of glioma located in brain motor functional areas.Methods Totally 83 patients were enrolled according to our inclusion and exclusion criteria (56 patients in experimental group,27 patients in control group).In the experimental group,the surgical approach was designed by DTI imaging,which showed the relationship between the tumor and motor tract.The range of resection in the operation was determined using the FLS-stained area,which recognized the tumor and its infiltrated tissue.The traditional routine method was used in the control group.Postoperatively,all patients underwent enhanced brain MRI within 72 hours to ascertain the extent of resection.Patients were followed in our outpatient clinic over 6-24 months.Neurological deficits and Karnofsky scoring (KPS) were evaluated.Results There were no significant differences in balance test indexes of preoperative data (sex,age,lesion location and volume,and neurological deficits before operation) and diagnosis of histopathology between the two groups.There was a trend in the experimental group for greater rates of gross total resection (80.4% vs.40.7%),and the paralysis rate caused by surgery was lower in experimental (25.0%) vs.control (66.7%) groups (P <0.05).The 6-month KPS in the low-grade and high-grade gliomas was 91±11 and 73±26,respectively,in the experimental group vs.82±9 and 43±27,respectively,in the control group (P <0.05 for both).Conclusions MR-DTI and FLS dye guiding for surgery of glioma located in brain motor functional areas can increase the gross total resection rate,decrease the paralysis rate caused by surgery,and improve patient quality of life compared with traditional

  14. A dual but asymmetric role of the dorsal anterior cingulate cortex in response inhibition and switching from a non-salient to salient action.

    Science.gov (United States)

    Manza, Peter; Hu, Sien; Chao, Herta H; Zhang, Sheng; Leung, Hoi-Chung; Li, Chiang-Shan R

    2016-07-01

    Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control. PMID:27126003

  15. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Directory of Open Access Journals (Sweden)

    Gesa Feenders

    Full Text Available Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor

  16. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.

    Science.gov (United States)

    Feenders, Gesa; Liedvogel, Miriam; Rivas, Miriam; Zapka, Manuela; Horita, Haruhito; Hara, Erina; Wada, Kazuhiro; Mouritsen, Henrik; Jarvis, Erich D

    2008-03-12

    Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls

  17. Women's Preference for a Male Acquaintance Enhances Social Reward Processing of Material Goods in the Anterior Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Jun Nakagawa

    Full Text Available Men, like the male of many animal species, use gifts to build satisfactory relationships with a desired woman. From the woman's perspective, all gifts are not always equally rewarding; the reward value of a gift depends on two factors: (1 the giver and (2 the type of the gift (the gift's social meaning. In this study, we investigated how these two factors interactively determine the reward value of a gift. Specifically, we examined how the neural processing for understanding a gift's social meaning is modulated by preferences for the giver. We performed a functional magnetic resonance imaging (fMRI study in which a female participant was asked to judge a gift from a male she was acquainted with in real life. We examined the interactive effects between (1 the female participant's attitude toward the male acquaintance (liked vs. uninteresting and (2 the type of the gift (romantic [e.g., bouquet, earrings, and perfumes] vs. non-romantic [e.g., pencils, memo pad, and moneybox]. We found that preference for an acquaintance selectively modulated activity in the anterior cingulate cortex (ACC in response to romantic gifts, compared to non-romantic gifts. In contrast, if the woman was indifferent toward an acquaintance, no activity modulation was observed in this area for the same gifts. In addition, the ACC showed functional connectivity with the supplementary motor area/dorsal ACC (SMA/dACC, an area within the dorsal mediofrontal cortex, suggesting that it integrates action monitoring and emotional and cognitive processing in decision-making. These results suggest that attitude toward an opposite sex member has a modulatory role in recognizing the social meaning of material goods--preference for the member is a powerful modulator of social reward processing.

  18. Reorganization and Stability for Motor and Language Areas Using Cortical Stimulation: Case Example and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sandra Serafini

    2013-11-01

    Full Text Available The cerebral organization of language in epilepsy patients has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping and more recently with noninvasive neuroimaging techniques, such as functional MRI. In the setting of a chronic seizure disorder, clinical variables have been shown to contribute to cerebral language reorganization underscoring the need for language lateralization and localization procedures. We present a 14-year-old pediatric patient with a refractory epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic focus separated by a year. He was mapped extraoperatively through a subdural grid using cortical stimulation to preserve motor and language functions. The clinical history and extensive workup prior to surgery is discussed as well as the opportunity to compare the cortical maps for language, motor, and sensory function before each resection. Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of ictal and interictal activity in the previous tongue sensory area. Detailed neuropsychological data is presented before and after any surgical intervention to hypothesize about the extent of reorganization between epochs. We conclude that intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a teenager with medically refractory seizures.

  19. Anterior Cingulate Cortex in Schema Assimilation and Expression

    Science.gov (United States)

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  20. 75 FR 65650 - Notice of Closure to Motorized Vehicle Travel on Public Lands in the Big Pole Fire Area in Tooele...

    Science.gov (United States)

    2010-10-26

    ... Environmental Policy Act, in the Big Pole Fire Motor Vehicle Closure environmental assessment (DOI-BLM-W010-2010... Fire Area in Tooele County, UT AGENCY: Bureau of Land Management, Interior. ACTION: Notice of temporary... Field Office, Bureau of Land Management (BLM), within the Big Pole Fire area in Tooele County,...

  1. Supplementary motor complex and disturbed motor control – a retrospective clinical and lesion analysis of patients after anterior cerebral artery stroke

    Directory of Open Access Journals (Sweden)

    Florian eBrugger

    2015-10-01

    Full Text Available Background: Both the supplementary motor complex (SMC, consisting of the supplementary motor area (SMA-proper, the pre-SMA and the supplementary eye field, and the rostral cingulate cortex (ACC are supplied by the anterior cerebral artery (ACA and are involved in higher motor control. The Bereitschaftspotential (BP originates from the SMC and reflects cognitive preparation processes before volitional movements. ACA strokes may lead to impaired motor control in the absence of limb weakness and evoke an alien-hand syndrome (AHS in its extreme form.Aim: To characterize the clinical spectrum of disturbed motor control after ACA strokes including signs attributable to AHS and to identify the underlying neuroanatomical correlates.Methods: A clinical assessment focusing on signs of disturbed motor control including intermanual conflict (i.e. bilateral hand movements directed at opposite purposes, lack of self-initiated movements, exaggerated grasping, motor perseverations, mirror movements and gait apraxia was performed. Symptoms were grouped into A AHS specific and B non-AHS specific signs of upper limbs and C gait apraxia. Lesion summation mapping was applied to the patients’ MRI or CT scans to reveal associated lesion patterns. The BP was recorded in two patients.Results: Ten patients with ACA strokes (9 unilateral, 1 bilateral; mean age: 74.2 years; median NIH-SS at admission: 13.0 were included in this case series. In the acute stage, all cases had marked difficulties to perform volitional hand movements, while movements in response to external stimuli were preserved. In the chronic stage (median follow-up: 83.5 days initiation of voluntary movements improved, although all patients showed persistent signs of disturbed motor control. Impaired motor control is predominantly associated with damaged voxels within the SMC and the anterior and medial cingulate cortex, while lesions within the pre-SMA are specifically related to AHS. No BP was detected

  2. Modulatory effects of movement sequence preparation and covert spatial attention on early somatosensory input to non-primary motor areas.

    Science.gov (United States)

    Brown, Matt J N; Staines, W Richard

    2015-02-01

    Early frontal somatosensory evoked potentials (SEPs) (i.e., N30) are known to be modulated by movement. Furthermore, individuals with prefrontal lesions have enhanced early frontal SEPs. However, it is currently unclear through what mechanism the prefrontal cortex may modulate early frontal SEPs. The current study investigated whether prefrontal modulatory effects on frontal SEPs may depend on the relevancy of somatosensory input for movement (i.e., interaction with motor areas). Two experiments were conducted to determine whether selective spatial attention alone (Experiment 1-Attend and Mentally Count) or when using attended somatosensory input in the preparation of finger sequences with the limb contralateral to somatosensory stimulation (Experiment 2-Attend for Movement Preparation) could modulate SEPs. In Experiment 1, SEPs elicited by median nerve (MN) stimulation at both wrists were measured in trials when individuals attended and mentally counted vibrotactile (VibT) input at either index finger. In Experiment 2, SEPs elicited by MN stimulation at the left wrist were measured in trials when individuals used attended VibT input at the left index finger to prepare finger sequences that were contralateral to MN stimulation. In both experiments, control conditions were performed where participants received passive VibT and MN stimulation. Results from Experiment 1 confirmed that selective spatial attention alone does not modulate frontal N30 peak amplitudes. However, Experiment 2 revealed that frontal N30 peak amplitudes were decreased (i.e., gated) when individuals used attended VibT input at the left index finger to prepare contralateral finger sequences. These results support a role of sensory gating of early frontal SEPs during finger sequence preparation of the limb contralateral to MN stimulation that may result from increased activity in prefrontal, motor preparatory areas, and basal ganglia. PMID:25359001

  3. Cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex.

    Science.gov (United States)

    Bakola, Sophia; Passarelli, Lauretta; Gamberini, Michela; Fattori, Patrizia; Galletti, Claudio

    2013-04-10

    In macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE. Our results demonstrate that PE, defined as a single architectonic area that contains a topographic map of the body, forms specific connections with somatic and motor fields. Thus, PE receives major afferents from parietal areas, mainly area 2, PEc, several areas in the medial bank of the intraparietal sulcus, opercular areas PGop/PFop, and the retroinsular area, frontal afferents from the primary motor cortex, the supplementary motor area, and the caudal subdivision of dorsal premotor cortex, as well as afferents from cingulate areas PEci, 23, and 24. The presence and relative strength of these connections depend on the location of injection sites, so that lateral PE receives preferential input from anterior sectors of the medial bank of intraparietal sulcus and from the ventral premotor cortex, whereas medial PE forms denser connections with area PEc and motor fields. In contrast with other posterior parietal areas, there are no projections to PE from occipital or prefrontal cortices. Overall, the sensory and motor afferents to PE are consistent with functions in goal-directed movement but also hint at a wider variety of motor coordination roles. PMID:23575861

  4. Right lower limb apraxia in a patient with left supplementary motor area infarction: intactness of the corticospinal tract confirmed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Min Cheol Chang

    2015-01-01

    Full Text Available We reported a 50-year-old female patient with left supplementary motor area infarction who presented right lower limb apraxia and investigated the possible causes using transcranial magnetic stimulation. The patient was able to walk and climb stairs spontaneously without any assistance at 3 weeks after onset. However, she was unable to intentionally move her right lower limb although she understood what she supposed to do. The motor evoked potential evoked by transcranial magnetic stimulation from the right lower limb was within the normal range, indicating that the corticospinal tract innervating the right lower limb was uninjured. Thus, we thought that her motor dysfunction was not induced by motor weakness, and confirmed her symptoms as apraxia. In addition, these results also suggest that transcranial magnetic stimulation is helpful for diagnosing apraxia.

  5. Manual activity shapes structure and function in contralateral human motor hand area

    DEFF Research Database (Denmark)

    Granert, Oliver; Peller, Martin; Gaser, Christian;

    2011-01-01

    From longitudinal voxel-based morphometry (VBM) studies we know that relatively short periods of training can increase regional grey matter volume in trained cortical areas. In 14 right-handed patients with writer's cramp, we employed VBM to test whether suppression (i.e., immobilization) or enha......1(HAND) is dynamically shaped by the level of manual activity. This bi-directional structural plasticity is functionally relevant as local grey matter changes are mirrored by changes in regional excitability....

  6. Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm.

    Science.gov (United States)

    Haupt, Sven; Axmacher, Nikolai; Cohen, Michael X; Elger, Christian E; Fell, Juergen

    2009-09-01

    Successful information processing requires the focusing of attention on a certain stimulus property and the simultaneous suppression of irrelevant information. The Stroop task is a useful paradigm to study such attentional top-down control in the presence of interference. Here, we investigated the neural correlates of an auditory Stroop task using fMRI. Subjects focused either on tone pitch (relatively high or low; phonetic task) or on the meaning of a spoken word (high/low/good; semantic task), while ignoring the other stimulus feature. We differentiated between task-related (phonetic incongruent vs. semantic incongruent) and sensory-level interference (phonetic incongruent vs. phonetic congruent). Task-related interference activated similar regions as in visual Stroop tasks, including the anterior cingulate cortex (ACC) and the presupplementary motor-area (pre-SMA). More specifically, we observed that the very caudal/posterior part of the ACC was activated and not the dorsal/anterior region. Because identical stimuli but different task demands are compared in this contrast, it reflects conflict at a relatively high processing level. A more conventional contrast between incongruent and congruent phonetic trials was associated with a different cluster in the pre-SMA/ACC which was observed in a large number of previous studies. Finally, functional connectivity analysis revealed that activity within the regions activated in the phonetic incongruent vs. semantic incongruent contrast was more strongly interrelated during semantically vs. phonetically incongruent trials. Taken together, we found (besides activation of regions well-known from visual Stroop tasks) activation of the very caudal and posterior part of the ACC due to task-related interference in an auditory Stroop task. PMID:19180558

  7. Rationale for the necessity of technical inspection lines for motor vehicles in residential areas

    Directory of Open Access Journals (Sweden)

    Maslennikov Valeriy Aleksandrovich

    2016-01-01

    Full Text Available Due to the influence of many different factors, the arrival of vehicles to technical inspection lines is stochastic. The existing methods of designing the network of technical inspection do not take full account of this fact, the consequence of which is the lack of inspection lines load at some periods of the year and its excess in the other. In the first case, we evidence the deteriorating of economic performance of these facilities, in the second - the quality of evaluating the technical condition of vehicles suffers. The authors proposed a method of justifying the minimum requirements of residential areas in the lines of technical examination, taking into account the probabilistic nature of vehicles inspection revenue. The use of the proposed method was shown on the example of a large village. Using the mathematical apparatus for calculation of queuing theory allows not only identifying the areas in need of inspection lines, but also, if necessary, providing technical and economic evaluation of the results obtained by calculations.

  8. Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

    2004-06-14

    Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

  9. Identification of the primary motor area by three-dimensional reconstruction of the corticospinal tract using diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    Guojun Deng; Luo Li; Guimei Chen; Erming Zeng; Xiangzuo Xiao; Meihua Li; Tao Hong; Donghai Li

    2011-01-01

    Functional MRI (fMRI) is widely used as a non-invasive method for the evaluation of pre-operation motor function. However, patients with cortical function impairment, such as those with hemiparesis, can rarely achieve hand clenching, a typical fMRI task for central sulcus identification, and the method is also of limited use in uncooperative children. Thus, it is important to develop a new method for identifying primary motor areas (PMA) in such individuals. This study used corticospinal tractography to identify the PMA in 20 patients with deep-seated brain tumor. Two regions of interest were set within the brainstem for corticospinal tract (CST) fiber tracking: one at the level of the pons and the other at the level of the cerebral peduncle. The CST fiber tracking results and fMRI activation signals were merged with three-dimensional anatomic MRI findings. The consistency of identifying the PMA by CST and fMRI was analyzed. fMRI activation signals were distributed mainly in the contralateral central sulcus around the omega-shaped hand knob. The CST consistently propagated from the pons and cerebral peduncle to the suspected PMA location. There was a good correlation between CST fiber tracking results and fMRI activation signals in terms of their abilities to identify the PMA. The differences between fMRI and CST fiber tracking findings may result from our functional task, which consisted only of hand movements. Our results indicate that diffusion tensor imaging is a useful brain mapping technique for identifying the PMA in paralyzed patients and uncooperative children.

  10. Detecting bilateral motor associated areas with resting state functional magnetic resonance: the effect of different seed points selection on the results

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of different seed points selection on localizing bilateral hand motor associated areas in resting state functional magnetic resonance. Methods: Thirty -one subjects were recruited (male 15, female 16), all of them underwent both block-designed fMRI scan during performing bilateral hand motor task and resting-state fMRI scan. DPARSA V2.0 and SPM8 were used to process the data. The peak voxels in the activity map of the task scan were selected as seeds to compute functional connectivity map of the resting-state scan. Spatial correlation analysis was performed to compare the activity map of the task scan and the connectivity map of the resting- state scan. Results: Fifteen isolated clusters were picked to generate the peak voxels, which were selected as seeds to compute functional connectivity maps. Among all the functional connectivity maps, those generated by motor area (SMA) presented the most consistent spatial distribution with task associated activity map, and the functional connectivity maps generated by primary motor cortex (M1) and dorsal premotor cortex (PMd) consisted of bilateral Ml and SMA. the functional connectivity maps generated by putamen (Pu), thalamus (Th), cerebellum anterior lobe (CbAL) and cerebellum posterior lobe (CbPL) consisted of the areas around the seeds and the mirror areas in the contralateral cortex. Conclusion: Using SMA as seed to compute resting-state functional connectivity map may produce the best spatial coherence with the activity map generated by bilateral hand motor task, and selecting M1 and PMd as seeds may present the best primary motor cortex in the connectivity map. (authors)

  11. Influences of Chronic Mild Stress Exposure on Motor, Non-Motor Impairments and Neurochemical Variables in Specific Brain Areas of MPTP/Probenecid Induced Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Udaiyappan Janakiraman

    Full Text Available Parkinson's disease (PD is regarded as a movement disorder mainly affecting the elderly population and occurs due to progressive loss of dopaminergic (DAergic neurons in nigrostriatal pathway. Patients suffer from non-motor symptoms (NMS such as depression, anxiety, fatigue and sleep disorders, which are not well focussed in PD research. Depression in PD is a predominant /complex symptom and its pathology lies exterior to the nigrostriatal system. The main aim of this study is to explore the causative or progressive effect of chronic mild stress (CMS, a paradigm developed as an animal model of depression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg. body wt. with probenecid (250 mg/kg, s.c. (MPTP/p induced mice model of PD. After ten i.p. injections (once in 3.5 days for 5 weeks of MPTP/p or exposure to CMS for 4 weeks, the behavioural (motor and non-motor impairments, levels and expressions of dopamine (DA, serotonin (5-HT, DAergic markers such as tyrosine hydroxylase (TH, dopamine transporter (DAT, vesicular monoamine transporters-2 (VMAT 2 and α-synuclein in nigrostriatal (striatum (ST and substantia nigra (SN and extra-nigrostriatal (hippocampus, cortex and cerebellum tissues were analysed. Significantly decreased DA and 5-HT levels, TH, DAT and VMAT 2 expressions and increased motor deficits, anhedonia-like behaviour and α-synuclein expression were found in MPTP/p treated mice. Pre and/or post exposure of CMS to MPTP/p mice further enhanced the MPTP/p induced DA and 5-HT depletion, behaviour abnormalities and protein expressions. Our results could strongly confirm that the exposure of stress after MPTP/p injections worsens the symptoms and neurochemicals status of PD.

  12. Association between the fMRI manifestations of activated brain areas and muscle strength in patients with space-occupying lesions in motor cortex

    Institute of Scientific and Technical Information of China (English)

    Wenbin Zheng; Xiaoke Chen; Guorui Liu; Renhua Wu

    2006-01-01

    BACKGROUND: Functional magnetic resonance imaging (fMRI) studies have disclosed the changes of the motor function in the motor cortex of ipsilateral and contralateral hemispheres of tumor, which have special significance for making the surgical planning and most greatly minimizing the postoperative functional damages.OBJECTIVE: To analyze the association between the manifestation characteristics of hand functional area and motor dysfunction using fMRI in patients with space-occupying lesions of tumor in motor cortex.DESIGN: A case-controlled observation.SETTING: Department of Radiology, Second Affiliated Hospital, Shantou University Medical College.PARTICIPANTS: Twenty-three patients (13 males and 10 females) with space-occupying lesions of central sulcus area, aged 21-53 years with a mean age of (47±1) years were selected from the Second Affiliated Hospital of Shantou University Medical College. All the patients were diagnosed by MR scanning as space-occupying lesions of motor area, and pathologically confirmed that the lesions involved central sulcus and central Iobule; Lesions occurred in left and right hemispheres in 13 and 10 cases respectively. The tumcr types were astrocytoma (n =8), metastatic tumours (n =7), meningiomas (n =5) and oligodendroglioma (n =3). The muscle strength was normal in 11 cases (grade 5) and obviously decreased in 12 cases (grade 2-3 in 3 cases and grade 4 in 9 cases); muscle strengths of both upper and lower limbs were decreased in 7 cases, and only that of upper limbs was decreased in 5 cases. Informed consents were obtained from all the subjects. Meanwhile, 9 healthy physical examinees (5 males and 4 females) of 20-56 years old with an average of (34±1) years were taken as controls. All the patients and healthy subjects were right-handed.METHODS: All the enrolled subjects were examined with MR scanning and functional imaging. Twenty cases whose clinical symptoms were mild in the patient group and 9 healthy volunteers adopted

  13. Motorized transport in the city area of Besancon and its impact on energy consumption; Les deplacements motorises dans l`agglomeration bisontine et leurs consequences energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Abram, G.

    1995-12-31

    Energy consumption, pollutant emissions and environmental burdens due to motor traffic in the city area of Besancon has been determined by statistics, counting and sample surveys. A computer model has been developed to simulate the impact of different elements and policy measures as the development of public transport systems, traffic regulation, limiting the accessibility of certain areas and car pooling. (C.B.) 101 refs.

  14. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory.

    Directory of Open Access Journals (Sweden)

    Geneviève Albouy

    Full Text Available The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.

  15. [The functional role of the motor area of the cortex in the acquisition of escape reactions in dogs].

    Science.gov (United States)

    Frolov, A G; Maslov, A V; Pavlova, O G

    1993-01-01

    The model of escape conditioning similar to classical (pavlovian) was proposed. During shock application to the hind limb (a conditioned stimulus) the ipsilateral foreleg flexion was elicited by a stimulation of the motor cortex (an unconditioned stimulus); both stimuli were turned off in the course of the forepaw lifting. Such uniform pairings resulted in elaboration of a reaction of the foreleg flexion in response to the shock. Prolonging the shock by 3 s after the cortical stimulation led to a rapid extinction of the acquired response. So a possibility to instrumentalize movements elicited by stimulation of the motor cortex (MI) was proved. This is in argument in favour of an assumption that the established "instrumental" connection (drive-motor structures) can be addressed directly to the motor cortex.

  16. Posterior cingulate cortex: adapting behavior to a changing world.

    Science.gov (United States)

    Pearson, John M; Heilbronner, Sarah R; Barack, David L; Hayden, Benjamin Y; Platt, Michael L

    2011-04-01

    When has the world changed enough to warrant a new approach? The answer depends on current needs, behavioral flexibility and prior knowledge about the environment. Formal approaches solve the problem by integrating the recent history of rewards, errors, uncertainty and context via Bayesian inference to detect changes in the world and alter behavioral policy. Neuronal activity in posterior cingulate cortex - a key node in the default network - is known to vary with learning, memory, reward and task engagement. We propose that these modulations reflect the underlying process of change detection and motivate subsequent shifts in behavior.

  17. Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.

    Directory of Open Access Journals (Sweden)

    Sophie Chen

    Full Text Available The purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA are functional during precise force control with the precision grip (thumb-index opposition. Since beta band corticomuscular coherence (CMC is well-accepted to reflect efferent corticospinal transmission, we analyzed the beta band CMC obtained with simultaneous recording of electroencephalographic (EEG and electromyographic (EMG signals. Subjects performed a bimanual precise visuomotor force tracking task by applying isometric low grip forces with their right hand precision grip on a custom device with strain gauges. Concurrently, they held the device with their left hand precision grip, producing similar grip forces but without any precision constraints, to relieve the right hand. Some subjects also participated in a unimanual control condition in which they performed the task with only the right hand precision grip while the device was held by a mechanical grip. We analyzed whole scalp topographies of beta band CMC between 64 EEG channels and 4 EMG intrinsic hand muscles, 2 for each hand. To compare the different topographies, we performed non-parametric statistical tests based on spatio-spectral clustering. For the right hand, we obtained significant beta band CMC over the contralateral M1 region as well as over the SMA region during static force contraction periods. For the left hand, however, beta band CMC was only found over the contralateral M1. By comparing unimanual and bimanual conditions for right hand muscles, no significant difference was found on beta band CMC over M1 and SMA. We conclude that the beta band CMC found over SMA for right hand muscles results from the precision constraints and not from the bimanual aspect of the task. The result of the present study strongly suggests that the corticospinal projections from human SMA become functional when high precision force control is required.

  18. Gamma synchrony predicts neuron-neuron correlations and correlations with motor behavior in extrastriate visual area MT.

    Science.gov (United States)

    Lee, Joonyeol; Lisberger, Stephen G

    2013-12-11

    Correlated variability of neuronal responses is an important factor in estimating sensory parameters from a population response. Large correlations among neurons reduce the effective size of a neural population and increase the variation of the estimates. They also allow the activity of one neuron to be informative about impending perceptual decisions or motor actions on single trials. In extrastriate visual area MT of the rhesus macaque, for example, some but not all neurons show nonzero "choice probabilities" for perceptual decisions or non-zero "MT-pursuit" correlations between the trial-by-trial variations in neural activity and smooth pursuit eye movements. To understand the functional implications of zero versus nonzero correlations between neural responses and impending perceptions or actions, we took advantage of prior observations that specific frequencies of local field potentials reflect the correlated activity of neurons. We found that the strength of the spike-field coherence of a neuron in the gamma-band frequency range is related to the size of its MT-pursuit correlations for eye direction, as well as to the size of the neuron-neuron correlations. Spike-field coherence predicts MT-pursuit correlations better for direction than for speed, perhaps because the topographic organization of direction preference in MT is more amenable to creating meaningful local field potentials. We suggest that the relationship between spiking and local-field potentials is stronger for neurons that have larger correlations with their neighbors; larger neuron-neuron correlations create stronger MT-pursuit correlations. Neurons that lack strong correlations with their neighbors also have weaker correlations with pursuit behavior, but still could drive pursuit strongly.

  19. Cingulate and thalamic metabolites in obsessive-compulsive disorder.

    Science.gov (United States)

    O'Neill, Joseph; Lai, Tsz M; Sheen, Courtney; Salgari, Giulia C; Ly, Ronald; Armstrong, Casey; Chang, Susanna; Levitt, Jennifer G; Salamon, Noriko; Alger, Jeffry R; Feusner, Jamie D

    2016-08-30

    Focal brain metabolic effects detected by proton magnetic resonance spectroscopy (MRS) in obsessive-compulsive disorder (OCD) represent prospective indices of clinical status and guides to treatment design. Sampling bilateral pregenual anterior cingulate cortex (pACC), anterior middle cingulate cortex (aMCC), and thalamus in 40 adult patients and 16 healthy controls, we examined relationships of the neurometabolites glutamate+glutamine (Glx), creatine+phosphocreatine (Cr), and choline-compounds (Cho) with OCD diagnosis and multiple symptom types. The latter included OC core symptoms (Yale-Brown Obsessive-Compulsive Scale - YBOCS), depressive symptoms (Montgomery-Åsberg Depression Rating Scale - MADRS), and general functioning (Global Assessment Scale - GAS). pACC Glx was 9.7% higher in patients than controls. Within patients, Cr and Cho correlated negatively with YBOCS and MADRS, while Cr correlated positively with the GAS. In aMCC, Cr and Cho correlated negatively with MADRS, while Cr in thalamus correlated positively with GAS. These findings present moderate support for glutamatergic and cingulocentric perspectives on OCD. Based on our prior metabolic model of OCD, we offer one possible interpretation of these group and correlational effects as consequences of a corticothalamic state of elevated glutamatergic receptor activity alongside below-normal glutamatergic transporter activity. PMID:27317876

  20. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-01

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion. PMID:25304498

  1. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    Science.gov (United States)

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-01

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion.

  2. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    Science.gov (United States)

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  3. Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production

    Directory of Open Access Journals (Sweden)

    Vitoria ePiai

    2013-12-01

    Full Text Available Accumulating evidence suggests that some degree of attentional control is required to regulate and monitor processes underlying speaking. Although progress has been made in delineating the neural substrates of the core language processes involved in speaking, substrates associated with regulatory and monitoring processes have remained relatively underspecified. We report the results of an fMRI study examining the neural substrates related to performance in three attention-demanding tasks varying in the amount of linguistic processing: vocal picture naming while ignoring distractors (picture-word interference, PWI; vocal colour naming while ignoring distractors (Stroop; and manual object discrimination while ignoring spatial position (Simon task. All three tasks had congruent and incongruent stimuli, while PWI and Stroop also had neutral stimuli. Analyses focusing on common activation across tasks identified a portion of the dorsal anterior cingulate cortex that was active in incongruent trials for all three tasks, suggesting that this region subserves a domain-general attentional control function. In the language tasks, this area showed increased activity for incongruent relative to congruent stimuli, consistent with the involvement of domain-general mechanisms of attentional control in word production. The two language tasks also showed activity in anterior-superior temporal gyrus. Activity increased for neutral PWI stimuli (picture and word did not share the same semantic category relative to incongruent (categorically related and congruent stimuli. This finding is consistent with the involvement of language-specific areas in word production, possibly related to retrieval of lexical-semantic information from memory. The current results thus suggest that in addition to engaging language-specific areas for core linguistic processes, speaking also engages the anterior cingulate cortex, a region that is likely implementing domain

  4. Motor recovery in a patient with an infarct in the medullary pyramid via the corticospinal tract passing through the small spared area within the infarcted medullary pyramid

    Institute of Scientific and Technical Information of China (English)

    Hyeok Gyu Kwon; Sung Ho Jang

    2011-01-01

    The present study reported a 58-year-old male patient who exhibited complete paralysis of the right extremities at stroke onset.Brain MR images showed an infarct in the left medullary pyramid and a small spared area on the medial side of the infarct.He gained the ability to extend the affected fingers against gravity and to dorsiflex the affected ankle without gravity at 3 months after stroke onset.Diffusion tensor imaging results showed that at 6 months after stroke onset,the corticospinal tract of the affected (left) hemisphere descended through the small spared area of the infarcted medullary pyramid.No motor-evoked potential was elicited from the affected (left) hemisphere at 2 weeks after stroke onset;however,motor-evoked potential was elicited at 6 months as shown by transcranial magnetic stimulation results.The motor function of the affected side of this patient appears to have been recovered via the corticospinal tract that passed through the small spared area within the infarcted medullary pyramid.

  5. Short-term meditation increases blood flow in anterior cingulate cortex and insula

    Directory of Open Access Journals (Sweden)

    Yi-Yuan eTang

    2015-02-01

    Full Text Available Asymmetry in frontal electrical activity has been reported to be associated with positive mood. One form of mindfulness meditation, integrative body-mind training (IBMT improves positive mood and neuroplasticity. The purpose of this study is to determine whether short-term IBMT improves mood and induces frontal asymmetry. This study showed that five-day (30-min per day IBMT significantly enhanced cerebral blood flow (CBF in subgenual/adjacent ventral anterior cingulate cortex (ACC, medial prefrontal cortex and insula. The results showed that both IBMT and relaxation training increased left laterality of CBF, but only IBMT improved CBF in left ACC and insula, critical brain areas in self-regulation.

  6. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    Science.gov (United States)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  7. GABA concentration in posterior cingulate cortex predicts putamen response during resting state fMRI.

    Directory of Open Access Journals (Sweden)

    Jorge Arrubla

    Full Text Available The role of neurotransmitters in the activity of resting state networks has been gaining attention and has become a field of research with magnetic resonance spectroscopy (MRS being one of the key techniques. MRS permits the measurement of γ-aminobutyric acid (GABA and glutamate levels, the central biochemical constituents of the excitation-inhibition balance in vivo. The inhibitory effects of GABA in the brain have been largely investigated in relation to the activity of resting state networks in functional magnetic resonance imaging (fMRI. In this study GABA concentration in the posterior cingulate cortex (PCC was measured using single voxel spectra acquired with standard point resolved spectroscopy (PRESS from 20 healthy male volunteers at 3 T. Resting state fMRI was consecutively measured and the values of GABA/Creatine+Phosphocreatine ratio (GABA ratio were included in a general linear model matrix as a step of dual regression analysis in order to identify voxels whose neuroimaging metrics during rest were related to individual levels of the GABA ratio. Our data show that the connection strength of putamen to the default-mode network during resting state has a negative linear relationship with the GABA ratio measured in the PCC. These findings highlight the role of PCC and GABA in segregation of the motor input, which is an inherent condition that characterises resting state.

  8. Localisation of motor areas in brain tumour patients: a comparison of preoperative [{sup 18}F]FDG-PET and intraoperative cortical electrostimulation

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, M.; Sabri, O.; Meyer, P.T.; Zeggel, T.; Zimny, M.; Buell, U. [Technische Univ. Aachen (Germany). Dept. of Nuclear Medicine; Spetzger, U.; Gilsbach, J. [Dept. of Neurosurgery, Aachen Univ. of Technology (Germany)

    2001-09-01

    Assessment of the exact spatial relation between tumour and adjacent functionally relevant brain areas is a primary tool in the presurgical planning in brain tumour patients. The purpose of this study was to compare a preoperative fluorine-18 fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) activation protocol in patients with tumours near the central area with the results of intraoperative direct cortical electrostimulation, and to determine whether non-invasive preoperative PET imaging can provide results equivalent to those achieved with the invasive neurosurgical ''gold standard''. In this prospective study, we examined 20 patients with various tumours of the central area, performing two PET scans (each 30 min after i.v. injection of 134-341 MBq [{sup 18}F]FDG) in each patient: (1) a resting baseline scan and (2) an activation scan using a standardised motor task (finger tapping, foot stretching). Following PET/MRI realignment and normalisation to the whole brain counts, parametric images of the activation versus the rest study were calculated and pixels above categorical threshold values were projected to the individual MRI for bimodal assessment of morphology and function (PET/MRI overlay). Intraoperative direct cortical electrostimulation was performed using a Viking IV probe (5 pulses, each of 100 {mu}s) and documented using a dedicated neuro navigation system. Results were compared with the preoperative PET findings. PET revealed significant activation of the contralateral primary motor cortex in 95% (19/20) of the brain tumour patients (hand activation 13/13, foot activation 6/7), showing a mean increase in normalised [{sup 18}F]FDG uptake of 20.5%{+-}5.2% (hand activation task) and 17.2%{+-}2.5% (foot activation task). Additionally detected activation of the ipsilateral primary motor cortex was interpreted as a metabolic indication for interhemispheric compensational processes. Evaluation of the PET findings by

  9. Diversity of cingulate xenarthrans in the middle-late Eocene of Northwestern Argentina

    Directory of Open Access Journals (Sweden)

    Martín R. Ciancio

    2016-08-01

    Full Text Available The study of Paleogene mammals of intermediate and low latitudes has increased in the last decades and has been clearly demonstrated their importance in the comprehension of the evolution and faunistic changes outside Patagonia. The study of these faunas permits establishing new comparisons among contemporaneous faunistic associations, completing the distributional patterns, and evaluating evolutionary changes in the lineages in relation to climatic conditions prevailing in each of the different regions. In this work we study the diversity of Dasypodidae recovered from the Geste Formation (Northwestern Argentina. Bearing levels of Geste Formation were referred alternatively to a Barrancan subage of Casamayoran SALMA (middle Eocene, Lutetian–Bartonian or a Mustersan SALMA (middle–late Eocene, Bartonian–Priabonian on faunistic comparations with their equivalent in Patagonia, although absolute isotopic data indicates ca. 37–35 Ma (late Eocene, Priabonian. We described the following taxa of Dasypodidae: (i Dasypodinae Astegotheriini: cf. Astegotherium sp., ?Prostegotherium sp., Parastegosimpsonia cf. P. peruana; (ii Dasypodinae indet.; (iii Euphractinae Euphractini: Parutaetus punaensis sp. nov.; (iv Dasypodidae incertae sedis: Pucatherium parvum, Punatherium catamarcensis gen. et sp. nov. In comparison with other beds bearing Eocene cingulate faunas from Northwestern Argentina, Geste Formation presents the greatest diversity of dasypodids. This association is consistent with a late Eocene age and shows a taxonomic and biogeographic relevant features given by a unique specific composition: (i it differs from that known for contemporaneous faunas from Southern latitudes and younger associations from more tropical areas; (ii it includes genera with close affinities to those distant areas; (iii it presents unique taxa typical from Eocene units exposed at Northwestern Argentina. This highlights the evolutionary and biogeographic meaning of the

  10. Botanical collecting activity in the area of the Flora of Ethiopia and Eritrea during the "motor period"

    DEFF Research Database (Denmark)

    Friis, Ib

    2011-01-01

    The account summarizes the botanical field work in Eritrea and Ethiopia since the 1930s, in the period when motor cars have been used for transport of equipment and collections, as opposed to the "heroic" period, when pack animals were used. The use of cars for botanical collecting in Eritrea and...

  11. The topology of connections between rat prefrontal, motor and sensory cortices

    Directory of Open Access Journals (Sweden)

    Stacey eBedwell

    2014-09-01

    Full Text Available The connections of prefrontal cortex (PFC were investigated in the rat brain to determine the order and location of input and output connections to motor and somatosensory cortex. Retrograde (100nl Fluoro-Gold and anterograde (100nl Biotinylated Dextran Amines; Fluorescein and Texas Red neuronanatomical tracers were injected into the subdivisions of the prefrontal cortex (prelimbic, ventral orbital, ventrolateral orbital, dorsolateral orbital and their projections studied. We found clear evidence for organised input projections from the motor and somatosensory cortices to the prefrontal cortex, with distinct areas of motor and cingulate cortex projecting in an ordered arrangement to the subdivisions of prefrontal cortex. As injection location of retrograde tracer was moved from medial to lateral in PFC, we observed an ordered arrangement of projections occurring in sensory-motor cortex. There was a significant effect of retrograde injection location on the position of labelled cells occurring in sensory-motor cortex (dorsoventral, anterior-posterior and mediolateral axes p<.001. The arrangement of output projections from prefrontal cortex also displayed a significant ordered projection to sensory-motor cortex (dorsoventral p<.001, anterior-posterior p=.002 and mediolateral axes p<.001. Statistical analysis also showed that the locations of input and output labels vary with respect to one another (in the dorsal-ventral and medial-lateral axes, p<.001. Taken together, the findings show that regions of prefrontal cortex display an ordered arrangement of connections with sensory-motor cortex, with clear laminar organisation of input connections. These results also show that input and output connections to prefrontal cortex are not located in exactly the same sites and reveal a circuit between sensory-motor and prefrontal cortex.

  12. Motivation of extended behaviors by anterior cingulate cortex.

    Science.gov (United States)

    Holroyd, Clay B; Yeung, Nick

    2012-02-01

    Intense research interest over the past decade has yielded diverse and often discrepant theories about the function of anterior cingulate cortex (ACC). In particular, a dichotomy has emerged between neuropsychological theories suggesting a primary role for ACC in motivating or 'energizing' behavior, and neuroimaging-inspired theories emphasizing its contribution to cognitive control and reinforcement learning. To reconcile these views, we propose that ACC supports the selection and maintenance of 'options' - extended, context-specific sequences of behavior directed toward particular goals - that are learned through a process of hierarchical reinforcement learning. This theory accounts for ACC activity in relation to learning and control while simultaneously explaining the effects of ACC damage as disrupting the motivational context supporting the production of goal-directed action sequences.

  13. Activities for a Perceptual Motor Program.

    Science.gov (United States)

    Brinning, Dorothy; And Others

    Perceptual motor activities for physically handicapped children are presented in the areas of fine and gross motor skills. Also detailed are activities to develop body image, visual motor skills, and tactile and auditory perception. (JD)

  14. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making

    OpenAIRE

    Khani, Abbas; Kermani, Mojtaba; Hesam, 6Soghra; Haghparast, Abbas; Enrike G Argandoña; Rainer, Gregor

    2015-01-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test...

  15. Dorsal anterior cingulate cortex and the value of control.

    Science.gov (United States)

    Shenhav, Amitai; Cohen, Jonathan D; Botvinick, Matthew M

    2016-09-27

    Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior.

  16. Dorsal anterior cingulate cortex and the value of control.

    Science.gov (United States)

    Shenhav, Amitai; Cohen, Jonathan D; Botvinick, Matthew M

    2016-09-27

    Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior. PMID:27669989

  17. Immunocytochemical heterogeneity of somatostatin-expressing GABAergic interneurons in layers II and III of the mouse cingulate cortex: A combined immunofluorescence/design-based stereologic study.

    Science.gov (United States)

    Riedemann, Therese; Schmitz, Christoph; Sutor, Bernd

    2016-08-01

    Many neurological diseases including major depression and schizophrenia manifest as dysfunction of the GABAergic system within the cingulate cortex. However, relatively little is known about the properties of GABAergic interneurons in the cingulate cortex. Therefore, we investigated the neurochemical properties of GABAergic interneurons in the cingulate cortex of FVB-Tg(GadGFP)45704Swn/J mice expressing green fluorescent protein (GFP) in a subset of GABAergic interneurons (GFP-expressing inhibitory interneurons [GINs]) by means of immunocytochemical and design-based stereologic techniques. We found that GINs represent around 12% of all GABAergic interneurons in the cingulate cortex. In contrast to other neocortical areas, GINs were only found in cortical layers II and III. More than 98% of GINs coexpressed the neuropeptide somatostatin (SOM), but only 50% of all SOM + neurons were GINs. By analyzing the expression of calretinin (CR), calbindin (CB), parvalbumin, and various neuropeptides, we identified several distinct GIN subgroups. In particular, we observed coexpression of SOM with CR and CB. In addition, we found neuropeptide Y expression almost exclusively in those GINs that coexpressed SOM and CR. Thus, with respect to the expression of calcium-binding proteins and neuropeptides, GINs are surprisingly heterogeneous in the mouse cingulate cortex, and the minority of GINs express only one marker protein or peptide. Furthermore, our observation of overlap between the SOM + and CR + interneuron population was in contrast to earlier findings of non-overlapping SOM + and CR + interneuron populations in the human cortex. This might indicate that findings in mouse models of neuropsychiatric diseases may not be directly transferred to human patients. J. Comp. Neurol. 524:2281-2299, 2016. © 2015 Wiley Periodicals, Inc. PMID:26669716

  18. Deactivation of medial prefrontal and posterior cingulate cortex in anxiety disorders

    International Nuclear Information System (INIS)

    Objective: We used blood oxygenation level dependent-functional MR imaging (BOLD- fMRI) to explore the characteristics of deactivation patterns in patients with anxiety disorders and the underlying neural mechanism of this disease. Methods: Ten patients and ten healthy controls participated the experiments. All subjects performed the trait portion of the State-Trait anxiety Inventory (STAI-T) prior to the fMRI scans. The subjects underwent noninvasive functional magnetic resonance imaging while listening actively to emotionally neutral words alternating with no words (experiment 1) and threat related-words alternating with emotionally neutral words (experiment2). During fMRI scanning, subjects were instructed to closely listen to each stimuli word and to silently make a judgment of the word's valence. Data were analyzed with statistical parametric mapping (SPM 99). Individual and group analysis were conducted. Results: Mean STAI-T score was significantly higher for patients group than that of controls (58 ± 8 for patients group and 33 ± 5 for controls, t=8.3, P<0.01). Our fMRI data revealed sets of deactivation brain regions in Experiment for patients and healthy controls, however, the deactivation can be found in experiment 2 only for patients. Interestingly, all the observed deactivation patterns were similar. The related areas compromise medial prefrontal cortex(BA 10, BA 24/32), posterior cingulate (BA 31/30) and Bilateral inferior parietal cortex (MPFC) (BA 39/40), which nearly overlapping with the organized default model network. Further more, the mean t values in the MPFC area (BA 24/32) was significantly higher for control group than that of patient (5.1 controls and 4.2 for patients, t=4.8, P=0.006), conversely, the mean t values in the posterior cingulate cortex(PCC) area was significantly higher for patients l than that of controls (4.9 controls and 5.8 for patients, t=2.4, P=0.026). Conclusion: Our observations suggest that the default model network

  19. [Use of private motor vehicle transportation for taking children to school in São Paulo Metropolitan Area, Brazil, 1997-2012].

    Science.gov (United States)

    Sá, Thiago Hérick de; Rezende, Leandro Fórnias Machado de; Rabacow, Fabiana Maluf; Monteiro, Carlos Augusto

    2016-05-31

    São Paulo Metropolitan Area, Brazil, showed an increase from 1997 to 2007 in the use of private motor vehicles for taking children to school, with potential harm to their health. The aim of this study was to extend the analysis of this trend until 2012 and discuss possible strategies to increase the proportion of children who walk, cycle, or use public transportation to get to school. Analysis of the data from the Mobility Survey of 2012 indicate not only the continuation but also an accelerated increase in the use of private motorized transportation for schoolchildren aged 6 to 11 years. The effect of initiatives to promote walking will only be properly understood with adequate monitoring of daily commuting to school and the evaluation of their impact on the population's health. A package of policies and programs specifically targeted to the promotion and protection of walking, cycling, and use of public transport by schoolchildren is indispensable for guaranteeing their right to travel safely, independently, and actively in São Paulo Metropolitan Area. PMID:27253455

  20. Systematic Regional Variations of GABA, Glutamine, and Glutamate Concentrations Follow Receptor Fingerprints of Human Cingulate Cortex

    NARCIS (Netherlands)

    Dou, Weiqiang; Palomero-Gallagher, Nicola; van Tol, Marie-Jose; Kaufmann, Joern; Zhong, Kai; Bernstein, Hans-Gert; Heinze, Hans-Jochen; Speck, Oliver; Walter, Martin

    2013-01-01

    Magnetic resonance spectroscopy (MRS) of glutamatergic or GABAergic measures in anterior cingulate cortex (ACC) was found altered in psychiatric disorders and predictive of interindividual variations of functional responses in healthy populations. Several ACC subregions have been parcellated into re

  1. Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer's disease

    OpenAIRE

    Hirono, N.; Mori, E.; Ishii, K.; Ikejiri, Y; Imamura, T; Shimomura, T.; Hashimoto, M.; Yamashita, H.; Sasaki, M.

    1998-01-01

    The relation between orientation for time and place and regional cerebral glucose metabolism was examined in 86 patients with probable Alzheimer's disease of minimal to moderate severity. Regional glucose metabolic rates in the posterior cingulate gyri and in the right middle temporal gyrus were significantly correlated with temporal orientation, and the glucose metabolic rate in the right posterior cingulate gyrus was significantly correlated with locational orientation irr...

  2. Three-dimensional localization of SMA activity preceding voluntary movement. A study of electric and magnetic fields in a patient with infarction of the right supplementary motor area.

    Science.gov (United States)

    Lang, W; Cheyne, D; Kristeva, R; Beisteiner, R; Lindinger, G; Deecke, L

    1991-01-01

    Previous studies by magnetoencephalography (MEG) failed to consistently localize the activity of the supplementary motor area (SMA) prior to voluntary movements in healthy human subjects. Based on the assumption that the SMA of either hemisphere is active prior to voluntary movements, the negative findings of previous studies could be explained by the hypothesis that magnetic fields of current dipole sources in the two SMAs may cancel each other. The present MEG study was performed in a patient with a complete vascular lesion of the right SMA. In this case it was possible to consistently localize a current dipole source in the intact left SMA starting about 1200 msec prior to the initiation of voluntary movements of the right thumb. Starting at about 600 msec prior to movement onset the assumption of a current dipole source in the left primary motor cortex was needed to account for the observed fields. Measurements of brain potentials were consistent with MEG findings of activity of the left SMA starting about 1200 msec prior to movement onset.

  3. Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory.

    Science.gov (United States)

    Moseley, Rachel L; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view 'emotion actions' as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed.

  4. 运动区低级别胶质瘤的手术方法探讨%Surgical treatment of low-grade gliomas involving motor areas

    Institute of Scientific and Technical Information of China (English)

    毛明利; 谢坚; 韩武; 曹晓昱; 曾春; 王江飞; 王磊; 高之宪

    2014-01-01

    Objective To explore the possibility and strategy of maximally removal of low-grade gliomas which involved the motor areas on the premise of protecting the patient' motor function.Methods The neurosurgical plans and procedures of 30 patients with low-grade gliomas involving the motor areas in Beijing Tiantan Hospital from December 2011 to May 2013 were analyzed retrospectively.Preoperative head magnetic resonance imaging (MRI) was performed in all patients.A ω-shaped or inverted Ω-shaped hand-knob as a logo was used to confirm the precentral gyrus (primary motor area,M1).Intraoperative somatosensory evoked potential (SEP) was used to confirm the central sulcus,M1 and premotor area (PMA).MEP was used to monitor the function of motor pathway.The extent of tumor resection was evaluated by intraoperative B-mode ultrasound at the same time.Postoperative head MRI within 72 hours was used to evaluate the extent of tumor resection.The muscular power was determined instantly after waking up,2 weeks and 3 months following operation separately.Results The M1 was involved in 3 cases,the supplementary motor area (SMA) in 3,the PMA in 11,and the SMA and PMA were simultaneously involved in 13.Subtotal resection was achieved in 27 cases (90%) while partial resection in 3 (10%).The histological results of all patients revealed oligodendroglioma in 2 cases,astrocytoma in 9 and oligo-astrocytoma in 19.Preoperative muscle power was normal in 25 cases,4 of them had one hand less flexible and could not perform accurately,and 2 of them felt trample empty while walking,and 5 cases had grade Ⅳ muscle power.After the surgery,part of patients had transient muscle disorders.Three months after the surgery,muscle power was normal in 23 cases,9 of them had one hand less flexible and could not perform accurately,3 of them felt trample empty while walking.7 cases had grade Ⅲ-Ⅳ muscle power of upper or lower limbs.Conclusions Motor area is consisted of M1,PMA,SMA,corticonuclear tract

  5. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  6. Functional Connectivity of the Caudal Anterior Cingulate Cortex Is Decreased in Autism.

    Science.gov (United States)

    Zhou, Yuanyue; Shi, Lijuan; Cui, Xilong; Wang, Suhong; Luo, Xuerong

    2016-01-01

    The anterior cingulate cortex (ACC) is frequently reported to have functionally distinct sub-regions that play key roles in different intrinsic networks. However, the contribution of the ACC, which is connected to several cortical areas and the limbic system, to autism is not clearly understood, although it may be involved in dysfunctions across several distinct but related functional domains. By comparing resting-state fMRI data from persons with autism and healthy controls, we sought to identify the abnormalities in the functional connectivity (FC) of ACC sub-regions in autism. The analyses found autism-related reductions in FC between the left caudal ACC and the right rolandic operculum, insula, postcentral gyrus, superior temporal gyrus, and the middle temporal gyrus. The FC (z-scores) between the left caudal ACC and the right insula was negatively correlated with the Stereotyped Behaviors and Restricted Interests scores of the autism group. These findings suggest that the caudal ACC is recruited selectively in the pathomechanism of autism.

  7. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC. PMID:27318139

  8. Cross-modal sensory processing in the anterior cingulate and medial prefrontal cortices.

    Science.gov (United States)

    Laurienti, Paul J; Wallace, Mark T; Maldjian, Joseph A; Susi, Christina M; Stein, Barry E; Burdette, Jonathan H

    2003-08-01

    One of the principal functions of the nervous system is to synthesize information from multiple sensory channels into a coherent behavioral and perceptual gestalt. A critical feature of this multisensory synthesis is the sorting and coupling of information derived from the same event. One of the singular features of stimuli conveying such information is their contextual or semantic congruence. Illustrating this fact, subjects are typically faster and more accurate when performing tasks that include congruent compared to incongruent cross-modal stimuli. Using functional magnetic resonance imaging, we demonstrate that activity in select brain areas is sensitive to the contextual congruence among cross-modal cues and to task difficulty. The anterior cingulate gyrus and adjacent medial prefrontal cortices showed significantly greater activity when visual and auditory stimuli were contextually congruent (i.e., matching) than when they were nonmatching. Although activity in these regions was also dependent on task difficulty, showing decreased activity with decreasing task difficulty, the activity changes associated with stimulus congruence predominated.

  9. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.

  10. CITY DEVELOPMENT FOR KEEPING POLLUTANT CONCENTRATIONS FROM MOTOR VEHICLES IN RESIDENTIAL AREAS IN ACCORDANCE WITH AIR QUALITY STANDARDS

    Directory of Open Access Journals (Sweden)

    Владимир Васильевич Балакин

    2016-02-01

    Full Text Available The dependency of carbon monoxide concentrations on wind speed has been obtained in the field studies. It is used in determining optimum ventilation modes for street space to ensure keeping the content of the toxic components from automobile exhaust in accordance with public health standards.Environmental basis for development optimization for busy primary streets has been provided to avoid dangerous levels of ambient air pollution with automobile emissions.Positive effect on air quality from belt roads, bypass roads and pedestrian areas situated in city centers is noted.

  11. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [3H]MK801, [3H]AMPA and [3H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [3H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [3H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [3H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [3H]AMPA and [3H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  12. Pregnancy and maternal behavior induce changes in glia, glutamate and its metabolism within the cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Natalina Salmaso

    Full Text Available An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2 occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS, and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.

  13. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  14. Improvement of cognitive flexibility and cingulate blood flow correlates after atypical antipsychotic treatment in drug-naive patients with first-episode schizophrenia.

    Science.gov (United States)

    Pardo, Bernardo M; Garolera, Maite; Ariza, Mar; Pareto, Deborah; Salamero, Manel; Valles, Vicenç; Delgado, Luis; Alberni, Joan

    2011-12-30

    The aim of this study was to examine the changes in cognitive flexibility and associated cerebral blood flow in the anterior cingulate lobe of drug-naive patients with first-episode schizophrenia who were treated with atypical antipsychotics for 6 weeks. Single photon emission computed tomography (SPECT) images were obtained from 8 healthy subjects both at rest and while performing the flexibility subtest of the TAP (Test for Attentional Performance). SPECT images were obtained in parallel from 8 first-episode drug-naive schizophrenic patients while they were performing the same task both before and after 6 weeks of neuroleptic treatment. In the control group, an increase in the perfusion indices of the dorsal section of the anterior cingulate gyrus was observed in the activation condition. Task performance was altered and the level of perfusion of the brain region related to the task execution was significantly decreased in the patients at baseline. After treatment, there was a significant improvement in both task performance and the level of perfusion of the dorsal section of the anterior cingulate. We conclude that treatment with second-generation neuroleptics improves cognitive flexibility, and there was a relationship between such improvements and normalization of perfusion indices of the involved brain areas.

  15. Patterns of regional brain activation associated with different forms of motor learning.

    Science.gov (United States)

    Ghilardi, M; Ghez, C; Dhawan, V; Moeller, J; Mentis, M; Nakamura, T; Antonini, A; Eidelberg, D

    2000-07-14

    To examine the variations in regional cerebral blood flow during execution and learning of reaching movements, we employed a family of kinematically and dynamically controlled motor tasks in which cognitive, mnemonic and executive features of performance were differentiated and characterized quantitatively. During 15O-labeled water positron emission tomography (PET) scans, twelve right-handed subjects moved their dominant hand on a digitizing tablet from a central location to equidistant targets displayed with a cursor on a computer screen in synchrony with a tone. In the preceding week, all subjects practiced three motor tasks: 1) movements to a predictable sequence of targets; 2) learning of new visuomotor transformations in which screen cursor motion was rotated by 30 degrees -60 degrees; 3) learning new target sequences by trial and error, by using previously acquired routines in a task placing heavy load on spatial working memory. The control condition was observing screen and audio displays. Subtraction images were analyzed with Statistical Parametric Mapping to identify significant brain activation foci. Execution of predictable sequences was characterized by a modest decrease in movement time and spatial error. The underlying pattern of activation involved primary motor and sensory areas, cerebellum, basal ganglia. Adaptation to a rotated reference frame, a form of procedural learning, was associated with decrease in the imposed directional bias. This task was associated with activation in the right posterior parietal cortex. New sequences were learned explicitly. Significant activation was found in dorsolateral prefrontal and anterior cingulate cortices. In this study, we have introduced a series of flexible motor tasks with similar kinematic characteristics and different spatial attributes. These tasks can be used to assess specific aspects of motor learning with imaging in health and disease. PMID:10882792

  16. Early adversity and combat exposure interact to influence anterior cingulate cortex volume in combat veterans ☆

    OpenAIRE

    Woodward, Steven H.; Kuo, Janice R.; Schaer, Marie; Kaloupek, Danny G.; Eliez, Stephan

    2013-01-01

    Objective Childhood and combat trauma have been observed to interact to influence amygdala volume in a sample of U.S. military veterans with and without PTSD. This interaction was assessed in a second, functionally-related fear system component, the pregenual and dorsal anterior cingulate cortex, using the same sample and modeling approach. Method Anterior cingulate cortical tissues (gray + white matter) were manually-delineated in 1.5 T MR images in 87 U.S. military veterans of the Vietnam a...

  17. Motor neglect.

    OpenAIRE

    Laplane, D.; Degos, J D

    1983-01-01

    Motor neglect is characterised by an underutilisation of one side, without defects of strength, reflexes or sensibility. Twenty cases of frontal, parietal and thalamic lesions causing motor neglect, but all without sensory neglect, are reported. It is proposed that the cerebral structures involved in motor neglect are the same as those for sensory neglect and for the preparation of movement. As in sensory neglect, the multiplicity of the structures concerned suggests that this interconnection...

  18. Electrophysiological Signs of Supplementary-Motor-Area Deficits in High-Functioning Autism but Not Asperger Syndrome: An Examination of Internally Cued Movement-Related Potentials

    Science.gov (United States)

    Enticott, Peter G.; Bradshaw, John L.; Iansek, Robert; Tonge, Bruce J.; Rinehart, Nicole J.

    2009-01-01

    Aims: Motor dysfunction is common to both autism and Asperger syndrome, but the underlying neurophysiological impairments are unclear. Neurophysiological examinations of motor dysfunction can provide information about likely sites of functional impairment and can contribute to the debate about whether autism and Asperger syndrome are variants of…

  19. Impact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kazutaka Ohi

    Full Text Available BACKGROUND: The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls. METHODS: Genotype effects of rs12807809 were investigated on gray matter (GM and white matter (WM volumes using magnetic resonance imaging (MRI with a voxel-based morphometry (VBM technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls. RESULTS: Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC. Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32 than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls. CONCLUSIONS: Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.

  20. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks.

    Science.gov (United States)

    Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375

  1. Posterior cingulated cortex functional connectivity in deficit schizophrenia: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    唐小伟

    2014-01-01

    Objective To explore the discrepancies of the network of resting brain functional connectivity related to posterior cingulated cortex(PCC)between deficit schizophrenia patients and normal control.Methods Thirty male patients of deficit schizophrenia,nondeficit schizophrenia and 30 healthy controls were enrolled,and the age,education level and sex were matched between three

  2. The Role of the Dorsal Anterior Cingulate in Evaluating Behavior for Achieving Gains and Avoiding Losses

    Science.gov (United States)

    Magno, Elena; Simoes-Franklin, Cristina; Robertson, Ian H.; Garavan, Hugh

    2009-01-01

    Effective goal-directed behavior relies on a network of regions including anterior cingulate cortex and ventral striatum to learn from negative outcomes in order to improve performance. We employed fMRI to determine if this frontal-striatal system is also involved in instances of behavior that do not presume negative circumstances. Participants…

  3. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    NARCIS (Netherlands)

    Arns, M.W.; Etkin, A.; Hegerl, U.; Williams, L.M.; DeBattista, C.; Palmer, D.M.; Fitzgerald, P.B.; Harris, A.; deBeuss, R.; Gordon, E.

    2015-01-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been link

  4. Adaptive coding of action values in the human rostral cingulate zone

    NARCIS (Netherlands)

    Jocham, G.; Neumann, J.; Klein, T.A.; Danielmeier, C.; Ullsperger, M.

    2009-01-01

    Correctly selecting appropriate actions in an uncertain environment requires gathering experience about the available actions by sampling them over several trials. Recent findings suggest that the human rostral cingulate zone (RCZ) is important for the integration of extended action-outcome associat

  5. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions.

    Science.gov (United States)

    Scheck, Simon M; Pannek, Kerstin; Raffelt, David A; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2015-01-01

    In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC-precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC-superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = -0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762

  6. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Susanna A Walter

    Full Text Available Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD responses in functional magnetic resonance imaging (fMRI is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.

  7. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  8. Motor homopolar

    OpenAIRE

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  9. Application of stepping motor

    International Nuclear Information System (INIS)

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  10. Multimodal imaging in diagnosis of Alzheimer's disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region.

    Science.gov (United States)

    Zimny, Anna; Szewczyk, Pawel; Trypka, Elzbieta; Wojtynska, Renata; Noga, Leszek; Leszek, Jerzy; Sasiadek, Marek

    2011-01-01

    The purpose of this study was to assess metabolic, perfusion, and microstructural changes within the posterior cingulate area in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using advanced MR techniques such as: spectroscopy (MRS), perfusion weighted imaging (PWI), and diffusion tensor imaging (DTI). Thirty patients with AD (mean age 71.5 y, MMSE 18), 23 with aMCI (mean age 66 y, MMSE 27.4), and 15 age-matched normal controls (mean age 69 y, MMSE 29.5) underwent conventional MRI followed by MRS, PWI, and DTI on 1.5 Tesla MR unit. Several metabolite ratios (N-acetylaspartate [NAA]/creatine [Cr], choline [Ch]/Cr, myoinositol [mI]/Cr, mI/NAA, mI/Cho) as well as parameters of cerebral blood volume relative to cerebellum and fractional anisotropy were obtained in the posterior cingulate region. The above parameters were correlated with the results of neuropsychological tests. AD patients showed significant abnormalities in all evaluated parameters while subjects with aMCI showed only perfusion and diffusion changes in the posterior cingulate area. Only PWI and DTI measurements revealed significant differences among the three evaluated subject groups. DTI, PWI, and MRS results showed significant correlations with neuropsychological tests. DTI changes correlated with both PWI and MRS abnormalities. Of neuroimaging methods, DTI revealed the highest accuracy in diagnosis of AD and aMCI (0.95, 0.79) followed by PWI (0.87, 0.67) and MRS (0.82, 0.47), respectively. In conclusion, AD is a complex pathology regarding both grey and white matter. DTI seems to be the most useful imaging modality to distinguish between AD, aMCI, and control group, followed by PWI and MRS. PMID:21841260

  11. Inter-individual decision-making differences in the effects of cingulate, orbitofrontal and prelimbic cortex lesions in a rat gambling task

    Directory of Open Access Journals (Sweden)

    Marion eRivalan

    2011-04-01

    Full Text Available Deficits in decision-making is a hallmark of several neuropsychiatric pathologies but is also observed in some healthy individuals that could be at risk to develop these pathologies. Poor decision-making can be revealed experimentally in humans using the Iowa Gambling Task (IGT, through the inability to select options that ensure long term gains over larger immediate gratification. We devised an analogous task in the rat, based on uncertainty and conflicting choices, the Rat Gambling Task (RGT. It similarly reveals good and poor performers within a single session. Using this task, we investigated the role of three prefrontal cortical areas, the orbitofrontal, prelimbic and cingulate cortices on decision-making, taking into account inter-individual variability in behavioural performances. Here, we show that these three distinct subregions are differentially engaged to solve the RGT. Cingulate cortex lesion mainly delayed good decision-making whereas prelimbic and orbitofrontal cortices induced different patterns of inadapted behaviors in the task, indicating varying degree of functional specialization of these three areas. Their contribution largely depended on the level of adaptability demonstrated by each individual to the constraint of the task. The inter-individual differences in prefrontal cortex areas recruitment during decision-making revealed in this study open new perspectives in the search for vulnerability markers to develop disorders related to executive dysfunctioning.

  12. PARCELLATION OF THE CINGULATE CORTEX AT REST AND DURING TASKS: A META-ANALYTIC CLUSTERING AND EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Diana M.E. Torta

    2013-06-01

    Full Text Available Anatomical, morphological and histological data have consistently shown that the cingulate cortex can be divided into four main regions. However, less is known about parcellations of the cingulate cortex when involved in active tasks. Here, we aimed at comparing how the pattern of clusterization of the cingulate cortex changes across different levels of task complexity. We parcellated the cingulate cortex using the results of a meta-analytic study and of three experimental studies. The experimental studies, which included two active tasks and a resting state protocol, were used to control the results obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by applying a meta-analytic clustering (MaC to papers retrieved from the BrainMap database. The MaC is a meta-analytic connectivity driven parcellation technique recently developed by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern of co-activations during active tasks. The MaC results indicated that the cingulate cortex can be parcellated into three clusters. These clusters covered different percentages of the cingulate parenchyma and had a different density of foci, with the first cluster being more densely connected. The control experiments showed different clusterization results, suggesting that the co-activations of the cingulate cortex are highly dependent on the task that is tested. Our results highlight the importance of the cingulate cortex as a hub, which modifies its pattern of co-activations depending on the task requests and on the level of task complexity. The neurobiological meaning of these results is discussed.

  13. Brain Connectivity Plasticity in the Motor Network after Ischemic Stroke

    OpenAIRE

    Lin Jiang; Huijuan Xu; Chunshui Yu

    2013-01-01

    The motor function is controlled by the motor system that comprises a series of cortical and subcortical areas interacting via anatomical connections. The motor function will be disturbed when the stroke lesion impairs either any of these areas or their connections. More and more evidence indicates that the reorganization of the motor network including both areas and their anatomical and functional connectivity might contribute to the motor recovery after stroke. Here, we review recent studie...

  14. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients.

    Science.gov (United States)

    Becerra, L; Veggeberg, R; Prescot, A; Jensen, J E; Renshaw, P; Scrivani, S; Spierings, E L H; Burstein, R; Borsook, D

    2016-01-01

    Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a 'complex' of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite 'complex' may confer more subtle but biological processes that are ongoing. The data also support the current theory that the

  15. Subgenual anterior cingulate responses to peer rejection: A marker of adolescents’ risk for depression

    OpenAIRE

    Masten, Carrie L.; Eisenberger, Naomi I.; Borofsky, Larissa A.; McNealy, Kristin; Pfeifer, Jennifer H.; DAPRETTO, MIRELLA

    2011-01-01

    Extensive developmental research has linked peer rejection during adolescence with a host of psychopathological outcomes, including depression. Moreover, recent neuroimaging research has suggested that increased activity in the subgenual region of the anterior cingulate cortex (subACC), which has been consistently linked with depression, is related to heightened sensitivity to peer rejection among adolescents. The goal of the current study was to directly test the hypothesis that adolescents’...

  16. Resting Metabolic Activity in the Cingulate Cortex and Vulnerability to Posttraumatic Stress Disorder

    Science.gov (United States)

    Shin, Lisa M.; Lasko, Natasha B.; Macklin, Michael L.; Karpf, Rachel D.; Milad, Mohammed R.; Orr, Scott P.; Goetz, Jared M.; Fischman, Alan J.; Rauch, Scott L.; Pitman, Roger K.

    2013-01-01

    Context Recent neuroimaging research has revealed functional abnormalities in the anterior cingulate cortex, amygdala and hippocampus in posttraumatic stress disorder (PTSD). Objective To determine whether resting functional abnormalities found in PTSD are acquired characteristics or familial risk factors. Design Cross-sectional design including identical twins discordant for trauma exposure. Setting Academic medical center. Participants Combat-exposed veterans with PTSD (n=14) and their identical, combat-unexposed co-twins (n=14), as well as combat-exposed veterans without PTSD (n=19) and their identical, combat-unexposed co-twins (n=19). Main Outcome Measures We used positron emission tomography and [18F]-fluorodeoxyglucose to examine resting regional cerebral metabolic rates for glucose (rCMRglu). Results Veterans with PTSD and their co-twins had significantly higher resting rCMRglu in dorsal anterior cingulate/mid cingulate cortex (dACC/MCC) compared to non-PTSD veterans and their co-twins. Resting rCMRglu in dACC/MCC in the combat-unexposed co-twins was positively correlated with combat exposure severity, PTSD symptom severity, and alcohol use in their exposed twins. Conclusions Enhanced resting metabolic activity in dACC/MCC appears to represent a familial risk factor for developing PTSD after exposure to psychological trauma. PMID:19805700

  17. High efficiency motors in ventilators and pumps

    International Nuclear Information System (INIS)

    This study involves an experience carried out about substituting standard motors by high efficiency motors intending to demonstrate the economic and operative benefits of the latter ones. High efficiency motors are usually justified in applications where a motor, which is new or requires replacement is running for long periods at high load. The supplementary cost is such cases can normally be recovered within two years by the extra efficiency these motors offer over standard motors. High efficiency motors are usually manufactured from a higher quality material. More care is also taken with the design and geometry of the motor construction. The high efficiency motors used in this project have been improved in four areas which results in their higher running efficiencies. As for copper in particular, copper losses are reduced by providing generous conductor sizes in the stator and rotor. (Author)

  18. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control.

    Science.gov (United States)

    Tolomeo, Serenella; Christmas, David; Jentzsch, Ines; Johnston, Blair; Sprengelmeyer, Reiner; Matthews, Keith; Douglas Steele, J

    2016-06-01

    Converging evidence has linked the anterior mid-cingulate cortex to negative affect, pain and cognitive control. It has previously been proposed that this region uses information about punishment to control aversively motivated actions. Studies on the effects of lesions allow causal inferences about brain function; however, naturally occurring lesions in the anterior mid-cingulate cortex are rare. In two studies we therefore recruited 94 volunteers, comprising 15 patients with treatment-resistant depression who had received bilateral anterior cingulotomy, which consists of lesions made within the anterior mid-cingulate cortex, 20 patients with treatment-resistant depression who had not received surgery and 59 healthy control subjects. Using the Ekman 60 faces paradigm and two Stroop paradigms, we tested the hypothesis that patients who received anterior cingulotomy were impaired in recognizing negative facial affect expressions but not positive or neutral facial expressions, and impaired in Stroop cognitive control, with larger lesions being associated with more impairment. Consistent with this hypothesis, we found that larger volume lesions predicted more impairment in recognizing fear, disgust and anger, and no impairment in recognizing facial expressions of surprise or happiness. However, we found no impairment in recognizing expressions of sadness. Also consistent with the hypothesis, we found that larger volume lesions predicted impaired Stroop cognitive control. Notably, this relationship was only present when anterior mid-cingulate cortex lesion volume was defined as the overlap between cingulotomy lesion volume and Shackman's meta-analysis-derived binary masks for negative affect and cognitive control. Given substantial evidence from healthy subjects that the anterior mid-cingulate cortex is part of a network associated with the experience of negative affect and pain, engaging cognitive control processes for optimizing behaviour in the presence of such

  19. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Bob L. Hou

    2016-01-01

    Full Text Available For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., >20 mm of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52% the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52% the distances between the task-determined and anatomically determined hand areas were >20 mm; and in 16 of 25 cases (i.e., 64% the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities.

  20. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...

  1. Motor Magnates

    Institute of Scientific and Technical Information of China (English)

    ISABEL DING

    2008-01-01

    @@ The automotive industry is often seen as a man's world. Wang Fengying (王风英) begs to differ. The 38-year-old has presided over Great Wall Motors (长城汽车), the leading pick-up truck and Sport Utility Vehicle(SUV) manufacturer in China for the past five years.

  2. Motor radiculopathy

    OpenAIRE

    Khan, Afsha; Camilleri, Jeremy

    2012-01-01

    A 48-year-old immunosuppressed woman presented to a rheumatology follow-up clinic after suffering from herpes zoster infection. She had manifestations of foot drop 3 months after the initial infection. She was diagnosed with motor radiculopathy following herpes zoster infection that was effectively managed by physiotherapy and amitriptyline.

  3. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study.

    Science.gov (United States)

    Linares, I M P; Jackowski, A P; Trzesniak, C M F; Arrais, K C; Chagas, M H N; Sato, J R; Santos, A C; Hallak, J E C; Zuardi, A W; Nardi, A E; Coimbra, N C; Crippa, J A S

    2014-08-12

    There a lack of consistent neuroimaging data on specific phobia (SP) and a need to assess volumetric and metabolic differences in structures implicated in this condition. The aim of this study is investigate possible metabolic (via (1)H MRS) and cortical thickness abnormalities in spider-phobic patients compared to healthy volunteers. Participants were recruited via public advertisement and underwent clinical evaluations and MRI scans. The study started in 2010 and the investigators involved were not blind in respect to patient groupings. The study was conducted at the Ribeirão Preto Medical School University Hospital of the University of São Paulo, Brazil. Patients with spider phobia (n=19) were matched to 17 healthy volunteers with respect to age, education and socio-economic status. The spider SP group fulfilled the diagnostic criteria for spider phobia according to the Structured Clinical Interview for DSM-IV. None of the participants had a history of neurological, psychiatric or other relevant organic diseases, use of prescribed psychotropic medication or substance abuse. All imaging and spectroscopy data were collected with a 3 T MRI scanner equipped with 25 mT gradient coils in 30-minute scans. The Freesurfer image analysis package and LC Model software were used to analyze data. The hypothesis being tested was formulated before the data collection (neural correlates of SP would include the amygdala, insula, anterior cingulate gyrus and others). The results indicated the absence of metabolic alterations, but thinning of the right anterior cingulate cortex (ACC) in the SP group when compared to the healthy control group (mean cortical thickness±SD: SP=2.11±0.45 mm; HC=2.16±0.42 mm; t (34)=3.19, p=0.001 [-35.45, 71.00, -23.82]). In spectroscopy, the ratios between N-acetylaspartate and creatine and choline levels were measured. No significant effect or correlation was found between MRS metabolites and scores in the Spider Phobia Questionnaire and Beck

  4. Decreases in blood perfusion of the anterior cingulate gyri in Anorexia Nervosa Restricters assessed by SPECT image analysis

    Directory of Open Access Journals (Sweden)

    Tsutsui Junko

    2001-06-01

    Full Text Available Abstract Background It is possible that psychopathological differences exist between the restricting and bulimic forms of anorexia nervosa. We investigated localized differences of brain blood flow of anorexia nervosa patients using SPECT image analysis with statistic parametric mapping (SPM in an attempt to link brain blood flow patterns to neurophysiologic characteristics. Methods The subjects enrolled in this study included the following three groups: pure restrictor anorexics (AN-R, anorexic bulimics (AN-BP, and healthy volunteers (HV. All images were transformed into the standard anatomical space of the stereotactic brain atlas, then smoothed. After statistical analysis of each brain image, the relationships among images were evaluated. Results SPM analysis of the SPECT images revealed that the blood flow of frontal area mainly containing bilateral anterior cingulate gyri (ACC was significantly decreased in the AN-R group compared to the AN-BP and HV groups. Conclusions These findings suggest that some localized functions ofthe ACCare possibly relevant to the psychopathological aspects of AN-R.

  5. Advanced Motors

    Energy Technology Data Exchange (ETDEWEB)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, “Motors and Generators for the 21st Century”. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to

  6. Altered SPECT (123)I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa.

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using (123)I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). "Depression-Dejection" and "Confusion" POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in

  7. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Science.gov (United States)

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  8. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway

    Directory of Open Access Journals (Sweden)

    Vogt Brent A

    2009-09-01

    Full Text Available Abstract Background Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes. Results A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity. Conclusion The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to

  9. Modulation of Subgenual Anterior Cingulate Cortex Activity With Real-Time Neurofeedback

    OpenAIRE

    Hamilton, J. Paul; Glover, Gary H.; Hsu, Jung-Jiin; Johnson, Rebecca F.; Gotlib, Ian H.

    2011-01-01

    The advent of real-time neurofeedback techniques has allowed us to begin to map the controllability of sensory and cognitive and, more recently, affective centers in the brain. The subgenual anterior cingulate cortex (sACC) is thought to be involved in generation of affective states and has been implicated in psychopathology. In this study, we examined whether individuals could use realtime fMRI neurofeedback to modulate sACC activity. Following a localizer task used to identify an sACC regio...

  10. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy

    OpenAIRE

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In Experiment 1, rats were trained on a cost-benefit T-maze task in which they could either choose to climb a barrier to obtain a high reward (four pellet...

  11. Concurrent TMS to the primary motor cortex augments slow motor learning.

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L; Fox, Peter T

    2014-01-15

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H2(15)O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy.

  12. Changes in functional connectivity of ventral anterior cingulate cortex in heroin abusers

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Ya-rong; QIN Wei; YUAN Kai; TIAN Jie; LI Qiang; YANG Lan-ying; LU Lin; GUO You-min

    2010-01-01

    Background Previous studies with animal experiments, autopsy, structural magnetic resonance imaging (MRI) and task-related functional MRI (fMRI) have confirmed that brain functional connectivity in addicts has become impaired. The goal of this study was to investigate the alteration of resting-state functional connectivity of the ventral anterior cingulate cortex (vACC) in the heroin abusers' brain.Methods Fifteen heroin abusers and fifteen matched healthy volunteers were studied using vACC as the region-of interest (ROI) seed. A 3.0 T scanner with a standard head coil was the imagining apparatus. T2*-weighted gradient-echo planar imaging (GRE-EPI) was the scanning protocol. A ROI seed based correlation analysis used a SPM5 software package as the tool for all images processing.Results This study showed a functional connection to the insula vACC in heroin abusers. Compared with controls,heroin users showed decreased functional connectivity between the nucleus accumbens (NAc) and vACC, between the parahippocampala gyrus/amgdala (PHC/amygdala) and vACC, between the thalamus and vACC, and between the posterior cingulated cortex/precuneus (PCC/pC) and vACC.Conclusion The altered resting-state functional connectivity to the vACC suggests the neural circuitry on which the addictive drug has an affect and reflects the dysfunction of the addictive brain.

  13. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Christopher G Davey

    2012-02-01

    Full Text Available Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected by depression.Methods: Eighteen patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterised task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task; MSIT. We used a psycho-physiological interactions (PPI approach to examine functional connectivity changes with subgenual ACC. Voxelwise statistical maps for each analysis were compared between the patient and control groups.Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive control regions in depressed patients.Conclusions: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes.

  14. Bridging the gap between motor imagery and motor execution with a brain-robot interface.

    Science.gov (United States)

    Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza

    2015-03-01

    According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke.

  15. Not all effort is equal: the role of the anterior cingulate cortex in different forms of effort-reward decisions

    Directory of Open Access Journals (Sweden)

    Victoria eHolec

    2014-01-01

    Full Text Available The rat anterior cingulate cortex (ACC mediates effort-based decision making when the task requires the physical effort of climbing a ramp. Normal rats will readily climb a barrier leading to high reward whereas rats with ACC lesions will opt instead for an easily obtained small reward. The present study explored whether the role of ACC in cost-benefit decisions extends beyond climbing by testing its role in ramp climbing as well as two novel cost-benefit decision tasks, one involving the physical effort of lifting weights and the other the emotional cost of overcoming fear (i.e., courage. As expected, rats with extensive ACC lesions tested on a ramp-climbing task were less likely to choose a high-reward/high-effort arm than sham controls. However, during the first few trials, lesioned rats were as likely as controls to initially turn into the high-reward arm but far less likely to actually climb the barrier, suggesting that the role of the ACC is not in deciding which course of action to pursue, but rather in maintaining a course of action in the face of countervailing forces. In the effort-reward decision task involving weight lifting, some lesion animals behaved like controls while others avoided the high reward arm. However, the results were not statistically significant and a follow-up study using incremental increasing effort failed to show any difference between lesion and control groups. The results suggest that the ACC is not needed for effort-reward decisions involving weight lifting but may affect motor abilities. Finally, a courage task explored the willingness of rats to overcome the fear of crossing an open, exposed arm to obtain a high reward. Both sham and ACC-lesioned animals exhibited equal tendencies to enter the open arm. However, whereas sham animals gradually improved on the task, ACC-lesioned rats did not. Taken together, the results suggest that the role of the ACC in effort-reward decisions may be limited to certain

  16. Comparison of anterior cingulate versus insular cortex as targets for real-time fMRI regulation during pain stimulation

    Directory of Open Access Journals (Sweden)

    Kirsten eEmmert

    2014-10-01

    Full Text Available Real-time functional magnetic resonance imaging (rt-fMRI neurofeedback allows learning voluntary control over specific brain areas by means of operant conditioning and has been shown to decrease pain perception. To further increase the effect of rt-fMRI neurofeedback on pain, we directly compared two different target regions of the pain network i.e. the anterior insular cortex (AIC and the anterior cingulate cortex (ACC.Participants for this prospective study were randomly assigned to two age-matched groups of 14 participants each (7 females per group for AIC and ACC feedback. First, a functional localizer using block-design heat pain stimulation was performed to define the pain-sensitive target region within the AIC or ACC. Second, subjects were asked to down-regulate the feedback signal in four neurofeedback runs during identical pain stimulation. Data analysis included task-related and functional connectivity analysis.At the behavioral level, pain ratings significantly decreased during feedback versus localizer runs, but there was no difference between AIC and ACC groups. Concerning neuroimaging, ACC and AIC showed consistent involvement of the caudate nucleus for subjects that learned down-regulation (17/28 in both task-related and functional connectivity analysis. The functional connectivity towards the caudate nucleus is stronger for the ACC while the AIC is more heavily connected to the ventrolateral prefrontal cortex.Consequently, the ACC and AIC are suitable targets for real-time fMRI neurofeedback during pain perception as they both affect the caudate nucleus, although functional connectivity indicates that the direct connection seems to be stronger with the ACC. Additionally, the caudate, an important area involved in pain perception and suppression, could be a rt-fMRI target itself. Future studies are needed to identify parameters characterizing successful regulators and to assess the effect of repeated rt-fMRI neurofeedback on pain

  17. Effects of serotonin depletion on punishment processing in the orbitofrontal and anterior cingulate cortices of healthy women.

    Science.gov (United States)

    Helmbold, K; Zvyagintsev, M; Dahmen, B; Bubenzer-Busch, S; Gaber, T J; Crockett, M J; Klasen, M; Sánchez, C L; Eisert, A; Konrad, K; Habel, U; Herpertz-Dahlmann, B; Zepf, F D

    2015-06-01

    Diminished synthesis of the neurotransmitter serotonin (5-HT) has been linked to disrupted impulse control in aversive contexts. However, the neural correlates underlying a serotonergic modulation of female impulsivity remain unclear. The present study investigated punishment-induced inhibition in healthy young women. Eighteen healthy female subjects (aged 20-31) participated in a double-blinded, counterbalanced, placebo-controlled, within subjects, repeated measures study. They were assessed on two randomly assigned occasions that were controlled for menstrual cycle phase. In a randomized order, one day, acute tryptophan depletion (ATD) was used to reduce 5-HT synthesis in the brain. On the other day, participants received a tryptophan-balanced amino acid load (BAL) as a control condition. Three hours after administration of ATD/BAL, neural activity was recorded during a modified Go/No-Go task implementing reward or punishment processes using functional magnetic resonance imaging (fMRI). Neural activation during No-Go trials in punishment conditions after BAL versus ATD administration correlated positively with the magnitude of central 5-HT depletion in the ventral and subgenual anterior cingulate cortices (ACC). Furthermore, neural activation in the medial orbitofrontal cortex (mOFC) and the dorsal ACC correlated positively with trait impulsivity. The results indicate reduced neural sensitivity to punishment after short-term depletion of 5-HT in brain areas related to emotion regulation (subgenual ACC) increasing with depletion magnitude and in brain areas related to appraisal and expression of emotions (mOFC and dorsal ACC), increasing with trait impulsivity. This suggests a serotonergic modulation of neural circuits related to emotion regulation, impulsive behavior, and punishment processing in females.

  18. 功能磁共振成像对正常人脑手运动皮质的定位研究%Study on the location of motor cortica area of the hand in human by fMRI

    Institute of Scientific and Technical Information of China (English)

    钟士江; 陈静; 包春雨; 张蒙

    2012-01-01

    [Objective] To locate the motor eortica area of the hand in human. [Methods] 10 healthy subjects(7males and 3 females, right-dominant hand model) were selected in this experiment. Each of the healthy subjects should perform both left and right hand motor excitation. Stimulating patterns for hand were clench fist motion. 3.0 Tesla superconductive MRI system and GRE-EPI technology was used to get fMRI. The results were analyzed by SPM5 software. [Results] The activating cerebral regions of 10 normal subjects (right or left hand moving) were located in contralateral primary motor cortex (M1). Different proportion and degree of ipsilateral M1, supplementary motor cortex(SMC), posterior parietal cortex(PPC), prefrontal cortex(PFC) and bilateral cerebellum were activated. The M1 volume activated by the left hand (non-dominant hand) movemen was greater than that by right hand (dominant hand) . [Conclusions] Cerebral cortex area of hand movement lies on the contralateral M1.The ipsilateral M1, SMA, PPC, PFC and cerebellum are also involved in hand movement. The M1 volume activated by non-dominant hand movemen is different to that by dominant hand.%[目的]使用功能磁共振成像(functional magnetic resonance imaging,fMRI)技术对正常人脑手运动皮质进行定位.[方法]健康受试者10人,男7例,女3例,均为右利手,每个健康受试者分别完成左右手运动刺激.刺激模式为手握拳运动.fMRI检查采用Philips 3.0T超导型磁共振机,GRE-EPI序列.使用SPM5软件进行预处理和统计分析.[结果]10例正常受试者,左手或右手运动时均见对侧初级运动皮质(Primary motor cortex,M1)区激活;同侧M1、辅助运动区(supplementary motor area,SMA)、后顶叶皮层(posterior parietal cortex,PPC)、前额叶皮层(prefrontal cortex,PFC)及小脑存在不同比例、不同程度激活.非利手即左手运动引起右侧M1区激活体积大于利手运动引起的左侧M1区激活体积(P<0.05).[结论]M1区是控制对

  19. Predictive value of magnetic resonance diffusion tensor imaging in motor function of patients with tumors in the motor areas of cerebral cortex after surgery on the hemiplegic limbs%DTI对脑皮质运动区肿瘤患者偏瘫肢体术后运动功能的预测价值

    Institute of Scientific and Technical Information of China (English)

    赵琳; 王守森; 黄银兴; 周晓平

    2012-01-01

    Objective To discuss the predictive value of magnetic resonance diffusion tensor imaging (MR-DTI) in motor function of patients with tumors in the motor areas of cerebral cortex after surgery on the hemiplegic limbs. Methods Twenty patients with tumors in the motor areas of cerebral cortex,admitted to our hospital from March 2009 to January 2011,were recruited in our study; all these patients underwent MR-DTI and motor function of the hemiplegic limbs was evaluated with Brunnstrom scale before and after the surgery.According to the results of DTI test,the injured corticospinal tract (CST) was divided into 4 grades:type Ⅰ (CST integrity),type Ⅱ (CST integrity with mild compression),type Ⅲ (CST partial disruption) and type Ⅳ (CST mostly/completely disruption).The correlations between the CST damaged level and motor function of the hemiplegic limbs before and after surgery were analyzed. Results FA values ofipsilateral brain parenchyma (0.387±0.012) were statistically lower than those of the contralateral normal brain tissue (0.498±0.015,P<0.05).No significant differences on CST damaged level and motor function of the hemiplegic limbs were noted between before and after surgery (P>0.05).CST damaged level and motor function of the hemiplegic limbs had a negative correlation (P<0.05).Motor function of the hemiplegic limbs and CST damaged level before the surgery and 6 months after the surgery had a significantly negative correlation (before the surgery:r=-0.901,P=0.000; after the surgery:r=-0.912,P=0.000). Conclusion DTI can display damaged level of the tumors in the motor area of cerebral cortex and reflect the motor function of the hemiplegic limbs after the surgery.%目的 探讨磁共振(MRI)弥散张量成像(DTI)对脑皮质运动区肿瘤患者偏瘫肢体术后运动功能的评估价值. 方法 南京军区福州总医院神经外科自2009年3月至2011年1月共收治脑皮质运动区肿瘤患者20例,手术前后均行DTI检查并应

  20. The expected value of control: an integrative theory of anterior cingulate cortex function.

    Science.gov (United States)

    Shenhav, Amitai; Botvinick, Matthew M; Cohen, Jonathan D

    2013-07-24

    The dorsal anterior cingulate cortex (dACC) has a near-ubiquitous presence in the neuroscience of cognitive control. It has been implicated in a diversity of functions, from reward processing and performance monitoring to the execution of control and action selection. Here, we propose that this diversity can be understood in terms of a single underlying function: allocation of control based on an evaluation of the expected value of control (EVC). We present a normative model of EVC that integrates three critical factors: the expected payoff from a controlled process, the amount of control that must be invested to achieve that payoff, and the cost in terms of cognitive effort. We propose that dACC integrates this information, using it to determine whether, where and how much control to allocate. We then consider how the EVC model can explain the diverse array of findings concerning dACC function.

  1. Localization of brain activity by temporal anti-correlation with the posterior cingulate cortex.

    Science.gov (United States)

    Wang, Shijie; Zhang, Zhiqiang; Lu, Guangming; Luo, Limin

    2007-01-01

    The default mode network of brain function hypothesis has recently attracted more attention in the neuro-science community. In this study, we addressed a new data-driven method that based on temporal anti-correlation with the posterior cingulate cortex, one node of the default mode network, to localize the brain activation related to task and spontaneous epileptic discharges. The experimental results of real fMRI data analysis show not only the task-related activation region can be robustly recognized without any prior information on the functional activation paradigm, but also the epileptogenic zone in some patients with frequent interictal epileptiform discharges can be localized reliably using resting-state fMRI without EEG. PMID:18003186

  2. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts.

    Science.gov (United States)

    Dong, Guangheng; DeVito, Elise; Huang, Jie; Du, Xiaoxia

    2012-09-01

    Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N = 16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N = 15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing.

  3. Short-term meditation induces white matter changes in the anterior cingulate.

    Science.gov (United States)

    Tang, Yi-Yuan; Lu, Qilin; Geng, Xiujuan; Stein, Elliot A; Yang, Yihong; Posner, Michael I

    2010-08-31

    The anterior cingulate cortex (ACC) is part of a network implicated in the development of self-regulation and whose connectivity changes dramatically in development. In previous studies we showed that 3 h of mental training, based on traditional Chinese medicine (integrative body-mind training, IBMT), increases ACC activity and improves self-regulation. However, it is not known whether changes in white matter connectivity can result from small amounts of mental training. We here report that 11 h of IBMT increases fractional anisotropy (FA), an index indicating the integrity and efficiency of white matter in the corona radiata, an important white-matter tract connecting the ACC to other structures. Thus IBMT could provide a means for improving self-regulation and perhaps reducing or preventing various mental disorders.

  4. THE MOTOR

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders

    2011-01-01

    MOTOR is the first assignment that students at Unit 1a of the School of Architecture are introduced to. The purpose of the assignment is to shake up the students and their preconceptions of what architec- ture is. This is done by introducing them to a working method that al- lows them to develop...... architecture that resides beyond their own imag- inative capabilities. In other words the core aim of the assignment is to equip students with an understand- ing that architecture can be devel- oped through a predetermined ge- neric process and that through this process opportunities exist to devel- op...... something original and genuine that decisively challenges the limits of the field of architecture. This un- derstanding is important if students are to avoid mimicking an existing world of imagery in architecture or fragments of it. The point of departure for the MO- TOR assignment is that a car engine...

  5. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions. PMID:25529106

  6. Motor Neuron Diseases

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS Motor Neuron Diseases Fact Sheet See a list of all ... can I get more information? What are motor neuron diseases? The motor neuron diseases (MNDs) are a ...

  7. Learning to cope with stress modulates anterior cingulate cortex stargazin expression in monkeys and mice.

    Science.gov (United States)

    Lee, Alex G; Capanzana, Roxanne; Brockhurst, Jacqueline; Cheng, Michelle Y; Buckmaster, Christine L; Absher, Devin; Schatzberg, Alan F; Lyons, David M

    2016-05-01

    Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping with gains in subsequent emotion regulation. Here we investigate the effects of learning to cope with stress on anterior cingulate cortex gene expression in monkeys and mice. Anterior cingulate cortex is involved in learning, memory, cognitive control, and emotion regulation. Monkeys and mice were randomized to either stress coping or no-stress treatment conditions. Profiles of gene expression were acquired with HumanHT-12v4.0 Expression BeadChip arrays adapted for monkeys. Three genes identified in monkeys by arrays were then assessed in mice by quantitative real-time polymerase chain reaction. Expression of a key gene (PEMT) involved in acetylcholine biosynthesis was increased in monkeys by coping but this result was not verified in mice. Another gene (SPRY2) that encodes a negative regulator of neurotrophic factor signaling was decreased in monkeys by coping but this result was only partly verified in mice. The CACNG2 gene that encodes stargazin (also called TARP gamma-2) was increased by coping in monkeys as well as mice randomized to coping with or without subsequent behavioral tests of emotionality. As evidence of coping effects distinct from repeated stress exposures per se, increased stargazin expression induced by coping correlated with diminished emotionality in mice. Stargazin modulates glutamate receptor signaling and plays a role in synaptic plasticity. Molecular mechanisms of synaptic plasticity that mediate learning and memory in the context of coping with stress may provide novel targets for new treatments of disorders in human mental health. PMID:27003116

  8. Altered SPECT 123I iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Shinichiro eNagamitsu

    2016-02-01

    Full Text Available Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN in children. The purpose of this study was to examine cortical GABA(A-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single photon emission computed tomography (SPECT measurements using 123I iomazenil, which binds to GABA(A-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26 and the short form of the Profile of Mood States (POMS. Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil binding activity in cortical regions of interest (ROIs and psychometric profiles, and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil binding activity in the anterior posterior cingulate cortex (ACC. Higher POMS subscale scores were significantly associated with lower iomazenil binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC. Depression-Dejection, and Confusion POMS subscale scores, and total POMS score, showed interaction effects with brain regions in iomazenil binding activity. Decreased binding in the ACC and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in children

  9. Biochemistry of the cingulate cortex in autism: An MR spectroscopy study.

    Science.gov (United States)

    Libero, Lauren E; Reid, Meredith A; White, David M; Salibi, Nouha; Lahti, Adrienne C; Kana, Rajesh K

    2016-06-01

    Neuroimaging studies have uncovered structural and functional alterations in the cingulate cortex in individuals with autism spectrum disorders (ASD). Such abnormalities may underlie neurochemical imbalance. In order to characterize the neurochemical profile, the current study examined the concentration of brain metabolites in dorsal ACC (dACC) and posterior cingulate cortex (PCC) in high-functioning adults with ASD. Twenty high-functioning adults with ASD and 20 age-and-IQ-matched typically developing (TD) peers participated in this Proton magnetic resonance spectroscopy (1H-MRS) study. LCModel was used in analyzing the spectra to measure the levels of N-Acetyl aspartate (NAA), choline (Cho), creatine (Cr), and glutamate/glutamine (Glx) in dACC and PCC. Groups were compared using means for the ratio of each metabolite to their respective Cr levels as well as on absolute internal-water-referenced measures of each metabolite. There was a significant increase in Cho in PCC for ASD adults, with a marginal increase in dACC. A reduction in NAA/Cr in dACC was found in ASD participants, compared to their TD peers. No significant differences in Glx/Cr or Cho/Cr were found in dACC. There were no statistically significant group differences in the absolute concentration of NAA, Cr, Glx, or NAA/Cr, Cho/Cr, and Glx/Cr in the PCC. Differences in the metabolic properties of dACC compared to PCC were also found. Results of this study provide evidence for possible cellular and metabolic differences in the dACC and PCC in adults with ASD. This may suggest neuronal dysfunction in these regions and may contribute to the neuropathology of ASD. Autism Res 2016, 9: 643-657. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26526126

  10. Cortical motor hand area. Validation of functional magnetic resonance imaging by intraoperative cortical stimulation mapping; Das motorische Handareal. Nichtinvasiver Nachweis mittels fMRT und operative Validierung mit kortikaler Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yousry, T. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany); Schmid, U.D. [Neurochirurgische Klinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Schmidt, D. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany); Heiss, D. [Inst. fuer Radiologische Diagnostik, Klinikum Innenstadt, Univ. Muenchen (Germany); Jassoy, A. [Inst. fuer Radiologische Diagnostik, Klinikum Innenstadt, Univ. Muenchen (Germany); Eisner, W. [Neurochirurgische Klinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Reulen, H.J. [Neurochirurgische Klinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Reiser, M. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany)

    1995-04-01

    In this study, activation of cortical sites by specific motor tasks (opening and closing of the hand) was examined by fMRI utilizing the blood-oxygen-level-dependent (BOLD) technique. fMRI was employed in five volunteers and in six patients with tumors in the vicinity of the central region. In the patients, the fMRI data and intraoperative cortical mapping were compared. Our results indicate good correlation of these two methods and that there are no significant differences in the localization of the motor hand area. (orig.) [Deutsch] Die funktionelle Magnetresonanztomographie (fMRT) ermoeglicht die nichtinvasive Lokalisation bestimmter Hirnfunktionen mit hoher raeumlicher Aufloesung. Um zu ueberpruefen, ob die mittels fMRT dargestellten Signalintensitaetsaenderungen wirklich dem Repraesentationsareal einer definierten Funktion entspricht, verglichen wir bei einem Patientenkollektiv die Resultate der fMRT mit den Ergebnissen der intraoperativen motorischen Kortexstimulation. Es zeigte sich, dass Lokalisation und Ausdehnung des von uns untersuchten motorischen Handareals bei beiden Methoden uebereinstimmte. Unsere Ergebnisse zeigen, dass die kortikale Repraesentation des motorischen Handareals durch fMRT mit hoher raeumlicher Aufloesung und nichtinvasiv lokalisiert werden kann. (orig.)

  11. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    Science.gov (United States)

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  12. Abnormal function of the posterior cingulate cortex in heroin addicted users during resting-state and drug-cue stimulation task

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; YANG Wei-chuan; WANG Ya-rong; HUANG Yu-fang; LI Wei; ZHU Jia

    2013-01-01

    Background Previous animal and neuroimaging studies have demonstrated that brain function in heroin addicted users is impaired.However,the posterior cingulate cortex (PCC) has not received much attention.The purpose of this study was to investigate whether chronic heroin use is associated with craving-related changes in the functional connectivity of the PCC of heroin addicted users.Methods Fourteen male adult chronic heroin users and fifteen age and gender-matched healthy subjects participated in the present study.The participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and a cue-induced craving task fMRI scan.The activated PCC was identified in the cue-induced craving task by means of a group contrast test.Functional connectivity was analyzed based on resting-state fMRI data in order to determine the correlation between brain regions.The relationship between the connectivity of specific regions and heroin dependence was investigated.Results The activation of PCC,bilateral anterior cingulate cortex,caudate,putamen,precuneus,and thalamus was significant in the heroin group compared to the healthy group in the cue-induced craving task.The detectable functional connectivity of the heroin users was stronger between the PCC and bilateral insula,bilateral dorsal striatum,right inferior parietal Iobule (IPL) and right supramarginal gyrus (P<0.001) compared to that of the healthy subjects in the resting-state data analysis.The strength of the functional connectivity,both for the PCC-insula (r=0.60,P <0.05) and for PCC-striatum (r=0.58,P<0.05),was positively correlated with the duration of heroin use.Conclusion The altered functional connectivity patterns in the PCC-insula and PCC-striatum areas may be regarded as biomarkers of brain damage severity in chronic heroin users.

  13. International Marketing and Development Strategy of Motor Industry Case Study of Motor Enterprises in East Fujian Area%电机企业国际营销现状和发展策略——以闽东电机企业为例

    Institute of Scientific and Technical Information of China (English)

    戴屹; 连曼香

    2012-01-01

    Based on a survey of 34 motor enterprises in the east Fujian area, the present inter- national marketing status of these companies is analyzed. The practical development strategies are then explored to make them better face the current challenges and grasp the opportunities in order to broaden the international markets.%通过对闽东34家电机企业进行问卷调查研究,分析闽东电机企业发展的基本概况及其国际市场营销的现状,进而探讨切实可行的国际营销发展策略,使得闽东电机企业能够在当前经济形势下迎接挑战、抓住机遇,努力寻求更宽更广的国际市场。

  14. Motor activity improves temporal expectancy.

    Directory of Open Access Journals (Sweden)

    Lilian Fautrelle

    Full Text Available Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1 pointing with a whole-body movement, (2 pointing only with the arm, (3 imagining pointing with a whole-body movement, (4 simply watching the stimulus presentation, (5 pointing with a whole-body movement in response to a target that appeared at irregular intervals (6 reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments.

  15. Motor activity improves temporal expectancy.

    Science.gov (United States)

    Fautrelle, Lilian; Mareschal, Denis; French, Robert; Addyman, Caspar; Thomas, Elizabeth

    2015-01-01

    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments. PMID:25806813

  16. Applied intelligent control of induction motor drives

    CERN Document Server

    Chan, Tze Fun

    2011-01-01

    Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives.This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control s.

  17. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  18. System programs design of motors; Sistema de programas de diseno de motores

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Gonzalez Palomas, Oscar; Ciprian Avila, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    This paper describes the objective of creating the program system for induction motors design SIPRODIMO, its scope, its general characteristics, its structure and the results obtained with its application, as well as the service capacity developed by the Motors Area of the Instituto de Investigaciones Elctricas. [Espanol] En este articulo se describe el objetivo de crear el sistema de programas de diseno de motores de induccion, Siprodimo, su alcance, sus caracteristicas generales, su estructura y los resultados obtenidos con su aplicacion, asi como la capacidad de servicio desarrollada por el area de motores, del Instituto de Investigaciones Electricas.

  19. Temporal and spatial dynamics of thalamus-evoked activity in the anterior cingulate cortex.

    Science.gov (United States)

    Chang, Wei-Chih; Lee, Chia-Ming; Shyu, Bai-Chuang

    2012-10-11

    In the present study, multielectrode array (MEA) recording was used to illustrate the spatial-temporal progression of anterior cingulate cortex (ACC) activity following stimulation of the thalamus in a thalamocingulate pathway-preserved slice. The MEA was placed under the slice that contained the ACC, and 60 channels of extracellular local field potentials evoked by bipolar electrical stimulation within the thalamus were analyzed. Several distinct thalamic-evoked responses were identified. The early negative component (N1; amplitude, -35.7 ± 5.9 μV) emerged in layer VI near the cingulum 8.4 ± 0.5 ms after stimulation. N1 progressed upward to layers V and II/III in a lateral-to-medial direction. Subsequently, a positive component (P; amplitude, 27.0 ± 3.2 μV) appeared 12.0 ± 0.6 ms after stimulation in layer VI. At 26.8 ± 1.1 ms, a second negative component (N2; amplitude, -20.9 ± 2.7 μV) became apparent in layers II/III and V, followed by a more ventrolateral component (N3; amplitude, -18.9 ± 2.9 μV) at 42.8 ± 2.6 ms. These two late components spread downward to layer VI in a medial-to-lateral direction. The trajectory paths of the evoked components were consistently represented with varied medial thalamic stimulation intensities and sites. Both AMPA/kainate and N-methyl-D-aspartate-type glutamate receptors involved in monosynaptic and polysynaptic transmission participated in this thalamocortical pathway. Morphine mainly diminished the two negative synaptic components, and this suppressive effect was reversed by naloxone. The present study confirmed that functional thalamocingulate activity was preserved in the brain-slice preparation. The thalamus-evoked responses were activated and progressed along a deep surface-deep trajectory loop across the ACC layers. Glutamatergic neurotransmitters were crucially involved in information processing. Opioid interneurons may play a modulatory role in regulating the signal flows in the cingulate cortex.

  20. Motor Priming in Neurorehabilitation

    OpenAIRE

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2015-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few ...

  1. Optimized electrostatic inchworm motors using a flexible driving arm

    International Nuclear Information System (INIS)

    A new motor architecture that uses in-plane electrostatic gap-closing actuators along with a flexible driving arm mechanism to improve motor force density is introduced, optimized, manufactured, and tested. This motor operates similarly to other inchworm-based microactuators by accumulating small displacements from the actuators into much larger displacements in the motor. Using an analytical model of the inchworm motor based on the static force equilibrium condition, optimizations of a full motor design were performed to maximize motor force density. In addition, force losses from supporting flexures were included to calculate the theoretical motor efficiency for different motor designs. This force density optimization analysis of the gap-closing actuators and supporting motor structures provided the basis for designing and manufacturing inchworm motors with flexible driving arms and gap-closing actuators. The motor required only a single-mask fabrication and demonstrated robust performance, a maximum speed of 4.8 mm s−1, and a maximum force on the shuttle of 1.88 mN at 110 V which corresponds to area force density of 1.38 mN mm−2. In addition, instead of estimating motor force based on drawn or measured dimensions which often overestimates force, the demonstrated maximum motor force was measured using calibrated springs. The efficiency of the manufactured motor was measured at 8.75% using capacitance measurements and useful work output. (paper)

  2. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.;

    2014-01-01

    cathodal tDCS effects of the right-hemispheric homologue of Broca’s area on picture naming in healthy individuals. We hypothesized that cathodal tDCS improves Picture naming and that this effect is determined by the anatomical and functional connectivity of the targeted region. Methods: Cathodal and sham t......DCS were applied to the right inferior frontal gyrus in 24 healthy subjects before a picture-naming task. All participants were studied with magnetic resonance imaging at pre-interventional baseline. Probabilistic tractography and dynamic causal modeling of functional brain activity during a word...... determined by the anatomical and functional connectivity of the targeted region....

  3. Development of anterior cingulate functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Kelly, A M Clare; Di Martino, Adriana; Uddin, Lucina Q; Shehzad, Zarrar; Gee, Dylan G; Reiss, Philip T; Margulies, Daniel S; Castellanos, F Xavier; Milham, Michael P

    2009-03-01

    Human cerebral development is remarkably protracted. Although microstructural processes of neuronal maturation remain accessible only to morphometric post-mortem studies, neuroimaging tools permit the examination of macrostructural aspects of brain development. The analysis of resting-state functional connectivity (FC) offers novel possibilities for the investigation of cerebral development. Using seed-based FC methods, we examined the development of 5 functionally distinct cingulate-based intrinsic connectivity networks (ICNs) in children (n = 14, 10.6 +/- 1.5 years), adolescents (n = 12, 15.4 +/- 1.2) and young adults (n=14, 22.4 +/- 1.2). Children demonstrated a more diffuse pattern of correlation with voxels proximal to the seed region of interest (ROI) ("local FC"), whereas adults exhibited more focal patterns of FC, as well as a greater number of significantly correlated voxels at long distances from the seed ROI. Adolescents exhibited intermediate patterns of FC. Consistent with evidence for different maturational time courses, ICNs associated with social and emotional functions exhibited the greatest developmental effects. Our findings demonstrate the utility of FC for the study of developing functional organization. Moreover, given that ICNs are thought to have an anatomical basis in neuronal connectivity, measures of FC may provide a quantitative index of brain maturation in healthy subjects and those with neurodevelopmental disorders.

  4. Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents

    Directory of Open Access Journals (Sweden)

    Justine Nienke Pannekoek

    2014-01-01

    Full Text Available Adolescent depression is associated with increased risk for suicidality, social and educational impairment, smoking, substance use, obesity, and depression in adulthood. It is of relevance to further our insight in the neurobiological mechanisms underlying this disorder in the developing brain, as this may be essential to optimize treatment and prevention of adolescent depression and its negative clinical trajectories. The equivocal findings of the limited number of studies on neural abnormalities in depressed youth stress the need for further neurobiological investigation of adolescent depression. We therefore performed a voxel-based morphometry study of the hippocampus, amygdala, superior temporal gyrus, and anterior cingulate cortex (ACC in 26 treatment-naïve, clinically depressed adolescents and 26 pair-wise matched healthy controls. Additionally, an exploratory whole-brain analysis was performed. Clinically depressed adolescents showed a volume reduction of the bilateral dorsal ACC compared to healthy controls. However, no association was found between gray matter volume of the ACC and clinical severity scores for depression or anxiety. Our finding of a smaller ACC in clinically depressed adolescents is consistent with literature on depressed adults. Future research is needed to investigate if gray matter abnormalities precede or follow clinical depression in adolescents.

  5. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and efect of perineuronal net loss

    Directory of Open Access Journals (Sweden)

    Pascal eSteullet

    2014-08-01

    Full Text Available Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in  band in slices of the mouse anterior cingulate cortex (ACC. We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia patients who display prefrontal anomalies of both the dopaminergic system and the perineuronal nets.

  6. Pavlovian fear memory induced by activation in the anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Calejesan Amelita A

    2005-02-01

    Full Text Available Abstract Identifying higher brain central region(s that are responsible for the unpleasantness of pain is the focus of many recent studies. Here we show that direct stimulation of the anterior cingulate cortex (ACC in mice produced fear-like freezing responses and induced long-term fear memory, including contextual and auditory fear memory. Auditory fear memory required the activation of N-methyl-D-aspartate (NMDA receptors in the amygdala. To test the hypothesis that neuronal activity in the ACC contributes to unpleasantness, we injected a GABAA receptor agonist, muscimol bilaterally into the ACC. Both contextual and auditory memories induced by foot shock were blocked. Furthermore, activation of metabotropic glutamate receptors in the ACC enhanced behavioral escape responses in a noxious hot-plate as well as spinal nociceptive tail-flick reflex. Our results provide strong evidence that the excitatory activity in the ACC contribute to pain-related fear memory as well as descending facilitatory modulation of spinal nociception.

  7. Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study

    Directory of Open Access Journals (Sweden)

    G. Borst

    2014-07-01

    Full Text Available Difficulties in cognitive control including inhibitory control (IC are related to the pathophysiology of several psychiatric conditions. In healthy subjects, IC efficiency in childhood is a strong predictor of academic and professional successes later in life. The dorsal anterior cingulate cortex (ACC is one of the core structures responsible for IC. Although quantitative structural characteristics of the ACC contribute to IC efficiency, the qualitative structural brain characteristics contributing to IC development are less-understood. Using anatomical magnetic resonance imaging, we investigated whether the ACC sulcal pattern at age 5, a stable qualitative characteristic of the brain determined in utero, explains IC at age 9. 18 children performed Stroop tasks at age 5 and age 9. Children with asymmetrical ACC sulcal patterns (n = 7 had better IC efficiency at age 5 and age 9 than children with symmetrical ACC sulcal patterns (n = 11. The ACC sulcal patterns appear to affect specifically IC efficiency given that the ACC sulcal patterns had no effect on verbal working memory. Our study provides the first evidence that the ACC sulcal pattern – a qualitative structural characteristic of the brain not affected by maturation and learning after birth – partially explains IC efficiency during childhood.

  8. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Directory of Open Access Journals (Sweden)

    Lauren A Demers

    Full Text Available Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD. The dorsal anterior cingulate cortex (dACC has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC completed the Toronto Alexithymia Scale 20 (TAS-20 and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology.

  9. Hierarchical Error Representation: A Computational Model of Anterior Cingulate and Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Alexander, William H; Brown, Joshua W

    2015-11-01

    Anterior cingulate and dorsolateral prefrontal cortex (ACC and dlPFC, respectively) are core components of the cognitive control network. Activation of these regions is routinely observed in tasks that involve monitoring the external environment and maintaining information in order to generate appropriate responses. Despite the ubiquity of studies reporting coactivation of these two regions, a consensus on how they interact to support cognitive control has yet to emerge. In this letter, we present a new hypothesis and computational model of ACC and dlPFC. The error representation hypothesis states that multidimensional error signals generated by ACC in response to surprising outcomes are used to train representations of expected error in dlPFC, which are then associated with relevant task stimuli. Error representations maintained in dlPFC are in turn used to modulate predictive activity in ACC in order to generate better estimates of the likely outcomes of actions. We formalize the error representation hypothesis in a new computational model based on our previous model of ACC. The hierarchical error representation (HER) model of ACC/dlPFC suggests a mechanism by which hierarchically organized layers within ACC and dlPFC interact in order to solve sophisticated cognitive tasks. In a series of simulations, we demonstrate the ability of the HER model to autonomously learn to perform structured tasks in a manner comparable to human performance, and we show that the HER model outperforms current deep learning networks by an order of magnitude. PMID:26378874

  10. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.

    Science.gov (United States)

    Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C

    2016-07-01

    Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662

  11. Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex.

    Science.gov (United States)

    Wittmann, Marco K; Kolling, Nils; Akaishi, Rei; Chau, Bolton K H; Brown, Joshua W; Nelissen, Natalie; Rushworth, Matthew F S

    2016-01-01

    In many natural environments the value of a choice gradually gets better or worse as circumstances change. Discerning such trends makes predicting future choice values possible. We show that humans track such trends by comparing estimates of recent and past reward rates, which they are able to hold simultaneously in the dorsal anterior cingulate cortex (dACC). Comparison of recent and past reward rates with positive and negative decision weights is reflected by opposing dACC signals indexing these quantities. The relative strengths of time-linked reward representations in dACC predict whether subjects persist in their current behaviour or switch to an alternative. Computationally, trend-guided choice can be modelled by using a reinforcement-learning mechanism that computes a longer-term estimate (or expectation) of prediction errors. Using such a model, we find a relative predominance of expected prediction errors in dACC, instantaneous prediction errors in the ventral striatum and choice signals in the ventromedial prefrontal cortex.

  12. Fear avoidance beliefs in back pain-free subjects are reflected by amygdala-cingulate responses.

    Science.gov (United States)

    Meier, Michael L; Stämpfli, Phillipp; Vrana, Andrea; Humphreys, Barry K; Seifritz, Erich; Hotz-Boendermaker, Sabina

    2015-01-01

    In most individuals suffering from chronic low back pain, psychosocial factors, specifically fear avoidance beliefs (FABs), play central roles in the absence of identifiable organic pathology. On a neurobiological level, encouraging research has shown brain system correlates of somatic and psychological factors during the transition from (sub) acute to chronic low back pain. The characterization of brain imaging signatures in pain-free individuals before any injury will be of high importance regarding the identification of relevant networks for low back pain (LBP) vulnerability. Fear-avoidance beliefs serve as strong predictors of disability and chronification in LBP and current research indicates that back pain related FABs already exist in the general and pain-free population. Therefore, we aimed at investigating possible differential neural functioning between high- and low fear-avoidant individuals in the general population using functional magnetic resonance imaging. Results revealed that pain-free individuals without a history of chronic pain episodes could be differentiated in amygdala activity and connectivity to the pregenual anterior cingulate cortex by their level of back pain related FABs. These results shed new light on brain networks underlying psychological factors that may become relevant for enhanced disability in a future LBP episode. PMID:26257635

  13. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    Science.gov (United States)

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  14. Resting-state functional connectivity in anterior cingulate cortex in normal aging

    Directory of Open Access Journals (Sweden)

    Weifang eCao

    2014-10-01

    Full Text Available Growing evidence suggests that normal aging is associated with cognitive decline and well-maintained emotional well-being. The anterior cingulate cortex (ACC is an important brain region involved in emotional and cognitive processing. We investigated resting-state functional connectivity (FC of two ACC subregions in 30 healthy older adults versus 33 healthy younger adults, by parcellating into rostral (rACC and dorsal (dACC ACC based on clustering of FC profiles. Compared with younger adults, older adults demonstrated greater connection between rACC and anterior insula, suggesting that older adults recruit more proximal dACC brain regions connected with insula to maintain a salient response. Older adults also demonstrated increased FC between rACC and superior temporal gyrus and inferior frontal gyrus, decreased integration between rACC and default mode, and decreased dACC-hippocampal and dACC-thalamic connectivity. These altered FCs reflected rACC and dACC reorganization, and might be related to well emotion regulation and cognitive decline in older adults. Our findings provide further insight into potential functional substrates of emotional and cognitive alterations in the aging brain.

  15. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  16. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development.

    Science.gov (United States)

    Cachia, A; Borst, G; Tissier, C; Fisher, C; Plaze, M; Gay, O; Rivière, D; Gogtay, N; Giedd, J; Mangin, J-F; Houdé, O; Raznahan, A

    2016-06-01

    Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events - under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC) - an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show - without exception-that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life. PMID:26974743

  17. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development

    Directory of Open Access Journals (Sweden)

    A. Cachia

    2016-06-01

    Full Text Available Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events – under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC – an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show – without exception–that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.

  18. Potentiation of synaptic transmission in Rat anterior cingulate cortex by chronic itch.

    Science.gov (United States)

    Zhang, Ting-Ting; Shen, Feng-Yan; Ma, Li-Qing; Wen, Wen; Wang, Bin; Peng, Yuan-Zhi; Wang, Zhi-Ru; Zhao, Xuan

    2016-01-01

    Itch and pain share similar mechanisms. It has been well documented that the anterior cingulate cortex (ACC) is important for pain-related perception. ACC has also been approved to be a potential pruritus-associated brain region. However, the mechanism of sensitization in pruriceptive neurons in the ACC is not clear. In current study, a chronic itch model was established by diphenylcyclopropenone (DCP) application. We found that both the frequency and amplitude of miniature excitatory postsynaptic currents in the ACC were enhanced after the formation of chronic itch. The paired-pulse ratio in ACC neurons recorded from the DCP group were smaller than those recorded in control group at the 50-ms interval. We also observe a significant increase in the AMPA/NMDA ratio in the DCP group. Moreover, an increased inward rectification of AMPARs in ACC pyramidal neurons was observed in the DCP group. Interestingly, the calculated ratio of silent synapses was significantly reduced in the DCP group compared with controls. Taken together, we conclude that a potentiation of synaptic transmission in the ACC can be induced by chronic itch, and unsilencing silent synapses, which probably involved recruitment of AMPARS, contributed to the potentiation of postsynaptic transmission. PMID:27472923

  19. Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance.

    Science.gov (United States)

    Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan

    2016-03-01

    Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function. PMID:25904156

  20. Posterior Cingulate Lactate as a Metabolic Biomarker in Amnestic Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Kurt E. Weaver

    2015-01-01

    Full Text Available Mitochondrial dysfunction represents a central factor within the pathogenesis of the Alzheimer’s disease (AD spectrum. We hypothesized that in vivo measurements of lactate (lac, a by-product of glycolysis, would correlate with functional impairment and measures of brain health in a cohort of 15 amnestic mild cognitive impairment (aMCI individuals. Lac was quantified from the precuneus/posterior cingulate (PPC using 2-dimensional J-resolved magnetic resonance spectroscopy (MRS. Additionally, standard behavioral and imaging markers of aMCI disease progression were acquired. PPC lac was negatively correlated with performance on the Wechsler logical memory tests and on the minimental state examination even after accounting for gray matter, cerebral spinal fluid volume, and age. No such relationships were observed between lac and performance on nonmemory tests. Significant negative relationships were also noted between PPC lac and hippocampal volume and PPC functional connectivity. Together, these results reveal that aMCI individuals with a greater disease progression have increased concentrations of PPC lac. Because lac is upregulated as a compensatory response to mitochondrial impairment, we propose that J-resolved MRS of lac is a noninvasive, surrogate biomarker of impaired metabolic function and would provide a useful means of tracking mitochondrial function during therapeutic trials targeting brain metabolism.

  1. Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices.

    Science.gov (United States)

    Mansouri, Farshad A; Buckley, Mark J; Mahboubi, Majid; Tanaka, Keiji

    2015-07-21

    Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys' ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals' abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals. PMID:26150522

  2. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus.

    Science.gov (United States)

    Craigmyle, Nancy A

    2013-01-01

    During functional magnetic resonance imaging studies of meditation the cortical salience detecting and executive networks become active during "awareness of mind wandering," "shifting," and "sustained attention." The anterior cingulate (AC) is activated during "awareness of mind wandering." The AC modulates both the peripheral sympathetic nervous system (SNS) and the central locus coeruleus (LC) norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE) and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine and activates the LC, increasing C-NE. Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set-shifting, and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS, and LC with respect to their possible relevance to meditation.

  3. What about the self is processed in the posterior cingulate cortex?

    Directory of Open Access Journals (Sweden)

    Judson eBrewer

    2013-10-01

    Full Text Available In the past decade, neuroimaging research has begun to identify key brain regions involved in self-referential processing, most consistently midline structures such as the posterior cingulate cortex (PCC. The majority of studies have employed cognitive tasks such as judgment about trait adjectives or mind-wandering, that have been associated with increased PCC activity. Conversely, tasks that share an element of present centered attention (being on task, ranging from working memory to meditation, have been associated with decreased PCC activity. Given the complexity of cognitive processes that likely contribute to these tasks, the specific contribution of the PCC to self-related processes still remains unknown. Building on this prior literature, recent studies have employed sampling methods that more precisely link subjective experience to brain activity, such as real-time fMRI neurofeedback. This recent work suggests that PCC activity may represent a sub-component cognitive process of self-reference – getting caught up in one’s experience. For example, getting caught up in a drug craving or a particular viewpoint. In this paper, we will review evidence across a number of different domains of cognitive neuroscience that converges in activation and deactivation of the PCC including recent neurophenomenological studies of PCC activity using real-time fMRI neurofeedback.

  4. Decreased ventral anterior cingulate cortex activity is associated with reduced social pain during emotional support.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Ura, Mitsuhiro; Yamawaki, Shigeto

    2009-01-01

    People feel psychological pain when they are excluded, and this pain is often attenuated when emotional support is received. It is therefore likely that a specific neural mechanism underlies the detection of social exclusion. Similarly, specific neural mechanisms may underlie the beneficial effects of emotional support. Although neuroimaging researchers have recently examined the neural basis of social pain, there is presently no agreement as to which part of the anterior cingulate cortex (ACC) is involved in the perception and modulation of social pain. We hypothesized that activity in those brain regions that are associated with social pain would be correlated with decrements in social pain induced by emotional support. To examine the effects of emotional support on social pain caused by exclusion, we conducted an fMRI study in which participants played a virtual ball-tossing game. Participants were initially included and later excluded from the game. In the latter half of the session from which participants were excluded, participants received emotionally supportive text messages. We found that emotional support led to increased activity in the left lateral/medial prefrontal cortices and some temporal regions. Those individuals who experienced greater attenuation of social pain exhibited lower ventral ACC and higher left lateral prefrontal cortex activation. These results suggest that the ventral ACC underlies social pain, and that emotional support enhances prefrontal cortex activity, which in turn may lead to a weakened affective response. PMID:19562631

  5. Dorsal Anterior Cingulate Thickness Is Related to Alexithymia in Childhood Trauma-Related PTSD.

    Science.gov (United States)

    Demers, Lauren A; Olson, Elizabeth A; Crowley, David J; Rauch, Scott L; Rosso, Isabelle M

    2015-01-01

    Alexithymia, or "no words for feelings", is highly prevalent in samples with childhood maltreatment and posttraumatic stress disorder (PTSD). The dorsal anterior cingulate cortex (dACC) has been identified as a key region involved in alexithymia, early life trauma, and PTSD. Functional alterations in the dACC also have been associated with alexithymia in PTSD. This study examined whether dACC morphology is a neural correlate of alexithymia in child maltreatment-related PTSD. Sixteen adults with PTSD and a history of childhood sexual abuse, physical abuse, or exposure to domestic violence, and 24 healthy controls (HC) completed the Toronto Alexithymia Scale 20 (TAS-20) and underwent magnetic resonance imaging. Cortical thickness of the dACC was measured using FreeSurfer, and values were correlated with TAS-20 scores, controlling for sex and age, in both groups. Average TAS-20 score was significantly higher in the PTSD than the HC group. TAS-20 scores were significantly positively associated with dACC thickness only in the PTSD group. This association was strongest in the left hemisphere and for TAS-20 subscales that assess difficulty identifying and describing feelings. We found that increasing dACC gray matter thickness is a neural correlate of greater alexithymia in the context of PTSD with childhood maltreatment. While findings are correlational, they motivate further inquiry into the relationships between childhood adversity, emotional awareness and expression, and dACC morphologic development in trauma-related psychopathology. PMID:26439117

  6. Visual and noxious electrical stimulus-evoked membrane-potential responses in anterior cingulate cortical neurons.

    Science.gov (United States)

    Ma, Li-Qing; Ning, Li; Wang, Zhiru; Wang, Ying-Wei

    2016-01-01

    Anterior cingulate cortex (ACC) is known to participate in numerous brain functions, such as memory storage, emotion, attention, as well as perception of acute and chronic pain. ACC-dependent brain functions often rely on ACC processing of various forms of environmental information. To understand the neural basis of ACC functions, previous studies have investigated ACC responses to environmental stimulation, particularly complex sensory stimuli as well as award and aversive stimuli, but this issue remains to be further clarified. Here, by performing whole-cell recording in vivo in anaesthetized adult rats, we examined membrane-potential (MP) responses of layer II/III ACC neurons that were evoked by a brief flash of visual stimulation and pain-related electrical stimulation delivered to hind paws. We found that ~54 and ~81 % ACC neurons exhibited excitatory MP responses, subthreshold or suprathreshold, to the visual stimulus and the electrical stimulus, respectively, with no cell showing inhibitory MP responses. We further found that the visually evoked ACC response could be greatly diminished by local lidocaine infusion in the visual thalamus, and only their temporal patterns but not amplitudes could be changed by large-scale visual cortical lesions. Our in vivo whole-cell recording data characterized in ACC neurons a visually evoked response, which was largely dependent on the visual thalamus but not visual cortex, as well as a noxious electrical stimulus-evoked response. These findings may provide potential mechanisms that are used for ACC functions on the basis of sensory information processing. PMID:27585569

  7. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice.

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu; Zhuo, Min

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  8. Anatomical Abnormalities of the Anterior Cingulate Cortex in Schizophrenia: Bridging the Gap Between Neuroimaging and Neuropathology

    Science.gov (United States)

    Fornito, Alex; Yücel, Murat; Dean, Brian; Wood, Stephen J.; Pantelis, Christos

    2009-01-01

    The anterior cingulate cortex (ACC) is a functionally heterogeneous region involved in diverse cognitive and emotional processes that support goal-directed behaviour. Structural magnetic resonance imaging (MRI) and neuropathological findings over the past two decades have converged to suggest abnormalities in the region may represent a neurobiological basis for many of the clinical manifestations of schizophrenia. However, while each approach offers complimentary information that can provide clues regarding underlying patholophysiological processes, the findings from these 2 fields are seldom integrated. In this article, we review structural neuroimaging and neuropathological studies of the ACC, focusing on the unique information they provide. The available imaging data suggest grey matter reductions in the ACC precede psychosis onset in some categories of high-risk individuals, show sub-regional specificity, and may progress with illness duration. The available post-mortem findings indicate these imaging-related changes are accompanied by reductions in neuronal, synaptic, and dendritic density, as well as increased afferent input, suggesting the grey matter differences observed with MRI arise from alterations in both neuronal and non-neuronal tissue compartments. We discuss the potential mechanisms that might facilitate integration of these findings and consider strategies for future research. PMID:18436528

  9. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    International Nuclear Information System (INIS)

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  10. In-group and out-group membership mediates anterior cingulate activation to social exclusion

    Directory of Open Access Journals (Sweden)

    Austen Krill

    2009-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI was employed to examine sensitivity to social exclusion in three conditions: same-race, other-race, and self-resembling faces. The anterior cingulate cortex (ACC, specifically the dorsal ACC, has been targeted as a key substrate in the physical and social pain matrix and was hypothesized to regulate activation response to various facial conditions. We show that participants demonstrated greatest ACC activation when being excluded by self-resembling and same-race faces, relative to other-race faces. Additionally, participants expressed greater distress and showed increased ACC activation as a result of exclusion in the same-race condition relative to the other-race condition. A positive correlation between implicit racial bias and activation in the amygdala was also evident. Implicit attitude about other-race faces partly explains levels of concern about exclusion by out-group individuals. These findings suggest that individuals are more distressed and their brain (i.e. neural alarm system responds with greater activation when being excluded by individuals whom they are more likely to share group membership with.

  11. Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.Z.; Goldstein, R.Z.; Woicik, P.A.; Maloney, T.; Tomasi, D.; Alia-Klein, N.; Shan, J.; Honorario, J.; Samaras, d.; Wang, R.; Telang, F.; Wang, G.-J.; Volkow, N.D.

    2010-09-21

    Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.

  12. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

    Directory of Open Access Journals (Sweden)

    Nancy Alker Craigmyle

    2013-10-01

    Full Text Available Abstract During fMRI studies of meditation the cortical salience detecting and executive networks become active during awareness of mind wandering, shifting and sustained attention. The anterior cingulate (AC is activated during awareness of mind wandering.The AC modulates both the peripheral sympathetic nervous system (SNS and the central locus coeruleus (LC norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine (P-NE and activates the LC, increasing C-NE.Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set shifting and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS and LC with respect to their possible relevance to meditation.

  13. Postnatal development of the electrophysiological properties of somatostatin interneurons in the anterior cingulate cortex of mice.

    Science.gov (United States)

    Pan, Geng; Yang, Jian-Ming; Hu, Xing-Yue; Li, Xiao-Ming

    2016-01-01

    Somatostatin (SST)-positive interneurons in the anterior cingulate cortex (ACC) play important roles in neuronal diseases, memory and cognitive functions. However, their development in the ACC remains unclear. Using postnatal day 3 (P3) to P45 GIN mice, we found that most of the intrinsic membrane properties of SST interneurons in the ACC were developmentally mature after the second postnatal week and that the development of these neurons differed from that of parvalbumin (PV) interneurons in the prefrontal cortex. In addition, electrical coupling between SST interneurons appeared primarily between P12-14. The coupling probability plateaued at approximately P21-30, with a non-age-dependent development of coupling strength. The development of excitatory chemical afferents to SST interneurons occurred earlier than the development of inhibitory chemical afferents. Furthermore, eye closure attenuated the development of electrical coupling probability at P21-30 but had no effect on coupling strength. Eye closure also delayed the development of inhibitory chemical afferent frequency but had no effect on the excitatory chemical afferent amplitude, frequency or rise time. Our data suggest that SST interneurons in the ACC exhibit inherent developmental characteristics distinct from other interneuron subtypes, such as PV interneurons, and that some of these characteristics are subject to environmental regulation. PMID:27319800

  14. Brain Connectivity Plasticity in the Motor Network after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2013-01-01

    Full Text Available The motor function is controlled by the motor system that comprises a series of cortical and subcortical areas interacting via anatomical connections. The motor function will be disturbed when the stroke lesion impairs either any of these areas or their connections. More and more evidence indicates that the reorganization of the motor network including both areas and their anatomical and functional connectivity might contribute to the motor recovery after stroke. Here, we review recent studies employing models of anatomical, functional, and effective connectivity on neuroimaging data to investigate how ischemic stroke influences the connectivity of motor areas and how changes in connectivity relate to impaired function and functional recovery. We suggest that connectivity changes constitute an important pathophysiological aspect of motor impairment after stroke and important mechanisms of motor recovery. We also demonstrate that therapeutic interventions may facilitate motor recovery after stroke by modulating the connectivity among the motor areas. In conclusion, connectivity analyses improved our understanding of the mechanisms of motor recovery after stroke and may help to design hypothesis-driven treatment strategies and sensitive measures for outcome prediction in stroke patients.

  15. The Level of motor Skills of the First Grade Pupils

    OpenAIRE

    Hejlová, Kateřina

    2011-01-01

    The thesis focuses on motor abilities of children from birth to the age of eight years. It outlines the development of gross motor skills, fine motor skills and micromotor skills, and methods how to help children develop these particular areas. The level of motor skills is determined by method of testing in first graders from Stonařov, Pavlov, Třešť and České Budějovice.

  16. Proton magnetic resonance spectroscopy of the anterior cingulate gyrus and caudate nucleus in schizophrenia patients versus healthy controls

    Institute of Scientific and Technical Information of China (English)

    Lutfi Incesu; Meral Baydin; Kerim Aslan; Baris Diren; Huseyin Sahin; Omer Boke; Senol Dane

    2011-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of cerebral neurometabolites, such as N-acetylaspartate, choline, and creatine, in vivo and has been used to study schizophrenia. The present study used 1H-MRS to compare the spectroscopy change of N-acetylaspartate, creatine, and choline metabolite levels in the anterior cingulate and caudate nucleus of both schizophrenia patients and healthy controls, as well as between the left and right cerebral hemispheres in the schizophrenia patients. Results showed that N-acetylaspartate and creatine metabolite levels in the left anterior cingulate gyrus were significantly lower in the schizophrenia patients than in the healthy controls, indicating hypometabolism. In addition, choline concentration in the left caudate nucleus of schizophrenia patients was significantly lower than in the right caudate nucleus, indicating that it is necessary to study the cerebral lateralization of 1H-MRS in schizophrenia patients.

  17. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  18. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  19. Synapse plasticity in motor, sensory, and limbo-prefrontal cortex areas as measured by degrading axon terminals in an environment model of gerbils (Meriones unguiculatus).

    Science.gov (United States)

    Neufeld, Janina; Teuchert-Noodt, Gertraud; Grafen, Keren; Winter, York; Witte, A Veronica

    2009-01-01

    Still little is known about naturally occurring synaptogenesis in the adult neocortex and related impacts of epigenetic influences. We therefore investigated (pre)synaptic plasticity in various cortices of adult rodents, visualized by secondary lysosome accumulations (LA) in remodeling axon terminals. Twenty-two male gerbils from either enriched (ER) or impoverished rearing (IR) were used for quantification of silver-stained LA. ER-animals showed rather low LA densities in most primary fields, whereas barrel and secondary/associative cortices exhibited higher densities and layer-specific differences. In IR-animals, these differences were evened out or even inverted. Basic plastic capacities might be linked with remodeling of local intrinsic circuits in the context of cortical map adaptation in both IR- and ER-animals. Frequently described disturbances due to IR in multiple corticocortical and extracortical afferent systems, including the mesocortical dopamine projection, might have led to maladaptations in the plastic capacities of prefronto-limbic areas, as indicated by different LA densities in IR- compared with ER-animals. PMID:19809517

  20. Synapse Plasticity in Motor, Sensory, and Limbo-Prefrontal Cortex Areas as Measured by Degrading Axon Terminals in an Environment Model of Gerbils (Meriones unguiculatus

    Directory of Open Access Journals (Sweden)

    Janina Neufeld

    2009-01-01

    Full Text Available Still little is known about naturally occurring synaptogenesis in the adult neocortex and related impacts of epigenetic influences. We therefore investigated (presynaptic plasticity in various cortices of adult rodents, visualized by secondary lysosome accumulations (LA in remodeling axon terminals. Twenty-two male gerbils from either enriched (ER or impoverished rearing (IR were used for quantification of silver-stained LA. ER-animals showed rather low LA densities in most primary fields, whereas barrel and secondary/associative cortices exhibited higher densities and layer-specific differences. In IR-animals, these differences were evened out or even inverted. Basic plastic capacities might be linked with remodeling of local intrinsic circuits in the context of cortical map adaptation in both IR- and ER-animals. Frequently described disturbances due to IR in multiple corticocortical and extracortical afferent systems, including the mesocortical dopamine projection, might have led to maladaptations in the plastic capacities of prefronto-limbic areas, as indicated by different LA densities in IR- compared with ER-animals.

  1. Involvement of the Rostral Anterior Cingulate Cortex in Consolidation of Inhibitory Avoidance Memory: Interaction with the Basolateral Amygdala

    OpenAIRE

    Malin, Emily L.; Ibrahim, Deena Y.; Tu, Jessica W.; McGaugh, James L.

    2006-01-01

    Previous findings suggest that the rostral anterior cingulate cortex (rACC) is involved in memory for emotionally arousing training. There is also extensive evidence that the basolateral amygdala (BLA) modulates the consolidation of emotional arousing training experiences via interactions with other brain regions. The present experiments examined the effects of posttraining intra-rACC infusions of the cholinergic agonist oxotremorine (OXO) on inhibitory avoidance (IA) retention and investigat...

  2. Die Rolle des anterioren cingulären Cortex bei Entscheidungsprozessen und instrumentellen Lernvorgängen

    OpenAIRE

    Schweimer, Judith

    2006-01-01

    Der Anteriore Cinguläre Cortex (ACC) spielt eine wichtige Rolle bei Stimulus-Belohnungs-Lernen und bei der Auswahl von belohnungsgesteuerten Handlungsweisen. Im Rahmen dieser Doktorarbeit wurde eine Reihe von Experimenten durchgeführt, um die Rolle des ACC bei instrumentellen Verhalten, welches aufwandsabhängige Entscheidungen beruht, und bei instrumentellem Lernen, welches durch belohnungsprädiktive Stimuli gesteuert wird, näher zu untersuchen. In Experiment 1 wurden das Erlernen und das ...

  3. Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma.

    Directory of Open Access Journals (Sweden)

    Shaojia Lu

    Full Text Available BACKGROUND: Preclinical studies have demonstrated the relationship between stress-induced increased cortisol levels and atrophy of specific brain regions, however, this association has been less revealed in clinical samples. The aim of the present study was to investigate the changes and associations of the hypothalamic-pituitary-adrenal (HPA axis activity and gray matter volumes in young healthy adults with self-reported childhood trauma exposures. METHODS: Twenty four healthy adults with childhood trauma and 24 age- and gender-matched individuals without childhood trauma were recruited. Each participant collected salivary samples in the morning at four time points: immediately upon awakening, 30, 45, and 60 min after awakening for the assessment of cortisol awakening response (CAR. The 3D T1-weighted magnetic resonance imaging data were obtained on a Philips 3.0 Tesla scanner. Voxel-based morphometry analyses were conducted to compare the gray matter volume between two groups. Correlations of gray matter volume changes with severity of childhood trauma and CAR data were further analyzed. RESULTS: Adults with self-reported childhood trauma showed an enhanced CAR and decreased gray matter volume in the right middle cingulate gyrus. Moreover, a significant association was observed between salivary cortisol secretions after awaking and the right middle cingulate gyrus volume reduction in subjects with childhood trauma. CONCLUSIONS: The present research outcomes suggest that childhood trauma is associated with hyperactivity of the HPA axis and decreased gray matter volume in the right middle cingulate gyrus, which may represent the vulnerability for developing psychosis after childhood trauma experiences. In addition, this study demonstrates that gray matter loss in the cingulate gyrus is related to increased cortisol levels.

  4. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats

    Institute of Scientific and Technical Information of China (English)

    YueHAO; Jing-yuYANG; MingGUO; Chun-fuWU; Ming-fanWU

    2004-01-01

    AIM: The anterior cingulate cortex (ACC), an important region of prefrontal cortex for cognitive functions, has been implicated in drug abuse and addiction. In the present study, we intended to investigate the effect of morphine on the extracellular levels of glutamate in the ACC in freely moving rats. METHODS: In vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection had been used for the

  5. Handbook on linear motor application

    International Nuclear Information System (INIS)

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  6. The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers.

    Directory of Open Access Journals (Sweden)

    Li-Yan Zhao

    Full Text Available RATIONALE AND OBJECTIVE: Drug cues can induce craving for drugs of abuse. Dysfunctional regulation of emotion and motivation regarding rewarding objects appears to be an integral part of addiction. It has been found that cognitive strategies decreased the intensity of craving in addicts. Reappraisal strategy is a type of cognitive strategy that requires participants to reinterpret the meaning of an emotional situation. In addition, studies have found that activation of the dorsal anterior cingulate cortex (dACC is associated with the selection and application of cognitive reappraisal. In present study, we sought to determine whether such cognitive regulation engages the dACC and improves inhibition of craving in smokers. METHODS: Sixteen smokers underwent functional magnetic resonance imaging (fMRI during performance of a cigarette reward-conditioning procedure with cognitive reappraisal. We focused our analyses on the dACC as a key structure of cognitive control of craving. Cue induced craving under different conditions was obtained. Correlational analysis between the functional response in the dACC and the subjective craving was performed. RESULTS: We found that using a cognitive reappraisal was successful in decreasing the conditioned craving. Right dACC (BA 24/32 engaged in the cognitive reappraisal. In addition, the individual's subjective craving was negatively correlated with the right dACC activation. CONCLUSIONS: These findings suggest that the dACC are important substrates of Inhibition of cue induced craving in smokers. Cognitive regulation by cognitive reappraisal may help addicted individuals avoid the anticipated situations where they are exposed to conditioned cues.

  7. Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease.

    Science.gov (United States)

    Scheff, Stephen W; Price, Douglas A; Ansari, Mubeen A; Roberts, Kelly N; Schmitt, Frederick A; Ikonomovic, Milos D; Mufson, Elliott J

    2015-01-01

    Mild cognitive impairment (MCI) is considered to be an early stage in the progression of Alzheimer's disease (AD) providing an opportunity to investigate brain pathogenesis prior to the onset of dementia. Neuroimaging studies have identified the posterior cingulate gyrus (PostC) as a cortical region affected early in the onset of AD. This association cortex is involved in a variety of different cognitive tasks and is intimately connected with the hippocampal/entorhinal cortex region, a component of the medial temporal memory circuit that displays early AD pathology. We quantified the total number of synapses in lamina 3 of the PostC using unbiased stereology coupled with electron microscopy from short postmortem autopsy tissue harvested from cases at different stage of AD progression. Individuals in the early stages of AD showed a significant decline in synaptic numbers compared to individuals with no cognitive impairment (NCI). Subjects with MCI exhibited synaptic numbers that were between the AD and NCI cohorts. Adjacent tissue was evaluated for changes in both pre and postsynaptic proteins levels. Individuals with MCI demonstrated a significant loss in presynaptic markers synapsin-1 and synaptophysin and postsynaptic markers PSD-95 and SAP-97. Levels of [3H]PiB binding was significantly increased in MCI and AD and correlated strongly with levels of synaptic proteins. All synaptic markers showed a significant association with Mini-Mental Status Examination scores. These results support the idea that the PostC synaptic function is affected during the prodromal stage of the disease and may underlie some of the early clinical sequelae associated with AD.

  8. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H.; Wilhelm, Frank H.; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca’s homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and

  9. The Role of the Subgenual Anterior Cingulate Cortex and Amygdala in Environmental Sensitivity to Infant Crying.

    Science.gov (United States)

    Mutschler, Isabella; Ball, Tonio; Kirmse, Ursula; Wieckhorst, Birgit; Pluess, Michael; Klarhöfer, Markus; Meyer, Andrea H; Wilhelm, Frank H; Seifritz, Erich

    2016-01-01

    Newborns and infants communicate their needs and physiological states through crying and emotional facial expressions. Little is known about individual differences in responding to infant crying. Several theories suggest that people vary in their environmental sensitivity with some responding generally more and some generally less to environmental stimuli. Such differences in environmental sensitivity have been associated with personality traits, including neuroticism. This study investigated whether neuroticism impacts neuronal, physiological, and emotional responses to infant crying by investigating blood-oxygenation-level dependent (BOLD) responses using functional magnetic resonance imaging (fMRI) in a large sample of healthy women (N = 102) with simultaneous skin conductance recordings. Participants were repeatedly exposed to a video clip that showed crying infants and emotional responses (valence, arousal, and irritation) were assessed after every video clip presentation. Increased BOLD signal during the perception of crying infants was found in brain regions that are associated with emotional responding, the amygdala and anterior insula. Significant BOLD signal decrements (i.e., habituation) were found in the fusiform gyrus, middle temporal gyrus, superior temporal gyrus, Broca's homologue on the right hemisphere, (laterobasal) amygdala, and hippocampus. Individuals with high neuroticism showed stronger activation in the amygdala and subgenual anterior cingulate cortex (sgACC) when exposed to infant crying compared to individuals with low neuroticism. In contrast to our prediction we found no evidence that neuroticism impacts fMRI-based measures of habituation. Individuals with high neuroticism showed elevated skin conductance responses, experienced more irritation, and perceived infant crying as more unpleasant. The results support the hypothesis that individuals high in neuroticism are more emotionally responsive, experience more negative emotions, and may

  10. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    Science.gov (United States)

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization.

  11. Scene construction impairments in Alzheimer's disease - A unique role for the posterior cingulate cortex.

    Science.gov (United States)

    Irish, Muireann; Halena, Stephanie; Kamminga, Jody; Tu, Sicong; Hornberger, Michael; Hodges, John R

    2015-12-01

    Episodic memory dysfunction represents one of the most prominent and characteristic clinical features of patients with Alzheimer's disease (AD), attributable to the degeneration of medial temporal and posterior parietal regions of the brain. Recent studies have demonstrated marked impairments in the ability to envisage personally relevant events in the future in AD. It remains unclear, however, whether AD patients can imagine fictitious scenes free from temporal constraints, a process that is proposed to rely fundamentally upon the integrity of the hippocampus. The objective of the present study was to investigate the capacity for atemporal scene construction, and its associated neural substrates, in AD. Fourteen AD patients were tested on the scene construction task and their performance was contrasted with 14 age- and education-matched healthy older Control participants. Scene construction performance was strikingly compromised in the AD group, with significant impairments evident for provision of contextual details, spatial coherence, and the overall richness of the imagined experience. Voxel-based morphometry analyses based on structural MRI revealed significant associations between scene construction capacity and atrophy in posterior parietal and lateral temporal brain structures in AD. In contrast, scene construction performance in Controls was related to integrity of frontal, parietal, and medial temporal structures, including the parahippocampal gyrus and posterior hippocampus. The posterior cingulate cortex (PCC) emerged as the common region implicated for scene construction performance across participant groups. Our study highlights the importance of regions specialised for spatial and contextual processing for the construction of atemporal scenes. Damage to these regions in AD compromises the ability to construct novel scenes, leading to the recapitulation of content from previously experienced events.

  12. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  13. Fine motor control

    Science.gov (United States)

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  14. Edinburgh Motor Assessment (EMAS)

    OpenAIRE

    Bak, Thomas

    2013-01-01

    Edinburgh Motor Assessment (EMAS) is a brief motor screening test, specifically designed for assessment of patients with dementia, aphasia and other cognitive disorders. It focuses, therefore, on those motor symptoms, which are known to occur in association with these diseases, such as extrapyramidal, amyotrophic, and cerebellar features as well as complex cognitive‐motor phenomena such as apraxia. EMAS has been developed by a team of neurologists and psychiatrists at the ...

  15. CONSOLIDATION OF MOTOR MEMORY

    OpenAIRE

    Krakauer, John W.; Shadmehr, Reza

    2005-01-01

    A question of great recent interest is whether motor memory consolidates in a manner analogous to declarative memories, with the formation of a memory that progresses over time from a fragile state, susceptible to interference by a lesion or a conflicting motor task, to a stabilized state, resistant to such interference. Here, we first review studies that examine the anatomical basis for motor consolidation: evidence implicates cerebellar circuitry for two types of associative motor learning,...

  16. Motor Neurons that Multitask

    OpenAIRE

    Goulding, Martyn

    2012-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion.

  17. Quantum motor and future

    CERN Document Server

    Fateev, Evgeny G

    2013-01-01

    In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

  18. Somatosensory responses in a human motor cortex.

    Science.gov (United States)

    Shaikhouni, Ammar; Donoghue, John P; Hochberg, Leigh R

    2013-04-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications.

  19. Solid propellant motor

    Science.gov (United States)

    Shafer, J. I.; Marsh, H. E., Jr. (Inventor)

    1978-01-01

    A case bonded end burning solid propellant rocket motor is described. A propellant with sufficiently low modulus to avoid chamber buckling on cooling from cure and sufficiently high elongation to sustain the stresses induced without cracking is used. The propellant is zone cured within the motor case at high pressures equal to or approaching the pressure at which the motor will operate during combustion. A solid propellant motor with a burning time long enough that its spacecraft would be limited to a maximum acceleration of less than 1 g is provided by one version of the case bonded end burning solid propellant motor of the invention.

  20. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  1. Induction motor control design

    CERN Document Server

    Marino, Riccardo; Verrelli, Cristiano M

    2010-01-01

    ""Nonlinear and Adaptive Control Design for Induction Motors"" is a unified exposition of the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible to readers who are not experts in electric motors at the same time as giving a more theoretical control viewpoint to those who are. In order to increase readability, the book concentrates on the induction motor, eschewing the much more complex and less-well-understood control of asynchronous motors. The

  2. Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking

    Science.gov (United States)

    Heinonen, Jarmo; Numminen, Jussi; Hlushchuk, Yevhen; Antell, Henrik; Taatila, Vesa; Suomala, Jyrki

    2016-01-01

    negatively with the BOLD responses in the posterior presupplementary motor area, left premotor cortex, right cerebellum and left inferior frontal gyrus. This finding might imply that idea generation without a verbal processing demand reflecting lack of need for new object identification in idea generation events. The results of the study are consistent with recent creativity studies, which emphasize that the creativity process involves working memory capacity to spontaneously shift between different kinds of thinking modes according to the context. PMID:27627760

  3. Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking.

    Science.gov (United States)

    Heinonen, Jarmo; Numminen, Jussi; Hlushchuk, Yevhen; Antell, Henrik; Taatila, Vesa; Suomala, Jyrki

    2016-01-01

    negatively with the BOLD responses in the posterior presupplementary motor area, left premotor cortex, right cerebellum and left inferior frontal gyrus. This finding might imply that idea generation without a verbal processing demand reflecting lack of need for new object identification in idea generation events. The results of the study are consistent with recent creativity studies, which emphasize that the creativity process involves working memory capacity to spontaneously shift between different kinds of thinking modes according to the context. PMID:27627760

  4. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    Science.gov (United States)

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  5. Morphological features of the neonatal brain support development of subsequent cognitive, language, and motor abilities.

    Science.gov (United States)

    Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S

    2014-09-01

    Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults.

  6. 弥散张量成像定位初级运动功能区的研究%Functional identification of primary motor area by diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    邓国军; 李东海; 陈桂美; 肖香佐

    2010-01-01

    目的 探讨弥散张量成像在定位初级运动功能区的价值.方法 20例脑深部肿瘤患者,分别进行常规MRI、fMRI及DTI检查,获取fMRI脑激活图、DTI图、3D解剖图.DTI通过三维重建皮质脊髓束定位初级运动功能区.fMRI采用手握拳激发模式,获取激活信号定位初级运动功能区.比较两种技术的吻合度,以评价DTI三维重建皮质脊髓束定位的初级运动功能区的准确性.结果 20例患者fMRI获得的激活信号主要位于对侧中央沟处,围绕着"Ω"形柄状结构分布,中央前回位于激活信号前方.所有患者均成功地完成DTI皮质脊髓束的三维重建,重建的皮质脊髓束也定位于激活信号前的脑回,两者均较好显示初级运动功能区且具有较好的一致性.结论 DTI可较好地定位初级运动功能区,这对于有肢体瘫痪患者及不能合作的儿童的初级运动功能区的定位有重要意义.%Objective To explore the usefulness of diffusion tensor imaging(DTI) in quick and stable identification of the primary motor area ( PMA).Method 20 patients with deep-seated brain tumors underwent 3-dimensional T1-weighted imaging for anatomical reference,gradient-echo,echo-planar imaging(EPI) for functional magnetic resonance imaging (fMRI) and single-shot,diffusion-weighted EPI for diffusion tensor imaging(DTI).The corticospinal tract (CST) was reconstructed by DTI.Motor activation signals were acquired by fMRI with hand clenching block active mode.Two techniques were compared to determine the accuracy for cortical mapping of PMA with CST in the 3D anatomic illustrations which fused the CST results and the fMRI activation signals.Results All of the patients performed fMRI motor activation task successfully.fMRI activation signals were distributed mainly in the contralateral central sulcus around the omega shape hand knob.The precentral gyrus was located in the former of the activation signals.CST was reconstructed successfuly in all

  7. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  8. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  9. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our......Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...

  10. Resting-state functional connectivity between the dorsal anterior cingulate cortex and thalamus is associated with risky decision-making in nicotine addicts.

    Science.gov (United States)

    Wei, Zhengde; Yang, Nannan; Liu, Ying; Yang, Lizhuang; Wang, Ying; Han, Long; Zha, Rujing; Huang, Ruiqi; Zhang, Peng; Zhou, Yifeng; Zhang, Xiaochu

    2016-01-01

    Nicotine addiction is associated with risky behaviors and abnormalities in local brain areas related to risky decision-making such as the dorsal anterior cingulate cortex (dACC), anterior insula (AI), and thalamus. Although these brain abnormalities are anatomically separated, they may in fact belong to one neural network. However, it is unclear whether circuit-level abnormalities lead to risky decision-making in smokers. In the current study, we used task-based functional magnetic resonance imaging (fMRI) and examined resting-state functional connectivity (RSFC) to study how connectivity between the dACC, insula, and thalamus influence risky decision-making in nicotine addicts. We found that an increase in risky decision-making was associated with stronger nicotine dependence and stronger RSFC of the dACC-rAI (right AI), the dACC-thalamus, the dACC-lAI (left AI), and the rAI-lAI, but that risky decision-making was not associated with risk level-related activation. Furthermore, the severity of nicotine dependence positively correlated with RSFC of the dACC-thalamus but was not associated with risk level-related activation. Importantly, the dACC-thalamus coupling fully mediated the effect of nicotine-dependent severity on risky decision-making. These results suggest that circuit-level connectivity may be a critical neural link between risky decision-making and severity of nicotine dependence in smokers. PMID:26879047

  11. Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Lee, Seojung; Ran Kim, Kyung; Ku, Jeonghun; Lee, Jung-Hyun; Namkoong, Kee; Jung, Young-Chul

    2014-01-30

    Cortical areas supporting cognitive control and salience demonstrate different neural responses to visual food cues in patients with eating disorders. This top-down cognitive control, which interacts with bottom-up appetitive responses, is tightly integrated not only in task conditions but also in the resting-state. The dorsal anterior cingulate cortex (dACC) is a key node of a large-scale network that is involved in self-referential processing and cognitive control. We investigated resting-state functional connectivity of the dACC and hypothesized that altered connectivity would be demonstrated in cortical midline structures involved in self-referential processing and cognitive control. Seed-based resting-state functional connectivity was analyzed in women with anorexia nervosa (N=18), women with bulimia nervosa (N=20) and age matched healthy controls (N=20). Between group comparisons revealed that the anorexia nervosa group exhibited stronger synchronous activity between the dACC and retrosplenial cortex, whereas the bulimia nervosa group showed stronger synchronous activity between the dACC and medial orbitofrontal cortex. Both groups demonstrated stronger synchronous activity between the dACC and precuneus, which correlated with higher scores of the Body Shape Questionnaire. The dACC-precuneus resting-state synchrony might be associated with the disorder-specific rumination on eating, weight and body shape in patients with eating disorders.

  12. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  13. 40 CFR 52.2424 - Motor vehicle emissions budgets.

    Science.gov (United States)

    2010-07-01

    ... emissions budgets. (a) Motor vehicle emissions budget for the Hampton Roads maintenance area adjusting the mobile emissions budget contained in the maintenance plan for the horizon years 2015 and beyond adopted..., 1996. (b) Motor vehicle emissions budget for the Richmond maintenance area adjusting the...

  14. Anterior cingulate cortex mediates the relationship between O3PUFAs and executive functions in APOE e4 carriers

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2015-05-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between biomarkers of diet and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between omega-3 polyunsaturated fatty acids (O3PUFAs and executive functions in at-risk (APOE e4 carriers, cognitively intact older adults. We hypothesized that higher levels of O3PUFAs are associated with better performance in a particular component of the executive functions, namely cognitive flexibility, and that this relationship is mediated by gray matter volume of a specific region thought to be important for cognitive flexibility, the anterior cingulate cortex. Methods: We examined 40 cognitively intact adults between the ages of 65 and 75 with the APOE e4 polymorphism to investigate the relationship between biomarkers of O3PUFAs, tests of cognitive flexibility (measured by the Delis-Kaplan Executive Function System Trail Making Test, and gray matter volume within regions of the prefrontal cortex. Results: A mediation analysis revealed that gray matter volume within the left rostral anterior cingulate cortex partially mediates the relationship between O3PUFA biomarkers and cognitive flexibility. Conclusion: These results suggest that the anterior cingulate cortex acts as a mediator of the relationship between O3PUFAs and cognitive flexibility in cognitively intact adults thought to be at risk for cognitive decline. Through their link to executive functions and neuronal measures of prefrontal cortex volume, O3PUFAs show potential as a nutritional therapy to prevent dysfunction in the aging brain.

  15. Changes in the default mode network in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users

    Institute of Scientific and Technical Information of China (English)

    Wenfu Hu; Xiangming Fu; Ruobing Qian; Xiangpin Wei; Xuebing Ji; Chaoshi Niu

    2012-01-01

    The default mode network is associated with senior cognitive functions in humans. In this study, we performed independent component analysis of blood oxygenation signals from 14 heroin users and 13 matched normal controls in the resting state through functional MRI scans. Results showed that the default mode network was significantly activated in the prefrontal lobe, posterior cingulated cortex and hippocampus of heroin users, and an enhanced activation signal was observed in the right inferior parietal lobule (P < 0.05, corrected for false discovery rate). Experimental findings indicate that the default mode network is altered in heroin users.

  16. Comparison of diffusion tensor imaging and proton MR spectroscopy in the posterior cingulate of patients with Alzheimer disease

    International Nuclear Information System (INIS)

    Objective To compare 1HMRS and DTI findings of Alzheimer disease (AD) patients and normal elderly controls. Methods: Fifteen mild AD patients, 20 moderate to severe AD patients and 20 aging controlled normal subjects (CN) were recruited. MRS imaging and DTI were performed on a 1.5 T MRI scanner. A ROI was positioned in the posterior part of the cingulate. MRS data were processed and the metabolite ratios were estimated, including the ratios of NAA/Cr, Cho/Cr, mI/Cr. Comparing with the axial MRS location, we chose the same level to posit the ROIs on both sides of the posterior cingulated fibers on fractional anisotropy map (FA) and mean diffusivity map (MD). Mean spectroscopy data and DTI values for each groups were analysed with Mann-Whitney U non parametric test. Correlations between MRS and DTI values for AD groups were estimated using partial correlations test controlling for the age related bias. Results Compared to normal aging groups, mild AD group showed a significantly lower FA value in the left side of posterior cingulum bundle (0.549±0.056 vs 0.517±0.058, Z=2.014, P-3 mm2/s vs (0.761±0.057) x 10-3 mm2/s, Z=1.970, P<0.05). Obvious increasing mI/Cr ratio was found in mild AD group(0.61±0.07 vs 0.68±0.12,Z=2.911, P<0.01). NAA/Cr ratio showed gradually decrease in AD groups. Partial correlations analysis revealed a positive correlation between mI/Cr ratio and left posterior cingulated FA value in mild AD group (r=0.586, P< 0.05) and negative correlation between NAA/Cr and MD value in the right side of posterior cingulated region (r=-0.505, P<0.05). Conclusions: These findings suggested that there were different regional and temporal pattern in different course of AD disease, resulting from axonal loss or gliosis. Combining MRS with DTI alternations could be a better potential indicator and could better explain the pathological changes in AD progression. (authors)

  17. Neural substrates of motor and non-motor symptoms in Parkinson's disease: a resting FMRI study.

    Directory of Open Access Journals (Sweden)

    Kwangsun Yoo

    Full Text Available Recently, non-motor symptoms of Parkinson's disease (PD have been considered crucial factors in determining a patient's quality of life and have been proposed as the predominant features of the premotor phase. Researchers have investigated the relationship between non-motor symptoms and the motor laterality; however, this relationship remains disputed. This study investigated the neural connectivity correlates of non-motor and motor symptoms of PD with respect to motor laterality.Eight-seven patients with PD were recruited and classified into left-more-affected PD (n = 44 and right-more affected PD (n = 37 based on their MDS-UPDRS (Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale motor examination scores. The patients underwent MRI scanning, which included resting fMRI. Brain regions were labeled as ipsilateral and contralateral to the more-affected body side. Correlation analysis between the functional connectivity across brain regions and the scores of various symptoms was performed to identify the neural connectivity correlates of each symptom.The resting functional connectivity centered on the ipsilateral inferior orbito-frontal area was negatively correlated with the severity of non-motor symptoms, and the connectivity of the contralateral inferior parietal area was positively correlated with the severity of motor symptoms (p 0.3.These results suggest that the inferior orbito-frontal area may play a crucial role in non-motor dysfunctions, and that the connectivity information may be utilized as a neuroimaging biomarker for the early diagnosis of PD.

  18. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  19. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  20. Motor Axon Pathfinding

    OpenAIRE

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  1. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  2. Control motor brushless sensorless

    OpenAIRE

    Solchaga Pérez de Lazárraga, Gonzalo

    2015-01-01

    El proyecto consiste en la creación de un circuito capaz de controlar la velocidad de un motor brushless sensorless. Este tipo de motores eléctricos tienen como característica que no tienen escobillas para cambiar la polaridad del bobinado de su interior y tampoco precisan de un sensor que indique que ha realizado una vuelta. Los motores brushless que son controlados por este tipo de circuitos son específicos para aeronaves no tripuladas y requieren un diseño diferente a un motor brushless pe...

  3. Lower motor neuron dysfunction in ALS.

    Science.gov (United States)

    de Carvalho, Mamede; Swash, Michael

    2016-07-01

    In the motor system there is a complex interplay between cortical structures and spinal cord lower motor neurons (LMN). In this system both inhibitory and excitatory neurons have relevant roles. LMN loss is a marker of motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Conventional needle electromyography (EMG) does not allow LMN loss to be quantified. Measurement of compound muscle action potential (CMAP) amplitude or area, and the neurophysiological index, provide a surrogate estimate of the number of functional motor units. Increased motor neuronal excitability is a neurophysiological marker of ALS in the context of a suspected clinical and electrophysiological diagnosis. In the LMN system, fasciculation potentials (FPs) are the earliest changes observed in affected muscles, a feature of LMN hyperexcitability. Reinnervation is best investigated by needle EMG although other methods can be explored. Moreover needle EMG give information about the temporal profile of the reinnervation process, important ancillary data. Quantitative motor unit potential analysis is a valuable method of evaluating reinnervation. The importance of FPs has been recognized in the Awaji criteria for the electrodiagnosis of ALS, criteria that are a sensitive adjunct to the revised El Escorial criteria. Finally, functionality of LMN's, and perhaps excitability studies in motor nerves, aids understanding of the disease process, allowing measurement of potential treatment effects in clinical trials. Other investigational techniques, such as electrical impedance myography, muscle and nerve ultrasound, and spinal cord imaging methods may prove useful in future. PMID:27117334

  4. Anterior cingulate cortico-hippocampal dysconnectivity in unaffected relatives of schizophrenia patients: a stochastic dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Yi-Bin Xi

    2016-07-01

    Full Text Available Familial risk plays a significant role in the etiology of schizophrenia (SZ. Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC, caudate, dorsolateral prefrontal cortex (DLPFC, and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients — according to the DSM-IV — were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI. We used stochastic dynamic causal modeling (sDCM to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ.

  5. Anterior Cingulate Cortico-Hippocampal Dysconnectivity in Unaffected Relatives of Schizophrenia Patients: A Stochastic Dynamic Causal Modeling Study.

    Science.gov (United States)

    Xi, Yi-Bin; Li, Chen; Cui, Long-Biao; Liu, Jian; Guo, Fan; Li, Liang; Liu, Ting-Ting; Liu, Kang; Chen, Gang; Xi, Min; Wang, Hua-Ning; Yin, Hong

    2016-01-01

    Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies using neuroimaging have demonstrated structural and functional alterations in relatives of SZ patients, with significant results found in diverse brain regions involving the anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and hippocampus. This study investigated whether unaffected relatives of first episode SZ differ from healthy controls (HCs) in effective connectivity measures among these regions. Forty-six unaffected first-degree relatives of first episode SZ patients-according to the DSM-IV-were studied. Fifty HCs were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic causal modeling (sDCM) to estimate the directed connections between the left ACC, right ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus. We used Bayesian parameter averaging (BPA) to characterize the differences. The BPA results showed hyperconnectivity from the left ACC to right hippocampus and hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ. PMID:27512370

  6. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    Science.gov (United States)

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  7. Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer's disease.

    Science.gov (United States)

    Boundy, K L; Barnden, L R; Katsifis, A G; Rowe, C C

    2005-05-01

    Early detection of Alzheimer's disease (AD) allows timely pharmacological and social interventions. Alteration in muscarinic receptor binding was evaluated with I-123 iodo-dexetimide (IDEX) in early clinical stage AD. We studied 11 mild AD patients (Folstein Minimental State Examination Score 24-27, Clinical Dementia Rating 0.5-1.0) and 10 age- and sex-matched normal subjects with SPECT brain imaging after injection of 185 MBq of IDEX and 750 MBq of 99mTc-HMPAO. Using a voxel based approach (Statistical Parametric Mapping (SPM99) software), a deficit in IDEX binding was found in the posterior cingulate cortex in the mild AD group with p (corrected)=0.06 for the most significant voxel and p=0.0003 for the voxel cluster. Region of interest (ROI) analysis confirmed the SPM99 results. SPM99 found no deficit in the HMPAO scans, suggesting that neither atrophy nor hypoperfusion were major factors in the reduced IDEX binding. This study provides further evidence of the involvement of the posterior cingulate region and of muscarinic receptors in early Alzheimer's disease and suggests that this change may precede an alteration in blood flow. PMID:15925773

  8. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection.

    Science.gov (United States)

    Insel, Nathan; Takehara-Nishiuchi, Kaori

    2013-11-01

    Daily experiences are represented by networks of neurons distributed across the neocortex, bound together for rapid storage and later retrieval by the hippocampus. While the hippocampus is necessary for retrieving recent episode-based memory associations, over time, consolidation processes take place that enable many of these associations to be expressed independent of the hippocampus. It is generally thought that mechanisms of consolidation involve synaptic weight changes between cortical regions; or, in other words, the formation of "horizontal" cortico-cortical connections. Here, we review anatomical, behavioral, and physiological data which suggest that the connections in and between the entorhinal and cingulate cortices may be uniquely important for the long-term storage of memories that initially depend on the hippocampus. We propose that current theories of consolidation that divide memory into dual systems of hippocampus and neocortex might be improved by introducing a third, middle layer of entorhinal and cingulate allocortex, the synaptic weights within which are necessary and potentially sufficient for maintaining initially hippocampus-dependent associations over long time periods. This hypothesis makes a number of still untested predictions, and future experiments designed to address these will help to fill gaps in the current understanding of the cortical structure of consolidated memory.

  9. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    Science.gov (United States)

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders.

  10. Reduced motor cortex activity during movement preparation following a period of motor skill practice.

    Directory of Open Access Journals (Sweden)

    David J Wright

    Full Text Available Experts in a skill produce movement-related cortical potentials (MRCPs of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training.

  11. Organizing motor imageries.

    Science.gov (United States)

    Hanakawa, Takashi

    2016-03-01

    Over the last few decades, motor imagery has attracted the attention of researchers as a prototypical example of 'embodied cognition' and also as a basis for neuro-rehabilitation and brain-machine interfaces. The current definition of motor imagery is widely accepted, but it is important to note that various abilities rather than a single cognitive entity are dealt with under a single term. Here, motor imagery has been characterized based on four factors: (1) motor control, (2) explicitness, (3) sensory modalities, and (4) agency. Sorting out these factors characterizing motor imagery may explain some discrepancies and variability in the findings from previous studies and will help to optimize a study design in accordance with the purpose of each study in the future. PMID:26602980

  12. MISR Motor Data V003

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the output for the Level 1A Motor data (Suggested Usage: MISR SCF processing needs the MISR motor data samples for the analysis of motor...

  13. Interactive visuo-motor therapy system for stroke rehabilitation

    OpenAIRE

    Eng, K; Siekierka, E; Pyk, P; Chevrier, E; Hauser, Y; Holper, L; Cameirao, M; Hägni, K; Zimmerli, L; Duff, A.; Schuster, C.; Bassetti, C.; Verschure, P; Kiper, D.

    2007-01-01

    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas (mirror neurons); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, fa...

  14. FMRI supports the sensorimotor theory of motor resonance.

    Science.gov (United States)

    Landmann, Claire; Landi, Sofia M; Grafton, Scott T; Della-Maggiore, Valeria

    2011-01-01

    The neural mechanisms mediating the activation of the motor system during action observation, also known as motor resonance, are of major interest to the field of motor control. It has been proposed that motor resonance develops in infants through Hebbian plasticity of pathways connecting sensory and motor regions that fire simultaneously during imitation or self movement observation. A fundamental problem when testing this theory in adults is that most experimental paradigms involve actions that have been overpracticed throughout life. Here, we directly tested the sensorimotor theory of motor resonance by creating new visuomotor representations using abstract stimuli (motor symbols) and identifying the neural networks recruited through fMRI. We predicted that the network recruited during action observation and execution would overlap with that recruited during observation of new motor symbols. Our results indicate that a network consisting of premotor and posterior parietal cortex, the supplementary motor area, the inferior frontal gyrus and cerebellum was activated both by new motor symbols and by direct observation of the corresponding action. This tight spatial overlap underscores the importance of sensorimotor learning for motor resonance and further indicates that the physical characteristics of the perceived stimulus are irrelevant to the evoked response in the observer.

  15. FMRI supports the sensorimotor theory of motor resonance.

    Directory of Open Access Journals (Sweden)

    Claire Landmann

    Full Text Available The neural mechanisms mediating the activation of the motor system during action observation, also known as motor resonance, are of major interest to the field of motor control. It has been proposed that motor resonance develops in infants through Hebbian plasticity of pathways connecting sensory and motor regions that fire simultaneously during imitation or self movement observation. A fundamental problem when testing this theory in adults is that most experimental paradigms involve actions that have been overpracticed throughout life. Here, we directly tested the sensorimotor theory of motor resonance by creating new visuomotor representations using abstract stimuli (motor symbols and identifying the neural networks recruited through fMRI. We predicted that the network recruited during action observation and execution would overlap with that recruited during observation of new motor symbols. Our results indicate that a network consisting of premotor and posterior parietal cortex, the supplementary motor area, the inferior frontal gyrus and cerebellum was activated both by new motor symbols and by direct observation of the corresponding action. This tight spatial overlap underscores the importance of sensorimotor learning for motor resonance and further indicates that the physical characteristics of the perceived stimulus are irrelevant to the evoked response in the observer.

  16. Improve Motor System Efficiency for a Broad Range of Motors with MotorMaster+ International

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-05-01

    Available at no charge, MotorMaster+ International is designed to support motor systems improvement planning at industrial facilities by identifying the most cost-effective choice when deciding to repair or replace older motor models.

  17. Pain relativity in motor control.

    Science.gov (United States)

    Kurniawan, I T; Seymour, B; Vlaev, I; Trommershäuser, J; Dolan, R J; Chater, N

    2010-06-01

    Motivational theories of pain highlight its role in people's choices of actions that avoid bodily damage. By contrast, little is known regarding how pain influences action implementation. To explore this less-understood area, we conducted a study in which participants had to rapidly point to a target area to win money while avoiding an overlapping penalty area that would cause pain in their contralateral hand. We found that pain intensity and target-penalty proximity repelled participants' movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences. Our results indicate that the magnitude and probability of pain have a precise role in guiding motor control and that representations of pain that guide action are, at least in part, relative rather than absolute. Additionally, our study shows that the implicit monetary valuation of pain, like many explicit valuations (e.g., patients' use of rating scales in medical contexts), is unstable, a finding that has implications for pain treatment in clinical contexts.

  18. Pain relativity in motor control.

    Science.gov (United States)

    Kurniawan, I T; Seymour, B; Vlaev, I; Trommershäuser, J; Dolan, R J; Chater, N

    2010-06-01

    Motivational theories of pain highlight its role in people's choices of actions that avoid bodily damage. By contrast, little is known regarding how pain influences action implementation. To explore this less-understood area, we conducted a study in which participants had to rapidly point to a target area to win money while avoiding an overlapping penalty area that would cause pain in their contralateral hand. We found that pain intensity and target-penalty proximity repelled participants' movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences. Our results indicate that the magnitude and probability of pain have a precise role in guiding motor control and that representations of pain that guide action are, at least in part, relative rather than absolute. Additionally, our study shows that the implicit monetary valuation of pain, like many explicit valuations (e.g., patients' use of rating scales in medical contexts), is unstable, a finding that has implications for pain treatment in clinical contexts. PMID:20435952

  19. Electrodiagnosis of motor neuron disease.

    Science.gov (United States)

    Duleep, Anuradha; Shefner, Jeremy

    2013-02-01

    Electrodiagnostic testing has proved useful in helping to establish the diagnosis of amyotrophic lateral sclerosis by eliminating possible disease mimics and by demonstrating abnormalities in body areas that are clinically unaffected. Electrodiagnosis begins with an understanding of the clinical features of the disease, because clinical correlation is essential. To improve the sensitivity of the electrophysiologic evaluation, the Awaji criteria have been proposed as a modification to the revised El Escorial criteria. Although techniques to evaluate corticomotor neuron abnormalities and to quantify lower motor neuron loss have been developed, they remain primarily research techniques and have not yet influenced clinical practice.

  20. NK-3 receptor activation depolarizes and induces an after-depolarization in pyramidal neurons in gerbil cingulate cortex

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2004-01-01

    The involvement of tachykinins in cortical function is poorly understood. To study the actions of neurokinin-3 (NK3) receptor activation in frontal cortex, whole cell patch clamp recordings were performed from pyramidal neurons in slices of cingulate cortex from juvenile gerbils. Senktide (500n......M), a selective NK3 receptor agonist, induced a transient increase in spontaneous EPSPs in layer V pyramidal neurons, accompanied by a small depolarization ( approximately 4 mV). EPSPs during senktide had a larger amplitude and faster 10-90% rise time than during control. Senktide induced a transient...... depolarization in layer II/III pyramidal neurons, which often reached threshold for spikes. The depolarization ( approximately 6 mV) persisted in TTX, and was accompanied by an increase in input resistance. Senktide also transiently induced a slow after-depolarization, which appeared following a depolarizing...

  1. Abulia following penetrating brain injury during endoscopic sinus surgery with disruption of the anterior cingulate circuit: Case report

    Directory of Open Access Journals (Sweden)

    Login Ivan S

    2006-01-01

    Full Text Available Abstract Background It is common knowledge that the frontal lobes mediate complex human behavior and that damage to these regions can cause executive dysfunction, apathy, disinhibition and personality changes. However, it is less well known that subcortical structures such as the caudate and thalamus are part of functionally segregated fronto-subcortical circuits, that can also alter behavior after injury. Case presentation We present a 57 year old woman who suffered penetrating brain injury during endoscopic sinus surgery causing right basal ganglia injury which resulted in an abulic syndrome. Conclusion Abulia does not result solely from cortical injury but can occur after disruption anywhere in the anterior cingulate circuit – in the case of our patient, most prominently at the right caudate.

  2. Medial profrontal cortex and anterior cingulate cortex in the generation of alpha activity induced by transcendental meditation: a magnetoencephalographic study.

    Directory of Open Access Journals (Sweden)

    Yamamoto,Shin

    2006-02-01

    Full Text Available

    Previous EEG studies have shown that transcendental meditation (TM increases frontal and central alpha activity. The present study was aimed at identifying the source of this alpha activity using magnetoencephalography (MEG and electroencephalography (EEG simultaneously on eight TM practitioners before, during, and after TM. The magnetic field potentials corresponding to TM-induced alpha activities on EEG recordings were extracted, and we attempted to localize the dipole sources using the multiple signal classification (MUSIC algorithm, equivalent current dipole source analysis, and the multiple spatio-temporal dipole model. Since the dipoles were mapped to both the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC, it is suggested that the mPFC and ACC play an important role in brain activity induced by TM.

  3. Relationship of γ-aminobutyric acid and glutamate+glutamine concentrations in the perigenual anterior cingulate cortex with performance of Cambridge Gambling Task.

    Science.gov (United States)

    Fujihara, Kazuyuki; Narita, Kosuke; Suzuki, Yusuke; Takei, Yuichi; Suda, Masashi; Tagawa, Minami; Ujita, Koichi; Sakai, Yuki; Narumoto, Jin; Near, Jamie; Fukuda, Masato

    2015-04-01

    The anterior cingulate cortex (ACC), consisting of the perigenual ACC (pgACC) and mid-ACC (i.e., affective and cognitive areas, respectively), plays a significant role in the performance of gambling tasks, which are used to measure decision-making behavior under conditions of risk. Although recent neuroimaging studies have suggested that the γ-aminobutyric acid (GABA) concentration in the pgACC is associated with decision-making behavior, knowledge regarding the relationship of GABA concentrations in subdivisions of the ACC with gambling task performance is still limited. The aim of our magnetic resonance spectroscopy study is to investigate in 20 healthy males the relationship of concentrations of GABA and glutamate+glutamine (Glx) in the pgACC, mid-ACC, and occipital cortex (OC) with multiple indexes of decision-making behavior under conditions of risk, using the Cambridge Gambling Task (CGT). The GABA/creatine (Cr) ratio in the pgACC negatively correlated with delay aversion score, which corresponds to the impulsivity index. The Glx/Cr ratio in the pgACC negatively correlated with risk adjustment score, which is reported to reflect the ability to change the amount of the bet depending on the probability of winning or losing. The scores of CGT did not significantly correlate with the GABA/Cr or Glx/Cr ratio in the mid-ACC or OC. Results of this study suggest that in the pgACC, but not in the mid-ACC or OC, GABA and Glx concentrations play a distinct role in regulating impulsiveness and risk probability during decision-making behavior under conditions of risk, respectively.

  4. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  5. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  6. Young Athletes: A Special Olympics Motor Skill Development Program

    Science.gov (United States)

    Favazza, Paddy C.; Siperstein, Gary N.

    2013-01-01

    While motor skills develop naturally among most typically developing preschoolers, young children with disabilities often experience deficits in this area. Therefore, it is important that children with disabilities are provided with "direct and intentional instruction" for motor skill development during the preschool years. One program…

  7. Mirroring pain in the brain : emotional expression versus motor imitation

    NARCIS (Netherlands)

    Budell, Lesley; Kunz, Miriam; Jackson, Philip L; Rainville, Pierre

    2015-01-01

    Perception of pain in others via facial expressions has been shown to involve brain areas responsive to self-pain, biological motion, as well as both performed and observed motor actions. Here, we investigated the involvement of these different regions during emotional and motor mirroring of pain ex

  8. System and method for motor parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  9. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  10. Congenital Ocular Motor Apraxia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-06-01

    Full Text Available The clinical and neuroradiological findings, and long-term intellectual prognosis in 10 patients (4 boys and 6 girls with congenital ocular motor apraxia (COMA are reviewed by researchers at Tottori University, Yonago, Japan.

  11. Partial motor status epilepticus

    OpenAIRE

    Gilberto Rebello de Mattos; José C. Rollemberg Filho

    1992-01-01

    We report the case of a young female patient with photosensitive primary epilepsy who presented partial motor status epilepticus provoked by the act of shutting the eyes. Clinical, EEG and neuroimage data are presented and discussed.

  12. Congenital Ocular Motor Apraxia

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    The clinical and neuroradiological findings, and long-term intellectual prognosis in 10 patients (4 boys and 6 girls) with congenital ocular motor apraxia (COMA) are reviewed by researchers at Tottori University, Yonago, Japan.

  13. Nonautistic Motor Stereotypies

    OpenAIRE

    J Gordon Millichap

    2008-01-01

    Clinical features and long-term outcomes of 100 children (62 boys and 35 girls) with motor stereotypies were evaluated by review of records and telephone interviews at Johns Hopkins Hospital, Baltimore, MD.

  14. Heritability of motor control and motor learning

    OpenAIRE

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the...

  15. Development of motor control

    OpenAIRE

    Schellekens, Johannes Maria Hubertus

    1985-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation. The aim of this thesis is to study the role and efficiency of motor control and anticipation processes in the development of children with and without disturbances in the motor system. Chapter I is a general introduction to the subjec...

  16. Congenital ocular motor apraxia

    OpenAIRE

    Carrasquinho, S; Teixeira, S.; Cadete, A; Bernardo, M.; Pêgo, P; Prieto, I.

    2008-01-01

    PURPOSE: Congenital ocular motor apraxia is a rare disease characterized by defective or absent voluntary and optically induced horizontal saccadic movements. Jerky head movements or thrusts on attempted lateral gaze are a compensatory sign. Most affected children have delayed motor and speech development. Cases associated with systemic diseases, neurologic maldevelopment, metabolic deficits, and chromosomal abnormalities have been described. METHODS: Case report and review of the scienti...

  17. Motor neurone disease

    OpenAIRE

    Talbot, K.

    2002-01-01

    Motor neurone disease (MND), or amyotrophic lateral sclerosis (ALS), is a neurodegenerative disorder of unknown aetiology. Progressive motor weakness and bulbar dysfunction lead to premature death, usually from respiratory failure. Confirming the diagnosis may initially be difficult until the full clinical features are manifest. For all forms of the disease there is a significant differential diagnosis to consider, including treatable conditions, and therefore specialist neurological opinion ...

  18. Symmetric Brownian motor

    OpenAIRE

    Gomez-Marin, A.; Sancho, J. M.

    2004-01-01

    In this paper we present a model of a symmetric Brownian motor (SBM) which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type...

  19. Multifocal motor neuropathy

    OpenAIRE

    Thy P Nguyen; Vinay Chaudhry

    2011-01-01

    Multifocal motor neuropathy (MMN) is a unique disorder characterized by slowly progressive, asymmetric, distal and upper limb predominant weakness without significant sensory abnormalities. Electrophysiology is crucial to the diagnosis, revealing the hallmark partial conduction block. MMN is considered immune mediated due to the association with anti-GM1 antibodies and the response to immunomodulatory treatment. It is paramount to recognize MMN from other motor neuronopathies or peripheral ne...

  20. Starter Motor Protection

    OpenAIRE

    Gerhardsson, Daniel

    2010-01-01

    Starter motors are sensitive for overheating. By estimating the temperature and preventing cranking in time, there is an option to avoid the dangerous temperatures. The truck manufacturer Scania CV AB proposed a master thesis that should evaluate the need of an overheating protection for the starter motor. The aim is to evaluate any positive effects of implementing an algorithm that can estimate the brush temperature instead of using the available time constrain, which allows 35 seconds of cr...

  1. Long-Term Effects of Maternal Deprivation on the Neuronal Soma Area in the Rat Neocortex

    Directory of Open Access Journals (Sweden)

    Milan Aksić

    2014-01-01

    Full Text Available Early separation of rat pups from their mothers (separatio a matrem is considered and accepted as an animal model of perinatal stress. Adult rats, separated early postnatally from their mothers, are developing long-lasting changes in the brain and neuroendocrine system, corresponding to the findings observed in schizophrenia and affective disorders. With the aim to investigate the morphological changes in this animal model we exposed 9-day-old (P9 Wistar rats to a 24 h maternal deprivation (MD. At young adult age rats were sacrificed for morphometric analysis and their brains were compared with the control group bred under the same conditions, but without MD. Rats exposed to MD had a 28% smaller cell soma area in the prefrontal cortex (PFCX, 30% in retrosplenial cortex (RSCX, and 15% in motor cortex (MCX compared to the controls. No difference was observed in the expression of glial fibrillary acidic protein in the neocortex of MD rats compared to the control group. The results of this study demonstrate that stress in early life has a long-term effect on neuronal soma size in cingulate and retrosplenial cortex and is potentially interesting as these structures play an important role in cognition.

  2. A microscopic model for chemically-powered Janus motors.

    Science.gov (United States)

    Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2016-07-01

    Very small synthetic motors that make use of chemical reactions to propel themselves in solution hold promise for new applications in the development of new materials, science and medicine. The prospect of such potential applications, along with the fact that systems with many motors or active elements display interesting cooperative phenomena of fundamental interest, has made the study of synthetic motors an active research area. Janus motors, comprising catalytic and noncatalytic hemispheres, figure prominently in experimental and theoretical studies of these systems. While continuum models of Janus motor systems are often used to describe motor dynamics, microscopic models that are able to account for intermolecular interactions, many-body concentration gradients, fluid flows and thermal fluctuations provide a way to explore the dynamical behavior of these complex out-of-equilibrium systems that does not rely on approximations that are often made in continuum theories. The analysis of microscopic models from first principles provides a foundation from which the range of validity and limitations of approximate theories of the dynamics may be assessed. In this paper, a microscopic model for the diffusiophoretic propulsion of Janus motors, where motor interactions with the environment occur only through hard collisions, is constructed, analyzed and compared to theoretical predictions. Microscopic simulations of both single-motor and many-motor systems are carried out to illustrate the results. PMID:27241052

  3. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C;

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...... a modulatory role of the common val66met polymorphism in the BDNF gene on corticospinal plasticity. Diffusion-sensitive magnetic resonance imaging has been employed to pinpoint subtle structural changes in corticospinal motor projections in individuals carrying a mutation in genes associated with motor neuron...

  4. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    Science.gov (United States)

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  5. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency.

    NARCIS (Netherlands)

    S. Nieuwenhuis; N. Yeung; W. van den Wildenberg; K.R. Ridderinkhof

    2003-01-01

    Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a prepote

  6. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  7. Reduced Activation in Lateral Prefrontal Cortex and Anterior Cingulate during Attention and Cognitive Control Functions in Medication-Naive Adolescents with Depression Compared to Controls

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M.; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-01-01

    Background: There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of…

  8. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  9. Markov Process of Muscle Motors

    CERN Document Server

    Kondratiev, Yu; Pirogov, S

    2007-01-01

    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

  10. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  11. Sensory-motor transformations for speech occur bilaterally.

    Science.gov (United States)

    Cogan, Gregory B; Thesen, Thomas; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2014-03-01

    Historically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural

  12. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento]. E-mail: awzuardi@fmrp.usp.br; Araujo, D.; Santos, A.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Div. de Radiologia

    2008-07-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 {+-} 0.03; control = 1.12 {+-} 0.04) and in the right (schizophrenia 0.88 {+-} 0.02; control = 0.94 {+-} 0.03) and left (schizophrenia 0.84 {+-} 0.03; control = 0.94 {+-} 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 {+-} 0.05) than the controls (0.95 {+-} 0.02, P < 0.05) and the subgroup with normal SCL (0.88 {+-} 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  13. Opposite effective connectivity in the posterior cingulate and medial prefrontal cortex between first-episode schizophrenic patients with suicide risk and healthy controls.

    Directory of Open Access Journals (Sweden)

    Huiran Zhang

    Full Text Available OBJECTIVE: The schizophrenic patients with high suicide risk are characterized by depression, better cognitive function, and prominent positive symptoms. However, the neurobiological basis of suicide attempts in schizophrenia is not clear. The suicide in schizophrenia is implicated in the defects in emotional process and decision-making, which are associated with prefrontal-cingulate circuit. In order to explore the possible neurobiological basis of suicide in schizophrenia, we investigated the correlation of prefrontal-cingulate circuit with suicide risk in schizophrenia via dynamic casual modelling. METHOD: Participants were 33 first-episode schizophrenic patients comprising of a high suicide risk group (N = 14 and a low suicide risk group (N = 19. A comparison group of healthy controls (N = 15 were matched for age, gender and education. N-back tasking functional magnetic resonance imaging data was collected. RESULTS: Compared with healthy controls group, the two patients groups showed decreased task-related suppression during 2-back task state versus baseline state in the left posterior cingulate and medial prefrontal cortex; the hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex existed in both schizophrenic patients groups, but hypo-connectivity in the opposite direction only existed in the schizophrenic patients group with high suicide risk. CONCLUSIONS: The hyper-connectivity from the left posterior cingulate cortex to the left medial prefrontal cortex may suggest that the abnormal effective connectivity was associated with risk for schizophrenia. The hypo-connectivity in the opposite direction may represent a possible correlate of increased vulnerability to suicide attempt.

  14. A New Type of Motor: Pneumatic Step Motor.

    Science.gov (United States)

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2007-02-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  15. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

    Directory of Open Access Journals (Sweden)

    Glowacz A.

    2014-10-01

    Full Text Available In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.

  16. Enhanced subgenual cingulate response to altruistic decisions in remitted major depressive disorder

    Directory of Open Access Journals (Sweden)

    Erdem Pulcu

    2014-01-01

    Conclusions: We showed that altruistic decisions probe residual sgACC hypersensitivity in MDD even after symptoms are fully remitted. The sgACC has previously been shown to be associated with guilt which promotes altruistic decisions. In contrast, the striatum showed common activation to both simple and altruistic rewards and could be involved in the so-called “warm glow” of donation. Enhanced neural response in the depression group, in areas previously linked to altruistic decisions, supports the hypothesis of a possible association between hyper-altruism and depression vulnerability, as shown by recent epidemiological studies.

  17. Design and characterization of piezoelectric ultrasonic motors

    Science.gov (United States)

    Yener, Serra

    one layer of ceramic and a brass teeth-like layer bonded on it. The displacement was amplified with the metal layer, the teeth of which were placed on the points of in-phase motion. The targeted application area is paper-feeding mechanism. In terms of application areas for the first design, a gas valve system and a micro vehicle were constructed. In addition, a new optical coherence tomography endoscope by utilizing the piezoelectric micromotor was designed. Finally, the prototype motor was integrated inside the camera of a cell phone to drive the zoom mechanism.

  18. Motorization and the provision of roads in countries and cities

    OpenAIRE

    Ingram, Gregory K.; Zhi Liu

    1997-01-01

    Using panel data from 50 countries and 35 urban areas (covering a wide range of country incomes), the authors summarize trends in motorization and the provision of roads, and they examine the ratio of motor vehicles to roads in a production function framework at both national andurban levels. They find regularities very strong across countries and urban areas and over time. Among their sometimes surprising findings: (1) Economic development increases demand for transport, reliance on cars and...

  19. Anterior cingulate hyperactivations during negative emotion processing among men with schizophrenia and a history of violent behavior

    Directory of Open Access Journals (Sweden)

    Tikàsz A

    2016-06-01

    Full Text Available Andràs Tikàsz,1,2 Stéphane Potvin,1,2 Ovidiu Lungu,2–4 Christian C Joyal,5,6 Sheilagh Hodgins,2,5 Adrianna Mendrek,1,7 Alexandre Dumais1,2,5 1Centre de recherche de l’Institut Universitaire en Santé Mentale de Montréal, 2Department of Psychiatry, University of Montreal, 3Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal, 4Centre for Research in Aging, Donald Berman Maimonides Geriatric Centre, 5Institut Philippe-Pinel de Montréal, 6Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, 7Department of Psychology, Bishop’s University, Sherbrooke, QC, Canada Background: Evidence suggests a 2.1–4.6 times increase in the risk of violent behavior in schizophrenia compared to the general population. Current theories propose that the processing of negative emotions is defective in violent individuals and that dysfunctions within the neural circuits involved in emotion processing are implicated in violence. Although schizophrenia patients show enhanced sensitivity to negative stimuli, there are only few functional neuroimaging studies that have examined emotion processing among men with schizophrenia and a history of violence. Objective: The present study aimed to identify the brain regions with greater neurofunctional alterations, as detected by functional magnetic resonance imaging during an emotion processing task, of men with schizophrenia who had engaged in violent behavior compared with those who had not. Methods: Sixty men were studied; 20 with schizophrenia and a history of violence, 19 with schizophrenia and no violence, and 21 healthy men were scanned while viewing positive, negative, and neutral images. Results: Negative images elicited hyperactivations in the anterior cingulate cortex (ACC, left and right lingual gyrus, and the left precentral gyrus in violent men with schizophrenia, compared to nonviolent men with schizophrenia and healthy men. Neutral images elicited

  20. The Development of Fine Motor Skills and its Relation to Cognitive Development in Young Children

    OpenAIRE

    Geng, Da; Zhang, Xingli; Shi, Jiannong

    2015-01-01

    Fine motor skills refer to any movement where an individual uses the small muscles or muscle areas of the hands and fingers; these movements serve to development of muscle while also improving the cognitive recognition of the object. Automatic fine motor skills can save limited attention resources for advanced cognition tasks as required by an individual; in the development of fine motor skills and cognition, the two abilities interact, some motor skills are the prerequisite for some cognitio...

  1. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  2. Flood-proof motors

    International Nuclear Information System (INIS)

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  3. Improving the accuracy of walking piezo motors.

    Science.gov (United States)

    den Heijer, M; Fokkema, V; Saedi, A; Schakel, P; Rost, M J

    2014-05-01

    Many application areas require ultraprecise, stiff, and compact actuator systems with a high positioning resolution in combination with a large range as well as a high holding and pushing force. One promising solution to meet these conflicting requirements is a walking piezo motor that works with two pairs of piezo elements such that the movement is taken over by one pair, once the other pair reaches its maximum travel distance. A resolution in the pm-range can be achieved, if operating the motor within the travel range of one piezo pair. However, applying the typical walking drive signals, we measure jumps in the displacement up to 2.4 μm, when the movement is given over from one piezo pair to the other. We analyze the reason for these large jumps and propose improved drive signals. The implementation of our new drive signals reduces the jumps to less than 42 nm and makes the motor ideally suitable to operate as a coarse approach motor in an ultra-high vacuum scanning tunneling microscope. The rigidity of the motor is reflected in its high pushing force of 6.4 N.

  4. Electric Motor Thermal Management R&D. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-01

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.

  5. Mechanical design of electric motors

    CERN Document Server

    Tong, Wei

    2014-01-01

    Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati

  6. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  7. Transformers and motors

    CERN Document Server

    Shultz, George

    1991-01-01

    Transformers and Motors is an in-depth technical reference which was originally written for the National Joint Apprenticeship Training Committee to train apprentice and journeymen electricians. This book provides detailed information for equipment installation and covers equipment maintenance and repair. The book also includes troubleshooting and replacement guidelines, and it contains a minimum of theory and math.In this easy-to-understand, practical sourcebook, you'll discover:* Explanations of the fundamental concepts of transformers and motors* Transformer connections and d

  8. Tuning Multiple Motor Travel Via Single Motor Velocity

    Science.gov (United States)

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.

    2012-01-01

    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  9. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  10. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex

    NARCIS (Netherlands)

    Neubert, F.X.; Mars, R.B.; Sallet, J.; Rushworth, M.F.S.

    2015-01-01

    Reward-guided decision-making depends on a network of brain regions. Among these are the orbitofrontal and the anterior cingulate cortex. However, it is difficult to ascertain if these areas constitute anatomical and functional unities, and how these areas correspond between monkeys and humans. To a

  11. Teste de estimulação repetitiva no músculo ancôneo para diagnóstico da miastenia grave: mapeamento da sua área de placa motora Repetitive stimulation test on the anconeus muscle for the diagnosis of myasthenia gravis: the mapping of its motor end-plate area

    Directory of Open Access Journals (Sweden)

    Maria das Graças Wanderley S. Coriolano

    2007-06-01

    Full Text Available OBJETIVO: Mapear a área de placa motora do músculo ancôneo para definir a melhor localização dos eletrodos de registro em testes de estimulação repetitiva (TER no diagnóstico dos distúrbios da transmissão neuromuscular. MÉTODO: Registramos o potencial de ação composto do músculo ancôneo sobre a pele que o recobre, após estimulação do ramo que o inerva. Analisando as formas de onda registradas em cada ponto da pele foi possível definir a área de placa. RESULTADOS: A área de placa motora do ancôneo é uma linha paralela à borda da ulna. O melhor local de colocação do eletrodo "ativo" de registro situa-se cerca de 2 cm distal ao olécrano e 1 cm lateral à borda da ulna. CONCLUSÃO: A realização de TER no músculo ancôneo é simples e bem tolerada. Com a estimulação do ancôneo o antebraço praticamente não se move, sendo o procedimento livre de artefatos de movimento.PURPOSE: To map the motor end-plate area of the anconeus muscle and define the best place for positioning the recording electrodes in repetitive stimulation tests (RST for the diagnosis of neuromuscular transmission disorders. METHOD: The compound muscle action potential of the anconeus was recorded after stimulating the motor branch of the radial nerve that innervates it. By analyzing the waveforms registered at each point of the skin we were able to define the motor end-plate area. RESULTS: The motor end-plate area of the anconeus is a line parallel to the ulna border. The best place for placing the "active" recording electrode is about 2cm distal to the olecranon and 1 cm lateral to the border of the ulna. CONCLUSION: Performing RST in the anconeus muscle is simple and well tolerated. Stimulation of the anconeus almost doesn't move the forearm and the procedure is virtually free of movement artifacts.

  12. Disrupted causal connectivity anchored on the anterior cingulate cortex in first-episode medication-naive major depressive disorder.

    Science.gov (United States)

    Feng, Zhan; Xu, Shunliang; Huang, Manli; Shi, Yushu; Xiong, Bing; Yang, Hong

    2016-01-01

    In recent years, major depressive disorder (MDD) has been demonstrated to be associated with abnormalities in neural networks, particularly the prefrontal-limbic network (PLN). However, there are few current studies that have examined information flow in the PLN. In this study, Granger causality analysis (GCA), based on signed regression coefficient, was used to explore changes in causal connectivity in resting-state PLNs of MDD patients. A total of 23 first-episode medication-naïve MDD patients and 20 normal control participants were subjected to resting-state functional magnetic resonance imaging (RS-fMRI) scans. Increased causal effects of the right insular cortex, right putamen and right caudate on the rostral anterior cingulate cortex (rACC) and reduced causal effects of bilateral dorsolateral prefrontal cortex (DLPFC) and left orbitofrontal cortex (OFC) on the rACC were found in MDD patients compared to normal controls. The extensive reduction in the causal effect of the prefrontal cortex (PFC) demonstrates impaired top-down cognitive control in MDD patients. Changes in the causal relationship between the right insula and rACC suggest problems in coordination of the default mode network by the right anterior insular cortex (rAI). These findings provide valuable insight into MDD-related neural network disorders reported in previous RS-fMRI studies and may potentially guide clinical treatment of MDD in the future. PMID:26234517

  13. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  14. Abrupt changes in the patterns and complexity of anterior cingulate cortex activity when food is introduced into an environment

    Directory of Open Access Journals (Sweden)

    Barak Francisco Caracheo

    2013-05-01

    Full Text Available AbstractForaging typically involves two distinct phases, an exploration phase where an organism explores its local environment in search of needed resources and an exploitation phase where a discovered resource is consumed. The behavior and cognitive requirements of exploration and exploitation are quite different and yet organisms can quickly and efficiently switch between them many times during a foraging bout. The present study investigated neural activity state dynamics in the anterior cingulate sub-region of the rat medial prefrontal cortex (mPFC when a reliable food source was introduced into an environment. Distinct and largely independent states were detected using a Hidden Markov Model (HMM when food was present or absent in the environment. Measures of neural entropy or complexity decreased when rats went from exploring the environment to exploiting a reliable food source. Exploration in the absence of food was associated with many weak activity states, while bouts of food consumption were characterized by fewer stronger states. Widespread activity state changes in the mPFC may help to inform foraging decisions and focus behavior on what is currently most prominent or valuable in the environment.

  15. Pons to Posterior Cingulate Functional Projections Predict Affective Processing Changes in the Elderly Following Eight Weeks of Meditation Training.

    Science.gov (United States)

    Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C

    2016-08-01

    Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders. PMID:27349456

  16. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought.

    Directory of Open Access Journals (Sweden)

    Jonathan Smallwood

    Full Text Available When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN, it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought.

  17. Macro and micro structures in the dorsal anterior cingulate cortex contribute to individual differences in self-monitoring.

    Science.gov (United States)

    Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang

    2016-06-01

    Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.

  18. Prenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover and responsiveness to oral methylphenidate treatment

    Science.gov (United States)

    Zhu, Jinmin; Zhang, Xuan; Xu, Yuehang; Spencer, Thomas J.; Biederman, Joseph; Bhide, Pradeep G.

    2012-01-01

    Cigarette smoking, nicotine replacement therapy and smokeless tobacco use during pregnancy are associated with cognitive disabilities later in life in children exposed prenatally to nicotine. The disabilities include attention deficit hyperactivity disorder (ADHD) and conduct disorder. However, the structural and neurochemical bases of these cognitive deficits remain unclear. Using a mouse model we show that prenatal nicotine exposure produces hyperactivity, selective decreases in cingulate cortical volume and radial thickness as well as decreased dopamine turnover in the frontal cortex. The hyperactivity occurs in both male and female offspring and peaks during the “active” or dark phase of the light-dark cycle. These features of the mouse model closely parallel the human ADHD phenotype, whether or not the ADHD is associated with prenatal nicotine exposure. A single oral, but not intraperitoneal, administration of a therapeutic equivalent dose (0.75 mg/kg) of methylphenidate decreases the hyperactivity and increases the dopamine turnover in the frontal cortex of the prenatally nicotine exposed mice, once again paralleling the therapeutic effects of this compound in ADHD subjects. Collectively, our data suggest that the prenatal nicotine exposure mouse model has striking parallels to the ADHD phenotype not only in behavioral, neuroanatomical and neurochemical features but also with respect to responsiveness of the behavioral phenotype to methylphenidate treatment. The behavioral, neurochemical and anatomical biomarkers in the mouse model could be valuable for evaluating new therapies for ADHD and mechanistic investigations into its etiology. PMID:22764249

  19. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer’s disease

    Science.gov (United States)

    Prieto del Val, Laura; Cantero, Jose L.; Atienza, Mercedes

    2016-01-01

    Synaptic dysfunction, a key pathophysiological hallmark of Alzheimer’s disease (AD), may account for abnormal memory-related EEG patterns in prodromal AD. Here, we investigate to what extent oscillatory EEG changes during memory encoding and/or retrieval enhance the accuracy of medial temporal lobe (MTL) atrophy in predicting conversion from amnestic mild cognitive impairment (aMCI) to AD. As expected, aMCI individuals that, within a 2-year follow-up period, developed dementia (N = 16) compared to healthy older (HO) (N = 26) and stable aMCI (N = 18) showed poorer associative memory, greater MTL atrophy, and lower capacity to recruit alpha oscillatory cortical networks. Interestingly, encoding-induced abnormal alpha desynchronized activity over the posterior cingulate cortex (PCC) at baseline showed significantly higher accuracy in predicting AD than the magnitude of amygdala atrophy. Nevertheless, the best accuracy was obtained when the two markers were fitted into the model (sensitivity = 78%, specificity = 82%). These results support the idea that synaptic integrity/function in the PCC is affected during prodromal AD and has the potential of improving early detection when combined with MRI biomarkers. PMID:27546195

  20. Atrophy of amygdala and abnormal memory-related alpha oscillations over posterior cingulate predict conversion to Alzheimer's disease.

    Science.gov (United States)

    Prieto Del Val, Laura; Cantero, Jose L; Atienza, Mercedes

    2016-01-01

    Synaptic dysfunction, a key pathophysiological hallmark of Alzheimer's disease (AD), may account for abnormal memory-related EEG patterns in prodromal AD. Here, we investigate to what extent oscillatory EEG changes during memory encoding and/or retrieval enhance the accuracy of medial temporal lobe (MTL) atrophy in predicting conversion from amnestic mild cognitive impairment (aMCI) to AD. As expected, aMCI individuals that, within a 2-year follow-up period, developed dementia (N = 16) compared to healthy older (HO) (N = 26) and stable aMCI (N = 18) showed poorer associative memory, greater MTL atrophy, and lower capacity to recruit alpha oscillatory cortical networks. Interestingly, encoding-induced abnormal alpha desynchronized activity over the posterior cingulate cortex (PCC) at baseline showed significantly higher accuracy in predicting AD than the magnitude of amygdala atrophy. Nevertheless, the best accuracy was obtained when the two markers were fitted into the model (sensitivity = 78%, specificity = 82%). These results support the idea that synaptic integrity/function in the PCC is affected during prodromal AD and has the potential of improving early detection when combined with MRI biomarkers. PMID:27546195

  1. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    曹晓华; 卢湘岳; 周绍慈

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec

  2. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.

  3. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    Science.gov (United States)

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. PMID:27163752

  4. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHENG XinLing; LIU Fang; WU XingWen; LI BaoMing

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolaterel nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at '0' or 6 h post-treining. Saline was administered as control. Memory retention was tested 48 h poet-training. In-tra-BLA or intra-ACC infusion of MPD '0' h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  5. The von Economo neurons in the frontoinsular and anterior cingulate cortex.

    Science.gov (United States)

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2011-04-01

    The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of frontotemporal dementia (FTD) implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  6. Lumbosacral motor polyneuropathy

    OpenAIRE

    S. A. Malmberg; E. N. Rudenko

    2012-01-01

    The case of lumbosacral motor neuropathy (LSMN) in 15-yers old patient with diabetes mellitus (type I) is presented. Clinical and electromyographical patterns are considered and effectiveness of corticosteroid therapy is estimated. The differential features and taxonomic position of LSMN and chronic inflammatory demyelinating polyneuropathy (CIDP) are discussed. The necessity of some liberalization of CIDP diagnostic criteria is demonstrated.

  7. Aprendizaje y desarrollo motor

    OpenAIRE

    Guillén Guillén, Eva I.

    2006-01-01

    El desarrollo evolutivo general del niño/a en relación con los procesos de maduración motora, procesos de aprendizaje y desarrollo motor. Técnicas de aprendizaje. Técnica de solución de conflictos. Balances musculares.

  8. Motor Incoordination in ADHD

    OpenAIRE

    J Gordon Millichap

    2004-01-01

    The relationship between motor performance, attention deficit, impulsiveness, and hyperactivity in 42 school-aged children with ADHD (36 males, 6 females; mean age 8 years 2 months; range 6-11 years) was studied at National Taiwan University, Taipei, Taiwan.

  9. Thermal Brownian motor

    OpenAIRE

    Meurs, P.; Broeck, C. Van Den

    2005-01-01

    Recently, a thermal Brownian motor was introduced [Van den Broeck, Kawai and Meurs, Phys. Rev. Lett. (2004)], for which an exact microscopic analysis is possible. The purpose of this paper is to review some further properties of this construction, and to discuss in particular specific issues including the relation with macroscopic response and the efficiency at maximum power.

  10. FUNCTIONAL RECOVERY FOLLOWING MOTOR CORTEX LESIONS IN NON-HUMAN PRIMATES: EXPERIMENTAL IMPLICATIONS FOR HUMAN STROKE PATIENTS

    OpenAIRE

    Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.

    2011-01-01

    This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in ...

  11. Modulation of motor excitability by metricality of tone sequences

    DEFF Research Database (Denmark)

    Cameron, David; Stewart, Lauren; Pearce, Marcus;

    2012-01-01

    understood. To investigate how auditory rhythms affect movement, we applied single-pulse transcranial magnetic stimulation (TMS) to primary motor cortex, eliciting motor-evoked potentials (MEPs) in ankle-driving muscles of the lower leg, while participants (N = 4) listened to metrically strong or weak tone......When listening to music, humans tend to synchronize their movements with the perceived beat (e.g., foot-tapping). Brain areas associated with motor function have been closely linked to the perception of beat and rhythm, but the mechanism of this temporal auditory–motor coupling is not fully...... amplitude. These results demonstrate that the pure metrical structure of an auditory rhythm presented as generic parametrically varied tone sequences can influence motor excitability but that the picture may be more complex for real recordings of musical pieces. (PsycINFO Database Record (c) 2013 APA, all...

  12. 36 CFR 293.6 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Commercial enterprises, roads..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.6 Commercial enterprises, roads, motor vehicles... National Forest Wilderness no commercial enterprises; no temporary or permanent roads; no aircraft...

  13. Decision Making in the Balloon Analogue Risk Task (BART): Anterior Cingulate Cortex Signals Loss-Aversion but not the Infrequency of Risky Choices

    OpenAIRE

    Fukunaga, Rena; Brown, Joshua W.; Bogg, Tim

    2012-01-01

    The inferior frontal gyrus/anterior insula (IFG/AI) and anterior cingulate cortex (ACC) are key regions involved in risk appraisal during decision making, but accounts of how these regions contribute to decision-making under risk remain contested. To help clarify the roles of these and other related regions, we used a modified version of the Balloon Analogue Risk Task (Lejuez et al., 2002) to distinguish between decision-making and feedback-related processes when participants decided to pursu...

  14. Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice

    OpenAIRE

    Blair, K.S.; Marsh, A. A.; Morton, J.; Vythilingam, M.; Jones, M M; K, P.; D C, D.; W C, B. R. J.

    2006-01-01

    The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au choc...

  15. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism

    Science.gov (United States)

    Balsters, Joshua H.; Mantini, Dante; Apps, Matthew A.J.; Eickhoff, Simon B.; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  16. Cerebral hemorrhage without manifest motor paralysis

    International Nuclear Information System (INIS)

    Before the introduction of computerized tomography (CT) there were some cases of intracerebral bleeding who were wrongly diagnosed as hypertensive encephalopathy or senile psychosis. We here report 5 cases who did not show any sign of motor paralysis. The clinical aspects of these cases were nausea and vomiting with dizziness (case 1), nausea and vomiting with slight headache (case 2), agnosia of left side with several kinds of disorientation (case 3), nausea and vomiting (case 4), and visual disturbance of right, lower quadrant (case 5). All of these cases showed no motor paralysis or abnormal reflex activities. By examination with CT each of them exhibited a high density area in the subcortical area of the right parietal lobe, the subcortical area of the right occipital lobe, the right temporal and parietal lobe, rather small portion of the left putamen and external capsule, and the subcortical area of left occipital lobe, respectively. Patients of cerebral hemorrhage without motor or sensory disturbances might often be taken for some psychic abnormality. We here have emphasized the importance of CT in such a group of patients. But for this technique, most of them would not be given adequate treatment and might be exposed to lifethreatening situations. (author)

  17. Acute exercise improves motor memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen; Roig, Marc; Lundbye-Jensen, Jesper;

    2014-01-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory...... practice whereas lactate correlated with better retention 1 hour as well as 24 hours and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning...... processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory....

  18. Control linear motor with DSP

    International Nuclear Information System (INIS)

    This book consists of control linear motor with DSP, which is composed of two parts. The title of the first part is control Algorithm and software with introduction and tracking controller, drive profile on decision of motion time, floating point DSP and quantization effect, motion override Algorithm and drive profile summary, design of digital controller on design for controller structure and analysis of PID control Loop and Motor turning, design for IIR digital filter and protocol structure for communication wit host. The second part describes control hardware, which mentions Linear motor and Amplifier, motor and power supply, DSP board and interface, control of Micro Linear Stepping Motor and conclusion.

  19. Obsessive-compulsive disorder: a "sensory-motor" problem?

    Science.gov (United States)

    Russo, M; Naro, A; Mastroeni, C; Morgante, F; Terranova, C; Muscatello, M R; Zoccali, R; Calabrò, R S; Quartarone, A

    2014-05-01

    Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. Although its pathophysiology is not completely understood, neurophysiologic and neuroimaging data have disclosed functional abnormalities in the networks linking frontal cortex, supplementary motor and premotor areas, striatum, globus pallidus, and thalamus (CSPT circuits). By means of transcranial magnetic stimulation (TMS) it is possible to test inhibitory and excitatory circuits within motor cortex. Previous studies on OCD patients under medication have demonstrated altered cortical inhibitory circuits as tested by TMS. On the other hand there is growing evidence suggesting an alteration of sensory-motor integration. Therefore, the aim of the present study was to evaluate sensory-motor integration (SAI and LAI), intracortical inhibition, and facilitation in drug-naïve OCD patients, using TMS. In our sample, we have demonstrated a significant SAI reduction in OCD patients when compared to a cohort of healthy individuals. SAI abnormalities may be related to a dysfunction of CSPT circuits which are involved in sensory-motor integration processes. Thus, it can be speculated that hypofunctioning of such system might impair the ability of OCD patients to suppress internally triggered intrusive and repetitive movements and thoughts. In conclusion, our data suggest that OCD may be considered as a sensory motor disorder where a dysfunction of sensory-motor integration may play an important role in the release of motor compulsions. PMID:24631627

  20. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  1. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia.

    Science.gov (United States)

    Cordes, Julia S; Mathiak, Krystyna A; Dyck, Miriam; Alawi, Eliza M; Gaber, Tilman J; Zepf, Florian D; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets.

  2. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Science.gov (United States)

    Cordes, Julia S.; Mathiak, Krystyna A.; Dyck, Miriam; Alawi, Eliza M.; Gaber, Tilman J.; Zepf, Florian D.; Klasen, Martin; Zvyagintsev, Mikhail; Gur, Ruben C.; Mathiak, Klaus

    2015-01-01

    Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the brain regions known to be dysfunctional in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over 3 days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. In a stepwise regression analysis, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, patients with schizophrenia can learn to regulate localized brain activity. However, cognitive strategies and neural network location differ from healthy controls. These data emphasize that for therapeutic interventions in patients with schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social NF based on fMRI may be one method to accomplish precise learning targets. PMID:26161073

  3. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Chera L Maarouf

    Full Text Available Defining the biochemical alterations that occur in the brain during "normal" aging is an important part of understanding the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated changes. Three groups were selected based on age and on having no evidence of neurological or significant neurodegenerative disease: 1 young adult individuals, average age 26 years (n = 9; 2 middle-aged subjects, average age 59 years (n = 5; 3 oldest-old individuals, average age 93 years (n = 6. Using ELISA and Western blotting methods, we quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer's disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed along the course of aging and dementia. This work underscores the need to examine through direct observation how the processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence.

  4. Loss of resting-state posterior cingulate flexibility is associated with memory disturbance in left temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Linda Douw

    Full Text Available The association between cognition and resting-state fMRI (rs-fMRI has been the focus of many recent studies, most of which use stationary connectivity. The dynamics or flexibility of connectivity, however, may be seminal for understanding cognitive functioning. In temporal lobe epilepsy (TLE, stationary connectomic correlates of impaired memory have been reported mainly for the hippocampus and posterior cingulate cortex (PCC. We therefore investigate resting-state and task-based hippocampal and PCC flexibility in addition to stationary connectivity in left TLE (LTLE patients. Sixteen LTLE patients were analyzed with respect to rs-fMRI and task-based fMRI (t-fMRI, and underwent clinical neuropsychological testing. Flexibility of connectivity was calculated using a sliding-window approach by determining the standard deviation of Fisher-transformed Pearson correlation coefficients over all windows. Stationary connectivity was also calculated. Disturbed memory was operationalized as having at least one memory subtest score equal to or below the 5th percentile compared to normative data. Lower PCC flexibility, particularly in the contralateral (i.e. right hemisphere, was found in memory-disturbed LTLE patients, who had up to 22% less flexible connectivity. No significant group differences were found with respect to hippocampal flexibility, stationary connectivity during both rs-fMRI and t-fMRI, or flexibility during t-fMRI. Contralateral resting-state PCC flexibility was able to classify all but one patient with respect to their memory status (94% accuracy. Flexibility of the PCC during rest relates to memory functioning in LTLE patients. Loss of flexible connectivity to the rest of the brain originating from the PCC, particularly contralateral to the seizure focus, is able to discern memory disturbed patients from their preserved counterparts. This study indicates that the dynamics of resting-state connectivity are associated with cognitive status

  5. Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients' fluency performance in a lateralised manner

    Directory of Open Access Journals (Sweden)

    Olivia Geisseler

    2016-01-01

    Full Text Available Cognitive impairment is as an important feature of Multiple Sclerosis (MS, and might be even more relevant to patients than mobility restrictions. Compared to the multitude of studies investigating memory deficits or basic cognitive slowing, executive dysfunction is a rarely studied cognitive domain in MS, and its neural correlates remain largely unexplored. Even rarer are topological studies on specific cognitive functions in MS. Here we used several structural MRI parameters – including cortical thinning and T2 lesion load – to investigate neural correlates of executive dysfunction, both on a global and a regional level by means of voxel- and vertex-wise analyses. Forty-eight patients with relapsing-remitting MS and 48 healthy controls participated in the study. Five executive functions were assessed, i.e. verbal and figural fluency, working memory, interference control and set shifting. Patients scored lower than controls in verbal and figural fluency only, and displayed widespread cortical thinning. On a global level, cortical thickness independently predicted verbal fluency performance, when controlling for lesion volume and central brain atrophy estimates. On a regional level, cortical thinning in the anterior cingulate region correlated with deficits in verbal and figural fluency and did so in a lateralised manner: Left-sided thinning was related to reduced verbal – but not figural – fluency, whereas the opposite pattern was observed for right-sided thinning. We conclude that executive dysfunction in MS patients can specifically affect verbal and figural fluency. The observed lateralised clinico-anatomical correlation has previously been described in brain-damaged patients with large focal lesions only, for example after stroke. Based on focal grey matter atrophy, we here show for the first time comparable lateralised findings in a white matter disease with widespread pathology.

  6. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus.

    Directory of Open Access Journals (Sweden)

    Hiroki eNakata

    2014-12-01

    Full Text Available Recent studies have shown that meditation inhibits or relieves pain perception. To clarify the underlying mechanisms for this phenomenon, neuroimaging methods, such as functional magnetic resonance imaging (fMRI, and neurophysiological methods, such as magnetoencephalography (MEG and electroencephalography (EEG, have been used. However, it has been difficult to interpret the results, because there is some paradoxical evidence. For example, some studies reported increased neural responses to pain stimulation during meditation in the anterior cingulate cortex (ACC and insula, whereas others showed a decrease in these regions. There have been inconsistent findings to date. Moreover, in general, since the activities of the ACC and insula are correlated with pain perception, the increase in neural activities during meditation would be related to the enhancement of pain perception rather than its reduction. These contradictions might directly contribute to the ‘mystery of meditation’. In this review, we presented previous findings for brain regions during meditation and the anatomical changes that occurred in the brain with long-term meditation training. We then discussed the findings of previous studies that examined pain-related neural activity during meditation. We also described the brain mechanisms responsible for pain relief during meditation, and possible reasons for paradoxical evidence among previous studies. By thoroughly overviewing previous findings, we hypothesized that meditation reduces pain-related neural activity in the ACC, insula, secondary somatosensory cortex, and thalamus. We suggest that the characteristics of the modulation of this activity may depend on the kind of meditation and/or number of years of experience of meditation, which were associated with paradoxical findings among previous studies that investigated pain-related neural activities during meditation.

  7. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0 in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides, the anterior cingulate cortex (ACC: 6NS, 9S and the nucleus accumbens (NAcc: 8NS, 13S. ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A and three were down-regulated in the NAcc (MT1F, MT1G, MT1H. Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  8. Motor learning by observing.

    Science.gov (United States)

    Mattar, Andrew A G; Gribble, Paul L

    2005-04-01

    Learning complex motor behaviors like riding a bicycle or swinging a golf club is based on acquiring neural representations of the mechanical requirements of movement (e.g., coordinating muscle forces to control the club). Here we provide evidence that mechanisms matching observation and action facilitate motor learning. Subjects who observed a video depicting another person learning to reach in a novel mechanical environment (imposed by a robot arm) performed better when later tested in the same environment than subjects who observed similar movements but no learning; moreover, subjects who observed learning of a different environment performed worse. We show that this effect is not based on conscious strategies but instead depends on the implicit engagement of neural systems for movement planning and control. PMID:15820701

  9. Ironless armature torque motor

    Science.gov (United States)

    Fisher, R. L.

    1972-01-01

    Four iron-less armature torque motors, four Hall device position sensor assemblies, and two test fixtures were fabricated. The design approach utilized samarium cobalt permanent magnets, a large airgap, and a three-phase winding in a stationary ironless armature. Hall devices were employed to sense rotor position. An ironless armature torque motor having an outer diameter of 4.25 inches was developed to produce a torque constant of 65 ounce-inches per ampere with a resistance of 20.5 ohms. The total weight, including structural elements, was 1.58 pounds. Test results indicated that all specifications were met except for generated voltage waveform. It is recommended that investigations be made concerning the generated voltage waveform to determine if it may be improved.

  10. Understanding social motor coordination.

    Science.gov (United States)

    Schmidt, R C; Fitzpatrick, Paula; Caron, Robert; Mergeche, Joanna

    2011-10-01

    Recently there has been much interest in social coordination of motor movements, or as it is referred to by some researchers, joint action. This paper reviews the cognitive perspective's common coding/mirror neuron theory of joint action, describes some of its limitations and then presents the behavioral dynamics perspective as an alternative way of understanding social motor coordination. In particular, behavioral dynamics' ability to explain the temporal coordination of interacting individuals is detailed. Two experiments are then described that demonstrate how dynamical processes of synchronization are apparent in the coordination underlying everyday joint actions such as martial art exercises, hand-clapping games, and conversations. The import of this evidence is that emergent dynamic patterns such as synchronization are the behavioral order that any neural substrate supporting joint action (e.g., mirror systems) would have to sustain.

  11. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands...... and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus...

  12. Lumbosacral motor polyneuropathy

    Directory of Open Access Journals (Sweden)

    S. A. Malmberg

    2012-01-01

    Full Text Available The case of lumbosacral motor neuropathy (LSMN in 15-yers old patient with diabetes mellitus (type I is presented. Clinical and electromyographical patterns are considered and effectiveness of corticosteroid therapy is estimated. The differential features and taxonomic position of LSMN and chronic inflammatory demyelinating polyneuropathy (CIDP are discussed. The necessity of some liberalization of CIDP diagnostic criteria is demonstrated.

  13. 350 KVA motor generators

    CERN Multimedia

    1974-01-01

    Each logic circuit in the central computers consumes only a fraction of a watt: however, the final load constituted by many such circuits plus peripheral equipment is nearly half a million watts. Shown here are two 350 KVA motor generators used to convert 50 Hz mains to 60 Hz (US standard). Flywheels on the M.G. shafts remove power dropouts of up to 0.5 s.

  14. Motor evoked potential polyphasia

    OpenAIRE

    Chowdhury, Fahmida A.; Pawley, Adam D.; Ceronie, Bryan; Nashef, Lina; Robert D C Elwes; Richardson, Mark P

    2015-01-01

    Objective: We compared the motor evoked potential (MEP) phases using transcranial magnetic stimulation in patients with idiopathic generalized epilepsy (IGE), their relatives, and healthy controls, hypothesizing that patients and their unaffected relatives may share a subtle pathophysiologic abnormality. Methods: In a cross-sectional study, we investigated 23 patients with IGE, 34 first-degree relatives, and 30 matched healthy controls. Transcranial magnetic stimulation was performed to produ...

  15. The Modern Motor Industry

    OpenAIRE

    Garel Rhys

    2001-01-01

    The motor industry is experiencing one of its periods of massive change. This involves considerable micro- and macroeconomic effects, reflecting the structure and behaviour of the industry and its scale of operations within an economy. The industry is a highly rivalrous oligopoly, where although there is product differentiation, competition, both price and non-price, is considerable. This impacts upon the nature of vehicle demand, including environmental issues. Supply conditions in the indus...

  16. Motor Fuel Excise Taxes

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  17. Dyspraxia, motor function and visual-motor integration in autism.

    Science.gov (United States)

    Miller, M; Chukoskie, L; Zinni, M; Townsend, J; Trauner, D

    2014-08-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis. PMID:24742861

  18. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery

    Directory of Open Access Journals (Sweden)

    Maria Laura eBlefari

    2015-02-01

    Full Text Available Motor imagery (MI has shown effectiveness in enhancing motor performance. This may be due to the common neural mechanisms underlying MI and motor execution (ME. The main region of the ME network, the primary motor cortex (M1, has been consistently linked to motor performance. However, the activation of M1 during motor imagery is controversial, which may account for inconsistent rehabilitation therapy outcomes using MI. Here, we examined the relationship between contralateral M1 (cM1 activation during MI and changes in sensorimotor performance. To aid cM1 activity modulation during MI, we used real-time fMRI neurofeedback-guided MI based on cM1 hand area blood oxygen level dependent (BOLD signal in healthy subjects, performing kinesthetic MI of pinching. We used multiple regression analysis to examine the correlation between cM1 BOLD signal and changes in motor performance during an isometric pinching task of those subjects who were able to activate cM1 during motor imagery. Activities in premotor and parietal regions were used as covariates. We found that cM1 activity was positively correlated to improvements in accuracy as well as overall performance improvements, whereas other regions in the sensorimotor network were not. The association between cM1 activation during MI with performance changes indicates that subjects with stronger cM1 activation during MI may benefit more from MI training, with implications towards targeted neurotherapy.

  19. CAN-based Synchronized Motion Control for Induction Motors

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed.The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results,the multi-motor synchronized motion control system,via the CAN bus,has been successfully implemented.With the employment of the advanced synchronized motion control strategy,the synchronization performance can be significantly improved.

  20. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  1. Computer games and fine motor skills.

    Science.gov (United States)

    Borecki, Lukasz; Tolstych, Katarzyna; Pokorski, Mieczyslaw

    2013-01-01

    The study seeks to determine the influence of computer games on fine motor skills in young adults, an area of incomplete understanding and verification. We hypothesized that computer gaming could have a positive influence on basic motor skills, such as precision, aiming, speed, dexterity, or tremor. We examined 30 habitual game users (F/M - 3/27; age range 20-25 years) of the highly interactive game Counter Strike, in which players impersonate soldiers on a battlefield, and 30 age- and gender-matched subjects who declared never to play games. Selected tests from the Vienna Test System were used to assess fine motor skills and tremor. The results demonstrate that the game users scored appreciably better than the control subjects in all tests employed. In particular, the players did significantly better in the precision of arm-hand movements, as expressed by a lower time of errors, 1.6 ± 0.6 vs. 2.8 ± 0.6 s, a lower error rate, 13.6 ± 0.3 vs. 20.4 ± 2.2, and a shorter total time of performing a task, 14.6 ± 2.9 vs. 32.1 ± 4.5 s in non-players, respectively; p computer games on psychomotor functioning. We submit that playing computer games may be a useful training tool to increase fine motor skills and movement coordination.

  2. Market transformation strategies for electric motors

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldi, P.; De Almeida, A.

    1997-07-01

    Under the PACE program, an European Union action program for improving the efficiency of electricity end use, a number of different actions are being pursued. These actions are selected so as to achieve the biggest impact in terms of cost and effort of achieving these savings. One of the priority areas for PACE is electric motor systems, because they are responsible for about 70% of the electricity used in the industrial sector and about 35% in the commercial sector. The paper presents the results and conclusions of a European characterization study. The study examined the average usage of motors, the market structure and the estimated energy consumption for the major application of motors in the industrial and commercial sectors. The paper discusses the main barriers to the penetration of efficient motor systems and presents the European strategy to achieve part of the large savings potential. The strategy will be based on a mix of policy actions (energy labels, minimum efficiency standards and demand-pull actions) to transform the market. The paper focuses particularly on the use of market forces to achieve energy efficiency improvements, given the present political climate adverts to mandatory efficiency standards.

  3. Construction of scientific knowledge in motor learning: history and perspectives

    OpenAIRE

    Cláudio Márcio Oliveira

    2008-01-01

    The present work aims to inquire the construction of scientific knowledge in the motor learning area. A necessary historical retrospective on this study field considers the epistemology of Francis Bacon, Karl Popper, Paul Feyerabend and Thomas Kuhn. Bacon and Popper’s conceptions show to be inadequate to explain the scientific progress of motor learning. Feyerabend’s ideas are also inadequate as they lack coherency, even though in some aspects they are adequate. The Kuhnian approach, however,...

  4. Passive control of Permanent Magnet Synchronous Motor chaotic systems

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; WANG Jia-jun; ZHAO Guang-zhou

    2005-01-01

    Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.

  5. Simulation Research of Fault Model of Detecting Rotor Dynamic Eccentricity in Brushless DC Motor Based on Motor Current Signature Analysis

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Brushless Direct Current (BLDC) motor is widely used in aerospace area, CNC machines and servo systems that require the high control accuracy Once the faults occur in the motor, it will cause great damage to the whole system. Mechanical faults are common in electric machines, and account for up to 50%-60% of the faults. Approximately, 80% of the mechanical faults lead to the eccentricity. So it is necessary to monitor the health condition of the motor to ensure the faults can be detected earlier and measures will be taken to imorove the reliability.

  6. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic...... current with 1/6 amplitude is added to the 1st harmonic current. This claim is verified and the optimization of the motor design is extended to, beyond the stator tooth width, also to include the inner diameter of the stator. This means that the lamination sheet is optimized according to two geometrical...

  7. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  8. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Uehara, Shintaro; Hirose, Satoshi; Yamamoto, Shinji; Naito, Eiichi

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance. PMID:27516909

  9. Morphological, motor and technical determinants of fighting efficiency of Croatian female cadet age karate athletes.

    Science.gov (United States)

    Jukić, Josefina; Katić, Ratko; Bala, Gustav

    2013-12-01

    The aim of this research was to determine the significance of morphological factors, factors of basic motor and specific motor abilities, and the factors of technical efficiency, on the karate fight success in Croatian female cadet karate athletes. With this purpose, the group of 18 anthropometric measures, 10 basic motor tests, 5 situational karate motor tests, the group of 8 evaluations of 6 basic karate techniques, and 2 karate kata performances was applied on the sample of 101 Croatian karateka aged 14 to 16. Inside the morphological area, the factor analysis isolated: Body mass and volume factor, Subcutaneous fat tissue factor, Longitudinal skeleton dimensionality factor, and Transversal fist dimensionality factor; in the basic motor area: General motor efficiency factor; in the situational motor area: General specific motor efficiency factor; in the area of karate technique performance evaluation: General technical efficiency factor. After that, the application of canonical discriminative analysis determined the differences between high and lower quality karate athletes in the overall area of the isolated factors. The discriminative function showed that high quality female karate athletes compared to those of lower quality differ the most in higher technical efficiency, higher basic and specific motor efficiency, while having somewhat less fat tissue and somewhat wider wrist and fist diameter.

  10. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment.

    Science.gov (United States)

    Köbe, Theresa; Witte, A Veronica; Schnelle, Ariane; Lesemann, Anne; Fabian, Sonja; Tesky, Valentina A; Pantel, Johannes; Flöel, Agnes

    2016-05-01

    Previous studies in older adults suggested beneficial effects of omega-3 fatty acid (FA) supplementation, aerobic exercise, or cognitive stimulation on brain structure and function. However, combined effects of these interventions in patients suffering from mild cognitive impairment (MCI) are unknown. Using a randomized interventional design, we evaluated the effect of combined omega-3 FA supplementation, aerobic exercise and cognitive stimulation (target intervention) versus omega-3 FA supplementation and non-aerobic exercise (control intervention) on cognitive function and gray matter volume in patients with MCI. Moreover, we analyzed potential vascular, metabolic or inflammatory mechanisms underlying these effects. Twenty-two MCI patients (8 females; 60-80years) successfully completed six months of omega-3 FA intake, aerobic cycling training and cognitive stimulation (n=13) or omega-3 FA intake and non-aerobic stretching and toning (n=9). Before and after the interventions, cognitive performance, magnetic resonance imaging of the brain at 3T (n=20), intima-media thickness of the internal carotid artery and serum markers of glucose control, lipid and B-vitamin metabolism, and inflammation were assessed. Intervention-related changes in gray matter volume of Alzheimer's disease (AD)-related brain regions, i.e., frontal, parietal, temporal and cingulate cortex were examined using voxel-based morphometry of high resolution T1-weighted images. After the intervention period, significant differences emerged in brain structure between groups: Gray matter volume decreased in the frontal, parietal and cingulate cortex of patients in the control intervention, while gray matter volume in these areas was preserved or even increased after the target intervention. Decreases in homocysteine levels in the target intervention group were associated with increases in gray matter volume in the middle frontal cortex (p=0.010). No significant differences in cognitive performance or

  11. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    Science.gov (United States)

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the d

  12. Multimotor Driven Cargos: From Single Motor under Load to the Role of Motor-Motor Coupling.

    Science.gov (United States)

    Peker, Itay; Granek, Rony

    2016-07-01

    Motor proteins constitute an essential part of the cellular machinery. They have been the subject of intensive studies in the past two decades. Yet, when several motors simultaneously carry a single cargo, the effect of motor-motor coupling, such as mutual stalling and jamming, remains unclear. We commence by constructing a general model for single motor motion, which is a product of a derived load-dependent expression and a phenomenological motor specific function. Forming the latter according to recent single molecule measurements for a given load, the model correctly predicts the motor full step-size distribution for all other measured loads. We then use our proposed model to predict transport properties of multimotor complexes, with particular attention to 1-dimensional constructs with variable flexibility, motor density, and number of motors: (i) a chain of motors connected by springs, a recently studied construction of a pair, and (ii) an array of motors all connected by identical springs to a stiff rod, which is essentially a mirror image of standard gliding motility assays. In both systems, and for any number of carrying motors, we find that, while low flexibility results in a strongly damped velocity, increased flexibility renders an almost single motor velocity. Comparing our model based simulations to recent gliding assays we find remarkable qualitative agreement. We also demonstrate consistency with other multimotor motility assays. In all cases, the characteristic spring constant, that controls the crossover behavior between high and low velocity regimes, is found to be the stalling force divided by the mean step size. We conjecture that this characteristic spring constant can serve as a tool for engineering multimotor complexes. PMID:27044876

  13. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  14. Motor Equivalence in Speech Production

    OpenAIRE

    Perrier, Pascal; Fuchs, Susanne

    2015-01-01

    International audience The first section provides a description of the concepts of “motor equivalence” and “degrees of freedom”. It is illustrated with a few examples of motor tasks in general and of speech production tasks in particular. In the second section, the methodology used to investigate experimentally motor equivalence phenomena in speech production is presented. It is mainly based on paradigms that perturb the perception-action loop during on-going speech, either by limiting the...

  15. High-performance motor drives

    OpenAIRE

    Kazmierkowski, Marian P.; García Franquelo, Leopoldo; Rodríguez, José; Pérez, Marcelo; León Galván, José Ignacio

    2011-01-01

    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from...

  16. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  17. Intraoperative monitoring of the motor function: experimental and clinical study.

    Science.gov (United States)

    Kaneko, M; Fukamachi, A; Sasaki, H; Miyazawa, N; Yagishita, T; Nukui, H

    1988-01-01

    Manipulation of the lesions adjacent to the primary motor area or the motor pathway is troublesome for neurosurgeons because they lack an effective method to determine the primary motor area or to monitor motor function in the operative room. It will be of great value to establish a monitoring method of the corticospinal tract under general anaesthesia. We recorded the motor evoked potential (MEP) from direct motor cortex stimulation in cats and showed that it derives almost purely from the corticospinal tract. Then we used this technique during the operation of the resection of tumours near the primary motor area or the motor pathway. 1. Experimental study: Twenty adult cats were used in this study. Recording electrodes were flexible bipolar catheter electrodes inserted into the spinal epidural space. Stimulating electrodes were silver ball electrode on the cortex (anode) and needle electrode in the temporal muscle (cathode). Stimulation of 4-24 V, 5-10 Hz and 0.2 msec in duration were done and evoked potentials signals were averaged 60 to 512 times. MEP with multiple peaks was obtained that had a 112 msec conduction velocity in the spinal cord. We found the same signals from the stimulation of ipsilateral cerebral peduncle. Radiofrequency lesioning of ipsilateral cerebral peduncle produced a loss of MEP. These results show that MEP derives from the corticospinal tract. Significant wave form change, with components of short latency, was noted by the excessively intense stimuli. We supposed that superimposition of the signals from the extrapyramidal pathways, excited in the brain stem, results in this change.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Motor cortical plasticity induced by motor learning through mental practice.

    Directory of Open Access Journals (Sweden)

    Laura eAvanzino

    2015-04-01

    Full Text Available Several investigations suggest that actual and mental actions trigger similar neural substrates. Motor learning via physical practice results in long-term potentiation (LTP-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. However, whether this neuroplasticity process contributes to improve motor performance through mental practice remains to be determined. Here, we tested skill learning-dependent changes in primary motor cortex (M1 excitability and plasticity by means of transcranial magnetic stimulation in subjects trained to physically execute or mentally perform a sequence of finger opposition movements. Before and after physical practice and motor-imagery practice, M1 excitability was evaluated by measuring the input-output (IO curve of motor evoked potentials. M1 long-term potentiation (LTP and long-term depression (LTD-like plasticity was assessed with paired-associative stimulation (PAS of the median nerve and motor cortex using an interstimulus interval of 25 ms (PAS25 or 10 ms (PAS10, respectively. We found that even if after both practice sessions subjects significantly improved their movement speed, M1 excitability and plasticity were differentially influenced by the two practice sessions. First, we observed an increase in the slope of IO curve after physical but not after motor-imagery practice. Second, there was a reversal of the PAS25 effect from LTP-like plasticity to LTD-like plasticity following physical and motor-imagery practice. Third, LTD-like plasticity (PAS10 protocol increased after physical practice, whilst it was occluded after motor-imagery practice. In conclusion, we demonstrated that motor-imagery practice lead to the development of neuroplasticity, as it affected the PAS25- and PAS10- induced plasticity in M1. These results, expanding the current knowledge on how motor-imagery training shapes M1 plasticity, might have a potential impact in

  19. Overview of Bearingless Induction Motors

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2014-01-01

    Full Text Available Bearingless induction motors combining functions of both torque generation and noncontact magnetic suspension together have attracted more and more attention in the past decades due to their definite advantages of compactness, simple structure, less maintenance, no wear particles, high rotational speed, and so forth. This paper overviews the key technologies of the bearingless induction motors, with emphasis on motor topologies, mathematical models, and control strategies. Particularly, in the control issues, the vector control, independent control, direct torque control, nonlinear decoupling control, sensorless control, and so forth are investigated. In addition, several possible development trends of the bearingless induction motors are also discussed.

  20. Infranuclear ocular motor disorders.

    Science.gov (United States)

    Lueck, Christian J

    2011-01-01

    This chapter covers the very large number of possible disorders that can affect the three ocular motor nerves, the neuromuscular junction, or the extraocular muscles. Conditions affecting the nerves are discussed under two major headings: those in which the site of damage can be anatomically localized (e.g., fascicular lesions and lesions occurring in the subarachnoid space, the cavernous sinus, the superior orbital fissure, or the orbit) and those in which the site of the lesion is either nonspecific or variable (e.g., vascular lesions, tumors, "ophthalmoplegic migraine," and congenital disorders). Specific comments on the diagnosis and management of disorders of each of the three nerves follow. Ocular motor synkineses (including Duane's retraction syndrome and aberrant regeneration) and disorders resulting in paroxysms of excess activity (e.g., neuromyotonia) are then covered, followed by myasthenia gravis and other disorders that affect the neuromuscular junction. A final section discusses disorders of the extraocular muscles themselves, including thyroid disease, orbital myositis, mitochondrial disease, and the muscular dystrophies. PMID:21601071

  1. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  2. Interactive visuo-motor therapy system for stroke rehabilitation.

    Science.gov (United States)

    Eng, Kynan; Siekierka, Ewa; Pyk, Pawel; Chevrier, Edith; Hauser, Yves; Cameirao, Monica; Holper, Lisa; Hägni, Karin; Zimmerli, Lukas; Duff, Armin; Schuster, Corina; Bassetti, Claudio; Verschure, Paul; Kiper, Daniel

    2007-09-01

    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results. PMID:17687578

  3. Digital Signal Controller Based Digital Control of Brushless DC Motor

    Directory of Open Access Journals (Sweden)

    Anjana Elizabeth Thomas

    2013-07-01

    Full Text Available This paper presents the digital control of a brushless dc (BLDC motor using TMS320F2812 DSP controller and an EPROM. The real-time control of electrical motors is an application area that is not usually the domain of Digital Signal Processors. The TMS320F2812 has got dedicated modules for digital motor control. Control algorithms used for the control has been in TMS320F2812 DSP controller. The output of the driver is 6 independent PWM pulses that have to be given to the corresponding gates of the six MOSFETs power switches used in the three-phase bridge driving circuit whose output is given to the stator of the Brushless DC Motor. The commutation technique used in this work is the trapezoidal commutation owing to its excellent speed and current control and it has been implemented using an EPROM

  4. Brain areas activated by uncertain reward-based decision-making in healthy volunteers

    OpenAIRE

    Guo, Zongjun; Chen, Juan; Liu, Shien; Li, Yuhuan; Sun, Bo; Gao, Zhenbo

    2013-01-01

    Reward-based decision-making has been found to activate several brain areas, including the ventrolateral prefrontal lobe, orbitofrontal cortex, anterior cingulate cortex, ventral striatum, and mesolimbic dopaminergic system. In this study, we observed brain areas activated under three degrees of uncertainty in a reward-based decision-making task (certain, risky, and ambiguous). The tasks were presented using a brain function audiovisual stimulation system. We conducted brain scans of 15 healt...

  5. Energy-saving motor; Energiesparmotor

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes the development and testing of an advanced electrical motor using a permanent-magnet rotor. The aims of the project - to study the technical feasibility and market potential of the Eco-Motor - are discussed and the three phases of the project described. These include the calculation and realisation of a 250-watt prototype operating at 230 V, the measurement of the motor's characteristics as well as those of a comparable asynchronous motor on the test bed at the University of Applied Science in Lucerne, Switzerland, and a market study to establish if the Eco-Motor and its controller can compete against normal asynchronous motors. Also, the results of an analysis of the energy-savings potential is made, should such Eco-Motors be used. Detailed results of the three phases of the project are presented and the prospects of producing such motors in Switzerland for home use as well as for export are examined.

  6. Motor Coordination and Executive Functions

    Science.gov (United States)

    Michel, Eva

    2012-01-01

    Since Piaget, the view that motor and cognitive development are interrelated has gained wide acceptance. However, empirical research on this issue is still rare. Few studies show a correlation of performance in cognitive and motor tasks in typically developing children. More specifically, Diamond A. (2000) hypothesizes an involvement of executive…

  7. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  8. Similarities between GCS and human motor cortex: complex movement coordination

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  9. Motor-operated gearbox efficiency

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  10. Letecký motor

    OpenAIRE

    Kalugin, Ivan

    2011-01-01

    Tato diplomová práce pojednává o konstrukčním návrhu hnacího ústrojí pro plochý letecký zážehový šestiválcový motor o výkonu 102 kW. Dále rozborem vyváženosti pro dané uspořádání motoru a pevnostní kontrolou rozvidlené ojnice. This thesis is focused to design piston rods for aircraft petrol six-cylinder engine with 102 kW output power and project their form. Other part deals with analysis of balancing of arranging and fort control one of piston rod. D

  11. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  12. Magnetic bearing and motor

    Science.gov (United States)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  13. Magnetický motor

    OpenAIRE

    Aubrecht, Ondřej

    2010-01-01

    V předkládané bakalářské práci jsou analyzovány a vzájemně porovnávány vybrané druhy magnetických motorů. U každého motoru je uveden krátký popis a kritické zhodnocení jeho vlastností. V další části jsou všechny magnetické motory porovnány a je vybrán typ motoru pro simulaci. Simulace jsou provedeny v programech COMSOL Multiphysics a Femm. V poslední části práce je simulace ověřena na reálném prototypu magnetického motoru a zhodnocení výsledků.

  14. Study on Current Sensorless Vector Control Method for Electric Vehicle Drive Motor

    Directory of Open Access Journals (Sweden)

    Xiaoyong Shen

    2013-07-01

    Full Text Available With the aggravation of environment pollution and the reduction of petroleum resources, the development of electric vehicle (EV draws more and more people’s attention. In the EV research field, that seeking for a high efficient and reliable motor control method that suits the operating conditions and characteristics of the vehicle drive motor has become one of the key techniques that need to be broken through urgently. Owing to the problems that the efficient work area is narrow and it leads to over-current phenomenon when traditional motor vector control method is applied to vehicle drive motor, this paper presents a current sensorless vector control technique for electric vehicle drive motor. According to motor speed and command torque which is gained from the speed loop control, this method directly controls the magnitude and phase angle of voltage vector to realize the orientation control of the magnetic field and then achieve the purpose of controlling the motor torque and speed. The feasibility and effectiveness of this method are verified by simulation results and bench test. Moreover, this method can not only improve the efficient work area, but also increase the reliability of motor control system. At the same time, it overcomes the dependence on the current sensor, circumvents the over-current defect caused by traditional motor vector control approach and reduces its cost. So it is a suitable and efficient control method for electric vehicle drive motor.  

  15. Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review

    OpenAIRE

    Kokotilo, K J; Eng, J; Curt, A.

    2009-01-01

    Reorganization of brain function in people with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensori-motor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and sub-cortical brain areas in people with SCI can indicate principal patterns of brain reorganization when the neurotrauma is...

  16. Application of the MRI diffusion tensor imaging for the astrocytic tumor in motor function area%磁共振弥散张量成像在运动功能区星形胶质细胞瘤手术中的运用

    Institute of Scientific and Technical Information of China (English)

    陈建; 万政强; 施炜; 李敏

    2009-01-01

    目的 探讨磁共振弥散张量成像(DTI)在运动区脑星形胶质细胞瘤恶性程度预测及手术方案制定的临床应用价值.方法 33例运动功能区星形细胞瘤患者,术前进行DTI检查,测量表观弥散系数(ADC值)及各向异性分数(FA值)并重建i维白质纤维束示踪图(DTT图).结果 不同级别星形细胞瘤的肿瘤实质区ADC值及瘤周水肿区FA值存在差异;DTT图可以清楚显示运动区锥体束形态变化及与肿瘤之间的关系,在此基础上指导手术,效果满意.结论 DTI中ADC、FA值可以区别肿瘤组织与正常神经组织,有助于星形细胞瘤分级;DTT图可以优化运动功能区星形细胞瘤切除的手术方案,可最大范围切除肿瘤并有效保护重要白质纤维束.%Objective Astrocytic tumors in motor area often grow infihratively with worse outcome. It is significant to identify the tumor infiltrating field before the operation to improve the outcome of surgery. Diffusion tensor imaging(DTI) is an advanced quantitative form of diffusion-weighted imaging. The study is to discuss the clinical application of DTI in identifying, forecasting the grades of astrocytoma and choosing the best procedure for resecting astrocytoma. Method The clinical data of consecutive 33 patients with astrocytoma in motor function area underwent DTI examination before the operation. Results Compared with normal brain tissue, significant differences of ADC and FA were found in solid area of astrocytoma necrotic region, edema region(P<0.05). Significant differences of ADC were also found in solid tumor compared with necrotic region and edema region respectively(P<0.05). By the imaging guidance of DTI, we could show white matter fiber tracts of the motor area and evaluate the relationship between astrocytoma and white matter fiber for the operation. Conclusions ADC and FA can be used to differentiate normal brain tissue from astrocytoma. According to the change of white matter fiber tracts around

  17. A network for audio-motor coordination in skilled pianists and non-musicians.

    Science.gov (United States)

    Baumann, Simon; Koeneke, Susan; Schmidt, Conny F; Meyer, Martin; Lutz, Kai; Jancke, Lutz

    2007-08-01

    Playing a musical instrument requires efficient auditory and motor processing. Fast feed forward and feedback connections that link the acoustic target to the corresponding motor programs need to be established during years of practice. The aim of our study is to provide a detailed description of cortical structures that participate in this audio-motor coordination network in professional pianists and non-musicians. In order to map these interacting areas using functional magnetic resonance imaging (fMRI), we considered cortical areas that are concurrently activated during silent piano performance and motionless listening to piano sound. Furthermore we investigated to what extent interactions between the auditory and the motor modality happen involuntarily. We observed a network of predominantly secondary and higher order areas belonging to the auditory and motor modality. The extent of activity was clearly increased by imagination of the absent modality. However, this network did neither comprise primary auditory nor primary motor areas in any condition. Activity in the lateral dorsal premotor cortex (PMd) and the pre-supplementary motor cortex (preSMA) was significantly increased for pianists. Our data imply an intermodal transformation network of auditory and motor areas which is subject to a certain degree of plasticity by means of intensive training. PMID:17603027

  18. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    Science.gov (United States)

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem. PMID:20144945

  19. Actions to promote energy efficient electric motors. Motors study group

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

    1996-10-01

    Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

  20. Efficient IEC permanent-magnet motor (3 kW) - Final report; Effizienter IEC Permanent-Magnet-Motor (3 kW) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Biner, H. P.; Evequoz, B. [Haute Ecole valaisanne, Sion (Switzerland); Salathe, D. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland)

    2008-04-15

    Efficient permanent-magnet motors achieve in the area up to 100 kW a higher efficiency than induction machines (standard motors). A simple and fast energy saving option is the exchange of inefficient standard motors. The objective of this work is to install a 3 kW permanent-magnet motor in a standard IEC housing and the optimization of the design for high efficiency. Another objective is the development and the realization of an efficient variable speed control. The efficiency of the motor and the inverter with the control system must be demonstrated by tests. These tasks have been split between Circle Motor AG and the universities of applied sciences of Valais and Lucerne. Considering high-efficiency and low manufacturing cost, a brushless DC solution was adopted. This resulted in an optimum design of the motor and the control system realized with a three-phase rectifier, a buck converter with variable DC voltage, and a three-phase inverter feeding full positive and negative current to two of the legs simultaneously. The maximum measured efficiency is about 96.5% for the inverter and 92% for the motor. With the advantage of the variable speed operation, the efficiency of the realized 3 kW permanent magnet motor together with the control system is always higher than the efficiency of a measured class EFF1 induction motor, even with a direct connection to the grid. The permanent-magnet motor is also about 10 kg lighter. The cost calculation shows that the permanent-magnet motor can be competitive with the induction motor when speed control is desired. This is also the domain with the largest potential for energy savings from variable speed pumps, compressors, fans. (author)

  1. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates.

    Science.gov (United States)

    Tanaka, Hirokazu; Sejnowski, Terrence J

    2015-02-15

    The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates.

  2. Dopaminergic mesocortical projections to M1: role in motor learning and motor cortex plasticity

    Directory of Open Access Journals (Sweden)

    Jonas Aurel Hosp

    2013-10-01

    Full Text Available Although the architecture of a dopaminergic (DA system within the primary motorcortex (M1 was well characterized anatomically, its functional significance remainedobscure for a long time. Recent studies in rats revealed that the integrity ofdopaminergic fibers in M1 is a prerequisite for successful acquisition of motor skills.This essential contribution of DA for motor learning is plausible as it modulates M1circuitry at multiple levels thereby promoting plastic changes that are required forinformation storage: at the network level, DA increases cortical excitability andenhances the stability of motor maps. At the cellular level, DA induces the expressionof learning related genes via the transcription factor c-fos. At the level of synapses,DA is required for the formation of long-term potentiation (LTP, a mechanism thatlikely is a fingerprint of a motor memory trace within M1. Dopaminergic fibersinnervating M1 originate within the midbrain, precisely the ventral tegmental area(VTA and the medial portion of substantia nigra (SN. Thus, they could be part of themeso-cortico-limibic pathway – a network that provides information about saliencyand motivational value of an external stimulus and is commonly referred as

  3. Submersible canned motor mixer pump

    Science.gov (United States)

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  4. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  5. Terminal decline in motor function.

    Science.gov (United States)

    Wilson, Robert S; Segawa, Eisuke; Buchman, Aron S; Boyle, Patricia A; Hizel, Loren P; Bennett, David A

    2012-12-01

    The study aim was to test the hypothesis that motor function undergoes accelerated decline proximate to death. As part of a longitudinal clinical-pathologic study, 124 older Roman Catholic nuns, priests, and monks completed at least 7 annual clinical evaluations, died, and underwent brain autopsy and uniform neuropathologic examination. Each evaluation included administration of 11 motor tests and 19 cognitive tests from which global measures of motor and cognitive function were derived. The global motor measure (baseline M = 0.82, SD = 0.21) declined a mean 0.024 unit per year (95% confidence interval [CI]: -0.032, -0.016) until a mean of 2.46 years (95% CI: -2.870, -2.108) before death when rate of decline increased nearly fivefold to -0.117 unit per year (95% CI: -0.140, -0.097). The global cognitive measure (baseline M = 0.07, SD = 0.45) declined a mean of 0.027-unit per year (95% CI: -0.041, -0.014) until a mean of 2.76 years (95% CI: -3.157, -2.372) before death when rate of decline increased more than 13-fold to -0.371 unit per year (95% CI: -0.443, -0.306). Onset of terminal motor decline was highly correlated with onset of terminal cognitive decline (r = .94, 95% CI: 0.81, 0.99), but rates of motor and cognitive change were not strongly correlated (preterminal r = .20, 95% CI: -0.05, 0.38; terminal r = .34, 95% CI: 0.03, 0.62). Higher level of plaques and tangles was associated with earlier onset of terminal decline in motor function, but no pathologic measures were associated with rate of preterminal or terminal motor decline. The results demonstrate that motor and cognitive functions both undergo a period of accelerated decline in the last few years of life. PMID:22612603

  6. Motor and non-motor behaviour in experimental Huntington's disease.

    Science.gov (United States)

    Zeef, Dagmar H; Vlamings, Rinske; Lim, Lee Wei; Tan, Sonny; Janssen, Marcus L F; Jahanshahi, Ali; Hoogland, Govert; Prickaerts, Jos; Steinbusch, Harry W M; Temel, Yasin

    2012-01-15

    In this study, we investigated motor and non-motor behaviour in the transgenic rat model of Huntington's disease (tgHD). In particular, we were interested in the development and changes of motor and non-motor features (anxiety, motivation and hedonia) of disease over time and their interactions. We found tgHD animals to be hyperkinetic in the open field test compared to their wild-type littermates at all ages tested, which was accompanied by reduced anxiety-like behaviour in the open field test and the elevated zero maze, but not in the home cage emergence test. No major changes were found in hedonia (sucrose intake test) and motivation for food (food intake test). Our data suggest that hyperkinetic features and reduced-anxiety in the tgHD rats are associated behaviours and are seen in the earlier stages of the disease. PMID:22001615

  7. Motor Integrated Variable Speed Drives

    DEFF Research Database (Denmark)

    Singh, Yash Veer

    A new trend in the variable speed drives (VSDs) is to develop fully integrated systems, which lead to low-cost products with shorter design cycles. Motor Integrated design of VSDs will reduce cable length to connect drive with machine windings and installation time for end user. The electric drives...... so it can fit inside the motor housing. Weight and volume of a filter inductor has to come down drastically to make it a suitable power converter for motor integrated variable speed drives. Introduction of active power electronic switches can ensure very high performance and small size...

  8. IC Design of Motor Ignitor

    Institute of Scientific and Technical Information of China (English)

    TANG Zheng-wei; ZHOU Zhong-qiang

    2008-01-01

    On the basis of analysing traditional motor ignitor, a new motor ignitor design with precise ignition angle control, consistency and low cost is proposed. Techniques of low pertinence to process and power supply are introduced to promote its stability, reliability and unity. This circuit is implemented with a standard CMOS technology with perfect electric static discharge(ESD) design and can work under a broad range of power supply from 3V~5V with a quiescent current less than 2mA and can be widely used in motor with a displacement of 125ml and below.

  9. Frydenbø SABB Motor

    OpenAIRE

    Wong, Caitlin; Gjerdevik, Helene; Cengic, Nina; Fiskerstrand, Sofie Volle

    2011-01-01

    Four international marketing students conducted this thesis on behalf of Frydenbø SABB Motor AS. Frydenbø SABB Motor AS operates as a total supplier of marine diesel engines and equipment, and of their main activities evolves around the lifeboat engine market. The background for the thesis was Frydenbø SABB Motor AS’ desire to establish contact with a manufacturer located in China to produce a new engine to be launched on the Asian lifeboat market. With this new engine Fryde...

  10. Repetition-induced plasticity of motor representations of action sounds.

    Science.gov (United States)

    Bourquin, Nathalie M-P; Simonin, Alexandre; Clarke, Stephanie

    2013-01-01

    Action-related sounds are known to increase the excitability of motoneurones within the primary motor cortex (M1), but the role of this auditory input remains unclear. We investigated repetition priming-induced plasticity, which is characteristic of semantic representations, in M1 by applying transcranial magnetic stimulation pulses to the hand area. Motor evoked potentials (MEPs) were larger while subjects were listening to sounds related versus unrelated to manual actions. Repeated exposure to the same manual-action-related sound yielded a significant decrease in MEPs when right, hand area was stimulated; no repetition effect was observed for manual-action-unrelated sounds. The shared repetition priming characteristics suggest that auditory input to the right primary motor cortex is part of auditory semantic representations. PMID:23064984

  11. Favouritism in the motor system: social interaction modulates action simulation.

    Science.gov (United States)

    Kourtis, Dimitrios; Sebanz, Natalie; Knoblich, Günther

    2010-12-23

    The ability to anticipate others' actions is crucial for social interaction. It has been shown that this ability relies on motor areas of the human brain that are not only active during action execution and action observation, but also during anticipation of another person's action. Recording electroencephalograms during a triadic social interaction, we assessed whether activation of motor areas pertaining to the human mirror-neuron system prior to action observation depends on the social relationship between the actor and the observer. Anticipatory motor activation was stronger when participants expected an interaction partner to perform a particular action than when they anticipated that the same action would be performed by a third person they did not interact with. These results demonstrate that social interaction modulates action simulation.

  12. Dyspraxia, Motor Function and Visual-Motor Integration in Autism

    OpenAIRE

    M. Miller; Chukoskie, L.; Zinni, M.; Townsend, J.; Trauner, D.

    2014-01-01

    This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and B...

  13. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    Science.gov (United States)

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits.

  14. Motor development of children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Francisco Rosa Neto

    2015-09-01

    Full Text Available Objective:To compare both global and specific domains of motor development of children with attention deficit hyperactivity disorder (ADHD with that of typically developing children.Methods:Two hundred children (50 children with clinical diagnoses of ADHD, according to the DSM-IV-TR and 150 typically developing controls, aged 5 to 10 years, participated in this cross-sectional study. The Motor Development Scale was used to assess fine and global motricity, balance, body schema, and spatial and temporal organization.Results:Between-group testing revealed statistically significant differences between the ADHD and control groups for all domains. The results also revealed a deficit of nearly two years in the motor development of children with ADHD compared with the normative sample.Conclusion:The current study shows that ADHD is associated with a delay in motor development when compared to typically developing children. The results also suggested difficulties in certain motor areas for those with ADHD. These results may point to plausible mechanisms underlying the relationship between ADHD and motor difficulties.

  15. Understanding motor acts and motor intentions in Williams syndrome.

    Science.gov (United States)

    Sparaci, Laura; Stefanini, Silvia; Marotta, Luigi; Vicari, Stefano; Rizzolatti, Giacomo

    2012-06-01

    Williams syndrome (WS) is a rare genetic disorder associated with unusually hyper-social demeanor and ease with strangers. These personality traits are accompanied by difficulties in social interactions, possibly related, at least in part, to a difficulty in understanding others' mental states. Studies on mentalizing capacities in individuals with WS have often led to contrasting results, some studies revealing specific impairments, others highlighting spared mentalizing capacities. So far, however, no study investigated the performance of individuals with WS in non-inferential understanding of others' motor intentions. In the present study we investigated this capacity by using a computer-based behavioral task using pictures of hand-object interactions. We asked individuals with WS first to describe what the other was doing (i.e. a task implying no kind of intention reading), and secondly, if successful in answering the first question, to describe the motor intention underlying the observed motor acts (i.e. why an act was being done, a task requiring non-inferential motor intention understanding). Results showed that individuals with WS made more errors in understanding what the other was doing (i.e. understanding a motor act) compared to both mental-age matched controls and chronological-age matched peers with typical development, while showing mental-age appropriate performance in understanding why an individual was acting (i.e. understanding a motor intention). These findings suggest novel perspectives for understanding impairments in social behavior in WS.

  16. Motor Proficiency and Body Mass Index of Preschool Children: In Relation to Socioeconomic Status

    Science.gov (United States)

    Mülazimoglu-Balli, Özgür

    2016-01-01

    The aim of the study was to investigate the correlation between motor proficiency and body mass index and to assess the socioeconomic status differences in motor proficiency and body mass index of preschool children. Sixty preschool children in the different socioeconomic status areas of central Denizli in Turkey participated in the study. The…

  17. Stimulation through Simulation? Motor Imagery and Functional Reorganization in Hemiplegic Stroke Patients

    Science.gov (United States)

    Johnson-Frey, Scott H.

    2004-01-01

    A key factor influencing reorganization of function in damaged neural networks of the adult brain is stimulation. How to stimulate motor areas of patients with paralyses is a formidable challenge. One possibility is to use internal movement simulations, or motor imagery, as an alternative to conventional therapeutic interventions that require…

  18. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premium® efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  19. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. PMID:26826448

  20. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury.

  1. Functional magnetic resonance imaging of the primary motor cortex in humans: response to increased functional demands

    Indian Academy of Sciences (India)

    S Khushu; S S Kumaran; R P Tripathi; A Gupta; P C Jain; V Jain

    2001-06-01

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed in six different sessions of a volunteer over a period of one month. Increased tapping rate resulted in increase in the blood oxygenation level dependent (BOLD) signal intensity as well as the volume/area of activation (pixels) in the contralateral primary motor area up to tapping rate of 120 taps/min (2 Hz), beyond which it saturates. Activation in supplementary motor area was also observed. The obtained results are correlated to increased functional demands.

  2. Cryogenic Rotary Piezoelectric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of high frequency oscillation of high force precision ceramic elements. The high power oscillations are converted to...

  3. Cryogenic Rotary Piezoelectric Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of converting the high-frequency oscillation of high-force, precision ceramic elements into useful continuous motion....

  4. Annular Hybrid Rocket Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Engineers at SpaceDev have conducted a preliminary design and analysis of a proprietary annular design concept for a hybrid motor. A U.S. Patent application has...

  5. Epilepsy and Fine Motor Function

    OpenAIRE

    J Gordon Millichap; Millichap, John J.

    2014-01-01

    Investigators at Kocaeli University, Pediatric Neurology OP Clinic, Turkey, studied the relationship between fine motor skills and seizure and treatment parameters in 44 children with rolandic epilepsy (RE) and compared to 44 healthy controls.

  6. Motor Impairments in Angelman Syndrome

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available Of 33 children and adolescents (median age 6 years investigated for learning disability, epilepsy, and motor dysfunction to detect suspected Angelman syndrome (AS, in a study at Goteborg University, Sweden, 23 fulfilled criteria for AS.

  7. High Temperature Bell Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a...

  8. Magnetic resonance imaging applied to motor neuron disease

    International Nuclear Information System (INIS)

    Objective: Differentiate Motor Neuron Disease by MRI. Material and Methods: 10 patients were studied, 7 patients had a diagnosis of definite ALS by the El Escorial criteria, 2 patients had lower motor neuron signs (LMN) and hyperreflexia and one patient had LMN signs without pain. MRI was performed: slices brain: Sagittal T1-weighted, sagittal and axial FSE T2, axial and coronal FLAIR, diffusion, singlevoxel spectroscopy in protuberances. Functional MRI with motor test; slices in cervical spine: Sagittal T1-weighted, sagittal and axial FSE T2, sagittal FSIR. Results: The 7 patients with definite ALS by El Escorial criteria and 2 patients with LMN signs and hyperreflexia: hyperintensity signal in FSE T2 and FLAIR extending from the motor cortex down to the corona radiate, posterior limb of internal capsules, cerebral peduncles and protuberance base; FSE T2: hypointensity sign in motor cortex; elevation in diffusivity and hyperintensity signal in ADC in posterior limb of internal capsule; reduction of NAA, high levels of Glutamine-Glutamate and of Colina. One of these 9 patients showed disc hernia in C4-5, and other patient in C3-C4, C4-C5 without cord lesion. The patient with LMN signs without pain showed normal brain and disc hernia C5-C6, hypertrophy yellow ligament, anterior-posterior diminution of medullar canal, hyperintensity signal in spine cord in the same level in sagittal FSIR. fMRI: increase signal in contralateral, ipsilateral motor area, and areas involved in initiation and planning movement. Conclusion: MRI allow differentiation between ALS and myelopathy cervical spondylitis and others motor neuron disease. (author)

  9. Public and vehicle lighting in residential areas.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1979-01-01

    Requirements for the lighting of various types of roads and streets in residential areas are discussed. Emphasis in placed on the "woonerf" concept. The lighting of motor vehicles is discussed. The interaction between the two lighting modes is briefly indicated.

  10. Neural substrates for the motivational regulation of motor recovery after spinal-cord injury.

    Directory of Open Access Journals (Sweden)

    Yukio Nishimura

    Full Text Available It is believed that depression impedes and motivation enhances functional recovery after neuronal damage such as spinal-cord injury and stroke. However, the neuronal substrate underlying such psychological effects on functional recovery remains unclear. A longitudinal study of brain activation in the non-human primate model of partial spinal-cord injury using positron emission tomography (PET revealed a contribution of the primary motor cortex (M1 to the recovery of finger dexterity through the rehabilitative training. Here, we show that activity of the ventral striatum, including the nucleus accumbens (NAc, which plays a critical role in processing of motivation, increased and its functional connectivity with M1 emerged and was progressively strengthened during the recovery. In addition, functional connectivities among M1, the ventral striatum and other structures belonging to neural circuits for processing motivation, such as the orbitofrontal cortex, anterior cingulate cortex and pedunculopontine tegmental nucleus were also strengthened during the recovery. These results give clues to the neuronal substrate for motivational regulation of motor learning required for functional recovery after spinal-cord injury.

  11. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  12. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  13. Developmental changes in motor cortex activity as infants develop functional motor skills.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition.

  14. Developmental changes in motor cortex activity as infants develop functional motor skills.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition. PMID:27096281

  15. Short time sports exercise boosts motor imagery patterns: Implications of mental practice in rehabilitation programs

    Directory of Open Access Journals (Sweden)

    Selina Christin Wriessnegger

    2014-06-01

    Full Text Available Motor imagery (MI is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 minutes of training are enough to boost motor imagery patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA but also fronto-parietal and subcortical structures. This supports previous findings that motor imagery has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity.

  16. Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics.

    Science.gov (United States)

    Tanaka, Hirokazu

    2016-03-01

    Specialization of motor function in the frontal lobe was first discovered in the seminal experiments by Fritsch and Hitzig and subsequently by Ferrier in the 19th century. It is, however, ironical that the functional and computational role of the motor cortex still remains unresolved. A computational understanding of the motor cortex equals to understanding what movement variables the motor neurons represent (movement representation problem) and how such movement variables are computed through the interaction with anatomically connected areas (neural computation problem). Electrophysiological experiments in the 20th century demonstrated that the neural activities in motor cortex correlated with a number of motor-related and cognitive variables, thereby igniting the controversy over movement representations in motor cortex. Despite substantial experimental efforts, the overwhelming complexity found in neural activities has impeded our understanding of how movements are represented in the motor cortex. Recent progresses in computational modeling have rekindled this controversy in the 21st century. Here, I review the recent developments in computational models of the motor cortex, with a focus on optimality models, recurrent neural network models and spatial dynamics models. Although individual models provide consistent pictures within their domains, our current understanding about functions of the motor cortex is still fragmented.

  17. Estimation of physical parameters in induction motors

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik;

    1994-01-01

    Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors......Parameter estimation in induction motors is a field of great interest, because accurate models are needed for robust dynamic control of induction motors...

  18. Electric motor for laser-mechanical drilling

    Energy Technology Data Exchange (ETDEWEB)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  19. Modeling and Simulation of Five Phase Induction Motor using MATLAB/Simulink

    Directory of Open Access Journals (Sweden)

    Kiran S. Aher

    2016-05-01

    Full Text Available Three phase Induction motors are invariably used in many residential, commercial, industrial & utility applications because of low cost, reliable operation, robust operation and low maintenance. Multiphase motor drives with phase number greater than three phase leads to an improvement in the medium to high power drives application. The multiphase induction motor find application in special and critical area where high reliability is demanded such as Electric vehicles/Hybrid Electric vehicles, aerospace application, ship propulsion and locomotive traction and in high power application. This paper presents the MATLAB/Simulink implementation of Induction motor. Reference frame theory is used for simulation of the five phase induction motor. Dynamic model are employed to better understand the behavior of the induction motor in both steady state and transient state.

  20. LTD, RP, and Motor Learning.

    Science.gov (United States)

    Hirano, Tomoo; Yamazaki, Yoshito; Nakamura, Yoji

    2016-02-01

    Long-term depression (LTD) at excitatory synapses between parallel fibers and a Purkinje cell has been regarded as a critical cellular mechanism for motor learning. However, it was demonstrated that normal motor learning occurs under LTD suppression, suggesting that cerebellar plasticity mechanisms other than LTD also contribute to motor learning. One candidate for such plasticity is rebound potentiation (RP), which is long-term potentiation at inhibitory synapses between a stellate cell and a Purkinje cell. Both LTD and RP are induced by the increase in postsynaptic Ca(2+) concentration, and work to suppress the activity of a Purkinje cell. Thus, LTD and RP might work synergistically, and one might compensate defects of the other. RP induction is dependent on the interaction between GABAA receptor and GABAA receptor binding protein (GABARAP). Transgenic mice expressing a peptide which inhibits binding of GABARAP and GABAA receptor only in Purkinje cells show defects in both RP and adaptation of vestibulo-ocular reflex (VOR), a motor learning paradigm. However, another example of motor learning, adaptation of optokinetic response (OKR), is normal in the transgenic mice. Both VOR and OKR are reflex eye movements suppressing the slip of visual image on the retina during head movement. Previously, we reported that delphilin knockout mice show facilitated LTD induction and enhanced OKR adaptation, but we recently found that VOR adaptation was not enhanced in the knockout mice. These results together suggest that animals might use LTD and RP differently depending on motor learning tasks. PMID:26160222