WorldWideScience

Sample records for cinerea xylanase xyn11a

  1. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity

    Directory of Open Access Journals (Sweden)

    González Celedonio

    2010-02-01

    Full Text Available Abstract Background The Botrytis cinerea xylanase Xyn11A has been previously shown to be required for full virulence of this organism despite its poor contribution to the secreted xylanase activity and the low xylan content of B. cinerea hosts. Intriguingly, xylanases from other fungi have been shown to have the property, independent of the xylan degrading activity, to induce necrosis when applied to plant tissues, so we decided to test the hypothesis that secreted Xyn11A contributes to virulence by promoting the necrosis of the plant tissue surrounding the infection, therefore facilitating the growth of this necrotroph. Results We show here that Xyn11A has necrotizing activity on plants and that this capacity is conserved in site-directed mutants of the protein lacking the catalytic activity. Besides, Xyn11A contributes to the infection process with the necrotizing and not with the xylan hydrolyzing activity, as the catalytically-impaired Xyn11A variants were able to complement the lower virulence of the xyn11A mutant. The necrotizing activity was mapped to a 30-amino acids peptide in the protein surface, and this region was also shown to mediate binding to tobacco spheroplasts by itself. Conclusions The main contribution of the xylanase Xyn11A to the infection process of B. cinerea is to induce necrosis of the infected plant tissue. A conserved 30-amino acids region on the enzyme surface, away from the xylanase active site, is responsible for this effect and mediates binding to plant cells.

  2. Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cflxyn11A) from Cellulomonas flavigena.

    Science.gov (United States)

    Amaya-Delgado, Lorena; Mejía-Castillo, Teresa; Santiago-Hernández, Alejandro; Vega-Estrada, Jesús; Amelia, Farrés-G-S; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto; Montes-Horcasitas, María Del Carmen; Hidalgo-Lara, María Eugenia

    2010-07-01

    The Cfl xyn11A gene, encoding the endo-1,4-beta-xylanase Cfl Xyn11A from Cellulomonas flavigena, was isolated from a genomic DNA library. The open reading frame of the Cfl xyn11A gene was 999 base pairs long and encoded a polypeptide (Cfl Xyn11A) of 332 amino acids with a calculated molecular mass of 35,110Da. The Cfl xyn11A gene was expressed in Escherichia coli and the recombinant enzyme, with an estimated molecular weight of 31kDa was purified and xylanase activity was measured. Cfl Xyn11A showed optimal activity at pH 6.5 and 55 degrees C. The enzyme demonstrated moderate thermal stability as Cfl Xyn11A maintained 50% of its activity when incubated at 55 degrees C for 1h or at 45 degrees C for 6h. This is the first report describing the cloning, expression and functional characterization of an endo-1,4-beta-xylanase-encoding gene from C. flavigena. Cfl Xyn11A may be suitable for industrial applications in the food and feed industries, or in the pre-treatment of lignocellulosic biomass required to improve the yields of fermentable sugars for bioethanol production. PMID:20231092

  3. A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity.

    Science.gov (United States)

    Liao, Hanpeng; Sun, Shaowei; Wang, Pan; Bi, Wenli; Tan, Shiyong; Wei, Zhong; Mei, Xinlan; Liu, Dongyang; Raza, Waseem; Shen, Qirong; Xu, Yangchun

    2014-07-01

    A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe(2+) ions, but was inhibited strongly by Fe(3+). The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe(2+) treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe(3+) was first time demonstrated to associate tryptophan fluorescence quenching. PMID:24818699

  4. Cloning and expression of chaetomium thermophilum xylanase 11-A

    International Nuclear Information System (INIS)

    The various thermophilic fungi like Chaetomium thermophile has potential to secrete xylanase and cellulase enzymes. In the present study eukaryotic expression system of Pichia pastoris (yeast) was used to express xylanase gene. The xylanase (Xyn 11-A) gene was isolated from C. thermophile strain NIBGE-1. Primers were designed to amplify the gene, ligated into P. pastoris pPIC3.5K vector, the resultant recombinant clone pSSZ810 was transformed into the genome of P. pastoris GS115 strain through electroporation. Transformants were selected on yeast peptone dextrose medium (YPD) plates containing antibiotic geneticin (100 mg/ml) upto final concentration of 0.75 mg/ml. The maximum activity of xylanase 2.04 U/ml after incubation of 2 hours at 50 degree C was observed in the presence of 100% methanol inducer upto final concentration of 30 macro L (0.5%) as compared to control. HPLC analysis represented high peak of xylose as compared to control. SDS-PAGE indicated approx. 28 kDa protein of expressed xylanase gene. (author)

  5. [Progress in the thermophilic and alkalophilic xylanases].

    Science.gov (United States)

    Bai, Wenqin; Wang, Qinhong; Ma, Yanhe

    2014-06-01

    Xylanase is the key enzyme to degrade xylan that is a major component of hemicellulose. The enzyme has potential industrial applications in the food, feed, paper and flax degumming industries. The use of xylanases becomes more and more important in the paper industry for bleaching purposes. Xylanases used in the pulp bleaching process should be stable and active at high temperature and alkaline pH. Thermophilic and alkalophilic xylanases could be obtained by screening the wild type xylanases or engineering the mesophilic and neutral enzymes. In this paper, we reviewed recent progress of screening of the thermophilic and alkalophilic xylanases, molecular mechanism of thermal and alkaline adaptation and molecular engineering. Future research prospective was also discussed. PMID:25212001

  6. Comparative characterization of commercially important xylanase enzymes

    OpenAIRE

    Arora, Neelima; Banerjee, Amit Kumar; Mutyala, Srilaxmi; Murty, Upadhyayula Suryanarayana

    2009-01-01

    Xylanase is an industrially important enzyme having wide range of applications especially in paper industry. It is crucial to gain an understanding about the structure and functional aspects of various xylanases produced from diverse sources. In this study, a bioinformatics and molecular modeling approach was adopted to explore properties and structure of xylanases. Physico-chemical properties were predicted and prediction of motifs, disulfide bridges and secondary structure was performed for...

  7. Xylanase inhibitors bind to nonstarch polysaccharides.

    Science.gov (United States)

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  8. INDUSTRIAL APPLICATIONS AND FUTURE PROSPECTS OF MICROBIAL XYLANASES: A REVIEW

    OpenAIRE

    Saurabh Sudha Dhiman; Jitender Sharma; Bindu Battan

    2008-01-01

    Microbial enzymes such as xylanases enable new technologies for industrial processes. Xylanases (xylanolytic enzyme) hydrolyze complex polysaccharides like xylan. Research during the past few decades has been dedicated to enhanced production, purification, and characterization of microbial xylanase. But for commercial applications detailed knowledge of regulatory mechanisms governing enzyme production and functioning should be required. Since application of xylanase in the commercial sector i...

  9. Genetic variation and pathogenicity of Botrytis cinerea.

    OpenAIRE

    Vlugt-Bergmans, van der, C.J.B.

    1996-01-01

    Botrytis cinerea is a fungal pathogen of more than 200 hosts including a wide variety of economically important crops. Although many ecological and physiological studies on this destructive pathogen have been reported, not much is known about the molecular basis of the interaction of this pathogen with its various host plants. This thesis describes the use of molecular techniques to study the genetic variation and pathogenicity of B. cinerea.Genetic variation among ten strains of B. cinerea w...

  10. Partial purification and characterization of xylanase produced by Penicillium expansum

    OpenAIRE

    André Luiz de Souza Querido; Jorge Luiz Cavalcante Coelho; Elza Fernandes Araújo; Virgínia Maria Chaves-Alves

    2006-01-01

    An extracellular xylanase was found to be the major protein in the filtrate culture of Penicillium expansum when grown on 0.3 % wheat bran, which showed no xylanase multiplicity. The enzime was partial purified by.ammonium sulfate fractioning, molecular exclusion chromatography, ultrafiltration and anion exchange chromatography. The protein eluation profile showed only one form of xylanase that was partially characterized. The activity of purified xylanase was optimal at pH 5.5 and 40 ºC. The...

  11. INDUSTRIAL APPLICATIONS AND FUTURE PROSPECTS OF MICROBIAL XYLANASES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Saurabh Sudha Dhiman

    2008-11-01

    Full Text Available Microbial enzymes such as xylanases enable new technologies for industrial processes. Xylanases (xylanolytic enzyme hydrolyze complex polysaccharides like xylan. Research during the past few decades has been dedicated to enhanced production, purification, and characterization of microbial xylanase. But for commercial applications detailed knowledge of regulatory mechanisms governing enzyme production and functioning should be required. Since application of xylanase in the commercial sector is widening, an understanding of its nature and properties for efficient and effective usage becomes crucial. Study of synergistic action of multiple forms and mechanism of action of xylanase makes it possible to use it for bio-bleaching of kraft pulp and for desizing and bio-scouring of fabrics. Results revealed that enzymatic treatment leads to the enhancement in various physical properties of the fabric and paper. This review will be helpful in determining the factors affecting xylanase production and its potential industrial applications in textile, paper, pulp, and other industries.

  12. Cryopreservation of Juglans cinerea (butternut) dormant buds

    Science.gov (United States)

    Juglans cinerea (butternut) is a deciduous tree native to the United States and Canada with oblong-lemon shaped nuts with oily texture and pleasant flavor. Butternut wood is softer than wood of the black walnut making it a favorite wood for woodcarvers. In North America butternut is seriously thre...

  13. Relatedness of Thermomyces lanuginosus strains producing a thermostable xylanase.

    Science.gov (United States)

    Singh, S; Reddy, P; Haarhoff, J; Biely, P; Janse, B; Pillay, B; Pillay, D; Prior, B A

    2000-08-25

    Properties of an endo-beta-xylanase produced by a locally isolated Thermomyces lanuginosus strain SSBP was compared to seven other T. lanuginosus strains isolated from different geographical regions. Strain SSBP produced the highest xylanase activity of 59600 nkat ml(-1) when cultivated on corn cobs (maize) medium, whereas the seven other strains produced xylanase activities ranging from 6000 to 32000 nkat ml(-1). No cellulase activity was produced by the strains. Despite the variability in the production of xylanase, little difference in the other characteristics of the strains could be found. The optimal temperature and pH for xylanase production by the strains was either 40 or 50 degrees C and between pH 6 and 7, respectively. Optimal xylanase activity of the strains was observed at 70 degrees C and at pH 6 or 6.5. Culture supernatant analysis by SDS-PAGE and isoelectric focusing PAGE of all strains revealed the presence of a single 24.7 kDa and pI 3.9 xylanase. Phylogenetic analysis by PCR amplification and sequencing of the internal transcribed spacer of nuclear rRNA repeat units and 5.8S rDNA revealed no strain diversity. However, random amplified polymorphic DNA analysis pointed to greater diversity and with one primer (5'-GCCCGACGCG-3'), a relationship was established between xylanase levels and the RAPD pattern. PMID:10989171

  14. Cloning and Partial Characterization of Endopolygalacturonase Genes from Botrytis cinerea

    OpenAIRE

    Wubben, J.P.; Mulder, W; ten Have, A.; van Kan, J. A. L.; Visser, J

    1999-01-01

    Botrytis cinerea is a plant-pathogenic fungus infecting over 200 different plant species. We use a molecular genetic approach to study the process of pectin degradation by the fungus. Recently, we described the cloning and characterization of an endopolygalacturonase (endoPG) gene from B. cinerea (Bcpg1) which is required for full virulence. Here we describe the cloning and characterization of five additional endoPG-encoding genes from B. cinerea SAS56. The identity at the amino acid level be...

  15. Ethylene Production by Botrytis cinerea In Vitro and in Tomatoes

    OpenAIRE

    2002-01-01

    A laser-based ethylene detector was used for on-line monitoring of ethylene released by the phytopathogenic fungus Botrytis cinerea in vitro and in tomato fruit. Ethylene data were combined with the results of a cytological analysis of germination of B. cinerea conidia and hyphal growth. We found that aminoethoxyvinylglycine and aminooxyacetic acid, which are competitive inhibitors of the 1-aminocyclopropane-1-carboxylic acid pathway, did not inhibit the ethylene emission by B. cinerea and th...

  16. Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity

    Science.gov (United States)

    A novel xylanase from Trichoderma reesei Rut C30, named XYN IV, was purified from the cellulolytic system of the fungus. The enzyme was discovered on its ability to attack aldotetraohexenuronic acid (HexA-2Xyl-4Xyl-4Xyl, HexA3Xyl3), releasing the reducing-end xylose residue. XYN IV exhibited catalyt...

  17. The time of infection of apples by Botrytis cinerea Pers.

    OpenAIRE

    Hanna Bryk

    2013-01-01

    The time of infection of apple fruits by Botrytis cinerea Pers. was studied. Artificial inoculations with conidial suspensions of B. cinerea were done at different stages of fruit developmment (flowers, sets, fruits). In autumn the apples were harvested and stored at a temperature of 2°C for 4 months after which rotting caused by B. cinerea was evaluated. B. cinerea presence in the calyx of apples was checked throughout the growing season. This was done by plating flowers, apple and set calyc...

  18. Three new metabolites from Botrytis cinerea.

    Science.gov (United States)

    Wang, Tian-Shan; Zhou, Jin-Yan; Tan, Hong

    2008-01-01

    Three new metabolites, gamma-abscisolactone (1), botrytisic acids A (3) and B (4) were isolated from the fermentation broth of Botrytis cinerea TB-3-H8. Their structures were elucidated on the basis of MS, IR, UV, and NMR spectroscopic data. Compound 2 was isolated from natural resource for the first time. The structure of 1 was further confirmed by single-crystal X-ray diffraction (CCDC-265897). PMID:19003608

  19. Functional characterization of Penicillium occitanis Pol6 and Penicillium funiculosum GH11 xylanases

    OpenAIRE

    Berrin, Jean-Guy; Juge, Nathalie; Bhiri, Fatma; Ghorbel, Raoudha; Ellouz Chaabouni, Semia

    2013-01-01

    Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of heteroxylans constituting the lignocellulosic plant cell wall. Xylanases from the GH11 family are considered as true xylanases because of their high substrate specificity. In order to study in depth a crucial difference in the thumb region between two closely related xylanases from Penicillium in terms of kinetic parameters and inhibition sensitivity, the GH11 xylanases from Penicillium occitanis Pol6 (PoXyn3...

  20. Xylanase production by Trichoderma strains in solid substrate fermentation

    Institute of Scientific and Technical Information of China (English)

    Krisztina Kovacs; George Szakacs; Lew Christopher

    2004-01-01

    @@ The importance of microbial enzymes in pulp and paper manufacturing has grown significantly in the last two decades. Solid substrate fermentation (SSF) holds tremendous potential for the production of microbial enzymes of commercial interest. SSF can be of special interest in those processes where the crude fermented product (whole SSF culture, in situ enzyme) may be used directly as the enzyme source. Xylanase preparations practically free of cellulase activity are especially useful for biobleaching of crude cellulose pulps. Thirty-nine Trichoderma isolates have been screened in SSF for xylanase production on hardwood oxygen-delignified soda-aq pulp as carbon source and enzyme inducer.Xylanase activities varied between 0 and 2200 IU/g dry matter (DM) of initial substrate. In most instances, the simultaneously produced cellulase levels were below 1.0 Filter Paper Unit (FPU) /g DM. The xylanase to cellulase activity ratio varied in the range of 5 to 3500. The three most promising isolates (TUB F-1647, TUB F-1658 and TUB F-1684) yielded xylanase activity of 2040,1300 and 1500 IU/g DM xylanase, respectively, and 0.64, 0.43 and 0.43 FPU/g DM cellulase with a xylanase to cellulase activity ratio of 3200, 3000 and 3500, respectively. Wild strains F-1647, F-1658 and F-1684 were isolated from tree bark of Maldives, soils of Peru (last two), respectively.Medium optimization experiments to enhance the xylanase yield and to increase the xylanase to cellulase ratio have also been performed.

  1. Biotechnology of microbial xylanases: enzymology, molecular biology, and application.

    Science.gov (United States)

    Subramaniyan, S; Prema, P

    2002-01-01

    Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems. PMID:11958335

  2. Mutational tolerance to carbendazim in Botrytis cinerea

    International Nuclear Information System (INIS)

    No spontaneous mutation for tolerance to the fungicide carbendazim was detected in c. 108 conidia from each of eight carbendazim-sensitive field isolates of Botrytis cinerea. Conidia of B. cinerea were highly insensitive to u.v.-irradiation, although after severe irradiation treatments mutant strains showing the same levels of tolerance as two groups of carbendazim-tolerant field isolates were selected at frequencies of between 10-9 and 10-6 of survivors. Mutants with low levels of tolerance (EDsub(50)(-1 carbendazim, 'partially-tolerant') were selected from irradiated conidia obtained from sensitive field isolates and a further series of mutants capable of growth on 10,000 μg ml-1 carbendazim ('fully-tolerant') were selected from irradiated conidia from either partially-tolerant mutants or from partially tolerant field isolates. Both mutation steps were confirmed in similar experiments in which tolerance to an unrelated fungicide, 2,6-dichloro-4-nitroaniline (DCNA), was incorporated as a genetic marker in the parent strains. (author)

  3. Ozone injury increases infection of geranium leaves by Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W.J.; Feder, W.A.; Perkins, I.

    1970-04-01

    Detached and attached, inoculated and noninoculated, ozone-injured and noninjured leaves from the lower, middle, and terminal regions of plants of geranium cultivars Enchantress and White Mountain were observed for infection by Botrytis cinerea. Previous exposure to ozone did not appreciably influence the susceptibility of leaves of either geranium cultivar to infection by B. cinerea, unless there was visible ozone injury. Ozone-injured, necrotic tissues on older attached and detached geranium leaves of both cultivars served as infection courts for B. cinerea. 14 references, 1 table.

  4. Production, Purification, and Characterization of a Major Penicillium glabrum Xylanase Using Brewer's Spent Grain as Substrate

    OpenAIRE

    Adriana Knob; Susan Michelz Beitel; Diana Fortkamp; César Rafael Fanchini Terrasan; Alex Fernando de Almeida

    2013-01-01

    In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production by Penicillium glabrum using brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained when P. glabrum was grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase from P. glabrum was purified...

  5. The complete mitochondrial genome of Motacilla cinerea (Passeriformes: Motacillidae).

    Science.gov (United States)

    Zhang, Zhen; Qian, Lifu; Wang, Yupeng; Zhang, Baowei

    2016-09-01

    Motacilla cinerea is a species of small- and medium-sized songbird in the Family Motacillidae, which is widely distributed. In this study, we determined the complete mitochondrial genome of M. cinerea. The result showed that the total length of the mitogenome was 16 825 bp and contained two ribosomal RNA genes, 22 transfer RNA genes, 13 protein-coding genes, and one control region. All the genes in M. cinerea were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which are encoded on the L-strand. The phylogenetic tree was reconstructed using Bayesian analysis methods, and containing two clades: Motacilla and Anthus. The first lineage is Motacilla including M. cinerea and other nine species. The genus Anthus makes up the second group, which containing 17 species. PMID:26328907

  6. Changes in Botrytis cinerea Conidia Caused by Berberis vulgaris Extract

    OpenAIRE

    Marcel PARVU; Alina Elena PARVU; Constantin CRACIUN; Barbu-Tudoran, Lucian; VLASE, LAURIAN; Mircea TAMAS; Oana ROSCA-CASIAN; Ovidiu PERSECA; Ana-Maria MOLNAR

    2010-01-01

    Testing plant extracts for controlling fungal diseases is a main biocontrol method. More interesting is to see what happens to the fungus treated with the plant extract. Therefore, the aim of the study was to evaluate the antifungal activity of Berberis vulgaris extract on Botrytis cinerea and to examine the ultrastructural changes in B. cinerea conidia caused by the minimum inhibitory concentration (MIC), using SEM and TEM. The antifungal activity of B. vulgaris bark extract was investigated...

  7. GH11 xylanases: Structure/function/properties relationships and applications.

    Science.gov (United States)

    Paës, Gabriel; Berrin, Jean-Guy; Beaugrand, Johnny

    2012-01-01

    For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses. PMID:22067746

  8. An evolutionary route to xylanase process fitness

    Science.gov (United States)

    Palackal, Nisha; Brennan, Yali; Callen, Walter N.; Dupree, Paul; Frey, Gerhard; Goubet, Florence; Hazlewood, Geoffrey P.; Healey, Shaun; Kang, Young E.; Kretz, Keith A.; Lee, Edd; Tan, Xuqiu; Tomlinson, Geoffery L.; Verruto, John; Wong, Vicky W.K.; Mathur, Eric J.; Short, Jay M.; Robertson, Dan E.; Steer, Brian A.

    2004-01-01

    Directed evolution technologies were used to selectively improve the stability of an enzyme without compromising its catalytic activity. In particular, this article describes the tandem use of two evolution strategies to evolve a xylanase, rendering it tolerant to temperatures in excess of 90°C. A library of all possible 19 amino acid substitutions at each residue position was generated and screened for activity after a temperature challenge. Nine single amino acid residue changes were identified that enhanced thermostability. All 512 possible combinatorial variants of the nine mutations were then generated and screened for improved thermal tolerance under stringent conditions. The screen yielded eleven variants with substantially improved thermal tolerance. Denaturation temperature transition midpoints were increased from 61°C to as high as 96°C. The use of two evolution strategies in combination enabled the rapid discovery of the enzyme variant with the highest degree of fitness (greater thermal tolerance and activity relative to the wild-type parent). PMID:14718652

  9. Characterization and Purification a Specific Xylanase Showing Arabinofuranosidase Activity from Streptomyces spp. 234P-16

    OpenAIRE

    ALINA AKHDIYA; FAHRRUROZI; TRIO HENDARWIN; ANJA MERYANDINI; DEDEN SAPRUDIN; YULIN LESTARI

    2009-01-01

    Streptomyces spp 234P-16 producing xylanase was isolated from soil sample from Padang, West Sumatra, Indonesia. Crude enzyme (produced by centrifuging the culture at 14000 rpm for about 5 minutes) and purified xylanase have an optimum condition at pH 5 and 90oC. Crude xylanase have half life time of 4 hours, whereas purified xylanase have half life time of 2 ½ hours at 90oC. The molecular mass of purified xylanase was determined to be 42.4 kDa. The Arabinofuranosidase have a Km and Vmax value...

  10. THE INFLUENCE OF XYLANASE ON THE QUALITY OF BREAD

    OpenAIRE

    CHEREJI RODICA; CRETESCU IULIANA; CAPRITA RODICA

    2013-01-01

    This paper determined the quality of the bread obtained form the control flour (M) and the quality of the bread obtained from the flour with an addition of 3 different concentrations of xylanase (P1-8100 U.FXU/ 100 kg flour, P2-16200 U.FXU/ 100 kg flour, P3-24300 U.FXU/ 100 kg flour). Xylanase was used in these concentrations to establish which one is more suitable to be added in flour to obtain superior quality characteristics of the bread: higher volume, fine texture of the core, prolonging...

  11. Effect of Gamma Irradiation on Botrytis cinerea Causing Gray Mold and Cut Chrysanthemum Flowers

    OpenAIRE

    Eun-Hee Chu; Eun-Jung Shin; Hae-Jun Park; Rae-Dong Jeong

    2015-01-01

    Gray mold caused by Botrytis cinerea is one of the most important postharvest fungal pathogens of cut flowers. Here, gamma irradiation, an alternative for phytosanitary purposes, and sodium dichloroisocyanurate (NaDCC) were used to control B. cinerea in a cut chrysanthemum (Chrysanthemum morifolium Ramat.) cultivar, ‘Baekma’, one of the cultivars susceptible to B. cinerea. Spore germination and mycelium growth of B. cinerea were inhibited by gamma irradiation in an inversely dose-dependent ma...

  12. Isolate Dependency of Brassica rapa Resistance QTLs to Botrytis cinerea.

    Science.gov (United States)

    Zhang, Wei; Kwon, Soon-Tae; Chen, Fang; Kliebenstein, Daniel J

    2016-01-01

    Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates (GSLs) are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the Brassica rapa R500 × IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL) for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive GSLs are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen. PMID:26925079

  13. Microbial xylanases and their biomedical applications: a review

    Directory of Open Access Journals (Sweden)

    Girish K. Goswami

    2013-06-01

    Full Text Available Xylanases have a great potential, mainly known for industrial applications. They can hydrolyze the xylose (Hemicellulose of plant cell wall and can be used for bio-bleaching the kraft pulp. As it reduces the requirement of harsh chemicals in the process, it can be used further to a number of bio-products with a great aggregate value. Microbial-origin xylanases can also be used in improving the nutritional quality of animal feed (e.g. food additives to poultry, piggery or fishery and indirectly affect the humans. Additionally they can be used directly in human food in bakery, clarification of juices and in xenobiotics like tobacco processing. The great value of xylanase as a bio-bleaching agent has now a new dimension of fiber digesting agent having relevance to food, drugs and cosmetics act. This review presents some important applications of Xylanases extended up to biomedical sciences. [Int J Basic Clin Pharmacol 2013; 2(3.000: 237-246

  14. Molecular cloning and characterization of multidomain xylanase from manure library

    Science.gov (United States)

    The gene (manf-x10) encoding xylanase from an environmental genomic DNA library was cloned and expressed in Escherichia coli. The encoded enzyme was predicted to be 467 amino acids with a molecular mass of 50.3 kD. The recombinant ManF-X10 was purified by HisTrap affinity column and showed activit...

  15. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Isolation and identification of local Bacillus isolates for xylanase biosynthesis.

    Directory of Open Access Journals (Sweden)

    Hassan Ammoneh

    2014-04-01

    Full Text Available Bacillus species are attractive industrial organisms due to their rapid growth rates leading to a short fermentation cycle and for their capacity to secrete important enzymes and proteins such as xylanase into the extracellular medium. Considering the industrial importance of xylanase, in this current study, Bacillus spp. were isolated from different soils and were screened for their xylanase production.Bacillus isolates used in this study were obtained from a national screening program carried out during 2006-2007 in which soil samples that covered areas throughout the interior of Syria were collected. The prepared inoculum from each of Bacillus isolates was aliquoted onto xylan agar plates, incubated at 30°C for 72 h and screened for xylanase synthesis.Xylanolytic isolates were selected depending on the clear zones of xylan hydrolysis. Fifteen isolates having the highest clearing zone were determined and grown in a solid state fermentation. Of the 15 isolates, three bacilli namely SY30A, SY185C and SY190E that showed maximum xylanase production, were identified using the 16S rDNA sequencing method. According to 16S rDNA gene sequence data, the closest phylogenetic neighbor for SY30A was Bacillus pumilus and for SY185C and SY190E isolates was Bacillus subtilis. Optimal pH and temperature for xylanase activity was 7.0 and 55ºC for SY30A and 6.0 and 60ºC for SY185C and SY190E, respectively. Under these conditions, the following activities were found to be around 1157 ± 58, 916 ± 46 and 794 ± 39 (U/g for SY30A, SY185C and SY190E, respectivly.Selected local Bacillus isolates were found to be a potential source of xylanase which was proven to be quite suitable for multiple biotechnological applications. These isolates might after extensive optimization steps be an alternative to commercially available strains.

  17. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    Directory of Open Access Journals (Sweden)

    Gupta Munishwar

    2007-06-01

    Full Text Available Abstract Background The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Results Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase were completely retained after cross-linking. The Vmax/Km values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. Conclusion A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1 hydrolysis of pectin, 2 hydrolysis of xylan and 3 hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes.

  18. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants.

    Science.gov (United States)

    Moscetti, Ilaria; Faoro, Franco; Moro, Stefano; Sabbadin, Davide; Sella, Luca; Favaron, Francesco; D'Ovidio, Renato

    2015-08-01

    The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death. PMID:25346411

  19. Characterization of two truncated forms of xylanase recombinantly expressed by Lactobacillus reuteri with an introduced rumen fungal xylanase gene.

    Science.gov (United States)

    Cheng, Hsueh-Ling; Hu, Chun-Yi; Lin, Shiou-Hua; Wang, Jing-Ya; Liu, Je-Ruei; Chen, Yo-Chia

    2014-10-01

    The xylanase R8 gene (xynR8) from uncultured rumen fungi was cloned and successfully expressed in Lactobacillus reuteri. A xylanase activity of 132.1 U/mL was found in the broth of L. reuteri R8, the transformant containing pNZ3004 vector with xynR8 gene insertion. Two distinct forms of recombinant xylanase with different hydrophobicities and molecular weights were found in the broth after purification. According to the results of Western blotting, only the T7-tag, fused in the N-terminus of XynR8, could be bound to the expressed proteins, which indicated that the C-terminus of XynR8 had been truncated. These results, combined with tryptic digestion and mass spectrometry analyses, allow us to attribute the two xylanase forms to an optional cleavage of C-terminal sequences, and XynR8A, a 13 amino acid residues truncated form, and XynR8B, a 22 amino acid residues truncated form, were the main products in the extracellular fraction of L. reuteri R8. The specific activities of XynR8A and R8B were 1028 and 395 U/mg protein. Both forms of recombinant xylanase displayed a typical endoxylanase activity when they were reacted with xylan, but XynR8A demonstrated a better specific activity, catalytic efficiency and thermostability than XynR8B according to the results of enzyme characterization. These changes in enzyme properties were highly possibly caused by the present of the β-sheet in the C-terminal undeleted fragment of XynR8A. This study demonstrates that modified forms with different enzyme properties could be produced when a gene was recombinantly expressed by a L. reuteri transformant. PMID:25152410

  20. Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride

    OpenAIRE

    Goyal, Meenakshi; Kalra, K. L.; V.K. Sareen; G. Soni

    2008-01-01

    In the present study, cultural and nutritional conditions for enhanced production of xylanase by a local soil isolate of Trichoderma viride, using various lignocellulosic substrates in submerged culture fermentation have been optimized. Of the lignocellulosics used, maize straw was the best inducer followed by jowar straw for xylanase production. The highest activity achieved was between 14 to 17 days of fermentation. A continuous increase in xylanase production was observed with increasing l...

  1. OPTIMIZATION OF XYLANASE PRODUCTION FROM FREE AND IMMOBILIZED CELLS OF FUSARIUM SOLANI F7

    OpenAIRE

    Vijai Kumar Gupta; Rajeeva Gaur; Santosh Kumar Yadava; Nandan Singh Darmwal

    2009-01-01

    The aim of the present investigation was to characterize a xylanase-producing Fusarium solani isolate and to optimize cultural conditions for xylanase enzyme production from free and immobilized cells. Screening of Fusarium solani isolate was based on the diameter of the clear zone formation in oat spelt xylan agar plates. Fusarium solani isolate F7 was selected and optimized for xylanase enzyme production using cheaper substrates such as wheat straw, rice straw, rice bran, and wood husk. Max...

  2. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1.

    OpenAIRE

    Nakamura, S.; Wakabayashi, K; Nakai, R; Aono, R; Horikoshi, K

    1993-01-01

    An alkaliphilic Bacillus sp. strain, 41M-1, isolated from soil produced multiple xylanases extracellularly. One of these xylanases was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The moleculr mass of this enzyme (xylanase J) was 36 kDa, and the isoelectric point was pH 5.3. Xylanase J was most active at pH 9.0. The optimum temperature for the activity at pH 9.0 was around 50 degrees C. The enzyme was stable up to 55 degrees C at pH 9.0 for 30 m...

  3. Changes in Botrytis cinerea Conidia Caused by Berberis vulgaris Extract

    Directory of Open Access Journals (Sweden)

    Marcel PARVU

    2010-12-01

    Full Text Available Testing plant extracts for controlling fungal diseases is a main biocontrol method. More interesting is to see what happens to the fungus treated with the plant extract. Therefore, the aim of the study was to evaluate the antifungal activity of Berberis vulgaris extract on Botrytis cinerea and to examine the ultrastructural changes in B. cinerea conidia caused by the minimum inhibitory concentration (MIC, using SEM and TEM. The antifungal activity of B. vulgaris bark extract was investigated using agar dilution method, and compared to that of berberine. Fluconazole was used as the positive antimycotic control. It was found that (1 B. vulgaris bark extract had significant antifungal activity against B. cinerea, and its effect was stronger than that of pure berberine. It was also noted that (2B. vulgaris MIC caused severe structural changes of the conidia, comparable with berberine MIC effect; therefore (3 B. vulgaris bark extract might be recommended to be tested as a biocontrol agent against B. cinerea.

  4. ABC transporters from Botrytis cinerea in biotic and abiotic interactions

    NARCIS (Netherlands)

    Schoonbeek, H.

    2004-01-01

    Botrytis cinereais the causal agent of grey mould disease on a wide variety of crop plants. It is relatively insensitive to natural and synthetic fungitoxic compounds. This thesis describes how ABC (ATP-binding cassette) transporters contribute to protection by actively secre

  5. ROLE OF BIOFILMS IN BIOCONTROL OF BOTRYTIS CINEREA

    Science.gov (United States)

    Microorganisms often inhabit the leaf surface in organized structures termed biofilms. Burkholderia sp., FP62 is a biocontrol agent of B. cinerea in geranium and forms extensive biofilms in the phyllosphere. Scanning electron micrographs demonstrate extensive phyllosphere colonization (60-70% of t...

  6. Generation and analysis of expressed sequence tags from Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    EVELYN SILVA

    2006-01-01

    Full Text Available Botrytis cinerea is a filamentous plant pathogen of a wide range of plant species, and its infection may cause enormous damage both during plant growth and in the post-harvest phase. We have constructed a cDNA library from an isolate of B. cinerea and have sequenced 11,482 expressed sequence tags that were assembled into 1,003 contigs sequences and 3,032 singletons. Approximately 81% of the unigenes showed significant similarity to genes coding for proteins with known functions: more than 50% of the sequences code for genes involved in cellular metabolism, 12% for transport of metabolites, and approximately 10% for cellular organization. Other functional categories include responses to biotic and abiotic stimuli, cell communication, cell homeostasis, and cell development. We carried out pair-wise comparisons with fungal databases to determine the B. cinerea unisequence set with relevant similarity to genes in other fungal pathogenic counterparts. Among the 4,035 non-redundant B. cinerea unigenes, 1,338 (23% have significant homology with Fusarium verticillioides unigenes. Similar values were obtained for Saccharomyces cerevisiae and Aspergillus nidulans (22% and 24%, respectively. The lower percentages of homology were with Magnaporthe grisae and Neurospora crassa (13% and 19%, respectively. Several genes involved in putative and known fungal virulence and general pathogenicity were identified. The results provide important information for future research on this fungal pathogen

  7. THE INFLUENCE OF XYLANASE ON THE QUALITY OF BREAD

    Directory of Open Access Journals (Sweden)

    RODICA CHEREJI

    2013-12-01

    Full Text Available This paper determined the quality of the bread obtained form the control flour (M and the quality of the bread obtained from the flour with an addition of 3 different concentrations of xylanase (P1-8100 U.FXU/ 100 kg flour, P2-16200 U.FXU/ 100 kg flour, P3-24300 U.FXU/ 100 kg flour. Xylanase was used in these concentrations to establish which one is more suitable to be added in flour to obtain superior quality characteristics of the bread: higher volume, fine texture of the core, prolonging the freshness of the bread, improving the color and flavor of the bread, improving the cutting proprieties of the bread.

  8. The D-galacturonic acid catabolic pathway in Botrytis cinerea.

    Science.gov (United States)

    Zhang, Lisha; Thiewes, Harry; van Kan, Jan A L

    2011-10-01

    D-galacturonic acid is the most abundant component of pectin, one of the major polysaccharide constituents of plant cell walls. Galacturonic acid potentially is an important carbon source for microorganisms living on (decaying) plant material. A catabolic pathway was proposed in filamentous fungi, comprising three enzymatic steps, involving D-galacturonate reductase, L-galactonate dehydratase, and 2-keto-3-deoxy-L-galactonate aldolase. We describe the functional, biochemical and genetic characterization of the entire D-galacturonate-specific catabolic pathway in the plant pathogenic fungus Botrytis cinerea. The B. cinerea genome contains two non-homologous galacturonate reductase genes (Bcgar1 and Bcgar2), a galactonate dehydratase gene (Bclgd1), and a 2-keto-3-deoxy-L-galactonate aldolase gene (Bclga1). Their expression levels were highly induced in cultures containing GalA, pectate, or pectin as the sole carbon source. The four proteins were expressed in Escherichia coli and their enzymatic activity was characterized. Targeted gene replacement of all four genes in B. cinerea, either separately or in combinations, yielded mutants that were affected in growth on D-galacturonic acid, pectate, or pectin as the sole carbon source. In Aspergillus nidulans and A. niger, the first catabolic conversion only involves the Bcgar2 ortholog, while in Hypocrea jecorina, it only involves the Bcgar1 ortholog. In B. cinerea, however, BcGAR1 and BcGAR2 jointly contribute to the first step of the catabolic pathway, albeit to different extent. The virulence of all B. cinerea mutants in the D-galacturonic acid catabolic pathway on tomato leaves, apple fruit and bell peppers was unaltered. PMID:21683149

  9. Thermostable Xylanases of Microbial Origin: Recent Insights and Biotechnological Potential

    OpenAIRE

    S.S. Kanwar; Sunita Devi

    2012-01-01

    Xylanases are hydrolases which depolymerise the plant cell wall component-xylan, the second most abundant polysaccharide. They are mainly produced by microorganisms but can also be found in plants, marine algae, protozoans, crustaceans, insects, and snails. Because of their ability to break down xylan, these enzymes especially of microbial origin, have attracted more attention due to their potential role in pulping and bleaching processes, in food and feed industry, textile processes and orga...

  10. A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities

    OpenAIRE

    Gupta Munishwar; Sharma Aparna; Dalal Sohel

    2007-01-01

    Abstract Background The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterize...

  11. Fusarium graminearum produces different xylanases causing host cell death that is prevented by the xylanase inhibitors XIP-I and TAXI-III in wheat.

    Science.gov (United States)

    Tundo, Silvio; Moscetti, Ilaria; Faoro, Franco; Lafond, Mickaël; Giardina, Thierry; Favaron, Francesco; Sella, Luca; D'Ovidio, Renato

    2015-11-01

    To shed light on the role of Xylanase Inhibitors (XIs) during Fusarium graminearum infection, we first demonstrated that three out of four F. graminearum xylanases, in addition to their xylan degrading activity, have also the capacity to cause host cell death both in cell suspensions and wheat spike tissue. Subsequently, we demonstrated that TAXI-III and XIP-I prevented both the enzyme and host cell death activities of F. graminearum xylanases. In particular, we showed that the enzymatic inhibition by TAXI-III and XIP-I was competitive and only FGSG_11487 escaped inhibition. The finding that TAXI-III and XIP-I prevented cell death activity of heat inactivated xylanases and that XIP-I precluded the cell death activity of FGSG_11487 - even if XIP-I does not inhibit its enzyme activity - suggests that the catalytic and the cell death activities are separated features of these xylanases. Finally, the efficacy of TAXI-III or XIP-I to prevent host cell death caused by xylanases was confirmed in transgenic plants expressing separately these inhibitors, suggesting that the XIs could limit F. graminearum infection via direct inhibition of xylanase activity and/or by preventing host cell death. PMID:26475196

  12. Production of UC-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, J.M.; Mitchell, E.B. Jr.; Knapp, J.S.; Buttke, T.M.

    1985-09-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. UC-labeled gas was produced significantly faster by N. gonorrhoeae than by N. cinerea. Additional studies suggested that the UC-labeled gas produced by N. cinerea was carbon dioxide. N. cinerea strains were similar to Branhamella catarrhalis strains because both species failed to produce detectable acid from glucose, maltose, sucrose, fructose, and lactose in cysteine-tryptic agar media. However, in contrast to N. cinerea strains, B. catarrhalis strains did not metabolize glucose in BACTEC Neisseria Differentiation kits.

  13. Production of 14C-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea

    International Nuclear Information System (INIS)

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. 14C-labeled gas was produced significantly faster by N. gonorrhoeae than by N. cinerea. Additional studies suggested that the 14C-labeled gas produced by N. cinerea was carbon dioxide. N. cinerea strains were similar to Branhamella catarrhalis strains because both species failed to produce detectable acid from glucose, maltose, sucrose, fructose, and lactose in cysteine-tryptic agar media. However, in contrast to N. cinerea strains, B. catarrhalis strains did not metabolize glucose in BACTEC Neisseria Differentiation kits

  14. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    OpenAIRE

    Urszula Małolepsza; Henryk Urbanek; Justyna Polit

    2013-01-01

    The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  15. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    Directory of Open Access Journals (Sweden)

    Urszula Małolepsza

    2013-12-01

    Full Text Available The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  16. The effect of harpin on shelf life of peppers inoculated with Botrytis cinerea

    OpenAIRE

    TEZCAN, Himmet; Akbudak, Nuray; Akbudak, Bulent

    2011-01-01

    The preservation methods as an alternative to chemical control to prevent postharvest quality losses of peppers were examined. The efficacy of harpin treatments on peppers (Capsicum annuum L. cvs. ‘Demre’, ‘Yalova Charleston’ and ‘Sari Sivri’) was tested in the same conditions in two different years. Peppers grown in greenhouse were applied with four treatments consisting of harpin, Botrytis cinerea, harpin+B. cinerea and control. The harpin in B. cinerea treatments reduced the percentage of ...

  17. Fungicide resistance profiles in Botrytis cinerea from strawberry fields in Spain

    OpenAIRE

    Fernández-ortuño, Dolores; Cerezo, Rocio; Chamorro, Manuel; Torés, Juan Antonio; de Vicente, Antonio

    2015-01-01

    Botrytis cinerea Pers., is one of the most economically important pre- and post-harvest pathogen of strawberry. The main strategy to control the disease involves the application of different classes of fungicides despite that B. cinerea is considered a high-risk pathogen for resistance development. We collected a total of 367 B. cinerea isolates from 14 strawberry fields in Huelva (Spain) during 2014 and 2015 and determined in vitro fungicide sensitivity to all classes of fungicides currently...

  18. Diversity of Botrytis cinerea from vineyards in the north west Iberian peninsula

    OpenAIRE

    Morales-Valle, H.; Paterson, R. R. M.; Venâncio, Armando; Lima, Nelson

    2011-01-01

    Botrytis cinerea is associated with a fungal gray rot in the concomitant regions of north west Spain and northern Portugal, where it is the most damaging pathogen and results in severe economic losses. Also, the physiological interactions of B. cinerea with Penicillium expansum are responsible for the production of geosmin, a volatile metabolite that transmit undesirable earthy odours to must and thus to wine. B. cinerea is not a homogeneous species and may be divided into several sub-species...

  19. Interkingdom Gene Transfer May Contribute to the Evolution of Phytopathogenicity in Botrytis Cinerea

    OpenAIRE

    Bo Zhu; Qing Zhou; Guanlin Xie; Guoqing Zhang; Xiaowei Zhang; Yanli Wang; Gunchang Sun; Bin Li; Gulei Jin

    2012-01-01

    The ascomycete Botrytis cinerea is a phytopathogenic fungus infecting and causing significant yield losses in a number of crops. The genome of B. cinerea has been fully sequenced while the importance of horizontal gene transfer (HGT) to extend the host range in plant pathogenic fungi has been recently appreciated. However, recent data confirm that the B. cinerea fungus shares conserved virulence factors with other fungal plant pathogens with narrow host range. Therefore, interkingdom HGT may ...

  20. Detection transposable elements in Botrytis cinerea in latent infection stage from symptomless apples

    OpenAIRE

    Fernández, Jorge G; Martín A Fernández-Baldo; Claudio Muñoz; Eloy Salinas; Julio Raba; Sanz, María I

    2014-01-01

    Objective: T o detect Botrytis cinerea ( B. cinerea ) latent infections on apples before storage, which is essential for effective control strategies in the fruit postharvest industry. Methods: I n the present study, a polymerase chain reaction detection method, based on primers designed on B. cinerea transposable elements ( boty and flipper ) and intergenic spacer region as internal control, were utilized to reveal the presence of symptomless infections on apple fruits. T ...

  1. A Simple Method for the Determination of Xylanase Activity on Insoluble Substrates

    Science.gov (United States)

    The propensity for a xylanase to convert insoluble (arabino)xylan into soluble oligosaccharides is an important parameter in the baking, pulp and paper, prebiotics, and biofuel industries. Current methods for determining xylanase activity on insoluble substrates are labor intensive, non-specific, or...

  2. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases

    DEFF Research Database (Denmark)

    Borkhardt, Bernhard; Harholt, Jesper; Ulvskov, Peter Bjarne; Ahring, Birgitte Kiær; Jørgensen, Bodil; Brinch-Pedersen, Henrik

    2010-01-01

    The genes encoding the two endo-xylanases XynA and XynB from the thermophilic bacterium Dictyoglomus thermophilum were codon optimized for expression in plants. Both xylanases were designed to be constitutively expressed under the control of the CaMV 35S promoter and targeted to the apoplast. Tra...

  3. Performance and morphometry of the intestinal mucosa of laying hens fed diets containing xylanase

    Directory of Open Access Journals (Sweden)

    KMR de Souza

    2014-09-01

    Full Text Available The objective of this study was to evaluate the effect of dietary energy level reduction and xylanase inclusion on the performance and on intestinal mucosa morphometry of two- to six-week-old laying hens. In total, 400 Hy-line W36 laying hens were distributed according to a completely randomized design in 2 x 2 factorial arrangement (energy level x inclusion of xylanase, totaling four treatments with 10 replicates of 10 birds per experimental unit. The following treatments were evaluated: positive control (balanced diet; positive control + xylanase; negative control (diet with of 100 kcal ME reduction /kg; negative control + xylanase. Body weight, weight gain, feed conversion ratio, uniformity and livability were not influenced by diets with metabolizable energy reduction and xylanase inclusion; however, the addition of xylanase to the diets resulted in shallower crypts depth and greater villus:crypt ratio in the ileum. The energy reduction of the diet associated with the supplementation of xylanase did not influence performance, but increased the feed intake of 2- to 6-week-old laying hens and increased villus height in the ileum of 6-wk-old hens. Xylanase reduces crypt depth in the ileum of 6-week-old hens.

  4. Purification and characterization of a GH11 xylanase from biobutanol-producing Clostridium beijerinckii G117.

    Science.gov (United States)

    Ng, Choong Hey; He, Jianzhong; Yang, Kun-Lin

    2015-03-01

    Most biobutanol-producing Clostridium strains are unable to ferment polysaccharides such as cellulose and xylan due to the lack of hydrolyzing enzymes. In this study, we show that Clostridium beijerinckii G117, a newly isolated biobutanol-producing strain, expresses xylanase enzyme in the presence of 1% beechwood xylan. The xylanase activity in the medium containing actively growing culture and 1% of beechwood xylan can reach up to 2.66 U/ml after 14 h of fermentation. Using salting-out and size-exclusion chromatography, we purify the crude xylanase by 8.7-fold from the supernatant with a yield of 32.2%. This purified xylanase has a molecular weight of 22.6 kDa, making it one of the smallest reported clostridial xylanases. Conserved domain analysis reveals that the xylanase belongs to glycoside hydrolase family 11 (GH11) but lacks a carbohydrate binding domain. When beechwood xylan is used as substrate for the xylanase, majority of the products are xylo-oligosaccharide (~98%), suggesting that this is an endo-1,4-β-xylanase. PMID:25564206

  5. OPTIMIZATION OF XYLANASE PRODUCTION FROM FREE AND IMMOBILIZED CELLS OF FUSARIUM SOLANI F7

    Directory of Open Access Journals (Sweden)

    Vijai Kumar Gupta

    2009-08-01

    Full Text Available The aim of the present investigation was to characterize a xylanase-producing Fusarium solani isolate and to optimize cultural conditions for xylanase enzyme production from free and immobilized cells. Screening of Fusarium solani isolate was based on the diameter of the clear zone formation in oat spelt xylan agar plates. Fusarium solani isolate F7 was selected and optimized for xylanase enzyme production using cheaper substrates such as wheat straw, rice straw, rice bran, and wood husk. Maximum enzyme activity was observed in wheat straw (78.32 U ml-1 for free cells and 94.68 U ml-1 for immobilized cells. Optimum pH and temperature for xylanase activity were found to be 5.5 and 30°C at 3% substrate concentration for free cells and 5.0 and 30°C at 3% substrate concentration for immobilized cells. In the purification step, 75% ammonium sulphate saturation was found to be suitable, giving maximum xylanase activity. Production of xylanase was greater from immobilized cells than from free cells. Purified xylanase from free cells yielded a single band with a molecular weight of 89kDa, while it was 92.8kDa for immobilized cells. The use of wheat straw as a major carbon source is particularly valuable, because oat spelt xylan is very expensive. The Fusarium solani F7 isolate proved to be a promising microorganism for xylanase production.

  6. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves

    OpenAIRE

    Jin, Weibo; Wu, Fangli

    2015-01-01

    Background Botrytis cinerea Pers. Fr. is an important pathogen causing stem rot in tomatoes grown indoors for extended periods. MicroRNAs (miRNAs) have been reported as gene expression regulators related to several stress responses and B. cinerea infection in tomato. However, the function of miRNAs in the resistance to B. cinerea remains unclear. Results The miRNA expression patterns in tomato in response to B. cinerea stress were investigated by high-throughput sequencing. In total, 143 know...

  7. Characterization and Purification a Specific Xylanase Showing Arabinofuranosidase Activity from Streptomyces spp. 234P-16

    Directory of Open Access Journals (Sweden)

    ALINA AKHDIYA

    2009-07-01

    Full Text Available Streptomyces spp 234P-16 producing xylanase was isolated from soil sample from Padang, West Sumatra, Indonesia. Crude enzyme (produced by centrifuging the culture at 14000 rpm for about 5 minutes and purified xylanase have an optimum condition at pH 5 and 90oC. Crude xylanase have half life time of 4 hours, whereas purified xylanase have half life time of 2 ½ hours at 90oC. The molecular mass of purified xylanase was determined to be 42.4 kDa. The Arabinofuranosidase have a Km and Vmax value of 1,98 mg/mL and 523 µmol/minute/mg, respectively.

  8. Kinetics of Xylanase Fermentation by Recombinant Escherichia coli DH5α in Shake Flask Culture

    Directory of Open Access Journals (Sweden)

    Farliahati Mohd Rusli

    2009-01-01

    Full Text Available Problem statement: Interest in xylanase enzyme application has markedly increased in pulp and paper processing industries. The switch to xylanase-producing recombinant Escherichia coli DH5α pTP510 is seen here as an economic alternative towards higher productivity and easier downstream purification. Modeling of E. coli DH5α growth and enzyme secretion is thus desired for future optimization in fermentation process. Approach: Kinetics of intracellular xylanase fermentation by a recombinant E. coli DH5α was studied in shake flask culture. The effect of different medium formulations (complex, minimal and defined, initial pH (6.5, 7.0, 7.4 and 8.0 and agitation speeds (150, 200 and 250 rpm on cell growth and xylanase production were evaluated. Mathematical models based on Logistic and Luedeking-Piret equations had been proposed to describe the microbial growth and xylanase production. Results: Highest xylanase production was obtained in defined medium. Based on medium formulation, the highest cell concentration (4.59 g L-1 and xylanase production (2, 122.5 U mL-1 was obtained when (NH42HPO4 was used as the main nitrogen source, with an adjustment of the initial pH to 7.4 and agitation speed of 200 rpm. The maximum specific growth rate (µmax, growth associated xylanase production coefficient (α and non-growth associated xylanase production coefficient (β was 0.41 h-1, 474.26 U mg cell-1 and 0 U mg cell-1 h-1, respectively. Conclusion: Xylanase production was growth associated process and the enzyme secretion was greatly dependent on cell concentration and the specific growth rate of E. coli DH5α.

  9. Isolate Dependency of Brassica rapa Resistance QTLs to Botrytis cinerea

    OpenAIRE

    Zhang, Wei; Kwon, Soon-Tae; Chen, Fang; Daniel J Kliebenstein

    2016-01-01

    Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates (GSLs) are a diverse gro...

  10. Botrytis cinerea Control and the Problem of Fungicide Resistance

    OpenAIRE

    Brankica Tanović; Goran Delibašić; Mila Grahovac; Milica Mihajlović; Jovana Hrustić; Petar Vukša

    2011-01-01

    Botrytis cinerea, the causal agent of grey mould, greatly affects fruit, grapevine, vegetable and ornamental crops production. It is a common causal agent of diseases in plants grown in protected areas, as well as fruit decay during storage and transport. The fungus invades almost all parts of the plant in all developmental stages, and the symptoms are usually described as grey mould, grey mildew, brown rot and seedling blight. The paper reviews the current...

  11. Autofluorescence of grape berries following Botrytis cinerea infection

    OpenAIRE

    Belanger, M.C.; Roger, J.M.; Cartolaro, P.; Fermaud, M.

    2011-01-01

    Gray mold is caused by Botrytis cinerea (anamorph of an ascomycete fungus) infecting over 200 plant species worldwide and causing tremendous harvest losses in vineyards. Even though all grapevine cultivars (Vitis vinfera L.) are susceptible to the disease, defense mechanisms are induced to counteract or slow down infection and colonization by the pathogen. One of the key inducible defense molecule is resveratrol, a blue fluorescent stilbenic compound. Considering early fungal detection as a c...

  12. Estimate of potential resistance of Botrytis cinerea to biofungicides

    OpenAIRE

    Ajouz, Sakhr

    2009-01-01

    Gray mould, caused by Botrytis cinerea, is a severe disease on a wide range of crops. Disease control generally relies on chemicals, although biological control strategies have been intensively studied over the last decades. This pathogen can withstand a wide variety of fungitoxic compounds including fungicides and natural molecules. This capacity to adapt to different stress might, potentially, compromise the durability of biological control methods. The global purpose of that work was to es...

  13. Partial purification and characterization of xylanase produced by Penicillium expansum

    Directory of Open Access Journals (Sweden)

    André Luiz de Souza Querido

    2006-05-01

    Full Text Available An extracellular xylanase was found to be the major protein in the filtrate culture of Penicillium expansum when grown on 0.3 % wheat bran, which showed no xylanase multiplicity. The enzime was partial purified by.ammonium sulfate fractioning, molecular exclusion chromatography, ultrafiltration and anion exchange chromatography. The protein eluation profile showed only one form of xylanase that was partially characterized. The activity of purified xylanase was optimal at pH 5.5 and 40 ºC. The enzyme was stable at pH between 5.5 and 6.5 and temperatures between 20-40 ºC. The enzyme showed a Km of 3.03 mM and Vmax of 0.027 mumol min-1 mug -1 of protein. The enzymatic activity was increased 31 % by Mg2+ and 28 % by Al3+.Uma xilanase extracelular foi encontrada como a principal proteína na cultura filtrada de Penicillium expansum quando cultivado em farelo de trigo 0,3 %, a qual não mostrou multiplicidade. A enzima foi parcialmente purificada por fracionamento com sulfato de amônia, cromatografia de exclusão molecular, ultrafiltração e cromatografia de troca aniônica. O perfil de eluição das proteínas mostrou uma única forma de xilanase, sendo esta parcialmente caracterizada. A atividade da xilanase purificada foi ótima em pH 5.5 e à temperatura de 40 ºC. A enzima foi estável em pH entre 5,5 e 6,5 e à temperatura entre 20-40ºC. A enzima apresentou Km de 3,03 mM e Vmax de 0,027 mimol min-1 mig-1 de proteína. A atividade enzimática foi aumentada 31 % por Mg+2 e 28 % por Al+3.

  14. Molecular characterization of a Xylanase-producing fungus isolated from fouled soil

    Directory of Open Access Journals (Sweden)

    Punniavan Sakthiselvan

    2014-12-01

    Full Text Available Xylanase (EC 3. 2. 1. 8, hydrolyzes xylo-oligosaccharides into D-xylose and required for complete hydrolysis of native cellulose and biomass conversion. It has broad range of applications in the pulp and paper, pharmaceutical and Agri-food industries. Fifty fungal species were isolated from the fouled soil around an oil refinery and screened for the production of xylanase enzyme by enrichment culture techniques. The isolated fungal strain was identified as Hypocrea lixii SS1 based on the results of biochemical tests and 18s rRNA sequencing. The phylogenetic tree was constructed using the MEGA 5 software. Further, Hypocrea lixii SS1 was tested for the ability to utilize the sunflower oil sludge (waste from the oil industry as the sole carbon source for xylanase production. The growth characteristics of Hypocrea lixii SS1 were also studied and maximum growth was found on the 7th day of incubation. The fungus showed a remarkable xylanase production of 38.9 U/mL. Xylanase was purified using a combination of 0-50% NH4SO2 precipitation, DEAE-sepharose and Sephacryl S-200 chromatography. Single peak obtained in RP-HPLC confirms the purity of xylanase. Further the enzyme produced was affirmed as xylanase with its molecular weight (29 kDa using SDS-PAGE.

  15. Production, Purification, and Characterization of a Major Penicillium glabrum Xylanase Using Brewer's Spent Grain as Substrate

    Directory of Open Access Journals (Sweden)

    Adriana Knob

    2013-01-01

    Full Text Available In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production by Penicillium glabrum using brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained when P. glabrum was grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase from P. glabrum was purified to homogeneity by a rapid and inexpensive procedure, using ammonium sulfate fractionation and molecular exclusion chromatography. SDS-PAGE analysis revealed one band with estimated molecular mass of 18.36 kDa. The optimum activity was observed at 60 °C, in pH 3.0. The enzyme was very stable at 50 °C, and high pH stability was verified from pH 2.5 to 5.0. The ion Mn2+ and the reducing agents β-mercaptoethanol and DTT enhanced xylanase activity, while the ions Hg2+, Zn2+, and Cu2+ as well as the detergent SDS were strong inhibitors of the enzyme. The use of brewer's spent grain as substrate for xylanase production cannot only add value and decrease the amount of this waste but also reduce the xylanase production cost.

  16. Production and Partial Characterization of an Alkaline Xylanase from a Novel Fungus Cladosporium oxysporum

    Science.gov (United States)

    Guan, Guo-Qiang; Zhao, Peng-Xiang; Zhao, Jin; Wang, Mei-Juan; Huo, Shu-Hao; Cui, Feng-Jie; Jiang, Jian-Xin

    2016-01-01

    A new fungus Cladosporium oxysporum GQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence. C. oxysporum produced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+ improved C. oxysporum xylanase production. Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+ enhanced the xylanase activity by 2% while Cu2+ had the highest inhibition ratio of 57.9%. Furthermore, C. oxysporum xylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated that Cladosporium oxysporum GQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.

  17. Fungicide resistance profiles for 13 Botrytis cinerea isolated from strawberry in southeastern Louisiana

    Science.gov (United States)

    BACKGROUND: Fungicidal sprays have been widely used for disease control of gray mold caused by Botrytis cinerea. In recent years strawberry growers in southeastern Louisiana reported a failure of their fungicide spray programs to control Botrytis fruit rot. Botrytis cinerea has become resistant ...

  18. Monitoring pathogenesis of natural Botrytis cinerea infections in developing grape berries

    Science.gov (United States)

    Quiescent infections play key roles in Botrytis cinerea pathogenesis and in the management of Botrytis bunch rot. To detect infection, quiescence, and activation of B. cinerea, a real-time quantitative PCR (qPCR) assay was developed and tested alongside the standard assay for early detection of B. ...

  19. Fungicide resistance phenotypes in Botrytis cinerea populations from blueberries in California and Washington

    Science.gov (United States)

    Gray mold caused by Botrytis cinerea is a major postharvest disease of blueberries grown in the Central Valley of California (CA) and western Washington State (WA). Understanding fungicide- resistant phenotypes of B. cinerea is important to the development of preharvest fungicide programs for contro...

  20. Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth

    Science.gov (United States)

    The inhibitory effect of a heat treatment (HT) on Botrytis cinerea, a major postharvest fungal pathogen, and the possible mode of action were investigated. Spore germination and germ tube elongation of B. cinerea were both increasingly and significantly inhibited by a HT (43 degrees C) for 10, 20 o...

  1. Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available To develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an ability to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. The successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.

  2. Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans.

    Science.gov (United States)

    Maitan-Alfenas, Gabriela P; Oliveira, Mariana B; Nagem, Ronaldo A P; de Vries, Ronald P; Guimarães, Valéria M

    2016-10-01

    Two xylanases from Aspergillus nidulans, XlnB and XlnC, were expressed in Pichia pastoris, purified and characterized. XlnB and XlnC achieved maximal activities at 60°C and pH 7.5 and at 50°C and pH 6.0, respectively. XlnB showed to be very thermostable by maintaining 50% of its original activity after 49h incubated at 50°C. XlnB had its highest activity against wheat arabinoxylan while XlnC had the best activity against beechwood xylan. Both enzymes were completely inhibited by SDS and HgCl2. Xylotriose at 1mg/ml also totally inibited XlnB activity. TLC analysis showed that the main product of beechwood xylan hydrolysis by XlnB and XlnC was xylotetraose. An additive effect was shown between XlnB and XlnC and the xylanases of two tested commercial cocktails. Sugarcane bagasse saccharification results showed that these two commercial enzymatic cocktails were able to release more glucose and xylose after supplementation with XlnB and XlnC. PMID:27235731

  3. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.

    Science.gov (United States)

    Cui, Zhifeng; Gao, Nana; Wang, Qian; Ren, Yun; Wang, Kun; Zhu, Tingheng

    2015-11-01

    Monocarboxylate transporters have a central role in mammalian metabolism, but rarely reported in phytopathogenic fungi. In this study, a putative monocarboxylate transporter gene in Botrytis cinerea [B. cinerea MctA (BcMctA)] was identified in the research of a B. cinerea transfer DNA (T-DNA) insertional mutant (74). Disruption of the gene decreased the growth rate on the medium with monocarboxylate (acetate or pyruvate) as the sole carbon sources, but not affected on lactate. The pyruvate contents in BcmctA deletion mutants decreased about 35 % compared with the wild strain. Besides, the conidial yield was increased about two times in BcmctA disruption mutant. The pathogenicity assay indicated that disruption of BcmctA significantly reduced the virulence of B. cinerea on cucumber and tomato leaves. Our results demonstrated that BcMctA is related to pyruvate uptake and pathogenicity of B. cinerea on cucumber and tomato leaves. PMID:25634672

  4. Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S

    OpenAIRE

    Nagar, Sushil; Jain, R. K.; Thakur, Vasanta Vadde; Gupta, Vijay Kumar

    2012-01-01

    The potential of extracellular alkali stable and thermo tolerant xylanase produced by Bacillus pumilus SV-85S through solid state fermentation was investigated in pulp bleaching in association with conventional bleaching using chlorine and chlorine dioxide. The biobleaching of kraft pulp with xylanase was the most effective at an enzyme dose of 10 IU/g oven dried pulp, pH 9.0 and 120 min incubation at 55 °C. Under the optimized conditions, xylanase pretreatment reduced Kappa number by 1.6 poi...

  5. Purification and preliminary characterization of a xylanase from Thermomyces lanuginosus strain SS-8

    OpenAIRE

    Shrivastava, Smriti; Shukla, Pratyoosh; Mukhopadhyay, Kunal

    2011-01-01

    Thermomyces lanuginosus SS-8 was isolated from soil samples that had been collected from near self-heating plant material and its extracellular cellulase-free xylanase purified approximately 160-fold using ion exchange chromatography and continuous elution electrophoresis. This xylanase was thermoactive (optimum temperature 60 °C) at pH 6.0 and had a molecular weight of 23.79 kDa as indicated by SDS-PAGE electrophoresis. The xylanase rapidly hydrolyzed xylan directly to xylose without the pro...

  6. A Highly Thermostable Xylanase from Stenotrophomonas maltophilia: Purification and Partial Characterization

    OpenAIRE

    Abhay Raj; Sharad Kumar; Sudheer Kumar Singh

    2013-01-01

    Seven xylanolytic bacterial strains were isolated from saw-dust dump soil. The bacterial strain X6 was selected on the basis of the highest xylanase activity with no cellulase contamination. It was identified as Stenotrophomonas maltophilia by biochemical tests and 16S rRNA gene sequencing approach. Xylanase production studies by S. maltophilia on different commercial xylans and agro-industrial residues suggested that wheat bran was the best carbon source for xylanase production (26.4 ± 0.6 I...

  7. Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23.

    OpenAIRE

    A. Blanco; Vidal, T; Colom, J F; Pastor, F I

    1995-01-01

    Xylanase A from the recently isolated Bacillus sp. strain BP-23 was purified to homogeneity. The enzyme shows a molecular mass of 32 kDa and an isoelectric point of 9.3. Optimum temperature and pH for xylanase activity were 50 degrees C and 5.5 respectively. Xylanase A was completely inhibited by N-bromosuccinimide. The main products of birchwood xylan hydrolysis were xylotetraose and xylobiose. The enzyme was shown to facilitate chemical bleaching of pulp, generating savings of 38% in terms ...

  8. Multiple endosymbionts in populations of the ant Formica cinerea

    Directory of Open Access Journals (Sweden)

    Pamilo Pekka

    2010-11-01

    Full Text Available Abstract Background Many insects, including ants, are infected by maternally inherited Wolbachia endosymbiotic bacteria though other secondary endosymbionts have not been reported in ants. It has been suggested that the ability of Wolbachia to invade and remain in an ant population depends on the number of coexisting queens in a colony. We study the genetic and social structure of populations in the ant Formica cinerea which is known to have populations with either monogynous or polygynous colonies. We screen populations for several endosymbiotic bacteria to evaluate the presence of different endosymbionts, possible association between their prevalence and the social structure, and the association between endosymbiont prevalence and genetic differentiation of ant populations. Results We found three endosymbiotic bacteria; 19% of the nests were infected by Wolbachia, 3.8% by Cardinium and 33% by Serratia. There was significant variation among the populations regarding the proportion of nests infected by Serratia, Wolbachia and the pooled set of all the endosymbionts. Some individuals and colonies carried two of the bacteria, the frequency of double infections agreeing with the random expectation. The proportion of infected ants (individuals or colonies did not correlate significantly with the population level relatedness values. The difference in the prevalence of Wolbachia between population pairs correlated significantly with the genetic distance (microsatellites of the populations. Conclusions The discovery of several endosymbionts and co-infections by Wolbachia and Cardinium demonstrate the importance of screening several endosymbionts when evaluating their possible effects on social life and queen-worker conflicts over sex allocation. The low prevalence of Wolbachia in F. cinerea departs from the pattern observed in many other Formica ants in which all workers have been infected. It is likely that the strain of Wolbachia in F. cinerea

  9. Thirteen nuclear microsatellite loci for butternut (Juglans cinerea L.).

    Science.gov (United States)

    Hoban, Sean; Anderson, Robert; McCleary, Tim; Schlarbaum, Scott; Romero-Severson, Jeanne

    2008-05-01

    Butternut (Juglans cinerea L.) is an eastern North American forest tree severely threatened by an exotic fungal pathogen, Sirococcus clavigignenti-juglandacearum. We report here 13 nuclear microsatellites for genetic evaluation of the remaining natural populations. Summary statistics are reported for individuals from a population of butternuts in central Kentucky (N = 63). All markers were polymorphic, with an average of 13.7 alleles per locus observed. Four loci exhibited significantly fewer heterozygotes than expected under Hardy-Weinberg equilibrium (P < 0.05). PMID:21585858

  10. Phenotypical differences among B. cinerea isolates from ornamental plants.

    Science.gov (United States)

    Martínez, J A; Valdés, R; Vicente, M J; Bañón, S

    2008-01-01

    B. cinerea is a common pathogenic fungus which causes Botrytis blight (Grey mould) in most ornamental plants. It may be responsible for serious preharvest diseases and postharvest losses in fruits, vegetables and flowers. In this work, several B. cinerea isolates from ornamental plants (Chamelaucium uncinatum, Pelargonium x hortorum, Euphorbia pulcherrima, Lantana camara, Lonicera japonica, Hydrangea macrophylla, and Cyclamen persicum) affected by Botrytis blight in the south of Spain were studied. All the isolates were confirmed as B. cinerea by PCR using a specific 750-bp molecular marker, which is present in all strains of this species but absent from other species of Botrytis. The isolates were evaluated by reference to mature conidia length, sclerotia production, and growth rate. Conidia, conidiophores and hyphae were described by light microscopy and some by cryogenic scanning electron microscopy (Cryo-SEM). Conidium length was measured by using an eyepiece micrometer at 400x power, whereas the growth rate was assessed from differences in colony diameter between the third and fourth day of growth in potato-dextrose agar culture medium at 26 degrees C. B. cinerea showed a high degree of phenotypical variability among isolates, not only as regards visual aspects of the colonies but also in some morphological structures such as conidium length, conidiophores, sclerotia production, and hyphae. Differences were also observed in the growth rates. Conidiation was insignificant in the isolates from H. macrophylla, and P. x hortorum, where the overall appearance was white in all the growing stages, whereas isolates from L. camara, C. persicum and C. uncinatum were mainly grey or brown in mature stages. The longest conidia were obtained in isolates from H. macrophylla and C. persicum (17-18 microm) and the lowest in C. uncinatum (9 microm). All the isolates, except L. camara, developed mature sclerotia after approximately 16 days in the conditions used. H. macrophylla

  11. Extracellular xylanase production by Pleurotus species on lignocellulosic wastes under in vivo condition using novel pretreatment.

    Science.gov (United States)

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K

    2012-01-01

    The production of extracellular xylanase by three species of Pleurotus species i.e. P. florida, P. flabellatus and P. sajor caju was studied under in vivo condition during their cultivation on pretreated lignocellulosic wastes. Neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract were used for pretreatment of paddy straw and wheat straw. Between these two wastes, paddy straw pretreated with neem oil, supported better xylanase production than wheat straw. Initially, xylanase production was low but it increased in subsequent days and reached at peak on 25th day of cultivation of Pleurotus species. Thereafter, there was decrease in the activity of the enzyme. On 25th day of incubation P. florida produced maximum xylanase on neem oil pretreated paddy straw i.e. 10.59 Uh—1ml—1. Among the three species, P. florida showed maximum enzyme activity followed by P. flabellatus and P. sajor caju. PMID:23273208

  12. Identification and characterization of diverse xylanases from thermophilic and thermotolerant fungi

    Directory of Open Access Journals (Sweden)

    Bhat, M. K.

    2006-07-01

    Full Text Available Thirteen fungal isolates included in this study expressed multiple xylanase isoforms as observed by xylan zymograms of polyacrylamide gel electrophoresis (PAGE and isoelectrofocussing (IEF fractionated proteins. Eighty-three xylanases produced by these thermophilic and thermotolerant strains were detected using the IEF profiling technique. Xylanases identified on the basis of their isoelectric points (pI were functionally diverse and exhibited differential catalytic activities against various xylan types (birch wood xylan, larch wood xylan, oat spelt xylan, rye arabino xylan and wheat arabino xylan as well as debranched arabinan. Thermophilic isolates, Chaetomium thermophilum, Humicola insolens, Melanocarpus sp., Malbranchea sp. and Thermoascus aurantiacus, were found to produce alkaline active xylanases that showed a bleach boosting effect on Decker pulp resulting in increased brightness (1.60-2.04 ISO units.

  13. [Screening of acidic xylanase producing strain and studies on its enzyme production conditions].

    Science.gov (United States)

    Chen, H; Zhu, J; Liang, G; Yan, Z; Zhang, S

    1999-08-01

    From 150 fungal strains, the authors found 8 strains contained mainly of xylanase activity over 100 U/mL in which the No. 149 strain was the highest xylanase producer. Which tentatively identified as Aspergillas niger. The appropriate medium composition was as follows: wheat bran hemicellulose 4%; NaNO3 1%; wheat bran 1% prepared in Mandels nutritional solution without (NH4)2SO4 and urea. After cultivated in shake-flask at 28 degrees C-32 degrees C for 60 h, the activity reached the highest value of 357.2 U/mL. The optimum pH of xylanase was 4.6 and it was stable at pH3-11. The fermented broth of strain 149 contained in addition to xylanase (relative activity 100) also included amylase(1.8), mannanase(0.98), beta-xylosidase(0.94) and cellulase(0.17). PMID:12555575

  14. Integrating a xylanase treatment into an industrial-type sequence for eucalyptus kraft pulp bleaching

    OpenAIRE

    Fillat Latorre, Úrsula; Roncero Vivero, María Blanca; Sacón, Vera Maria; Bassa, Alexandre

    2012-01-01

    The influence of a treatment with two commercial xylanases on pulp and effluents obtained after the bleaching stages in the OXAZDP (O, oxygen stage; X, xylanase treatment; A, acid stage; Z, ozone stage; D, chlorine dioxide stage; P, hydrogen peroxide stage) sequence was studied. Also, the potential saving in chlorine dioxide was assessed. The enzyme treatment was performed on pulp containing some black liquor since the operating conditions were close to the conditions used in the storage towe...

  15. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001.

    Science.gov (United States)

    Hwang, In Taek; Lim, Hee Kyung; Song, Ha Young; Cho, Soo Jin; Chang, Jong-San; Park, No-Joong

    2010-01-01

    The KRICT PX1 gene (GB: FJ380951) consisting of 996bp encoding a protein of 332 amino acids (38.1kDa) from the recently isolated Paenibacillus sp. strain HPL-001 (KCTC11365BP) has been cloned and expressed in Escherichia coli. The xylanase KRICT PX1 showed high activity on birchwood xylan, and was active over a pH range of 5.0 to 11.0, with two optima at pH 5.5 and 9.5 at 50 degrees C with K(m) value of 5.35 and 3.23, respectively. The xylanase activity was not affected by most salts, such as NaCl, LiCl, KCl, NH(4)Cl, CaCl(2), MgCl(2), MnCl(2), and CsCl(2) at 1mM, but affected by CuSO(4), ZnSO(4), and FeCl(3). One mM of EDTA, 2-mercaptoethanol, and PMSF did not affect the xylanase activity. TLC analysis of the catalyzed products after reaction with birchwood xylan revealed that xylobiose was the major product with smaller amounts of xylotriose and xylose. A similarity analysis of the amino acids in KRICT PX1 resulted 72% identity with xylanase from Geobacillus stearothermophilus (GB: ZP_03040360), 70% identity with intracellular xylanase from an uncultured bacterium (GB: AAP51133), 68% identity with endo-1-4-xylanse from Paenibacillus sp. (GB: ZP_02847150). In addition, the amino acid alignment of KRICT PX1 with glycosyl hydralase (GH) family 10 xylanases revealed a high degree of homology in highly conserved regions including the catalytic sites, and this was confirmed through PROSITE scan. These results imply that KRICT PX1 is a new xylanase gene, and this alkaline xylanase belongs to GH family 10. PMID:20493247

  16. Metabolizable energy values of diets supplemented with xylanase determined with laying hens

    Directory of Open Access Journals (Sweden)

    Karina Márcia Ribeiro de Souza

    2012-12-01

    Full Text Available The objective of this study was to evaluate the effect of the supplementation of xylanase in diets with reduced energy level on the apparent metabolizable energy corrected for nitrogen, determined with laying hens at 14, 36, 60 and 80 weeks of age. Four digestibility trials were conducted, using 80 Hy-line W36 laying hens aged 14, 36, 60 and 80 weeks of age. Birds were distributed in a completely randomized design in 2 × 2 factorial arrangement (energy level × inclusion of xylanase, totaling four treatments with 10 replicates of two birds each. Treatments were: positive control (balanced diet for their age; positive control + xylanase; negative control (diet with reduction of 100 kcal/kg in the level of metabolizable energy; and negative control + xylanase. Xylanase, produced by microorganism Trichoderma reesei, was added to the diets at 100 g/t (16,000 BXU/kg for diets fed at 14 weeks and 75 g/t for diets of 36, 60 and 80 weeks (12,000 BXU/kg. The data obtained were subjected to analysis of variance at 5% probability. Supplementation of xylanase promoted higher values for AME (apparent metabolizable energy and AMEn (apparent metabolizable energy corrected for nitrogen determined with 80-week-old laying hens, subjected to diet with energy level according to the nutritional requirements for their age. Supplementation of xylanase increases the matabolizability coefficient of the dietary crude protein and improves the nitrogen retention of laying hens at 14 weeks. In addition, xylanase associated with adequate levels of dietary energy promotes higher values for AME and AMEn determined with laying hens at 80 weeks of age.

  17. A Highly Thermostable Xylanase from Stenotrophomonas maltophilia: Purification and Partial Characterization

    Directory of Open Access Journals (Sweden)

    Abhay Raj

    2013-01-01

    Full Text Available Seven xylanolytic bacterial strains were isolated from saw-dust dump soil. The bacterial strain X6 was selected on the basis of the highest xylanase activity with no cellulase contamination. It was identified as Stenotrophomonas maltophilia by biochemical tests and 16S rRNA gene sequencing approach. Xylanase production studies by S. maltophilia on different commercial xylans and agro-industrial residues suggested that wheat bran was the best carbon source for xylanase production (26.4 ± 0.6 IU/mL. The studies with inorganic and organic nitrogen sources suggested yeast extract as the best support for xylanase production (25 ± 0.6 IU/mL. Maximum xylanase production was observed at initial medium pH = 8.0 (23.8 ± 0.4 IU/mL with production at pH = 7.0 and pH = 9.0 being almost comparable. Xylanase produced by S. maltophilia was purified to homogeneity using ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. The final purification was 5.43-fold with recovery of 19.18%. The molecular weight of the purified xylanase protein was ~142 kDa. Both crude and purified xylanase had good stability at pH = 9.0 and 80°C with activity retention greater than 90% after 30 min incubation. The enzyme stability at high temperature and alkaline pH make it potentially effective for industrial applications.

  18. Production, purification and characterization of xylanase using alkalo-thermophilic Bacillus halodurans KR-1

    OpenAIRE

    Krityanand Kumar Mahatman; Neha Garg; Ranjeeta Chauhan; Anil Kumar

    2010-01-01

    Xylanase (EC. 3.2.1.8) has been isolated from an alkalo-thermophilic bacteria, Bacillus halodurans strain KR-1 isolated from the soil near river bed at Indore. The bacteria secreted xylanase in the growth medium in the presence of xylan. The production of the enzyme was induced in the presence of glucose, mannose, lactose and maltose whereas presence of starch, cellulose and sucrose retarded in enzyme production. The presence of casein, peptone, sodium nitrate and potassium nitrate as nitroge...

  19. Crystal Structure of Talaromyces cellulolyticus (Formerly Known as Acremonium cellulolyticus) GH Family 11 Xylanase

    OpenAIRE

    Kataoka, Misumi; Akita, Fusamichi; Maeno, Yuka; Inoue, Benchaporn; Inoue, Hiroyuki; Ishikawa, Kazuhiko

    2014-01-01

    Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is one of the mesophilic fungi that can produce high levels of cellulose-related enzymes and are expected to be used for the degradation of polysaccharide biomass. In silico analysis of the genome sequence of T. cellulolyticus detected seven open reading frames (ORFs) showing homology to xylanases from glycoside hydrolase (GH) family 11. The gene encoding the GH11 xylanase C (TcXylC) with the highest activity was used fo...

  20. Purification and Characterization of Aeromonas caviae ME-1 Xylanase V, Which Produces Exclusively Xylobiose from Xylan

    OpenAIRE

    Kubata, Bruno Kilunga; Suzuki, Tohru; Horitsu, Hiroyuki; Kawai, Keiichi; Takamizawa, Kazuhiro

    1994-01-01

    A xylanase, which produces exclusively xylobiose from oat spelt and birch xylans, was isolated from the culture medium of Aeromonas caviae ME-1. The enzyme (xylanase V) was purified by ammonium sulfate fractionation, hydrophobic interaction, and ion-exchange and gel filtration chromatographies. The homogeneity of the final preparation was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel electrofocusing. The molecular mass and isoelectric point of the x...

  1. Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy

    OpenAIRE

    Song Letian; Siguier Béatrice; Dumon Claire; Bozonnet Sophie; O'Donohue Michael J

    2012-01-01

    Abstract Background Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn). Results Following in vitro enzyme evolution and scre...

  2. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp.

    Science.gov (United States)

    Nie, Shuangxi; Wang, Shuangfei; Qin, Chengrong; Yao, Shuangquan; Ebonka, Johnbull Friday; Song, Xueping; Li, Kecheng

    2015-11-01

    Xylanase-aided chlorine dioxide bleaching of bagasse pulp was investigated. The pulp was pretreated with xylanase and followed a chlorine dioxide bleaching stage. The ATR-FTIR and XPS were employed to determine the surface chemistry of the control pulp, xylanase treated and chlorine dioxide treated pulps. The hexenuronic acid (HexA) could obviously be reduced after xylanase pretreatment, and the adsorbable organic halides (AOX) were reduced after chlorine dioxide bleaching. Compared to the control pulp, AOX could be reduced by 21.4-26.6% with xylanase treatment. Chlorine dioxide demand could be reduced by 12.5-22% to achieve the same brightness. The ATR-FTIR and XPS results showed that lignin and hemicellulose (mainly HexA) were the main source for AOX formation. Xylanase pretreatment could remove HexA and expose more lignin, which decreased the chlorine dioxide demand and thus reduced formation of AOX. PMID:26263004

  3. Pretreatment with xylanase and its significance in hemicellulose removal from mixed hardwood kraft pulp as a process step for viscose.

    Science.gov (United States)

    Kaur, Prabhjot; Bhardwaj, Nishi K; Sharma, Jitender

    2016-07-10

    The upturn of viscose fiber market has triggered an augmented dissolving pulp usage over the last decade. Dissolving pulp is feasible to obtain from kraft pulp after two essential steps including hemicellulose removal and subsequent pulp activation. Prerequisite of conversion being hemicellulose reduction can be gently done by using xylanase treatment prior to alkali extraction. Herein, the significance of xylanase treatment and the optimum xylanase dose required in conjunction with subsequent alkali extraction was investigated. An increase in xylanase dose prior to alkali extraction had no significant effect on pentosans while the Fock reactivity and viscosity both improved at the dose of 50AXU/g. Also, alkali extraction without xylanase pretreatment resulted in decreased Fock reactivity, alpha cellulose, brightness and viscosity of paper grade pulp. A moderate dose of xylanase prior to alkali extraction can thus be used to facilitate the hemicellulose removal while simultaneously protecting the native structure of cellulose. PMID:27106156

  4. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives.

    Science.gov (United States)

    Kumar, Vishal; Marín-Navarro, Julia; Shukla, Pratyoosh

    2016-02-01

    Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches. PMID:26754672

  5. Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride.

    Science.gov (United States)

    Goyal, Meenakshi; Kalra, K L; Sareen, V K; Soni, G

    2008-07-01

    In the present study, cultural and nutritional conditions for enhanced production of xylanase by a local soil isolate of Trichoderma viride, using various lignocellulosic substrates in submerged culture fermentation have been optimized. Of the lignocellulosics used, maize straw was the best inducer followed by jowar straw for xylanase production. The highest activity achieved was between 14 to 17 days of fermentation. A continuous increase in xylanase production was observed with increasing level of lignocellulosics in the medium and highest activity was observed with maize straw at 5% level. Xylanase production with higher levels of lignocellulosics (3 to 5%) of maize, jowar and barseem was found to be higher as compared to that with commercial xylan as carbon source. Sodium nitrate was the best nitrogen source among the six sources used. Maximum xylanase production was achieved with initial medium pH of 3.5-4.0 and incubation temperature of 25ºC.The enzyme preparation was effective in bringing about saccharification of different lignocellulosics. The xylanase production could be further improved by using alkali treated straw as carbon source. PMID:24031262

  6. Xylanase production by a local fungal isolate, Aspergillus niger USM AI 1 via solid state

    Directory of Open Access Journals (Sweden)

    Ibrahim Che Omar

    2005-03-01

    Full Text Available Isolate USM A1 I which was identified to be Aspergillus niger was selected as a potential producer of xylanase via a solid state fermentation system (SSF using palm kernel cake (PKC as substrate. The modification of the physical conditions of the SSF system indicated that the xylanase activity was 23.97 U/g PKC at the moisture ratio of 1:0.75 of PKC: moistening agent with the inoculum size of 1¥104 spores/ml and cultivated at the ambient temperature (28±3ºC. The supplementation of additional carbon and nitrogen sources in the PKC medium could enhance enzyme productivity. The maximum production of xylanase and growth obtained with the supplementation of xylose at 0.75% (w/w were 25.40 U/g and 1.69 mg glucosamine/ g PKC. Moreover, the presence of NaNO3 at 0.075% (w/w as additional nitrogen source further enhanced xylanase production to 33.99 U/g PKC although the growth remained unchanged at about 1.67 mg glucosa- mine/g PKC. The optimized conditions showed an increased xylanase production by 157% compared to before the optimization of the SSF system. The xylanase productivity was 23.12 U/mg glucosamine after optimization and 11.72 U/mg glucosamine before optimization.

  7. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    Science.gov (United States)

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications. PMID:26431535

  8. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates.

    Science.gov (United States)

    Song, Hui-Ting; Gao, Yuan; Yang, Yi-Min; Xiao, Wen-Jing; Liu, Shi-Hui; Xia, Wu-Cheng; Liu, Zi-Lu; Yi, Li; Jiang, Zheng-Bing

    2016-11-01

    Synergistic combination of cellulase and xylanase has been performed on pre-treated substrates in many previous studies, while few on natural substrates. In this study, three unpretreated lignocellulosic substrates were studied, including corncob, corn stover, and rice straw. The results indicated that when the mixed cellulase and xylanase were applied, reducing sugar concentrations were calculated as 19.53, 15.56, and 17.35mg/ml, respectively, based on the 3,5 dinitrosalicylic acid (DNS) method. Compared to the treatment with only cellulose, the hydrolysis yields caused by mixed cellulase and xylanase were improved by 133%, 164%, and 545%, respectively. In addition, the conversion yield of corncob, corn stover, and rice straw by cellulase-xylanase co-treatment reached 43.9%, 48.5%, and 40.2%, respectively, based on HPLC analysis, which confirmed the synergistic effect of cellulase-xylanase that was much higher than either of the single enzyme treatment. The substrate morphology was also evaluated to explore the synergistic mechanism of cellulase-xylanase. PMID:27560367

  9. Xylanase Production by Bacillus circulans D1 Using Maltose as Carbon Source

    Science.gov (United States)

    Bocchini, D. A.; Gomes, E.; da Silva, R.

    Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that d-maltose is the best inducer of the enzyme synthesis (7.05 U/mg dry biomass at 48 h), while d-glucose and d-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with d-cellobiose. When oat spelt xylan was supplemented with d-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/L, leading to a reduction of 60% on the enzyme production. On the other hand, when the xylan medium was supplemented with d-xylose (3.0 or 5.0 g/L), this effect was more evident (80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/L, induced xylanase production on the maltose medium. On this medium, the repressive effect of xylose, at 3.0 or 5.0 g/L, was less expressive when compared to its effect on the xylan medium.

  10. Phylogenetic Diversity and Environment-Specific Distributions of Glycosyl Hydrolase Family 10 Xylanases in Geographically Distant Soils

    OpenAIRE

    Wang, Guozeng; Meng, Kun; Luo, Huiying; Wang, Yaru; Huang, Huoqing; Shi, Pengjun; Yang, Peilong; Zhang, Zhifang; Yao, Bin

    2012-01-01

    Background Xylan is one of the most abundant biopolymers on Earth. Its degradation is mediated primarily by microbial xylanase in nature. To explore the diversity and distribution patterns of xylanase genes in soils, samples of five soil types with different physicochemical characters were analyzed. Methodology/Principal Findings Partial xylanase genes of glycoside hydrolase (GH) family 10 were recovered following direct DNA extraction from soil, PCR amplification and cloning. Combined with o...

  11. Kinetics of Xylanase Fermentation by Recombinant Escherichia coli DH5α in Shake Flask Culture

    OpenAIRE

    Farliahati Mohd Rusli; Mohd Shamzi Mohamed; Rosfarizan Mohamad; Ni N. Tri Puspaningsih; Arbakariya A. Ariff

    2009-01-01

    Problem statement: Interest in xylanase enzyme application has markedly increased in pulp and paper processing industries. The switch to xylanase-producing recombinant Escherichia coli DH5α pTP510 is seen here as an economic alternative towards higher productivity and easier downstream purification. Modeling of E. coli DH5α growth and enzyme secretion is thus desired for future optimization in fermentation process. Approach: Kinetics of intracellular xylanase fermentation by a recom...

  12. Key factors to inoculate Botrytis cinerea in tomato plants

    Directory of Open Access Journals (Sweden)

    Álefe Vitorino Borges

    2014-09-01

    Full Text Available Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness of gelatin regarding inoculum adhesion. Infection with an isolate from tomato plants that was previously inoculated into petioles and then re-isolated was successful. An isolate from strawberry plants was also aggressive, although less than that from tomato plants. Tomato plants close to flowering, at 65 days after sowing, and younger, middle and apical stem portions were more susceptible. There was positive correlation between lesion length and sporulation and between lesion length and broken stems. Lesion length and the percentage of sporulation sites were reduced by using a moist chamber and were not affected by adding gelatin to the inoculum suspension. This methodology has been adopted in studies of B. cinerea in tomato plants showing reproducible results. The obtained results may assist researchers who study the gray mold.

  13. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bentancor Marcel

    2007-10-01

    Full Text Available Abstract Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora and Botrytis cinerea (B. cinerea, could infect Physcomitrella, and ii whether B. cinerea, elicitors of a harpin (HrpN producing E.c. carotovora strain (SCC1 or a HrpN-negative strain (SCC3193, could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1, resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193 produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1 or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B

  14. A Proteomic Study of Pectin Degrading Enzymes Secreted by Botrytis cinerea Grown in Liquid Culture

    OpenAIRE

    Shah, Punit; Gutierrez-Sanchez, Gerardo; Orlando, Ron; Bergmann, Carl

    2009-01-01

    Botrytis cinerea is a pathogenic filamentous fungus which infects more than 200 plant species. The enzymes secreted by B. cinerea play an important role in the successful colonization of a host plant. Some of the secreted enzymes are involved in the degradation of pectin, a major component of the plant cell wall. A total of 126 proteins secreted by B. cinerea were identified by growing the fungus on highly or partially esterified pectin, or on sucrose in liquid culture. Sixty-seven common pro...

  15. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Abscisic Acid-Producing Botrytis cinerea

    OpenAIRE

    Tao Gong; Dan Shu; Jie Yang; Zhong-Tao Ding; Hong Tan

    2014-01-01

    Botrytis cinerea is a model species with great importance as a pathogen of plants and has become used for biotechnological production of ABA. The ABA cluster of B. cinerea is composed of an open reading frame without significant similarities (bcaba3), followed by the genes (bcaba1 and bcaba2) encoding P450 monooxygenases and a gene probably coding for a short-chain dehydrogenase/reductase (bcaba4). In B. cinerea ATCC58025, targeted inactivation of the genes in the cluster suggested at least ...

  16. Effect of calcium on cell-wall degrading enzymes of Botrytis cinerea.

    Science.gov (United States)

    Sasanuma, Izumi; Suzuki, Takuya

    2016-09-01

    Effective anti-Botrytis strategies leading to reduce pesticides on strawberries are examined to provide the protection that is harmless to humans, higher animals and plants. Calcium treatments significantly inhibited the spore germination and mycelial growth of B. cinerea. The intracellular polygalacturonase and CMCase showed low activities in B. cinerea cultivated by medium containing calcium. On the other hand, calcium-stimulated β-glucosidases production occurred. Our findings suggest that the calcium treatments keep CMCase activity low and cause low activities of cell-wall degrading enzymes of B. cinerea in the late stage of growth. PMID:26998660

  17. Production of xylanases and cellulases by aspergillus fumigatus ms16 using crude lignocellulosic substrates

    International Nuclear Information System (INIS)

    Xylanolytic and cellulolytic potential of a soil isolate, Aspergillus fumigatus (MS16) was studied by growing it on a variety of lignocellulosics, purified cellulose and xylan supplemented media. It was noted that carboxymethyl cellulose, salicin and xylan induce the -glucosidase and xylanase, respectively production of endoglucanase. The study revealed that Aspergillus fumigatus (MS16) co-secretes xylanase and cellulase in the presence of xylan; the ratio of the two enzymes was influenced by the initial pH of the medium. The maximum titers of xylanase and cellulase were noted at initial pH of 5.0. Relatively higher titers of both the enzymes were obtained when the fungus was cultivated at 35 degree C. Whereas, cellulase production was not detected when the fungus was cultivated at 40 degree C. The volumetric productivity (Qp) of xylanase was much higher than cellulases. The organism produced 2-3 folds higher titers of xylanase when grown on lignocellulosic materials in submerged cultivation than under solid-state cultivation, suggesting a different pattern of enzyme production in presence and in absence of free water. The partial characterization of enzymes showed that xylanase from this organism has -glucosidase. The higher melting temperature than endoglucanase and optimum temperature for activity was higher for xylanases than cellulases, whereas the optimum pH differed slightly i.e. in the range of 4.0-5.0. Enzyme preparation from this organism was loaded on some crude substrates and it showed that the enzyme preparation can be used to hydrolyze a variety of vegetable and agricultural waste materials. (author)

  18. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants

    OpenAIRE

    Camera, Sylvain La; L’Haridon, Floriane; Astier, Jérémy; Zander, Mark; Abou-Mansour, Eliane; Page, Gonzague; Thurow, Corinna; Wendehenne, David; Gatz, Christiane; Métraux, Jean-Pierre; Lamotte, Olivier

    2011-01-01

    Botrytis cinerea is a major pre- and post-harvest necrotrophic pathogen with a broad host range that causes substantial crop losses. The plant hormone jasmonic acid (JA) is involved in the basal resistance against this fungus. Despite basal resistance, virulent strains of B. cinerea can cause disease on Arabidopsis thaliana and virulent pathogens can interfere with the metabolism of the host in a way to facilitate infection of the plant. However, plant genes that are required by the pathogen ...

  19. Effects of fludioxonil on Botrytis cinerea and on grapevine defence response

    OpenAIRE

    Petit, Anne Noelle; Vaillant-Gaveau, Nathalie; Walker, Anne Sophie; Leroux, Pierre; Baillieul, Fabienne; Panon, Marie-Laure; Clément, Christophe; Fontaine, Florence

    2011-01-01

    Botrytis bunch rot of grapes is mainly controlled by applying fungicides at three crop stages: the end of flowering (BBCH 68), bunch closure (BBCH 77) and the beginning of veraison (BBCH 81). The phenylpyrroles derivative fludioxonil is among the most effective fungicides registered to control Botrytis cinerea. Its effectiveness was investigated in relation to spray timing, fungicide resistance and defence responses of grapevine. Frequencies of B. cinerea strains which were resistant to fungi...

  20. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    OpenAIRE

    Sébastien Ronseaux; Essaid Ait Barka; Christophe Clément

    2013-01-01

    The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16) in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditio...

  1. Deficiencies in Jasmonate-Mediated Plant Defense Reveal Quantitative Variation in Botrytis cinerea Pathogenesis

    OpenAIRE

    Rowe, Heather C.; Justin W. Walley; Corwin, Jason; Chan, Eva K.-F.; Dehesh, Katayoon; Kliebenstein, Daniel J.

    2010-01-01

    Author Summary While many important elements of plant defense signaling have been identified, the function of these defense signaling pathways may mask additional variation in the plant–pathogen interaction, including both pathogen variation and variation in downstream plant defense responses. Jasmonate plant hormones contribute to both plant development and defense, including plant defense against necrotrophic fungal pathogens such as the grey mold Botrytis cinerea. Ten diverse B. cinerea is...

  2. Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato

    OpenAIRE

    Have, ten, DE; Berloo, van, R.; Lindhout, P.; Kan, van, H.J.

    2007-01-01

    Tomato (Solanum lycopersicum) is one of many greenhouse crops that can be infected by the necrotrophic ascomycete Botrytis cinerea. Commercial cultivation of tomato is hampered by the lack of resistance. Quantitative resistance has been reported in wild tomato relatives, mostly based on leaf assays. We aimed to identify wild tomato relatives with resistance to B. cinerea based on quantitative assays both on leaves and stem segments, monitoring infection frequency and disease expansion rate as...

  3. Enantiomeric oxidation of organic sulfides by the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride

    OpenAIRE

    Pinedo Rivilla, Cristina; Aleu Casatejada, Josefina; González Collado, Isidro

    2007-01-01

    The biotransformations of a series of substituted sulfides were carried out with the filamentous fungi Botrytis cinerea, Eutypa lata and Trichoderma viride. Several products underwent microbial oxidation of sulfide to sulfoxide with medium to high enantiomeric purity. With regard to sulfoxide enantioselectivity, the (R)-enantiomer was favoured in biotransformations by T. viride and E. lata while the (S)-enantiomer was favoured in those by B. cinerea. A minor amount of sulfone product...

  4. Production of 14C-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea.

    OpenAIRE

    Boyce, J M; Mitchell, E B; Knapp, J S; Buttke, T M

    1985-01-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. 14C-labeled gas was produced significantly faster (P less tha...

  5. Diversity in susceptibility of Botrytis cinerea to biocontrol products inducing plant defence mechanisms

    OpenAIRE

    Bardin, Marc; Comby, Morgane; Lenaerts, Ruben; Nicot, Philippe

    2011-01-01

    The development of plant defence stimulants to increase host resistance represents anattractive alternative to fungicides for the protection of crops against plant pathogens. In this study we evaluated the efficiency of 14 products presumed to induce plant defence mechanisms against Botrytis cinerea on tomato and lettuce. Two days after the application of the products, tomato and lettuce leaves were inoculated with B. cinerea and incubated in conditions conducive to disease development.Out...

  6. ANTIFUNGAL ACTIVITY ON BOTRYTIS CINEREA OF FLAVONOIDS AND DITERPENOIDS ISOLATED FROM THE SURFACE OF PSEUDOGNAPHALIUM SPP.

    OpenAIRE

    MILENA COTORAS; CAROLINA GARCÍA; CAROL LAGOS; CAROLINA FOLCH; LEONORA MENDOZA

    2001-01-01

    The activity of the extracts obtained from the resinous exudates of the plants Pseudognaphalium cheiranthifolium, P. heterotrichium, P. robustum and P. vira vira on mycelial growth of the phytopathogenic fungus Botrytis cinerea was analyzed. Ten flavones, two flavanones and three diterpenoids isolated from these extracts were also tested for antifungal activity against B. cinerea. The extracts reduced mycelial growth and the inhibitory activity of the pure compounds was higher. Flavones with ...

  7. Beheersing en bestrijding van Botrytis cinerea en van Penicillium in Euphorbia fulgens

    OpenAIRE

    Wubben, J.P.; Hazendonk, A.; Bosker, I.; Slootweg, C.; Hoope, ten, M.A.

    2002-01-01

    De bloeiwijze van Euphorbia fulgens kent twee belangrijke schimmelbelagers, die problemen in de teelt veroorzaken: Botrytis cinerea en Penicillium. B. cinerea geeft schade in de vorm van smet of pokken, die op de bloemblaadjes verschijnen. Dit zijn kleine donkerbruine/zwarte plekjes van ongeveer 1 mm doorsnede. Deze schimmel geeft met name problemen in de teelt wanneer de luchtvochtigheid hoog is, omdat de schimmel vocht nodig heeft om aantasting te geven. Penicillium komt met name voor in de...

  8. Kinetics and substrate selectivity of a Triticum aestivum xylanase inhibitor (TAXI) resistant D11F/R122D variant of Bacillus subtilis XynA xylanase

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard; Sørensen, Jens F.; Meyer, Anne S.

    2010-01-01

    This study examined the kinetics and substrate selectivity of a GH11 Bacillus subtilis XynA xylanase (BsX) sensitive to inhibition by TAXI and an engineered variant, which is much less inhibited by TAXI (BsX(mut)). The main purpose of the work was to elucidate any influence of the structural point...

  9. A proteomics-based study of endogenous and microbial xylanases and xylanase inhibitors associated with barley grains used for liquid feed

    DEFF Research Database (Denmark)

    Sultan, Abida

    degradation and carbohydrate catabolism. To gain a better understanding of the role of these xylanase inhibitors, the barley XIP III was expressed in a secretory Pichia pastoris system. The expressed rXIP- III with a HIS6-tag at the C -terminal was purified from the culture medium using metal affinity...

  10. Probing the role of sigma π interaction and energetics in the catalytic efficiency of endo-1,4-β-xylanase

    DEFF Research Database (Denmark)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Kim, In-Won;

    2012-01-01

    Chaetomium globosum endo-1,4-β-xylanase (XylCg) is distinguished from other xylanases by its high turnover rate (1,860 s(-1)), the highest ever reported for fungal xylanases. One conserved amino acid, W48, in the substrate binding pocket of wild-type XylCg was identified as an important residue...

  11. Effect of Gamma Irradiation on Botrytis cinerea Causing Gray Mold and Cut Chrysanthemum Flowers

    Directory of Open Access Journals (Sweden)

    Eun-Hee Chu

    2015-09-01

    Full Text Available Gray mold caused by Botrytis cinerea is one of the most important postharvest fungal pathogens of cut flowers. Here, gamma irradiation, an alternative for phytosanitary purposes, and sodium dichloroisocyanurate (NaDCC were used to control B. cinerea in a cut chrysanthemum (Chrysanthemum morifolium Ramat. cultivar, ‘Baekma’, one of the cultivars susceptible to B. cinerea. Spore germination and mycelium growth of B. cinerea were inhibited by gamma irradiation in an inversely dose-dependent manner. A dose of 4 kGy completely inhibited the mycelium growth of B. cinerea. A significant change in flower quality (physical properties on chrysanthemum was shown from gamma irradiation at over 0.2 kGy (p<0.05. Therefore, in this study, the integration of gamma ray (below 0.2 kGy and NaDCC, an eco-friendly form of chlorine, was investigated to control the disease with low dose of gamma irradiation dose. Interestingly, the gamma irradiated flowers showed more disease severity than the non-irradiated flowers. The combined treatment of gamma irradiation and NaDCC does not affect the severity of the fungal disease, whereas only 70 ppm of NaDCC treatment showed a significantly reduced severity. These results suggest that only chlorination treatment can be applied to control B. cinerea in cut chrysanthemum flowers.

  12. Difficulties in differentiating Neisseria cinerea from Neisseria gonorrhoeae in rapid systems used for identifying pathogenic Neisseria species.

    OpenAIRE

    Boyce, J M; Mitchell, E B

    1985-01-01

    Neisseria cinerea and Neisseria gonorrhoeae may occur at the same body sites and may have similar colony morphologies. Ideally, systems used for rapid identification of N. gonorrhoeae should be able to differentiate N. cinerea from gonococci. We tested seven N. cinerea strains using the Gonochek II (Du Pont Diagnostics), Minitek (BBL Microbiology Systems), RapID-NH (Innovative Diagnostics, Inc.), RIM-N (American Microscan), and Phadebact (Pharmacia Diagnostics) systems. We found that the reac...

  13. Effect of temperature on the morphological characteristics of Botrytis cinerea and its correlated with the genetic variability

    OpenAIRE

    Fernández, Jorge G; Martín A Fernández-Baldo; Gabriela Sansone; Viviana Calvente; Delia Benuzzi; Eloy Salinas; Julio Raba; Sanz, María I

    2014-01-01

    Objective: To study the effect of temperature on the morphological characteristics of Botrytis cinerea (B. cinerea) and its correlated with the genetic variability. B. cinerea is a plant-pathogenic fungus that produces the disease known as grey mould in a wide variety of agriculturally important hosts in many countries. Methods: Six strains from different host collected have been isolated and characterized by several methods as mycelial growth, fungicide resistance, pathoge...

  14. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana

    OpenAIRE

    Stefanato, Francesca L.; Abou-Mansour, Eliane; Buchala, Antony; Kretschmer, Matthias; Mosbach, Andreas; Hahn, Matthias; Bochet, Christian G.; Métraux, Jean-Pierre; Schoonbeek, Henk-jan

    2009-01-01

    Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mut...

  15. Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse

    OpenAIRE

    Decognet, Veronique; Bardin, Marc; Trottin-Caudal, T.; Nicot, Philippe

    2009-01-01

    In tomato glasshouses, the population structure of airborne inoculum of Botrytis cinerea depends on the production of endogenous inoculum on diseased plants as well as on incoming exogenous inoculum. Both types of inocula may contribute differently to the development of epidemics. Two strains of B. cinerea were introduced in each of four separate compartments of an experimental tomato glasshouse. We monitored their impact on disease development and on the genetic diversity of B. cinerea popul...

  16. Laboratory evaluation of molluscicidal activity of extracts from Cotula cinerea (L) and Quercus lusitania var. infectoria galls (Oliv.).

    Science.gov (United States)

    Redwane, A; Markouk, M; Lazrek, H B; Amarouch, H; Jana, M

    1998-01-01

    In this work, we have studied the molluscicidal activity of different extracts obtained from Cotula cinerea and Quercus lusitania var. infectoria galls. The hydroalcoholic extract of Cotula cinerea, acetonic extract and gallotanin of Quercus infectoria galls have presented high activity against Bulinus truncatus. The hydroalcoholic extract of Cotula cinerea was fractionated by chromatography on silica gel column. We have isolated two very active fractions at concentrations respectively of 52.5 and 27.5 ppm. PMID:9872015

  17. Impedance of the Grape Berry Cuticle as a Novel Phenotypic Trait to Estimate Resistance to Botrytis Cinerea

    OpenAIRE

    Katja Herzog; Rolf Wind; Reinhard Töpfer

    2015-01-01

    Warm and moist weather conditions during berry ripening provoke Botrytis cinerea (B. cinerea) causing notable bunch rot on susceptible grapevines with the effect of reduced yield and wine quality. Resistance donors of genetic loci to increase B. cinerea resistance are widely unknown. Promising traits of resistance are represented by physical features like the thickness and permeability of the grape berry cuticle. Sensor-based phenotyping methods or genetic markers are rare for such traits....

  18. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1.

    Science.gov (United States)

    Wang, Juan; Wu, Yaning; Gong, Yanfen; Yu, Shaowen; Liu, Gang

    2015-09-01

    The xylanase regulator 1 protein in Myceliophthora thermophila ATCC42464 (MtXyr1) is 60 % homologous with that of Trichoderma reesei. However, MtXyr1's regulatory role on cellulolytic and xylanolytic genes in M. thermophila is unknown. Herein, MtXyr1 was overexpressed under the control of the MtPpdc (pyruvate decarboxylase) promoter. Compared with the wild type, the extracellular xylanase activities of the transformant cultured in non-inducing and inducing media for 120 h were 25.19- and 9.04-fold higher, respectively. The Mtxyr1 mRNA level was 300-fold higher than in the wild type in corncob-containing medium. However, the filter paper activity and endoglucanase activities were unchanged in corncob-containing medium and glucose-containing medium. The different zymograms between the transformant and the wild type were analyzed and identified by mass spectrometry as three xylanases of the glycoside hydrolase (GH) family 11. Thus, overexpression of xyr1 resulted in enhanced xylanase activity in M. thermophila. Xylanase production could be improved by overexpressing Mtxyr1 in M. thermophila. PMID:26173497

  19. Isolation, Production, and Characterization of Thermotolerant Xylanase from Solvent Tolerant Bacillus vallismortis RSPP-15

    Directory of Open Access Journals (Sweden)

    Rajeeva Gaur

    2015-01-01

    Full Text Available Sixty bacterial strains isolated from the soils sample in the presence of organic solvent were screened for xylanase production. Among them, strain RSPP-15 showed the highest xylanase activity which was identified as Bacillus vallismortis. The isolate showed maximum xylanase production (3768 U/mL in the presence of birch wood xylan and beef extract at 55°C pH 7.0 within 48 h of incubation. The enzyme activity and stability were increased 181.5, 153.7, 147.2, 133.6, and 127.9% and 138.2, 119.3, 113.9, 109, and 104.5% in the presence of Co2+, Ca2+, Mg+2, Zn+2, and Fe+3 ions (10 mM. Xylanase activity and stability were strongly inhibited in the presence of Hg and Cu ions. The enzyme was also stable in the presence of 30% of n-dodecane, isooctane, n-decane, xylene, toluene, n-hexane, n-butanol, and cyclohexane, respectively. The presence of benzene, methanol, and ethanol marginally reduced the xylanase stability, respectively. This isolate may be useful in several industrial applications owing to its thermotolerant and organic solvent resistance characteristics.

  20. Crystal structure of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) GH family 11 xylanase.

    Science.gov (United States)

    Kataoka, Misumi; Akita, Fusamichi; Maeno, Yuka; Inoue, Benchaporn; Inoue, Hiroyuki; Ishikawa, Kazuhiko

    2014-10-01

    Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is one of the mesophilic fungi that can produce high levels of cellulose-related enzymes and are expected to be used for the degradation of polysaccharide biomass. In silico analysis of the genome sequence of T. cellulolyticus detected seven open reading frames (ORFs) showing homology to xylanases from glycoside hydrolase (GH) family 11. The gene encoding the GH11 xylanase C (TcXylC) with the highest activity was used for overproduction and purification of the recombinant enzyme, permitting solving of the crystal structure to a resolution of 1.98 Å. In the asymmetric unit, two kinds of the crystal structures of the xylanase were identified. The main structure of the protein showed a β-jelly roll structure. We hypothesize that one of the two structures represents the open form and the other shows the close form. The changing of the flexible region between the two structures is presumed to induce and accelerate the enzyme reaction. The specificity of xylanase toward the branched xylan is discussed in the context of this structural data and by comparison with the other published structures of xylanases. PMID:25138599

  1. Purification and preliminary characterization of a xylanase from Thermomyces lanuginosus strain SS-8.

    Science.gov (United States)

    Shrivastava, Smriti; Shukla, Pratyoosh; Mukhopadhyay, Kunal

    2011-12-01

    Thermomyces lanuginosus SS-8 was isolated from soil samples that had been collected from near self-heating plant material and its extracellular cellulase-free xylanase purified approximately 160-fold using ion exchange chromatography and continuous elution electrophoresis. This xylanase was thermoactive (optimum temperature 60 °C) at pH 6.0 and had a molecular weight of 23.79 kDa as indicated by SDS-PAGE electrophoresis. The xylanase rapidly hydrolyzed xylan directly to xylose without the production of intermediary xylo-oligosaccharides within 15 min of incubation under optimum conditions. This trait of rapidly degrading xylan to xylose as a sole end-product could have biotechnological potential in degradation of agro-wastes for bioethanol manufacturing industry. PMID:22558544

  2. Construction of a highly active xylanase displaying oleaginous yeast: comparison of anchoring systems.

    Directory of Open Access Journals (Sweden)

    Sophie Duquesne

    Full Text Available Three Yarrowia lipolytica cell wall proteins (YlPir, YlCWP1 and YlCBM were evaluated for their ability to display the xylanase TxXYN from Thermobacillus xylanilyticus on the cell surface of Y. lipolytica. The fusion proteins were produced in Y. lipolytica JMY1212, a strain engineered for mono-copy chromosomal insertion, and enabling accurate comparison of anchoring systems. The construction using YlPir enabled cell bound xylanase activity to be maximised (71.6 U/g. Although 48% of the activity was released in the supernatant, probably due to proteolysis at the fusion zone, this system is three times more efficient for the anchoring of TxXYN than the YlCWP1 system formerly developed for Y. lipolytica. As far as we know it represents the best displayed xylanase activity ever published. It could be an attractive alternative anchoring system to display enzymes in Y. lipolytica.

  3. Xylanases, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A; Dirmeier, Reinhard

    2013-07-16

    The invention relates to enzymes having xylanase, mannanase and/or glucanase activity, e.g., catalyzing hydrolysis of internal .beta.-1,4-xylosidic linkages or endo-.beta.-1,4-glucanase linkages; and/or degrading a linear polysaccharide beta-1,4-xylan into xylose. Thus, the invention provides methods and processes for breaking down hemicellulose, which is a major component of the cell wall of plants, including methods and processes for hydrolyzing hemicelluloses in any plant or wood or wood product, wood waste, paper pulp, paper product or paper waste or byproduct. In addition, methods of designing new xylanases, mannanases and/or glucanases and methods of use thereof are also provided. The xylanases, mannanases and/or glucanases have increased activity and stability at increased pH and temperature.

  4. Partial purification and characterization of xylanase produced from aspergillus niger using wheat bran

    International Nuclear Information System (INIS)

    In present exploration, purification and characterization of xylanase was carried out to find its optimum conditions for maximum functionality. The xylanase (EC 3.2.1.8) synthesized by Aspergillus niger in submerged fermentation was partially purified and characterized for different parameters like temperature, pH and heat stability. The molecular mass determined through SDS-PAGE was found 30 kDa. The specific activity of the enzyme was raised from 41.85 to 613.13 with 48.63% yield just in a two step partial purification comprising ammonium sulphate precipitation and Sephadex gel filteration column chromatography. The partially purified enzyme was found to be optimally active at 60 degree C and 7.5 pH. Conclusively, for the application of xylanase in food, feed or paper manufacturing processes, it is necessary to consider its optimum pH and temperature. (author)

  5. Production, partial purification and characterization of xylanase using Nicotiana tabacum leaf dust as substrate.

    Science.gov (United States)

    Acharya, Komal P; Shilpkar, Prateek

    2016-03-01

    Isolated Bacillus sp. was used in the present study for production of xylanase from Nicotiana tabacum leaf dust. The strain was able to give a maximum of 1.77 Uml⁻¹ xylanase activity under optimized fermentation conditions which was further increased upto 2.77 Uml⁻¹ after extraction and partial purification of enzyme. After partial purification, the enzyme was characterized and it gave the highest xylanase activity at pH 7.0, when 0.2 ml enzyme was incubated with 2.0% substrate (Nicotiana tabacum leaf dust) for 60 min at 60°C. Saccharification study of Nicotiana tabacum leaf dust with partially purified enzyme revealed that 18.4% reducing sugar was released in 20 hrs incubation, and TLC and HPTLC analysis showed that xylose and glucose sugars were obtained after hydrolysis of substrate. FTIR analysis confirmed decomposition of substrate. PMID:27097451

  6. Study on Screening and Cultivation Conditions of Xylanase-Producing Alkalophilic Bacterial

    Institute of Scientific and Technical Information of China (English)

    Han Xiao-fang; Zheng Lian-shuang; Xie Yi-min

    2004-01-01

    An xylanase producting alkalophilic Bacillus NT-9 was obtaind by the screening method of transparent zone on the selective medium, and the effects of carbon source and nitrogen source on xylanase production were studied. The medium composed of xylose 1.5%, (NH4)2SO4 0.25%, K2HPO4 0.1%, MgSO4·7H2O 0.02%, with the initial pH of 10, was suggested to be optimal for the enzyme production in this study. When cultivatied at 37 ℃ for 72 h, the enzyme activity elaborated by the strain may reach as high as 10.5 U/mL. The xylanase produced by Bacillus NT-9 was a constituent enzyme.

  7. Bioprocess and biotecnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract

    OpenAIRE

    de Alencar Guimaraes, Nelciele Cavalieri; Sorgatto, Michele; Peixoto-Nogueira, Simone de Carvalho; Betini, Jorge Henrique Almeida; Zanoelo, Fabiana Fonseca; Marques, Maria Rita; de Moraes Polizeli, Maria de Lourdes Teixeira; Giannesi, Giovana C

    2013-01-01

    This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of ...

  8. Exploration of Potential Actinomycetes from CIFOR Forest Origin as Antimicrobial, Antifungus, and Producing Extracellular Xylanase

    Directory of Open Access Journals (Sweden)

    Sipriyadi Sipriyadi

    2016-03-01

    Full Text Available This study aimed to isolate and explore the actinomycetes of CIFOR forest origin as an antimicrobial and antifungal agent, to produce an extracellular xylanase, and to identify isolates based on 16S rRNA gene sequences. Actinomycetes were isolated using Humic-acid Vitamin-B agar (HV media. Actinomycetes colonies that grow on the medium HV was subsequently purified by growing them on yeast malt agar (YMA media, then an antagonistic test of selected bacteria against Bacillus sp., Escherichia coli, Fusarium oxysporum, and Sclerotium sp was performed. Xylanase activity test was detected by observing a clear zone, followed by identification. Total of 35 isolates of actinomycetes isolated based on their colony morphology characteristics and diverse types of spore chains showed Streptomyces spp. of isolates CFR-06, CFR-15, CFR-17, CFR-18, and CFR-19 were able to inhibit the growth of Bacillus sp.. The highest inhibition zone has a diameter of 10.1 mm (isolate CFR-17. Isolates CFR-01 and CFR-15 were able to inhibit the growth of E. coli with the highest inhibition zone diameter of 5.1 mm (isolate CFR-15. Isolates CFR-29 and CFR-12 were able to inhibit the growth of F. oxysporum while isolate CFR-35 were able to inhibit the growth of Sclerotium sp.. Xylanase activity test showed that isolates CFR-12, CFR-20, CFR-22, CFR-24, CFR-25, CFR-30, CFR-33, CFR-34 have an ability to produce extracellular xylanase enzyme. Actinomycetes isolate (Xyl_22 as a potential xylanase enzyme producer was closely related with Streptomyces drozdowicii by the maximum similarity of 99%.How to CiteSipriyadi, S., Lestari, Y., Wahyudi, A., & Meryandini, A. (2016. Exploration Potential CIFOR Forest actinomycetes origin as Antimicrobial, Anti Fungus and Producing Enzymes Extracellular Xylanase. Biosaintifika: Journal of Biology & Biology Education, 8(1, 94-102.

  9. Purification and characterization of a thermostable hypothetical xylanase from Aspergillus oryzae HML366.

    Science.gov (United States)

    He, Haiyan; Qin, Yongling; Li, Nan; Chen, Guiguang; Liang, Zhiqun

    2015-03-01

    In the current study, fermentation broth of Aspergillus oryzae HML366 in sugar cane bagasse was subjected to ultrafiltration and ion exchange chromatography, and two xylanases, XynH1 and XynH2, were purified. Time-of-flight mass spectrometry coupled with SDS-PAGE analysis revealed that XynH1 is identical to the hypothetical A. oryzae RIB40 protein XP_001826985.1, with a molecular weight of 33.671 kDa. Likewise, XynH2 was identified as xylanase XynF1 with a molecular weight of 35.402 kDa. Sequence analysis indicated that XynH1 belongs to glycosyl hydrolases family 10. The specific activity of XynH1 was measured at 476.9 U/mg. Optimal xylanase activity was observed at pH 6.0, and enzyme remained active within pH 4.0-10.0 and at a temperature below 70 °C. Mg(2+), Mn(2+), Ca(2+), and K(+) enhanced the XynH1 xylanase activity to 146, 122, 114, and 108%, respectively. XynH1 hydrolyzed Birchwood xylan and Larchwood xylan effectively. The K m and V max of XynH1 values determined were 1.16 mM and 336 μmol/min/mg with Birchwood xylan as the substrate. A. oryzae HML366 xylanase XynH1 showed superior heat and pH tolerance, therefore may have significant applications in paper and biofuel industries. These studies constitute the first investigation of the xylanase activities of the hypothetical protein XP_001826985.1 form A. oryzae. PMID:25604952

  10. Attachment Capability of Antagonistic Yeast Rhodotorula glutinis to Botrytis cinerea Contributes to Biocontrol Efficacy.

    Science.gov (United States)

    Li, Boqiang; Peng, Huaimin; Tian, Shiping

    2016-01-01

    Rhodotorula glutinis as an antagonism show good biocontrol performance against various post-harvest diseases in fruits. In the present study, strong attachment capability of R. glutinis to spores and hyphae of Botrytis cinerea was observed. Further analysis showed that certain protein components on the yeast cell surface played critical role during the interaction between R. glutinis and B. cinerea. The components mainly distributed at the poles of yeast cells and might contain glycosylation modification, as tunicamycin treated yeast cells lost attachment capability to B. cinerea. To investigate contributions of attachment capability of R. glutinis to its biocontrol efficacy, yeast cells were mutagenized with 3% methane-sulfonic acid ethyl ester (EMS), and a mutant CE4 with stable non-attaching phenotype was obtained. No significant difference was found on colony, cell morphology, reproductive ability, and capsule formation between the mutant and wild-type. However, there was a distinct difference in India ink positive staining patterns between the two strains. Moreover, wild-type strain of R. glutinis showed better performance on inhibiting spore germination and mycelial growth of B. cinerea than CE4 strain when yeast cells and B. cinerea were co-cultured in vitro. In biocontrol assay, both wild-type and CE4 strains showed significant biocontrol efficacy against gray mold caused by B. cinerea in apple fruit, whereas, control effect of CE4 strain was lower than that of wild-type. Our findings provided new evidences that attachment capability of R. glutinis to B. cinerea contributed to its biocontrol efficacy. PMID:27199931

  11. PRODUCTION OF SINGLE CELL PROTEIN, ESSENTIAL AMINO ACIDS, AND XYLANASE BY PENICILLIUM JANTHINELLUM

    Directory of Open Access Journals (Sweden)

    Mala B. Rao

    2010-11-01

    Full Text Available Microbial biomass having 46% crude protein content and enriched with essential amino acids as well as extracellular xylanase activity (100-150 IU/ml was produced by an efficient fungal strain, Penicillium janthinellum (NCIM St-F-3b. Optimization studies for maximum xylanase and biomass production showed that the fungus required a simple medium containing bagasse hemicellulose as carbon source and ammonium sulphate as the nitrogen source. Therefore bagasse, which is a waste product of the sugar industry, can be efficiently used in microbioal biomass protein preparation for animal feed.

  12. Purification and Properties of β-1, 4-Xylanase from Aeromonas caviae W-61

    OpenAIRE

    Viet, Dung Nguyen; Kamio, Yoshiyuki; Abe, Naoki; Kaneko, Jun; Izaki, Kazuo

    1991-01-01

    Aeromonas caviae W-61, which was isolated from water samples at the Faculty of Agriculture, Tohoku University, produced β-1, 4-xylanase (1,4-β-d-xylan xylanohydrolase; EC 3.2.1.8) extracellularly. The xylanase was purified to homogeneity by using DEAE-Sephadex A-50, CM-Sephadex C-50, and Sephadex G-100 column chromatographies. The molecular weight of the purified enzyme was estimated to be 22,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme...

  13. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6.

    OpenAIRE

    Khasin, A; Alchanati, I; Shoham, Y.

    1993-01-01

    Bacillus stearothermophilus T-6 produces an extracellular xylanase that was shown to optimally bleach pulp at pH 9 and 65 degrees C. The enzyme was purified and concentrated in a single adsorption step onto a cation exchanger and is made of a single polypeptide with an apparent M(r) of 43,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Xylanase T-6 is an endoxylanase that completely degrades xylan to xylose and xylobiose. The pIs of the purified protein were 9 a...

  14. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    OpenAIRE

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and whe...

  15. GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production

    OpenAIRE

    Giardina Thierry; Ajandouz El-Hassan; Bonnin Estelle; Desseaux Véronique; Tauzin Alexandra; Lafond Mickael

    2011-01-01

    Abstract Background The filamentous fungus Penicillium funiculosum produces a range of glycoside hydrolases (GH). The XynD gene, encoding the sole P. funiculosum GH10 xylanase described so far, was cloned into the pPICZαA vector and expressed in methylotrophe yeast Pichia pastoris, in order to compare the results obtained with the P. funiculosum GH11 xylanases data. Results High level expression of recombinant XynD was obtained with a secretion of around 60 mg.L-1. The protein was purified to...

  16. EFFECT OF XYLANASE PRETREATMENT OF WOOD CHIPS ON FIBER SEPARATION IN THE CTMP REFINING PROCESS

    Directory of Open Access Journals (Sweden)

    Xiaochun Lei

    2008-08-01

    Full Text Available The effect of xylanase treatment of eucalyptus wood chips on chip refining and fiber properties was investigated. The fiber separation region and fiber surface structure were observed with SEM, TEM, and AFM. The fiber length and fines were analyzed with a Bauer-McNett classifier and optical image analysis of flowing suspensions (FQA. The results showed that xylanase degraded and hydrolyzed some xylan in the fiber wall, thus loosening the fiber wall structure. Therefore, in the subsequent refining process, fiber separation occurred in the secondary wall. This resulted in fibers with less lignin and extractives on the surface, which will benefit the interfiber bonding.

  17. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Bhosle, N.B.

    for industrial applications then the enzyme need to be thermophilic and alkalophilic in nature. However, most of the xylanases known to date are optimally active at temperatures below 50 ?C and are active in acidic or neutral pH [37,30,39]. Conversely, only a... medium range (14.3 to 97.4 kDa) molecular weight markers (Banglore Genei Pvt., India). Proteins were visualized by staining with Coomassie brilliant blue. 2.12. Zymogram analysis Zymogram for xylanase was carried out using SDS-PAGE electrophoresis...

  18. PENGGUNAAN XILANASE Streptomyces sp. 45 I-3 AMOBIL UNTUK HIDROLISIS XILAN TONGKOL JAGUNG [Immobilization of Extracellular Xylanase from Streptomyces sp. 45 I-3 for Hydrolysis of Corncob Xylan

    Directory of Open Access Journals (Sweden)

    Anja Meryandini1,2*

    2009-06-01

    Full Text Available Xylan extraction from corncob is done by using alkaline as solvent. Xylan extraction from corncob could give the yields as 10.9%. One percent of corncob xylan is used as substrate to produce the xylanase, compared to oatspelt xylan. Immobilization of xylanase was performed using 1% EudragitTM S100 solution (w/v, with 5:1 volume ratio of xylanase and 1 % EudragitTM S100 (w/v. Activity of the immobilized xylanase was decreased to 23.97% compared with free xylanase. Immobilized xylanase have optimum pH and temperature at 6.0 and 40C respectively, have also thermal stability at 30–40C for an hour. Immobilized xylanase could be reused, but its activity decreased to 52.38% after 3 times application.

  19. Incidencia de infecciones quiescentes de Botrytis cinerea en flores y

    Directory of Open Access Journals (Sweden)

    MolinaG. Gilma Sandra

    2004-12-01

    Full Text Available

    Se aisló Botrytis cinerea de flores y frutos asintomáticos de mora de castilla ( Rubus glaucus Benth. en  seis estados fenológicos desde botón cerrado hasta fruto maduro. Estas infecciones quiescentes ocurrieron raramente en botones florales cerrados, pero cuando éstos abren las estructuras florales aparecen colonizadas. La alta frecuencia de infecciones quiescentes en frutos en desarrollo y frutos maduros es atribuible a infecciones tempranas en estructuras florales. Inoculaciones hechas con conidias de B. cinerea marcadas con calcofluor produjeron infecciones en todos los estados fenológicos; la germinación de conidias en los seis estados fenológicos se inició a las 10 horas después de

  20. Detection transposable elements in Botrytis cinerea in latent infection stage from symptomless apples

    Institute of Scientific and Technical Information of China (English)

    Jorge G Fernndez; Martn A Fernndez-Baldo; Claudio Muoz; Eloy Salinas; Julio Raba; Mara I Sanz

    2014-01-01

    Objective:To detect Botrytis cinerea (B. cinerea) latent infections on apples before storage, which is essential for effective control strategies in the fruit postharvest industry. Methods:In the present study, a polymerase chain reaction detection method, based on primers designed on B. cinerea transposable elements (boty and flipper) and intergenic spacer region as internal control, were utilized to reveal the presence of symptomless infections on apple fruits. This molecular method proved to be highly specific and sensitive in detecting latent infections. It revealed the presence of the pathogen in 83%of the samples from infected apples with 104 conidia/mL, whereas those infected with 106 conidia/mL detected 94%as compared to the traditional method that revealed the pathogen in 40%and 66%of the samples inoculated with 104 and 106 conidia/mL respectively. Furthermore, the method characterized B. cinerea as subpopulation transposa-type by the presence of the transposable elements boty and flipper Results:The results obtained from DNA quantification method were compared with enzyme-linked immunosorbent assay and these studies showed good correlation. Therefore our method has important advantages compared with others detection methods for B. cinerea, because the proposed methodology allowed distinguishes between its two subpopulations (vacuma and transposa) and this would allow establish possible appropriate control strategies. Conclusions:Finally, the method can be an interesting alternative for its possible application in the phytosanitary programs of the fruit industry worldwide.

  1. Baseline sensitivity to fluopyram and fungicide resistance phenotypes of botrytis cinerea populations from table grapes in california

    Science.gov (United States)

    Gray mold caused by Botrytis cinerea is a major postharvest disease of table grapes grown in the Central Valley of California. Understanding fungicide-resistant phenotypes of B. cinerea is important to the development of pre-harvest fungicide programs for control of postharvest gray mold. Baseline s...

  2. Draft Genome Sequence of Botrytis cinerea BcDW1, Inoculum for Noble Rot of Grape Berries

    OpenAIRE

    Blanco-Ulate, Barbara; Allen, Greg; Powell, Ann L. T.; Cantu, Dario

    2013-01-01

    Botrytized wines are produced from grape berries infected by Botrytis cinerea under specific environmental conditions. Here, we report the draft genome sequence of B. cinerea BcDW1, a strain isolated from Sémillon grapes in Napa Valley in 1992 that is used with the intent to induce noble rot for botrytized wine production.

  3. Quality loss in packed rose flowers due to Botrytis cinerea infection as related to temperature regimes and packaging design

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    1998-01-01

    The effects of package design and temperature treatment (cooling and rewarming) on the quality of rose flowers (cv. Sweet Promise) packed in five types of boxes were investigated, with special regard to fungus (Botrytis cinerea) infection. A significant increase of B. cinerea spotting was observed o

  4. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth.

    Science.gov (United States)

    Uday, Uma Shankar Prasad; Choudhury, Payel; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath

    2016-01-01

    Xylanases are classified under glycoside hydrolase families which represent one of the largest groups of commercial enzymes. Depolymerizing xylan molecules into monomeric pentose units involves the synergistic action of mainly two key enzymes which are endo-β-xylanase and β-xylosidase. Xylanases are different with respect to their mode of action, substrate specificities, biochemical properties, 3D structure and are widely produced by a spectrum of bacteria and fungi. Currently, large scale production of xylanase can be produced through the application of genetic engineering tool which allow fast identification of novel xylanase genes and their genetic variations makes it an ideal enzymes. Due to depletion of fossil fuel, there is urgent need to find out environment friendly and sustainable energy sources. Therefore, utilisation of cheap lignocellulosic materials along with proper optimisation of process is most important for cost efficient ethanol production. Among, various types of lignocellulosic substances, water hyacinth, a noxious aquatic weed, has been found in many tropical. Therefore, the technological development for biofuel production from water hyacinth is becoming commercially worthwhile. In this review, the classification and mode of action of xylanase including genetic regulation and strategy for robust xylanase production have been critically discussed from recent reports. In addition various strategies for cost effective biofuel production from water hyacinth including chimeric proteins design has also been critically evaluated. PMID:26529189

  5. Botrytis cinerea Control and the Problem of Fungicide Resistance

    Directory of Open Access Journals (Sweden)

    Brankica Tanović

    2011-01-01

    Full Text Available Botrytis cinerea, the causal agent of grey mould, greatly affects fruit, grapevine, vegetable and ornamental crops production. It is a common causal agent of diseases in plants grown in protected areas, as well as fruit decay during storage and transport. The fungusinvades almost all parts of the plant in all developmental stages, and the symptoms are usually described as grey mould, grey mildew, brown rot and seedling blight. The paper reviews the current knowledge on control possibilities of this necrotrophic pathogen. Theattention is particularly paid to the mode of action of novel fungicides and to the problem of resistance. It is pointed out that by limiting the number of treatments in the growing season, avoiding the use of only one fungicide with a high risk for resistance development,appropriate application rate and timing, using mixtures of pesticides with different modes of action, as well as by alternative use of pesticides from different resistance groups, a longterm preservation of pesticide efficacy is provided.

  6. The Herbicidal Activity of Mutant Isolates from Botrytis cinerea

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-lin; ZHANG Li-hui; LIU Ying-chao; MA Juan; LI Chuan; DONG Jin-gao

    2006-01-01

    Fifteen mutant isolates were obtained by ultraviolet mutation from parent isolate Botrytis cinerea BC-4. Among them three mutant isolates, BC4-1, BC4-2, and BC4-15, showed strong herbicidal activity. BC4-1 showed maximum herbicidal activity for inhibition of germination and growth of Digitaria sanguinalis L. and Amaranthus retroflexus L. The results also showed that herbicidal activity was influenced by differing pH of PD media, with pH value of 4.0 being the optimum.The crude toxin was extracted using chloroform, petroleum ether, and ethyl acetate, respectively, and the ethyl acetate extracts showed the strongest inhibitory activity on the germination and growth of D. sanguinalis L. and A. retroflexus L.Using HPLC, one fraction with an absorption peak at 271 nm was separated from the crude toxin. This fraction could strongly inhibit the growth of D. sanguinalis L. at a concentration of 100 mg L-1 and could completely inhibit the seed germination of D. sanguinalis L. and A. retroflexus L. at a concentration of 50 mg L-1.

  7. Purification and characterization of a low molecular weight xylanase from solid-state cultures of Aspergillus fumigatus Fresenius

    OpenAIRE

    Silva Claudio Henrique Cerri e; Puls Jurgen; Sousa Marcelo Valle de; Ferreira Filho Edivaldo Ximenes

    1999-01-01

    A xylan-degrading enzyme (xylanase II) was purified to apparent homogeneity from solid-state cultures of Aspergillus fumigatus Fresenius. The molecular weight of xylanase II was found to be 19 and 8.5 kDa, as estimated by SDS-PAGE and gel filtration on FPLC, respectively. The purified enzyme was most active at 55 °C and pH 5.5. It was specific to xylan. The apparent Km and Vmax values on soluble and insoluble xylans from oat spelt and birchwood showed that xylanase II was most active on solub...

  8. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation

    OpenAIRE

    Kamble, Rajashri D.; Jadhav, Anandrao R.

    2012-01-01

    A thermoalkalophilic new species of Bacillus, similar to Bacillus arseniciselenatis DSM 15340, produced extracellular xylanase under solid state fermentation when wheat bran is used as carbon source. The extracellular xylanase was isolated by ammonium sulfate (80%) precipitation and purified using ion exchange chromatography. The molecular weight of xylanase was ~29.8 ;kDa. The optimum temperature and pH for the enzyme activity were 50°C and pH 8.0. The enzyme was active on birchwood xylan an...

  9. Simple, Sensitive Zymogram Technique for Detection of Xylanase Activity in Polyacrylamide Gels

    OpenAIRE

    Royer, John C.; Nakas, J. P.

    1990-01-01

    A method capable of detecting as little as 0.11 U of xylanase activity in polyacrylamide gels was developed. The method entails incubation of protein gels in contact with substrate gels containing unmodified xylan, followed by immersion of substrate gels in 95% ethanol. Resulting zymograms contain transparent bands corresponding to enzymatic activity against an opaque background.

  10. Production of crude xylanase from Thermoascus aurantiacus CBMAI 756 aiming the baking process.

    Science.gov (United States)

    Oliveira, Denise S; Meherb-Dini, Carolina; Franco, Célia M L; Gomes, Eleni; Da-Silva, Roberto

    2010-09-01

    In recent years, the baking industry has focused its attention on substituting several chemical compounds with enzymes. Enzymes that hydrolyze nonstarch polysaccharides, such as xylanase, lead to the improvement of rheological properties of dough, loaf specific volume, and crumb firmness. The purpose of this study was to find a better solid-state fermentation substrate to produce high levels of xylanase and low levels of protease and amylase, which are enzymes involved in bread quality, from Thermoascus aurantiacus CBMAI 756. Wheat bran, corncob, and corn straw were used as energy sources. The enzyme extract of corncob showed high xylanase activity (130 U/mL) and low amylase and protease activity (<1 and 15 U/mL, respectively). This enzyme profile may be more profitable for the baking industry, because it results in a slower degradation of gluten. Our results confirm this finding, because the enzyme obtained by fermentation in corncob resulted in a gluten with a higher specific volume than all the other substrates that were tested. The crude xylanase presented maximum activity at a pH of 5, and the optimum temperature was 75 °C. It was stable up to 70 °C for an hour and at a pH range from 4 to 10. PMID:21535524

  11. Reduction in acute ecotoxicity of paper mill effluent by sequential application of xylanase and laccase.

    Directory of Open Access Journals (Sweden)

    Saurabh Sudha Dhiman

    Full Text Available In order to reduce the ecotoxicity of paper mill, four different enzymatic pretreatment strategies were investigated in comparison to conventional chemical based processes. In strategy I, xylanase-aided pretreatment of pulp was carried out, and in strategy II, xylanase and laccase-mediator systems were used sequentially. Moreover, to compare the efficiency of Bacillus stearothermophilus xylanase and Ceriporiopsis subvermispora laccase in the reduction of ecotoxicity and pollution, parallel strategies (III and IV were implemented using commercial enzymes. Conventional C(DE(OPD(1D(2 (C(D, Cl(2 with ClO2; EOP, H2O2 extraction; D1 and D2, ClO2 and X/XLC(DE(OPD(1D(2 (X, xylanase; L, laccase sequences were employed with non-enzymatic and enzymatic strategies, respectively. Acute toxicity was determined by the extent of inhibition of bioluminescence of Vibrio fischeri with different dilutions of the effluent. Two-fold increase was observed in EC50 values for strategy I compared to the control process. On the other hand, sequential application of commercial enzymes resulted in higher acute toxicity compared to lab enzymes. In comparison to the control process, strategy II was the most efficient and successfully reduced 60.1 and 25.8% of biological oxygen demand (BOD and color of effluents, respectively. We report for the first time the comparative analysis of the ecotoxicity of industrial effluents.

  12. Reduction in acute ecotoxicity of paper mill effluent by sequential application of xylanase and laccase.

    Science.gov (United States)

    Dhiman, Saurabh Sudha; Garg, Gaurav; Sharma, Jitender; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2014-01-01

    In order to reduce the ecotoxicity of paper mill, four different enzymatic pretreatment strategies were investigated in comparison to conventional chemical based processes. In strategy I, xylanase-aided pretreatment of pulp was carried out, and in strategy II, xylanase and laccase-mediator systems were used sequentially. Moreover, to compare the efficiency of Bacillus stearothermophilus xylanase and Ceriporiopsis subvermispora laccase in the reduction of ecotoxicity and pollution, parallel strategies (III and IV) were implemented using commercial enzymes. Conventional C(D)E(OP)D(1)D(2) (C(D), Cl(2) with ClO2; EOP, H2O2 extraction; D1 and D2, ClO2) and X/XLC(D)E(OP)D(1)D(2) (X, xylanase; L, laccase) sequences were employed with non-enzymatic and enzymatic strategies, respectively. Acute toxicity was determined by the extent of inhibition of bioluminescence of Vibrio fischeri with different dilutions of the effluent. Two-fold increase was observed in EC50 values for strategy I compared to the control process. On the other hand, sequential application of commercial enzymes resulted in higher acute toxicity compared to lab enzymes. In comparison to the control process, strategy II was the most efficient and successfully reduced 60.1 and 25.8% of biological oxygen demand (BOD) and color of effluents, respectively. We report for the first time the comparative analysis of the ecotoxicity of industrial effluents. PMID:25058160

  13. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Verma, P.; Deobagkar, D.

    % Composition of amino acid from amino acid sequence of xylanase enzyme from Bacillus subtilis Cho40 Amino acid composition Alanine (Ala (A) 15 7.1% Arginine (Arg) (R) 6 2.8% Asparagine (Asn) (N) 19 9.0% Aspartic acid (Asp) (D...

  14. Xylanases of marine fungi of potential use for biobleaching of paper pulp

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Muraleedharan, U.; Gaud, V.R.; Mishra, R.

    bleaching of sugarcane bagasse pulp by a 60 min treatment at 55oC, resulting in a decrease of 10 kappa numbers and a 30% reduction in consumption of chlorine during bleaching process. The culture filtrate showed peaks of xylanase activity at acidic pH (3...

  15. Production, purification and characterization of xylanase using alkalo-thermophilic Bacillus halodurans KR-1

    Directory of Open Access Journals (Sweden)

    Krityanand Kumar Mahatman

    2010-07-01

    Full Text Available Xylanase (EC. 3.2.1.8 has been isolated from an alkalo-thermophilic bacteria, Bacillus halodurans strain KR-1 isolated from the soil near river bed at Indore. The bacteria secreted xylanase in the growth medium in the presence of xylan. The production of the enzyme was induced in the presence of glucose, mannose, lactose and maltose whereas presence of starch, cellulose and sucrose retarded in enzyme production. The presence of casein, peptone, sodium nitrate and potassium nitrate as nitrogen source in the growth medium resulted in more xylanase production, whereas presence of ammonium sulfate, ammonium nitrate and yeast extract resulted in lesser enzyme production. The enzyme has been partially purified using sodium sulfate fractionation, DEAE-cellulose and Sephadex G-200 chromatographies. The molecular weight of the enzyme has been found to be 45±02 kDa as determined by Sephadex G-200 chromatography as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme protein is monomeric exhibiting maximum activity at pH 9.0. The optimum temperature for exhibiting maximum activity has been found to be 40oC. The metal ions viz. Mg2+ and Fe2+ when present in the enzyme assay medium stimulated the xylanase activity, whereas Hg2+, Co2+ and Mn2+ strongly inhibited the enzyme activity. The Km value for birchwood xylan was calculated to be 12.0 g/l.

  16. Expression of xylanases of anaerobic rumen fungi depending on carbon source in medium

    Czech Academy of Sciences Publication Activity Database

    Novotná, Zuzana; Fliegerová, Kateřina; Šimůnek, Jiří

    Clermont - Ferrand: INRA, 2008. s. 1-1. [6th INRA - RRI SYMPOSIUM: Gut microbiome . 18.06.2010 - 20.06.2008, Clermont - Ferrand] Institutional research plan: CEZ:AV0Z50450515 Keywords : xylanases * fungi * carbon source Subject RIV: EH - Ecology, Behaviour

  17. Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis

    DEFF Research Database (Denmark)

    Wainø, M.; Ingvorsen, K.

    2003-01-01

    The extremely halophilic archaeon, Halorhabdus utahensis, isolated from the Great Salt Lake, Utah, produced beta-xylanase and beta-xylosidase activities. Both enzymes were active over a broad NaCl range from near zero to 30% NaCl when tested with culture broth. A broad NaCl optimum was observed f...

  18. Cloning, sequencing and expression of a xylanase gene from the maize pathogen Helminthosporium turcicum

    DEFF Research Database (Denmark)

    Degefu, Y.; Paulin, L.; Lübeck, Peter Stephensen

    2001-01-01

    A gene encoding an endoxylanase from the phytopathogenic fungus Helminthosporium turcicum Pass. was cloned and sequenced. The entire nucleotide sequence of a 1991 bp genomic fragment containing an endoxylanase gene was determined. The xylanase gene of 795 bp, interrupted by two introns of 52 and ...

  19. Biobleaching of pulp from oil palm empty fruit bunches with laccase and xylanase.

    Science.gov (United States)

    Martín-Sampedro, R; Rodríguez, A; Ferrer, A; García-Fuentevilla, L L; Eugenio, M E

    2012-04-01

    Laccase and xylanase were tested for their suitability for biobleaching of soda-anthraquinone pulp from oil palm empty fruit bunches (EFB). An enzymatic stage with xylanase (X) and/or laccase (L) was incorporated before the alkaline extraction stage (E) and the hydrogen peroxide bleaching stage (P). Compared with controls, the LEP sequence resulted in an improvement of optical properties (brightness and colorimetric properties) and a reduction of the kappa number. When xylanase and laccase were used jointly, no improvement was detected, however, when the xylanase application preceded the laccase stage, the beneficial effects of laccase were boosted. Thus, the final XLEP bleached pulp showed a kappa number of 5.4 and a brightness of 60.5% ISO, although the hydrogen peroxide consumption increased (77.0% vs. 64.5% and 73.8% for EP and LEP respectively). Finally, after subjecting the bleached pulps to accelerated ageing, the best optical properties were observed in the XLEP pulp. PMID:22349193

  20. The Production of Fungal Mannanase, Cellulase and Xylanase Using Palm Kernel Meal as a Substrate

    Directory of Open Access Journals (Sweden)

    Nisa SAE-LEE

    2007-01-01

    Full Text Available Extracellular enzymes including mannanase, cellulase and xylanase from Aspergillus wentii TISTR 3075, Aspergillus niger, Aspergillus oryzae, Trichoderma reesei TISTR 3080 and Penicillium sp. were investigated. The enzymes were produced in solid-state fermentation using palm kernel meal (PKM as a substrate. All fungal strains produced mainly mannanase. A maximum activity of 24.9 U/g koji was observed in A. wentii TISTR 3075 with a specific activity of 1.5 U/mg protein. During PKM fermentation, there was also found low concomitantly of cellulase and xylanase activities with high mannanase activity in all strains. The degradation of non-starch polysaccharides (NSPs in PKM by these fungal strains was indicated by the increased mannanase, cellulase and xylanase activities which correlated with the increase in reducing sugar content and pH profiles during PKM fermentation. PKM was shown to be more suitable for production of mannanase than cellulase and xylanase for all strains because of the high content of mannan as an inducer in PKM. Increases in enzyme yield might be obtained by optimizing the culture conditions.

  1. Transformation of Botrytis cinerea by direct hyphal blasting or by wound-mediated transformation of sclerotia

    Directory of Open Access Journals (Sweden)

    Ish - Shalom Shahar

    2011-12-01

    Full Text Available Abstract Background Botrytis cinerea is a haploid necrotrophic ascomycete which is responsible for 'grey mold' disease in more than 200 plant species. Broad molecular research has been conducted on this pathogen in recent years, resulting in the sequencing of two strains, which has generated a wealth of information toward developing additional tools for molecular transcriptome, proteome and secretome investigations. Nonetheless, transformation protocols have remained a significant bottleneck for this pathogen, hindering functional analysis research in many labs. Results In this study, we tested three different transformation methods for B. cinerea: electroporation, air-pressure-mediated and sclerotium-mediated transformation. We demonstrate successful transformation with three different DNA constructs using both air-pressure- and sclerotium-mediated transformation. Conclusions These transformation methods, which are fast, simple and reproducible, can expedite functional gene analysis of B. cinerea.

  2. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

    Science.gov (United States)

    Amselem, Joelle; Cuomo, Christina A; van Kan, Jan A L; Viaud, Muriel; Benito, Ernesto P; Couloux, Arnaud; Coutinho, Pedro M; de Vries, Ronald P; Dyer, Paul S; Fillinger, Sabine; Fournier, Elisabeth; Gout, Lilian; Hahn, Matthias; Kohn, Linda; Lapalu, Nicolas; Plummer, Kim M; Pradier, Jean-Marc; Quévillon, Emmanuel; Sharon, Amir; Simon, Adeline; ten Have, Arjen; Tudzynski, Bettina; Tudzynski, Paul; Wincker, Patrick; Andrew, Marion; Anthouard, Véronique; Beever, Ross E; Beffa, Rolland; Benoit, Isabelle; Bouzid, Ourdia; Brault, Baptiste; Chen, Zehua; Choquer, Mathias; Collémare, Jérome; Cotton, Pascale; Danchin, Etienne G; Da Silva, Corinne; Gautier, Angélique; Giraud, Corinne; Giraud, Tatiana; Gonzalez, Celedonio; Grossetete, Sandrine; Güldener, Ulrich; Henrissat, Bernard; Howlett, Barbara J; Kodira, Chinnappa; Kretschmer, Matthias; Lappartient, Anne; Leroch, Michaela; Levis, Caroline; Mauceli, Evan; Neuvéglise, Cécile; Oeser, Birgitt; Pearson, Matthew; Poulain, Julie; Poussereau, Nathalie; Quesneville, Hadi; Rascle, Christine; Schumacher, Julia; Ségurens, Béatrice; Sexton, Adrienne; Silva, Evelyn; Sirven, Catherine; Soanes, Darren M; Talbot, Nicholas J; Templeton, Matt; Yandava, Chandri; Yarden, Oded; Zeng, Qiandong; Rollins, Jeffrey A; Lebrun, Marc-Henri; Dickman, Marty

    2011-08-01

    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful

  3. ANTIFUNGAL ACTIVITY ON BOTRYTIS CINEREA OF FLAVONOIDS AND DITERPENOIDS ISOLATED FROM THE SURFACE OF PSEUDOGNAPHALIUM SPP.

    Directory of Open Access Journals (Sweden)

    MILENA COTORAS

    2001-12-01

    Full Text Available The activity of the extracts obtained from the resinous exudates of the plants Pseudognaphalium cheiranthifolium, P. heterotrichium, P. robustum and P. vira vira on mycelial growth of the phytopathogenic fungus Botrytis cinerea was analyzed. Ten flavones, two flavanones and three diterpenoids isolated from these extracts were also tested for antifungal activity against B. cinerea. The extracts reduced mycelial growth and the inhibitory activity of the pure compounds was higher. Flavones with two hydroxyl groups on ring- A showed higher antifungal activity. Flavanones were inactive. The diterpenoid, 3b -hydroxy-kaurenoic acid was the most active compound of this set against mycelial growth of B. cinerea. This compound also retarded the germination of conidia of the fungusSe analizó la actividad de extractos resinosos obtenidos de las plantas Pseudognaphalium cheiranthifolium, P. heterotrichium, P. robustum y P. vira vira sobre el crecimiento micelial del hongo fitopatógeno Botrytis cinerea. Adicionalmente, se determinó la actividad antifúngica contra B. cinerea de diez flavonas, dos flavanonas y tres diterpenos aislados de estos extractos. Se encontró que los extractos disminuyeron el crecimiento del hongo y que la actividad inhibitoria de los compuestos puros fue mayor. Las flavonas con dos grupos hidroxilos en el anillo A fueron las más activas contra el hongo. Las flavanonas fueron inactivas. El diterpenoide, ácido 3b -hidroxi-kaurenoico fue el compuesto más activo de este conjunto sobre el crecimiento micelial de B. cinerea. Este compuesto también retardó la germinación de los conidios del hongo

  4. Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace

    Directory of Open Access Journals (Sweden)

    Marcelo A. Umsza-Guez

    2011-12-01

    Full Text Available In this work, tomato pomace, a waste abundantly available in the Mediterranean and other temperate climates agro-food industries, has been used as raw material for the production of some hydrolytic enzymes, including xylanase, exo-polygalacturonase (exo-PG, cellulase (CMCase and α-amylase. The principal step of the process is the solid state fermentation (SSF of this residue by Aspergillus awamori. In several laboratory experiments, maximum xylanase and exo-PG activities were measured during the first days of culture, reaching values around 100 and 80 IU/gds (international units of enzyme activity per gram of dried solid, respectively. For CMCase and α-amylase production remained almost constant along fermentation, with average values of 19 and 21.5 IU/gds, respectively. Experiments carried out in a plate-type bioreactor at lab scale showed a clear positive effect of aeration on xylanase and CMCase, while the opposite was observed for exo-PG and α-amylase. In general, xylanase was the enzyme produced in higher levels, thus the optimum conditions for the determination of the enzyme activity was characterized. The xylanase activity shows an optimum pH of 5 and an optimum temperature of 50 ºC. The enzyme is activated by Mg2+, but strongly inhibited by Hg2+ and Cu2+. The enzymatic activity remains quite high if the extract is preserved in a range of pH from 3 to 10 and a temperature between 30 ºC to 40 ºC.

  5. Screening of xylanase activity of Streptomyces albidoflavus PSM-3n isolated from Uttarakhand

    Directory of Open Access Journals (Sweden)

    Pushpendra Sharma

    2013-07-01

    Full Text Available Background: Awareness towards the environmental pollution had made the evolution of green technology by which enzymes got special attention in industries. The enzymes replaced chemical catalysts in manufacturing various chemicals, agricultural and pharmaceutical products. Material and methods: Actinomycetes were isolated and screened for their ability to produce xylanase. For the most promising isolate, selection of media, effect of pH, temperature, metal ions, and detergents on enzyme production and activity was studied. Results: Out of 29 isolates, 22 isolates showed xylanase activity. Out of 22 xylanase producing isolate, 05 isolates were selected for secondary screening on the basis of their clear zone size. The most promising isolate PSM-3n was identified as Streptomyces albidoflavus. It produces maximum enzyme (xylanase in media Horikoshi and Ikura having carbon and nitrogen sources as oat meal and urea respectively. The optimum pH and temperature for the enzyme production was 4.0 and 45°C respectively. The enzyme activity was found maximum at temperature 50°C and enhanced in the presence of Fe3+ ions. There was a reduction in the enzyme activity in the presence of detergents like SDS, tween-20 and tween-80. The enzyme was fairly stable at 50°C for 1 h. Conclusion: The enzyme produced by the isolate PSM-3n is fairly heat stable and highly acid stable. The activity of the enzyme was increased in presence of Fe3+ ions while decreased in presence of SDS. Therefore, further studies are required for purification of xylanase for its application potential in pulp bioleaching processes and in the functional food industry.

  6. Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase

    Directory of Open Access Journals (Sweden)

    Liu Liangwei

    2012-06-01

    Full Text Available Abstract Background Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn with a hyper-thermophilic Thermotoga maritima glucanase (Glu to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. Results When expressed in E. coli BL21(DE3, the two chimeras exhibited bi-functional activities of xylanase and glucanase. The Xyn-Glu Xyn moiety had optimal reaction temperature (Topt at 50 °C and thermal in-activation half-life (t1/2 at 50 °C for 47.6 min, compared to 47 °C and 17.6 min for the Xyn. The Glu-Xyn Xyn moiety had equivalent Topt to and shorter t1/2 (5.2 min than the Xyn. Both chimera Glu moieties were more thermostable than the Glu, and the three enzyme Topt values were higher than 96 °C. The Glu-Xyn Glu moiety optimal pH was 5.8, compared to 3.8 for the Xyn-Glu Glu moiety and the Glu. Both chimera two moieties cooperated with each other in degrading substrates. Conclusions Domain-swapping created different effects on each moiety properties. Fusing the Glu domain at C-terminus increased the xylanase thermostability, but fusing the Glu domain at N-terminus decreased the xylanase thermostability. Fusing the Xyn domain at either terminus increased the glucanase thermostability, and fusing the Xyn domain at C-terminus shifted the glucanase pH property 2 units higher towards alkaline environments. Fusing a domain at C-terminus contributes more to enzyme catalytic activity; whereas, fusing a bigger domain at N-terminus disturbs enzyme substrate binding affinity.

  7. Monocentric and polycentric anaerobic fungi produce structrally related cellulases and xylanases

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin-Liang; Chen, Huizhong; Ljungdahl, L.G. [Univ. of Georgia, Athens, GA (United States)

    1997-02-01

    Cellulase and xylanase cDNAs were isolated from a cDNA library of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 constructed in Escherichia coli. The cellulase cDNA (celB) was 1.8 kb long with an open reading frame (ORF) coding for a polypeptide of 471 amino acids, and the xylanase cDNA (xynA) was 1.2 kb long with an ORF encoding a polypeptide of 362 amino acids. Single transcripts of 1.9 kb for celB and 1.5 kb for xynA were detected in total RNA of Orpinomyces grown on Avicel. Genomic DNA regions coding for CelA and XynA were devoid of introns. The enzymes were highly homologous (80 to 85% identity) to the corresponding enzymes of the monocentric anaerobic fungus Neocallimastix patriciarum and, like those, contained in addition to a catalytic domain, a noncatalytic repeated peptide domain (NCRPD). The Orpinomyces xylanase contained one catalytic domain and thus differed from the Neocallimastix xylanase, which had two similar catalytic domains. Two peptides corresponding to the catalytic domain and the NCRPD of XynA were synthesized, and antibodies against them were raised and affinity column purified. The antibodies against the catalytic domain peptide reacted specifically with the xylanases of Orpinomyces and Neocallimastix, while the antibodies against the NCRPD reacted with many (at least eight) extracellular proteins of Orpinomyces and Neocallimastix, suggesting that the NCRPD is present in a number of polypeptides. 36 refs., 8 figs., 2 tabs.

  8. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection

    OpenAIRE

    Kong, Weiwen; Chen, Nan; Liu, Tingting; Zhu, Jing; Wang, Jingqi; He, Xiaoqing; Jin, Yi

    2015-01-01

    Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant–pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant–pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality read...

  9. Botrytis cinerea Protein O-Mannosyltransferases Play Critical Roles in Morphogenesis, Growth, and Virulence

    OpenAIRE

    Mario González; Nélida Brito; Marcos Frías; Celedonio González

    2013-01-01

    Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs) in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall an...

  10. Characterization of Botrytis cinerea isolates from small fruits and grapevine in Serbia

    Directory of Open Access Journals (Sweden)

    Tanović Brankica

    2009-01-01

    Full Text Available Twenty-six single-spore isolates of Botrytis cinerea from blackberry, raspberry, strawberry, and grapevine were investigated using transposable elements, morphological characterization, and sensitivity to fungicides. Both transposable elements, Flipper and Boty, were detected among isolates from all the hosts. Six vacuma (without transposable elements and seven transposa (containing both elements isolates were found to be present in sympatry in Serbia. Isolates containing only the Boty element were detected. Eight morphological types of colonies on PDA and MA media were observed, confirming the great phenotypic variability of B. cinerea. Sensitivity to fungicides was various, depending on both the fungicide and the isolate.

  11. Caractérisation de la phase endophyte de Botrytis cinerea et Sclerotinia sclerotiorum

    OpenAIRE

    Massonnat, Lucie

    2015-01-01

    Botrytis cinerea et Sclerotinia sclerotiorum sont deux champignons phytopathogènes engendrant des maladies (respectivement la pourriture grise et la pourriture blanche) sur une large gamme d’espèces végétales dont certaines ont un intérêt économique important (tomate, laitue, vigne…). Leur dissémination se fait par le vent et ils peuvent se maintenir dans le sol plusieurs années grâce à des formes de conservation que l’on appelle les sclérotes. De récentes études ont montré que B. cinerea peu...

  12. Nota sobre Bursera Cinerea Engl. (Burseraceae) en el estado de Veracruz

    OpenAIRE

    Jerzy Rzedowski; Graciela Calder\\u00F3n de Rzedowski

    1996-01-01

    Bursera cinerea, especie descrita hace más de una centuria, quedó practicamente ignorada por los botánicos del siglo XX. Exploraciones recientes realizadas en la porción central de Veracruz (México) indican que este árbol debe haber sido uno de los componentes importantes del bosque tropical caducifolio que en otros tiempos cubría amplias extensiones y todavía hoy forma parte de los vestigios del mismo. B. cinerea es muy similar a B. simaruba (L.) Sarg., de la que difiere primordialmente e...

  13. AISLAMIENTO Y EVALUACIÓN IN VITRO DE ANTAGONISTAS DE Botrytis cinerea EN MORA

    OpenAIRE

    Jos\\u00E9 Alonso Calvo-Araya; Germ\\u00E1n Rivera-Coto; Steffany Orozco-Cayasso; Rafael Orozco-Rodr\\u00EDguez

    2012-01-01

    El objetivo de este estudio fue determinar la capacidad antagónica de hongos a Botrytis cinerea en el cultivo de la mora en Costa Rica. Durante el primer semestre del 2009 se aislaron 35 hongos filamentosos habitantes del carpoplano de frutos de mora, de los cuales seis cepas de Trichoderma fueron seleccionadas para su evaluación in vitro contra B. cinerea por medio de la técnica de cultivos duales. En la evaluación se determinó la competencia por sustrato y el efecto antibiótico. Para evalua...

  14. The Homeobox BcHOX8 Gene in Botrytis Cinerea Regulates Vegetative Growth and Morphology

    OpenAIRE

    Antal, Zsuzsanna; Rascle, Christine; Cimerman, Agnes; Viaud, Muriel; Billon-Grand, Geneviève; Choquer, Mathias; Bruel, Christophe

    2012-01-01

    Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-l...

  15. Purification and characterization of a low molecular weight xylanase from solid-state cultures of Aspergillus fumigatus Fresenius

    Directory of Open Access Journals (Sweden)

    Silva Claudio Henrique Cerri e

    1999-01-01

    Full Text Available A xylan-degrading enzyme (xylanase II was purified to apparent homogeneity from solid-state cultures of Aspergillus fumigatus Fresenius. The molecular weight of xylanase II was found to be 19 and 8.5 kDa, as estimated by SDS-PAGE and gel filtration on FPLC, respectively. The purified enzyme was most active at 55 °C and pH 5.5. It was specific to xylan. The apparent Km and Vmax values on soluble and insoluble xylans from oat spelt and birchwood showed that xylanase II was most active on soluble birchwood xylan. Studies on hydrolysis products of various xylans and xylooligomers by xylanase II on HPLC showed that the enzyme released a range of products from xylobiose to xylohexaose, with a small amount of xylose from xylooligomers, and presented transferase activity.

  16. Heterologous Expression of Endo-1,4-beta-xylanaseA from Phanerochaete chrysosporium in Pichia pastoris

    OpenAIRE

    Huy, Nguyen Duc; Thiyagarajan, Saravanakumar; Son, Yu-Lim; Park, Seung-Moon

    2011-01-01

    The cDNA of endo-1,4-β-xylanaseA, isolated from Phaenerocheate chrysosporium was expressed in Pichia pastoris. Using either the intrinsic leader peptide of XynA or the α-factor signal peptide of Saccharomyces cerevisiae, xylanaseA is efficiently secreted into the medium at maximum concentrations of 1,946 U/L and 2,496 U/L, respectively.

  17. Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls

    OpenAIRE

    Prabhu, Ashok K; Maheshwari, Ramesh

    1999-01-01

    Melanocarpus albomyces, a thermophilic fungus isolated from compost by enrichment culture in a liquid medium containing sugarcane bagasse, produced cellulase-free xylanase in culture medium. The fungus was unusual in that xylanase activity was inducible not only by hemicellulosic material but also by the monomeric pentosan unit of xylan but not by glucose. Concentration of bagasse-grown culture filtrate protein followed by size-exclusion and anion-exchange chromatography separated four xylana...

  18. Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain.

    OpenAIRE

    Nanmori, T; Watanabe, T.; Shinke, R; Kohno, A; Kawamura, Y.

    1990-01-01

    We isolated a thermophilic bacterium that produces both xylanase and beta-xylosidase. Based on taxonomical research, this bacterium was identified as Bacillus stearothermophilus. Each extracellular enzyme was separated by hydrophobic chromatography by using a Toyopearl HW-65 column, followed by gel filtration with a Sephacryl S-200 column. Each enzyme in the culture was further purified to homogeneity (62-fold for xylanase and 72-fold for beta-xylosidase) by using a fast protein liquid chroma...

  19. Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition

    Institute of Scientific and Technical Information of China (English)

    Yao-xing XU; Yan-li LI; Shao-chun XU; Yong LIU; Xin WANG; Jiang-wu TANG

    2008-01-01

    Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization.Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each sig-nificant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by mul-tiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x1 (urea)=0.163 (41.63 g/L), x2 (Na2CO3)=-1.68 (2.64 g/L), x3 (MGSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization.

  20. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  1. The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants.

    Directory of Open Access Journals (Sweden)

    Immaculada Llop-Tous

    Full Text Available BACKGROUND: Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs. METHODOLOGY/PRINCIPAL FINDINGS: Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. CONCLUSION/SIGNIFICANCE: In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low

  2. Novel xylanases from Simplicillium obclavatum MTCC 9604: comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation

    OpenAIRE

    Roy, Saugata; Dutta, Tanmay; Sarkar, Tuhin Subhra; Ghosh, Sanjay

    2013-01-01

    The production of extracellular xylanase by a newly isolated fungus Simplicillium obclavatum MTCC 9604 was studied in solid-state and submerged fermentation. Multiple xylanases and endoglucanases were produced by the strain during growth on wheat bran in solid state fermentation (SSF). A single xylanase isoform was found to be produced by the same fungus under submerged fermentation (SF) using wheat bran as sole carbon source. Enzyme activity, stability and the protein yield were much higher ...

  3. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    Full Text Available Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.

  4. Studies on long-term preservation of dormant buds of Juglans cinerea

    Science.gov (United States)

    Juglans cinerea (butternut) is a deciduous tree native to the United States and Canada with oblong shaped nuts with an oily texture and a pleasant flavour. The species is threatened by a canker disease caused by the introduced fungus (Sirococcus clavigignenti-juglandacearum) which already eradicated...

  5. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features

    NARCIS (Netherlands)

    Have, ten A.; Dekkers, E.; Kay, J.; Phylip, L.H.; Kan, van J.A.L.

    2004-01-01

    Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal medi

  6. Characterization and inhibitory activity of chitosan on hyphae growth and morphology of Botrytis cinerea plant pathogen

    Directory of Open Access Journals (Sweden)

    Sebastião Silva Junior

    2014-07-01

    Full Text Available Summary. Low and high molecular weight chitosan were tested in different concentrations and growth times with the aim to evaluate the inhibitory activity against Botrytis cinerea, a very important plant pathogen. Tested chitosans were characterized by vibratory spectroscopy and elementary analyzes to determine the deacetylation degree. In addiction molar mass was estimated by viscosity measuring. Scanning electron microscopy was utilized for antimicrobial activity observation. Results showed that both chitosans markedly inhibited fungal growth, which was effected by incubation time and chitosan concentration. Scanning electron microscopy observations revealed that chitosan induced changes in surface morphology. The present study show that chitosan is capable of inhibit the growth and cause serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Therefore, chitosan could be considered as a potential alternative for synthetic fungicides.Industrial relevance. Ultrastructural analysis showed that chitosan is capable of causing serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Chitosan could inhibit the growth of B. cinerea in vitro and consequently may be considered as a potential alternative in replacement of synthetic fungicides.Keywords. biopolymer; chitosan; antifungal activity; fungal morphology; electron microscopy

  7. Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea

    NARCIS (Netherlands)

    Hayashi, K.; Schoonbeek, H.; Waard, de M.A.

    2003-01-01

    Modulators known to reduce multidrug resistance in tumour cells were tested for their potency to synergize the fungitoxic activity of the fungicide oxpoconazole, a sterol demethylation inhibitor (DMI), against Botrytis cinerea Pers. Chlorpromazine, a phenothiazine compound known as a calmodulin anta

  8. Proteinase inhibitors in the salivary glands and saliva of the cockroach Nauphoeta cinerea

    Czech Academy of Sciences Publication Activity Database

    Vinokurov, Konstantin; Taranushenko, Yuliya; Kodrík, Dalibor; Elpidina, E. N.; Sehnal, František

    Wroclaw : Wroclaw University, 2007. s. 37-37. [International Conference on Arthropods: Chemical, Physiological and Environmental Aspects /5./. 16.09.2007-21.09.2007, Bialka Tatrzanska] R&D Projects: GA ČR(CZ) GA522/06/1591; GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z50070508 Keywords : Nauphoeta cinerea Subject RIV: ED - Physiology

  9. Effect of electron beam irradiation on conidial germination activity and pathogenicity of Botrytis cinerea

    International Nuclear Information System (INIS)

    Conidia of Botrytis cinerea were irradiated by electron beam at 0.5, 1.0, 2.0 and 3.0 kGy. The influence of electron beam on the activities of conidial germination and pathogenicity at the temperatures of 5 ℃ and 25 ℃ were tested, respectively. The results showed that the electron beam could inhibit germination of conidia and the length of germ tube of Botrytis cinerea, and delay the germination time. It could also decrease the pathogenicity obviously and higher irradiation dose showed stronger effects. Compared with control, the complete germination time of conidia extended to 5 and 9 d at the cultivate temperatures of 25 ℃ and 5 ℃, after 2 kGy of irradiation, and the germination rate was reduced 46.57% and 33.68%, respectively. The inhibition rates of germ tube were 25.12% and 74.29% when cultured 24 h. The pathogenicity of Botrytis cinerea to strawberry was reduced significantly. After 2.0 kGy irradiation and cultivate at 25 ℃ for 2 d, the disease index was 4.17 and it decreased to 15.28 after cultivation of 5 ℃ for 15 d. Electron beam treatment could inhibit the spore germination and germ tube elongation of Botrytis cinerea significantly, delayed the germination time, and reduced its pathogenicity, the higher the dose, the effect was more obvious. (authors)

  10. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease.

    Science.gov (United States)

    Vos, Christine M F; De Cremer, Kaat; Cammue, Bruno P A; De Coninck, Barbara

    2015-05-01

    Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea. PMID:25171761

  11. Practical resistance to fenhexamid Botrytis cinerea isolates from grapevines in New York

    Science.gov (United States)

    Fenhexamid is a fungicide used to control Botrytis cinerea on grapes worldwide. Resistance appears to be of a quantitative rather than qualitative nature, with minimum EC50 values that define a resistant phenotype proposed as exceeding 0.1 mg/L by some workers and 0.4 mg/L by others. However, little...

  12. Differential predation on tadpoles influences the potential effects of hybridization between Hyla cinerea and Hyla gratiosa

    Science.gov (United States)

    Gunzburger, M.S.

    2005-01-01

    Long-term effects of hybridization and introgression are influenced by performance of hybrids in habitats of parental species. The treefrogs Hyla cinerea and Hyla gratiosa, which typically breed in permanent and temporary habitats, respectively, have occasionally hybridized throughout the Southeastern United States. To predict in which of the parental habitats effects of hybridization might be strongest, I performed experiments to evaluate predation on tadpoles of H. cinerea, H. gratiosa, and F1 hybrids with predators typical of the breeding habitats of the parental species. Hybrid tadpoles had lower survival with sunfish than odonate naiad (dragonfly) predators and tended to increase hiding behavior in response to sunfish predation. Tadpoles of H. gratiosa also had higher survival with odonates than sunfish, but H. cinerea had similar survival with both predator types. These results suggest that hybrids are most likely to survive and return to breed in temporary habitats used by H. gratiosa. Thus, hybridization and introgression might be more likely to have adverse effects on populations of H. gratiosa than H. cinerea. Copyright 2005 Society for the Study of Amphibians and Reptiles.

  13. Important phytopathogenic airborne fungal spores in a rural area: incidence of Botrytis cinerea and Oidium spp.

    Science.gov (United States)

    Oliveira, Manuela; Guerner-Moreira, Joaquim; Mesquita, Maria; Abreu, Ilda

    2009-01-01

    The effects of the climatic changes more and more frequently, favour the emergence and the development of plant diseases. Botrytis cinerea and Oidium spp. spores are often responsible for enormous productivity losses in cultures with high commercial interests such as the grapevine. This work aims to detect these airborne spores, before the emergence of lesions in Vitis vinifera. In the rural area of Amares, the seasonal distribution of the concentration of the 2 spore types, was continuously studied between 1 March-31 October (2005-2007), using a 7-day volumetric Hirst-type spore trap. These data was compared with phytopathological data. B. cinerea sporulation occurs in March-April while Oidium spp. occurs in April-May. Fluctuations were observed due to the influence of different meteorological factors. The emergence of the first signs of grey mould and powdery mildew were preceded by increments of B. cinerea and Oidium spp. spore concentration. The precocious detection of increasing trends in airborne spore concentration of B. cinerea and Oidium spp. can notify the probable onset of grey mould and powdery mildew leading to application of lower quantities of phytopharmaceutical products in the most favourable developmental stage. PMID:20047251

  14. The Genus Botrytis and Botrytis cinerea Species: Pathogenic, Morphological and Epidemiological Characteristics

    Directory of Open Access Journals (Sweden)

    Brankica Tanović

    2011-01-01

    Full Text Available Species of the genus Botrytis occur wherever their hosts are grown, ranging from cold areas of Alaska to warm and dry areas in Israel. They have a necrotrophic life style which is often associated with phenology of the host plant. The genus comprises 22 species, mostof which have a narrow host range. Polifagous species Botritys cinerea, a causal agent of grey mould disease, is the most important and the most extensively studied representative of this genus. More than 350 papers related to all aspects of the research of this necrotrophic pathogen are published each year.In this paper up-to-date knowledge about pathogenic, morphological and epidemiccharacteristics of the genus Botrytis and, particularly, species B. cinerea are summarized.Symptoms caused by B. cinerea on various plant species and various plant parts are shown.Morphological and genetic variability of the species is described. The possible mechanismsof variability, as well as the attempts to divide the species into Group I (B. „pseudocinerea“and Group II (B. cinerea „sensu-stricto“ are pointed out.

  15. Development and Evaluation of a Novel and Rapid Detection Assay for Botrytis cinerea Based on Loop-Mediated Isothermal Amplification

    OpenAIRE

    Duan, Ya-Bing; Ge, Chang-Yan; Zhang, Xiao-Ke; Wang, Jian-Xin; Zhou, Ming-guo

    2014-01-01

    Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP) with hydroxynaphthol blue dye (HNB). The LAMP reaction was optimal at 63°C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant ...

  16. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall.) by High-Throughput Sequencing

    OpenAIRE

    Daqiu Zhao; Saijie Gong; Zhaojun Hao; Jun Tao

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.), one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs) play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA) libraries from two B. cinerea-infected P. lactiflora cul...

  17. Effects of indole-3-acetic acid on Botrytis cinerea isolates obtained from potted plants.

    Science.gov (United States)

    Martínez, J A; Valdés, R; Gómez-Bellot, M J; Bañón, S

    2011-01-01

    We study the growth of different isolates of Botrytis cinerea collected from potted plants which were affected by Botrytis blight in southern Spain during recent years. These isolates, which show widely phenotypic differences when grown in vitro, are differentially affected by growth temperature, gibberellic acid applications and paclobutrazol, an efficient plant growth retardant and fungicide at the same time. In this work, we have evaluated the effect of the auxin indole-3-acetic acid (IAA) dose (0, 1, 10, and 100 mg/plate) on the growth of the collection of B. cinerea isolates obtained from the following potted plants: Cyclamen persicum, Hydrangea macrophylla, Lantona camara, and Lonicera japonica. B. cinerea produces indolacetic acid, but so far the precise biosynthetic pathway and some effects on this fungal species are still unclear, although recent studies have revealed an antifungal activity of IAA on several fungi, including B. cinerea isolated from harvested fruits. Mycelial growth curves and growth rates assessed from difference in colony areas during the both linear and deceleration phase, conidiation (measured as time of appearance), conidia length (microm), and sclerotia production (number/plate) were evaluated in the isolates, which were grown at 26 degrees C on Petri dishes containing potato dextrose agar for up to 35 days. Mycelial growth curves fitted a typical kinetic equation of fungi grown on solid media. B. cinerea isolates showed a high degree of variability in their growth kinetics, depending on the isolate and auxin dose. This plant growth substance delayed mycelial growth during the linear phase in an isolate-dependent manner, thus isolates from C. persicum, H. macrophylla and L. camara were more affected by IAA than L. japonica. On the other hand, 100 mg of IAA was the critical dose to significantly reduce the growth rate in all isolates and to promote brown-striped hyphae development, especially in isolate from C. persicum. 10 and 100 mg

  18. Emerging role of N- and C-terminal interactions in stabilizing (β/α8 fold with special emphasis on Family 10 xylanases

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    2012-09-01

    Full Text Available Xylanases belong to an important class of industrial enzymes. Various xylanases have been purified and characterized from a plethora of organisms including bacteria, marine algae, plants, protozoans, insects, snails and crustaceans. Depending on the source, the enzymatic activity of xylanases varies considerably under various physico-chemical conditions such as temperature, pH, high salt and in the presence of proteases. Family 10 or glycosyl hydrolase 10 (GH10 xylanases are one of the well characterized and thoroughly studied classes of industrial enzymes. The TIM-barrel fold structure which is ubiquitous in nature is one of the characteristics of family 10 xylanases. Family 10 xylanases have been used as a “model system” due to their TIM-barrel fold to dissect and understand protein stability under various conditions. A better understanding of structure-stability-function relationships of family 10 xylanases allows one to apply these governing molecular rules to engineer other TIM-barrel fold proteins to improve their stability and retain function(s under adverse conditions. In this review, we discuss the implications of N-and C-terminal interactions, observed in family 10 xylanases on protein stability under extreme conditions. The role of metal binding and aromatic clusters in protein stability is also discussed. Studying and understanding family 10 xylanase structure and function, can contribute to our protein engineering knowledge.

  19. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity.

    Directory of Open Access Journals (Sweden)

    Susanna eAtwell

    2015-09-01

    Full Text Available How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B. cinerea. To begin measuring standing genetic variation in B. cinerea, we re-sequenced the genomes of 13 different isolates and aligned them to the previously sequenced T4 reference genome. In addition one of these isolates was resequenced from 4 independently repeated cultures. A high level of genetic diversity was found within the 13 isolates. Within this variation, we could identify clusters of genes with major effect polymorphisms, i.e. polymorphisms that lead to a predicted functional knockout, that surrounded genes involved in controlling vegetative incompatibility. The genotype at these loci was able to partially predict the interaction of these isolates in vegetative mating assays showing that these loci control vegetative incompatibility. This suggests that the vegetative mating loci within B. cinerea are associated with regions of increased genetic diversity. The genome re-sequencing of four clones from the one isolate (Grape that had been independently propagated over ten years showed no detectable spontaneous mutation. This suggests that B. cinerea does not display an elevated spontaneous mutation rate. Future work will allow us to test if, and how, this diversity may be contributing to the pathogen’s broad host range.

  20. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity.

    Science.gov (United States)

    Atwell, Susanna; Corwin, Jason A; Soltis, Nicole E; Subedy, Anushryia; Denby, Katherine J; Kliebenstein, Daniel J

    2015-01-01

    How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic variation between two isolates, we proceeded to assess the level and frequency of standing variation in a population of B. cinerea. To begin measuring standing genetic variation in B. cinerea, we re-sequenced the genomes of 13 different isolates and aligned them to the previously sequenced T4 reference genome. In addition one of these isolates was resequenced from four independently repeated cultures. A high level of genetic diversity was found within the 13 isolates. Within this variation, we could identify clusters of genes with major effect polymorphisms, i.e., polymorphisms that lead to a predicted functional knockout, that surrounded genes involved in controlling vegetative incompatibility. The genotype at these loci was able to partially predict the interaction of these isolates in vegetative fusion assays showing that these loci control vegetative incompatibility. This suggests that the vegetative incompatibility loci within B. cinerea are associated with regions of increased genetic diversity. The genome re-sequencing of four clones from the one isolate (Grape) that had been independently propagated over 10 years showed no detectable spontaneous mutation. This suggests that B. cinerea does not display an elevated spontaneous mutation rate. Future work will allow us to test if, and how, this diversity may be contributing to the pathogen's broad host range. PMID:26441923

  1. Coprinopsis cinerea as a Model Fungus to Evaluate Genes Underlying Sexual Development in Basidiomycetes

    Directory of Open Access Journals (Sweden)

    P. Srivilai

    2009-01-01

    Full Text Available Coprinopsis cinerea is an excellent model for study of sexual reproduction and development in basidiomycetes because of its short-life cycle, capability to grow and fruit on artificial media under laboratory conditions. Deepening the understanding of genes underlying sexual reproduction and development in this mushroom model is expected to help in the future the world mushroom cultivation of any other basidiomycetes concerning the potential agronomic, economic and environmental benefits. This study presents findings with clear statements from the literature as well as own results focusing on the genetic analysis of genes acting in sexual reproduction and development in C. cinerea. Sexual reproduction and development in C. cinerea are regulated by the A and B mating type genes that encode two types of homeodomain transcription factors, pheromones and pheromone receptors, respectively. Coprinopsis cinerea has two different mycelial stages defined as the monokaryotic-(primary and dikaryotic-(secondary mycelium. When two compatible haploid monokaryons with different mating type alleles at A and B loci are fused, the fertile dikaryons are formed and developed into fruiting bodies, indicating that mating type genes regulate sexual development in C. cinerea. Self-fertile homokaryon AmutBmut strain with mutations in the A and B mating loci is ideal for production of mutants in fruiting body formation. Co-isogenic strains were generated by the repeated back-crossing against AmutBmut to analyze the genetic background of such mutants and the functions of genes in the fruiting pathway. Genetic analysis of AmutBmut fruiting mutants that are blocked at different stages in fruiting pathway will be described.

  2. Biocontrol of Botrytis cinerea by successful introduction of Pantoea ananatis in the grapevine phyllosphere

    Directory of Open Access Journals (Sweden)

    Gasser F

    2012-12-01

    Full Text Available Florian Gasser,1 Massimiliano Cardinale,1 Barbara Schildberger,2 Gabriele Berg11Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; 2Höhere Bundesanstalt und Bundesamt für Wein-und Obstbau, Klosterneuburg, AustriaBackground and aims: The fungus Botrytis cinerea is a common problem in viticulture and leads to serious losses in both yield and quality. The objective was to study the potential of the antagonist Pantoea ananatis BLBT1-08 for controlling this disease.Methods: Pathogen suppression by Pantoea treatments was investigated in different field trials and in detached leaf assays. The mode of action was studied by confocal laser scanning microscopy of treated grape leaves and by in vitro assays.Results: The introduction of P. ananatis BLBT1-08 in a 3-year field trial resulted in statistically significant reduction of disease symptoms. However, B. cinerea abundance, measured by quantitative real-time polymerase chain reaction of a B. cinerea specific gene, was not reduced when compared to non-treated, symptom-free leaves. A DsRed fluorescent protein labeled BLBT1-08 strain showed a high phyllosphere competence and competition on the leaf surface, but did not colonize the inner parts of plant tissue. Germination of B. cinerea was not inhibited by BLBT1-08 on the leaf, but mycelial growth and symptoms were suppressed without direct pathogen-antagonist contact. The antimicrobial activity was amino acid and temperature dependent.Conclusion: P. ananatis BLBT1-08 is a competitive and promising biocontrol agent for the control of B. cinerea and is highly effective at reducing disease incidence.Keywords: biological control, sustainable viticulture, antagonism

  3. Cloning and expression of an endo-1,4-β-xylanase from the coffee berry borer, Hypothenemus hampei

    Directory of Open Access Journals (Sweden)

    Padilla-Hurtado Beatriz

    2012-01-01

    Full Text Available Abstract Background The coffee berry borer, Hypothenemus hampei, reproduces and feeds exclusively on the mature endosperm of the coffee seed, which has a cell wall composed mainly of a heterogeneous mixture of hemicellulose polysaccharides, including arabinoxylans. Xylanases are digestive enzymes responsible for the degradation of xylan based polymers, hydrolyzing them into smaller molecules that are easier to assimilate by insects. We report the cloning, expression and enzymatic characterization of a xylanase gene that was identified in the digestive tract of the coffee berry borer. Methods The complete DNA sequence encoding a H. hampei xylanase (HhXyl was obtained using a genome walking technique in a cDNA library derived from the borer digestive tract. The XIP-I gene was amplified from wheat (Triticum aestivum variety Soisson. A Pichia pastoris expression system was used to express the recombinant form of these enzymes. The xylanase activity and XIP-I inhibitory activity was quantified by the 3,5-dinitrosalicylic (DNS. The biological effects of XIP-I on borer individuals were evaluated by providing an artificial diet enriched with the recombinant XIP-I protein to the insects. Results The borer xylanase sequence contains a 951 bp open reading frame that is predicted to encode a 317-amino acid protein, with an estimated molecular weight of 34.92 kDa and a pI of 4.84. Bioinformatic analysis revealed that HhXyl exhibits high sequence homology with endo-β-D-xylanases of Streptomyces bingchenggensis from glycosyl hydrolase 10 (GH10. The recombinant xylanase showed maximal activity at pH 5.5 and 37°C. XIP-I expressed as a recombinant protein inhibited HhXyl activity in vitro and caused individual H. hampei mortality in bioassays when included as a supplement in artificial diets. Conclusion A xylanase from the digestive tract of the coffee berry borer was identified and functionally characterized. A xylanase inhibitor protein, XIP-I, from wheat was

  4. Pseudomonas sp. xylanase for clarification of Mausambi and Orange fruit juice

    Science.gov (United States)

    Sharma, Pawan Kumar; Chand, Duni

    2012-07-01

    Xylanase can be usd for many Industrial applications and juice clarification is one of them. Pseudomonas sp. xylanase was used for fruit juice clarification in free State. Maximum amount of juice clarification was in case of Mausambi juice was observed at 40 C∞ and 52 hours, in case of free enzyme treated juice there is 46.9% increase in clarity and 1.7 fold increase in reducing sugars of the juice and enzyme dose was optimized as 8U with maximum flow rate of 6 ml/min at this dose. In case of orange juice in free enzyme treated juice maximum clarity was observed at 40 C∞ and 52 hours, juice was found to be 42.14 % clear with increase of 1.9 fold of reducing sugars, enzyme dose optimized was 8.06U with maximum flow rate of 0.86 ml/min.

  5. APPLICATIONS OF XYLANASE, LACCASE ENZYME AND HIGH POWER ULTRASOUND ON DIFFERENT NON-WOOD PLANTS

    OpenAIRE

    Panjiyar, Niraj

    2011-01-01

    The purpose of this bachelor`s thesis was to analyze the effect of properly applied microbial enzymes on non-wood plants delignification, improved fibre flexibility, fibrillation, removal of xylan and facilitated contaminant. The enzyme plays important role in digestion of fibres and removes lignin content of pulp. In the experimental part, two different non-woody plants were experimented: flax, straw. The enzymes Laccase and Xylanase were used. The amount of enzyme was tested in four p...

  6. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

    OpenAIRE

    Georgi Todorov Dobrev; Boriana Yordanova Zhekova

    2012-01-01

    An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme ac...

  7. Screening of xylanase activity of Streptomyces albidoflavus PSM-3n isolated from Uttarakhand

    OpenAIRE

    Pushpendra Sharma; Vijay Kumar; Bindu Naik; Gajraj Singh Bisht

    2013-01-01

    Background: Awareness towards the environmental pollution had made the evolution of green technology by which enzymes got special attention in industries. The enzymes replaced chemical catalysts in manufacturing various chemicals, agricultural and pharmaceutical products. Material and methods: Actinomycetes were isolated and screened for their ability to produce xylanase. For the most promising isolate, selection of media, effect of pH, temperature, metal ions, and detergents on enzyme pro...

  8. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation

    OpenAIRE

    Leite, A; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2016-01-01

    Abstract Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried...

  9. The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor.

    Science.gov (United States)

    Ritter, Carla Eliana Todero; Fontana, Roselei Claudete; Camassola, Marli; da Silveira, Maurício Moura; Dillon, Aldo José Pinheiro

    2013-11-01

    The production of cellulases and xylanases by Penicillium echinulatum in an airlift bioreactor was evaluated. In batch production, we tested media with isolated or associated cellulose and sorbitol. In fed-batch production, we tested cellulose addition at two different times, 30 h and 48 h. Higher liquid circulation velocities in the downcomer were observed in sorbitol 10 g L(-1) medium. In batch production, higher FPA (filter paper activity) and endoglucanase activities were obtained with cellulose (7.5 g L(-1)) and sorbitol (2.5 g L(-1)), 1.0 U mL(-1) (120 h) and 6.4 U m L(-1) (100 h), respectively. For xylanases, the best production condition was cellulose 10 g L(-1), which achieved 5.5 U mL(-1) in 64 h. The fed-batch process was favorable for obtaining xylanases, but not for FPA and endoglucanases, suggesting that in the case of cellulases, the inducer must be added early in the process. PMID:24045195

  10. Partial purification and characterization of Xylanase from Trichoderma viride produced under SSF

    Directory of Open Access Journals (Sweden)

    M Irfan

    2012-03-01

    Full Text Available Summary: In the present study xylanase enzyme was produced from Trichoderma viride in solid state fermentation using sugarcane bagasse as a substrate. The whole fermentation process was carried out in 250ml Erlenmeyer flask at 30oC for seven days of fermentation period. The enzyme was partially purified by ammonium sulphate (60% fractionation followed by dialysis. The partially purified enzyme was further characterized showing optimum pH and temperature of 5.0 and 50oC respectively. Metal profile of the enzyme showed that it was stimulated by FeSO4 (134%, CaCl2 (129%, BaCl2 (105%, MgSO4 (113%, MnCl2 (102% or AgCl (107% and it was strongly inhibited by EDTA (26% or HgSO4 (32%. Industrial Relevance: In the present study, xylanase enzyme was produced and characterized from Trichoderma viride in solid state fermentation using cheap substrate. This enzyme is very helpful in industrial sector especially in pulp and paper industry, food industry and also in bioethanol production. Pilot scale production of this enzyme in industries can reduce the import cost of the enzyme and make the whole process cost effective. Keywords: Partial purification; Characterization; Xylanase; Trichoderma viride; SSF

  11. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation.

    Science.gov (United States)

    Leite, Paulina; Salgado, José Manuel; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2016-08-01

    Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different. The use of both wastes in SSF was evaluated and a screening of fungi for xylanase and cellulase production was carried out. After screening, the use of exhausted olive pomace and Aspergillus niger led to the highest enzyme activities, so that they were used in the study of ultrasounds pre-treatment. The results showed that the sonication led to a 3-fold increase of xylanase activity and a decrease of cellulase activity. Moreover, the liquid fraction obtained from ultrasounds treatment was used to adjust the moisture of solid and a positive effect on xylanase (3.6-fold increase) and cellulase (1.2-fold increase) production was obtained. PMID:27209456

  12. Heterologous expression of chaetomium thermophilum xylanase 11-a (ctx 11-a) gene

    International Nuclear Information System (INIS)

    Chaetomium has a potential source of xylanase and cellulase enzymes, both of which are required in the treatment of fibre in the poultry feed. The titre of the enzymes needs to be enhanced by using recombinant DNA technology for fulfilling the requirement of the industries. Efforts are made to construct prokaryotic and eukaryotic expression cassettes that can be cloned under specific strong promoters i.e., T7 and AOX1, respectively, and the enhancer elements to get the maximum gene expression. In the present study BL21 E. coli and GS115 Pichia pastoris strains are used as model organisms to express the CtX 11-A gene in the presence of 1 mM IPTG and 100% methanol upto final concentration of 0.5. In case of BL21 expression, the maximum xylanase activity was observed after 1.5 h in the presence of 1% xylose, which was 2.302 U/ml and after 7 h in the presence of 0.5% lactose, was 1.708 U/ml. However, in Pichia pastoris the maximum production of xylanase was 2.904 and 0.006 U/ml as compared to control 0.484 and 0.06 U/ml, respectively. (author)

  13. Novel alkali-thermostable xylanase from Thielaviopsis basicola (MTCC 1467): Purification and kinetic characterization.

    Science.gov (United States)

    Goluguri, Baby Rani; Thulluri, Chiranjeevi; Addepally, Uma; Shetty, Prakasham Reddy

    2016-01-01

    A novel extracellular alkali-thermostable xylanase was purified to an apparent homogeneity from the submerged fermented culture filtrate of Thielaviopsis basicola MTCC 1467, wherein, the fungus was fed with rice straw as prime carbon source. SDS-PAGE analysis of the xylanase showcased molecular weight of ∼ 32 kDa. This extracellular protein macromolecule had maximum xylanolytic activity at pH 5.5 and 60°C, and was stable in the range of pH 5.0-10.0 for 5 days retaining >70% activity. The enzyme was stable at 30-50°C for 5h retaining >85% activity and further by retaining 70% activity at 60°C for 2h. The enzyme deactivation constants (kd) were in range of 0.41-1.3. The kinetic experiments specified that the enzyme had Km and Vmax values of 1.447 ± 0.22 mg mL(-1) and 60.04 ± 1.25 IU mL(-1), respectively, for xylan. The purified xylanase was significantly inhibited by Cu(2+) and Zn(2+) (∼ 58%), whilst Ca(2+) and Na(+) ions displayed partial inhibition (<8%) Intriguingly, the K(+) and Mn(2+) ions enhanced the activity by about ∼ 10%. Both SDS and EDTA reduced its activity by ∼ 20%. PMID:26526179

  14. Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Elias Pião Benedetti

    2013-01-01

    Full Text Available A strain of the filamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3 , 0.5% NaCl, 0.1% NH4 Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A lowcost hemicellulose residue (powdered corncob proved to be an excellent inducer of the A. niger xylanolytic complex. Filtration of the crude culture medium with suspended kaolin was ideal for to clarify the extract and led to partial purification of the xylanolytic activity. The apparent molecular mass of the xylanase was about 32.3 kDa. Maximum enzyme activity occurred at pH 5.0 and 55-60ºC. Apparent Km was 10.41 ± 0.282 mg/mL and Vmax was 3.32 ± 0.053 U/mg protein, with birchwood xylan as the substrate. Activation energy was 4.55 kcal/mol and half-life of the crude enzyme at 60ºC was 30 minutes. Addition of 2% glucose to the culture medium supplemented with xylan repressed xylanase production, but in the presence of xylose the enzyme production was not affected.

  15. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying

    2014-01-24

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  16. Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices.

    Science.gov (United States)

    Kumar, Lalit; Nagar, Sushil; Mittal, Anuradha; Garg, Neelam; Gupta, Vijay Kumar

    2014-09-01

    This study was conducted to evaluate the efficacy of purified free and immobilized xylanase in enrichment of fruit juices. Extracellular xylanase produced from Bacillus pumilus VLK-1 was purified to apparent homogeneity by 15.4-fold with 88.3 % recovery in a single step using CM-Sephadex C-50. Purified xylanase showed a single band on SDS-polyacrylamide gel with a molecular mass of 22.0 kDa. The purified enzyme was immobilized on glutaraldehyde-activated aluminum oxide pellets and the immobilization process parameters were optimized statistically through response surface methodology. The bound enzyme displayed an increase in optimum temperature from 60 to 65 ºC and pH from 8.0 to 9.0. The pH and temperature stability of the enzyme was also enhanced after immobilization. It could be reused for 10 consecutive cycles with 58 % residual enzyme activity. The potential of purified xylanase (free and immobilized) in juice enrichment from grape (Vitis amurensis) and orange (Citrus sinensis) pulps has been investigated. The optimization of this process using free xylanase revealed maximum juice yield, clarity and reducing sugar on treatment with 20 IU/g fruit pulp for 30 min at 50 ºC. Treatment of both the fruit pulps with xylanase under optimized conditions resulted in an increase in juice yield, clarity, reducing sugars, titratable acidity, and filterability but a decline in turbidity and viscosity. Immobilized enzyme was more effective in improving juice quality as compared to its soluble counterpart. The results showed B. pumilus VLK-1 xylanase, in both free and immobilized form, as a potential candidate for use in fruit juice enrichment. PMID:25190829

  17. Field and Laboratory Studies of the Susceptibility of the Green Treefrog (Hyla cinerea) to Batrachochytrium dendrobatidis Infection

    OpenAIRE

    Laura A Brannelly; Chatfield, Matthew W. H.; Richards-Zawacki, Corinne L.

    2012-01-01

    Amphibians worldwide are experiencing devastating declines, some of which are due to the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd). Populations in the southeastern United States, however, have not been noticeably affected by the pathogen. The green treefrog (Hyla cinerea) is abundant and widespread in the southeastern United States, but has not been documented to harbor Bd infection. This study examined the susceptibility of H. cinerea to two strains of Bd in the lab and t...

  18. Investigations on the effectiveness of some fungicides against gray mold (Botrytis cinerea Pers.) isolates isolated from grapes.

    OpenAIRE

    Burçak, A.A.; Delen, N.

    2008-01-01

    Botrytis cinerea is especially known as the fungal cause of bunch rot of grapes and can lead to high economic losses. Different fungicides have been used to control the disease. In this study, the effectiveness of some fungicides against Botrytis cinerea isolates that collected from the vineyards in İzmir, Manisa and Bursa in 1994-1996 on grapes have been determined under laboratory conditions. Chemical control of gray mold was tested on the grape berries. The fungicides sprayed were pr...

  19. Contribución al control de Botrytis cinerea pers. en statice (Limonium sinuatum mill) variedad Midnigth blue

    OpenAIRE

    Díaz Norma C.; Garcés de Granada Emira; Barrera Miryam J.

    1996-01-01

    This work was outlined under the need of controlling the looses of statice (Limonium sinuatum) caused by patogend fungi, with emphasis to Botrytis cinerea. In soil samples, monitoring and affected plants, were obtained the fungi Botrytis cinerea, Fusarium sp, Alternaria sp and Cladospotium sp, causative of symptoms in stems, roots, leaves and flowers. Upon evaluating "in vitro" the antagonistic capacity of T. hamatum with the fungi, was observed growth inhibition ofthe patogens. The eficiency...

  20. Interaction with Penicillium expansum enhances Botrytis cinerea growth in grape juice medium and prevents patulin accumulation in vitro

    OpenAIRE

    Morales-Valle, H.; Paterson, R. R. M.; Venâncio, Armando; Lima, Nelson

    2013-01-01

    Interactions between fungi occur when they grow on the same host plant. This is the case of Botrytis cinerea and Penicillium expansum on grape. P. expansum is also responsible for production of the mycotoxin patulin. In this study, the influence of the interaction between both fungi on fungal growth parameters was studied as well as the effect on the accumulation of patulin by P. expansum. For that purpose, spores of B. cinerea and P. expansum were inoculated together (mixed inoculum), and th...

  1. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts

    OpenAIRE

    González-Fernández, Raquel; Valero-Galván, José; Gómez-Gálvez, Francisco J.; Jorrín-Novo, Jesús V.

    2015-01-01

    Botrytis cinerea is a necrotrophic fungus with high adaptability to different environments and hosts. It secretes a large number of extracellular proteins, which favor plant tissue penetration and colonization, thus contributing to virulence. Secretomics is a proteomics sub-discipline which study the secreted proteins and their secretion mechanisms, so-called secretome. By using proteomics as experimental approach, many secreted proteins by B. cinerea have been identified from in vitro experi...

  2. The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induces systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea

    OpenAIRE

    Muzammil, Saima; Graillon, Clotilde; Saria, Rayenne; Mathieu, Florence; Lebrihi, Ahmed; Compant, Stéphane

    2013-01-01

    Background and aim Saccharothrix algeriensis NRRL B-24137, isolated from a Saharan soil, has been described as a potential biocontrol agent against Botrytis cinerea and other phytopathogens. However, the plant protection mechanisms involved still need to be described. The aim of this study was to determine this protection phenomenon as well as parts of the mechanisms involved, using Arabidopsis thaliana seedlings and B. cinerea. Methods The bacterial colonization process was evaluated on A. t...

  3. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+)-Abscisic Acid Producing Ascomycete Botrytis cinerea

    OpenAIRE

    Zhong-Tao Ding; Zhi Zhang; Di Luo; Jin-Yan Zhou; Juan Zhong; Jie Yang; Liang Xiao; Dan Shu; Hong Tan

    2015-01-01

    The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+)-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers) and one RNA silencing vector, pCBSilent1, w...

  4. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+-Abscisic Acid Producing Ascomycete Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Zhong-Tao Ding

    2015-05-01

    Full Text Available The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain.

  5. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Ya-Bing Duan

    Full Text Available Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP with hydroxynaphthol blue dye (HNB. The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3 ng µL(-1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2 ng µL(-1. Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2% were confirmed as positive by LAMP, 172 (90.1% positive by the tissue separation, while 147 (77.0% positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.

  6. Does release of encapsulated nutrients have an important role in the efficacy of xylanase in broilers?

    Science.gov (United States)

    Khadem, A; Lourenço, M; Delezie, E; Maertens, L; Goderis, A; Mombaerts, R; Höfte, M; Eeckhaut, V; Van Immerseel, F; Janssens, G P J

    2016-05-01

    The non-starch polysaccharides (NSPs) in cell walls can act as a barrier for digestion of intracellular nutrients. This effect is called "cage effect." Part of the success of fibrolytic enzymes in broiler feed is assumed to be attributed to cage effect reduction. Further, changes in viscosity and potential prebiotic action should also be considered. The aim of this study was to gain insight into the relative importance of the cage effect in xylanase efficacy in broilers. Using a 2×2 factorial design, 24 pens with 30 Ross 308 male chicks were fed corn-soy based diets consisting of normal and freeze-thawed (5 d at -18°C) corn, both with and without xylanase. The freeze-thaw method was used to eliminate the cage effect, whereas a corn-based diet was used to exclude viscosity effects. Body weights (BW), feed intake (FI), and feed conversion ratio (FCR) were determined at d 13, 26, and 39. A balance study was executed at the end of the growing phase. These birds were euthanized at d 34 (non-fasted) to determine the viscosity of digesta, blood metabolites, intestinal morphology, and microbiota composition. During the finisher period, there was a significant interaction between enzyme supplementation and freeze-thawing for FCR, in which FCR was improved by freeze-thawed corn and tended to be improved by normal corn+enzyme compared with the control group. The improvement in performance (finisher period) of freeze-thawed corn and xylanase coincided with increased gut absorption of glucose (based on postprandial plasma concentrations) and increased number of Clostridiumcluster IV in the caecum, and agreed with the higher gut villus height. In addition, xylanase inclusion significantly increased the postprandial plasma glycine and triglycerides concentration, and led to elevated bacterial gene copies of butyryl CoA:acetate CoA-transferase, suggesting a prebiotic effect of xylanase addition through more than just the cage effect reduction. The applied model managed to rule

  7. Effect of Botrytis cinerea infection and elicitation on ß-1,3-glucanase and chitinase activity in bean leaves and cell cultures

    OpenAIRE

    Elżbieta Kuźniak; Henryk Urbanek; Aneta Michalak; Katarzyna Herka

    2013-01-01

    The activity of ß-1,3-glucanase and chitinase in bean plants treated with B. cinerea products or/and infected and in cell cultures after application of fungal products has been studied. Botrytis cinerea infection and culture filtrates, ethanol precipitates, glucan and conidial extract treatment markedly enhanced the activity of both hydrolases. Cell cultures treated with B.cinerea products reacted similarly to intact plants. In plants pretreated with 2-day culture filtrate and conidial extrac...

  8. Production of Xylanase from Arthrobacter sp. MTCC 6915 Using Saw Dust As Substrate under Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Sevanan Murugan

    2011-01-01

    Full Text Available Saw dust was used as substrate for xylanase production from Arthrobacter sp. MTCC 6915. The study of period of incubation, temperature, pH, carbon, and nitrogen sources for xylanase production was optimized. Xylanase production was found to be optimum at an incubation period of 96 hrs (117.0 U/mL, temperature 30°C (105.0 U/mL, and pH 9.0 (102.9 U/mL. The results showed that the xylanase production was found to be higher in the presence of carboxymethylcellulose (176.4 U/mL and dextrose (126.0 U/mL. It was also observed that peptone (170.1 U/mL and beef extract (161.7 U/mL supported maximum xylanase production.The enzyme was characterized and found to be fairly active at pH 9 (764.4 U/mL and temperature 60°C (819 U/mL. Even in the present study, a major difference in the production temperature (30°C and optimal temperature (60°C of the enzyme activity was observed. However, the pH of the production media and the enzyme activity were found to be the same (pH 9.

  9. The influence of some factors on β-1,4-xylanase activity of the filamentous fungus Trichoderma reesei QM9414

    Directory of Open Access Journals (Sweden)

    Alexandru Manoliu

    2012-03-01

    Full Text Available The mesophyllic fungus Trichoderma reesei (anamorph to Hypocrea jecorina is an important biotechnological tool, known for its ability to secrete large quantities of hydrolytic enzymes. Renewable biomass, such as agricultural and forest wastes are used to produce microbial enzymes in various industrial processes such as food, feed and bioethanol industries. In raw biomass materials, such as wheat straws, barley straws and maize stalks, the main polysaccharide is cellulose which is closely associated with hemicelluloses like xylan, manan and xyloguclan. In consequence, the hydrolysis of these materials requires the concerted action of several enzymes, namely cellulases and xylanases. Endo-xylanase (endo-1,4--xylanase, EC 3.2.1.8 is the key enzyme involved in xylan hydrolysis, the mainhemicellulosic component of plant cell walls. The metabolic activity and enzyme productivity of Trichoderma reesei isinfluenced by various environmental conditions. In this context, we analysed the effect of pH, cultivation period, thenature of the substrate used and the nitrogen source on enzymatic activity. The maximum xylanase yield was recorded at a initial pH of 4 (116.189 IU/ml for barley and 5 for wheat (88.578 IU/ml, respectively maize (116.583 IU/ml. The bestsubstrate for endo-xylanase activity was maize stalks (90.446 IU/ml at a a concentration of 30g/L.

  10. Bioprocess and biotecnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract.

    Science.gov (United States)

    de Alencar Guimaraes, Nelciele Cavalieri; Sorgatto, Michele; Peixoto-Nogueira, Simone de Carvalho; Betini, Jorge Henrique Almeida; Zanoelo, Fabiana Fonseca; Marques, Maria Rita; de Moraes Polizeli, Maria de Lourdes Teixeira; Giannesi, Giovana C

    2013-01-01

    This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of incubation, and A. flavus had a half-life of more than 75 minutes. At 55°C, the xylanase produced by A. niger showed more stable than from A. flavus showing a half-life of more than 45 minutes. The xylanase activity of A. niger and A. flavus were somehow protected in the presence of glycerol 5% when compared to the control (without additives). On the biobleaching assay it was observed that the xylanase from A. flavus was more effective in comparison to A. niger. The kappa efficiency corresponded to 36.32 and 25.93, respectively. That is important to emphasize that the cellulase activity was either analyzed and significant levels were not detected, which explain why the viscosity was not significantly modified. PMID:24010038

  11. Phytoconstituents and in vitro Evaluation of Antioxidant Capacities of Cotula Cinerea (Morocco Methanol Extracts

    Directory of Open Access Journals (Sweden)

    Farid Khallouki

    2015-06-01

    Full Text Available T he purpose of this study was to determine the phytochemical content of Cotula cinerea to establish principal components which may consolidate its use as a medicinal plant in the southeast of Morocco. The amount of total phenolic compounds as determined by analytical HPLC in methanol extracts was 79.23 ± 2.5 mg/g dry matter. The major phenolic compounds identified by HPLC-ESI-MS were neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid and luteolin-4´-O-glucoside. All compounds displayed very strong antioxidant capacities in the DPPH, FRAP and ORAC assays . The data indicates that methanol extracts of C. cinerea via their antioxidant capacities, may be effective disease prevention potions in traditional African medicine which is probably related to the significant content of echinoids and flavonoids.

  12. Modelling and determination of the kinetic parameters of the pyrolysis of Dichrostachys cinerea

    International Nuclear Information System (INIS)

    In the present study were analyzed biomass samples of Dichrostachys cinerea, commonly known in Cuba as marabou, by thermogravimetric method at various heating rates of devolatilization in nitrogen atmosphere at 5, 10 and 20 C min-1. On the kinetic analysis was used a mechanism of three independent reactions of order 1, generally attributed to three chief components of this kind of lignocellulose materials, hemicelluloses, cellulose and lignin. The values of activation energy, pre-exponential factor and contribution factor were similar to those reported in previous research for this type of biomass. The proposed model predicts with acceptable correlation the experimental and calculated curves of the decomposition of D. cinerea, with a deviation factor less than 5% for the temperature range studied. On the other hand, the kinetic parameters of the thermal decomposition coupled at equations of transport phenomena are essential to optimize the design and use of biomass thermochemical conversion processes, hence the importance of the research. (author)

  13. Nota sobre Bursera Cinerea Engl. (Burseraceae en el estado de Veracruz

    Directory of Open Access Journals (Sweden)

    Jerzy Rzedowski

    1996-01-01

    Full Text Available Bursera cinerea, especie descrita hace más de una centuria, quedó practicamente ignorada por los botánicos del siglo XX. Exploraciones recientes realizadas en la porción central de Veracruz (México indican que este árbol debe haber sido uno de los componentes importantes del bosque tropical caducifolio que en otros tiempos cubría amplias extensiones y todavía hoy forma parte de los vestigios del mismo. B. cinerea es muy similar a B. simaruba (L. Sarg., de la que difiere primordialmente en las hojas con menor número de foliolos y en los frutos más pequeños.

  14. Gray Mold on Saintpaulia ionantha Caused by Botrytis cinerea in Korea

    Directory of Open Access Journals (Sweden)

    Hyung-Moo Kim

    2011-04-01

    Full Text Available Gray mold caused by Botrytis cinerea occurred on Saintpaulia ionantha in flower shop of the Jeonju city in Korea. Typical symptoms with brown water-soaked and rotting lesions were appeared on the flowers, leaves and petiole of infected plants. Many conidia spores appeared on the lesions under humid conditions. Colonies were grayish brown and sclerotial formation on potato dextrose agar. Conidia were one celled, mostly ellipsoidal or ovoid in shape, and were colorless to pale brown in color. The conidia were 7~14×5~9 μm in size. Based on pathogenicity and morphological characteristics of the isolated fungus, the causal fungus was identified as B. cinerea Persoon: Fries. Gray mold of S. ionantha was proposed to the name of this disease.

  15. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis.

    Science.gov (United States)

    Sadaf, Ayesha; Khare, S K

    2014-02-01

    De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries. PMID:24362246

  16. Synthesis of New Hydrated Geranylphenols and in Vitro Antifungal Activity against Botrytis cinerea

    OpenAIRE

    Mauricio Soto; Luis Espinoza; María I. Chávez; Katy Díaz; Andrés F. Olea; Lautaro Taborga

    2016-01-01

    Geranylated hydroquinones and other geranylated compounds isolated from Aplydium species have shown interesting biological activities. This fact has prompted a number of studies where geranylated phenol derivatives have been synthesized in order to assay their bioactivities. In this work, we report the synthesis of a series of new hydrated geranylphenols using two different synthetic approaches and their inhibitory effects on the mycelial growth of Botrytis cinerea. Five new hydrated geranylp...

  17. Chemical Characterization of Different Sumac and Pomegranate Extracts Effective against Botrytis cinerea Rots

    OpenAIRE

    Romeo, Flora V.; Gabriele Ballistreri; Simona Fabroni; Sonia Pangallo; Maria Giulia Li Destri Nicosia; Leonardo Schena; Paolo Rapisarda

    2015-01-01

    Pomegranate (Punica granatum L.) peel and sumac (Rhus coriaria L.) fruit and leaf extracts were chemically characterized and their ability to inhibit table grape (cv. Italia) rots caused by Botrytis cinerea was evaluated on artificially inoculated berries. Different extraction methods were applied and extracts were characterized through Ultra Fast High Performance Liquid Chromatography coupled to Photodiode array detector and Electrospray ionization Mass spectrometer (UPLC-PDA-ESI/MSn) for th...

  18. Relationship between the aggressiveness of Botrytis cinerea on tomato and the efficacy of biocontrol

    OpenAIRE

    Bardin, Marc; Comby, Morgane; Troulet, Claire; Nicot, Philippe

    2013-01-01

    The development of BCAs represents an attractive alternative to fungicides for the protection of crops against plant pathogens but the durability of this method has not been studied in details. The objective of the present work was to estimate the risk of loss of biocontrol efficacy towards Botrytis cinerea, by evaluating the sensibility of various isolates of the pathogen to the biocontrol agent Microdochium dimerum. The protective efficacy of M. dimerum was evaluated on tomato plants agains...

  19. Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents.

    OpenAIRE

    Ajouz, Sakhr; Walker, Anne Sophie; Fabre, Frédéric; Leroux, Pierre; Nicot, Philippe; Bardin, Marc

    2011-01-01

    To establish a baseline sensitivity of Botrytis cinerea to pyrrolnitrin, an antibiotic produced by several biological control agents, 204 isolates were tested for sensitivity to pyrrolnitrin using a spore germination assay. The results showed that the isolates exhibited a wide range of sensitivity to pyrrolnitrin, with an 8.4-fold difference in EC50 (effective concentration to reduce spore germination by 50% comparing to the control) values between the least and the most sensitive isolates. T...

  20. Complex Genetics Control Natural Variation in Arabidopsis thaliana Resistance to Botrytis cinerea

    OpenAIRE

    Rowe, Heather C.; Daniel J Kliebenstein

    2008-01-01

    The genetic architecture of plant defense against microbial pathogens may be influenced by pathogen lifestyle. While plant interactions with biotrophic pathogens are frequently controlled by the action of large-effect resistance genes that follow classic Mendelian inheritance, our study suggests that plant defense against the necrotrophic pathogen Botrytis cinerea is primarily quantitative and genetically complex. Few studies of quantitative resistance to necrotrophic pathogens have used larg...

  1. Exploring SDHI resistance in Botrytis cinerea : from mutagenesis to enzymatic assays

    OpenAIRE

    LALEVE, Anaïs; Walker, Anne Sophie; Leroux, Pierre; Toquin, V.; Lachaise, H.; Fillinger-David, Sabine, Helma

    2012-01-01

    Botrytis cinerea is a phytopathogenic ascomycete responsible for grey mould on many crops. Respiration inhibitors play an increasing role in the control of this disease. Succinate dehydrogenase inhibitors (SDHIs, including carboxamides) inhibit the fungal respiration by blocking the ubiquinonebinding site of the mitochondrial complex II. Old SDHIs (i.e. carboxin), essentially active against Basidiomycetes were replaced in the 2000s by a new generation of SDHIs with a broader spectrum includin...

  2. Evaluation of Chemical Control of Botrytis Cinerea in Relation to Covering Red Current Shrubs

    OpenAIRE

    Piet Creemers; Stijn Van Laer; Fanny Pitsioudis; Patrick Meesters

    2007-01-01

    Covering red currant during the development of the fruits guarantees high quality fruits and delays picking time. Because of these reasons, the number of fruit growers using cover production system is increasing. Covering red currant affects fungicide action and efficacy. Furthermore the climate conditions are altered in the shrub resulting in a different infection risk/pressure for certain fungal diseases. The effect of the timing of covering on the control of Botrytis cinerea which is the ...

  3. Biocontrol of Botrytis cinerea by successful introduction of Pantoea ananatis in the grapevine phyllosphere

    OpenAIRE

    Berg, Van

    2012-01-01

    Florian Gasser,1 Massimiliano Cardinale,1 Barbara Schildberger,2 Gabriele Berg11Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; 2Höhere Bundesanstalt und Bundesamt für Wein-und Obstbau, Klosterneuburg, AustriaBackground and aims: The fungus Botrytis cinerea is a common problem in viticulture and leads to serious losses in both yield and quality. The objective was to study the potential of the antagonist Pantoea ananatis BLBT1-08 for co...

  4. Nocturnal Ventilation For Controling Greenhouse Humidity and Botrytis Cinerea Severity In Unheated Tomato Greenhouses

    OpenAIRE

    Baptista, F.J.; Bailey, B J; Meneses, J.F.

    2008-01-01

    Grey mould disease is one of the most important diseases affecting crops grown in unheated greenhouses, where ventilation is the main technique used to control inside environmental conditions. The main goal of this investigation was to study the influence of nocturnal ventilation on the humidity conditions in unheated tomato greenhouses and the consequences for Botrytis cinerea control. Experimental work was realised at the High Institute of Agronomy in Lisbon in two identical ...

  5. Enhancement of biocontrol efficacy against Botrytis cinerea through the manipulation of nitrogen fertilization of tomato plants

    OpenAIRE

    Abro, Manzoor Ali; Lecompte, François; Bardin, Marc; Duffaud, Magali

    2013-01-01

    Although nitrogen fertilization is known to affect plant susceptibility to certain pathogens, little is known on its possible effect on the efficacy of biological control. In the present study we examined the effect of five levels of NO3- nutrition on the efficacy of two biocontrol agents (Trichoderma harzianum and Microdochium dimerum) to protect pruning wounds of tomato against Botrytis cinerea. Plants were grown for two months in a greenhouse with a soil-less drip-irrigationsystem. Differe...

  6. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity

    OpenAIRE

    Atwell, Susanna; Corwin, Jason A.; Soltis, Nicole E.; Subedy, Anushryia; Denby, Katherine J.; Daniel J Kliebenstein

    2015-01-01

    © 2015 Atwell, Corwin, Soltis, Subedy, Denby and Kliebenstein. How standing genetic variation within a pathogen contributes to diversity in host/pathogen interactions is poorly understood, partly because most studied pathogens are host-specific, clonally reproducing organisms which complicates genetic analysis. In contrast, Botrytis cinerea is a sexually reproducing, true haploid ascomycete that can infect a wide range of diverse plant hosts. While previous work had shown significant genomic ...

  7. Antifungal Activity of Plant Essential Oils Against Botrytis cinerea, Penicillium italicum and Penicillium digitatum

    Directory of Open Access Journals (Sweden)

    Andrew VITORATOS

    2013-05-01

    Full Text Available Plant essential oils have the potential to replace the synthetic fungicides in the management of postharvest diseases of fruit and vegetables.The aim of this study was to access the in vitro and in vivo activity of essential oil obtained from oregano (Origanum vulgare L. ssp. hirtum, thyme (Thymus vulgaris L. and lemon (Citrus limon L. plants, against some important postharvest pathogens (Botrytis cinerea, Penicillium italicum and P. digitatum. In vitro experiments indicated that P. italicum did not show any mycelium growth in presence of thyme essential oils at concentration of 0.13 μl/ml. Moreover, B. cinerea did not show any mycelium growth in presence of lemon and oregano essential oils at concentration of 17 μl/ml and 0.02 μl/ml, respectively. Moreover, the essential oils from three species were effective in reducing the spore germination. The in vivo experiments confirmed the strong efficacy shown in vitro by essential oils. These oregano and lemon oils were very effective in controlling disease severity of infected fruit by B. cinera in tomatoes, strawberries and cucumbers. In tomatoes, grey mould due to B. cinerea was completed inhibited by oregano essential oils at 0.30 μl/ml. Moreover, lemon essential oils induced a significant reduction of grey mould disease severity. In strawberries, grey mould was completed inhibited by lemon essential oils at 0.05 μl/ml. In addition, lemon essential oils at 0.05 μl/ml showed 39% reduction of infected cucumber fruits by B. cinerea. These results indicate that essential oils after suitable formulation could be used for the control of postharvest diseases caused by Botrytis and Penicillium pathogens.

  8. Bombus terrestris as an entomovector for suppressing Botrytis cinerea in open field strawberry

    OpenAIRE

    Mänd, Marika; Karise, Reet; Muljar, Riin

    2013-01-01

    Strawberry (Fragaria x ananassa) is a fruit crop grown worldwide, but diseases such as the grey mould Botrytis cinerea frequently limit its yield. Most of grey mould infection on the fruits is initiated during the flowering period. Use of foraging bees as disseminators of microbial control agents (MCAs) to flowers is known as entomovector technology. Many researchers have shown that bumble bees can efficiently vector MCAs; however, most studies have been conducted in greenhouse conditions.

  9. Global Antifungal Profile Optimization of Chlorophenyl Derivatives against Botrytis cinerea and Colletotrichum gloeosporioides

    OpenAIRE

    Bustillo Pérez, Antonio; Pinedo Rivilla, Cristina; Aleu Casatejada, Josefina; González Collado, Isidro; Hernández Galán, Rosario; Saiz-Urra, Liane; Cruz-Monteagudo, Maykel

    2009-01-01

    Twenty-two aromatic derivatives bearing a chlorine atom and a different chain in the para or meta position were prepared and evaluated for their in vitro antifungal activity against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. The results showed that maximum inhibition of the growth of these fungi was exhibited for enantiomers S and R of 1-(40-chlorophenyl)- 2-phenylethanol (3 and 4). Furthermore, their antifungal activity showed a clear structure...

  10. Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity

    OpenAIRE

    Kunz, Caroline; Vandelle, Elodie; Rolland, Stéphane; Poinssot, Benoît; Bruel, Christophe; Cimerman, Agnes; Zotti, Corine; Moreau, Elisabeth; Vedel, Régine; Pugin, Alain; Boccara, Martine

    2006-01-01

    Botrytis cinerea is a necrotrophic pathogen that attacks more than 200 plant species.Here, the nonpathogenic mutant A336, obtained via insertional mutagenesis, was characterized.Mutant A336 was nonpathogenic on leaves and fruits, on intact and wounded tissue, while still able to penetrate the host plant. It grew normally in vitro on rich media but its conidiation pattern was altered. The mutant did not produce oxalic acid and exhibited a modified regulation of the production of some secreted ...

  11. Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming

    OpenAIRE

    Smith, Jonathon E; Mengesha, Bemnet; Tang, Hua; Mengiste, Tesfaye; Bluhm, Burton H

    2014-01-01

    Background Tomato (Solanum lycopersicum), one of the world’s most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources ...

  12. Efficacy of Streptomyces spp. strains against different strains of Botrytis cinerea

    OpenAIRE

    Boukaew, Sawai; Prasertsan, Poonsuk; Troulet, Claire; Bardin, Marc

    2014-01-01

    Grey mould caused by the fungus Botrytis cinerea is an economically important disease in numerous crops. Biocontrol is a promising method to control the disease. Species of Streptomyces are potential biological control agents since they are ubiquitous in the environment and many of them produce various secondary metabolites with diverse biological activities including the ability to inhibit this plant pathogenic fungus. Strains RM-1-138 and RL-1-178 of S. philanthi and SS-2-243 of S. mycarofa...

  13. Nosocomial pneumonia caused by a glucose-metabolizing strain of Neisseria cinerea.

    OpenAIRE

    Boyce, J M; Taylor, M R; Mitchell, E B; Knapp, J S

    1985-01-01

    We describe what appears to be the first reported case of nosocomial pneumonia caused by Neisseria cinerea. The isolate metabolized glucose when tested in BACTEC Neisseria Differentiation Kits (Johnston Laboratories), but did not produce detectable acid in cystine-Trypticase (BBL Microbiology Systems) agar medium or in modified oxidation-fermentation medium. Clinical laboratories that rely on the BACTEC method for differentiation of pathogenic neisseriae should be aware of the fact that N. ci...

  14. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea

    OpenAIRE

    Cantu, D.; Vicente, A. R.; L.C.Greve; Dewey, F. M.; Bennett, A.B.; Labavitch, J. M.; Powell, A. L. T.

    2008-01-01

    Fruit ripening is characterized by processes that modify texture and flavor but also by a dramatic increase in susceptibility to necrotrophic pathogens, such as Botrytis cinerea. Disassembly of the major structural polysaccharides of the cell wall (CW) is a significant process associated with ripening and contributes to fruit softening. In tomato, polygalacturonase (PG) and expansin (Exp) are among the CW proteins that cooperatively participate in ripening-associated CW disassembly. To determ...

  15. Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea.

    OpenAIRE

    Diolez, A; Marches, F; Fortini, D; Brygoo, Y

    1995-01-01

    The phytopathogenic fungus Botrytis cinerea can infect an extremely wide range of host plants (tomato, grapevine, strawberry, and flax) without apparent specialization. While studying genetic diversity in this fungus, we found an element which is present in multiple copies and dispersed throughout the genome of some of its isolates. DNA sequence analysis revealed that the element contained direct, long-terminal repeats (LTRs) of 596 bp whose features were characteristic of retroviral and retr...

  16. Development of Botrytis cinerea Pers. ex Fr. on leaves of common poinsettia (Euphorbia pulcherrima Willd.)

    OpenAIRE

    Beata Kułek; Jolanta Floryszak-Wieczorek

    2012-01-01

    The development of Botrytis cinerea was assessed on six cultivars of common poinsettia, differing in the colour of bracts, and being in great demand among buyers of these ornamental plants. Resistance to this pathogen differed in the investigated poinsettias. Cultivar 'Malibu Red' (red bracts) turned out to be most susceptible, while cv. 'Marblestar' (cream-pink) and cv. 'Coco White' (white) - relatively resistant to this fungus. After application of various inoculation methods (leaf discs, c...

  17. Development of Botrytis cinerea Pers. ex Fr. on leaves of common poinsettia (Euphorbia pulcherrima Willd.

    Directory of Open Access Journals (Sweden)

    Beata Kułek

    2012-12-01

    Full Text Available The development of Botrytis cinerea was assessed on six cultivars of common poinsettia, differing in the colour of bracts, and being in great demand among buyers of these ornamental plants. Resistance to this pathogen differed in the investigated poinsettias. Cultivar 'Malibu Red' (red bracts turned out to be most susceptible, while cv. 'Marblestar' (cream-pink and cv. 'Coco White' (white - relatively resistant to this fungus. After application of various inoculation methods (leaf discs, cut off leaves, whole plants the differences in resistance to B. cinerea were confirmed for two extreme cultivars - susceptible ('Malibu Red' and resistant ('Coco White', which indicated genetic background of this polymorphism. The rate of disease development on poinsettia leaves was affected by the amount of spores used for inoculation (optimum density of 3.5·105 B. cinerea conidia / ml suspension and the addition of stimulants (0.1 M glucose with 0.05 M KH2PO4, which facilitated germination and infection of the host tissue. The inoculated poinsettia leaves showed high stability of plasma membranes. In the susceptible cultivar, in spite of the development of necrotic spots, a significant increase in the membrane damage index (by 13% was found only on day 7 of the disease development.

  18. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence.

    Directory of Open Access Journals (Sweden)

    Mario González

    Full Text Available Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea.

  19. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    Directory of Open Access Journals (Sweden)

    Sébastien Ronseaux

    2013-09-01

    Full Text Available The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16 in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditions, foliar application of U. atrum protected grapevine leaves against gray mold disease. An increase in chitinase activity was induced by the presence of U. atrum isolates indicating that the biological control agents triggered plant defense mechanisms. Moreover, U13 has the potential to colonize the grapevine plantlets and to improve their growth. The ability of U. atrum isolates to exhibit an antagonistic effect against B. cinerea in addition to their aptitude to induce plant resistance and to promote grapevine growth may explain a part of their biological activity. Hence, this study suggests that U. atrum provides a suitable biocontrol agent against gray mold in grapevines.

  20. Irradiation and evolution of the gray rot botrytis cinerea at the strawberry plant

    International Nuclear Information System (INIS)

    Strawberry was introduced since french colonization in tunisia as one of plants cultivated. At the end of the 1970's the strawberries (Fragaria ananassa) was developed in area of Cap Bon. grey mold, caused by botrytis cinerea is by far the most widespread and serious of strawberry fruit diseases and an ever-present threat to the crop. A wide variety of symptoms is caused by B. Cinerea such as a rot on fruit and blight on leaves. this fungus causes domages bith in the field and during storage. In order to reduce severity of grey mold, biological control in field and radiation on post-harvest are developed. The objective of this study was to determine the antagonism of some microorganisms against B.Cinerea such as Trichoderma and Bacillus in greenhouse. On the other hand we tested the efficacity of biological products such as Prev-Am and BM 86on enhancing plant defense. For the post-harvest studies, the goal is to provide a wear tool to manage better the fungus by gamma rays radiation. (author). 29 refs

  1. Streptomyces araujoniae Produces a Multiantibiotic Complex with Ionophoric Properties to Control Botrytis cinerea.

    Science.gov (United States)

    Silva, Leonardo José; Crevelin, Eduardo José; Souza, Wallace Rafael; Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares; Zucchi, Tiago Domingues

    2014-12-01

    A recently described actinomycete species (Streptomyces araujoniae ASBV-1(T)) is effective against many phytopathogenic fungi. In this study, we evaluated the capacity of this species to inhibit Botrytis cinerea development in strawberry pseudofruit, and we identified the chemical structures of its bioactive compounds. An ethyl acetate crude extract (0.1 mg ml(-1)) of ASBV-1(T) fermentation broth completely inhibited fungus growth in strawberry pseudofruit under storage conditions. The crude extract was fractionated by preparative high-performance liquid chromatography; the active fraction was further evaluated by tandem mass spectrometry. ASBV-1(T) produced a multiantibiotic complex with ionophoric properties. This complex contained members of the macrotetralides class (including monactin, dinactin, trinactin, and tetranactin) and the cyclodepsipeptide valinomycin, all of which were active against B. cinerea. Furthermore, the addition of 2 mM MgSO4 and 1 mM ZnSO4 enhanced macrotetralide and valinomycin production, respectively, in the culture broth. These compounds are considered to be the main active molecules that S. araujoniae produces to control B. cinerea. Their low to moderate toxicity to humans and the environment justifies the application of ASBV-1(T) in biological control programs that aim to mitigate the damage caused by this phytopathogen. PMID:24983843

  2. The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana.

    Science.gov (United States)

    Hael-Conrad, V; Abou-Mansour, E; Díaz-Ricci, J-C; Métraux, J-P; Serrano, M

    2015-12-01

    AsES (Acremonium strictum Elicitor and Subtilisin) is a novel extracellular elicitor protein produced by the avirulent isolate SS71 of the opportunist strawberry fungal pathogen A. strictum. Here we describe the activity of AsES in the plant-pathogen system Arabidopsis thaliana-Botrytis cinerea. We show that AsES renders A. thaliana plants resistant to the necrotrophic pathogen B. cinerea, both locally and systemically and the defense response observed is dose-dependent. Systemic, but not local resistance is dependent on the length of exposure to AsES. The germination of the spores in vitro was not inhibited by AsES, implying that protection to B. cinerea is due to the induction of the plant defenses. These results were further supported by the findings that AsES differentially affects mutants impaired in the response to salicylic acid, jasmonic acid and ethylene, suggesting that AsES triggers the defense response through these three signaling pathways. PMID:26706064

  3. Expansive Phenotypic Landscape of Botrytis cinerea Shows Differential Contribution of Genetic Diversity and Plasticity.

    Science.gov (United States)

    Corwin, Jason A; Subedy, Anushriya; Eshbaugh, Robert; Kliebenstein, Daniel J

    2016-04-01

    The modern evolutionary synthesis suggests that both environmental variation and genetic diversity are critical determinants of pathogen success. However, the relative contribution of these two sources of variation is not routinely measured. To estimate the relative contribution of plasticity and genetic diversity for virulence-associated phenotypes in a generalist plant pathogen, we grew a population of 15 isolates of Botrytis cinerea from throughout the world, under a variety of in vitro and in planta conditions. Under in planta conditions, phenotypic differences between the isolates were determined by the combination of genotypic variation within the pathogen and environmental variation. In contrast, phenotypic differences between the isolates under in vitro conditions were predominantly determined by genetic variation in the pathogen. Using a correlation network approach, we link the phenotypic variation under in vitro experimental conditions to phenotypic variation during plant infection. This study indicates that there is a high level of phenotypic variation within B. cinerea that is controlled by a mixture of genetic variation, environment, and genotype × environment. This argues that future experiments into the pathogenicity of B. cinerea must account for the genetic and environmental variation within the pathogen to better sample the potential phenotypic space of the pathogen. PMID:26828401

  4. Network-Based Comparative Analysis of Arabidopsis Immune Responses to Golovinomyces orontii and Botrytis cinerea Infections.

    Science.gov (United States)

    Jiang, Zhenhong; Dong, Xiaobao; Zhang, Ziding

    2016-01-01

    A comprehensive exploration of common and specific plant responses to biotrophs and necrotrophs is necessary for a better understanding of plant immunity. Here, we compared the Arabidopsis defense responses evoked by the biotrophic fungus Golovinomyces orontii and the necrotrophic fungus Botrytis cinerea through integrative network analysis. Two time-course transcriptional datasets were integrated with an Arabidopsis protein-protein interaction (PPI) network to construct a G. orontii conditional PPI sub-network (gCPIN) and a B. cinerea conditional PPI sub-network (bCPIN). We found that hubs in gCPIN and bCPIN played important roles in disease resistance. Hubs in bCPIN evolved faster than hubs in gCPIN, indicating the different selection pressures imposed on plants by different pathogens. By analyzing the common network from gCPIN and bCPIN, we identified two network components in which the genes were heavily involved in defense and development, respectively. The co-expression relationships between interacting proteins connecting the two components were different under G. orontii and B. cinerea infection conditions. Closer inspection revealed that auxin-related genes were overrepresented in the interactions connecting these two components, suggesting a critical role of auxin signaling in regulating the different co-expression relationships. Our work may provide new insights into plant defense responses against pathogens with different lifestyles. PMID:26750561

  5. Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse.

    Science.gov (United States)

    de Almeida, Maíra N; Guimarães, Valéria M; Falkoski, Daniel L; Paes, Guilherme B T; Ribeiro, José Ivo; Visser, Evan M; Alfenas, Rafael F; Pereira, Olinto L; de Rezende, Sebastião T

    2014-02-01

    Enzymatic hydrolysis is an important but expensive step in the production of ethanol from biomass. Thus, the production of efficient enzymatic cocktails is of great interest for this biotechnological application. The production of endoglucanase and xylanase activites from F. verticillioides were optimized in a factorial design (2(5)) followed by a CCDR design. Endoglucanase and xylanase activities increased from 2.8 to 8.0 U/mL and from 13.4 to 114 U/mL, respectively. The optimal pH and temperature were determined for endoglucanase (5.6, 80 °C), cellobiase (5.6, 60 °C), FPase (6.0, 55 °C) and xylanase (7.0, 50 °C). The optimized crude extract was applied in saccharification and fermentation of sugarcane bagasse from which 9.7 g/L of ethanol was produced at an ethanol/biomass yield of 0.19. PMID:24170331

  6. Botrydial and botcinins produced by Botrytis cinerea regulate the expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis.

    Science.gov (United States)

    Malmierca, Mónica G; Izquierdo-Bueno, Inmaculada; Mccormick, Susan P; Cardoza, Rosa E; Alexander, Nancy J; Moraga, Javier; Gomes, Eriston V; Proctor, Robert H; Collado, Isidro G; Monte, Enrique; Gutiérrez, Santiago

    2016-09-01

    Trichoderma arundinaceum IBT 40837 (Ta37) and Botrytis cinerea produce the sesquiterpenes harzianum A (HA) and botrydial (BOT), respectively, and also the polyketides aspinolides and botcinins (Botcs), respectively. We analysed the role of BOT and Botcs in the Ta37-B. cinerea interaction, including the transcriptomic changes in the genes involved in HA (tri) and ergosterol biosynthesis, as well as changes in the level of HA and squalene-ergosterol. We found that, when confronted with B. cinerea, the tri biosynthetic genes were up-regulated in all dual cultures analysed, but at higher levels when Ta37 was confronted with the BOT non-producer mutant bcbot2Δ. The production of HA was also higher in the interaction area with this mutant. In Ta37-bcbot2Δ confrontation experiments, the expression of the hmgR gene, encoding the 3-hydroxy-3-methylglutaryl coenzyme A reductase, which is the first enzyme of the terpene biosynthetic pathway, was also up-regulated, resulting in an increase in squalene production compared with the confrontation with B. cinerea B05.10. Botcs had an up-regulatory effect on the tri biosynthetic genes, with BotcA having a stronger effect than BotcB. The results indicate that the interaction between Ta37 and B. cinerea exerts a stimulatory effect on the expression of the tri biosynthetic genes, which, in the interaction zone, can be attenuated by BOT produced by B. cinerea B05.10. The present work provides evidence for a metabolic dialogue between T. arundinaceum and B. cinerea that is mediated by sesquiterpenes and polyketides, and that affects the outcome of the interaction of these fungi with each other and their environment. PMID:26575202

  7. Improved Production of Aspergillus usamii endo-β-1,4-Xylanase in Pichia pastoris via Combined Strategies

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2016-01-01

    Full Text Available A series of strategies were applied to improve expression level of recombinant endo-β-1,4-xylanase from Aspergillus usamii (A. usamii in Pichia pastoris (P. pastoris. Firstly, the endo-β-1,4-xylanase (xynB gene from A. usamii was optimized for P. pastoris and expressed in P. pastoris. The maximum xylanase activity of optimized (xynB-opt gene was 33500 U/mL after methanol induction for 144 h in 50 L bioreactor, which was 59% higher than that by wild-type (xynB gene. To further increase the expression of xynB-opt, the Vitreoscilla hemoglobin (VHb gene was transformed to the recombinant strain containing xynB-opt. The results showed that recombinant strain harboring the xynB-opt and VHb (named X33/xynB-opt-VHb displayed higher biomass, cell viability, and xylanase activity. The maximum xylanase activity of X33/xynB-opt-VHb in 50 L bioreactor was 45225 U/mL, which was 35% and 115% higher than that by optimized (xynB-opt gene and wild-type (xynB gene. Finally, the induction temperature of X33/xynB-opt-VHb was optimized in 50 L bioreactor. The maximum xylanase activity of X33/xynB-opt-VHb reached 58792 U/mL when the induction temperature was 22°C. The results presented here will greatly contribute to improving the production of recombinant proteins in P. pastoris.

  8. Cloning, Expression, and Purification of Xylanase Gene from Bacillus licheniformis for Use in Saccharification of Plant Biomass.

    Science.gov (United States)

    Zafar, Asma; Aftab, Muhammad Nauman; Din, Zia Ud; Aftab, Saima; Iqbal, Irfana; Shahid, Anam; Tahir, Arifa; Haq, Ikram Ul

    2016-01-01

    The xylanase gene (xynA) of Bacillus licheniformis 9945A was cloned and expressed in Escherichia coli BL21(DE3) using pET-22b(+) as an expression vector. The recombinant xylanase enzyme was purified by ammonium sulfate precipitation, followed by single-step immobilized metal ion affinity chromatography with a 57.58-fold purification having 138.2 U/mg specific activity and recovery of 70.08 %. Molecular weight of the purified xylanase, 23 kDa, was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable for up to 70 °C with a broad pH range of 4-9 pH units. The enzyme activity was increased in the presence of metal ions especially Ca(+2) and decreased in the presence of EDTA, indicating that the xylanase was a metalloenzyme. However, an addition of 1-4 % Tween 80, β-mercaptoethanol, and DTT resulted in the increase of enzyme activity by 51, 52, and 5 %, respectively. Organic solvents with a concentration of 10-40 % slightly decreased the enzyme activity. The xylanase enzyme possesses the ability of bioconversion of plant biomasses like wheat straw, rice straw, and sugarcane bagasse. Among the different tested biomasses, the highest saccharification percentage was observed with 1 % sugarcane bagasse after 72 h of incubation at 50 °C with 20 units of enzyme. The results suggest that recombinant xylanase can be used in the bioconversion of natural biomasses into simple sugars which could be further used for the production of biofuel. PMID:26438315

  9. Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation

    OpenAIRE

    Garai, Debabrata; Kumar, Vineet

    2012-01-01

    In this study, a novel isolate Aspergillus candidus was employed for xylanase production using low cost agro residues. A Box-Behnken design matrix was used to optimize the influential parameters like carbon source, nitrogen source and incubation temperature for maximum xylanase production. Under optimized condition, enzyme titer level enhanced to 69 IU/ml at 48 h with volumetric productivity 1437 IU/l h. Growth and enzyme production were observed even at pH 11.0, indicating its ability to sus...

  10. ENHANCED PRODUCTION OF CELLULASE-FREE XYLANASE BY ALKALOPHILIC BACILLUS SUBTILIS ASH AND ITS APPLICATION IN BIOBLEACHING OF KRAFT PULP

    OpenAIRE

    Ashwani Sanghi; Neelam Garg; Kalika Kuhar; Kuhad, Ramesh C.; Gupta, Vijay K

    2009-01-01

    This paper reports high level production of a cellulase-free xylanase using wheat bran, a cost-effective substrate, under submerged fermentation by alkalophilic Bacillus subtilis ASH. Production of xylanase was observed even at alkaline pH up to 11.0 and temperature 60 °C, although the highest enzyme titer was recorded at neutral pH and 37 °C. The enzyme production under optimized fermentation was 1.5-fold greater than under unoptimized conditions. Pre-treatment of unbleached pulp of 10% cons...

  11. Influence of xylanase addition on the characteristics of loaf bread prepared with white flour or whole grain wheat flour

    OpenAIRE

    Leandra Zafalon Jaekel; Camila Batista da Silva; Caroline Joy Steel; Yoon Kil Chang

    2012-01-01

    The aim of this study was to verify the influence of the addition of the enzyme xylanase (four concentrations: 0, 4, 8, and 12 g.100 kg-1 flour) on the characteristics of loaf bread made with white wheat flour or whole grain wheat flour. Breads made from white flour and added with xylanase had higher specific volumes than those of the control sample (no enzyme); however, the specific volume did not differ significantly (p < 0.05) among the breads with different enzyme concentrations. All form...

  12. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T)

    OpenAIRE

    Bouanane-Darenfed, A.; Boucherba, N.; Bouacem, K.; Gagaoua, M.; Joseph, M; Kebbouche-Gana, S.; Nateche, F.; Hacene, H.; Ollivier, Bernard; Cayol, J. L.; Fardeau, Marie-Laure

    2016-01-01

    The present study investigates the purification and biochemical characterization of an extracellular thermostable xylanase (called XYN35) from Caldicoprobacter algeriensis sp. nov., strain TH7C1(T), a thermophilic, anaerobic strain isolated from the hydrothermal hot spring of Guelma (Algeria). The maximum xylanase activity recorded after 24 h of incubation at 70 degrees C and in an optimized medium containing 10 g/L mix birchwood-and oats spelt-xylan was 250 U/mL. The pure protein was obtaine...

  13. One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ash

    OpenAIRE

    Sanghi, Ashwani; Garg, Neelam; Gupta, V. K.; Mittal, Ashwani; R.C. Kuhad

    2010-01-01

    The present study describes the one-step purification and characterization of an extracellular cellulase-free xylanase from a newly isolated alkalophilic and moderately thermophilic strain of Bacillus subtilis ASH. Xylanase was purified to homogeneity by 10.5-fold with ~43% recovery using ion-exchange chromatography through CM-Sephadex C-50. The purified enzyme revealed a single band on SDS-PAGE gel with a molecular mass of 23 kDa. It showed an optimum pH at 7.0 and was stable over the pH ran...

  14. Characterization and comparison of Clostridium cellulovorans endoglucanases-xylanases EngB and EngD hyperexpressed in Escherichia coli.

    OpenAIRE

    Foong, F C; Doi, R H

    1992-01-01

    By the use of a T7 expression system, endoglucanases-xylanases EngB and EngD from Clostridium cellulovorans were hyperexpressed and purified from Escherichia coli. The two enzymes demonstrated both endoglucanase and xylanase activities. The substrate specificities of both endoglucanases were similar except that EngD had four-times-greater p-nitrophenyl beta-1,4-cellobiosidase activity. The two proteins were very homologous (80%) up to the Pro-Thr-Thr region which divided the protein into -NH2...

  15. CLONING, PURIFICATION AND CHARACTERIZATION OF HALOTOLERANT XYLANASE FROM Geobacillus Thermodenitrificans C5

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2016-06-01

    Full Text Available High levels of extracellular xylanase activity (994.50 IU/ml produced by Geobacillus thermodenitrificans C5 originated gene was detected when it was expressed in E. coli BL21 host. Thermostable xylanase (GthC5Xyl was purified to homogeneity and showed a molecular mass of approximately 44 kDa according to SDS-PAGE. The specific activity of the purified GthC5Xyl was up to 1243.125IU/mg with a 9.89-fold purification. The activity of GthC5Xyl was stimulated by CoCl2, MnSO4, CuSO4, MnCl2 but was inhibited by FeSO4, Hg, CaSO4. GthC5Xyl showed resistant to SDS, Tween 20, Triton X-100, β- Mercaptoethanol, PMSF, DTT, NEM and DEPC, SDS, and EDTA. A greater affinity for oat spelt xylan was exhibited by GthC5Xyl with maximum enzymatic activity at 60°C and 6.0 pH. The activity portrayed by GthC5Xyl was found to be acellulytic with stability at high temperature (70°C-80°C and low pH (4.0 to 8.0. Xylobiose and xylopentose were the end products of proficient oat spelt xylanase hydrolysis by GthC5Xyl. High SDS resistance and broader stability of GthC5Xyl proves it to be worthy of impending application in numerous industrial processes especially textile, detergents and animal feed industry.

  16. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution.

    Science.gov (United States)

    Xu, Xin; Liu, Ming-Qi; Huo, Wen-Kang; Dai, Xian-Jun

    2016-05-01

    This study aimed to obtain xylanase exhibiting improved enzyme properties to satisfy the requirements for industrial applications. The baxA gene encoding Bacillus amyloliquefaciens xylanase A was mutated by error-prone touchdown PCR. The mutant, pCbaxA50, was screened from the mutant library by using the 96-well plate high-throughput screening method. Sequence alignment revealed the identical mutation point S138T in xylanase (reBaxA50) produced by the pCbaxA50. The specific activity of the purified reBaxA50 was 9.38U/mg, which was 3.5 times higher than that of its parent expressed in Escherichia coli BL21 (DE3), named reBaxA. The optimum temperature of reBaxA and reBaxA50 were 55°C and 50°C, respectively. The optimum pH of reBaxA and reBaxA50 were pH 6 and pH 5, respectively. Moreover, reBaxA50 was more stable than reBaxA under thermal and extreme pH treatment. The half-life at 60°C and apparent melting temperature of reBaxA50 were 9.74min and 89.15°C, respectively. High-performance liquid chromatography showed that reBaxA50 released xylooligosaccharides from oat spelt, birchwood, and beechwood xylans, with xylotriose as the major product; beechwood xylan was also the most thoroughly hydrolyzed. This study demonstrated that the S138T mutation possibly improved the catalytic activity and thermostability of reBaxA50. PMID:26992794

  17. Application of xylanases from Amazon Forest fungal species in bleaching of eucalyptus kraft pulps

    Directory of Open Access Journals (Sweden)

    Roseli Garcia Medeiros

    2007-03-01

    Full Text Available Crude xylanase preparations from Penicillium corylophilum, Aspergillus niger and Trichoderma longibrachiatum were used to treat Eucalyptus kraft pulp, prior to chlorine dioxide and alkaline bleaching sequences. The enzyme pretreatment improved brightness and delignification of non-delignified and oxygen-bleached samples of eucalyptus kraft pulp. Xylanase preparations from T. longibrachiatum and P. corylophilum were more effective to reduce pulp kappa number. A small reduction in viscosity was obtained when the oxygen-bleached pulp was treated with xylanase preparation from A. niger. For all enzyme samples, the best release of chromophoric material from the pulp was at 237 nm. The enzyme preparation from P. corylophilum was responsible for the highest release of reducing sugar at a dosage interval of 10-20 IU/g dry weight pulp. Scanning electron microscopy studies of oxygen-bleached pulp after xylanase treatment revealed morphological changes, including holes, cracks, filament forming and peeling.Amostras de xilanases de extratos brutos de Penicillium corylophilum, Aspergillus niger e Trichoderma longibrachiatum foram utilizadas no branqueamento de polpa kraft de eucalipto antes das seqüências alcalina e dióxido de cloro. O pré-tratamento enzimático melhorou a alvura e o processo de deslignificação de amostras de polpa kraft de eucalipto não-tratada e tratada com oxigênio. Amostras de xilanases de T. longibrachiatum e P. corylophilum foram mais efetivas na redução do número kappa da polpa. A polpa tratada com oxigênio sofreu uma pequena redução na sua viscosidade quando incubada com amostra de xilanase de A. niger. Para todas as amostras de xilanases, a maior liberação de cromóforos da polpa foi a 237 nm. A amostra de xilanase de P. corylophilum liberou maior quantidade de açúcar redutor da polpa, utilizando dosagem de 10-20 UI/g de peso seco da polpa. Estudos de microscopia eletrônica de varredura revelaram várias altera

  18. Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger

    OpenAIRE

    Ana Cláudia Elias Pião Benedetti; Eliana Dantas da Costa; Caio Casale Aragon; Andréa Francisco dos Santos; Antônio José Goulart; Derlene Attili-Angelis; Rubens Monti

    2013-01-01

    A strain of the filamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3 , 0.5% NaCl, 0.1% NH4 Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A lowcost hemicellulose residue (powdered corncob) proved to be an excellent inducer of the A. ni...

  19. Partial purification and characterization of Xylanase from Trichoderma viride produced under SSF

    OpenAIRE

    Irfan, M.; Q. Syed

    2012-01-01

    Summary: In the present study xylanase enzyme was produced from Trichoderma viride in solid state fermentation using sugarcane bagasse as a substrate. The whole fermentation process was carried out in 250ml Erlenmeyer flask at 30oC for seven days of fermentation period. The enzyme was partially purified by ammonium sulphate (60%) fractionation followed by dialysis. The partially purified enzyme was further characterized showing optimum pH and temperature of 5.0 and 50oC respectively. Metal pr...

  20. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Ya Zhang

    Full Text Available To develop new agents against strawberry grey mould and to aid in the development of biological pesticides, we investigated the inhibitory effect of a natural compound, phenazine-1-carboxamide (PCN, against Botrytis cinerea using a growth rate assay. Additionally, indoor toxicity and the in vitro control effect of PCN were further studied to determine its potential mechanisms of action on B. cinerea. PCN was inhibitory against B. cinerea with a 50% effective concentration (EC50 of 108.12 μg/mL; the toxicity of PCN was equivalent to that of carbendazim (CBM. The best in vitro control effect of PCN against grey mould in strawberry (fruit reached 75.32%, which was slightly higher than that of CBM. The field control effect of PCN against grey mould reached a maximum of 72.31% at a PCN concentration of 700 μg/mL, which was 1.02 times higher than that of CBM. Fungistatic activity was observed at low concentrations of PCN, while high concentrations of PCN resulted in fungicidal activity against B. cinerea. This natural compound strongly inhibited both spore and sclerotium germination of B. cinerea, with the best relative inhibition rates of 77.03% and 82.11%, respectively. The inhibitory effect of PCN on mycelial growth of B. cinerea was significant and reached levels of 87.32%. Scanning electron microscopy observations revealed that after 48 h of PCN treatment, the mycelia appeared loose, locally twisted, and folded, with exudation of contents; the mycelia was withered and twisted, with edge burrs, deformations, ruptures and a sheet-like structure. Transmission electron microscopy observations revealed that after 48 h of PCN treatment, the structure of the cell nucleus was unclear and the vacuoles had ruptured; additionally, various organelles exhibited disordered structures, there were substantial non-membrane transparent inclusions, the cells were plasmolysed, the cell walls were collapsed in some cases, and the hyphal tissue was essentially

  1. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.

    Science.gov (United States)

    Zhang, Ya; Wang, Chong; Su, Pin; Liao, Xiaolan

    2015-01-01

    To develop new agents against strawberry grey mould and to aid in the development of biological pesticides, we investigated the inhibitory effect of a natural compound, phenazine-1-carboxamide (PCN), against Botrytis cinerea using a growth rate assay. Additionally, indoor toxicity and the in vitro control effect of PCN were further studied to determine its potential mechanisms of action on B. cinerea. PCN was inhibitory against B. cinerea with a 50% effective concentration (EC50) of 108.12 μg/mL; the toxicity of PCN was equivalent to that of carbendazim (CBM). The best in vitro control effect of PCN against grey mould in strawberry (fruit) reached 75.32%, which was slightly higher than that of CBM. The field control effect of PCN against grey mould reached a maximum of 72.31% at a PCN concentration of 700 μg/mL, which was 1.02 times higher than that of CBM. Fungistatic activity was observed at low concentrations of PCN, while high concentrations of PCN resulted in fungicidal activity against B. cinerea. This natural compound strongly inhibited both spore and sclerotium germination of B. cinerea, with the best relative inhibition rates of 77.03% and 82.11%, respectively. The inhibitory effect of PCN on mycelial growth of B. cinerea was significant and reached levels of 87.32%. Scanning electron microscopy observations revealed that after 48 h of PCN treatment, the mycelia appeared loose, locally twisted, and folded, with exudation of contents; the mycelia was withered and twisted, with edge burrs, deformations, ruptures and a sheet-like structure. Transmission electron microscopy observations revealed that after 48 h of PCN treatment, the structure of the cell nucleus was unclear and the vacuoles had ruptured; additionally, various organelles exhibited disordered structures, there were substantial non-membrane transparent inclusions, the cells were plasmolysed, the cell walls were collapsed in some cases, and the hyphal tissue was essentially necrotic. A PCN

  2. Effects of Dichrostachys cinerea (l. Wight & Arn (Fabaceae on herbaceous species in a semi-arid rangeland in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Clarice Mudzengi

    2014-08-01

    Full Text Available Anthropogenic alteration of an environment and other disturbance regimes may enable the expansion of some native species into new geographical areas, a phenomenon observed with Dichrostachys cinerea. Five D. cinerea invaded sites, each approximately one hectare in size were assessed for the effects of D. cinerea on native herbaceous species diversity, richness, basal cover, litter cover, top hamper and plant vigour. The same attributes were studied in five uninvaded sites adjacent to, and equal in size to each invaded site. Forty herbaceous species were identified in the area. There were significant differences (P < 0.05 noted in species richness, basal cover, litter cover, top hamper, plant vigour, and species diversities between invaded and uninvaded sites, with uninvaded sites recording higher values than invaded sites. Altitude, erosion and the edaphic variables pH, N, P and K, which were included as explanatory variables, also differed significantly (P<0.05 between invaded and uninvaded sites. Of the 30 D. cinerea invaded plots established for herbaceous species assessments, 26 were positively correlated with altitude, erosion, pH, P, N and K. It is imperative to find ways of managing D. cinerea in order to reduce its adverse effects on herbaceous species.

  3. Field and laboratory studies of the susceptibility of the green treefrog (Hyla cinerea to Batrachochytrium dendrobatidis infection.

    Directory of Open Access Journals (Sweden)

    Laura A Brannelly

    Full Text Available Amphibians worldwide are experiencing devastating declines, some of which are due to the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd. Populations in the southeastern United States, however, have not been noticeably affected by the pathogen. The green treefrog (Hyla cinerea is abundant and widespread in the southeastern United States, but has not been documented to harbor Bd infection. This study examined the susceptibility of H. cinerea to two strains of Bd in the lab and the prevalence of infection in wild populations of this species in southeastern Louisiana. Although we were able to infect H. cinerea with Bd in the lab, we did not observe any clinical signs of chytridiomycosis. Furthermore, infection by Bd does not appear to negatively affect body condition or growth rate of post-metamorphic individuals. We found no evidence of infection in surveys of wild H. cinerea. Our results suggest that H. cinerea is not susceptible to chytridiomycosis post-metamorphosis and probably is not an important carrier of the fungal pathogen Bd in the southeastern United States, although susceptibility at the larval stage remains unknown.

  4. Synthesis, Fungicidal Activity and Mode of Action of 4-Phenyl-6-trifluoromethyl-2-aminopyrimidines against Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Chunhui Liu

    2016-06-01

    Full Text Available Anilinopyrimidines are the main chemical agents for management of Botrytis cinerea. However, the drug resistance in fungi against this kind of compounds is very serious. To explore new potential fungicides against B. cinerea, a series of 4-phenyl-6-trifluoromethyl-2-amino-pyrimidine compounds (compounds III-1 to III-22 were synthesized, and their structures were confirmed by 1H-NMR, IR and MS. Most of these compounds possessed excellent fungicidal activity. The compounds III-3 and III-13 showed higher fungicidal activity than the positive control pyrimethanil on fructose gelatin agar (FGA, and compound III-3 on potato dextrose agar (PDA indicated high activity compared to the positive control cyprodinil. In vivo greenhouse results indicated that the activity of compounds III-3, III-8, and III-11 was significantly higher than that of the fungicide pyrimethanil. Scanning electron micrography (SEM and transmission electron micrography (TEM were applied to illustrate the mechanism of title compounds against B. cinerea. The title compounds, especially those containing a fluorine atom at the ortho-position on the benzene ring, could maintain the antifungal activity against B. cinerea, but their mechanism of action is different from that of cyprodinil. The present study lays a good foundation for us to find more efficient reagents against B. cinerea.

  5. Synthesis, Fungicidal Activity and Mode of Action of 4-Phenyl-6-trifluoromethyl-2-aminopyrimidines against Botrytis cinerea.

    Science.gov (United States)

    Liu, Chunhui; Cui, Zining; Yan, Xiaojing; Qi, Zhiqiu; Ji, Mingshan; Li, Xinghai

    2016-01-01

    Anilinopyrimidines are the main chemical agents for management of Botrytis cinerea. However, the drug resistance in fungi against this kind of compounds is very serious. To explore new potential fungicides against B. cinerea, a series of 4-phenyl-6-trifluoromethyl-2-amino-pyrimidine compounds (compounds III-1 to III-22) were synthesized, and their structures were confirmed by ¹H-NMR, IR and MS. Most of these compounds possessed excellent fungicidal activity. The compounds III-3 and III-13 showed higher fungicidal activity than the positive control pyrimethanil on fructose gelatin agar (FGA), and compound III-3 on potato dextrose agar (PDA) indicated high activity compared to the positive control cyprodinil. In vivo greenhouse results indicated that the activity of compounds III-3, III-8, and III-11 was significantly higher than that of the fungicide pyrimethanil. Scanning electron micrography (SEM) and transmission electron micrography (TEM) were applied to illustrate the mechanism of title compounds against B. cinerea. The title compounds, especially those containing a fluorine atom at the ortho-position on the benzene ring, could maintain the antifungal activity against B. cinerea, but their mechanism of action is different from that of cyprodinil. The present study lays a good foundation for us to find more efficient reagents against B. cinerea. PMID:27347910

  6. Impedance of the Grape Berry Cuticle as a Novel Phenotypic Trait to Estimate Resistance to Botrytis Cinerea

    Directory of Open Access Journals (Sweden)

    Katja Herzog

    2015-05-01

    Full Text Available Warm and moist weather conditions during berry ripening provoke Botrytis cinerea (B. cinerea causing notable bunch rot on susceptible grapevines with the effect of reduced yield and wine quality. Resistance donors of genetic loci to increase B. cinerea resistance are widely unknown. Promising traits of resistance are represented by physical features like the thickness and permeability of the grape berry cuticle. Sensor-based phenotyping methods or genetic markers are rare for such traits. In the present study, the simple-to-handle I-sensor was developed. The sensor enables the fast and reliable measurement of electrical impedance of the grape berry cuticles and its epicuticular waxes (CW. Statistical experiments revealed highly significant correlations between relative impedance of CW and the resistance of grapevines to B. cinerea. Thus, the relative impedance Zrel of CW was identified as the most important phenotypic factor with regard to the prediction of grapevine resistance to B. cinerea. An ordinal logistic regression analysis revealed a R2McFadden of 0.37 and confirmed the application of Zrel of CW for the prediction of bunch infection and in this way as novel phenotyping trait. Applying the I-sensor, a preliminary QTL region was identified indicating that the novel phenotypic trait is as well a valuable tool for genetic analyses.

  7. Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea.

    Science.gov (United States)

    Wang, Houping; Hu, Yanru; Pan, Jinjing; Yu, Diqiu

    2015-01-01

    Arabidopsis VQ motif-containing proteins have recently been demonstrated to interact with several WRKY transcription factors; however, their specific biological functions and the molecular mechanisms underlying their involvement in defense responses remain largely unclear. Here, we showed that two VQ genes, VQ12 and VQ29, were highly responsive to the necrotrophic fungal pathogen Botrytis cinerea. To characterize their roles in plant defense, we generated amiR-vq12 transgenic plants by using an artificial miRNA approach to suppress the expression of VQ12, and isolated a loss-of-function mutant of VQ29. Phenotypic analysis showed that decreasing the expression of VQ12 and VQ29 simultaneously rendered the amiR-vq12 vq29 double mutant plants resistant against B. cinerea. Consistently, the B. cinerea-induced expression of defense-related PLANT DEFENSIN1.2 (PDF1.2) was increased in amiR-vq12 vq29. In contrast, constitutively-expressing VQ12 or VQ29 confered transgenic plants susceptible to B. cinerea. Further investigation revealed that VQ12 and VQ29 physically interacted with themselves and each other to form homodimers and heterodimer. Moreover, expression analysis of VQ12 and VQ29 in defense-signaling mutants suggested that they were partially involved in jasmonate (JA)-signaling pathway. Taken together, our study indicates that VQ12 and VQ29 negatively regulate plant basal resistance against B. cinerea. PMID:26394921

  8. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes.

    Science.gov (United States)

    Saito, S; Margosan, D; Michailides, T J; Xiao, C L

    2016-03-01

    The Botrytis cinerea species complex comprises two cryptic species, originally referred to Group I and Group II based on Bc-hch gene RFLP haplotyping. Group I was described as a new cryptic species B. pseudocinerea During a survey of Botrytis spp. causing gray mold in blueberries and table grapes in the Central Valley of California, six isolates, three from blueberries and three from table grapes, were placed in Group I but had a distinct morphological character with conidiophores significantly longer than those of B. cinerea and B. pseudocinerea We compared these with B. cinerea and B. pseudocinerea by examining morphological and physiological characters, sensitivity to fenhexamid and phylogenetic analysis inferred from sequences of three nuclear genes. Phylogenetic analysis with the three partial gene sequences encoding glyceraldehyde-3-phosate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA polymerase subunit II (RPB2) supported the proposal of a new Botrytis species, B. californica, which is closely related genetically to B. cinerea, B. pseudocinerea and B. sinoviticola, all known as causal agents of gray mold of grapes. Botrytis californica caused decay on blueberry and table grape fruit inoculated with the fungus. This study suggests that B. californica is a cryptic species sympatric with B. cinerea on blueberries and table grapes in California. PMID:26740541

  9. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea.

    Science.gov (United States)

    Ingle, Robert A; Stoker, Claire; Stone, Wendy; Adams, Nicolette; Smith, Rob; Grant, Murray; Carré, Isabelle; Roden, Laura C; Denby, Katherine J

    2015-12-01

    The circadian clock, an internal time-keeping mechanism, allows plants to anticipate regular changes in the environment, such as light and dark, and biotic challenges such as pathogens and herbivores. Here, we demonstrate that the plant circadian clock influences susceptibility to the necrotrophic fungal pathogen, Botrytis cinerea. Arabidopsis plants show differential susceptibility to B. cinerea depending on the time of day of inoculation. Decreased susceptibility after inoculation at dawn compared with night persists under constant light conditions and is disrupted in dysfunctional clock mutants, demonstrating the role of the plant clock in driving time-of-day susceptibility to B. cinerea. The decreased susceptibility to B. cinerea following inoculation at subjective dawn was associated with faster transcriptional reprogramming of the defence response with gating of infection-responsive genes apparent. Direct target genes of core clock regulators were enriched among the transcription factors that responded more rapidly to infection at subjective dawn than subjective night, suggesting an influence of the clock on the defence-signalling network. In addition, jasmonate signalling plays a crucial role in the rhythmic susceptibility of Arabidopsis to B. cinerea with the enhanced susceptibility to this pathogen at subjective night lost in a jaz6 mutant. PMID:26466558

  10. Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea.

    Science.gov (United States)

    Herzog, Katja; Wind, Rolf; Töpfer, Reinhard

    2015-01-01

    Warm and moist weather conditions during berry ripening provoke Botrytis cinerea (B. cinerea) causing notable bunch rot on susceptible grapevines with the effect of reduced yield and wine quality. Resistance donors of genetic loci to increase B. cinerea resistance are widely unknown. Promising traits of resistance are represented by physical features like the thickness and permeability of the grape berry cuticle. Sensor-based phenotyping methods or genetic markers are rare for such traits. In the present study, the simple-to-handle I-sensor was developed. The sensor enables the fast and reliable measurement of electrical impedance of the grape berry cuticles and its epicuticular waxes (CW). Statistical experiments revealed highly significant correlations between relative impedance of CW and the resistance of grapevines to B. cinerea. Thus, the relative impedance Zrel of CW was identified as the most important phenotypic factor with regard to the prediction of grapevine resistance to B. cinerea. An ordinal logistic regression analysis revealed a R2McFadden of 0.37 and confirmed the application of Zrel of CW for the prediction of bunch infection and in this way as novel phenotyping trait. Applying the I-sensor, a preliminary QTL region was identified indicating that the novel phenotypic trait is as well a valuable tool for genetic analyses. PMID:26024417

  11. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defense signals...upon Botrytis cinerea infection

    Science.gov (United States)

    The moss Physcomitrella patens is an evolutionarily basal model system suitable to analyze plant defense responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea (B. cinerea), several defense mechanisms are induced in P. patens, including the fortification of t...

  12. Defense responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to tolerance of petunia to Botrytis cinerea

    Science.gov (United States)

    The death of cells can be a programmed event that occurs when plants are attacked by pathogens. Botrytis cinerea (B. cinerea), a model necrotrophic pathogen, triggers the host cell death response because it produces toxins. A hypersensitive reaction (HR) occurs at the site of contact. In Arabidopsis...

  13. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw.

    Science.gov (United States)

    Li, Yanfei; Ge, Xiaoyan; Sun, Zongping; Zhang, Junhua

    2015-06-01

    The competitive adsorption between cellulases and additives on lignin in the hydrolysis of lignocelluloses has been confirmed, whereas the effect of additives on the interaction between xylanase and lignin is not clear. In this work, the effects of additives, poly(ethylene glycol) 2000, poly(ethylene glycol) 6000, Tween 20, and Tween 80, on the xylanase adsorption/desorption onto/from acid-insoluble lignin from corn stover (CS-lignin) and wheat straw (WS-lignin) were investigated. The results indicated that the additives could adsorb onto isolated lignin and reduce the xylanase adsorption onto lignin. Compared to CS-lignin, more additives could adsorb onto WS-lignin, making less xylanase adsorbed onto WS-lignin. In addition, the additives could enhance desorption of xylanase from lignin, which might be due to the competitive adsorption between xylanase and additives on lignin. The released xylanase from lignin still exhibited hydrolytic capacity in the hydrolysis of isolated xylan and xylan in corn stover. PMID:25818260

  14. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol

    Directory of Open Access Journals (Sweden)

    Carla Eliana Todero Ritter

    2013-01-01

    Full Text Available The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v soy bran; 0.1% (w/v wheat bran; and a solution of salts. The highest filter paper activity (FPA ( IU·mL−1 was obtained on the seventh day in the medium containing 0.5% (w/v sorbitol and 0.5% (w/v cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day ( IU·mL−1 in the medium containing 0.75% (w/v sorbitol and 0.75% (w/v cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v sorbitol and 0.25% (w/v cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

  15. Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing.

    Science.gov (United States)

    Sato, Yuichiro; Fukuda, Hisashi; Zhou, Yan; Mikami, Shigeaki

    2010-12-01

    We purified three xylanase isozymes (XynF1, XynF3 and XynG2) from a solid-state Aspergillus oryzae RIB128 culture using chromatography. The results of our sake-brewing experiment, in which we used exogenously supplemented enzymes, revealed that only XynG2 improved the alcohol yield and the material utilization. The alcohol yield of the XynG2 batch displayed an increase of 4.4% in comparison to the control, and the amount of sake cake decreased by 4.6%. The contribution of XynG2 was further confirmed through our brewing experiment in which we used the yeast heterogeneously expressing fungal xylanase isozymes. Interestingly XynG1, an enzyme with a XynG2-like sequence that is more vulnerable to ethanol, did not improve the sake-mash fermentation. The stability of XynG2 in ethanol was prominent, and it retained most of its original activity after we exposed it to 80% ethanol for 30min, whereas the stability of the other isozymes in ethanol, including XynG1, was much lower (20-25% ethanol). We concluded, therefore, that the improvement of material utilization achieved with XynG2 is primarily attributable to its characteristically high stability in ethanol, thereby, effectively degrading rice endosperm cell walls under high-alcohol conditions such as a sake-mash environment. PMID:20727822

  16. Over expression of beta-1, 4-xylanase by auto-induction in E. coli

    International Nuclear Information System (INIS)

    Catalytic domain of β-1, 4-xylanase gene, (xynZ.CD) of Clostridium thermocellum was cloned in pET28a expression vector and over-expressed in Escherichia colt BL21 CodonPlus (RIL). The production of XynZ.CD in E. colt was optimized using different concentrations of lactose and induction of the enzyme at different stages of growth. The maximum growth of the cells and the enzyme activity were observed when the cells were induced with 10mM lactose after 8 hours of incubation. The enzyme was found to constitute >40% of the total cell proteins in the supernatant of the lysed cells transformed with recombinant pET28a/xynZ.CD. It was purified by heating the cell lysate at 65 degree C for 30 m followed by fractionation through FPLC. Molecular weight of XynZ.CD was found to be approximately 38,524 D by MALDI-TOF analysis. The enzyme variant was quite stable within broad pH range of 5.5 - 8.0 and it retained >85% of xylanase activity after 2 h incubation at 70 degre C. (author)

  17. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace.

    Science.gov (United States)

    Wikiera, Agnieszka; Mika, Magdalena; Starzyńska-Janiszewska, Anna; Stodolak, Bożena

    2016-05-20

    Pectins were extracted from apple pomace with monoactive preparation of endo-xylanase and endo-cellulase. The process was conducted for 10h in conditions of pH 5.0 at 40°C, with constant shaking. Endo-xylanase application resulted in the highest extraction efficiency of pectins (19.8%). The obtained polymer was characterised by a very high molecular mass, high level of neutral sugars - mainly arabinose, galactose and glucose, and very high DM (73.4). It also contained the highest level of protein and phenols. Pectin extracted with endo-cellulase had 1.5 fold lower molecular mass but contained significantly more GalA (70.5%) of a high degree of methylation (66.3%). The simultaneous application of both enzymatic preparations resulted in their cooperation, leading to a decrease of both the extraction efficiency and the molecular mass of pectin. However, this pectin was distinguished by the highest GalA (74.7%) and rhamnose contents. PMID:26917391

  18. A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry.

    Science.gov (United States)

    Wang, Xiaoyu; Luo, Huiying; Yu, Wangning; Ma, Rui; You, Shuai; Liu, Weina; Hou, Lingyu; Zheng, Fei; Xie, Xiangming; Yao, Bin

    2016-05-15

    A xylanase gene of glycoside hydrolase family 10, GtXyn10, was cloned from Gloeophyllum trabeum CBS 900.73 and expressed in Pichia pastoris GS115. Purified recombinant GtXyn10 exhibited significant activities to xylan (100.0%), lichenan (11.2%), glucan (15.2%) and p-nitrophenol-β-cellobiose (18.6%), demonstrated the maximum xylanase and glucanase activities at pH 4.5-5.0 and 75°C, retained stability over the pH range of 2.0-7.5 and at 70°C, and was resistant to pepsin and trypsin, most metal ions and SDS. Multiple sequence alignment and modeled-structure analysis identified a unique Gly48 in GtXyn10, and site-directed mutagenesis of Gly48 to Lys improved the temperature optimum up to 80°C. Under simulated mashing conditions, GtXyn10 (80U) reduced the mash viscosity by 12.8% and improved the filtration rate by 31.3%. All these properties above make GtXyn10 attractive for potential applications in the feed and brewing industries. PMID:26776003

  19. Purification and characterization of the xylanase produced by Jonesia denitrificans BN-13.

    Science.gov (United States)

    Boucherba, Nawel; Gagaoua, Mohammed; Copinet, Estelle; Bettache, Azeddine; Duchiron, Francis; Benallaoua, Said

    2014-03-01

    Jonesia denitrificans BN-13 produces six xylanases: Xyl1, Xyl2, Xyl3, Xyl4, Xyl5, and Xyl6; the Xyl4 was purified and characterized after two consecutive purification steps using ultrafiltration and anion exchange chromatography. The xylanase-specific activity was found to be 77 unit (U)/mg. The molecular weight of the Xyl4 estimated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a monomeric isoenzyme of about 42 kDa. It showed an optimum pH value of 7.0 and a temperature of 50 °C. It was stable at 50 °C for 9.34 h. The enzyme showed to be activated by Mn(+2), β-mercaptoethanol, and dithiothreitol (DTT) with a high affinity towards birchwood xylan (with a K(m) of 1 mg ml(-1)) and hydrolysis of oat-spelt xylan with a K(m) of 1.85 mg ml(-1). The ability of binding to cellulose and/or xylan was also investigated. PMID:24425300

  20. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Yaoi, Katsuro

    2016-09-01

    Trichoderma reesei Xyn III, an endo-β-1,4-xylanase belonging to glycoside hydrolase family 10 (GH10), is vital for the saccharification of xylans in plant biomass. However, its enzymatic thermostability and hydrolytic activity on insoluble substrates are low. To overcome these difficulties, the thermostability of Xyn III was improved using random mutagenesis and directed evolution, and its hydrolytic activity on insoluble substrates was improved by creating a chimeric protein. In the screening of thermostable Xyn III mutants from a random mutagenesis library, we identified two amino acid residues, Gln286 and Asn340, which are important for the thermostability of Xyn III. The Xyn III Gln286Ala/Asn340Tyr mutant showed xylanase activity even after heat treatment at 60 °C for 30 min or 50 °C for 96 h, indicating a dramatic enhancement in thermostability. In addition, we found that the addition of a xylan-binding domain (XBD) to the C-terminal of Xyn III improved its hydrolytic activity on insoluble xylan. PMID:27138202

  1. Study on Prevention Technology of Beans Botrytis cinerea%豆角灰霉病防治技术研究

    Institute of Scientific and Technical Information of China (English)

    冯健; 冯敏; 方新; 于淼

    2012-01-01

    灰霉病是造成豆角烂荚的主要病害,灰霉病多从残花开始侵染,然后逐渐侵染豆荚,造成烂荚,植株死棵。该研究结果表明:木霉孢子稀释液进行喷施也可以有效防治灰霉病的发生。%Botrytis cinerea is primary diseases which causes rotten bean-pod,Botrytis cinerea infection starts from the flowers,and then gradually infects bean-pod,causes rotten bean-pod and plant trees to die.This study′s results showed that the trichoderma spore diluted solution spraying could effectively control the occurrence of Botrytis cinerea.

  2. Análisis y caracterización de genes de Botrytis cinerea cuya expresión se induce in planta en la interacción B.cinerea-tomate

    OpenAIRE

    Benito Pescador, David

    2010-01-01

    [ES] Botrytis cinerea es un hongo fitopatógeno causante de la podredumbre gris y considerado como uno de los principales microosganismos responsables del deterioro de frutas y hortalizas durante su cultivo y en postcosecha y, por tanto, responsable de grandes pérdidas económicas. Es un patógeno generalista que puede atacar especies de la mayoría de las familias de dicotiledóneas. B. cinerea es un hongo necrotrofo que requiere la muerte de las células vegetales para poder alimentarse y desarro...

  3. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    DEFF Research Database (Denmark)

    Harholt, Jesper; Bach, Inga Christensen; Lind Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben Bach; Scheller, Henrik Vibe

    2010-01-01

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm-specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal (Lys-Asp-Glu-Leu) KDEL were used. Transg...

  4. ENHANCED PRODUCTION OF CELLULASE-FREE XYLANASE BY ALKALOPHILIC BACILLUS SUBTILIS ASH AND ITS APPLICATION IN BIOBLEACHING OF KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Ashwani Sanghi

    2009-08-01

    Full Text Available This paper reports high level production of a cellulase-free xylanase using wheat bran, a cost-effective substrate, under submerged fermentation by alkalophilic Bacillus subtilis ASH. Production of xylanase was observed even at alkaline pH up to 11.0 and temperature 60 °C, although the highest enzyme titer was recorded at neutral pH and 37 °C. The enzyme production under optimized fermentation was 1.5-fold greater than under unoptimized conditions. Pre-treatment of unbleached pulp of 10% consistency with crude xylanase (6 IU/g o.d. pulp at 60 ºC for 2 h increased the final brightness by 4.9%. The enzyme treatment reduced the chlorine consumption by 28.6% with the same brightness as in the control. A reduction in kappa number and increase in viscosity was observed after enzyme pre-treatment. Scanning electron microscopy revealed loosening and swelling of pulp fibers. The strength properties viz. grammage, fiber thickness, beating degree, tensile index, breaking length, tear index and double fold of the treated pulp were improved as compared to the control pulp. This study reveals the potential of B. subtilis ASH xylanase as a biobleaching agent for the paper and pulp industry.

  5. Isolation, purification and characterization of xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Bhosle, N.B.

    %) fractionation, and purified to homogeneity using size exclusion and ion exchange chromatography. The molecular mass of xylanase was approx. 20 kDa. Enzyme retained 100% activity at pH 7 and 8 for 24 h. It was interesting to note that at higher pH such as 9, 10...

  6. A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase.

    Science.gov (United States)

    McCleary, Barry V; McGeough, Paraic

    2015-11-01

    The most commonly used method for the measurement of the level of endo-xylanase in commercial enzyme preparations is the 3,5-dinitrosalicylic acid (DNS) reducing sugar method with birchwood xylan as substrate. It is well known that with the DNS method, much higher enzyme activity values are obtained than with the Nelson-Somogyi (NS) reducing sugar method. In this paper, we have compared the DNS and NS reducing sugar assays using a range of xylan-type substrates and accurately compared the molar response factors for xylose and a range of xylo-oligosaccharides. Purified beechwood xylan or wheat arabinoxylan is shown to be a suitable replacement for birchwood xylan which is no longer commercially available, and it is clearly demonstrated that the DNS method grossly overestimates endo-xylanase activity. Unlike the DNS assay, the NS assay gave the equivalent colour response with equimolar amounts of xylose, xylobiose, xylotriose and xylotetraose demonstrating that it accurately measures the quantity of glycosidic bonds cleaved by the endo-xylanase. The authors strongly recommend cessation of the use of the DNS assay for measurement of endo-xylanase due to the fact that the values obtained are grossly overestimated due to secondary reactions in colour development. PMID:26289020

  7. Influence of xylanase addition on the characteristics of loaf bread prepared with white flour or whole grain wheat flour

    Directory of Open Access Journals (Sweden)

    Leandra Zafalon Jaekel

    2012-12-01

    Full Text Available The aim of this study was to verify the influence of the addition of the enzyme xylanase (four concentrations: 0, 4, 8, and 12 g.100 kg-1 flour on the characteristics of loaf bread made with white wheat flour or whole grain wheat flour. Breads made from white flour and added with xylanase had higher specific volumes than those of the control sample (no enzyme; however, the specific volume did not differ significantly (p < 0.05 among the breads with different enzyme concentrations. All formulations made from whole grain wheat flour and added with xylanase also had specific volumes significantly higher than those of the control sample, and the highest value was found for the 8 g xylanase.100 kg-1 flour formulation. With respect to moisture content, the formulations with different enzyme concentrations showed small significant differences when compared to the control samples. In general, breads made with the addition of 8 g enzyme.100 kg-1 flour had the lowest firmness values, thus presenting the best technological characteristics.

  8. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher;

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a...

  9. Cloning and in-silico analysis of beta-1,3-xylanase from psychrophilic yeast, Glaciozyma antarctica PI12

    Science.gov (United States)

    Nor, Nooraisyah Mohamad; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul

    2015-09-01

    A beta-1,3-xylanase (EC 3.2.1.32) gene from psychrophilic yeast, Glaciozyma antarctica has been identified via genome data mining. The enzyme was grouped into GH26 family based on Carbohydrate Active Enzyme (CaZY) database. The molecular weight of this protein was predicted to be 42 kDa and is expected to be soluble for expression. The presence of signal peptide suggested that this enzyme may be released extracellularly into the marine environment of the host's habitat. This supports the theory that such enzymatic activity is required for degradation of nutrients of polysaccharide origins into simpler carbohydrates outside the environment before it could be taken up inside the cell. The sequence for this protein showed very little conservation (< 30%) with other beta-1,3-xylanases from available databases. Based on the phylogenetic analysis, this protein also showed distant relationship to other xylanases from eukaryotic origin. The protein may have undergone major substitution in its gene sequence order to adapt to the cold climate. This is the first report of beta-1,3-xylanase gene isolated from a psychrophilic yeast.

  10. Production and purification of an Endo-1,4-b-Xylanase from Humicola grisea var. thermoidea by electroelution

    OpenAIRE

    Monti Rubens; Cardello Leonardo; Custódio Marcos F.; Goulart Antonio J.; Sayama Adriana H.; Contiero Jonas

    2003-01-01

    Humicola grisea var. thermoidea produces two forms of extracellular xylanase. The component form 1 was purified using the electroelution method, due to the very small production of this extracellular enzyme. The apparent molecular mass was 61.8 kDa by SDS-PAGE.

  11. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Rajashri D. Kamble

    2012-01-01

    Full Text Available A thermoalkalophilic new species of Bacillus, similar to Bacillus arseniciselenatis DSM 15340, produced extracellular xylanase under solid state fermentation when wheat bran is used as carbon source. The extracellular xylanase was isolated by ammonium sulfate (80% precipitation and purified using ion exchange chromatography. The molecular weight of xylanase was ~29.8 ;kDa. The optimum temperature and pH for the enzyme activity were 50°C and pH 8.0. The enzyme was active on birchwood xylan and little active on p-nitrophenyl xylopyranoside but not on Avicel, CMC, cellobiose, and starch, showing its absolute substrate specificity. For birchwood xylan, the enzyme gave a Km 5.26 ;mg/mL and Vmax 277.7 ;μmol/min/mg, respectively. In addition, the xylanase was also capable of producing high-quality xylo-oligosaccharides, which indicated its application potential not only in pulp biobleaching processes but also in the nutraceutical industry.

  12. Characterization of a newly identified rice chitinase-like protein (OsCLP homologous to xylanase inhibitor

    Directory of Open Access Journals (Sweden)

    Wu Jingni

    2013-01-01

    Full Text Available Abstract Background During rice blast fungal attack, plant xylanase inhibitor proteins (XIPs that inhibit fungal xylanase activity are believed to act as a defensive barrier against fungal pathogens. To understand the role of XIPs in rice, a xylanase inhibitor was cloned from rice. The expression of this gene was examined at the transcriptional/translational levels during compatible and incompatible interactions, and the biochemical activity of this protein was also examined. Results Sequence alignment revealed that the deduced amino acid sequence of OsCLP shares a high degree of similarity with that of other plant TAXI-type XIPs. However, recombinant OsCLP did not display inhibitory activity against endo-1,4-β-xylanase enzymes from Aureobasidium pullulans (A. pullulans or Trichoderma viride (T. viride. Instead, an in-gel activity assay revealed strong chitinase activity. The transcription and translation of OsCLP were highly induced when rice was exposed to pathogens in an incompatible interaction. In addition, exogenous treatment with OsCLP affected the growth of the basidiomycete fungus Rhizoctonia solani through degradation of the hyphal cell wall. These data suggest that OsCLP, which has chitinase activity, may play an important role in plant defenses against pathogens. Conclusions Taken together, our results demonstrate that OsCLP may have antifungal activity. This protein may directly inhibit pathogen growth by degrading fungal cell wall components through chitinase activity.

  13. Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan.

    Science.gov (United States)

    Bibi, Zainab; Shahid, Faiza; Ul Qader, Shah Ali; Aman, Afsheen

    2015-04-01

    Microbial xylanases, specially endo-β-1,4-xylanase catalyzes the hydrolysis of xylan, is considered one of the most significant hydrolases. It has numerous applications but most extensively is utilized in paper and pulp industry as a bio-bleaching agent. Immobilization technique is comprehensively studied with the expectation of modifying and improving enzyme stability and characteristics for commercial purposes. Currently, matrix entrapment technique is applied to immobilize endo-β-1,4-xylanase within agar-agar gel beads produced by Geobacillus stearothermophilus KIBGE-IB29. Maximal enzyme immobilization yield was achieved at 2.5% of agar-agar concentration. Optimized conditions demonstrated an increase in the optimal reaction time from 05 min to 30 min and incubation temperature from 50 °C to 60 °C with reference to free enzyme whereas; no effect was observed for optimum pH. Entrapment technique uniquely changed the kinetic parameters of immobilized endo-β-1,4-xylanase (Km: 0.5074 mg min(-1) to 0.5230 mg min(-1) and Vmax: 4773 U min(-1) to 968 U min(-1)) as compared to free enzyme. However, immobilized enzyme displayed broad thermal stability and retained 79.0% of its initial activity at 80 °C up to 30 min whereas; free enzyme completely lost its activity at this temperature. With respect to economic feasibility, the immobilized enzyme showed impressive recycling efficiency up to six reaction cycles. PMID:25603143

  14. Heterologous expression, purification, crystallization and preliminary X-ray analysis of Trichoderma reesei xylanase II and four variants

    OpenAIRE

    Wan, Qun; Kovalevsky, Andrey; Zhang, Qiu; Hamilton-Brehm, Scott; Upton, Rosalynd; Weiss, Kevin L.; Mustyakimov, Marat; Graham, David; Coates, Leighton; Langan, Paul

    2013-01-01

    The wild-type protein and four active-site mutants of xylanase II from Trichoderma reesei that catalyzes the hydrolysis of glycosidic bonds in xylan have successfully been crystallized. The crystallization of several structures including ligand-free and protein ligand complexes containing the substrate (xylohexaose) or product (xylotriose) are detailed.

  15. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Camila Ramos; Meza, Andreia Navarro [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Giesel, Guilherme Menegon; Verli, Hugo [Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Squina, Fabio Marcio [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Prade, Rolf Alexander [Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK (United States); Murakami, Mario Tyago, E-mail: mario.murakami@lnbio.org.br [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)

    2010-12-10

    Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  16. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    International Nuclear Information System (INIS)

    Research highlights: → The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. → Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. → Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 oC, and exclusively xylobiose at 90 oC as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  17. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall. by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Daqiu Zhao

    2015-09-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall., one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA libraries from two B. cinerea-infected P. lactiflora cultivars (“Zifengyu” and “Dafugui” with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from “Zifengyu” and “Dafugui”, respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora.

  18. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall.) by High-Throughput Sequencing.

    Science.gov (United States)

    Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Tao, Jun

    2015-01-01

    Herbaceous peony (Paeonia lactiflora Pall.), one of the world's most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs) play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA) libraries from two B. cinerea-infected P. lactiflora cultivars ("Zifengyu" and "Dafugui") with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from "Zifengyu" and "Dafugui", respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora. PMID:26393656

  19. Biological control of Botrytis cinerea using the antagonistic and endophytic Burkholderia cepacia Cs5 for vine plantlet protection

    OpenAIRE

    Kilani-Feki, Olfa; Jaoua, Samir

    2011-01-01

    Antifungal activity of the Burkholderia cepacia Cs5 was tested in vitro and in vivo for the control of Botrytis cinerea . Bacterial biomass was significantly improved by the amendment of ZnSO(4), Mo(7)(NH(4))(6)O(24), and mannitol to the NBY medium; consequently, the amount of the secreted fungicides was increased. The quantification of B. cinerea inhibition, in liquid and solid conditions, showed an important sensitivity of this fungus to the strain Cs5 fungicides. Microscopic monitoring imp...

  20. INTENZITET NAPADA BOTRYTIS CINEREA PERS. EX FR. NA SORTAMA GRAŠEVINA I TRAMINAC I DJELOTVORNOST BOTRITICIDA

    OpenAIRE

    Svitlica, Brankica; Ćosić, Jasenka; Vrandečić, Karolina; Mesić, J.

    2005-01-01

    Siva plijesan, koju uzrokuje Botrytis cinerea, značajna je bolest vinove loze diljem svijeta. S ciljem utvrđivanja intenziteta napada B. cinera na zrelim grozdovima i učinkovitosti botriticida (Traminac - iprodion, pirimetanil, fludioksinil+ciprodinil; Graševina - fenheksamid, fludioksinil+ ciprodinil, tebukonazol+ diklofluanid), postavljen je dvogodišnji pokus (2001.-2002.) na lokacijama Mladice (Traminac) i Škomić (Graševina). Procjenom intenziteta napada Botrytis cinerea na Graševini i Tra...

  1. [Synergistion mechanism of exogenous Ca2+ to SA-induced resistance to Botrytis cinerea in tomato].

    Science.gov (United States)

    Li, Lin-lin; Li, Tian-lai; Jiang, Guo-bin; Jin, Hua; Zou, Ji-xiang

    2015-11-01

    In this study, we investigated the effect of exogenous calcium and salicylic acid (SA) on Botrytis cinerea resistance in tomato seedlings. We treated a tomato strain susceptible to Botrytis cinerea with foliar spraying of water, SA, SA+CaCl2 and SA+EGTA (Ca2+ chelating agent) for one to five days. During the treatment, leaves were collected to analyze the reactive oxygen species (ROS) content, phenylalanine ammonia lyase (PAL) activity, chintase and β-1,3-glucanase levels, and the expression of pathogenesis related protein 1, 2, 3 (PR1, PR2, PR3). Three days after infection, the disease index was 74.8 in control plants, and 46.9, 38.5 and 70.3 in SA, SA+Ca and SA+ EGTA treated plants, respectively. SA treatment significantly increased ROS leaf accumulation, and activities of PAL, chintase and β-1,3-glucanase. These values were further enhanced in SA+Ca treated plants, but decreased in SA+EGTA treated plants. Application of SA significantly increased the expression levels of PR1, PR2a and PR3b, which were further elevated by the combination treatment with Ca2+. These effects were counteracted by the combination treatment of SA and EGTA. The transcription levels of PR2b and PR3a were up-regulated by 1-2 folds, and PR1, 2a and 3b by 2-5 folds in SA- and SA+Ca-treated plants relative to control. These data suggested that application of Ca2+ could synergistically increase SA-induced resistance to B. cinerea. The resistance was associated with ROS accumulation, therefore the increase in resistance might be through ROS ability to increase the activity of defense-related enzymes and expression levels of PR1, PR2a and PR3b. PMID:26915208

  2. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana.

    Science.gov (United States)

    Hevia, Montserrat A; Canessa, Paulo; Müller-Esparza, Hanna; Larrondo, Luis F

    2015-07-14

    The circadian clock of the plant model Arabidopsis thaliana modulates defense mechanisms impacting plant-pathogen interactions. Nevertheless, the effect of clock regulation on pathogenic traits has not been explored in detail. Moreover, molecular description of clocks in pathogenic fungi--or fungi in general other than the model ascomycete Neurospora crassa--has been neglected, leaving this type of question largely unaddressed. We sought to characterize, therefore, the circadian system of the plant pathogen Botrytis cinerea to assess if such oscillatory machinery can modulate its virulence potential. Herein, we show the existence of a functional clock in B. cinerea, which shares similar components and circuitry with the Neurospora circadian system, although we found that its core negative clock element FREQUENCY (BcFRQ1) serves additional roles, suggesting extracircadian functions for this protein. We observe that the lesions produced by this necrotrophic fungus on Arabidopsis leaves are smaller when the interaction between these two organisms occurs at dawn. Remarkably, this effect does not depend solely on the plant clock, but instead largely relies on the pathogen circadian system. Genetic disruption of the B. cinerea oscillator by mutation, overexpression of BcFRQ1, or by suppression of its rhythmicity by constant light, abrogates circadian regulation of fungal virulence. By conducting experiments with out-of-phase light:dark cycles, we confirm that indeed, it is the fungal clock that plays the main role in defining the outcome of the Arabidopsis-Botrytis interaction, providing to our knowledge the first evidence of a microbial clock modulating pathogenic traits at specific times of the day. PMID:26124115

  3. Utilization of Agro-industrial Wastes for the Simultaneous Production of Amylase and Xylanase by Thermophilic Actinomycetes

    Directory of Open Access Journals (Sweden)

    Renu Singh

    2012-12-01

    Full Text Available Agro-industrial wastes such as sugarcane bagasse, wheat bran, rice bran, corn cob and wheat straw are cheapest and abundantly available natural carbon sources. The present study was aimed to production of amylase and xylanase simultaneously using agro-industrial waste as the sole carbon source. Seven thermophilic strains of actinomycete were isolated from the mushroom compost. Among of these, strain designated MSC702 having high potential to utilize agro-industrial wastes for the production of amylase and xylanase. Strain MSC702 was identified as novel species of Streptomyces through morphological characterization and 16S rRNA gene sequence. Enzyme production was determined using 1% (w/v of various agro-industrial waste in production medium containing (g/100mL: K2HPO4(0.1, (NH42SO4(0.1, NaCl (0.1, MgSO4(0.1 at pH 7.0 after incubation of 48 h at 50°C. The amylase activity (373.89 IU/mL and xylanase activity (30.15 IU/mL was maximum in rice bran. The decreasing order of amylase and xylanase activity in different type of agro-industrial wastes were found rice bran (RB > corn cob (CC > wheat bran (WB > wheat straw (WS > sugarcane bagasse (SB and rice bran (RB > wheat bran (WB > wheat straw (WS > sugarcane bagasse (SB > corn cob (CC, respectively. Mixed effect of different agro-industrial wastes was examined in different ratios. Enzyme yield of amylase and xylanase was ~1.3 and ~2.0 fold higher with RB: WB in 1:2 ratio.

  4. Ileal amino acid digestibility and performance of growing pigs fed wheat-based diets supplemented with xylanase.

    Science.gov (United States)

    Barrera, M; Cervantes, M; Sauer, W C; Araiza, A B; Torrentera, N; Cervantes, M

    2004-07-01

    Two experiments were conducted to determine the effect of supplementation of xylanase to a wheat-based diet on the apparent ileal digestibility (AID) of AA and the performance of growing pigs fed diets limiting in AA. In Exp. 1, eight pigs (average initial BW = 20.5+/-1.2 kg) fitted with a simple T-cannula at the distal ileum, were fed four diets according to a repeated 4 x 4 Latin square design. Diet 1 was a basal diet that contained 97.6% wheat. Diets 2, 3, and 4 were the basal diet supplemented with xylanase at rates of 5,500, 11,000, and 16,500 units of xylanase activity (XU), respectively (as-fed basis). There were linear and quadratic effects (0.062 lysine, 0.12% threonine, and 0.05% methionine. Diet 6 (positive control diet) was a wheat-soybean meal diet that contained 18.2% CP (as-fed basis). The total contents of lysine, threonine, and methionine were similar for Diets 5 and 6. There was a linear effect of xylanase supplementation on ADG (P = 0.093) and feed:gain ratio (P = 0.089), and a quadratic effect on ADG (P = 0.067) and feed:gain ratio (P = 0.074). But, the greatest response was obtained with the supplementation of 11,000 XU. The supplementation of lysine, threonine, and methionine to Diet 1 increased (P = 0.001) ADG and ADFI and improved (P = 0.01) feed:gain ratio. There was no difference (P = 0.508) in the performance of pigs fed the AA-supplemented or control diet. In conclusion, the supplementation of xylanase to a diet in which wheat provided the sole source of protein and energy improved the AID of AA, ADG, and feed:gain ratio; however, this improvement was very small compared with that obtained with the supplementation of synthetic amino acids. PMID:15309946

  5. Biocontrol de botrytis cinerea a partir de extractos fenólicos de fresa

    OpenAIRE

    Álvarez Gómez, Tania Belén

    2013-01-01

    Michoacán es el primer productor de fresa a nivel nacional, ocupando aproximadamente 4,300 hectáreas en el último año. El cultivo de fresa, es susceptible a microorganismos patógenos que causan enfermedades, tal como Botrytis cinerea agente causal de la podredumbre gris una de las principales enfermedades de este cultivo. Esta enfermedad, provoca pérdidas económicas importantes. Su control se hace generalmente con agroquímicos resultando en graves consecuencias ecológicas, por lo que se requi...

  6. Population estimates of Hyla cinerea (Schneider) (Green Tree frog) in an urban environment

    Science.gov (United States)

    Pham, L.; Boudreaux, S.; Karhbet, S.; Price, B.; Ackleh, A.S.; Carter, J.; Pal, N.

    2007-01-01

    Hyla cinerea (Green Treefrog) is a common wetlands species in the southeastern US. To better understand its population dynamics, we followed a relatively isolated population of Green Treefrogs from June 2004 through October 2004 at a federal office complex in Lafayette, LA. Weekly, Green Treefrogs were caught, measured, marked with VIE tags, and released. The data were used to estimate population size. The time frame was split into two periods: before and after August 17, 2004. Before August 17, 2004, the average estimated population size was 143, and after August 24, 2005, this value jumped to 446, an increase possibly due to tadpoles metamorphosing into adults.

  7. GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production

    Directory of Open Access Journals (Sweden)

    Giardina Thierry

    2011-04-01

    Full Text Available Abstract Background The filamentous fungus Penicillium funiculosum produces a range of glycoside hydrolases (GH. The XynD gene, encoding the sole P. funiculosum GH10 xylanase described so far, was cloned into the pPICZαA vector and expressed in methylotrophe yeast Pichia pastoris, in order to compare the results obtained with the P. funiculosum GH11 xylanases data. Results High level expression of recombinant XynD was obtained with a secretion of around 60 mg.L-1. The protein was purified to homogeneity using one purification step. The apparent size on SDS-PAGE was around 64 kDa and was 46 kDa by mass spectrometry thus higher than the expected molecular mass of 41 kDa. The recombinant protein was N- and O-glycosylated, as demonstrated using glycoprotein staining and deglycosylation reactions, which explained the discrepancy in molecular mass. Enzyme-catalysed hydrolysis of low viscosity arabinoxylan (LVAX was maximal at pH 5.0 with Km(app and kcat/Km(app of 3.7 ± 0.2 (mg.mL-1 and 132 (s-1mg-1.mL, respectively. The activity of XynD was optimal at 80°C and the recombinant enzyme has shown an interesting high thermal stability at 70°C for at least 180 min without loss of activity. The enzyme had an endo-mode of action on xylan forming mainly xylobiose and short-chain xylooligosaccharides (XOS. The initial rate data from the hydrolysis of short XOS indicated that the catalytic efficiency increased slightly with increasing their chain length with a small difference of the XynD catalytic efficiency against the different XOS. Conclusion Because of its attractive properties XynD might be considered for biotechnological applications. Moreover, XOS hydrolysis suggested that XynD possess four catalytic subsites with a high energy of interaction with the substrate and a fifth subsite with a small energy of interaction, according to the GH10 xylanase literature data.

  8. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme

    Directory of Open Access Journals (Sweden)

    He Jun

    2009-06-01

    Full Text Available Abstract Background In recent years, xylanases have attracted considerable research interest because of their potential in various industrial applications. The yeast Pichia pastoris can neither utilize nor degrade xylan, but it possesses many attributes that render it an attractive host for the expression and production of industrial enzymes. Results The Xyn2 gene, which encodes the main Trichoderma reesei Rut C-30 endo-β-1, 4-xylanase was cloned into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strains produced as 4,350 nkat/ml β-xylanase under the control of the methanol inducible alcohol oxidase 1 (AOX1 promoter. The secreted recombinant Xyn2 was estimated by SDS-PAGE to be 21 kDa. The activity of the recombinant Xyn2 was highest at 60°C and it was active over a broad range of pH (3.0–8.0 with maximal activity at pH 6.0. The enzyme was quite stable at 50°C and retained more than 94% of its activity after 30 mins incubation at this temperature. Using Birchwood xylan, the determined apparent Km and kcat values were 2.1 mg/ml and 219.2 S-1, respectively. The enzyme was highly specific towards xylan and analysis of xylan hydrolysis products confirmed as expected that the enzyme functions as endo-xylanase with xylotriose as the main hydrolysis products. The produced xylanase was practically free of cellulolytic activity. Conclusion The P. pastoris expression system allows a high level expression of xylanases. Xylanase was the main protein species in the culture supernatant, and the functional tests indicated that even the non-purified enzyme shows highly specific xylanase activity that is free of cellulolytic side acitivities. Therefore, P pastoris is a very useful expression system when the goal is highly specific and large scale production of glycosyl hydrolases.

  9. Use of Residual Biomass from the Textile Industry as Carbon Source for Production of a Low-Molecular-Weight Xylanase from Aspergillus oryzae

    OpenAIRE

    Gilvan Caetano Duarte; Leonora Rios de Souza Moreira; Diana Paola Gómez-Mendoza; Félix Gonçalves Siqueira; Luís Roberto Batista; Lourdes Isabel Velho do Amaral; Carlos André Ornelas Ricart; Edivaldo Ximenes Ferreira Filho

    2012-01-01

    Pretreated dirty cotton residue (PDCR) from the textile industry was used as an alternative carbon source for the submerged cultivation of Aspergillus oryzae and the production of xylanases. The filtered culture supernatant was fractionated by ultrafiltration followed by three chromatographic steps, which resulted in the isolation of a homogeneous low-molecular-weight xylanase (Xyl-O1) with a mass of 21.5 kDa as determined by sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE...

  10. Production of cellulase-free xylanase by Trichoderma reesei SAF3 Produção de xilanase livre de celulase por Trichoderma reesei SAF3

    OpenAIRE

    Sanjay Kar; Asish Mandal; Das Mohapatra, Pradeep K.; Mondal, Keshab C.; Bikash R. Pati

    2006-01-01

    A xylanase producing fungi has been isolated from soil and identified as Trichoderma reesei SAF3. Maximum growth of the organism was found at 48 h under submerged condition in xylan containing enriched medium, whereas highest enzyme production (4.75U/mL) was recorded at 72 h. No detectable cellulase activity was noted during whole cultivation period. The partially purified enzyme hydrolyzed xylan into xylopentose and xylose. All these properties of xylanase highlighten its promising uses in i...

  11. Purification and Phytotoxic Analysis of Botrytis cinerea Virulence Factors: New Avenues for Crop Protection

    Directory of Open Access Journals (Sweden)

    Maria R. Davis

    2012-07-01

    Full Text Available Botrytis cinerea is a necrotrophic fungus infecting over 230 plant species worldwide. This highly adaptable pathogen can afflict agricultural products from seed to storage, causing significant economic losses and instability in the food supply. Small protein virulence factors secreted by B. cinerea during infection play an important role in initiation and spread of disease. BcSnod1 was found to be abundantly expressed upon exposure to media containing strawberry extract. From sequence similarity, BcSnod2 was also identified and both were recognized as members of the Ceratoplatanin family of small phytotoxic proteins. Recombinant BcSnod1 was shown to have a phytotoxic effect and play an important role in pathogenicity while the role of BcSnod2 remains less clear. Both bacterial and yeast production systems are reported, though the bacterial protein is less toxic and mostly unfolded relative to that made in yeast. Compared to BcSnod1, recombinant bacterial BcSnod2 shows similar, but delayed phytotoxicity on tomato leaves. Further studies of these critical virulence factors and their inhibition promise to provide new avenues for crop protection.

  12. Synthesis of N-substituted phthalimides and their antifungal activity against Alternaria solani and Botrytis cinerea.

    Science.gov (United States)

    Pan, Le; Li, Xiuzhuang; Gong, Chengwen; Jin, Hui; Qin, Bo

    2016-06-01

    As organosulfur and organophosphorus agents, phaltane and phosmet are facing great challenges for the environmental contamination, mammalian toxicity and increasing resistance with long term use. It is efficient and meaningful to develop phthalimide-based alternatives with non-sulfur and non-phosphorus groups. A series of N-substituted phthalimides were synthesized and their antifungal activity against two disastrous phytopathogenic fungi, Alternaria solani and Botrytis cinerea was evaluated in vitro. Most of them showed significant antifungal activity against both of fungi, or either of them selectively. N-vinylphthalimide (4) and 8-[4-(phthalimide-2-yl) butyloxy] quinoline (13) were identified as the most promising candidates against B. cinerea and A. solani with the IC50 values of 7.92 μg/mL and 10.85 μg/mL respectively. The brief structure-activity relationships have revealed that vinyl, quinolyl, bromide alkyl and benzyl substitutions were appropriate substituents and coupling functional moieties indirectly with optimum alkyl chain was efficient to prepare phthalimides related fungicides. PMID:27079471

  13. Application of combined treatment for control of Botrytis cinerea in phytosanitary irradiation processing

    International Nuclear Information System (INIS)

    Phytosanitary treatments are required to disinfest quarantine pests and pathogens in agricultural commodities. Gray mold in fruit is caused by Botrytis cinerea, which is one of the major postharvest pathogen of apple and pear. Irradiation treatment is a viable alternative for phytosanitary purposes and a useful nonchemical method for controlling pests and postharvest pathogens. An irradiation dose of over 0.4 kGy is used for the control of insects and fungal disease in fresh fruit, but a loss of firmness occurs. Combined treatments are needed to reduce the irradiation dose in phytosanitary irradiation processing. This study focuses on the application of combined treatments to reduce the loss of fruit quality when fresh fruit is irradiated for phytosanitary purposes. Comparing the antifungal activity against B. cinerea, while gamma irradiation showed no antifungal activity at a dose of 1.0 kGy, combined treatments (nano Ag particle, nano-sized silica silver) at a dose of 1.0 kGy showed the strongest antifungal activity. This study demonstrates the synergistic impacts of combined treatments in phytosanitary irradiation processing. Taken together, the combined treatments may affect reduction of fruit injury that occurred with irradiation only, meaning that the use of combined treatments with gamma irradiation is significantly effective for the preservation of fruit quality

  14. Application of combined treatment for control of Botrytis cinerea in phytosanitary irradiation processing

    Science.gov (United States)

    Jung, Koo; Yoon, Minchul; Park, Hae-Jun; Youll Lee, Kwang; Jeong, Rae-Dong; Song, Beom-Seok; Lee, Ju-Woon

    2014-06-01

    Phytosanitary treatments are required to disinfest quarantine pests and pathogens in agricultural commodities. Gray mold in fruit is caused by Botrytis cinerea, which is one of the major postharvest pathogen of apple and pear. Irradiation treatment is a viable alternative for phytosanitary purposes and a useful nonchemical method for controlling pests and postharvest pathogens. An irradiation dose of over 0.4 kGy is used for the control of insects and fungal disease in fresh fruit, but a loss of firmness occurs. Combined treatments are needed to reduce the irradiation dose in phytosanitary irradiation processing. This study focuses on the application of combined treatments to reduce the loss of fruit quality when fresh fruit is irradiated for phytosanitary purposes. Comparing the antifungal activity against B. cinerea, while gamma irradiation showed no antifungal activity at a dose of 1.0 kGy, combined treatments (nano Ag particle, nano-sized silica silver) at a dose of 1.0 kGy showed the strongest antifungal activity. This study demonstrates the synergistic impacts of combined treatments in phytosanitary irradiation processing. Taken together, the combined treatments may affect reduction of fruit injury that occurred with irradiation only, meaning that the use of combined treatments with gamma irradiation is significantly effective for the preservation of fruit quality.

  15. Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea.

    Directory of Open Access Journals (Sweden)

    Hajime Muraguchi

    Full Text Available The basidiomycete fungus Coprinopsis cinerea is an important model system for multicellular development. Fruiting bodies of C. cinerea are typical mushrooms, which can be produced synchronously on defined media in the laboratory. To investigate the transcriptome in detail during fruiting body development, high-throughput sequencing (RNA-seq was performed using cDNA libraries strand-specifically constructed from 13 points (stages/tissues with two biological replicates. The reads were aligned to 14,245 predicted transcripts, and counted for forward and reverse transcripts. Differentially expressed genes (DEGs between two adjacent points and between vegetative mycelium and each point were detected by Tag Count Comparison (TCC. To validate RNA-seq data, expression levels of selected genes were compared using RPKM values in RNA-seq data and qRT-PCR data, and DEGs detected in microarray data were examined in MA plots of RNA-seq data by TCC. We discuss events deduced from GO analysis of DEGs. In addition, we uncovered both transcription factor candidates and antisense transcripts that are likely to be involved in developmental regulation for fruiting.

  16. 3-Sulfanylhexanol precursor biogenesis in grapevine cells: the stimulating effect of Botrytis cinerea.

    Science.gov (United States)

    Thibon, Cécile; Cluzet, Stéphanie; Mérillon, Jean Michel; Darriet, Philippe; Dubourdieu, Denis

    2011-02-23

    Volatile thiols, compounds that contribute strongly to the varietal aroma, are present in much higher concentrations in sweet wines than in dry wines. This positive effect, due to the presence of Botrytis cinerea on the berries, in fact results from a strong enrichment of cysteine S-conjugate precursors in botrytized berries. In the present study, a convenient model was investigated to reproduce and therefore study this phenomenon. A Vitis vinifera cell culture was used as a simple model, and we focused on S-3-(hexan-1-ol)-l-cysteine (P-3SH), the cysteinylated precursor of 3-sulfanylhexanol. We demonstrated that grapevine cells were able to produce P-3SH and that the presence of B. cinerea considerably increased the precursor level (up to 1000-fold). This positive result was determined to be due to metabolites secreted by the fungus. These molecules were temperature sensitive, unstable over time, and their production was activated in the presence of grapevine cells. Moreover, part of the pathway leading to P-3SH was deciphered: it was directly derived from the cleavage of S-3-(hexan-1-ol)-l-glutathione, which itself was generated after a conjugation of glutathione on (E)-2-hexenal. PMID:21235257

  17. Bcmimp1, a Botrytis cinerea Gene Transiently Expressed in planta, Encodes a Mitochondrial Protein.

    Science.gov (United States)

    Benito-Pescador, David; Santander, Daniela; Arranz, M; Díaz-Mínguez, José M; Eslava, Arturo P; van Kan, Jan A L; Benito, Ernesto P

    2016-01-01

    Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of reactive oxygen species, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor. PMID:26952144

  18. Effect of Polymer Micelles on Antifungal Activity of Geranylorcinol Compounds against Botrytis cinerea.

    Science.gov (United States)

    Taborga, Lautaro; Díaz, Katy; Olea, Andrés F; Reyes-Bravo, Paula; Flores, Mario E; Peña-Cortés, Hugo; Espinoza, Luis

    2015-08-12

    Herein, we explore the potential use of two micelle-forming block copolymers, i.e., Pluronic F-127 and poly(ethylene oxide)-b-poly(caprolactone), for application of fungicide agents. The polymer effect on the in vitro fungicide activity of a series of geranyl orcinol derivatives against Botrytis cinerea has been assessed. The results show that, for all test compounds, the incorporation into micelles, formed by Pluronic F-127, produces a great enhancement of the inhibitory effect on the growth of B. cinerea. For some compounds, at the lowest tested concentration (50 ppm), the percentage of inhibition increases significantly (from 0-10 to 80-90%) when the application is made using a polymer solution instead of an ethanol/water mixture. The synthesis and structural determination of a series of eight geranylphenols/diacetates, which were used as fungicide agents, are also discussed. These results suggest that polymer micelles are promising systems for application of crop-protecting agents. PMID:26196664

  19. Neurobehavioral and biochemical changes in Nauphoeta cinerea following dietary exposure to chlorpyrifos.

    Science.gov (United States)

    Adedara, Isaac A; Rosemberg, Denis B; de Souza, Diego; Farombi, Ebenezer O; Aschner, Michael; Souza, Diogo O; Rocha, Joao B T

    2016-06-01

    The present study aimed to increase our understanding about the mode of toxic action of organophosphate pesticides in insects by evaluating the biochemical and neurobehavioral characteristics in Nauphoeta cinerea exposed to chlorpyrifos (CPF)-contaminated diet. The insects were exposed for 35 consecutive days to CPF at 0.078, 0.15625, 0.3125 and 0.625μg/g feed. Locomotor behavior was assessed for a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches' heads. In comparison to control, CPF-exposed cockroaches showed significant decreases in the total distance traveled, body rotation, turn angle and meandering, along with significant increase in the number of falls, time and episodes of immobility. The marked decrease in the exploratory profiles of CPF-exposed cockroaches was confirmed by track plots, whereas occupancy plot analyses showed a progressive dispersion at 0.15625μg/g feed group. Moreover, the heads of CPF-exposed cockroaches showed marked decrease in acetylcholinesterase activity and antioxidant status with concomitant significant elevation in dichlorofluorescein oxidation and lipid peroxidation levels in CPF-treated cockroaches. Gas Chromatography-Mass Spectrometry analyses revealed bioaccumulation of CPF in cockroaches exposed to concentrations above 0.078μg/g feed. The findings from this investigation showed N. cinerea as a value model organism for the risk assessment of environmental organophosphate contamination in insects. PMID:27155480

  20. Suitable conditions for xylanases activities from Bacillus sp. GA2(1 and Bacillus sp. GA1(6 and their properties for agricultural residues hydrolysis

    Directory of Open Access Journals (Sweden)

    Sudathip Chantorn

    2016-04-01

    Full Text Available Bacillus sp. GA2(1 and Bacillus sp. GA1(6 were isolated from soybean field in Khon Kaen province, Thailand. Crude enzymes from both isolates showed the activities of cellulase, xylanase, and mannanase at 37°C for 24 h. The highest xylanase activities of Bacillus sp. GA2(1 and Bacillus sp. GA1(6 were 1.58±0.25 and 0.82±0.16 U/ml, respectively. The relative xylanase activities from both strains were more than 60% at pH 5.0 to 8.0. The optimum temperature of xylanases was 50°C in both strains. The residual xylanase activities from both strains were more than 70% at 60°C for 60 min. Five agricultural wastes (AWs, namely coffee residue, soybean meal, potato peel, sugarcane bagasse, and corn cobs, were used as substrates for hydrolysis properties. The highest reducing sugar content of 101±1.32 µg/ml was obtained from soybean meal hydrolysate produced by Bacillus sp. GA2(1 xylanase.

  1. Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes.

    Science.gov (United States)

    Reddy, Shyam Sunder; Krishnan, Chandraraj

    2016-01-01

    Xylanase and xylooligosaccharides (XOS) are employed in food and feed industries. Though xylanase production from lignocellulosic materials (LCMs) by solid-state fermentation (SSF) is well known, the XOS formed during growth is not recovered due to its conversion to xylose by β-xylosidase and subsequent bacterial metabolism. A new strain, Bacillus subtilis KCX006, was exceptionally found to synthesize β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes constitutively in the presence of LCMs. Absence of β-xylosidase resulted in accumulation of XOS during growth of KCX006 on LCMs. Therefore, this strain was used for simultaneous production of xylanase and XOS from agro-residues in solid-state fermentation (SSF). Partial purification of XOS from culture supernatant using activated charcoal followed by high-performance liquid chromatography (HPLC) analysis showed xylobiose to xylotetraose formed as the major products. Among various LCM substrates, wheat bran and groundnut oil-cake supported highest xylanase and XOS production at 2158 IU/gdw and 24.92 mg/gdw, respectively. The levels of xylanase and XOS were improved by 1.5-fold (3102 IU/gdw) and 1.9-fold (48 mg/gdw), respectively, by optimization of culture conditions. PMID:25310011

  2. Solid-state Fermentation of Xylanase from Penicillium canescens 10-10c in a Multi-layer-packed Bed Reactor

    Science.gov (United States)

    Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe

    Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.

  3. Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol

    NARCIS (Netherlands)

    Schoonbeek, H.; Nistelrooy, van J.G.M.; Waard, de M.A.

    2003-01-01

    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The expressio

  4. Identification of a Novel Nematotoxic Protein by Challenging the Model Mushroom Coprinopsis cinerea with a Fungivorous Nematode.

    Science.gov (United States)

    Plaza, David Fernando; Schmieder, Stefanie Sofia; Lipzen, Anna; Lindquist, Erika; Künzler, Markus

    2016-01-01

    The dung of herbivores, the natural habitat of the model mushroom Coprinopsis cinerea, is a nutrient-rich but also very competitive environment for a saprophytic fungus. We showed previously that C. cinerea expresses constitutive, tissue-specific armories against antagonists such as animal predators and bacterial competitors. In order to dissect the inducible armories against such antagonists, we sequenced the poly(A)-positive transcriptome of C. cinerea vegetative mycelium upon challenge with fungivorous and bacterivorous nematodes, Gram-negative and Gram-positive bacteria and mechanical damage. As a response to the fungivorous nematode Aphelenchus avenae, C. cinerea was found to specifically induce the transcription of several genes encoding previously characterized nematotoxic lectins. In addition, a previously not characterized gene encoding a cytoplasmic protein with several predicted Ricin B-fold domains, was found to be strongly upregulated under this condition. Functional analysis of the recombinant protein revealed a high toxicity toward the bacterivorous nematode Caenorhabditis elegans. Challenge of the mycelium with A. avenae also lead to the induction of several genes encoding putative antibacterial proteins. Some of these genes were also induced upon challenge of the mycelium with the bacteria Escherichia coli and Bacillus subtilis. These results suggest that fungi have the ability to induce specific innate defense responses similar to plants and animals. PMID:26585824

  5. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts

    Directory of Open Access Journals (Sweden)

    Raquel eGonzález-Fernández

    2015-10-01

    Full Text Available Botrytis cinerea is a necrotrophic fungus with high adaptability to different environments and hosts. It secretes a large number of extracellular proteins, which favor plant tissue penetration and colonization, thus contributing to virulence. Secretomics is a proteomics sub-discipline which study the secreted proteins and their secretion mechanisms, so-called secretome. By using proteomics as experimental approach, many secreted proteins by B. cinerea have been identified from in vitro experiments, and belonging to different functional categories: i cell wall-degrading enzymes such as pectinesterases, and endo-polygalacturonases; ii proteases involved in host protein degradation such as an aspartic protease; iii proteins related to the oxidative burst such as glyoxal oxidase; iv proteins which may induce the plant hypersensitive response such as a cerato-platanin domain-containing protein; and v proteins related to production and secretion of toxins such as malate dehydrogenase. In this mini-review, we made an overview of the proteomics contribution to the study and knowledge of the B. cinerea extracellular secreted proteins based on our current work carried out from in vitro experiments, and recent published papers both in vitro and in planta studies on this fungi. We hypothesize on the putative functions of these secreted proteins, and their connection to the biology of the B. cinerea interaction with its hosts.

  6. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  7. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Malick eMbengue

    2016-03-01

    Full Text Available Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum , the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.

  8. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum.

    Science.gov (United States)

    Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain

    2016-01-01

    Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi. PMID:27066056

  9. Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses

    Science.gov (United States)

    Chu, Eun-Hee; Shin, Eun-Jung; Park, Hae-Jun; Jeong, Rae-Dong

    2015-10-01

    Postharvest diseases cause considerable losses to harvested crops. Among them, gray mold (Botrytis cinerea) is a major problem of exporting to cut rose flowers into Korea. Irradiation treatment is an alternative to phytosanitary purposes and a useful nonchemical approach to the control of postharvest diseases. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against B. cinerea on cut rose varieties, 'Shooting Star' and 'Babe'. The irradiating dose required to reduce the population by 90%, D10, was 0.99 kGy. Gamma irradiation showed complete inhibition of spore germination and mycelial growth of B. cinerea, especially 4.0 kGy in vitro. Antifungal activity of gamma irradiation on rose B. cinerea is a dose-dependent manner. A significant phytotoxicity such as bent neck in cut rose quality was shown from gamma irradiation at over 0.4 kGy (pcontrol the postharvest diseases in cut rose flowers, and will provide a promising technology for horticulture products for exportation.

  10. Physiological variability and in vitro antifungal activity against Botrytis cinerea causing botrytis gray mold of chickpea (Cicer arietinum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosen, M. I.; Ahmed, A. U.; Islam, M. R.

    2010-07-01

    Physiological variability was studied in 10 isolates of Botrytis cinerea causing botrytis gray mold of chickpea, collected from diverse agro climatic areas in Bangladesh. The optimum temperature and pH for the best mycelial radial growth of B. cinerea were 20 degree centigrade and 4.5, respectively. The mycelial radial growth increased with the temperature up to 20 degree centigrade thereafter it decreased gradually up to 30 degree centigrade and no growth was observed at 35 degree centigrade. Chickpea dextrose agar (CDA) medium supported the highest mycelial radial growth (79.17 mm). The quickest (in 5 days) sclerotia initiation was recorded on chickpea destrose agar and lentil dextrose agar (LDA) culture media while the highest number of spores (2.5104 mL{sup -}1) were recorded on LDA medium. The antagonist Trichoderma harzianum was found to be a good bio-control agent against B. cinerea. Among the seven fungicides Bavistin 50 WP (Carbendazim), CP-Zim 50 WP (Carbendazim), Sunphanate 70 WP (Thiophanate methyl) and Rovral 50 WP (Iprodione) were the most effective to inhibit the mycelial radial growth of B. cinerea at 500 mg L{sup -}1 concentration. (Author) 13 refs.

  11. Identification of a Novel Nematotoxic Protein by Challenging the Model Mushroom Coprinopsis cinerea with a Fungivorous Nematode

    Directory of Open Access Journals (Sweden)

    David Fernando Plaza

    2016-01-01

    Full Text Available The dung of herbivores, the natural habitat of the model mushroom Coprinopsis cinerea, is a nutrient-rich but also very competitive environment for a saprophytic fungus. We showed previously that C. cinerea expresses constitutive, tissue-specific armories against antagonists such as animal predators and bacterial competitors. In order to dissect the inducible armories against such antagonists, we sequenced the poly(A-positive transcriptome of C. cinerea vegetative mycelium upon challenge with fungivorous and bacterivorous nematodes, Gram-negative and Gram-positive bacteria and mechanical damage. As a response to the fungivorous nematode Aphelenchus avenae, C. cinerea was found to specifically induce the transcription of several genes encoding previously characterized nematotoxic lectins. In addition, a previously not characterized gene encoding a cytoplasmic protein with several predicted Ricin B-fold domains, was found to be strongly upregulated under this condition. Functional analysis of the recombinant protein revealed a high toxicity toward the bacterivorous nematode Caenorhabditis elegans. Challenge of the mycelium with A. avenae also lead to the induction of several genes encoding putative antibacterial proteins. Some of these genes were also induced upon challenge of the mycelium with the bacteria Escherichia coli and Bacillus subtilis. These results suggest that fungi have the ability to induce specific innate defense responses similar to plants and animals.

  12. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea.

    Science.gov (United States)

    An, Bang; Li, Boqiang; Li, Hua; Zhang, Zhanquan; Qin, Guozheng; Tian, Shiping

    2016-03-01

    Aquaporins (AQPs) are ubiquitous in nearly all organisms, mediating selective and rapid flux of water across biological membranes. The role of AQPs in phytopathogenic fungi is poorly understood. Orthologs of AQP genes in Botrytis cinerea were identified and knocked out. The effects of AQPs on hyphal growth and conidiation, formation of infection structures and virulence on plant hosts were examined. The role of AQP8 in reactive oxygen species (ROS) production, distribution and transport were further determined. Among eight AQPs, only AQP8 was essential for the ability of B. cinerea to infect plants. AQP8 was demonstrated to be an intrinsic plasma membrane protein, which may function as a channel and mediate hydrogen peroxide uptake. Deletion of AQP8 in B. cinerea completely inhibited the development of conidia and infection structures, and significantly affected noxR expression. Further observations revealed that both AQP8 and noxR impacted ROS distribution in the hyphal tips of B. cinerea. Moreover, AQP8 affected the expression of a mitochondrial protein, NQO1. A knockout mutant of NQO1 was observed to display reduced virulence. These data lead to a better understanding of the important role of AQP8 in the development and pathogenesis of plant pathogens. PMID:26527167

  13. Effect of temperature on the morphological characteristics of Botrytis cinerea and its correlated with the genetic variability

    Directory of Open Access Journals (Sweden)

    Jorge G Fernández

    2014-07-01

    Full Text Available Objective: To study the effect of temperature on the morphological characteristics of Botrytis cinerea (B. cinerea and its correlated with the genetic variability. B. cinerea is a plant-pathogenic fungus that produces the disease known as grey mould in a wide variety of agriculturally important hosts in many countries. Methods: Six strains from different host collected have been isolated and characterized by several methods as mycelial growth, fungicide resistance, pathogenicity and the effects of the temperature. Also was analyzed by PCR and distinguished by the presence or absence of transposable elements. Results: Results showed that clear morphological differences exist between strains at the temperature of 4, 12 and 28 °C. All strains analyzed molecularly were classified as Group II (transposa-type. Demonstrating a negative correlation between mycelial growth and other characteristics as the fungicide resistance and pathogenicity. Lastly, it is difficult to establish relationships phenotypic and genotypic between strains of B. cinerea. Conclusions: The results indicated that the mycelial growth, resistance at fungicide and pathogenicity are independent of the characteristics molecular, however, are dependent of a factor such as temperature.

  14. Production and characterization of cellulase-free xylanase from Trichoderma inhamatum.

    Science.gov (United States)

    de Oliveira da Silva, Leonor Alves; Carmona, Eleonora Cano

    2008-08-01

    The production of extracellular cellulase-free xylanase from Trichoderma inhamatum was evaluated in liquid Vogel medium with different carbon sources as natural substrates and agricultural or agro-industrial wastes. Optimal production of 244.02 U/mL was obtained with xylan as carbon source, pH 6.0 at 25 degrees C, 120 rpm, and 60-h time culture. Optimal conditions for enzyme activity were 50 degrees C and pH 5.5. Thermal stability of T. inhamatum xylanolytic complex expressed as T1/2 was 2.2 h at 40 degrees C and 2 min at 50 degrees C. The pH stability was high from 4.0 to 11.0. These results indicate possible employment of such enzymatic complex in some industrial processes which require activity in acid pH, wide-ranging pH stability, and cellulase activity absence. PMID:18607546

  15. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Eriksson, T.; Borjesson, J.;

    2003-01-01

    studies revealed that two of the cellulases were acting as cellobiohydrolases by being active on only microcrystalline cellulose (Avicel). Three of the cellulases were active on both Avicel and carboxymethyl cellulose indicating endoglucanase activity. Two of these showed furthermore mannanase activity......The filamentous fungus Penicillium brasilianum IBT 20888 was cultivated on a mixture of 30 g l(-1) cellulose and 10 g l(-1) xylan for 111 h and the resulting culture filtrate was used for protein purification. From the cultivation broth, five cellulases and one xylanase were purified. Hydrolysis...... by being able to hydrolyze galactomannan (locust bean gum). Adsorption studies revealed that the smaller of the two enzymes was not able to bind to cellulose. Similarity in molecular mass, pI and hydrolytic properties suggested that these two enzymes were identical, but the smaller one was lacking...

  16. On the sensitivity of protein data bank normal mode analysis: an application to GH10 xylanases

    Science.gov (United States)

    Tirion, Monique M.

    2015-12-01

    Protein data bank entries obtain distinct, reproducible flexibility characteristics determined by normal mode analyses of their three dimensional coordinate files. We study the effectiveness and sensitivity of this technique by analyzing the results on one class of glycosidases: family 10 xylanases. A conserved tryptophan that appears to affect access to the active site can be in one of two conformations according to x-ray crystallographic electron density data. The two alternate orientations of this active site tryptophan lead to distinct flexibility spectra, with one orientation thwarting the oscillations seen in the other. The particular orientation of this sidechain furthermore affects the appearance of the motility of a distant, C terminal region we term the mallet. The mallet region is known to separate members of this family of enzymes into two classes.

  17. EFFECT OF PRIOR MECHANICAL REFINING ON BIOBLEACHING OF WHEAT STRAW PULP WITH LACCASE /XYLANASE TREATMENT

    Directory of Open Access Journals (Sweden)

    Hai-Lan Lian,

    2012-06-01

    Full Text Available Wheat straw pulp was mechanochemically processed in a PFI mill in order to improve the effect of laccase/xylanase system (LXS treatment before bleaching. The delignification and bleachability of the prepared pulp were investigated. The delignification of the prepared pulp could be enhanced with the mechanochemical processing (refining and LXS treatment. The delignification was increased by 29.8% with refining 7000 revolutions and 5 IU/g enzyme dosage. The LXS treatment after the mechanochemical process could save 28.6% effective usage of chlorine in the subsequent hypochlorite bleaching process, compared with the traditional bio-bleaching. The crystallinity of cellulose was increased by the co-treatment with mechanochemistry and LXS treatment. This result was further supported by the observations from SEM. This co-treatment with mechanochemistry and bio-treatment enhanced the delignification and bleachability of pulp.

  18. Production of xylooligosaccharides from forest waste by membrane separation and Paenibacillus xylanase hydrolysis

    Directory of Open Access Journals (Sweden)

    Chun-Han Ko

    2013-02-01

    Full Text Available Xylooligosaccharides (XO, derived from the alkaline (NaOH extractant of Mikania micrantha, were produced using multiple staged membrane separation and enzymatic xylanolysis. Staged nanofiltration (NMX, ultrafiltration (EUMX, and centrifugation (EMX processes for the ethanol precipitates were conducted. NMX recovered 97.26% of total xylose and removed 73.18% of sodium ions. Concentrations of total xylose were raised from 10.98 to 51.85 mg/mL by the NMX process. Recovered xylan-containing solids were hydrolyzed by the recombinant Paenibacillus xylanase. 68% XO conversions from total xylose of NMX was achieved in 24 hours. Xylopentaose (DP 5 was the major product from NMX and EMX hydrolysis. Xylohexaose (DP 6 was the major product from EUMX hydrolysis. Results of the present study suggest the applicability for XO production by nanofiltration, as NMX gave higher XO yields compared to those from a conventional ethanol-related lignocellulosic waste conversion process.

  19. Effect of penicillium mutation by UV and gamma radiation on xylanase production

    International Nuclear Information System (INIS)

    Many microorganisms produce enzymes which have importance in industrial processes. Usually this production, is not sufficient for these needs at economical level. The bioindustry concentrates on increasing the production of these enzymes. This leads to the progress of this kind of industry, which use different biotechnology means, for example mutation and screening to choice more potent strain. In this study Ultra Violet and Gamma irradiation conducted on Penicillium canescen in order to produce new mutant strains, have the ability to produce more xylanase enzyme for industrial uses. Ultra Violet irradiation enable to select five mutant strains having more enzyme production ability. The best mutant strain PCUV12 (159 unit/ml) was 40% higher than the mother strain, at the dose 150.72 j/cm2. Gamma radiation produced new mutant strain PCGR6 which produced 26% more enzyme than the mother strain at dose 250 Gy.(author)

  20. Effect of Botrytis cinerea infection and elicitation on ß-1,3-glucanase and chitinase activity in bean leaves and cell cultures

    Directory of Open Access Journals (Sweden)

    Elżbieta Kuźniak

    2013-12-01

    Full Text Available The activity of ß-1,3-glucanase and chitinase in bean plants treated with B. cinerea products or/and infected and in cell cultures after application of fungal products has been studied. Botrytis cinerea infection and culture filtrates, ethanol precipitates, glucan and conidial extract treatment markedly enhanced the activity of both hydrolases. Cell cultures treated with B.cinerea products reacted similarly to intact plants. In plants pretreated with 2-day culture filtrate and conidial extract and then infected, ß-1,3-glucanase and chitinase were induced stronger than after infection without pretreatment.

  1. Biocontrol proteomics:Implication of the pentoses phosphates pathway in the antagonist effect of Pichia anomala against Botrytis cinerea on apple.

    OpenAIRE

    Kwasiborski, Anthony; Renaut, Jenny; Delaplace, Pierre; Lepoivre, Philippe; Jijakli, Haissam

    2011-01-01

    Pichia anomala strain K was previously identified as an efficient biocontrol agent of the apple pathogen, Botrytis cinerea. Further study demonstrated the complexicity of the mode of action of P. anomala against B. cinerea. A molecular study revealed implication of exo-β-1,3-glucanases in the mode of action of P. anomala but suggested implication of other factors. The present study aims to increase our knowledge of the mode of action of P. anomala strain Kh6 against B. cinerea using an in sit...

  2. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: The immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction

    OpenAIRE

    Seifi, Hamed Soren; De Vleesschauwer, David; Aziz, Aziz; Höfte, Monica

    2014-01-01

    The fungal plant pathogen Botrytis cinerea is the causal agent of the “gray mold” disease on a broad range of hosts. As an archetypal necrotroph, B. cinerea has evolved multiple virulence strategies for inducing cell death in its host. Moreover, progress of B. cinerea colonization is commonly associated with induction of senescence in the host tissue, even in non-invaded regions. In a recent study, we showed that abscisic acid deficiency in the sitiens tomato mutant culminates in an anti-sene...

  3. Purification and characterization of a new Xylanase from Humicola grisea var. Thermoidea Produção, purificação e caracterização de uma nova Xilanase de Humicola grisea var. Thermoidea

    OpenAIRE

    Severino de Albuquerque Lucena-Neto; Edivaldo Ximenes Ferreira-Filho

    2004-01-01

    The thermophilic fungus Humicola grisea var. thermoidea secretes extracellular xylanase when grown on solid and in liquid media containing wheat bran and banana plant residue as substrates, respectively. At 55ºC, xylanase from the culture filtrate of H. grisea var. thermoidea grown on banana stalk retained 50% of its activity after 28 h of incubation. A xylanase (X2) was isolated from solid state cultures with wheat bran as the carbon source. It was purified to apparent homogeneity by ultrafi...

  4. Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy

    Directory of Open Access Journals (Sweden)

    Song Letian

    2012-01-01

    Full Text Available Abstract Background Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn. Results Following in vitro enzyme evolution and screening on wheat straw, nine best-performing clones were identified, which display mutations at positions 3, 6, 27 and 111. All of these mutants showed increased hydrolytic activity on wheat straw, and solubilized arabinoxylans that were not modified by the parental enzyme. The most active mutants, S27T and Y111T, increased the solubilization of arabinoxylans from depleted wheat straw 2.3-fold and 2.1-fold, respectively, in comparison to the wild-type enzyme. In addition, five mutants, S27T, Y111H, Y111S, Y111T and S27T-Y111H increased total hemicellulose conversion of intact wheat straw from 16.7%tot. xyl (wild-type Tx-Xyn to 18.6% to 20.4%tot. xyl. Also, all five mutant enzymes exhibited a better ability to act in synergy with a cellulase cocktail (Accellerase 1500, thus procuring increases in overall wheat straw hydrolysis. Conclusions Analysis of the results allows us to hypothesize that the increased hydrolytic ability of the mutants is linked to (i improved ligand binding in a putative secondary binding site, (ii the diminution of surface hydrophobicity, and/or (iii the modification of thumb flexibility, induced by mutations at position 111. Nevertheless, the relatively modest improvements that were observed also underline the fact that enzyme engineering alone cannot overcome the limits imposed by the complex organization of the plant cell wall and the lignin barrier.

  5. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures--Botrytis cinerea interaction.

    Science.gov (United States)

    Pietrowska, E; Różalska, S; Kaźmierczak, A; Nawrocka, J; Małolepsza, U

    2015-01-01

    This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium bromide (EB) as well as fluorescent microscopy were used to assess tomato and B. cinerea cells death. The biochemical studies of ROS and RNS concentrations in plant cell extract were complemented by in vivo ROS and nitric oxide (NO) imaging using nitro blue tetrazolium (NBT), diaminobenzidine (DAB) and diaminofluorescein diacetate (DAF-DA) staining methods, and confocal microscope technique. B. cinerea infection proceeded slower in Perkoz cell cultures. It was evidenced by measuring the pathogen conidia germination and germination tube development in which nuclei revealing cell death dominated. Two different types of tomato cell death were observed: cells with necrotic nuclei dominated in Corindo whereas in Perkoz cells with characteristic of vacuolar death type prevailed. In Perkoz cells, constitutive levels of NO and S-nitrosothiols (SNO) were significantly higher and hydrogen peroxide (H₂O₂) and superoxide anion (O₂(-)) concentrations were slightly higher as compared with Corindo cells. Moreover, increases in these molecule concentrations as a result of B. cinerea inoculation were observed in both, Perkoz and Corindo cell cultures. The enzymatic GSNOR activity seems to be an important player in controlling the SNO level in tomato cells. Involvements of the studied compounds in molecular mechanisms of tomato resistance to B. cinerea are discussed in the paper. PMID:25064634

  6. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Huijuan eZhang

    2015-09-01

    Full Text Available Upon pathogen infection, activation of immune response requires effective transcriptional reprogramming that regulates inducible expression of a large set of defense genes. A number of ethylene-responsive factor transcription factors have been shown to play critical roles in regulating immune responses in plants. In the present study, we explored the functions of Arabidopsis AtERF15 in immune responses against Pseudomonas syringae pv. tomato (Pst DC3000, a (hemibiotrophic bacterial pathogen, and Botrytis cinerea, a necrotrophic fungal pathogen. Expression of AtERF15 was induced by infection of Pst DC3000 and B. cinerea and by treatments with salicylic acid (SA and methyl jasmonate. Biochemical assays demonstrated that AtERF15 is a nucleus-localized transcription activator. The AtERF15-overexpressing (AtERF15-OE plants displayed enhanced resistance while the AtERF15-RNAi plants exhibited decreased resistance against Pst DC3000 and B. cinerea. Meanwhile, Pst DC3000- or B. cinerea-induced expression of defense genes was upregulated in AtERF15-OE plants but downregulated in AtERF15-RNAi plants, as compared to the expression in wild type plants. In response to infection with B. cinerea, the AtERF15-OE plants accumulated less reactive oxygen species (ROS while the AtERF15-RNAi plants accumulated more ROS. The flg22- and chitin-induced oxidative burst was abolished and expression levels of the pattern-triggered immunity-responsive genes AtFRK1 and AtWRKY53 were suppressed in AtER15-RNAi plants upon treatment with flg22 or chitin. Furthermore, SA-induced defense response was also partially impaired in the AtERF15-RNAi plants. These data demonstrate that AtERF15 is a positive regulator of multiple layers of the immune responses in Arabidopsis.

  7. Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea.

    Science.gov (United States)

    Silva-Moreno, Evelyn; Brito-Echeverría, Jocelyn; López, Miguel; Ríos, Juan; Balic, Iván; Campos-Vargas, Reinaldo; Polanco, Rubén

    2016-05-01

    Botrytis cinerea attacks a broad range of host causing significant economic losses in the worldwide fruit export industry. Hitherto, many studies have focused on the penetration mechanisms used by this phytopathogen, but little is known about the early stages of infection, especially those such as adhesion and germination. The aim of this work was to evaluate the effect of cuticular waxes compounds from table grapes on growth, germination and gene expression of B. cinerea. To accomplish this, growth was analyzed using as substrate n-alkanes extracted from waxes of fresh fruit (table grapes, blueberries and apricots). Subsequently, the main compounds of table grape waxes, oleanolic acid (OA) and n-fatty alcohols, were mixed to generate a matrix on which conidia of B. cinerea were added to assess their effect on germination and expression of bctub, bchtr and bchex genes. B. cinerea B05.10, isolated from grapes, increased its growth on a matrix composed by table grapes n-alkanes in comparison to a matrix made with n-alkanes from apricot or blueberries. Moreover, at 2.5 h, B05.10 germination increased 17 and 33 % in presence of n-alkanes from table grape, in comparison to conditions without alkanes or with blueberries alkanes, respectively. Finally, expression of bchtr and bchex showed a significant increase during the first hour after contact with n-fatty alcohols and OA. In conclusion, B. cinerea displays selectivity towards certain compounds found in host waxes, mainly n-fatty alcohols, which could be a good candidate to control this phytopathogen in early stages of infection. PMID:27038944

  8. Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29

    Directory of Open Access Journals (Sweden)

    Zainab Bibi

    2014-10-01

    Full Text Available Xylan degrading bacterial strain was isolated from soil and identified as Geobacillus stearothermophilus KIBGE-IB29 on the basis of morphological, biochemical and 16S rDNA sequence analysis. Optimization of medium and culture conditions in submerged fermentation was investigated for maximum endo-1, 4-β-xylanase production. High yield of xylan degrading endo-1, 4-β-xylanase was achieved at 60 °C and pH-6.0 with 24 h of fermentation. Maximum enzyme was produced using 0.5% xylan as a carbon source, 0.5% peptone, 0.2% yeast extract and 0.1% meat extract as nitrogen sources. Di-potassium hydrogen phosphate (0.25%, calcium chloride (0.01%, potassium hydrogen phosphate (0.05% and ammonium sulfate (0.05% were also incorporated in the fermentation medium to enhance the enzyme production.

  9. Partial purification and properties of cellulase-free alkaline xylanase produced by Rhizopus stolonifer in solid-state fermentation

    OpenAIRE

    Antonio José Goulart; Eleonora Cano Carmona; Rubens Monti

    2005-01-01

    Rhizopus stolonifer was cultivated in wheat bran to produce a cellulase-free alkaline xylanase. The purified enzyme obtained after molecular exclusion chromatography in Sephacryl S-200 HR showed optimum temperature as 45º C and hydrolysis pHs optima as pH 6.0 and 9.0. Xylanase presented higher Vmax at pH 9.0 (0.87 µmol/mg protein) than at pH 6.0 and minor Km at pH 6.0 (7.42 mg/mL) than at pH 9.0.Rhizopus stolonifer foi cultivado em meio de farelo de trigo para produzir uma xilanase alcalina c...

  10. Evaluation of operational parameters on the precipitation of endoglucanase and xylanase produced by solid state fermentation of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    C. S. Farinas

    2011-03-01

    Full Text Available In order to develop cost effective processes for converting biomass into biofuels, it is essential to improve enzyme production yields, stability and specific activity. In this context, the aim of this work was to evaluate the concentration of two enzymes involved in the hydrolysis of biomass, endoglucanase and xylanase, through precipitation. Statistical experimental design was used to evaluate the influence of precipitant agent concentration (ammonium sulfate and ethanol, aging time, and temperature on enzyme activity recovery. Precipitant agent concentration and aging time showed a statistically significant effect at the 95% confidence level, on both enzyme activity recoveries. The recovery of endoglucanase with ammonium sulfate and ethanol reached values up to 65 and 61%, respectively. For xylanase, the recovery rates were lower, 27 and 25% with ammonium sulfate and ethanol, respectively. The results obtained allowed the selection of the variables relevant to improving enzyme activity recovery within operational conditions suitable for industrial applications.

  11. Xylanase and β-xylosidase production by Aspergillus ochraceus : new perspectives for the application of wheat straw autohydrolysis liquor

    OpenAIRE

    Michelin, Michele; Maria de Lourdes T. M Polizeli; Ruzene, Denise S.; Silva, Daniel Pereira da; Vicente, A.A.; Jorge, João A.; Terenzi, Héctor F.; Teixeira, J.A.

    2012-01-01

    The xylanase biosynthesis is induced by its substrate—xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohyd...

  12. One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ash

    Directory of Open Access Journals (Sweden)

    Ashwani Sanghi

    2010-06-01

    Full Text Available The present study describes the one-step purification and characterization of an extracellular cellulase-free xylanase from a newly isolated alkalophilic and moderately thermophilic strain of Bacillus subtilis ASH. Xylanase was purified to homogeneity by 10.5-fold with ~43% recovery using ion-exchange chromatography through CM-Sephadex C-50. The purified enzyme revealed a single band on SDS-PAGE gel with a molecular mass of 23 kDa. It showed an optimum pH at 7.0 and was stable over the pH range 6.0-9.0. The optimum temperature for enzyme activity was 55 ºC. The purified xylanase did not lose any activity up to 45 ºC, however, it retained 80% and 51% of its activity after pre-incubation at 55 ºC and 60 ºC, respectively. The enzyme obeyed Michaelis-Menton kinetics towards birch wood xylan with apparent Km 3.33 mg/ml and Vmax 100 IU/ml. The enzyme was strongly inhibited by Hg2+ and Cu2+ while enhanced by Co2+ and Mn2+. The purified enzyme could be stored at 4 ºC for six weeks without any loss of catalytic activity. The faster and economical purification of the cellulase-free xylanase from B. subtilis ASH by one-step procedure together with its appreciable stability at high temperature and alkaline pH makes it potentially effective for industrial applications.

  13. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T).

    Science.gov (United States)

    Amel, Bouanane-Darenfed; Nawel, Boucherba; Khelifa, Bouacem; Mohammed, Gagaoua; Manon, Joseph; Salima, Kebbouche-Gana; Farida, Nateche; Hocine, Hacene; Bernard, Ollivier; Jean-Luc, Cayol; Marie-Laure, Fardeau

    2016-01-01

    The present study investigates the purification and biochemical characterization of an extracellular thermostable xylanase (called XYN35) from Caldicoprobacter algeriensis sp. nov., strain TH7C1(T), a thermophilic, anaerobic strain isolated from the hydrothermal hot spring of Guelma (Algeria). The maximum xylanase activity recorded after 24 h of incubation at 70 °C and in an optimized medium containing 10 g/L mix birchwood- and oats spelt-xylan was 250 U/mL. The pure protein was obtained after heat treatment (1 h at 70 °C), followed by sequential column chromatographies on Sephacryl S-200 gel filtration and Mono-S Sepharose anion-exchange. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis indicated that the purified enzyme is a monomer with a molecular mass of 35,075.10 Da. The results from amino-acid sequence analysis revealed high homology between the 21 NH2-terminal residues of XYN35 and those of bacterial xylanases. The enzyme showed optimum activity at pH 11 and 70 °C. While XYN35 was activated by Ca(2+), Mn(2+), and Mg(2+), it was completely inhibited by Hg(2+) and Cd(2+). The xylanase showed higher specific activity on soluble oat-spelt xylan, followed by beechwood xylan. This enzyme was also noted to obey the Michaelis-Menten kinetics, with Km and kcat values on oat-spelt xylan being 1.33 mg/mL and 400 min(-1), respectively. Thin-layer chromatography soluble oat-spelt xylan (TLC) analysis showed that the final hydrolyzed products of the enzyme from birchwood xylan were xylose, xylobiose, and xylotriose. Taken together, the results indicated that the XYN35 enzyme has a number of attractive biochemical properties that make it a potential promising candidate for future application in the pulp bleaching industry. PMID:26687892

  14. Cloning, Expression and Characteristics of a Novel Alkalistable and Thermostable Xylanase Encoding Gene (Mxyl) Retrieved from Compost-Soil Metagenome

    OpenAIRE

    Verma, Digvijay; Kawarabayasi, Yutaka; Miyazaki, Kentaro; Satyanarayana, Tulasi

    2013-01-01

    Background The alkalistable and thermostable xylanases are in high demand for pulp bleaching in paper industry and generating xylooligosaccharides by hydrolyzing xylan component of agro-residues. The compost-soil samples, one of the hot environments, are expected to be a rich source of microbes with thermostable enzymes. Methodology/Principal Findings Metagenomic DNA from hot environmental samples could be a rich source of novel biocatalysts. While screening metagenomic library constructed fr...

  15. Scan-rate dependence in protein calorimetry: the reversible transitions of Bacillus circulans xylanase and a disulfide-bridge mutant.

    OpenAIRE

    J Davoodi; Wakarchuk, W. W.; Surewicz, W K; Carey, P. R.

    1998-01-01

    The stabilities of Bacillus circulans xylanase and a disulfide-bridge-containing mutant (S100C/N148C) were investigated by differential scanning calorimetry (DSC) and thermal inactivation kinetics. The thermal denaturation of both proteins was found to be irreversible, and the apparent transition temperatures showed a considerable dependence upon scanning rate. In the presence of low (nondenaturing) concentrations of urea, calorimetric transitions were observed for both proteins in the second...

  16. STATISTICAL OPTIMIZATION OF MINERAL SALT AND UREA CONCENTRATION FOR CELLULASE AND XYLANASE PRODUCTION BY Penicillium echinulatum IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    L. dos Reis

    2015-03-01

    Full Text Available Abstract Penicillium echinulatum S1M29 is a mutant with cellulase and xylanase production comparable to the most studied microorganisms in the literature. However, its potential to produce these enzymes has not been fully investigated. This study aimed at optimizing salt and urea concentrations in the mineral solution, employing the response surface methodology. A 25-1 Fractional Factorial Design and a 23 Central Composite Design were applied to elucidate the effect of salts and urea in enzyme production. Lower concentrations of KH2PO4 (2.0 g.L-1, (NH42SO4 (1.4 g.L-1, MgSO4.7H2O (0.375 g.L-1 and CaCl2 (0.375 g.L-1 were most suitable for the production of all enzymes evaluated. Nevertheless, higher concentrations of urea (0.525 g.L-1 gave the best results for cellulase and xylanase production. The maximum FPase (1,5 U.m.L-1, endoglucanase (7,2 U.m.L-1, xylanase (30,5 U.m.L-1 and β-glucosidase (4,0 U.m.L-1 activities obtained with the planned medium were, respectively, 87, 16, 17 and 21% higher when compared to standard medium. The experimental design contributed to adjust the concentrations of minerals and urea of the culture media for cellulase and xylanase production by P. echinulatum, avoiding waste of components in the medium.

  17. CLONING, EXPRESSION, AND CHARACTERIZATION OF AN ALKALOPHILLIC ENDO-1,4-BETA-XYLANASE FROM PAENIBACILLUS SP. HPL-002

    Directory of Open Access Journals (Sweden)

    No-Joong Park,

    2011-12-01

    Full Text Available The biochemical properties of a purified enzyme of a new alkalophillic endo-1,4-beta-xylanase gene, KRICT PX2 (GU967374, which was isolated from Paenibacillus sp. HPL-002 (KCTC11410BP and expressed in E. coli, were investigated. The specific activity of the purified xylanase was 51.26 μmol/min/mg proteins. The Km and Vmax values of the protein for birch wood xylan were also verified to have 0.061 μM and 55.3 μmol/min/mg proteins, respectively. The optimum pH and temperature for the activity of the enzyme were pH 8~9 and 50oC, respectively, and, the activity was stably maintained at 40oC. Most metallic salts, ethylenediamine tetra-acetic acid, 2-mercaptoethanol, phenylmethane-sulphonyl fluoride, and furfural, have no impact on the enzyme’s activity at 1 mM. The simulated 3-D structure of this xylanase is similar to Xyn10B from Paenibacillus barcinonensis. Further research on the degradation of different-origin xylans and enzyme production will be necessary for practical applications.

  18. A xylanase from Streptomyces sp. FA1: heterologous expression, characterization, and its application in Chinese steamed bread.

    Science.gov (United States)

    Xu, Yang; Wu, Jing; Zheng, Kaixuan; Wu, Dan

    2016-05-01

    Xylanases (EC 3.2.1.8) are hydrolytic enzymes that have found widespread application in the food, feed, and paper-pulp industries. Streptomyces sp. FA1 xynA was expressed as a secreted protein in Pichia pastoris, and the xylanase was applied to the production of Chinese steamed bread for the first time. The optimal pH and the optimal temperature of XynA were 5.5 and 60 °C, respectively. Using beechwood as substrate, the K m and V max were 2.408 mg mL(-1) and 299.3 µmol min(-1) mg(-1), respectively. Under optimal conditions, a 3.6-L bioreactor produced 1374 U mL(-1) of XynA activity at a protein concentration of 6.3 g L(-1) after 132 h of fermentation. Use of recombinant XynA led to a greater increase in the specific volume of the CSB than could be achieved using commercial xylanase under optimal conditions. This study provides the basis for the application of the enzyme in the baking industry. PMID:26803505

  19. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli.

    Science.gov (United States)

    McHunu, Nokuthula Peace; Singh, Suren; Permaul, Kugen

    2009-04-20

    The alkaline stability of the xylanase from Thermomyces lanuginosus was further improved by directed evolution using error-prone PCR mutagenesis. Positive clones were selected by their ability to produce zones of clearing on pH 9 and 12 xylan agar plates. Variant NC38 was able to withstand harsh alkaline conditions retaining 84% activity after exposure at pH 10 for 90 min at 60 degrees C, while the parent enzyme had 22% activity after 60 min. The alkaline stable variant NC38 was cloned into pBGP1 under the control GAP promoter and pET22b(+) for expression in Pichia pastoris and Escherichia coli BL21, respectively. Best extracellular expression of the recombinant xylanase was observed in P. pastoris (261.7+/-0.61 U ml(-1)) whereas intracellular activity was observed in E. coli (47.9+/-0.28 U ml(-1)) was low. Total activity obtained in P. pastoris was 545-fold higher than E. coli. The mutated alkaline stable xylanase from P. pastoris was secreted into the culture medium with little or no contamination by host proteins, which favours the application of this enzyme in the pulp and paper industry. PMID:19428727

  20. Cellulase and xylanase productions by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation

    Directory of Open Access Journals (Sweden)

    Heck Júlio X.

    2002-01-01

    Full Text Available In Brazil, a large amount of a fibrous residue is generated as result of soybean (Glycine max protein production. This material, which is rich in hemicellulose and cellulose, can be used in solid state cultivations for the production of valuable metabolites and enzymes. In this work, we studied the bioconversion of this residue by bacteria strains isolated from water and soil collected in the Amazon region. Five strains among 87 isolated bacteria selected for their ability to produce either celullases or xylanases were cultivated on the aforementioned residue. From strain BL62, identified as Bacillus subtilis, it was obtained a preparation showing the highest specific cellulase activity, 1.08 UI/mg protein within 24 hours of growth. Concerning xylanase, the isolate BL53, also identified as Bacillus subtilis, showed the highest specific activity for this enzyme, 5.19 UI/mg protein within 72 hours of cultivation. It has also been observed the production of proteases that were associated with the loss of cellulase and xylanase activities. These results indicated that the selected microorganisms, and the cultivation process, have great biotechnological potential.

  1. STUDIES ON XYLANASE AND LACCASE ENZYMATIC PREBLEACHING TO REDUCE CHLORINE-BASED CHEMICALS DURING CEH AND ECF BLEACHING

    Directory of Open Access Journals (Sweden)

    Vasanta V. Thakur,

    2012-02-01

    Full Text Available The biobleaching efficiency of xylanase and laccase enzymes was studied on kraft pulps from wood and nonwood based raw materials employed in the Indian paper industry. Treatment of these pulps with xylanase enzyme could result in improved properties, showing 2.0% ISO gain in pulp brightness and/or reducing the demand of chlorine-based bleach chemicals by up to 15% with simultaneous reduction of 20 to 25% in AOX generation in bleach effluents. Further, mill-scale trial results revealed that enzymatic prebleaching can be successfully employed with xylanases to reach the same bleach boosting efficacy. Laccase bleaching was also studied on hardwood pulp at a pH around 8.0, where most of the pulp mills in India are operating, in contrast to earlier studies on laccase enzyme bleaching, which were conducted at acidic pHs, i.e. 4.0 to 5.0. In case of laccase bleaching, interesting results were found wherein a bleach-boosting effect was observed even at pH 8.0. Further studies carried out with HOBT as mediator in comparison to the commonly used and expensive ABTS laccase mediator system (LMS resulted in improvement of the bleaching efficiency with reduction in demand of chlorine dioxide by more than 35%. Potential for further reduction was indicated by the brightness gain, when compared with a control using the DE(pD bleach sequence.

  2. Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from Thermobifida fusca and expression in Pichia pastoris.

    Science.gov (United States)

    Wang, Qian; Du, Wen; Weng, Xiao-Yan; Liu, Ming-Qi; Wang, Jia-Kun; Liu, Jian-Xin

    2015-02-01

    For xylooligosaccharide (XO) production, endo-xylanase from Thermobifida fusca was modified by error-prone PCR and DNA shuffling. The G4SM1 mutant (S62T, S144C, N198D, and A217V) showed the most improved hydrolytic activity and was two copies expressed in Pichia pastoris under the control of GAP promoter. The maximum xylanase activity in culture supernatants was 165 ± 5.5 U/ml, and the secreted protein concentration reached 493 mg/l in a 2-l baffled shake flask. After 6× His-tagged protein purification, the specific activity of G4SM1 was 2036 ± 45.8 U/mg, 2.12 times greater than that of wild-type enzyme. Additionally, G4SM1 was stable over a wide pH range from 5.0 to 9.0. Meanwhile, half-life of G4SM1 thermal inactivation at 70 °C increased 8.5-fold. Three-dimensional structures suggest that two amino acid substitutions, S62T and S144C, located at catalytic domain may be responsible for the enhanced activity and thermostability of xylanase. Xylobiose was the dominant end product of xylan hydrolysis by G4SM1. Due to its attractive biochemical properties, G4SM1 has potential value in commercial XO production. PMID:25384545

  3. High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris.

    Science.gov (United States)

    Li, Yang-yuan; Zhong, Kai-xin; Hu, Ai-hong; Liu, Dan-ni; Chen, Li-zhi; Xu, Shu-de

    2015-04-01

    A gene encoding xylanase 2 mutant from Trichoderma reesei (T2C/T28C, named mxyn2) was cloned into the Pichia pastoris X33 strain using the vector pPICZαA. Recombinant Mxyn2p was functionally expressed in P. pastoris X33 and secreted into the supernatant. Real time qPCR demonstrated that an increase in gene copy number correlated with higher levels of expression. Supernatant from methanol induced cells was concentrated by ultrafiltration with a 10kDa cut off membrane, and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. Recombinant Mxyn2p protein had the highest activity at 75°C, while recombinant protein encoded by the "wild type" xylanase gene xyn2, also expressed in Pichia, was 20°C lower. The Mxyn2p enzyme retained more than 70% of its activity after incubation at 80°C for 10min. The effects of the optimal pH and temperature for higher expression levels in P. pastoris were also determined, 6.0 and 22°C, respectively. The maximum xylanase activity of Mxyn2p was 13,000nkat/mg (9.88g/l) in fed-batch cultivation after 168h induction with methanol in a 50l bioreactor. PMID:25434687

  4. A novel low molecular weight endo-xylanase from Streptomyces sp. CS628 cultivated in wheat bran.

    Science.gov (United States)

    Rahman, Md Arifur; Choi, Yun Hee; Pradeep, G C; Choi, Yoon Seok; Choi, Eun Joo; Cho, Seung Sik; Yoo, Jin Cheol

    2014-07-01

    An extracellular low molecular weight xylanase (Xyn628) from Streptomyces sp. CS628 was isolated from Korean soil sample, produced in wheat bran medium, purified, and biochemically characterized. Xyn628 was purified 4.8-fold with a 33.78 % yield using Sepharose CL-6B column chromatography. The purified xylanase was ~18.1 kDa estimated by SDS-PAGE and xylan zymography. N-terminal amino acid sequences of Xyn628 were AYIKEVVSRAYM. The enzyme was found to be stable in a broad range of pH (5.0-13.0) and up to 60 °C and have optimal pH and temperature of pH 11.0 and 60 °C, respectively. Xyn628 activities were remarkable affected by various detergents, chelators, modulators, and metal ions. The xylanase produced xylobiose and xylotriose as principal hydrolyzed end products from the xylan. It was found to degrade agro-waste materials like corn cob and wheat bran by Xyn628 (20 U/g) as shown by electron microscopy. As being simple in purification, low molecular weight, alkaline, thermostable, and ability to produce xylooligosaccharides show that Xyn628 has potential applications in bioindustries as a biobleaching agent or/and xylooligosaccharides production with an appropriate utilization of agro-waste. PMID:24817510

  5. Bis(2,3-dibromo-4,5-dihydroxybenzyl) Ether, a Marine Algae Derived Bromophenol, Inhibits the Growth of Botrytis cinerea and Interacts with DNA Molecules

    OpenAIRE

    Ming Liu; Genzhu Wang; Lin Xiao; Xuanli Xu; Xiaohui Liu(High Energy Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.); Pingxiang Xu; Xiukun Lin

    2014-01-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol isolated from marine algae. Previous reports have shown that BDDE possesses cytotoxic and antibacterial activity. In the present study, we demonstrate that BDDE displays broad-spectrum antifungal activities, especially on Botrytis cinerea. BDDE inhibits the growth of B. cinerea cultured on a solid medium of potato dextrose agar (PDA) as well as on the potato dextrose broth (PDB) medium. Moreover, BDDE decreases the incidence...

  6. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae).

    Science.gov (United States)

    Rizvi, Syed Z M; Raman, Anantanarayanan; Wheatley, Warwick M; Cook, Geoffrey

    2016-04-01

    In this paper we tested the behavior of gravid Epiphyas postvittana in selecting the most-appropriate site for oviposition thus benefitting offspring performance. Our hypothesis was built on Jaenike's preference-performance hypothesis (also referred to as the "mother-knows-the-best" hypothesis). To test this, we used the interacting Epiphyas postvittana, its host Vitis vinifera, and the pathogenic microbe Botrytis cinerea system. Populations of E. postvittana and B. cinerea often exist concurrently on V. vinifera in Australasia and their interaction and mutual influence are currently being explored, although the suggestion presently is that the relationship between E. postvittana and B. cinerea is mutualistic. We tested the effect of volatiles from B. cinerea-infected berries and uninfected (control) berries of V. vinifera on the oviposition behavior of E. postvittana. We also characterized the effects of B. cinerea infection on the berries of V. vinifera on the growth and development of E. postvittana. Contrary to the preference-performance hypothesis, oviposition choices made by gravid E. postvittana did not result in the best offspring survival, development, and performance. The preference for oviposition by E. postvittana was strongly influenced by the olfactory and tactile cues. She laid fewer eggs on B. cinerea-infected berries compared to uninfected berries of V. vinifera. The larvae of E. postvittana showed no preference to uninfected berries of V. vinifera. The larvae fed on B. cinerea-infected berries of V. vinifera showing greater survival rate, shorter time to pupation, greater pupal mass, and on becoming adults they laid more numbers of eggs than the larvae that were enabled to feed on uninfected berries. The larvae of E. postvittana transport the conidia of B. cinerea and transmit grey-mould disease to uninfected berries of V. vinifera. PMID:25420720

  7. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection.

    Science.gov (United States)

    Wan, Ran; Hou, Xiaoqing; Wang, Xianhang; Qu, Jingwu; Singer, Stacy D; Wang, Yuejin; Wang, Xiping

    2015-01-01

    The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, "Pingli-5" (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, "Red Globe" were selected for further study. Microscopic analysis demonstrated that B. cinerea growth was limited during early infection on "Pingli-5" before 24 h post-inoculation (hpi) but not on Red Globe. It was found that reactive oxygen species (ROS) and antioxidative system were associated with fungal growth. O[Formula: see text] accumulated similarly in B. cinerea 4 hpi on both Vitis genotypes. Lower levels of O[Formula: see text] (not H2O2) were detected 4 hpi and ROS (H2O2 and O[Formula: see text]) accumulation from 8 hpi onwards was also lower in "Pingli-5" leaves than in "Red Globe" leaves. B. cinerea triggered sustained ROS production in "Red Globe" but not in "Pingli-5" with subsequent infection progresses. Red Globe displayed little change in antioxidative activities in response to B. cinerea infection, instead, antioxidative activities were highly and timely elevated in resistant "Pingli-5" which correlated with its minimal ROS increases and its high resistance. These findings not only enhance our understanding of the resistance of Chinese wild Vitis species to B. cinerea, but also lay the foundation for breeding B. cinerea resistant grapes in the future. PMID:26579134

  8. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection

    OpenAIRE

    Wan, Ran; Hou, Xiaoqing; Wang, Xianhang; Qu, Jingwu; Singer, Stacy D; Wang, Yuejin; Wang, Xiping

    2015-01-01

    The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, “Pingli-5” (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, “Red Globe” were selected for further study....

  9. Biocontrol proteomics:Implication of the pentoses phosphates pathway in the antagonist effect of Pichia anomala against Botrytis cinerea on apple

    OpenAIRE

    Kwasiborski, Anthony; Renaut, Jenny; Lepoivre, Philippe; Jijakli, Haissam

    2011-01-01

    The growing interest of the consumers for the wholesome food and the protection of the environment as well as the development of resistant pathogens to pesticides, stimulate the interest of growers to apply biological control methods. Pichia anomala strain K was previously identified as an efficient biocontrol agent of the main apple pathogens, Botrytis cinerea and Penicillum expansum. Further study demonstrated the complexicity of the mode of action of P. anomala against B. cinerea. A cDNA-A...

  10. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress

    OpenAIRE

    Li, Xiaohui; Zhang, Huijuan; Tian, Limei; Huang, Lei; Liu, Shixia; Li, Dayong; Song, Fengming

    2015-01-01

    NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of Sl...

  11. The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea

    OpenAIRE

    Finkers, H.J.; Heusden, van, S.; Meijer-Dekens, R.G.; Kan, van, H.J.; Maris, P.C.; Lindhout, P.

    2007-01-01

    Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus has been identified in accessions of wild relatives of tomato such as Solanum habrochaites LYC4. In a previous F-2 mapping study, three QTLs conferring resistance to B. cinerea (Rbcq1, Rbcq2 and Rbcq4a) were identified. As it was probable that this study had not identified all QTLs involved in resistance we developed an introgression line (IL) population (n = 30), each containing a ...

  12. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis.

    Science.gov (United States)

    Gong, Weili; Zhang, Huaiqiang; Tian, Li; Liu, Shijia; Wu, Xiuyun; Li, Fuli; Wang, Lushan

    2016-07-01

    The structure of xylan, which has a 1,4-linked β-xylose backbone with various substituents, is much more heterogeneous and complex than that of cellulose. Because of this, complete degradation of xylan needs a large number of enzymes that includes GH10, GH11, and GH3 family xylanases together with auxiliary enzymes. Fluorescence-assisted carbohydrate electrophoresis (FACE) is able to accurately differentiate unsubstituted and substituted xylooligosaccharides (XOS) in the heterogeneous products generated by different xylanases and allows changes in concentrations of specific XOS to be analyzed quantitatively. Based on a quantitative analysis of XOS profiles over time using FACE, we have demonstrated that GH10 and GH11 family xylanases immediately degrade xylan into sizeable XOS, which are converted into smaller XOS in a much lower speed. The shortest substituted XOS produced by hydrolysis of the substituted xylan backbone by GH10 and GH11 family xylanases were MeGlcA(2) Xyl3 and MeGlcA(2) Xyl4 , respectively. The unsubstituted xylan backbone was degraded into xylose, xylobiose, and xylotriose by both GH10 and GH11 family xylanases; the product profiles are not family-specific but, instead, depend on different subsite binding affinities in the active sites of individual enzymes. Synergystic action between xylanases and β-xylosidase degraded MeGlcA(2) Xyl4 into xylose and MeGlcA(2) Xyl3 but further degradation of MeGlcA(2) Xyl3 required additional enzymes. Synergy between xylanases and β-xylosidase was also found to significantly accelerate the conversion of XOS into xylose. PMID:27060349

  13. Delayed onset of vocal recognition in Australian sea lion pups ( Neophoca cinerea)

    Science.gov (United States)

    Pitcher, Benjamin J.; Ahonen, Heidi; Harcourt, Robert G.; Charrier, Isabelle

    2009-08-01

    In pinnipeds, maternal care strategies and colony density may influence a species’ individual recognition system. We examined the onset of vocal recognition of mothers by Australian sea lion pups ( Neophoca cinerea). At 2 months of age, pups responded significantly more to the calls of their own mothers than alien female calls demonstrating a finely tuned recognition system. However, newborn pups did not respond differentially to the calls of their mother from alien female calls suggesting that vocal recognition had not yet developed or is not yet expressed. These findings are in stark contrast to other otariid species where pups learn their mother’s voice before their first separation. Variance in colony density, pup movements, and natal site fidelity may have reduced selective pressures on call recognition in young sea lions, or alternatively, another sensory system may be used for recognition in the early stage of life.

  14. SIDEROPHORE PRODUCING Pseudomonas AS PATHOGENIC Rhisoctonia solani AND Botrytis cinerea ANTAGONISTS

    Directory of Open Access Journals (Sweden)

    Martha Páez

    2005-06-01

    Full Text Available Pseudomonas aeruginosa, Pseudomonas putida biovar B, Pseudomonas marginalis y Burkholderia cepacia, aisladas de rizosfera y filosfera de plantas de rosa y alstroemeria, identificadas por ensayos bioquímicos y cultivadas en medio King B, mostraron propiedades antagónicas contra los patógenos (se usó medio PDA agar par el cultivo Rhizoctonia solani y Botrytis cinerea. Estas propiedades coincidieron con la presencia de un sideróforo, sustancia polar con bandas de absorción en 260 nm y 402 nm. Se observó incremento del crecimiento longitudinal de las plantas, medido sobre el tallo central, por influencia de P. putida biovar B, P. aeruginosa y P. marginalis. El crecimiento de rizomas (a: 0.05 fue notorio bajo la influencia de P. marginalis.

  15. ANTIDIARRHOEL ACTIVITY OF METHANOLIC EXTRACT OF VERNONIA CINEREA (L. LESS ON FEMALE ALBINO RATS

    Directory of Open Access Journals (Sweden)

    Panday Ganesh

    2011-05-01

    Full Text Available The present study was conducted with the objectives of investigating antidiarrhoel activity of Vernonia cinerea whole plant (Family-Compositae, collected from tarai region of Uttarakhand. The plant extracts were obtained via cold extraction method. For the purpose of evaluating antidiarrhoel efficacy of methanolic extract of the plant, rats were used as test animal. The time of onset of first wet faeces increased significantly and dose dependently by the extract. It was excellent at higher doses (100 & 200 mg/kg body wt., orally. It indicated reduction in peristaltic movement of gastro intestinal tract of animals. The antidiarrhoel activity was further confirmed by its significant and dose dependent decrease in number of wet faeces and number of total faeces in comparison to rats used as control.

  16. Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking.

    Science.gov (United States)

    Van Sluyter, Steven C; Warnock, Nicholas I; Schmidt, Simon; Anderson, Peter; van Kan, Jan A L; Bacic, Antony; Waters, Elizabeth J

    2013-10-01

    White wines suffer from heat-induced protein hazes during transport and storage unless the proteins are removed prior to bottling. Bentonite fining is by far the most commonly used method, but it is inefficient and creates several other process challenges. An alternative to bentonite is the enzymatic removal of haze-forming grape pathogenesis-related proteins using added proteases. The major problem with this approach is that grape pathogenesis-related proteins are highly protease resistant unless they are heat denatured in combination with enzymatic treatment. This paper demonstrates that the protease BcAP8, from the grape fungal pathogen Botrytis cinerea , is capable of degrading chitinase, a major class of haze-forming proteins, without heat denaturation. Because BcAP8 effectively removes haze-forming proteins under normal winemaking conditions, it could potentially benefit winemakers by reducing bentonite requirements. PMID:24007329

  17. Hepatoprotective effect of Vernonia cinerea and Cumin seeds on Carbon Tetrachloride Induced Hepatic Oxidative Stress

    Directory of Open Access Journals (Sweden)

    A. Nishadh

    2013-09-01

    Full Text Available In this study, we have examined the protective effect of Vernonia cinerea against carbon tetrachloride (1.0ml / kg b.wt / day administered intraperitoneally for 2 days in male albino Wistar rats. The levels of aspartate transaminase, alanine transaminase, lactate dehydrogenase, alkaline phosphatase, bilirubin, creatinine, and urea were determined. The activities of glutathione, Vitamin C and the levels of lipid peroxides in 10% w/v liver homogenate were also determined. The CCl4 induction resulted a significant elevation in the levels of serum marker enzymes, bilirubin and creatinine with decreased urea. The activities of hepatic glutathione and vitamin C were also significantly depleted with increased lipid peroxides in CCl4 intoxicated rats. The oral administration of herbal drug alone did not show any toxicity in the liver tissue. These results suggest that the herbal drug may probably act as a natural antioxidant against CCl4 induced hepatic oxidative stress.

  18. Bovine tuberculosis in an Asian small-clawed otter (Aonyx cinerea) in the Republic of Korea.

    Science.gov (United States)

    Lee, Hyunkyoung; Kim, Jae-Myung; Jang, Yunho; Lee, Kyunghyun; Baek, Kanghyun; Lee, Boram; Kim, Ha-Young; Lee, Myoung-Heon; Ryoo, Soyoon; Bae, You-Chan; Choi, Eun-Jin; So, ByungJae

    2015-09-01

    Bovine tuberculosis caused by Mycobacterium bovis has a wide range of hosts including cattle and humans, but its incidence in otters is very rare. Our report describes a case of bovine tuberculosis in an Asian small-clawed otter (Aonyx cinerea). A deceased female otter ~2-3 years of age that was raised in an aquarium was submitted to the Animal and Plant Quarantine Agency (Anyang, Republic of Korea) for autopsy in June 2013. Following gross pathological examination, many white nodules were observed in the lungs and mesentery. The nodules showed central necrosis infiltrated with lymphocytes and macrophages and surrounded by fibrous tissue. Acid-fast bacteria were detected in the necrotic foci, but no fungi were observed. Molecular analysis led to the detection of M. bovis, which is identified in otters in some European countries such as Spain and France. PMID:26289719

  19. Biological control of botrytis cinerea growth on apples stored in modified atmospheres

    DEFF Research Database (Denmark)

    Dock, Lise Lotte; Nielsen, Per Væggemose; Floros, John D.

    1998-01-01

    The combined effect of modified-atmosphere packaging and theapplication of a bacterial antagonist (Erwinia sp.) on Botrytiscinerea growth on apples (cv. 'Golden Delicious') was investigated.Inoculated apples were stored in polyethylene bags at 5 degrees C. Theinitial gas composition in each bag was...... set according to a centralcomposite experimental design involving five levels of O2 (1 to 15%)and CO2 (0 to 15%). Control samples under ambient conditions were alsoincluded. Without the antagonist, measurements of mold colony diameterover time showed that O2 had no effect on the growth of B. cinerea......,while increased CO2 levels delayed its growth by about 4 days.Application of the antagonist resulted in a significant interactionbetween O2 and CO2. At low O2 levels, CO2 had no effect on moldgrowth, but at high O2, CO2 enhanced mold growth. O2 and theantagonist worked synergistically to reduce mold growth by...

  20. Botrytis pseudocinerea Is a Significant Pathogen of Several Crop Plants but Susceptible to Displacement by Fungicide-Resistant B. cinerea Strains.

    Science.gov (United States)

    Plesken, Cecilia; Weber, Roland W S; Rupp, Sabrina; Leroch, Michaela; Hahn, Matthias

    2015-10-01

    Botrytis cinerea is one of the most important pathogens worldwide, causing gray mold on a large variety of crops. Botrytis pseudocinerea has been found previously to occur together with B. cinerea in low abundance in vineyards and strawberry fields. Here, we report B. pseudocinerea to be common and sometimes dominant over B. cinerea on several fruit and vegetable crops in Germany. On apples with calyx end rot and on oilseed rape, it was the major gray mold species. Abundance of B. pseudocinerea was often negatively correlated with fungicide treatments. On cultivated strawberries, it was frequently found in spring but was largely displaced by B. cinerea following fungicide applications. Whereas B. cinerea strains with multiple-fungicide resistance were common in these fields, B. pseudocinerea almost never developed resistance to any fungicide even though resistance mutations occurred at similar frequencies in both species under laboratory conditions. The absence of resistance to quinone outside inhibitors in B. pseudocinerea was correlated with an intron in cytB preventing the major G143A resistance mutation. Our work indicates that B. pseudocinerea has a wide host range similar to that of B. cinerea and that it can become an important gray mold pathogen on cultivated plants. PMID:26231644

  1. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    Xiaohui eLi

    2015-06-01

    Full Text Available NADPH oxidases (also known as respiratory burst oxidase homologues, Rbohs are the enzymes that catalyze the generation of reactive oxygen species (ROS in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing (VIGS-based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of each of other SlRbohs did not affect the resistance. The SlRbohB-silenced plants accumulated more ROS and attenuated expression of defense genes after infection of B. cinerea than the nonsilenced plants. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI. Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI and drought tolerance in tomato.

  2. Dichrostachys cinerea and Acacia nilotica fruits as dry season feed supplements for goats in a semi-arid environment: Summary of a DFID funded project in Zimbabwe

    International Nuclear Information System (INIS)

    Indehiscent fruits of six tree species, common in Matabeleland were examined in in vitro and in vivo trials. The results for two of them, Acacia nilotica and Dichrostachys cinerea are presented here. Acacia nilotica contained more total phenolics than D. cinerea, but less nitrogen (N) and fibre (ADF and NDF). After 48 h incubation, in vitro OMD of both species was increased by PEG and NaOH or wood ash treatment, except when NaOH or wood ash were used in combination with PEG with D. cinerea fruits. DM intake, DMD were lowest and N-retention negative in goats fed A. nilotica as supplement. However when fed a supplement of D. cinerea, untreated or treated with PEG or NaOH, digestibility and N-retention were highest, and similar to a commercial goat meal, with the untreated fruit. In a trial in which milking does were supplemented with D. cinerea fruits, for 65 before and 65 days after kidding, kid birthweight and weaning weight were increased by supplementation. Deaths of twin-born kids were lowest in the supplemented but unmilked group. Supplementation with D. cinerea fruit resulted in improved goat performance. The only treatment applied of practical significance, wood ash, is currently being tested in an in vivo study. More research is required on detoxification of tannins, especially with A. nilotica. (author)

  3. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries.

    Science.gov (United States)

    Hong, Young-Shick; Martinez, Agathe; Liger-Belair, Gérard; Jeandet, Philippe; Nuzillard, Jean-Marc; Cilindre, Clara

    2012-10-01

    Botrytis cinerea is a fungal plant pathogen of grape berries, leading to economic and quality losses in wine production. The global metabolite changes induced by B. cinerea infection in grape have not been established to date, even though B. cinerea infection is known to cause significant changes in chemicals or metabolites. In order to better understand metabolic mechanisms linked to the infection process and to identify the metabolites associated with B. cinerea infection, (1)H NMR spectroscopy was used in global metabolite profiling and multivariate statistical analysis of berries from healthy and botrytized bunches. Pattern recognition methods, such as principal component analysis, revealed clear metabolic discriminations between healthy and botrytized berries of botrytized bunches and healthy berries of healthy bunches. Significantly high levels of proline, glutamate, arginine, and alanine, which are accumulated upon plant stress, were found in healthy and botrytized berries of botrytized bunches. Moreover, largely degraded phenylpropanoids, flavonoid compounds, and sucrose together with markedly produced glycerol, gluconic acid, and succinate, all being directly associated with B. cinerea growth, were only found in botrytized berries of botrytized bunches. This study reports that B. cinerea infection causes significant metabolic changes in grape berry and highlights that both the metabolic perturbations associated with the plant defence system and those directly derived from fungal pathogen growth should be considered to better understand the interaction between metabolic variation and biotic pathogen stress in plants. PMID:22945941

  4. Dichrostachys cinerea and Acacia nilotica fruits as dry season feed supplements for goats in a semi-arid environment: Summary of a DFID funded project in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading (United Kingdom)]. E-mail: timsmith2@btopenworld.com; Mlambo, V. [Faculty of Agriculture, University of Swaziland, P.O. Luvengo (Swaziland); Sikosana, J.L.N.; Maphosa, V. [Department of Agricultural Research and Extension, Matopos Research Station, Bulawayo (Zimbabwe); Mueller-Harvey, I.; Owen, E. [School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading (United Kingdom)

    2005-08-19

    Indehiscent fruits of six tree species, common in Matabeleland were examined in in vitro and in vivo trials. The results for two of them, Acacia nilotica and Dichrostachys cinerea are presented here. Acacia nilotica contained more total phenolics than D. cinerea, but less nitrogen (N) and fibre (ADF and NDF). After 48 h incubation, in vitro OMD of both species was increased by PEG and NaOH or wood ash treatment, except when NaOH or wood ash were used in combination with PEG with D. cinerea fruits. DM intake, DMD were lowest and N-retention negative in goats fed A. nilotica as supplement. However when fed a supplement of D. cinerea, untreated or treated with PEG or NaOH, digestibility and N-retention were highest, and similar to a commercial goat meal, with the untreated fruit. In a trial in which milking does were supplemented with D. cinerea fruits, for 65 before and 65 days after kidding, kid birthweight and weaning weight were increased by supplementation. Deaths of twin-born kids were lowest in the supplemented but unmilked group. Supplementation with D. cinerea fruit resulted in improved goat performance. The only treatment applied of practical significance, wood ash, is currently being tested in an in vivo study. More research is required on detoxification of tannins, especially with A. nilotica. (author)

  5. Growth Simulation and Discrimination of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum Using Hyperspectral Reflectance Imaging.

    Directory of Open Access Journals (Sweden)

    Ye Sun

    Full Text Available This research aimed to develop a rapid and nondestructive method to model the growth and discrimination of spoilage fungi, like Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum, based on hyperspectral imaging system (HIS. A hyperspectral imaging system was used to measure the spectral response of fungi inoculated on potato dextrose agar plates and stored at 28°C and 85% RH. The fungi were analyzed every 12 h over two days during growth, and optimal simulation models were built based on HIS parameters. The results showed that the coefficients of determination (R2 of simulation models for testing datasets were 0.7223 to 0.9914, and the sum square error (SSE and root mean square error (RMSE were in a range of 2.03-53.40×10(-4 and 0.011-0.756, respectively. The correlation coefficients between the HIS parameters and colony forming units of fungi were high from 0.887 to 0.957. In addition, fungi species was discriminated by partial least squares discrimination analysis (PLSDA, with the classification accuracy of 97.5% for the test dataset at 36 h. The application of this method in real food has been addressed through the analysis of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum inoculated in peaches, demonstrating that the HIS technique was effective for simulation of fungal infection in real food. This paper supplied a new technique and useful information for further study into modeling the growth of fungi and detecting fruit spoilage caused by fungi based on HIS.

  6. Is the lobster cockroach Nauphoeta cinerea a valuable model for evaluating mercury induced oxidative stress?

    Science.gov (United States)

    Rodrigues, N R; Nunes, M E M; Silva, D G C; Zemolin, A P P; Meinerz, D F; Cruz, L C; Pereira, A B; Rocha, J B T; Posser, T; Franco, J L

    2013-08-01

    Organic and inorganic forms of mercury are highly neurotoxic environmental contaminants. The exact mechanisms involved in mercury neurotoxicity are still unclear. Oxidative stress appears to play central role in this process. In this study, we aimed to validate an insect-based model for the investigation of oxidative stress during mercury poisoning of lobster cockroach Nauphoeta cinerea. The advantages of using insects in basic toxicological studies include the easier handling, rapid proliferation/growing and absence of ethical issues, comparing to rodent-based models. Insects received solutions of HgCl2 (10, 20 and 40mgL(-1) in drinking water) for 7d. 24h after mercury exposure, animals were euthanized and head tissue samples were prepared for oxidative stress related biochemical determinations. Mercury exposure caused a concentration dependent decrease in survival rate. Cholinesterase activity was unchanged. Catalase activity was substantially impaired after mercury treatment 40mgL(-1). Likewise, GST had a significant decrease, comparing to control. Peroxidase and thioredoxin reductase activity was inhibited at concentrations of 20mgL(-1) and 40mgL(-1) comparing to control. These results were accompanied by decreased GSH levels and increased hydroperoxide and TBARS formation. In conclusion, our results show that mercuric compounds are able to induce oxidative stress signs in insect by modulating survival rate as well as inducing impairments on important antioxidant systems. In addition, our data demonstrates for the first time that Nauphoeta cinerea represents an interesting animal model to investigate mercury toxicity and indicates that the GSH and thioredoxin antioxidant systems plays central role in Hg induced toxicity in insects. PMID:23466093

  7. Combate del moho gris (Botrytis cinerea de la fresa mediante Gliocladium roseum

    Directory of Open Access Journals (Sweden)

    N\\u00E9stor Chaves

    2004-01-01

    Full Text Available En la zona de Poasito de Alajuela, se evaluó la acción del antagonista Gliocladium roseum, en forma individual y en conjunto con los fungicidas empleados en la finca, para el combate de Botrytis cinerea en fresa; comparándose los resultados contra los obtenidos con el manejo comercial. Se empleó un diseño de bloques completos al azar con 4 repeticiones y se hicieron aplicaciones semanales del antagonista (a una concentración ³ 107 conidios ml-1 durante un período aproximado de 4 meses (julio-octubre del 2000. Se evaluó la incidencia de moho gris en condiciones de campo y poscosecha, así como el efecto de los fungicidas aplicados sobre la germinación de los conidios del antagonista, mediante una prueba in vitro. Se obtuvo un combate más efectivo de la enfermedad en condiciones de campo al emplear el biocontrolador sólo o en conjunto con los fungicidas, con respecto al manejo comercial que se hace de la misma. En poscosecha, el desempeño del antagonista fue estadísticamente igual al del combate químico. Estos resultados muestran que los fungicidas aplicados no afectan considerablemente al antagonista, lo que se corroboró con la prueba in vitro. Al emplear G. roseum para el combate de B. cinerea no sólo se logra combatir efectivamente a este, sino también el resto de los patógenos (Colletotrichum, Phytophthora, Rhizoctonia, Rhizopus,Alternaria, Fusarium, Verticillium y Penicillium, ya que el porcentaje de frutas sanas es mayor al integrar la acción del antagonista al manejo de enfermedades de la finca. Sin embargo, estas diferencias no son estadísticamente significativas. Por lo anterior se concluye que G. roseum constituye una posible alternativa de manejo integrado del moho gris en fresa.

  8. M233I Mutation in the β-Tubulin of Botrytis cinerea Confers Resistance to Zoxamide.

    Science.gov (United States)

    Cai, Meng; Lin, Dong; Chen, Lei; Bi, Yang; Xiao, Lu; Liu, Xi-li

    2015-01-01

    Three phenotypes were detected in 161 Botrytis cinerea field isolates, including Zox(S)Car(S) (sensitive to zoxamide and carbendazim), Zox(S)Car(R) (sensitive to zoxamide and resistant to carbendazim), and Zox(R)Car(R) (resistant to zoxamide and carbendazim), but not Zox(R)Car(S) (resistant to zoxamide and sensitive to carbendazim). The baseline sensitivity to zoxamide was determined with a mean EC50 of 0.76 μg/ml. Two stable Zox(R)Car(S) isolates were obtained with a resistance factor of 13.28 and 20.43; there was a fitness penalty in mycelial growth rate, sporulation, virulence and sclerotium production. The results suggest that the resistance risk of B. cinerea to zoxamide is low where benzimidazoles have not been used. E198V, E198K and M233I, were detected in the β-tubulin of Zox(S)Car(R), Zox(R)Car(R), Zox(R)Car(S), respectively. Molecular docking indicated that position 198 in β-tubulin were targets for both zoxamide and carbendazim. The mutations at 198 prevented formation of hydrogen bonds between β-tubulin and carbendazim (E198V/K), and changed the conformation of the binding pocket of zoxamide (E198K). M233I had no effect on the binding of carbendazim but resulted in loss of a hydrogen bond between zoxamide and F200. M233 is suggested to be a unique target site for zoxamide and be very important in the function of β tubulin. PMID:26596626

  9. Effect of UV-C on phytoalexin accumulation and resistance to Botrytis cinerea in stored carrots

    International Nuclear Information System (INIS)

    The effect of UV-C (220-280 nm) on the accumulation of phytoalexin and resistance to Botrytis cinerea was studied in cold-stored carrots. Carrots were surface-wounded, treated with a range of UV doses and stored at 1 degree C for 25 days in lots of 22 roots. The level of the phytoalexin, 6-methoxymellein, in each lot was then assayed in the peel of eight roots. Twelve of the remaining roots were subsequently inoculated with mycelial plugs to evaluate their level of disease resistance. The elicitation of 6-methoxymellein by UV increased significantly the resistance of the roots to B. cinerea. The effect of UV in freshly harvested carrots was curvilinear, showing an optimum between 0.44 and 0.88 Merg/cm(2). However, only a linear relationship was observed with aged (stored for 4 months at 1 degree C) carrots for the same doses, suggesting a modification in the response to UV with age. Wounding was necessary for carrots kept at 1 degree C to respond to UV treatment. Neither UV nor wounding alone caused any elicitation at this temperature. Since unwounded roots could respond to UV at 20 degrees C, it is hypothesized that the level of physiological activity of the roots determines their response to UV. An increase in the physiological activity by higher temperatures or wounding would allow the elicitation process to take place. Since UV irradiation can increase the level of disease resistance in treated tissues, this treatment has potential as an alternative method for the control of post-harvest diseases in carrots

  10. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.

    Science.gov (United States)

    Wang, Chenggang; Ding, Yezhang; Yao, Jin; Zhang, Yanping; Sun, Yijun; Colee, James; Mou, Zhonglin

    2015-09-01

    The evolutionarily conserved Elongator complex functions in diverse biological processes including salicylic acid-mediated immune response. However, how Elongator functions in jasmonic acid (JA)/ethylene (ET)-mediated defense is unknown. Here, we show that Elongator is required for full induction of the JA/ET defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) and for resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. A loss-of-function mutation in the Arabidopsis Elongator subunit 2 (ELP2) alters B. cinerea-induced transcriptome reprogramming. Interestingly, in elp2, expression of WRKY33, OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 (ORA59), and PDF1.2 is inhibited, whereas transcription of MYC2 and its target genes is enhanced. However, overexpression of WRKY33 or ORA59 and mutation of MYC2 fail to restore PDF1.2 expression and B. cinerea resistance in elp2, suggesting that ELP2 is required for induction of not only WRKY33 and ORA59 but also PDF1.2. Moreover, elp2 is as susceptible as coronatine-insensitive1 (coi1) and ethylene-insensitive2 (ein2) to B. cinerea, indicating that ELP2 is an important player in B. cinerea resistance. Further analysis of the lesion sizes on the double mutants elp2 coi1 and elp2 ein2 and the corresponding single mutants revealed that the function of ELP2 overlaps with COI1 and is additive to EIN2 for B. cinerea resistance. Finally, basal histone acetylation levels in the coding regions of WRKY33, ORA59, and PDF1.2 are reduced in elp2 and a functional ELP2-GFP fusion protein binds to the chromatin of these genes, suggesting that constitutive ELP2-mediated histone acetylation may be required for full activation of the WRKY33/ORA59/PDF1.2 transcriptional cascade. PMID:26216741

  11. Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33: purification and characterization.

    Science.gov (United States)

    Driss, Dorra; Bhiri, Fatma; Ghorbel, Raoudha; Chaabouni, Semia Ellouz

    2012-05-01

    High-level constitutive expression of xylanase GH11 from Penicillium occitanis Pol6 termed PoXyn2 was achieved using the methylotrophic yeast Pichia pastoris. The PoXyn2 cDNA encoding for a mature xylanase of 320 amino acids was subcloned into the pGAPZαA vector, to construct recombinant xylanse with six histidine residues at the N-terminal and further integrated into the genome of P. pastoris X-33 under the control of the glyceraldehyde 3-phosphate dehydrogenase (GAP) constitutive promoter. Activity assay and SDS-PAGE demonstrate that the His-tagged xylanase was extracellularly expressed in P. pastoris and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography (Ni-NTA resin). The purified PoXyn2 showed a single band on SDS-PAGE with an apparent molecular weight of 30 kDa. The xylanase activity was optimal at pH 3.0 and 50°C. The specific activity measured for Oat Spelt Xylan was 8549.85 U mg(-1). The apparent The K(M) and V(max) values were 8.33±0.7 mg ml(-1)and 58.82±0.9 μmol min(-1) ml(-1), respectively, as measured on Oat Spelt Xylan. This is the first report demonstrating the possibility of mass production of P. occitanis xylanase using P. pastoris. PMID:22402470

  12. Purification and characterization of cellulase-free low molecular weight endo β-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost.

    Science.gov (United States)

    Walia, Abhishek; Mehta, Preeti; Chauhan, Anjali; Kulshrestha, Saurabh; Shirkot, C K

    2014-10-01

    Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is first report on actinomycetes that has the ability to produce thermostable cellulase-free xylanase, which is an important industrial enzyme used in the pulp and paper industry. Strain CKMX1 was characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis and 16Sr DNA and found to be C. cellulans CKMX1.The enzyme was purified by gel permeation and anion exchange chromatography and had a molecular mass of 29 kDa. Xylanase activity was optimum at pH 8.0 and 55 °C. The enzyme was somewhat thermostable, retaining 50 % of the original activity after incubation at 50 °C for 30 min. The xylanase had K m and V max values of 2.64 mg/ml and 2,000 µmol/min/mg protein in oat spelt xylan, respectively. All metal ions except HgCl2, CoCl2 as well as CdCl2 were well tolerated and did not adversely affect xylanase activity. The deduced internal amino acid sequence of C. cellulans CKMX1 xylanase by matrix assisted laser desorption ionization-time of flight mass spectrometry resembled the sequence of β-1,4-endoxylanase, which is a member of glycoside hydrolase family 11. Some of the novel characteristics that make this enzyme potentially effective in xylan biodegradation could be useful for pulp and paper biobleaching are discussed in this manuscript. PMID:24908422

  13. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble.

    Science.gov (United States)

    Fournier, E; Giraud, T

    2008-01-01

    Prime candidates for sympatric ecological divergence include parasites that differentiate via host shifts, because different host species exert strong disruptive selection and because both hosts and parasites are continually co-evolving. Sympatric divergence may be fostered even more strongly in phytopathogenic fungi, in particular those where sex must occur on the host, which allows adaptation alone to restrict gene flow between populations developing on different hosts. We sampled populations of Botrytis cinerea, a generalist ascomycete fungus, on sympatric grapes and brambles in six regions in France. Microsatellite data were analyzed using standard population genetics, a population graph analysis and a Bayesian approach. In addition to confirming that B. cinerea reproduces sexually, our results showed that the fungal populations on the two hosts were significantly differentiated, indicating restricted gene flow, even in sympatry. In contrast, only weak geographical differentiation could be detected. These results support the possibility of sympatric divergence associated with host use in generalist parasites. PMID:18028352

  14. Effects of Botrytis cinerea and Erysiphe necator fungi on the aroma character of grape must: A comparative approach.

    Science.gov (United States)

    Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea

    2016-09-15

    Botrytis cinerea and Erysiphe necator are among the most relevant fungi in viticulture. In order to deepen our knowledge about their potential impact on wine quality, their effects on the aroma character of the initial stage of wine production, i.e. the must were studied. The main aroma compounds were determined by gas chromatography-olfactometry (GC-O) and ranked according to their relative intensities by means of aroma extract dilution analysis (AEDA). Clear differences between healthy and infected samples were observed. Botrytis cinerea had a positive impact on fruity and floral notes while several earthy smelling compounds were developed as result of the infection. Unlike in previous studies, however, we did not observe any clear differences in the quantities of earthy-mushroom-like smelling substances as result of the infection process with Erysiphe necator. PMID:27080903

  15. Chemical constituents in the essential oil of the endemic plantCotula cinerea (Del.) from the southwest of Algeria

    Institute of Scientific and Technical Information of China (English)

    Mohammed Djellouli; Houcine Benmehdi; Siham Mammeri; Abdellah Moussaoui; Laid Ziane; Noureddine Hamidi

    2015-01-01

    Objective:To extract and identify the main constituents of the essential oil ofCotula cinerea (Del.) (Asteraceae family) from southwest of Algeria. Methods: The essential oils obtained by hydrodistillation, from the aerial parts of the endemic plantCotula cinerea which was collected in the region of Sahara fromsouthwest of Algeria, were analyzed by gas chromatography-mass spectrometry. Results: A total of 33 compounds were identified representing 98.66% of the oil. The main compounds were (E)-citral (24.01%), limonene epoxide cis- (18.26%), thymol methyl ether (15.04%), carvacrol (15.03%), trans-carveol (13.79%), carvone (3.06%) and trans-piperitol (2.54%). Conclusions: The main constituents in essential oil of the aerial part of the plant from southwest of Algeria were different from that collected from southeast of Algeria or in Morocco.

  16. Saccharothrix algeriensis NRRL B-24137: biocontrol properties, colonization and induced systemic resistance towards Botrytis cinerea on grapevine and Arabidopsis thaliana

    OpenAIRE

    Muzammil, Saima

    2012-01-01

    Au cours de cette thèse, un isolat de sol de désert, Saccharothrix algeriensis NRRL B-24137, a été évalué pour ses propriétés bioactives contre le champignon phytopathogène Botrytis cinerea, pour sa colonization sur Vitis vinifera L., et Arabidopsis thaliana ainsi qu’en vue d’étudier les méchanismes de résistance systémique induite (ISR) contre B. cinerea. Les résultats obtenus nous ont permis premièrement de montrer que Sa. algeriensis NRRL B-24137 peut présenter des activités antifongiques ...

  17. Comparison of defence responses to Botrytis cinerea infection in tomato plants propagated in vitro and grown in vivo

    Directory of Open Access Journals (Sweden)

    Jacek Patykowski

    2013-12-01

    Full Text Available Defence reactions: O2 - generation, superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities after B. cinerea infection in tomato plants propagated in vitro and grown in vivo have been compared. Infection resulted in rapid O2 - generation. Superoxide dismutase activity increase was slower than O2 - response. In plants propagated in vitro catalase and guaiacol peroxidase activities after infection were induced less strongly than in plants grown in vivo. K2HPO4 pretreatment of plants grown in vitro enhanced significantly the activities of catalase and guaiacol peroxidase after infection. Slight restriction of B. cinerea infection development in in vitro propagated plants pretreated with K2HP04 was observed.

  18. Botrytis pseudocinerea, une nouvelle espèce distincte de B. cinerea responsable de la pourriture grise de la vigne.

    OpenAIRE

    Walker, Anne Sophie; Fournier, Elisabeth

    2012-01-01

    La pourriture grise de la vigne est générée par un complexe de deux espèces cryptiques, vivant en sympatrie, Botrytis cinerea est l’espèce majoritaire, responsable des dégâts à la vendange, alors que B. pseudocinerea constitue l’espèce nouvellement décrite, minoritaire dans les populations et prépondérante au printemps. Cet article a pour objectif d’établir cette seconde entité précédemment décrite comme «Botrytis groupe I» en tant qu’espèce distincte, en la comparant à B. cinerea sur le ...

  19. Chemical constituents in the essential oil of the endemic plant Cotula cinerea (Del.) from the southwest of Algeria简

    Institute of Scientific and Technical Information of China (English)

    Mohammed; Djellouli; Houcine; Benmehdi; Siham; Mammeri; Abdellah; Moussaoui; Laid; Ziane; Noureddine; Hamidi

    2015-01-01

    Objective: To extract and identify the main constituents of the essential oil of Cotula cinerea(Del.)(Asteraceae family) from southwest of Algeria.Methods: The essential oils obtained by hydrodistillation, from the aerial parts of the endemic plant Cotula cinerea which was collected in the region of Sahara from southwest of Algeria, were analyzed by gas chromatography-mass spectrometry.Results: A total of 33 compounds were identified representing 98.66% of the oil. The main compounds were(E)-citral(24.01%), limonene epoxide cis-(18.26%), thymol methyl ether(15.04%), carvacrol(15.03%), trans-carveol(13.79%), carvone(3.06%) and trans-piperitol(2.54%).Conclusions: The main constituents in essential oil of the aerial part of the plant from southwest of Algeria were different from that collected from southeast of Algeria or in Morocco.

  20. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea.

    Science.gov (United States)

    Schnee, Sylvain; Queiroz, Emerson F; Voinesco, Francine; Marcourt, Laurence; Dubuis, Pierre-Henri; Wolfender, Jean-Luc; Gindro, Katia

    2013-06-12

    Methanolic and ethanolic crude extracts of Vitis vinifera canes exhibited significant antifungal activity against the three major fungal pathogens affecting grapevines, Plasmopara viticola, Erysiphe necator and Botrytis cinerea. The active extracts were analyzed by LC-PDA-ESI-MS, and selected compounds were identified. Efficient targeted isolation using medium-pressure liquid chromatography afforded six pure constituents in one step. The structures of the isolated compounds were elucidated by NMR and HRMS. Six identified compounds (ampelopsin A, hopeaphenol, trans-resveratrol, ampelopsin H, ε-viniferin, and E-vitisin B) presented antifungal activities against P. viticola. ε-Viniferin also exhibited a low antifungal activity against B. cinerea. None of the identified compounds inhibited the germination of E. necator. The potential to develop a novel natural fungicide against the three major fungal pathogens affecting V. vinifera from viticulture waste material is discussed. PMID:23730921

  1. Effect of nitrogen fertilisation of strawberry plants on the efficacy of defence-stimulating biocontrol products against Botrytis cinerea

    OpenAIRE

    Nicot, Philippe; Bardin, Marc; Debruyne, François; Duffaud, Magali; Lecompte, François; Neu, Laurent; Pascal, Michel

    2013-01-01

    Although Nitrogen (N) is a key component in many compounds implicated in host-pathogen interactions, little is known on the possible effect of N fertilisation of the plant on the efficacy of defence-stimulating biocontrol agents. In the present work we examined the effect of five levels of N nutrition on the susceptibility of strawberry leaves to Botrytis cinerea and on the protective efficacy of two biocontrol products presumed to induce plant defence mechanisms. Two days after the app...

  2. Developmental and metabolic plasticity of white-skinned grape berries in response to botrytis cinerea during noble rot

    OpenAIRE

    Blanco-Ulate, B; Amrine, KCH; Collins, TS; Rivero, RM; Vicente, AR; Morales-Cruz, A; Doyle, CL; Ye, Z.; Allen, G.; Heymann, H; Ebeler, SE; Cantu, D.

    2015-01-01

    © 2015 American Society of Plant Biologists. All rights reserved. Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for ...

  3. Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea

    OpenAIRE

    Yuanyuan Zhang; Dongxin Huai; Qingyong Yang; Yan Cheng; Ming Ma; Daniel J Kliebenstein; Yongming Zhou

    2015-01-01

    © 2015 Zhang et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original author and source are credited. Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales o...

  4. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea

    OpenAIRE

    Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique

    2015-01-01

    Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the pr...

  5. Control biológico "in vitro" de diversos aislados de "Botrytis cinerea" Pers. ex Fr., obtenidos de plantas ornamentales

    OpenAIRE

    Roca García, Marina

    2014-01-01

    Basándonos en que el control biológico usando microorganismos constituye una expectativa esperanzadora de futuro debido a su nula toxicidad para el medio ambiente y tras los estudios realizados con las bacterias Bacillus subtilis y Bacillus velezensis y sus sustancias inhibidoras, y el hongo Trichoderma harzianum para el control de Botrytis cinerea, concluimos con lo siguiente: Los resultados mostraron que el control no fue efectivo para el caso de la aplicación in vitro del ho...

  6. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    OpenAIRE

    Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain

    2016-01-01

    Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is know...

  7. Effect of polythene Tunnels and Cultivars on Grey Mould Caused by Botrytis cinerea in Organically Grown Strawberries

    OpenAIRE

    Albartus Evenhuis; Pascal J. Wanten

    2007-01-01

    The effect of covering the crop with polythene tunnels on Botrytis fruit rot was investigated. Two cultivars were grown organically in three field experiments during 2001-2003. Botrytis cinerea is a major threat to strawberry cultivation in the field, especially when the crop is grown organically. Control of the disease in organic strawberry crops depends merely on prevention. Botrytis infection risk depends on humidity and temperature. Under optimal temperature conditions leaf wetness period...

  8. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea

    OpenAIRE

    Matthias Kretschmer; Michaela Leroch; Andreas Mosbach; Anne-Sophie Walker; Sabine Fillinger; Dennis Mernke; Henk-Jan Schoonbeek; Jean-Marc Pradier; Pierre Leroux; Waard, Maarten A. De; Matthias Hahn

    2009-01-01

    The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR) caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitorin...

  9. A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways

    OpenAIRE

    Elisa González-Domínguez; Tito Caffi; Nicola Ciliberti; Vittorio Rossi

    2015-01-01

    A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period ("inflorescences clearly visible" to "berries groat-sized"), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period ("majority of berries touching" to "berries ripe for harvest"), ...

  10. Antagonism in vitro of bacterial isolates from comercial and wild strawberry vs. Botrytis cinerea and Rhizopus stolonifer

    OpenAIRE

    Rosa Isela Plascencia Tenorio; Víctor Olalde Portugal; Hortencia Gabriela Mena Violante; Luis Fernando Ceja Torres; José Venegas González; Guadalupe Oyoque Salcedo; María Valentina Angoa Pérez

    2012-01-01

    Strawberry is a non-climacteric fruit, with a short postharvest life. The loss of fruit quality may be due, among other factors to damage caused by pathogens. Among the most common fungi are causing gray mold (Botrytis cinerea) and white rot (Rhizopus stolonifer) two phytopathogenic impact on their growth rate which allows you to colonize the surface of these caused major economic losses. An alternative to control damage in fruit postharvest pathogens usingmicrobial antagonists may be present...

  11. Testing of Eight Medicinal Plant Extracts in Combination with Kresoxim-Methyl for Integrated Control of Botrytis cinerea in Apples

    OpenAIRE

    Fielding, Burtram C; Cindy-Lee Knowles; Filicity A. Vries; Jeremy A. Klaasen

    2015-01-01

    Botrytis cinerea is a fungus that causes gray mold on many fruit crops. Despite the availability of a large number of botryticides, the chemical control of gray mold has been hindered by the emergence of resistant strains. In this paper, tests were done to determine the botryticidal efficacy of selected plant extracts alone or combined with kresoxim-methyl. In total, eight South African medicinal plants viz Artemisia afra , Elyptropappus rhinocerotis , Galenia africana , Hypoxis hemerocallide...

  12. Comparison of defence responses to Botrytis cinerea infection in tomato plants propagated in vitro and grown in vivo

    OpenAIRE

    Jacek Patykowski; Elżbieta Kuźniak; Henryk Urbaniak

    2013-01-01

    Defence reactions: O2 - generation, superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities after B. cinerea infection in tomato plants propagated in vitro and grown in vivo have been compared. Infection resulted in rapid O2 - generation. Superoxide dismutase activity increase was slower than O2 - response. In plants propagated in vitro catalase and guaiacol peroxidase activities after infection were induced less strongly than in plants grown in vivo. K2HPO4 pr...

  13. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    OpenAIRE

    Heard, Steph; Brown, Neil A.; Hammond-Kosack, Kim

    2015-01-01

    Phytopathogenic fungi form intimate associations with host plant species and cause disease. To be successful, fungal pathogens communicate with a susceptible host through the secretion of proteinaceous effectors, hydrolytic enzymes and metabolites. Sclerotinia sclerotiorum and Botrytis cinerea are economically important necrotrophic fungal pathogens that cause disease on numerous crop species. Here, a powerful bioinformatics pipeline was used to predict the refined S. sclerotiorum and B. cine...

  14. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea.

    Science.gov (United States)

    Viefhues, Anne; Schlathoelter, Ina; Simon, Adeline; Viaud, Muriel; Tudzynski, Paul

    2015-07-01

    Important for the lifestyle and survival of every organism is the ability to respond to changing environmental conditions. The necrotrophic plant pathogen Botrytis cinerea triggers an oxidative burst in the course of plant infection and therefore needs efficient signal transduction to cope with this stress. The factors involved in this process and their precise roles are still not well known. Here, we show that the transcription factor Bap1 and the response regulator (RR) B. cinerea Skn7 (BcSkn7) are two key players in the oxidative stress response (OSR) of B. cinerea; both have a major influence on the regulation of classical OSR genes. A yeast-one-hybrid (Y1H) approach proved direct binding to the promoters of gsh1 and grx1 by Bap1 and of glr1 by BcSkn7. While the function of Bap1 is restricted to the regulation of oxidative stress, analyses of Δbcskn7 mutants revealed functions beyond the OSR. Involvement of BcSkn7 in development and virulence could be demonstrated, indicated by reduced vegetative growth, impaired formation of reproductive structures, and reduced infection cushion-mediated penetration of the host by the mutants. Furthermore, Δbcskn7 mutants were highly sensitive to oxidative, osmotic, and cell wall stress. Analyses of Δbap1 bcskn7 double mutants indicated that loss of BcSkn7 uncovers an underlying phenotype of Bap1. In contrast to Saccharomyces cerevisiae, the ortholog of the glutathione peroxidase Gpx3p is not required for nuclear translocation of Bap1. The presented results contribute to the understanding of the OSR in B. cinerea and prove that it differs substantially from that of yeast, demonstrating the complexity and versatility of components involved in signaling pathways. PMID:25934690

  15. Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea

    OpenAIRE

    Houping Wang; Yanru Hu; Jinjing Pan; Diqiu Yu

    2015-01-01

    Arabidopsis VQ motif-containing proteins have recently been demonstrated to interact with several WRKY transcription factors; however, their specific biological functions and the molecular mechanisms underlying their involvement in defense responses remain largely unclear. Here, we showed that two VQ genes, VQ12 and VQ29, were highly responsive to the necrotrophic fungal pathogen Botrytis cinerea. To characterize their roles in plant defense, we generated amiR-vq12 transgenic plants by using ...

  16. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures—Botrytis cinerea interaction

    OpenAIRE

    Pietrowska, E.; Różalska, S.; Kaźmierczak, A.; Nawrocka, J.; Małolepsza, U.

    2014-01-01

    This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium br...

  17. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea

    OpenAIRE

    Li, Xiaohui; Zhang, Yafen; Huang, Lei; Ouyang, Zhigang; Hong, Yongbo; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2014-01-01

    Background Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that mediate the transduction of extracellular stimuli via receptors/sensors into intracellular responses and play key roles in plant immunity against pathogen attack. However, the function of tomato MAPK kinases, SlMKKs, in resistance against Botrytis cinerea remains unclear yet. Results A total of five SlMKK genes with one new member, SlMKK5, were identified in tomato. qRT-PCR analyses reveale...

  18. Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran.

    Science.gov (United States)

    Wood, Ian P; Cook, Nicola M; Wilson, David R; Ryden, Peter; Robertson, James A; Waldron, Keith W

    2016-05-01

    Biorefining aims to exploit the full value of plant material by sequentially extracting and valorising its components. Many studies focus on the saccharification of virgin biomass sources, but it may be more efficient to pre-extract high-value components before hydrolysis to fermentable sugars. In the current study, a bran residue from de-starched, protein depleted and xylanase treated wheat bran has been subjected to hydrothermal pretreatment, saccharification and fermentation procedures to convert the residue to ethanol. The most effective pretreatment conditions (>190 °C, 10 min) and saccharification conditions were identified following bench-scale liquid hot water pretreatment. Pre-extraction of enzymatically-hydrolysable starch and xylan reduced the release of furfural production, particularly when lower pretreatment severities were used. Pilot-scale steam explosion of the lignocellulosic residue followed by cellulase treatment and conversion to ethanol at a high substrate concentration (19%) gave an ethanol titre of ≈ 25 g/L or a yield of 93% of the theoretical maximum. PMID:26769514

  19. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

    Directory of Open Access Journals (Sweden)

    Georgi Todorov Dobrev

    2012-03-01

    Full Text Available An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme action were 3.5 and 65ºC respectively. Endoglucanase was stable at 40ºC, pH 3.0 for 210 min. The substrate specificity of the enzyme was determined with carboxymethyl cellulose, filter paper, and different glycosides. Endoglucanase displayed maximum activity in the case of carboxymethyl cellulose, with a Km value of 21.01 mg/mL. The substrate specificity and the pattern of substrate degradation suggested that the enzyme is an endoglucanase. Endoglucanase showed a synergism with endoxylanase in corn cobs hydrolysis.

  20. Expression of A. niger US368 xylanase in E. coli: purification, characterization and copper activation.

    Science.gov (United States)

    Elgharbi, Fatma; Hlima, Hajer Ben; Farhat-Khemakhem, Ameny; Ayadi-Zouari, Dorra; Bejar, Samir; Hmida-Sayari, Aïda

    2015-03-01

    The XAn11 cDNA was cloned in pET-28a(+) and the recombinant plasmid was transformed in Escherichia coli. The His-tagged r-XAn11 was purified using Ni-NTA affinity and anion exchange chromatography. The enzyme showed a specific activity of 415.1 U mg(-1) and a molecular mass of 25 kDa. It had an optimal activity at pH 5 and 50°C. It was stable in a wide range of pH and in the presence of some detergents and organic solvents. In the presence of 3mM Cu2+, the relative activity of the His-tagged r-XAn11 was enhanced by 54%. This is the first work reporting that copper is a strong activator for xylanase activity making this enzyme very attractive for future industrial applications. Molecular modeling suggests that the contact region between the catalytic site and the N-terminal His-tag fusion peptide could be responsible for the different behavior of the native and recombinant enzyme toward copper. PMID:25530001

  1. Large conformational fluctuations of the multi-domain xylanase Z of Clostridium thermocellum.

    Science.gov (United States)

    Różycki, Bartosz; Cieplak, Marek; Czjzek, Mirjam

    2015-07-01

    The cellulosome is a multi-enzyme machinery which efficiently degrades plant cell-wall polysaccharides. The multiple domains of the cellulosome complexes are often tethered to one another by intrinsically disordered regions. The properties and functions of these disordered linkers are unknown to a large extent. In this work, we study the conformational variability of one component of the cellulosome - the multi-domain xylanase Z (XynZ) of Clostridium thermocellum. We use a coarse-grained protein model to efficiently simulate conformations of the enzyme. Our simulation results are in excellent agreement with data from small angle X-ray scattering experiments, which validates the simulation outcome. Both in the presence and absence of the cohesin domain, the XynZ enzyme appears to be flexible in the sense that it takes various compact and extended conformations. The physical interactions between the individual domains are rather weak and transient, and the XynZ enzyme is held together mainly by the flexible linkers connecting the domains. The end-to-end distance distributions for the flexible linkers can be rationalized by the excluded volume effect. Taken together, our results provide a detailed picture of the conformational ensemble of the XynZ enzyme in solution. PMID:26008791

  2. Effect of temperature on the morphological characteristics of Botrytis cinerea and its correlated with the genetic variability

    Institute of Scientific and Technical Information of China (English)

    Jorge G Fernndez; Martn A Fernndez-Baldo; Gabriela Sansone; Viviana Calvente; Delia Benuzzi; Eloy Salinas; Julio Raba; Mara I Sanz

    2014-01-01

    Objective: To study the effect of temperature on the morphological characteristics of Botrytiscinerea (B. cinerea) and its correlated with the genetic variability. B. cinerea is a plant-pathogenic fungus that produces the disease known as grey mould in a wide variety of agriculturally important hosts in many countries.Methods:Six strains from different host collected have been isolated and characterized by several methods as mycelial growth, fungicide resistance, pathogenicity and the effects of the temperature. Also was analyzed by PCR and distinguished by the presence or absence of transposable elements.Results:Results showed that clear morphological differences exist between strains at the temperature of 4, 12 and 28 °C. All strains analyzed molecularly were classified as Group II (transposa-type). Demonstrating a negative correlation between mycelial growth and other characteristics as the fungicide resistance and pathogenicity. Lastly, it is difficult to establish relationships phenotypic and genotypic between strains of B. cinerea.Conclusions:The results indicated that the mycelial growth, resistance at fungicide and pathogenicity are independent of the characteristics molecular, however, are dependent of a factor such as temperature.

  3. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  4. Biological control of Botrytis cinerea using the antagonistic and endophytic Burkholderia cepacia Cs5 for vine plantlet protection.

    Science.gov (United States)

    Kilani-Feki, Olfa; Jaoua, Samir

    2011-11-01

    Antifungal activity of the Burkholderia cepacia Cs5 was tested in vitro and in vivo for the control of Botrytis cinerea . Bacterial biomass was significantly improved by the amendment of ZnSO(4), Mo(7)(NH(4))(6)O(24), and mannitol to the NBY medium; consequently, the amount of the secreted fungicides was increased. The quantification of B. cinerea inhibition, in liquid and solid conditions, showed an important sensitivity of this fungus to the strain Cs5 fungicides. Microscopic monitoring impact of these fungicides on mycelium structure showed an important increase in their diameter and ramifications in the presence of 0.75% supernatant. For the in vivo application of the strain Cs5, Vitis vinifera plantlets were inoculated with a Cs5 bacterial suspension, then with B. cinerea spores. The plantlets protection was total and durable when these two inoculations were made 3 weeks apart, which is the time for the endophytic bacterium to colonize the plantlets up to the top leaves. This protection is due to Cs5 antagonism and the elicitation of the plantlets self-defense via the root overgrowth. PMID:22004162

  5. Effect of polythene Tunnels and Cultivars on Grey Mould Caused by Botrytis cinerea in Organically Grown Strawberries

    Directory of Open Access Journals (Sweden)

    Albartus Evenhuis

    2006-01-01

    Full Text Available The effect of covering the crop with polythene tunnels on Botrytis fruit rot was investigated. Two cultivars were grown organically in three field experiments during 2001-2003. Botrytis cinerea is a major threat to strawberry cultivation in the field, especially when the crop is grown organically. Control of the disease in organic strawberry crops depends merely on prevention. Botrytis infection risk depends on humidity and temperature. Under optimal temperature conditions leaf wetness period necessary for infection of strawberry flowers decreases (Bulger et al., 1997. Prevention or shortening of the leaf wetness period might help to reduce infection risk of strawberries. Cv. Elsanta proved less susceptible to B. cinerea than cv. Darselect, thus choosing an appropriate cultivar is a helpful means to control grey mould. Covering the crop with polythene tunnels effectively reduced the infection risk of B. cinerea on strawberry flowers. Mechanisms to regulate the temperature in the tunnel are necessary to ensure fruit quality and should be investigated further.

  6. Effect of polythene Tunnels and Cultivars on Grey Mould Caused by Botrytis cinerea in Organically Grown Strawberries

    Directory of Open Access Journals (Sweden)

    Albartus Evenhuis

    2006-12-01

    Full Text Available The effect of covering the crop with polythene tunnels on Botrytis fruit rot was investigated. Two cultivars were grown organically in three field experiments during 2001-2003. Botrytis cinerea is a major threat to strawberry cultivation in the field, especially when the crop is grown organically. Control of the disease in organic strawberry crops depends merely on prevention. Botrytis infection risk depends on humidity and temperature. Under optimal temperature conditions leaf wetness period necessary for infection of strawberry flowers decreases (Bulger et al., 1997. Prevention or shortening of the leaf wetness period might help to reduce infection risk of strawberries. Cv. Elsanta proved less susceptible to B. cinerea than cv. Darselect, thus choosing an appropriate cultivar is a helpful means to control grey mould. Covering the crop with polythene tunnels effectively reduced the infection risk of B. cinerea on strawberry flowers. Mechanisms to regulate the temperature in the tunnel are necessary to ensure fruit quality and should be investigated further.

  7. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection

    Directory of Open Access Journals (Sweden)

    Janick eMathys

    2012-05-01

    Full Text Available In this study, the molecular basis of the induced systemic resistance (ISR in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime and after (ISR-boost additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance (SAR, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance towards secondary infections. Treatment with Trichoderma hamatum T382 primes the plant (ISR-prime, resulting in an accelerated activation of the defense response against Botrytis cinerea during ISR-boost and a subsequent moderation of the Botrytis cinerea induced defense response (BIDR. Microarray results were confirmed for representative genes by qRT-PCR, by analysis of transgenic plants expressing relevant promoter-GUS constructs and by phenotypic analysis of mutants affected in various defense-related pathways, thereby proving the validity of our approach.

  8. Transformation of Botrytis cinerea with a Green Fluorescent Protein (GFP Gene for the Study of Host-pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Xiu-Zhen Li

    2007-01-01

    Full Text Available Botrytis cinerea is a plant pathogenic fungus that causes diseases generally known as gray mold in a wide variety of agriculturally important crops. To effectively reduce gray mold diseases and minimize synthetic chemical use on fruits pre- and postharvest, it is necessary to have an understanding on latent infections and the behaviours of the pathogen under various treatments. We described here a procedure for B. cinerea transformation based on particle bombardment. Utilising a co-transformation system, we successfully introduced a Green Fluorescent Protein (GFP reporter gene and a hygromycin B resistant (HyR selectable marker into the fungal conidia. Within the five HyR positive colonies, one isolate BC-2b that displayed strong green fluorescence under a fluorescent compound microscope confirmed the GFP gene insertion by direct PCR. Morphological observation, cultural evaluation and pathogenicity tests on flower petals and fruits of strawberry revealed that the GFP transformant of B. cinerea maintained the characteristics of the wild type isolate and was able to express the GFP gene in hyphae and conidia of the fungus both in vitro and in vivo. This proved that the transformant could be a powerful tool for our future studies on the interactions between the pathogen and its fruit hosts.

  9. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection.

    Science.gov (United States)

    Birkenbihl, Rainer P; Diezel, Celia; Somssich, Imre E

    2012-05-01

    The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph. PMID:22392279

  10. Xylanase supplementation of a wheat-based diet improved nutrient digestion and mRNA expression of intestinal nutrient transporters in broiler chickens infected with Clostridium perfringens.

    Science.gov (United States)

    Guo, Shuangshuang; Liu, Dan; Zhao, Xu; Li, Changwu; Guo, Yuming

    2014-01-01

    Necrotic enteritis caused by Clostridium perfringens has become prevalent in the European Union due to the withdrawal of antibiotics in poultry feed. In an experiment with a 2 × 2 factorial arrangement, 336 one-day-old male broiler chicks (Ross 308) were assigned to 4 groups with or without C. perfringens challenge and fed wheat-based diets supplemented with or without xylanase at 5,500 U/kg of diet. The study aimed to investigate effects of xylanase addition on growth performance as well as nutrient digestion and absorption of C. perfringens-infected broilers. Before challenge (d 0-14), xylanase-supplemented birds had greater ADG and lower feed conversion ratio (FCR; P Clostridium perfringens infection decreased AME values and apparent ileal digestibility of DM of diets (P perfringens infection (P perfringens infection and elevated apparent ileal digestibility of CP and mRNA expression of nutrient transporters in challenged birds. PMID:24570428

  11. Crystallization and preliminary X-ray analysis of a cold-active endo-β-1,4-d-xylanase from glycoside hydrolase family 8

    International Nuclear Information System (INIS)

    The crystallization and preliminary X-ray analysis of a cold-active endo-β-1,4-d-xylanase is described. The crystals diffracted to 2.7 Å resolution. Endo-β-1,4-d-xylanases are used in a multitude of industrial applications. Native crystals of a cold-adapted xylanase from glycoside hydrolase family 8 were obtained by the vapour-diffusion technique. The crystals belonged to space group I222, with unit-cell parameters a = 46.6, b = 110.8, c = 150.2 Å at 100 K, and diffracted to 2.7 Å resolution at a synchrotron source. The asymmetric unit is likely to contain one molecule, with a VM of 2.07 Å3 Da−1, corresponding to a solvent content of ∼40%

  12. Phylogenetic analysis of β-xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes

    Science.gov (United States)

    Álvarez-Cervantes, Jorge; Díaz-Godínez, Gerardo; Mercado-Flores, Yuridia; Gupta, Vijai Kumar; Anducho-Reyes, Miguel Angel

    2016-01-01

    In this paper, the amino acid sequence of the β-xylanase SRXL1 of Sporisorium reilianum, which is a pathogenic fungus of maize was used as a model protein to find its phylogenetic relationship with other xylanases of Ascomycetes and Basidiomycetes and the information obtained allowed to establish a hypothesis of monophyly and of biological role. 84 amino acid sequences of β-xylanase obtained from the GenBank database was used. Groupings analysis of higher-level in the Pfam database allowed to determine that the proteins under study were classified into the GH10 and GH11 families, based on the regions of highly conserved amino acids, 233–318 and 180–193 respectively, where glutamate residues are responsible for the catalysis. PMID:27040368

  13. Aspects microbiologiques de la production par fermentation solide des endo-beta-1,4-xylanases de moisissures : le cas de Penicillium canescens

    Directory of Open Access Journals (Sweden)

    Assamoi AA.

    2009-01-01

    Full Text Available Microbial aspects of endo-β-1,4-xylanase production in solid-state fermentation by Penicillia: the case of Penicillium canescens. Production of xylanases by Penicillium canescens 10-10c is the research object in Walloon Center of Industrial Biology. Previous works used submerged or liquid fermentation. The actual works are oriented more and more towards solid fermentation from agricultural or agro-alimentary residues. In addition to the valorization of these residues, solid-state fermentation reaches an increasingly significant interest in various other fields like the biological breakdown of the solid residues, the bioremediation of the organic pollutants in the grounds and the reduction of the air pollution by the biofiltration. Xylanase is an industrial enzyme used in general in extraction and clarification processes. P. canescens can produce an activity of it, particularly in its balanced forms of xylanases, beta-xylosidase and arabinosidase, and not contaminated by cellulolytic and amylolytic activities. It is a hyper producing strain of xylanase. The production rate is one of the highest in literature (535 U.ml-1 and 9,632 U.g-1 in Erlenmeyer flasks, in submerged and solid state fermentation, respectively. The biobleaching activity of the cellulose pulp by the purified enzyme is higher than a commercial preparation of xylanases from Trichoderma longibrachiatum used industrially. It has a complete hydrolysis degree of 40% (on glucuronoxylan and 35% (on arabinoxylan at 55°C and at pH of 5.9. These characteristics lead to many industrial applications of this enzyme. That is why the optimization of its production by the solid-state fermentation at the laboratory scale in order to define a policy for the industrial transposition later is carried out. This article presents a summary of the scientific literature on this subject.

  14. Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses

    International Nuclear Information System (INIS)

    Postharvest diseases cause considerable losses to harvested crops. Among them, gray mold (Botrytis cinerea) is a major problem of exporting to cut rose flowers into Korea. Irradiation treatment is an alternative to phytosanitary purposes and a useful nonchemical approach to the control of postharvest diseases. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against B. cinerea on cut rose varieties, ‘Shooting Star’ and ‘Babe’. The irradiating dose required to reduce the population by 90%, D10, was 0.99 kGy. Gamma irradiation showed complete inhibition of spore germination and mycelial growth of B. cinerea, especially 4.0 kGy in vitro. Antifungal activity of gamma irradiation on rose B. cinerea is a dose-dependent manner. A significant phytotoxicity such as bent neck in cut rose quality was shown from gamma irradiation at over 0.4 kGy (p<0.05) in both varieties. Although there is no significant difference in both varieties for fresh weight, in the case of flower rate, ‘Babe’ shows more sensitivity than ‘Shooting Star’. In vivo assays demonstrated that established doses in in vitro, over 4 kGy, could completely inactive fungal pathogens, but such high doses can cause severe flowers damage. Thus, to eliminate negative impact on their quality, gamma irradiation was evaluated at lower doses in combination with an eco-friendly chemical, sodium dichloroisocyanurate (NaDCC) to examine the inhibition of B. cinerea. Intriguingly, only the combined treatment with 0.2 kGy of gamma irradiation and 70 ppm of NaDCC exhibited significant synergistic antifungal activity against blue mold decay in both varieties. Together, these results suggest that a synergistic effect of the combined treatment with gamma irradiation and NaDCC can be efficiently used to control the postharvest diseases in cut rose flowers, and will provide a promising technology for horticulture products for exportation. - Highlights: • Gamma irradiation and Na

  15. Effect of polyols on thermostability of xylanase from a tropical isolate of Aureobasidium pullulans and its application in prebleaching of rice straw pulp

    OpenAIRE

    Bankeeree, Wichanee; Lotrakul, Pongtharin; Prasongsuk, Sehanat; Chaiareekij, Somporn; Eveleigh, Douglas E.; Kim, Seung Wook; Punnapayak, Hunsa

    2014-01-01

    In an attempt to find a thermostable xylanase enzyme for potential application in the pretreatment prior to H2O2 bleaching of paper pulp for industry, an extracellular xylanase from Aureobasidium pullulans CBS 135684 was purified 17.3-fold to apparent homogeneity with a recovery yield of 13.7%. Its molecular mass was approximately 72 kDa as determined by SDS-PAGE. The optimal pH and temperature for activity of the purified enzyme were pH 6.0 and 70°C, respectively. The enzyme was relatively s...

  16. Isolation and Selection of Epiphytic Yeast for Biocontrol of Botrytis cinerea Pers. on Table Grapes Aislación y Selección de Levaduras Epífitas para el Biocontrol de Botrytis cinerea Pers. en Uva de Mesa

    OpenAIRE

    Marisol Vargas; Felipe Garrido; Nelson Zapata; Maritza Tapia

    2012-01-01

    Botrytis cinerea Pers., the causal agent of gray mold, infects more than 200 plant species. This pathogen has traditionally been controlled by fungicides. However, with the increasing demand for pesticide-free foods new control strategies are needed. The objective of this study was to isolate and select grapevine (Vitis vinifera L.) epiphytic yeasts for the biocontrol of B. cinerea in table grapes. Of the total isolated yeasts (n = 256), 32 exhibited mycelial growth inhibition in dual culture...

  17. Antenna contact and agonism in the male lobster cockroach, Nauphoeta cinerea.

    Science.gov (United States)

    Chou, Szu-Ying; Huang, Zachary Y; Chen, Shu-Chun; Yang, Rou-Ling; Kou, Rong

    2007-08-01

    On any given day, about 35% of 80- to 85-day-old socially naïve male (SNM) lobster cockroaches (Nauphoeta cinerea) spontaneously adopted an aggressive posture (AP) without encountering another male [spontaneous AP (SAP)]. Although SAP SNMs showed significantly higher release of the pheromone 3-hydroxy-2-butanone (3H-2B) than non-SAP SNMs, there was no significant difference in hemolymph juvenile hormone (JH) III titer. When different body parts were tested for induction of the attack behavior, the antenna was found to be the most effective. After 1 min of contact with an antenna from another SAP SNM, attack behavior was induced in 100% of SAP and 76.2% of non-SAP SNMs, and the JH III titer was significantly increased in all responders. Among the non-SAP SNMs, the JH III titer before antenna contact was significantly lower in the non-responders than in the responders, and, although the JH III increase induced by 1 min antenna contact was similar between responders and non-responders, the final JH III titer of the non-responders was significantly lower. A similar attack response, JH III titer change, and 3H-2B release were seen when the individual's own antenna was used. After 5 min of contact with an antenna from another SAP SNM, attack behavior was induced in 100% of SAP and 82% of non-SAP SNMs; in the former, 3H-2B release was similar before and after antenna contact, but the JH III titer was significantly increased after antenna contact, while, in the latter, both 3H-2B release and JH III titer were significantly increased after antenna contact. Among the non-SAP SNMs, JH III titer in the non-responders was not elevated after 5 min antenna contact, and was significantly lower than that in the responders. A pentane-washed antenna did not induce attack behavior or increase the hemolymph JH III titer, and a pentane-washed antenna coated with 3H-2B also failed to induce attack behavior. These results indicate that N. cinerea male-male agonistic interactions, to

  18. Independent Emergence of Resistance to Seven Chemical Classes of Fungicides in Botrytis cinerea.

    Science.gov (United States)

    Fernández-Ortuño, Dolores; Grabke, Anja; Li, Xingpeng; Schnabel, Guido

    2015-04-01

    Gray mold, caused by the fungal pathogen Botrytis cinerea, is one of the most destructive diseases of small fruit crops and control is largely dependent on the application of fungicides. As part of a region-wide resistance-monitoring program that investigated 1,890 B. cinerea isolates from 189 fields in 10 states of the United States, we identified seven isolates (0.4%) from five locations in four different states with unprecedented resistance to all seven Fungicide Resistance Action Committee (FRAC) codes with single-site modes of action including FRAC 1, 2, 7, 9, 11, 12, and 17 registered in the United States for gray mold control. Resistance to thiophanate-methyl, iprodione, boscalid, pyraclostrobin, and fenhexamid was based on target gene mutations that conferred E198A and F200Y in β-tubulin, I365N/S in Bos1, H272R/Y in SdhB, G143A in Cytb, and T63I and F412S in Erg27. Isolates were grouped into MDR1 and MDR1h phenotypes based on sensitivity to fludioxonil and variations in transcription factor mrr1. MDR1h isolates had a previously described 3-bp deletion at position 497 in mrr1. Expression of ABC transporter atrB was increased in MDR1 isolates but highest in MDR1h isolates. None of the isolates with seven single resistances (SR) had identical nucleotide variations in target genes, indicating that they emerged independently. Multifungicide resistance phenotypes did not exhibit significant fitness penalties for the parameters used in this study, but MDR1h isolates produced more sclerotia at low temperatures and exhibited increased sensitivity to salt stress. In this study we show that current resistance management strategies have not been able to prevent the geographically independent development of resistance to all seven site-specific fungicides currently registered for gray mold control in the United States and document the presence of MDR1h in North America. PMID:25317841

  19. Heterologous Expression of Family 10 Xylanases from Acidothermus cellulolyticus Enhances the Exoproteome of Caldicellulosiruptor bescii and Growth on Xylan Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ki; Chung, Daehwan; Himmel, Michael E.; Bomble, Yannick J.; Westpheling, Janet

    2016-08-22

    The ability to deconstruct plant biomass without conventional pretreatment has made members of the genus Caldicellulosiruptor the target of investigation for the consolidated processing of lignocellulosic biomass to biofuels and bioproducts. These Gram-positive bacteria are hyperthermophilic anaerobes and the most thermophilic cellulolytic organisms so far described. They use both C5 and C6 sugars simultaneously and have the ability to grow well on xylan, a major component of plant cell walls. This is an important advantage for their use to efficiently convert biomass at yields sufficient for an industrial process. For commodity chemicals, yield from substrate is perhaps the most important economic factor. In an attempt to improve even further the ability of C. bescii to use xylan, we introduced two xylanases from Acidothermus cellulolyticus. Acel_0180 includes tandem carbohydrate-binding modules (CBM2 and CBM3) located at the C-terminus, one of which, CBM2, is not present in C. bescii. Also, the sequences of Xyn10A and Acel_0180 have very little homology with the GH10 domains present in C. bescii. For these reasons, we selected these xylanases as potential candidates for synergistic interaction with those in the C. bescii exoproteome. Heterologous expression of two xylanases from Acidothermus cellulolyticus in Caldicellulosiruptor bescii resulted in a modest, but significant increase in the activity of the exoproteome of C. bescii on xylan substrates. Even though the increase in extracellular activity was modest, the ability of C. bescii to grow on these substrates was dramatically improved suggesting that the xylan substrate/microbe interaction substantially increased deconstruction over the secreted free enzymes alone. We anticipate that the ability to efficiently use xylan, a major component of plant cell walls for conversion of plant biomass to products of interest, will allow the conversion of renewable, sustainable, and inexpensive plant feedstocks to

  20. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.

    Science.gov (United States)

    Rojas-Rejón, Óscar A; Poggi-Varaldo, Héctor M; Ramos-Valdivia, Ana C; Ponce-Noyola, Teresa; Cristiani-Urbina, Eliseo; Martínez, Alfredo; de la Torre, Mayra

    2016-03-01

    Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR-22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR-22 was run in the BCR using 1% alkali-pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed-batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321-326, 2016. PMID:26701152

  1. Xylanase production by Streptomyces viridosporus T7A in submerged and solid-state fermentation using agro-industrial residues

    OpenAIRE

    Luiz Romulo Alberton; Luciana Porto de Souza Vandenberghe; Ricardo Assmann; Ricardo Cancio Fendrich; José Rodriguéz-León; Carlos Ricardo Soccol

    2009-01-01

    The study of xylanase production was conducted by Streptomyces viridosporus T7A in submerged (SmF) and solid-state fermentation (SSF), using agro-industrial residues and sub-products. Napier grass, sugarcane bagasse and soybean bran were used as carbon source, substrate/support, and nitrogen source, respectively. In SmF, Napier grass (1% v/w) supplemented with soybean bran, hydroxyethylcellulose and B complex vitamins were used. Soybean bran (1.5 % w/v), B complex vitamins (0.1%), and hydroxy...

  2. Effect of temperature on the production of cellulases, xylanases and lytic enzymes by selected Trichoderma reesei mutants

    OpenAIRE

    Piotr Janas; Zdzisław Targoński

    2014-01-01

    The effect of temperature in the rangę of 26-38°C on the production of cellulases, xylanases and lytic enzymes by four mutant strains of Trichoderma reesei was analysed. On the basis of these investigations three thermosensitive strains (M-7. RUT C 30 and VTT-D-78085) which showed reduced excretion of the above mentioned enzymes as well as protein and a thermoresistant mutant (VTT-D-79I24) which grew within a temperature range of 26-34°C were characterized. Higher temperature caused an increa...

  3. Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1.

    OpenAIRE

    Li, X.L.; Z. Q. Zhang; Dean, J F; Eriksson, K E; Ljungdahl, L G

    1993-01-01

    Aureobasidium pullulans Y-2311-1 produced four major xylanases (EC 3.2.1.8) with pI values of 4.0, 7.3, 7.9, and 9.4 as revealed by isoelectric focusing and zymogram analysis when grown for 4 days on 1.0% oat spelt xylan. The enzyme with a pI of 9.4 was purified by ammonium sulfate precipitation, chromatography on a DEAE-Sephadex A-50 column, and gel filtration with a Sephadex G-75 column. The enzyme had a mass of about 25 kDa as determined by both sodium dodecyl sulfate-polyacrylamide gel el...

  4. Effect of Temperature on Xylanase II from Trichoderma reesei QM 9414: A Calorimetric, Catalytic, and Conformational Study

    OpenAIRE

    Gloria López; Pilar Estrada

    2014-01-01

    The secondary structure of xylanase II from Trichoderma reesei is lost in an apparent irreversible cooperative process as temperature is increased with a midpoint transition of 58.8 ± 0.1°C. The shift of the spectral centre of mass above 50°C is also apparently cooperative with midpoint transition of 56.3 ± 0.2°C, but the existence of two isofluorescent points in the fluorescence emission spectra suggests a non-two-state process. Further corroboration comes from differential scanning calorime...

  5. Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules.

    Science.gov (United States)

    Liu, Ming; Wang, Genzhu; Xiao, Lin; Xu, Xuanli; Liu, Xiaohui; Xu, Pingxiang; Lin, Xiukun

    2014-07-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol isolated from marine algae. Previous reports have shown that BDDE possesses cytotoxic and antibacterial activity. In the present study, we demonstrate that BDDE displays broad-spectrum antifungal activities, especially on Botrytis cinerea. BDDE inhibits the growth of B. cinerea cultured on a solid medium of potato dextrose agar (PDA) as well as on the potato dextrose broth (PDB) medium. Moreover, BDDE decreases the incidence of fruit decay and severity of strawberries infected with B. cinerea. Further studies have revealed that BDDE decreases the germination rate and inhibits the mycelial growth of B. cinerea. The inhibition mechanisms are related to the disruption of the cell membrane integrity in B. cinerea spores and newly formed germ tubes. This study also suggests that BDDE possibly interacts with DNA via intercalation and minor groove binding. The studies provide evidence that BDDE has potential application in the control of gray mold after fruit harvest and the compound could serve as a candidate or lead template for rational drug design and for the development of antifungal agents. PMID:24979270

  6. Bis(2,3-dibromo-4,5-dihydroxybenzyl Ether, a Marine Algae Derived Bromophenol, Inhibits the Growth of Botrytis cinerea and Interacts with DNA Molecules

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2014-06-01

    Full Text Available Bis(2,3-dibromo-4,5-dihydroxybenzyl ether (BDDE is a bromophenol isolated from marine algae. Previous reports have shown that BDDE possesses cytotoxic and antibacterial activity. In the present study, we demonstrate that BDDE displays broad-spectrum antifungal activities, especially on Botrytis cinerea. BDDE inhibits the growth of B. cinerea cultured on a solid medium of potato dextrose agar (PDA as well as on the potato dextrose broth (PDB medium. Moreover, BDDE decreases the incidence of fruit decay and severity of strawberries infected with B. cinerea. Further studies have revealed that BDDE decreases the germination rate and inhibits the mycelial growth of B. cinerea. The inhibition mechanisms are related to the disruption of the cell membrane integrity in B. cinerea spores and newly formed germ tubes. This study also suggests that BDDE possibly interacts with DNA via intercalation and minor groove binding. The studies provide evidence that BDDE has potential application in the control of gray mold after fruit harvest and the compound could serve as a candidate or lead template for rational drug design and for the development of antifungal agents.

  7. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation.

    Science.gov (United States)

    Romero, J J; Macias, E G; Ma, Z X; Martins, R M; Staples, C R; Beauchemin, K A; Adesogan, A T

    2016-05-01

    The objective of this experiment was to examine effects of adding 2 exogenous fibrolytic enzymes (EFE) to the total mixed ration (TMR) on the performance of lactating dairy cows (experiment 1) and the kinetics of ruminal degradation of the diet (experiment 2). Twelve EFE had been screened in a series of in vitro assays that identified the most potent EFE and their optimal doses for increasing the digestibility of bermudagrass. In experiment 1, 66 Holstein cows (21±5 d in milk) were grouped by previous milk production and parity (45 multiparous and 21 primiparous) and assigned randomly to 1 of the following 3 treatments: (1) control (CON, untreated), (2) Xylanase Plus [2A, 1mL/kg of TMR dry matter (DM); Dyadic International, Jupiter, FL], and (3) a 75:25 (vol/vol) mixture of Cellulase Plus and Xylanase Plus EFE (3A, 3.4mL/kg of TMR DM; Dyadic International). The EFE were sprayed twice daily onto a TMR (10% bermudagrass silage, 35% corn silage, 5% alfalfa-orchardgrass hay mixture, and 50% concentrates; DM basis) and fed for a 14-d training and covariate period and a 70-d measurement period. Experiment 2 aimed to examine the in situ DM ruminal degradability and ruminal fermentation measurements of the diets fed in experiment 1. Three ruminally fistulated lactating Holstein cows were assigned to the diets. The experiment had a 3×3 Latin square design with 23-d periods. In experiment 1, application of 2A increased intakes (kg/d) of DM (23.5 vs. 22.6), organic matter (21.9 vs. 20.9), and crude protein (3.9 vs. 3.7) and tended to increase yields (kg/d) of fat-corrected milk (41.8 vs. 40.7) and milk fat (1.48 vs. 1.44). In particular, 2A increased milk yield (kg/d) during wk 3 (41.2 vs. 39.8, tendency), 6 (41.9 vs. 40.1), and 7 (42.1 vs. 40.4), whereas 3A increased milk yield (kg/d) during wk 6 (41.5 vs. 40.1, tendency), 8 (41.8 vs. 40.0), and 9 (40.9 vs. 39.5, tendency). In experiment 2, EFE treatment did not affect ruminal DM degradation kinetics or ruminal pH, ammonia

  8. Morphological and molecular methods to identify butternut (Juglans cinerea) and butternut hybrids: relevance to butternut conservation.

    Science.gov (United States)

    Ross-Davis, Amy; Huang, Zhonglian; McKenna, James; Ostry, Michael; Woeste, Keith

    2008-07-01

    Butternut (Juglans cinerea L.) is a native, cold-tolerant, hard-mast species formerly valued for its nuts and wood, which is now endangered. The most immediate threat to butternut restoration is the spread of butternut canker disease, caused by the exotic fungus Sirococcus clavigignenti-juglandacearum Nair, Kostichka & Kuntz. Other threats include the hybridization of butternut with the exotic Japanese walnut (Juglans ailantifolia Carr.) and poor regeneration. The hybrids, known as buartnuts, are vegetatively vigorous, highly fecund, more resistant than butternut to butternut canker disease and difficult to identify. We review the vegetative and reproductive morphological traits that distinguish butternut from hybrids and identify those that can be used by field biologists to separate the taxa. No single trait was sufficient to separate butternut from hybrids, but pith color, lenticel size, shape and abundance, and the presence or absence of a notch in the upper margin of leaf scars, can be used in combination with other traits to identify butternuts and exclude most hybrids. In at least one butternut population, reduced symptoms of butternut canker disease were significantly associated with a dark barked phenotype. We also describe two randomly amplified polymorphic DNA (RAPD) markers that differentiate butternuts from hybrids based on DNA polymorphism. Together, these results should assist in the identification and testing of non-hybrid butternut for breeding and reintroduction of the species to its former habitats. PMID:18450577

  9. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules

    Directory of Open Access Journals (Sweden)

    Pilar eMartínez-Hidalgo

    2015-09-01

    Full Text Available Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immunity. Micromonospora strains isolated from surface sterilized nodules of alfalfa showed in vitro antifungal activity against several pathogenic fungi. Moreover, root inoculation of tomato plants with these Micromonospora strains effectively reduced leaf infection by the fungal pathogen Botrytis cinerea, despite spatial separation between both microorganisms. This induced systemic resistance, confirmed in different tomato cultivars, is long lasting. Gene expression analyses evidenced that Micromonospora stimulates the plant capacity to activate defense mechanisms upon pathogen attack. The defensive response of tomato plants inoculated with Micromonospora spp. differs from that of non-inoculated plants, showing a stronger induction of jasmonate-regulated defenses when the plant is challenged with a pathogen. The hypothesis of jasmonates playing a key role in this defense priming effect was confirmed using defense-impaired tomato mutants, since the JA-deficient line def1 was unable to display a long term induced resistance upon Micromonospora spp. inoculation.In conclusion, nodule isolated Micromonospora strains should be considered excellent candidates as biocontrol agents as they combine both direct antifungal activity against plant pathogens and the ability to prime plant immunity.

  10. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  11. Dip listening or modulation masking? Call recognition by green treefrogs (Hyla cinerea) in temporally fluctuating noise.

    Science.gov (United States)

    Vélez, Alejandro; Höbel, Gerlinde; Gordon, Noah M; Bee, Mark A

    2012-12-01

    Despite the importance of perceptually separating signals from background noise, we still know little about how nonhuman animals solve this problem. Dip listening, an ability to catch meaningful 'acoustic glimpses' of a target signal when fluctuating background noise levels momentarily drop, constitutes one possible solution. Amplitude-modulated noises, however, can sometimes impair signal recognition through a process known as modulation masking. We asked whether fluctuating noise simulating a breeding chorus affects the ability of female green treefrogs (Hyla cinerea) to recognize male advertisement calls. Our analysis of recordings of the sounds of green treefrog choruses reveal that their levels fluctuate primarily at rates below 10 Hz. In laboratory phonotaxis tests, we found no evidence for dip listening or modulation masking. Mean signal recognition thresholds in the presence of fluctuating chorus-like noises were never statistically different from those in the presence of a non-fluctuating control. An analysis of statistical effects sizes indicates that masker fluctuation rates, and the presence versus absence of fluctuations, had negligible effects on subject behavior. Together, our results suggest that females listening in natural settings should receive no benefits, nor experience any additional constraints, as a result of level fluctuations in the soundscape of green treefrog choruses. PMID:23069882

  12. Evaluation of Chemical Control of Botrytis Cinerea in Relation to Covering Red Current Shrubs

    Directory of Open Access Journals (Sweden)

    Piet Creemers

    2006-12-01

    Full Text Available Covering red currant during the development of the fruits guarantees high quality fruits and delays picking time. Because of these reasons, the number of fruit growers using cover production system is increasing. Covering red currant affects fungicide action and efficacy. Furthermore the climate conditions are altered in the shrub resulting in a different infection risk/pressure for certain fungal diseases. The effect of the timing of covering on the control of Botrytis cinerea which is the cause of the mayor fruit rot disease of red currants was studied. The results from the trials clearly show the positive effect of covering during bloom on the chemical control of Botrytis on red currant. The chemical control of plants during bloom which were covered from bloom equals that of a full season chemical control of uncovered plants or plants covered after fruit set. The full season chemical control of plants covered from bloom was only statistically better then all other objects tested in one of the two trials. Covering alone without chemical control had only a limited effect.

  13. Chemical Control of Botrytis cinerea%灰霉病的化学防治进展

    Institute of Scientific and Technical Information of China (English)

    胡伟群; 陈杰

    2002-01-01

    灰霉(Botrytis cinerea)是一种世界性的病菌,能造成葡萄、蔬菜和浆果严重的经济损失.近几年开发成功的防治灰霉病的主要药剂有嘧啶胺类(anilinopyrimidines)杀菌剂如:嘧霉胺(pyrimethanil)、嘧菌环胺(cyprodinil)、嘧菌胺(mepanipyrim);吡咯类(anilinopyyols)杀菌剂咯菌腈(fludioxonil)和酰胺类(hydroxyanilides)杀菌剂环酰菌胺(fenhexamid).嘧啶胺类最初抑制靶标位点是胱硫醚β裂解酶,以及抑制病原菌胞外蛋白酶(包括水解酶)的分泌;吡咯类咯菌腈作用于渗透调节的信号传递途径;而环酰菌胺的作用靶位尚不完全清楚,但研究表明其作用机理不同于其他类杀菌剂,因此,环酰菌胺将有可能成为治理杀菌剂抗性的有效药剂之一.

  14. Evaluation of Chemical Control of Botrytis Cinerea in Relation to Covering Red Current Shrubs

    Directory of Open Access Journals (Sweden)

    Piet Creemers

    2006-01-01

    Full Text Available Covering red currant during the development of the fruits guarantees high quality fruits and delays picking time. Because of these reasons, the number of fruit growers using cover production system is increasing. Covering red currant affects fungicide action and efficacy. Furthermore the climate conditions are altered in the shrub resulting in a different infection risk/pressure for certain fungal diseases. The effect of the timing of covering on the control of Botrytis cinerea which is the cause of the mayor fruit rot disease of red currants was studied. The results from the trials clearly show the positive effect of covering during bloom on the chemical control of Botrytis on red currant. The chemical control of plants during bloom which were covered from bloom equals that of a full season chemical control of uncovered plants or plants covered after fruit set. The full season chemical control of plants covered from bloom was only statistically better then all other objects tested in one of the two trials. Covering alone without chemical control had only a limited effect.

  15. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules.

    Science.gov (United States)

    Martínez-Hidalgo, Pilar; García, Juan M; Pozo, María J

    2015-01-01

    Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immunity. Micromonospora strains isolated from surface sterilized nodules of alfalfa showed in vitro antifungal activity against several pathogenic fungi. Moreover, root inoculation of tomato plants with these Micromonospora strains effectively reduced leaf infection by the fungal pathogen Botrytis cinerea, despite spatial separation between both microorganisms. This induced systemic resistance, confirmed in different tomato cultivars, is long lasting. Gene expression analyses evidenced that Micromonospora stimulates the plant capacity to activate defense mechanisms upon pathogen attack. The defensive response of tomato plants inoculated with Micromonospora spp. differs from that of non-inoculated plants, showing a stronger induction of jasmonate-regulated defenses when the plant is challenged with a pathogen. The hypothesis of jasmonates playing a key role in this defense priming effect was confirmed using defense-impaired tomato mutants, since the JA-deficient line def1 was unable to display a long term induced resistance upon Micromonospora spp. inoculation. In conclusion, nodule isolated Micromonospora strains should be considered excellent candidates as biocontrol agents as they combine both direct antifungal activity against plant pathogens and the ability to prime plant immunity. PMID:26388861

  16. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea

    International Nuclear Information System (INIS)

    The hydrological conditions on a site constitute one of the many factors that may affect the availability of potentially toxic trace metals for uptake by plants. Bioavailability of Cd, Mn and Zn in a contaminated dredged sediment-derived soil under different hydrological regimes was determined by measuring metal uptake by the wetland plant species Salix cinerea, both in field circumstances and in a greenhouse experiment. Longer submersion periods in the field caused lower Cd concentrations in leaves and bark. The wetland hydrological regime in the greenhouse experiment resulted in normal Cd and Zn concentrations in the leaves, while the upland hydrological regime resulted in elevated Cd and Zn concentrations in the leaves. Field observations and the greenhouse experiment suggest that a hydrological regime that creates or sustains a wetland is a potential management option that reduces metal bioavailability to willows. This would constitute a safe management option of metal-polluted, willow-dominated wetlands provided that wetland conditions can be maintained throughout the full growing season. - A hydrological regime aiming at wetland creation is a potential management option that favors reducing Cd plant availability in polluted freshwater wetlands

  17. Rapid isolation of mycoviral double-stranded RNA from Botrytis cinerea and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sepúlveda Felipe

    2011-01-01

    Full Text Available Abstract Background In most of the infected fungi, the mycoviruses are latent or cryptic, the infected fungus does not show disease symptoms, and it is phenotypically identical to a non-infected strain of the same species. Because of these properties, the initial stage in the search for fungi infected with mycoviruses is the detection of their viral genome, which in most of the described cases corresponds to double-stranded RNA (dsRNA. So to analyze a large number of fungal isolates it is necessary to have a simple and rapid method to detect dsRNA. Results A rapid method to isolate dsRNA from a virus-infected filamentous fungus, Botrytis cinerea, and from a killer strain of Saccharomyces cerevisiae using commercial minicolumns packed with CF11 cellulose was developed. In addition to being a rapid method, it allows to use small quantities of yeasts or mycelium as starting material, being obtained sufficient dsRNA quantity that can later be analyzed by agarose gel electrophoresis, treated with enzymes for its partial characterization, amplified by RT-PCR and cloned in appropriate vectors for further sequencing. Conclusions The method yields high quality dsRNA, free from DNA and ssRNA. The use of nucleases to degrade the DNA or the ssRNA is not required, and it can be used to isolate dsRNA from any type of fungi or any biological sample that contains dsRNA.

  18. Selección de hongos antagonistas para el control biológico de Botrytis cinerea en viveros forestales en Chile Screening to antagonistic fungi for Botrytis cinerea biocontrol in Chilean forest nurseries

    Directory of Open Access Journals (Sweden)

    Gloria Molina Mercader

    2006-01-01

    Full Text Available Botrytis cinerea es uno de los patógenos más importante en viveros forestales en Chile. El control de la enfermedad se ha basado en el uso de fungicidas; sin embargo, bajo ciertas condiciones de presión de enfermedad esta medida no ha sido eficaz, sumado a problemas ambientales debido a su uso excesivo. El objetivo de este estudio fue seleccionar hongos antagonistas a B. cinerea, mediante ensayos in vitro y de invernadero, y determinar su capacidad como agentes biocontroladores de este hongo en viveros forestales. Los potenciales antagonistas fueron obtenidos a partir del filoplano de plantas, colectadas desde viveros forestales. Fueron ensayadas 71 cepas de hongos, evaluadas en su capacidad para reducir la colonización y esporulación del patógeno en ensayos in vitro, mediante bioensayos en discos de hojas de Eucalyptus globulus. Las cepas seleccionadas fueron ensayadas bajo condiciones de invernadero. Las plantas de Pinus radiata y E. globulus fueron pulverizadas con el patógeno (1x10(5 conidias/ml y después tratadas con los antagonistas (1x 10(7 conidias/ml, evaluándose la incidencia y severidad de la enfermedad. En los ensayos in vitro, cuatro cepas de Trichoderma, tres de Clonostachys, cuatro de Pencillium, una de Cladosporium y otras ocho cepas de hongos no identificados redujeron significativamente la colonización y esporulación del patógeno. En los ensayos en invernadero, la cepa Clonostachys (A-10 fue capaz de reducir, tanto en P. radiata como en E. globulus la incidencia y severidad de la enfermedad. Estos resultados permiten concluir el potencial de los antagonistas seleccionados en el control de B. cinerea.Botrytis cinerea is one of the most important pathogens in Chilean forest nurseries. The disease control has been based on the use of fungicides; nevertheless, under certain conditions of disease pressure this practice has not been effective, besides its environmental problems due to its excessive use. The objective of

  19. Control of Botrytis cinerea in Eucalyptus globulus Mini-Cuttings Using Clonostachys and Trichoderma Strains Control de Botrytis cinerea en miniestacas de Eucalyptus globulus Utilizando Cepas de Clonostachys y Trichoderma

    Directory of Open Access Journals (Sweden)

    Salomé Zaldúa

    2010-12-01

    Full Text Available Botrytis cinerea Pers. ex Fr. causes the disease known as gray mold in more than 200 hosts. It is one of the most important pathogens in Chilean forest nurseries and Eucalyptus globulus Labill. is one of the most susceptible species, especially in vegetative reproduction systems. Clonostachys and Trichoderma strains were selected as potential biocontrol agents of gray mold in previous research by the authors. The objective of this study was to evaluate the effectiveness of antagonistic fungi to control B. cinerea in E. globulus mini-cuttings. Five fungi strains were tested and applied weekly, two Clonostachys and three Trichoderma (5 x 10(6 conidia mL-1. In addition, comparison treatments were also used: absolute control (water and fungicide application. The experiment was carried out under operational conditions to produce E. globulus mini-cuttings. The Clonostachys UDC-A10 and UDC-A11 strains reduce mini-cutting mortality caused by B. cinerea in 54 and 71%, respectively, and with effects similar to those achieved by fungicides. Clonostachys UDC-A11 reduces the disease progression rate with the same statistical results as fungicides. A negative effect of applying fungicides on rooting of the surviving mini-cuttings was also confirmed. These results demonstrate the effectiveness of Clonostachys as a control agent against gray mold disease in E. globulus mini-cuttings.Botrytis cinerea Pers. ex Fr. ocasiona la enfermedad conocida como moho gris en más de 200 hospederos. En Chile es uno de los patógenos más importantes en viveros forestales, siendo Eucalyptus globulus Labill. una de las especies más susceptibles, especialmente en los sistemas de reproducción vegetativa. En investigaciones previas, realizadas por los autores, se seleccionaron cepas de Clonostachys y Trichoderma como potenciales agentes de biocontrol del moho gris. El objetivo fue evaluar la eficacia de hongos antagonistas en el control de B. cinerea en mini-estacas de E

  20. Isolation and Selection of Epiphytic Yeast for Biocontrol of Botrytis cinerea Pers. on Table Grapes Aislación y Selección de Levaduras Epífitas para el Biocontrol de Botrytis cinerea Pers. en Uva de Mesa

    Directory of Open Access Journals (Sweden)

    Marisol Vargas

    2012-09-01

    Full Text Available Botrytis cinerea Pers., the causal agent of gray mold, infects more than 200 plant species. This pathogen has traditionally been controlled by fungicides. However, with the increasing demand for pesticide-free foods new control strategies are needed. The objective of this study was to isolate and select grapevine (Vitis vinifera L. epiphytic yeasts for the biocontrol of B. cinerea in table grapes. Of the total isolated yeasts (n = 256, 32 exhibited mycelial growth inhibition in dual cultures with a halo > 4 mm, and eight of these isolates inhibited > 90% of conidial germination. When evaluating increasing concentrations on conidial germination inhibition, a dose-dependent response was observed with EC90 values from 0.45 x 10(5 to 0.22 x 10(8 cells mL-1. The antagonistic activity of six yeasts against B. cinerea in table grape berries 'Flame Seedless' increased as the yeast colonization time increased from 1 to 24 h on the berries, resulting in a higher biocontrol activity on B. cinerea. These results show the effectiveness of grapevine epiphytic yeasts as biocontrol agents of B. cinerea on table grapes.Botrytis cinerea Pers., agente causal de la pudrición gris, infecta a más de 200 especies vegetales. Tradicionalmente, este patógeno ha sido controlado con fungicidas; sin embargo, la creciente demanda de alimentos libres de pesticidas hace necesario el uso de nuevas estrategias de control. El objetivo de este estudio fue aislar y seleccionar levaduras epífitas de vid (Vitis vinifera L. para el biocontrol de B. cinerea en uva de mesa. Del total de levaduras aisladas (n = 256, 32 presentaron inhibición del crecimiento micelial, en cultivos duales, con un halo > 4 mm y ocho de estos aislamientos inhibieron la germinación de conidias > 90%. Al evaluar concentraciones crecientes de levaduras sobre la inhibición de la germinación de conidias, se observó una respuesta dosis-dependiente, con valores de CE90 de 0,45 x 10(5 a 0,22 x 10(8 c