WorldWideScience

Sample records for cimarron uranium fuel plant

  1. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured /sup 235/U) startup fuels, first-recycle and equilibrium (denatured /sup 233/U) thorium--uranium LWR fuels, and to recover the plutonium generated in the /sup 238/U denaturant as well. 12 figures, 3 tables.

  2. Uranium recovery from waste of the nuclear fuel cycle plants at IPEN-CNEN/SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio A.; Ferreira, Joao C.; Zini, Josiane; Scapin, Marcos A.; Carvalho, Fatima Maria Sequeira de, E-mail: afreitas@ipen.b, E-mail: jcferrei@ipen.b, E-mail: jzini@ipen.b, E-mail: mascapin@ipen.b, E-mail: fatimamc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Sodium diuranate (DUS) is a uranium concentrate produced in monazite industry with 80% typical average grade of U{sup 3}O{sup 8}, containing sodium, silicon, phosphorus, thorium and rare earths as main impurities. Purification of such concentrate was achieved at the nuclear fuel cycle pilot plants of uranium at IPEN by nitric dissolution and uranium extraction into an organic phase using TBP/Varsol, while the aqueous phase retains impurities and a small quantity of non extracted uranium; both can be recovered later by precipitation with sodium hydroxide. Then the residual sodium diuranate goes to a long term storage at a safeguards deposit currently reaching 20 tonnes. This work shows how uranium separation and purification from such bulk waste can be achieved by ion exchange chromatography, aiming at decreased volume and cost of storage, minimization of environmental impacts and reduction of occupational doses. Additionally, the resulting purified uranium can be reused in nuclear fuel cycle.(author)

  3. Criticality Calculations for a Typical Nuclear Fuel Fabrication Plant with Low Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Hade; Nagy, Mohamed; Agamy, Said; Shaat, Mohmaed [Egyptian Atomic Energy Authority, Cairo (Egypt)

    2013-07-01

    The operations with the fissile materials such as U{sup 235} introduce the risk of a criticality accident that may be lethal to nearby personnel and can lead the facility to shutdown. Therefore, the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences. Sixty criticality accidents were occurred in the world. These are accidents divided into two categories, 22 accidents occurred in process facilities and 38 accidents occurred during critical experiments or operations with research reactor. About 21 criticality accidents including Japan Nuclear Fuel Conversion Co. (JCO) accident took place with fuel solution or slurry and only one accident occurred with metal fuel. In this study the nuclear criticality calculations have been performed for a typical nuclear fuel fabrication plant producing nuclear fuel elements for nuclear research reactors with low enriched uranium up to 20%. The calculations were performed for both normal and abnormal operation conditions. The effective multiplication factor (k{sub eff}) during the nuclear fuel fabrication process (Uranium hexafluoride - Ammonium Diuranate conversion process) was determined. Several accident scenarios were postulated and the criticalities of these accidents were evaluated. The computer code MCNP-4B which based on Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations were performed for the cases of, change of moderator to fuel ratio, solution density and concentration of the solute in order to prevent or mitigate criticality accidents during the nuclear fuel fabrication process. The calculation results are analyzed and discussed.

  4. Environmental consequences of uranium atmospheric releases from fuel cycle facility: II. The atmospheric deposition of uranium and thorium on plants.

    Science.gov (United States)

    Pourcelot, L; Masson, O; Renaud, P; Cagnat, X; Boulet, B; Cariou, N; De Vismes-Ott, A

    2015-03-01

    Uranium and thorium isotopes were measured in cypress leaves, wheat grains and lettuce taken in the surroundings of the uranium conversion facility of Malvési (South of France). The comparison of activity levels and activity ratios (namely (238)U/(232)Th and (230)Th/(232)Th) in plants with those in aerosols taken at this site and plants taken far from it shows that aerosols emitted by the nuclear site (uranium releases in the atmosphere by stacks and (230)Th-rich particles emitted from artificial ponds collecting radioactive waste mud) accounts for the high activities recorded in the plant samples close to the site. The atmospheric deposition process onto the plants appears to be the dominant process in plant contamination. Dry deposition velocities of airborne uranium and thorium were measured as 4.6 × 10(-3) and 5.0 × 10(-3) m s(-1), respectively.

  5. Transfer of Plutonium-Uranium Extraction Plant and N Reactor irradiated fuel for storage at the 105-KE and 105-KW fuel storage basins, Hanford Site, Richland Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The U.S. Department of Energy (DOE) needs to remove irradiated fuel from the Plutonium-Uranium Extraction (PUREX) Plant and N Reactor at the Hanford Site, Richland, Washington, to stabilize the facilities in preparation for decontamination and decommissioning (D&D) and to reduce the cost of maintaining the facilities prior to D&D. DOE is proposing to transfer approximately 3.9 metric tons (4.3 short tons) of unprocessed irradiated fuel, by rail, from the PUREX Plant in the 200 East Area and the 105 N Reactor (N Reactor) fuel storage basin in the 100 N Area, to the 105-KE and 105-KW fuel storage basins (K Basins) in the 100 K Area. The fuel would be placed in storage at the K Basins, along with fuel presently stored, and would be dispositioned in the same manner as the other existing irradiated fuel inventory stored in the K Basins. The fuel transfer to the K Basins would consolidate storage of fuels irradiated at N Reactor and the Single Pass Reactors. Approximately 2.9 metric tons (3.2 short tons) of single-pass production reactor, aluminum clad (AC) irradiated fuel in four fuel baskets have been placed into four overpack buckets and stored in the PUREX Plant canyon storage basin to await shipment. In addition, about 0.5 metric tons (0.6 short tons) of zircaloy clad (ZC) and a few AC irradiated fuel elements have been recovered from the PUREX dissolver cell floors, placed in wet fuel canisters, and stored on the canyon deck. A small quantity of ZC fuel, in the form of fuel fragments and chips, is suspected to be in the sludge at the bottom of N Reactor`s fuel storage basin. As part of the required stabilization activities at N Reactor, this sludge would be removed from the basin and any identifiable pieces of fuel elements would be recovered, placed in open canisters, and stored in lead lined casks in the storage basin to await shipment. A maximum of 0.5 metric tons (0.6 short tons) of fuel pieces is expected to be recovered.

  6. US-Russian collaboration for enhancing nuclear materials protection, control, and accounting at the Elektrostal uranium fuel-fabrication plant

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H. [Los Alamos National Lab., NM (United States); Allentuck, J. [Brookhaven National Lab., Upton, NY (United States); Barham, M. [Oak Ridge National Lab., TN (United States); Bishop, M. [Sandia National Labs., Albuquerque, NM (United States); Wentz, D. [Lawrence Livermore National Lab., CA (United States); Steele, B.; Bricker, K. [Pacific Northwest National Lab., Richland, WA (United States); Cherry, R. [USDOE, Washington, DC (United States); Snegosky, T. [Dept. of Defense, Washington, DC (United States). Defense Nuclear Agency

    1996-09-01

    In September 1993, an implementing agreement was signed that authorized collaborative projects to enhance Russian national materials control and accounting, physical protection, and regulatory activities, with US assistance funded by the Nunn-Lugar Act. At the first US-Russian technical working group meeting in Moscow in February 1994, it was decided to identify a model facility where materials protection, control, and accounting (MPC and A) and regulatory projects could be carried out using proven technologies and approaches. The low-enriched uranium (LEU or RBMK and VVER) fuel-fabrication process at Elektrostal was selected, and collaborative work began in June 1994. Based on many factors, including initial successes at Elektrostal, the Russians expanded the cooperation by proposing five additional sites for MPC and A development: the Elektrostal medium-enriched uranium (MEU or BN) fuel-fabrication process and additional facilities at Podolsk, Dmitrovgrad, Obninsk, and Mayak. Since that time, multilaboratory teams have been formed to develop and implement MPC and A upgrades at the additional sites, and much new work is underway. This paper summarizes the current status of MPC and A enhancement projects in the LEU fuel-fabrication process and discusses the status of work that addresses similar enhancements in the MEU (BN) fuel processes at Elektrostal, under the recently expanded US-Russian MPC and A cooperation.

  7. A study of uranium uptake in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, A.; Singh, Surinder; Virk, H.S. (Guru Nanak Dev Univ., Amritsar (India). Dept. of Physics)

    1988-01-01

    A fission track technique has been used to study the uptake of uranium in Tomato Plant. Lexan plastic has been employed as the external detector for recording induced fission tracks due to uranium. The uranium uptake rate is found to increase as the growth proceeds. The uranium concentration is also determined in Phlox, Calendula and Dog Flower, grown under normal conditions. The uranium content is found to vary in different parts of the plants. (author).

  8. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  9. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  10. Container concept for the PBMR fuel plant

    Energy Technology Data Exchange (ETDEWEB)

    Braehler, G.; Kelly, M.; Sauer, L.; Welbers, P. [NUKEM Technologies GmbH (Germany)

    2009-07-01

    This presentation describes the types and the characteristics of the containers uniquely designed for and used in the PBMR Fuel Plant in Pelindaba, South Africa. The PBMR Fuel Plant is designed to manufacture so called Fuel Spheres for the High Temperature Reactor which shall be built in Koeberg near Cape Town. The PBMR fuel is based on a proven, high quality German fuel design consisting of 10% enriched Uranium triple-coated isotropic (LEU-TRISO) particles contained in a moulded graphite sphere. A coated particle comprises a kernel of Uranium dioxide surrounded by different layers. A fuel sphere consists of 9 g of Uranium (some 15 000 particles) and has a diameter of 60 mm; the total mass of a fuel sphere is 210 g. During normal operation the PBMR core contains a load of 456,000 fuel spheres. The PBMR Fuel plant is designed to produce 270,000 fuel spheres a year with the option to doubling the throughput. Two basic types of containers are foreseen for the plant, i.e. the Safe Geometry Containers for transportation and storage of Uranium bearing material and Containers in non restricted geometry for solid raw and auxiliary materials required by the different processes. Unlike other concepts in fuel element plants, the Safe Geometry Containers are allowed to be stored, from a criticality point of view, everywhere in the plant. Special identification measures, physical and IT based, prevent wrong material being processed. The sub-critical configuration is still maintained after the specified fire scenario for the PBMR Fuel Plant. (orig.)

  11. Colloids generation from metallic uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  12. Criticality accident in uranium fuel processing plant. Emergency medical care and dose estimation for the severely overexposed patients

    Energy Technology Data Exchange (ETDEWEB)

    Akashi, Makoto; Ishigure, Nobuhito [National Inst. of Radiological Sciences, Chiba (Japan)

    2000-08-01

    A criticality accident occurred in JCO, a plant for nuclear fuel production in 1999 and three workers were exposed to extremely high-level radiation (neutron and {gamma}-ray). This report describes outlines of the clinical courses and the medical cares for the patients of this accident and the emergent medical system for radiation accident in Japan. One (A) of the three workers of JCO had vomiting and diarrhea within several minutes after the accident and another one (B) had also vomiting within one hour after. Based on these evidences, the exposure dose of A and B were estimated to be more than 8 and 4 GyEq, respectively. Generally, acute radiation syndrome (ARS) is assigned into three phases; prodromal phase, critical or manifestation phase and recovery phase or death. In the prodromal phase, anorexia, nausea, vomiting and diarrhea often develop, whereas the second phase is asymptotic. In the third phase, various syndromes including infection, hemorrhage, dehydration shock and neurotic syndromes are apt to occur. It is known that radiation exposure at 1 Gy or more might induce such acute radiation syndromes. Based on the clinical findings of Chernobyl accident, it has been thought that exposure at 0.5 Gy or more causes a lowering of lymphocyte level and a decrease in immunological activities within 48 hours. Lymphocyte count is available as an indicator for the evaluation of exposure dose in early phase, but not in later phase The three workers of JCO underwent chemical analysis of blood components, chromosomal analysis and analysis of blood {sup 24}Na immediately after the arrival at National Institute of Radiological Sciences via National Mito Hospital specified as the third and the second facility for the emergency medical care system in Japan, respectively. (M.N.)

  13. Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor

    Science.gov (United States)

    Frybort, Jan

    2014-11-01

    Thorium fuel is considered as a viable alternative to the uranium fuel used in the current generation of nuclear power plants. Switch from uranium to thorium means a complete change of composition of the spent nuclear fuel produced as a result of the fuel depletion during operation of a reactor. If the Th-U fuel cycle is implemented, production of minor actinides in the spent fuel is negligible. This is favourable for the spent fuel disposal. On the other hand, thorium fuel utilisation is connected with production of 232U, which decays via several alpha decays into a strong gamma emitter 208Tl. Presence of this nuclide might complicate manipulations with the irradiated thorium fuel. Monte-Carlo computation code MCNPX can be used to simulate thorium fuel depletion in a VVER-1000 reactor. The calculated actinide composition will be analysed and dose rate from produced gamma radiation will be calculated. The results will be compared to the reference uranium fuel. Dependence of the dose rate on time of decay after the end of irradiation in the reactor will be analysed. This study will compare the radiological hazard of the spent thorium and uranium fuel handling.

  14. Uranium contamination due to nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martin Sanchez, A.; Vera Tome, F.; Diaz Bejarano, J.; Garcia Aparicio, A. (Univ. de Extremadura, Badajoz (Spain). Dept. de Fisica)

    1992-01-01

    Measurements of uranium isotopes and their daughters in the natural series were performed in the cooling reservoirs and their neighborhood of two nuclear power plants, [alpha] and [gamma] spectrometry of samples were used to measure the natural and artificial radionuclides. The nuclear power plants are in the southwest of Spain and one of them has been in operation since 1982, the other plant is in the construction phase. We compare the results obtained for the two sites. (orig.).

  15. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  16. Chemical state of fission products in irradiated uranium carbide fuel

    Science.gov (United States)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  17. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  18. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-27

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can cause collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.

  19. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, M.W. [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States); Thompson, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  20. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  1. Equipment specifications for an electrochemical fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Hemphill, Kevin P [Los Alamos National Laboratory

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  2. Recovery and removal of uranium by using plant wastes

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akira; Sakaguchi, Takashi (Miyazaki Medical Coll. (Japan). Dept. of Chemistry)

    1990-01-01

    The uranium-adsorbing abilities of seven plant wastes were investigated. High abilities to adsorb uranium from non-saline water containing 10 mg dm{sup -3} of uranium were observed with a number of plant wastes tested. However, with seawater supplemented with 10 mg dm {sup -3} of uranium, similar results were found only with chestnut residues. When the plant wastes were immobilized with formaldehyde, their ability to adsorb uranium was increased. Uranium and copper ions were more readily adsorbed by all plant wastes tested than other metal ions from a solution containing a mixture of seven different heavy metals. The selective adsorption of heavy metal ions differs with different species of plant wastes. The immobilization of peanut inner skin, orange peel and grapefruit peel increased the selectivity for uranium. (author).

  3. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  4. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  5. Simultaneous measurements of plutonium and uranium in spent-fuel dissolver solutions

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.K. [Los Alamos National Lab., NM (United States); Kuno, T.; Kitagawa, O.; Sato, S.; Kurosawa, A.; Kuno, Y. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan)

    1997-11-01

    The authors have studied the isotope dilution gamma-ray spectrometry (IDGS) technique for simultaneous measurements of elemental concentrations and isotopic compositions for both plutonium and uranium in input spent-fuel dissolver solutions at a reprocessing plant. The technique under development includes both sample preparation and analysis methods. For simultaneous measurements of both plutonium and uranium, a critical issue is to develop a new method to keep both plutonium and uranium in the sample after they are separated from fission products. Furthermore, it is equally important to improve the analysis method so that the precision and accuracy of the plutonium analysis remain unaffected while uranium is retained in the sample. To keep both plutonium and uranium in the sample for simultaneous measurements, extraction chromatography is being studied and shows promise to achieve the goal of cosegregation of the plutonium and uranium. The technique uses U/TEVA{center_dot}Spec resin to separate fission products and recover both uranium and plutonium in the resin from dissolver solutions for subsequent measuring using high-resolution gamma-ray spectrometry. Owing to the fact that the U/Pu ratio is altered during the fission product separation phase, it is necessary to develop a method which could accurately correct for this effect. Such a method was developed using the unique decay properties of {sup 241}Pu to {sup 237}U and shows considerable promise in allowing for accurate determination of the {sup 235}U concentrations before the chemical extraction.

  6. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Zhang, Libo; Peng, Jinhui; Ma, Aiyuan; Xia, Hong Ying; Guo, Wen Qian; Yu, Xia [Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming (China); Hu, Jinming; Yang, Lifeng [Nuclear Group Two Seven Two Uranium Industry Limited Liability Company, Hengyang (China)

    2016-06-15

    Uranium removal from uranium plant wastewater using zero-valent iron in an ultrasonic field was investigated. Batch experiments designed by the response surface methodology (RSM) were conducted to study the effects of pH, ultrasonic reaction time, and dosage of zero-valent iron on uranium removal efficiency. From the experimental data obtained in this work, it was found that the ultrasonic method employing zero-valent iron powder effectively removes uranium from uranium plant wastewater with a uranium concentration of 2,772.23 μg/L. The pH ranges widely from 3 to 7 in the ultrasonic field, and the prediction model obtained by the RSM has good agreement with the experimental results.

  7. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  8. Towards Multi Fuel SOFC Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Clausen, Lasse Røngaard; Bang-Møller, Christian

    2011-01-01

    Complete Solid Oxide Fuel Cell (SOFC) plants fed by several different fuels are suggested and analyzed. The plants sizes are about 10 kW which is suitable for single family house with needs for both electricity and heat. Alternative fuels such as, methanol, DME (Di-Methyl Ether) and ethanol...... are also considered and the results will be compared with the base plant fed by Natural Gas (NG). A single plant design will be suggested that can be fed with methanol, DME and ethanol whenever these fuels are available. It will be shown that the plant fed by ethanol will have slightly higher electrical...... efficiency compared with other fuels. A methanator will be suggested to be included into the plants design in order to produce methane from the fuel before entering the anode side of the SOFC stacks. Increasing methane content will decrease the needed compressor effect and thereby increase the plant power....

  9. Dual fuel gradients in uranium silicide plates

    Energy Technology Data Exchange (ETDEWEB)

    Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  10. Estimation of Uranium in Some Edible and Commercial Plants

    Directory of Open Access Journals (Sweden)

    S. Choudhury

    1992-10-01

    Full Text Available The trace contents of uranium have been estimated in some edible and commercial plants by PTA method. The groups of food plants studied are cereals, pulses, underground vegetables, leafy vegetables, and fruit vegetables. The commercial plants and ingredients taken are betel leaves, tobacco leaves, areca nuts, and lime. Among the different samples studied, the average uranium content, in general, is found to vary from 0.25 to 2.67 ppm

  11. Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul A. Lessing

    2012-03-01

    Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

  12. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  13. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  14. Synchronous derivative fluorimetric determination of boron in Uranium fuel samples

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Poonam, E-mail: poonamv@barc.gov.in [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Shiny S.; Sawant, R.M.; Tomar, B.S. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ramakumar, K.L. [Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-09-15

    We report a sensitive and selective method for determination of boron in uranium samples by spectrofluorimetry in synchronous derivative mode. This method is based on the complexation of non-fluorescent boron with fluorescent chromotropic acid to form fluorescent boron–chromotrope complex. The spectrum of native fluorescence of chromotropic acid seriously overlaps with that of the complex and hence, synchronous derivative mode was employed in which physical separation of excess ligand and complex is not necessary. With the optimized experimental and instrumental conditions, limit of detection obtained is 2 ng mL{sup −1}. The linear concentration range is 5–100 ng mL{sup −1} with regression coefficient better than 0.997. The precision is better than 5% at 10 ng mL{sup −1} level and 3% at 50 ng mL{sup −1} level (n=9). Fluorescence quenching by residual matrix elements in the final sample solution is corrected by slope-ratio method. The method is validated with reference materials and successfully applied to the uranium nuclear fuels with the accuracy of ±10%. The proposed method reduces sample size requirement; thereby reducing load of uranium recovery from analytical waste in case of enriched uranium based samples. - Highlights: • Selectivity and sensitivity increases in synchronous derivative mode. • Sample size reduction that reduces load of enriched uranium recovery. • Eliminates need of physical separation of excess ligand and complex. • Quenching by residual matrix elements corrected by the slope-ratio method. • Important contribution to quality control of fuel materials in nuclear technology.

  15. Study of internal exposure to uranium compounds in fuel fabrication plants in Brazil; Estudo da exposicao interna a compostos de uranio na fabricacao do elemento combustivel nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maristela Souza

    2006-07-01

    The International Commission on Radiological Protection (ICRP) Publication 66 and Supporting Guidance 3) strongly recommends that specific information on lung retention parameters should be used in preference to default values wherever appropriate, for the derivation of effective doses and for bioassay interpretation of monitoring data. A group of 81 workers exposed to UO{sub 2} at the fuel fabrication facility in Brazil was selected to evaluate the committed effective dose. The workers were monitored for determination of uranium content in the urinary and faecal excretion. The contribution of intakes by ingestion and inhalation were assessed on the basis of the ratios of urinary to fecal excretion. For the selected workers it was concluded that inhalation dominated intake. According to ICRP 66, uranium oxide is classified as insoluble Type S compound. The ICRP Supporting Guidance 3 and some recent studies have recommended specific lung retention parameters to UO{sub 2}. The solubility parameters of the uranium oxide compound handled by the workers at the fuel fabrication facility in Brazil was evaluated on the basis of the ratios of urinary to fecal excretion. Excretion data were corrected for dietary intakes. This paper will discuss the application of lung retention parameters recommended by the ICRP models to these data and also the dependence of the effective committed dose on the lung retention parameters. It will also discuss the problems in the interpretation of monitoring results, when the worker is exposed to several uranium compounds of different solubilities. (author)

  16. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    Science.gov (United States)

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  17. Reactivity insertion transient analysis for KUR low-enriched uranium silicide fuel core

    OpenAIRE

    Shen, Xiuzhong; Nakajima, Ken; Unesaki, Hironobu; Mishima, Kaichiro

    2013-01-01

    The purpose of this study is to realize the full core conversion from the use of High Enriched Uranium (HEU) fuels to the use of Low Enriched Uranium (LEU) fuels in Kyoto University Research Reactor (KUR). Although the conversion of nuclear energy sources is required to keep the safety margins and reactor reliability based on KUR HEU core, the uranium density (3.2 gU/cm3) and enrichment (20%) of LEU fuel (U3Si2–AL) are quite different from the uranium density (0.58 gU/cm3) and enrichment (93%...

  18. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    Energy Technology Data Exchange (ETDEWEB)

    Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su' ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  19. Extending the world's uranium resources through advanced CANDU fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    De Vuono, Tony; Yee, Frank; Aleyaseen, Val; Kuran, Sermet; Cottrell, Catherine

    2010-09-15

    The growing demand for nuclear power will encourage many countries to undertake initiatives to ensure a self-reliant fuel source supply. Uranium is currently the only fuel utilized in nuclear reactors. There are increasing concerns that primary uranium sources will not be enough to meet future needs. AECL has developed a fuel cycle vision that incorporates other sources of advanced fuels to be adaptable to its CANDU technology.

  20. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  1. Melvin Calvin: Fuels from Plants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  2. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables.

  3. Minor isotope measurements for safeguarding a uranium enrichment plant

    Energy Technology Data Exchange (ETDEWEB)

    Blumkin, S.; Levin, S.A.; Von Halle, E.

    1979-03-26

    A study of the behavior of the minor uranium isotopes in enrichment cascades indicates that the measurement of their concetrations in cascade feed and withdrawal streams can be used to confirm or deny material accountability results in safeguarding an enrichment plant. In further support of safeguard measures, an indirect non-intrusive method to measure cascade uranium inventory has been devised and tested satisfactorily in a gaseous diffusion cascade.

  4. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). ADDRESSES:...

  5. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2012-03-22

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... quality assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in...-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors,'' is temporarily...

  6. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  7. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, pplants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, pplants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent.

  8. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    Science.gov (United States)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  9. Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3 Si2) with increased uranium loading

    Science.gov (United States)

    Ortega, Luis H.; Blamer, Brandon J.; Evans, Jordan A.; McDeavitt, Sean M.

    2016-04-01

    The processing steps necessary to prepare a potential accident-tolerant fuel composite consisting of uranium mononitride (UN) combined with uranium sesquisilicide (U3 Si2) are described. Liquid phase sintering was performed with U3 Si2 as the liquid phase combined with UN powder or UN μ-spheres. Various UN to U3 Si2 ratios were tested which resulted in up to 94% dense pellets. Composite UN-U3 Si2 samples had greater than 30% more uranium content than UO2.

  10. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  11. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    Science.gov (United States)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  12. Selected bibliography for the extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.C.T.; Gordon, L.I.; Rodman, M.R.; Binney, S.E.

    1979-02-06

    This bibliography contains 471 references pertaining to the evaluation of U.S. territorial ocean waters as a potential uranium resource and to the selection of a site for a plant designed for the large scale extraction of uranium from seawater. This bibliography was prepared using machine literature retrieval, bibliographic, and work processing systems at Oregon State University. The literature cited is listed by author with indices to the author's countries, geographic areas of study, and to a set of keywords to the subject matter.

  13. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  14. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  15. Demand of natural uranium to satisfy the requirements of nuclear fuel of new nuclear power plants in Mexico; Demanda de uranio natural para satisfacer los requerimientos de combustible nuclear de nuevas centrales nucleares en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Rios, M. del C.; Alonso, G.; Palacios H, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2008-07-01

    Due to the expectation of that in Mexico new plants of nuclear energy could be installed, turns out from the interest to evaluate the uranium requirements to operate those plants and to also evaluate if the existing reserves in the country could be sufficient to satisfy that demand. Three different scenes from nuclear power plant expansion for the country are postulated here that are desirable for the diversification of generation technologies. The first scene considers a growth in the generation by nuclear means of two reactors of type ABWR that could enter operation by years 2015 and 2020, in the second considers the installation of four reactors but as of 2015 and new every 5 years, in the scene of high growth considers the installation of 6 reactors of the same type that in the other scenes, settling one every three years as of 2015. The results indicate that the uranium reserves could be sufficient to only maintain in operation to one of the reactors proposed by the time of their useful life. (Author)

  16. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    Science.gov (United States)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  17. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  18. 77 FR 18272 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-03-27

    ... COMMISSION Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...) staff has conducted inspections of the Louisiana Energy Services (LES), LLC, National enrichment... . SUPPLEMENTARY INFORMATION: I. Discussion The NRC staff has conducted inspections of the Louisiana...

  19. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  20. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Fuel Cell Power Plants Renewable and Waste Fuels 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES presented at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held

  1. Characterization of uranium and uranium-zirconium deposits produced in electrorefining of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1997-09-01

    This paper describes the metallurgical characterization of deposits produced in molten salt electrorefining of uranium and uranium - 10.% zirconium alloy. The techniques of characterization are described with emphasis on considerations given to the radioactive and pyrophoric nature of the samples. The morphologies observed and their implications for deposit performance are also presented - samples from pure uranium deposits were comprised of chains of uranium crystals with a characteristic rhomboidal shape, while morphologies of samples from deposits containing zirconium showed more polycrystalline features. Zirconium was found to be present as a second, zirconium metal phase at or very near the uranium-zirconium dendrite surfaces. Higher collection efficiencies and total deposit weights were observed for the uranium-zirconium deposits; this performance increase is likely a result of better mechanical properties exhibited by the uranium-zirconium dendrite morphology. 18 refs., 10 figs., 1 tab.

  2. Fabrication of uranium dioxide fuel pellets in support of a SLOWPOKE-2 research reactor HEU to LEU core conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Aomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-07-01

    The International Centre for Environmental and Nuclear Sciences (ICENS) at the University of the West Indies in Jamaica operates a SLOWPOKE-2 research reactor that is currently fuelled with highly-enriched uranium (HEU). As part of the Global Threat Reduction Initiative, Atomic Energy of Canada Ltd. has been subcontracted to fabricate low-enriched uranium (LEU) fuel for the ICENS SLOWPOKE-2. The low enriched uranium core consists of a fuel cage containing uranium dioxide fuelled elements. This paper describes the fabrication of the low-enriched uranium dioxide fuel pellets for the SLOWPOKE-2 core conversion. (author)

  3. Imitators of plutonium and americium in a mixed uranium- plutonium nitride fuel

    Science.gov (United States)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.; Burlakova, M. A.

    2016-04-01

    Uranium nitride and mix uranium nitride (U-Pu)N is most popular nuclear fuel for Russian Fast Breeder Reactor. The works in hot cells associated with the radiation exposure of personnel and methodological difficulties. To know the main physical-chemical properties of uranium-plutonium nitride it necessary research to hot cells. In this paper, based on an assessment of physicochemical and thermodynamic properties of selected simulators Pu and Am. Analogues of Pu is are Ce and Y, and analogues Am - Dy. The technique of obtaining a model nitride fuel based on lanthanides nitrides and UN. Hydrogenation-dehydrogenation- nitration method of derived powders nitrides uranium, cerium, yttrium and dysprosium, held their mixing, pressing and sintering, the samples obtained model nitride fuel with plutonium and americium imitation. According to the results of structural studies have shown that all the samples are solid solution nitrides rare earth (REE) elements in UN.

  4. Exploring the Response of Plants Grown under Uranium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Doustaly, Fany; Berthet, Serge; Bourguignon, Jacques [CEA, iRTSV, Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA-CNRS-INRA-Univ. Grenoble Alpes (France); Combes, Florence; Vandenbrouck, Yves [CEA, iRTSV, Laboratoire de Biologie a Grande Echelle, EDyP, CEA-Grenoble (France); Carriere, Marie [CEA, INAC, LAN, UMR E3 CEA-Universite Joseph Fourier, Grenoble (France); Vavasseur, Alain [CEA, IBEB, LBDP, Saint Paul lez Durance, CEA Cadarache (France)

    2014-07-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between uranium speciation and plant response. We analyzed the impact of different uranium (U) treatments on three plant species namely sunflower, oilseed rape and wheat. Using inductively coupled plasma mass spectrometry elemental analysis, together with a panel of imaging techniques including scanning electron microscopy coupled with energy dispersive spectroscopy, transmission electron microscopy and particle-induced X-ray emission spectroscopy, we have recently shown how chemical speciation greatly influences the accumulation and distribution of U in plants. Uranyl (UO{sub 2}{sup 2+} free ion) is the predominant mobile form in soil surface at low pH in absence of ligands. With the aim to characterize the early plant response to U exposure, complete Arabidopsis transcriptome microarray experiments were conducted on plants exposed to 50 μM uranyl nitrate for 2, 6 and 30 h and highlighted a set of 111 genes with modified expression at these three time points. Quantitative real-time RT-PCR experiments confirmed and completed CATMA micro-arrays results allowing the characterization of biological processes perturbed by U. Functional categorization of deregulated genes emphasizes oxidative stress, cell wall biosynthesis and hormone biosynthesis and signaling. We showed that U stress is perceived by plant cells like a phosphate starvation stress since several phosphate deprivation marker genes were deregulated by U and also highlighted perturbation of iron homeostasis by U. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with

  5. Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal.

    Science.gov (United States)

    Pratas, João; Favas, Paulo J C; Paulo, Carlos; Rodrigues, Nelson; Prasad, M N V

    2012-03-01

    Several species of plants have developed a tolerance to metal that enables them to survive in metal contaminated and polluted sites. Some of these aquatic plants have been reported to accumulate significant amounts of specific trace elements and are, therefore, useful for phytofiltration. This work focuses the potential of aquatic plants for the phytofiltration of uranium (U) from contaminated water. We observed that Callitriche stagnalis, Lemna minor, and Fontinalis antipyretica, which grow in the uraniferous geochemical province of Central Portugal, have been able to accumulate significant amounts of U. The highest concentration of U was found in Callitriche stagnalis (1948.41 mg/kg DW), Fontinalis antipyretica (234.79 mg/kg DW), and Lemna minor (52.98 mg/kg DW). These results indicate their potential for the phytofiltration of U through constructed treatment wetlands or by introducing these plants into natural water bodies in the uraniferous province of Central Portugal.

  6. Uranium in the Nuclear Fuel Cycle: Creation of Plutonium (Invited)

    Science.gov (United States)

    Ewing, R. C.

    2009-12-01

    One of the important properties of uranium is that it can be used to “breed” higher actinides, particularly plutonium. During the past sixty years, more than 1,800 metric tonnes of Pu, and substantial quantities of the “minor” actinides, such as Np, Am and Cm, have been generated in nuclear reactors - a permanent record of nuclear power. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). In fact, the new strategies of the Advance Fuel Cycle Initiative (AFCI) are, in part, motivated by an effort to mitigate some of the challenges of the disposal of these long-lived actinides. There are two basic strategies for the disposition of these heavy elements: 1.) to “burn” or transmute the actinides using nuclear reactors or accelerators; 2.) to “sequester” the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A= rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage1. The radiation stability of these compositions is closely related to the structural distortions that can be accommodated for specific pyrochlore compositions and the electronic structure of the B-site cation. Recent developments in the understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  7. Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Raffo-Caiado, Ana Claudia [ORNL; Begovich, John M [ORNL; Ferrada, Juan J [ORNL

    2009-11-01

    This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

  8. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  9. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  10. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  11. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  12. 10 CFR Appendix J to Part 110 - Illustrative List of Uranium Conversion Plant Equipment and Plutonium Conversion Plant Equipment...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Uranium Conversion Plant Equipment and Plutonium Conversion Plant Equipment Under NRC Export Licensing Authority J Appendix J to Part 110.... 110, App. J Appendix J to Part 110—Illustrative List of Uranium Conversion Plant Equipment...

  13. Pilot plant operation of the Uranium Chip Oxidation Facility at the Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Y.C.

    1987-01-16

    Due to changing environmental regulations, the current practice of depleted uranium chip (machine turning) disposal via shallow land burial has become environmentally objectionable. The chips are pyrophoric and oxidize rapidly when exposed to air; therefore, long-term storage of the uranium chips presents a major fire hazard. The Oak Ridge Y-12 Plant Development Division was contacted to devise a disposal method that would eliminate chip burial and minimize storage space requirements. The proposed method of accomplishing this task was oxidizing the uranium chips to uranium oxide (U/sub 3/O/sub 8/) under controlled conditions. Pilot plant operation of the Uranium Chip Oxidation Facility (UCOF) was initiated on May 20, 1985, by the Y-12 Development Division. The purpose of this initial development testing was to evaluate the equipment, determine operating parameters, and provide on-the-job training for Waste Treatment Operations (WTO) personnel. Startup of the UCOF began with the check-out of the equipment using only the No. 1 oxidizer. Following the verification stage, the oxidizer was loaded with an initial charge of cold uranium oxide (U/sub 3/O/sub 8/) in preparation for test burning. Results of the test are given.

  14. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  15. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  16. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A.; Englander, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  17. Lung Cancer Mortality among Uranium Gaseous Diffusion Plant Workers: A Cohort Study 1952–2004

    OpenAIRE

    2013-01-01

    Background: 9%–15% of all lung cancers are attributable to occupational exposures. Reports are disparate regarding elevated lung cancer mortality risk among workers employed at uranium gaseous diffusion plants.Objective: To investigate whether external radiation exposure is associated with lung cancer mortality risk among uranium gaseous diffusion workers.Methods: A cohort of 6820 nuclear industry workers employed from 1952 to 2003 at the Paducah uranium gaseous diffusion plant (PGDP) was ass...

  18. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  19. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition as part of a fuel meat thickness optimization effort for reactor performance other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  20. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  1. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding

  2. 75 FR 38809 - Southern Turner Cimarron I, LLC; Notice of Filing

    Science.gov (United States)

    2010-07-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Turner Cimarron I, LLC; Notice of Filing June 25, 2010. Take notice that on June 24, 2010, Southern Turner Cimarron I, LLC filed a supplement confirming passive...

  3. MUICYCL and MUIFAP: models tracking minor uranium isotopes in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Blum, S.R.; McLaren, R.A.

    1979-10-01

    Two computer programs have been written to provide information on the buildup of minor uranium isotopes in the nuclear fuel cycle. The Minor Uranium Isotope Cycle Program, MUICYCL, tracks fuel through a multiyear campaign cycle of enrichment, reactor burnup, reprocessing, enrichment, etc. MUICYCL facilities include preproduction stockpiles, U/sup 235/ escalation, and calculation of losses. The Minor Uranium Isotope Flowsheet Analyzer Program, MUIFAP, analyzes one minor isotope in one year of an enrichment operation. The formulation of the enrichment cascade, reactors, and reprocessing facility is presented. Input and output descriptions and sample cases are presented. The programs themselves are documented by short descriptions of each routine, flowcharts, definitions of common blocks and variables, and internal documentation. The programs are written in FORTRAN for use in batch mode.

  4. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-10-30

    ... COMMISSION Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC... inspections of the Louisiana Energy Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico... Title 10 of the Code of Federal Regulations (10 CFR) 70.32 (k) and section 193(c) of the Atomic...

  5. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... COMMISSION Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National... Energy Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has authorized the... Energy Act of 1954, as amended. The introduction of UF 6 into any module of the National...

  6. 78 FR 63518 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National... conducted inspections of the Louisiana Energy Services (LES), LLC, National Enrichment Facility in Eunice... the Atomic Energy Act of 1954, as amended. The introduction of UF 6 into any module of the...

  7. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  8. Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel

    Science.gov (United States)

    Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.

    2002-08-01

    Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.

  9. DIRECT FUEL/CELL/TURBINE POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  10. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  11. Feasibility study of boiling water reactor core based on thorium-uranium fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col Narvarte, 03020 Mexico D.F. (Mexico); Francois Lacouture, Juan Luis; Martin del Campo, Cecilia [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico)], E-mail: gepe@xanum.uam.mx

    2008-01-15

    The design of a boiling water reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to {sup 233}U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main core operating parameters were obtained. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The economic analysis shows that the fuel cycle cost of the proposed core design can be competitive with a standard uranium core design. Finally, a comparison of the toxicity of the spent fuel showed that the toxicity is lower in the thorium cycle than in other fuel cycles (UO{sub 2} and MOX uranium and plutonium) in the case of the once through cycle for light water reactors (LWR)

  12. Raman spectroscopic investigation of thorium dioxide-uranium dioxide (ThO₂-UO₂) fuel materials.

    Science.gov (United States)

    Rao, Rekha; Bhagat, R K; Salke, Nilesh P; Kumar, Arun

    2014-01-01

    Raman spectroscopic investigations were carried out on proposed nuclear fuel thorium dioxide-uranium dioxide (ThO2-UO2) solid solutions and simulated fuels based on ThO2-UO2. Raman spectra of ThO2-UO2 solid solutions exhibited two-mode behavior in the entire composition range. Variations in mode frequencies and relative intensities of Raman modes enabled estimation of composition, defects, and oxygen stoichiometry in these compounds that are essential for their application. The present study shows that Raman spectroscopy is a simple, promising analytical tool for nondestructive characterization of this important class of nuclear fuel materials.

  13. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  14. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new carbon-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimize the loss of carbon, and retain fission products for many...

  15. Preliminary Study of Lead-Oxide Cooled Fast Reactor with Natural Uranium as an Input Fuel with Reactor Shuffling Strategy

    Science.gov (United States)

    Mahmudah, Rida SN; Su’ud, Zaki

    2017-01-01

    A preliminary study of lead-oxide cooled fast reactor with natural uranium as an input fuel using reactor shuffling strategy has been conducted. In this study, reactor core is divided into four zone with the same volume, each zone use different uranium enrichment. The enrichment number is estimated so that in the end of reactor’s operation, we only need to add natural uranium as the fresh input fuel. This study used UN-PuN as the fuel and lead oxide as the coolant. Several parameter studies have been conducted to determine the most suitable input condition. It is confirmed in this study that with fuel : cladding : coolant ratio of 53 : 10 : 37, and uranium enrichment in the first to the fourth zone of 0%, 6.25%, 7.5% and 8%, respectively, the reactor can operate as long as 20 years of operation with terminal k-eff of 1.0004.

  16. A Two-Dimensional, Finite-Difference Model of the Oxidation of a Uranium Carbide Fuel Pellet

    OpenAIRE

    Shepherd, J; Fairweather, M; Hanson, BC; Heggs, PJ

    2015-01-01

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used...

  17. Processing of mixed uranium/refractory metal carbide fuels for high temperature space nuclear reactors

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim

    2000-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for high performance, next generation space power and propulsion systems. These mixed carbides such as the pseudo-ternary, (U, Zr, Nb)C, hold significant promise because of their high melting points (typically greater than 3200 K), thermochemical stability in a hot hydrogen environment, and high thermal conductivity. However, insufficient test data exist under nuclear thermal propulsion conditions of temperature and hot hydrogen environment to fully evaluate their performance. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders while hypostoichiometric samples with carbon-to-metal (C/M) ratios of 0.95 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold pressing, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce dense (low porosity), homogeneous, single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for space power and propulsion applications. .

  18. Standard test method for atom percent fission in uranium and plutonium fuel (Neodymium-148 Method)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers the determination of stable fission product 148Nd in irradiated uranium (U) fuel (with initial plutonium (Pu) content from 0 to 50 %) as a measure of fuel burnup (1-3). 1.2 It is possible to obtain additional information about the uranium and plutonium concentrations and isotopic abundances on the same sample taken for burnup analysis. If this additional information is desired, it can be obtained by precisely measuring the spike and sample volumes and following the instructions in Test Method E267. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Uptake of Uranium and Other Elements of Concern by Plants Growing on Uranium Mill Tailings Disposal Cells

    Science.gov (United States)

    Joseph, C. N.; Waugh, W.; Glenn, E.

    2015-12-01

    The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant

  20. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  1. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  2. The contents of uranium and thorium in the dominating kinds of plants of the Central Caucasus

    Directory of Open Access Journals (Sweden)

    T. A. Asvarova

    2008-01-01

    Full Text Available The result of this work have shown that the difference of contents uranium and thorium of various plants of Great Caucasus dependents views plants, on various types rock, type of soils and physicalchemicalproperties of soil. The maximum concentration of uranium and thorium are registered in Saxifraga mochata, S. Dinikii, S. exarata, S. carinata, and the minimum concentration is in Veratrum Lobelianum.

  3. Fuel handling accident analysis for the University of Missouri Research Reactor's High Enriched Uranium to Low Enriched Uranium fuel conversion initiative

    Science.gov (United States)

    Rickman, Benjamin

    In accordance with the 1986 amendment concerning licenses for research and test reactors, the MU Research Reactor (MURR) is planning to convert from using High-Enriched Uranium (HEU) fuel to the use of Low-Enriched Uranium (LEU) fuel. Since the approval of a new LEU fuel that could meet the MURR's performance demands, the next phase of action for the fuel conversion process is to create a new Safety Analysis Report (SAR) with respect to the LEU fuel. A component of the SAR includes the Maximum Hypothetical Accident (MHA) and accidents that qualify under the class of Fuel Handling Accidents (FHA). In this work, the dose to occupational staff at the MURR is calculated for the FHAs. The radionuclide inventory for the proposed LEU fuel was calculated using the ORIGEN2 point-depletion code linked to the MURR neutron spectrum. The MURR spectrum was generated from a Monte Carlo Neutron transPort (MCNP) simulation. The coupling of these codes create MONTEBURNS, a time-dependent burnup code. The release fraction from each FHA within this analysis was established by the methodology of the 2006 HEU SAR, which was accepted by the NRC. The actual dose methodology was not recorded in the HEU SAR, so a conservative path was chosen. In compliance to NUREG 1537, when new methodology is used in a HEU to LEU analysis, it is necessary to re-evaluate the HEU accident. The Total Effective Dose Equivalent (TEDE) values were calculated in addition to the whole body dose and thyroid dose to operation personnel. The LEU FHA occupational TEDE dose was 349 mrem which is under the NRC regulatory occupational dose limit of 5 rem TEDE, and under the LEU MHA limit of 403 mrem. The re-evaluated HEU FHA occupational TEDE dose was 235 mrem, which is above the HEU MHA TEDE dose of 132 mrem. Since the new methodology produces a dose that is larger than the HEU MHA, we can safely assume that it is more conservative than the previous, unspecified dose.

  4. Evaluating the effectiveness of dilution of the recovered uranium with depleted uranium and low-enriched uranium to obtain fuel for VVER reactors

    Science.gov (United States)

    Smirnov, A. Yu; Sulaberidze, G. A.; Dudnikov, A. A.; Nevinitsa, V. A.

    2016-09-01

    The possibility of the recovered uranium enrichment in a cascade of gas centrifuges with three feed flows (depleted uranium, low-enriched uranium, recovered uranium) with simultaneous dilution of U-232,234,236 isotopes was shown. A series of numerical experiments were performed for different content of U-235 in low-enriched uranium. It has been demonstrated that the selected combination of diluents can simultaneously reduce the cost of separative work and the consumption of natural uranium, not only with respect to the previously used multi-flow cascade schemes, but also in comparison to the standard cascade for uranium enrichment.

  5. Material control and accountability aspects of safeguards for the USA /sup 233/U/TH fuel recycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Jr., J. A.; McNeany, S. R.; Angelini, P.; Holder, N. D.; Abraham, L.

    1979-01-01

    Two fuel cycles are considered. The highly enriched uranium (HEU) cycle uses uranium enriched 93% in /sup 235/U as the initial fuel. The medium enriched uranium (MEU) cycle uses uranium with a /sup 235/U enrichment less than 20% as its initial fuel. In both, /sup 233/U is bred from thorium. The HEU /sup 235/U and the /sup 233/U of both cycles are recycled. The MEU /sup 235/U is retired to waste after one reactor cycle. Typical heavy metal contents of spent fuel elements from both cycles are presented. The main functional areas of the recycle plant are Shipping, Receiving, and Storage; Reprocessing; Refabrication; and Waste Treatment. A real-time materials accountability system will manage the data provided by measurements from all four areas. Simulations of material flow used in the HTGR development program are forerunners of such a system. The material control and accountability aspects of Reprocessing and Refabrication only are discussed. The proposed accountability areas are identified and the measurement techniques appropriate to various streams crossing the boundaries of the areas are identified. Special emphasis is placed on novel nondestructive methods developed for assaying solid materials containing /sup 233/U-Th. The material form, total uranium and plutonium, and activity of selected reprocessing streams are listed. The isotopics and activity of the uranium input into Refabrication are also presented.

  6. Modeling of Gap Closure in Uranium-Zirconium Alloy Metal Fuel - A Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL; Gorti, Sarma B [ORNL; Nukala, Phani K [ORNL; Radhakrishnan, Balasubramaniam [ORNL; Turner, John A [ORNL

    2009-10-01

    Uranium based binary and ternary alloy fuel is a possible candidate for advanced fast spectrum reactors with long refueling intervals and reduced liner heat rating [1]. An important metal fuel issue that can impact the fuel performance is the fuel-cladding gap closure, and fuel axial growth. The dimensional change in the fuel during irradiation is due to a superposition of the thermal expansion of the fuel due to heating, volumetric changes due to possible phase transformations that occur during heating and the swelling due to fission gas retention. The volumetric changes due to phase transformation depend both on the thermodynamics of the alloy system and the kinetics of phase change reactions that occur at the operating temperature. The nucleation and growth of fission gas bubbles that contributes to fuel swelling is also influenced by the local fuel chemistry and the microstructure. Once the fuel expands and contacts the clad, expansion in the radial direction is constrained by the clad, and the overall deformation of the fuel clad assembly depends upon the dynamics of the contact problem. The neutronics portion of the problem is also inherently coupled with microstructural evolution in terms of constituent redistribution and phase transformation. Because of the complex nature of the problem, a series of test problems have been defined with increasing complexity with the objective of capturing the fuel-clad interaction in complex fuels subjected to a wide range of irradiation and temperature conditions. The abstract, if short, is inserted here before the introduction section. If the abstract is long, it should be inserted with the front material and page numbered as such, then this page would begin with the introduction section.

  7. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  8. Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P. [Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.; Russell, J.R. [USDOE Oak Ridge Field Office, TN (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States); Ziehlke, K.T. [MJB Technical Associates (United States)

    1992-07-01

    Isotopically depleted UF{sub 6} (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF{sub 6}. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life.

  9. Microbeam x-ray absorption spectroscopy study of chromium in large-grain uranium dioxide fuel

    Science.gov (United States)

    Mieszczynski, C.; Kuri, G.; Bertsch, J.; Martin, M.; Borca, C. N.; Delafoy, Ch; Simoni, E.

    2014-09-01

    Synchrotron-based microprobe x-ray absorption spectroscopy (XAS) has been used to study the local atomic structure of chromium in chromia-doped uranium dioxide (UO2) grains. The specimens investigated were a commercial grade chromia-doped UO2 fresh fuel pellet, and materials from a spent fuel pellet of the same batch, irradiated with an average burnup of ~40 MW d kg-1. Uranium L3-edge and chromium K-edge XAS have been measured, and the structural environments of central uranium and chromium atoms have been elucidated. The Fourier transform of uranium L3-edge extended x-ray absorption fine structure shows two well-defined peaks of U-O and U-U bonds at average distances of 2.36 and 3.83 Å. Their coordination numbers are determined as 8 and 11, respectively. The chromium Fourier transform extended x-ray absorption fine structure of the pristine UO2 matrix shows similar structural features with the corresponding spectrum of the irradiated spent fuel, indicative of analogous chromium environments in the two samples studied. From the chromium XAS experimental data, detectable next neighbor atoms are oxygen and uranium of the cation-substituted UO2 lattice, and two distinct subshells of chromium and oxygen neighbors, possibly because of undissolved chromia particles present in the doped fuels. Curve-fitting analyses using theoretical amplitude and phase-shift functions of the closest Cr-O shell and calculations with ab initio computer code FEFF and atomic clusters generated from the chromium-dissolved UO2 structure have been carried out. There is a prominent reduction in the length of the adjacent Cr-O bond of about 0.3 Å in chromia-doped UO2 compared with the ideal U-O bond length in standard UO2 that would be expected because of the change in effective Coulomb interactions resulting from replacing U4+ with Cr3+ and their ionic size differences. The contraction of shortest Cr-U bond is ~0.1 Å relative to the U-U bond length in bulk UO2. The difference in the

  10. Thorium and the Third Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dukert, Joseph M.

    1970-01-01

    This booklet discusses energy sources for nuclear power plants. Uranium-235 by itself will not be able to handle the energy needs. The two man-made supplements that can be used for nuclear power plants energy sources are plutonium and uranium-233. Uranium-233 is an isotope that appears as a result of radioactive decay after neutrons have been absorbed in thorium-232. This uranium-233 is called the third fuel.

  11. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  12. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  13. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  14. Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry E-mail: gohar@anl.gov

    2001-11-01

    The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from D-T plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

  15. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis

  16. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis

  17. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  18. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morrell, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jamison, R. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nef, E. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nigg, D. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  19. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  20. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Robert T [ORNL; Collins, Jack Lee [ORNL; Hunt, Rodney Dale [ORNL; Ladd-Lively, Jennifer L [ORNL; Patton, Kaara K [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL

    2014-01-01

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  1. Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration

    Science.gov (United States)

    Wylie, Ernest M.; Peruski, Kathryn M.; Prizio, Sarah E.; Bridges, Andrea N. A.; Rudisill, Tracy S.; Hobbs, David T.; Phillip, William A.; Burns, Peter C.

    2016-05-01

    Current separation and purification technologies utilized in the nuclear fuel cycle rely primarily on liquid-liquid extraction and ion-exchange processes. Here, we report a laboratory-scale aqueous process that demonstrates nanoscale control for the recovery of uranium from simulated used nuclear fuel (SIMFUEL). The selective, hydrogen peroxide induced oxidative dissolution of SIMFUEL material results in the rapid assembly of persistent uranyl peroxide nanocluster species that can be separated and recovered at moderate to high yield from other process-soluble constituents using sequestration-assisted ultrafiltration. Implementation of size-selective physical processes like filtration could results in an overall simplification of nuclear fuel cycle technology, improving the environmental consequences of nuclear energy and reducing costs of processing.

  2. Selected bibliography for the extraction of uranium from seawater: chemical process and plant design feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Binney, S.E.; Polkinghorne, S.T.; Jante, R.R.; Rodman, M.R.; Chen, A.C.T.; Gordon, L.I.

    1979-02-01

    A selected annotated bibliography of 521 references was prepared as a part of a feasibility study of the extraction of uranium from seawater. For the most part, these references are related to the chemical processes whereby the uranium is removed from the seawater. A companion docment contains a similar bibliography of 471 references related to oceanographic and uranium extraction plant siting considerations, although some of the references are in common. The bibliography was prepared by computer retrieval from Chemical Abstracts, Nuclear Science Abstracts, Energy Data Base, NTIS, and Oceanic Abstracts. References are listed by author, country of author, and selected keywords.

  3. Cs--U--O phase diagram and its application to uranium--plutonium oxide fast reactor fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Fee, D C; Johnson, I; Davis, S A; Shinn, W A; Staahl, G E; Johnson, C E

    1977-08-01

    Portions of the cesium-uranium-oxygen system have been investigated between 873 and 1273/sup 0/K and a phase diagram has been constructed using our data and the data of other workers in the field. Thermodynamic and kinetic data have been used to examine the reactions that occur in fast-reactor fuel pins between fission-product cesium and the uranium oxide blanket. It was concluded that at the low oxygen potentials existing at the interface between the uranium-plutonium mixed-oxide and the uranium oxide blanket, Cs/sub 2/UO/sub 4/ is the only Cs-U-O compound expected to be formed in the uranium oxide blanket.

  4. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    Science.gov (United States)

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  5. A model for recovery of scrap monolithic uranium molybdenum fuel by electrorefining

    Science.gov (United States)

    Van Kleeck, Melissa A.

    The goal of the Reduced Enrichment for Research and Test Reactors program (RERTR) is toreduce enrichment at research and test reactors, thereby decreasing proliferation risk at these facilities. A new fuel to accomplish this goal is being manufactured experimentally at the Y12 National Security Complex. This new fuel will require its own waste management procedure,namely for the recovery of scrap from its manufacture. The new fuel is a monolithic uraniummolybdenum alloy clad in zirconium. Feasibility tests were conducted in the Planar Electrode Electrorefiner using scrap U-8Mo fuel alloy. These tests proved that a uranium product could be recovered free of molybdenum from this scrap fuel by electrorefining. Tests were also conducted using U-10Mo Zr clad fuel, which confirmed that product could be recovered from a clad version of this scrap fuel at an engineering scale, though analytical results are pending for the behavior of Zr in the electrorefiner. A model was constructed for the simulation of electrorefining the scrap material produced in the manufacture of this fuel. The model was implemented on two platforms, Microsoft Excel and MatLab. Correlations, used in the model, were developed experimentally, describing area specific resistance behavior at each electrode. Experiments validating the model were conducted using scrap of U-10Mo Zr clad fuel in the Planar Electrode Electrorefiner. The results of model simulations on both platforms were compared to experimental results for the same fuel, salt and electrorefiner compositions and dimensions for two trials. In general, the model demonstrated behavior similar to experimental data but additional refinements are needed to improve its accuracy. These refinements consist of a function for surface area at anode and cathode based on charge passed. Several approximations were made in the model concerning areas of electrodes which should be replaced by a more accurate function describing these areas.

  6. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  7. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  8. Holdup measurement for nuclear fuel manufacturing plants

    Energy Technology Data Exchange (ETDEWEB)

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    1981-07-13

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

  9. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  10. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. Fiorina; N. E. Stauff; F. Franceschini; M. T. Wenner; A. Stanculescu; T. K. Kim; A. Cammi; M. E. Ricotti; R. N. Hill; T. A. Taiwo; M. Salvatores

    2013-12-01

    The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.

  11. Plant microbial fuel cell applied in wetlands

    NARCIS (Netherlands)

    Wetser, Koen; Liu, Jia; Buisman, Cees; Strik, David

    2015-01-01

    The plant microbial fuel cell (PMFC) has to be applied in wetlands to be able to generate electricity on a large scale. The objective of this PMFC application research is to clarify the differences in electricity generation between a Spartina anglica salt marsh and Phragmites australis peat soil

  12. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: fabrication of high-temperature gas-cooled reactor fuel containing uranium-233 and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, J.W.; Blanco, R.E.; Hill, G.S.; Moore, R.E.; Seagren, R.D.; Witherspoon, J.P.

    1976-06-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from model High-Temperature Gas-Cooled (HTGR) fuel fabrication plants and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as reasonably achievable'' as it applies to these nuclear facilities. The base cases of the two model plants, a fresh fuel fabrication plant and a refabrication plant, are representative of current proposed commercial designs or are based on technology that is being developed to fabricate uranium, thorium, and graphite into fuel elements. The annual capacities of the fresh fuel plant and the refabrication plant are 450 and 245 metric tons of heavy metal (where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods is discussed. 48 figures, 74 tables.

  13. SIMS Analyses of Aerodynamic Fallout from a Uranium-Fueled Test

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzel, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prussin, S. G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kinman, W. S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zimmer, M. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-09

    Five silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x ray spectroscopy. Several samples display distinctive compositional heterogeneity suggestive of incomplete mixing, and exhibit heterogeneity in U isotopes with 0.02 < 235U/ 238U < 11.8 among all five samples and 0.02 < 235U/ 238U < 7.81 within a single sample. In two samples, the 235U/ 238U ratio is correlated with major element composition, consistent with the agglomeration of chemically and isotopically distinct molten precursors. Two samples are quasi-homogeneous with respect to composition and uranium isotopic composition, suggesting extensive mixing possibly due longer residence time in the fireball. Correlated variations between 234U, 235U, 236U and 238U abundances point to mixing of end-members corresponding to uranium derived from the device and natural U ( 238U/ 235U = 0.00725) found in soil.

  14. Uranium market as well as production and processing of reactor fuel, 1995/1996; Rynek uranu oraz produkcji i przerobu paliw reaktorowych, 1995/1996

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, W. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-12-01

    The worldwide uranium market has been analysed in period of 1995/1996. The uranium reserves, production of reactor fuel from natural ores and from fuel recycling have been presented.The worldwide price tendency have been discussed on that background. 3 refs, 1 fig., 3 tabs.

  15. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  16. 77 FR 2718 - CPV Cimarron Renewable Energy Company, LLC; Supplemental Notice That Initial Market-Based Rate...

    Science.gov (United States)

    2012-01-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission CPV Cimarron Renewable Energy Company, LLC; Supplemental Notice That Initial... notice in the above-referenced proceeding of CPV Cimarron Renewable Energy Company, LLC's application...

  17. 77 FR 23476 - Cimarron Windpower II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-04-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Cimarron Windpower II, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Cimarron Windpower II, LLC's application for market-based rate...

  18. 75 FR 16098 - Southern Turner Cimarron I, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2010-03-31

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Turner Cimarron I, LLC; Supplemental Notice That Initial... supplemental notice in the above-referenced proceeding of Southern Turner Cimarron I, LLC's application...

  19. A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet

    Science.gov (United States)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.

    2015-12-01

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  20. Calculation of parameters for inspection planning and evaluation: low enriched uranium conversion and fuel fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, P.T.; Mullen, M.F.; Harms, N.L.

    1981-02-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities at low-enriched uranium (LEU) conversion and fuel fabrication facilities. This report presents the results and conclusions of those analyses. Implementation of IAEA safeguards at LEU conversion and fuel fabrication facilities must take into account a variety of practical problems and constraints. One of the key concerns is the problem of flow verification, especially product verification. The objective of this report is to help put the problem of flow verification in perspective by presenting the results of some specific calculations of inspection effort and probability of detection for various product measurement strategies. In order to provide quantitative information about the advantages and disadvantages of the various strategies, eight specific cases were examined.

  1. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, Olaf; Thierfeldt, Stefan [Brenk Systemplanung GmbH, Aachen (Germany); Hummel, Lothar [TUV Sud AG, Munchen (Germany)

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detector was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)

  2. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca{sup 2+} at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor

  3. Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wick, O.J.; Cloninger, M.O.

    1980-09-01

    A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository.

  4. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    Science.gov (United States)

    Clarke, A. J.; Clarke, K. D.; McCabe, R. J.; Necker, C. T.; Papin, P. A.; Field, R. D.; Kelly, A. M.; Tucker, T. J.; Forsyth, R. T.; Dickerson, P. O.; Foley, J. C.; Swenson, H.; Aikin, R. M.; Dombrowski, D. E.

    2015-10-01

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time-temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2-4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  5. Linearity assumption in soil-to-plant transfer factors of natural uranium and radium in Helianthus annuus L

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, P. Blanco [Departamento de Fisica, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz (Spain); Tome, F. Vera [Departamento de Fisica, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz (Spain)]. E-mail: fvt@unex.es; Fernandez, M. Perez [Area de Ecologia, Departamento de Fisica, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz (Spain); Lozano, J.C. [Laboratorio de Radiactividad Ambiental, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca (Spain)

    2006-05-15

    The linearity assumption of the validation of soil-to-plant transfer factors of natural uranium and {sup 226}Ra was tested using Helianthus annuus L. (sunflower) grown in a hydroponic medium. Transfer of natural uranium and {sup 226}Ra was tested in both the aerial fraction of plants and in the overall seedlings (roots and shoots). The results show that the linearity assumption can be considered valid in the hydroponic growth of sunflowers for the radionuclides studied. The ability of sunflowers to translocate uranium and {sup 226}Ra was also investigated, as well as the feasibility of using sunflower plants to remove uranium and radium from contaminated water, and by extension, their potential for phytoextraction. In this sense, the removal percentages obtained for natural uranium and {sup 226}Ra were 24% and 42%, respectively. Practically all the uranium is accumulated in the roots. However, 86% of the {sup 226}Ra activity concentration in roots was translocated to the aerial part.

  6. The creation of a uranium oxide industry, from the laboratory stage to a pilot plant (1961); Creation d'une industrie de l'oxyde d'uranium du laboratoire a l'usine pilote (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, R.; Delange, M.; Sauteron, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Hauser, R. [Compagnie Industrielle des Combustibles atomiques frittes (France)

    1961-07-01

    The qualities of uranium oxide, in particular its good in-pile characteristics and its resistance to corrosion by the usual heat-exchange fluids, have led to this material being chose at the present time as a nuclear fuel in many power reactors, either planned or under construction. A great effort has been made these last few years in France in studying processes for transforming powdered uranium oxide into a dense material with satisfactory behaviour in a neutron flux. The laboratories at Saclay have studied the physico-chemical features of the phenomena accompanying the calcination of uranium peroxide or ammonium uranate to give uranium trioxide, and the subsequent reduction of the latter to dioxide as well as the sintering of the powders obtained. This work has made it possible on one hand to prepare powder of known specific surface area, and on the other to show the overriding influence of this factor, all other things being equal, on the behaviour of powders during sintering in a hydrogen atmosphere. The work has led to defining two methods for sintering stoichiometric uranium oxide of high density. The technological study of the preparation of the powder and its industrial production are carried out at the plant of Le Bouchet which produces at the moment powders of known characteristics suitable for sintering in hydrogen at 1650 deg. C without prior grinding. The industrial sintering is carried out by the Compagnie industrielle des Combustibles Atomiques Frittes who has set up a pilot plant having a capacity of 25 metric tons/year, for the Commissariat l'Energie Atomique and has been operating this plant since May 1958. This plant is presented by a film entitled 'uranium oxide'. (author) [French] Les qualites de l'oxyde d'uranium, en particulier son bon comportement en pile et sa resistance a la corrosion par les fluides caloporteurs habituels, font choisir aujourd'hui ce materiau comme combustible de nombreux reacteurs de

  7. Uranium and radium in water samples around the Nikola Tesla B lignite-fired power plant - Obrenovac, Serbia

    Directory of Open Access Journals (Sweden)

    Žunić Zora S.

    2011-01-01

    Full Text Available This paper deals with the analysis of natural radionuclide content in 23 water samples collected in the vicinity of the Nikola Tesla B thermal power plant, Serbia. All samples were analyzed for 226Ra and uranium isotopes (238U, 234U activity using radiochemical methods and alpha spectrometry. Obtained results show that the activity concentrations for uranium and radium in the water around the thermal power plant are low when compared to those from areas across Serbia with their enhanced natural uranium and radium content. No important radiological hazard related to uranium and radium activity stored in heap was found.

  8. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  9. Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

  10. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  11. Survey of US fuel ethanol plants.

    Science.gov (United States)

    Saunders, J A; Rosentrater, K A

    2009-07-01

    The ethanol industry is growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so does the generation of its coproducts, and viable uses continually need to be developed. A survey was mailed to operational US ethanol plants to determine current practices. It inquired about processes, equipment used, end products, and desired future directions for coproducts. Results indicated that approximately one-third of plant managers surveyed expressed a willingness to alter current drying time and temperature if it could result in a higher quality coproduct. Other managers indicated hesitation, based on lack of economic incentives, potential cost and return, and capital required. Respondents also reported the desire to use their coproducts in some of the following products: fuels, extrusion, pellets, plastics, and human food applications. These results provide a snapshot of the industry, and indicate that operational changes to the current production of DDGS must be based upon the potential for positive economic returns.

  12. The logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant; Cadena logistica en la fabrica de elementos combustibles de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The paper describe the logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant, located in Juzbado in the province of Salamanca. In the the article are described the principal elements in the supply chain and the difficulties of its management derived from the short period for the manufacturing of the nuclear fuel. It's also given a view in relation to the transportation by land sea of the nuclear components, uranium oxide powder and the manufactured fuel. The characteristics of the supply chain are determined by the plant production forecast, by the origin and high technology of the raw materials and by nuclear fuel delivery site locations. (Author)

  13. Effect of transplutonium doping on approach to long-life core in uranium-fueled PWR

    Energy Technology Data Exchange (ETDEWEB)

    Peryoga, Yoga; Saito, Masaki; Artisyuk, Vladimir [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Shmelev, Anatolii [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    2002-08-01

    The present paper advertises doping of transplutonium isotopes as an essential measure to improve proliferation-resistance properties and burnup characteristics of UOX fuel for PWR. Among them {sup 241}Am might play the decisive role of burnable absorber to reduce the initial reactivity excess while the short-lived nuclides {sup 242}Cm and {sup 244}Cm decay into even plutonium isotopes, thus increasing the extent of denaturation for primary fissile {sup 239}Pu in the course of reactor operation. The doping composition corresponds to one discharged from a current PWR. For definiteness, the case identity is ascribed to atomic percentage of {sup 241}Am, and then the other transplutonium nuclide contents follow their ratio as in the PWR discharged fuel. The case of 1 at% doping to 20% enriched uranium oxide fuel shows the potential of achieving the burnup value of 100 GWd/tHM with about 20% {sup 238}Pu fraction at the end of irradiation. Since so far, americium and curium do not require special proliferation resistance measures, their doping to UOX would assist in introducing nuclear technology in developing countries with simultaneous reduction of accumulated minor actinides stockpiles. (author)

  14. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    Science.gov (United States)

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  15. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  16. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10/sup -5/ %, of chlorine- 1x10/sup -4/% in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10/sup -4/ - nx10/sup -3/ mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine.

  17. Lung Cancer Mortality among Uranium Gaseous Diffusion Plant Workers: A Cohort Study 1952–2004

    Directory of Open Access Journals (Sweden)

    LW Figgs

    2013-07-01

    Full Text Available Background: 9%–15% of all lung cancers are attributable to occupational exposures. Reports are disparate regarding elevated lung cancer mortality risk among workers employed at uranium gaseous diffusion plants.Objective: To investigate whether external radiation exposure is associated with lung cancer mortality risk among uranium gaseous diffusion workers.Methods: A cohort of 6820 nuclear industry workers employed from 1952 to 2003 at the Paducah uranium gaseous diffusion plant (PGDP was assembled. A job-specific exposure matrix (JEM was used to determine likely toxic metal exposure categories. In addition, radiation film badge dosimeters were used to monitor cumulative external ionizing radiation exposure. International Classification for Disease (ICD codes 9 and 10 were used to identify 147 lung cancer deaths. Logistic and proportional hazards regression were used to estimate lung cancer mortality risk.Results: Lung cancer mortality risk was elevated among workers who experienced external radiation >3.5 mrem and employment duration >12 years.Conclusion: Employees of uranium gaseous diffusion plants carry a higher risk of lung cancer mortality; the mortality is associated with increased radiation exposure and duration of employment.

  18. Conversion of uranium nuclear fuel into U 3O 8 at the head end of HTR reprocessing

    Science.gov (United States)

    Hoogen, N.; Aschhoff, H. G.; Staib, G.

    1984-04-01

    Corresponding to the reference procedure for the head-end treatment of HTR fuel elements, separation of the moderator graphite from the materials uranium and plutonium is envisaged by combustion in the fluidized bed. Due to the defective silicon carbide layers of the uranium fuel particles a chemical conversion of the UO 2 kernel into U 3O 8 takes place in the oxidizing atmosphere of the combustion process. This reaction proceeds spontaneously and quantitatively, and causes a disintegration of the heavy metal kernel. It is observed that the degree of hardness of the kernel fragments is clearly dependent on the heat-up rate. In the commercial design of the head-end process step, attention must be paid to the cross-over of fuel from the stationary fluidized bed into the dust discharge.

  19. Uranium mining operations in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Rios, J.-M.; Arnaiz, J.; Criado, M.; Lopez, A.

    1995-12-31

    The Empresa Nacional del Uranio, SA (ENUSA) was founded in 1972 to undertake and develop the industrial and procurement activities of the nuclear fuel cycle in Spain. Within the organisation of ENUSA, the Uranium Division is directly responsible for the uranium mining and production operations that have been carried out since 1973 in the area of Ciudad Rodrigo in the province of Salamanca. These activities are based on open pit mining, heap leaching and a hydrometallurgical plant (Elefante) for extracting uranium concentrates from the ore. This plant was shut down in 1993 and a new plant was started up on the same site (Quercus) with a dynamic leaching process. The nominal capacity of the new plant is 950 t U{sub 3}O{sub 8} per year. Because of the historically low uranium prices which have recently prevailed, the plant is currently running at a strategic production rate of 300 t U{sub 3}O{sub 8} per year. From 1981 to 1990, in the area of La Haba (Badajoz province), ENUSA also operated a uranium production site, based on open pit mining, and an experimental extraction plant (Lobo-G). ENUSA is currently decommissioning these installations. This paper describes innovations and improvements that ENUSA has recently introduced in the field of uranium concentrates production with a view to cutting production costs, and to improving the decommissioning and site restoration processes in those sites where production is being shut down or resources have been worked out. (author).

  20. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-02-09

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the

  1. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recirculation is needed or not and if so then what would be the effect of anode recycling on plant efficiency. A single study with similar conditions and prerequisites will thus reveal the importance of fuel recirculation on plant performance with alternative fuels. It is also shown that increasing anode...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained...

  2. NSRR experiment with un-irradiated uranium-zirconium hydride fuel. Design, fabrication process and inspection data of test fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi; Kuroha, Hiroshi; Ikeda, Yoshikazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aizawa, Keiichi

    1998-08-01

    An experiment plan is progressing in the Nuclear Safety Research Reactor (NSRR) to perform pulse-irradiation with uranium-zirconium hydride (U-ZrH{sub x}) fuel. This fuel is widely used in the training research and isotope production reactor of GA (TRIGA). The objectives of the experiment are to determine the fuel rod failure threshold and to investigate fuel behavior under simulated reactivity initiated accident (RIA) conditions. This report summarizes design, fabrication process and inspection data of the test fuel rods before pulse-irradiation. The experiment with U-ZrH{sub x} fuel will realize precise safety evaluation, and improve the TRIGA reactor performance. The data to be obtained in this program will also contribute development of next-generation TRIGA reactor and its safety evaluation. (author)

  3. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  4. A study on possible use of Urtica dioica (common nettle) plants as uranium ((234)U, (238)U) contamination bioindicator near phosphogypsum stockpile.

    Science.gov (United States)

    Olszewski, Grzegorz; Boryło, Alicja; Skwarzec, Bogdan

    The aim of this study was to determine uranium concentrations in common nettle (Urtica dioica) plants and corresponding soils samples which were collected from the area of phosphogypsum stockpile in Wiślinka (northern Poland). The uranium concentrations in roots depended on its concentrations in soils. Calculated BCF and TF values showed that soils characteristics and air deposition affect uranium absorption and that different uranium species have different affinities to U. dioica plants. The values of (234)U/(238)U activity ratio indicate natural origin of these radioisotopes in analyzed plants. Uranium concentration in plants roots is negatively weakly correlated with distance from phosphogypsum stockpile.

  5. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China.

    Science.gov (United States)

    Li, Guang-yue; Hu, Nan; Ding, De-xin; Zheng, Ji-fang; Liu, Yu-long; Wang, Yong-dong; Nie, Xiao-qin

    2011-06-01

    The concentrations of uranium, thorium, barium, nickel, strontium and lead in the samples of the tailings and plant species collected from a uranium mill tailings repository in South China were analyzed. Then, the removal capability of a plant for a target element was assessed. It was found that Phragmites australis had the greatest removal capabilities for uranium (820 μg), thorium (103 μg) and lead (1,870 μg). Miscanthus floridulus had the greatest removal capabilities for barium (3,730 μg) and nickel (667 μg), and Parthenocissus quinquefolia had the greatest removal capability for strontium (3,920 μg). In this study, a novel coefficient, termed as phytoremediation factor (PF), was proposed, for the first time, to assess the potential of a plant to be used in phytoremediation of a target element contaminated soil. Phragmites australis has the highest PFs for uranium (16.6), thorium (8.68), barium (10.0) and lead (10.5). Miscanthus floridulus has the highest PF for Ni (25.0). Broussonetia papyrifera and Parthenocissus quinquefolia have the relatively high PFs for strontium (28.1 and 25.4, respectively). On the basis of the definition for a hyperaccumulator, only Cyperus iria and Parthenocissus quinquefolia satisfied the criteria for hyperaccumulator of uranium (36.4 μg/g) and strontium (190 μg/g), and could be the candidates for phytoremediation of uranium and strontium contaminated soils. The results show that the PF has advantage over the hyperaccumulator in reflecting the removal capabilities of a plant for a target element, and is more adequate for assessing the potential of a plant to be used in phytoremediation than conventional method.

  6. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  7. Uranium 2009 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  8. Uptake of uranium by native aquatic plants: potential for bioindication and phytoremediation

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available The work presented here is a part the on going study on the uraniferous geochemical province of Central Portugal in which, the use of aquatic plants as indicators of uranium contamination is being probed using aquatic plants emphasizing their potential use in the emerging phytotechnologies. Even though we have observed very low concentration of U in the fresh waters of the studied sites we found a set of vegetable species with the ability to accumulate U in concentrations which are orders of magnitude higher than the surrounding environment. We have observed that Apium nodiflorum, Callitriche stagnalis, Lemna minor and Fontinalis antipyretica accumulated significant amounts of uranium, whereas Oenanthe crocata excluded U. These results indicate substantial scope for proper radiophytoremediation and phytosociological investigation exploiting the native flora. These species show great potential for phytoremediation because they are endemic and easy to grow in their native conditions. A. nodiflorum and C. stagnalis have high bioproductivity and yield good biomass.

  9. Air strikes on uranium enrichment plants as potential sources of radioecological danger

    Directory of Open Access Journals (Sweden)

    Živanov Dragan

    2007-01-01

    Full Text Available According to the Non Proliferation Treaty (NPT, the signatory countries are not forbidden to preform uranium enrichment for peaceful purposes. However, if there is a justified doubt that the uranium enrichment is performed with the aim to produce nuclear weapons, this certainly causes great concern. In this case, the international community can apply pressure to a certain country if it determines that the country does not want to cease activities of making its own nuclear weapons. The international community pressure on the country can be intesified until its political leadership is not made to question and cease all activities of producing nuclear weapons. This pressure can be political, economic, and as a last resort-military. As a gesture of goodwill the country can stop the uranium enrichment process. In this way, the country shows that it finally gives up the intention to produce nuclear weapons. However, when military pressure is applied, i.e. military strikes (air strikes for example on nuclear plants used for uranium enrichment, this certainly creates a risk of releasing radioactivity into the environment. That is why the aim of this paper is to signal this very fact. Using military force in these cases leads to additional radioactive contamination of the environment, so this way of solving conflicts should be avoided within the international community.

  10. LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Le, Loan A. [Los Alamos National Laboratory; Lopez, Leon N. [Los Alamos National Laboratory; Barefield, James E. [Los Alamos National Laboratory

    2012-06-18

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV and NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and

  11. Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation.

    Science.gov (United States)

    Favas, Paulo J C; Pratas, João; Varun, Mayank; D'Souza, Rohan; Paul, Manoj S

    2014-02-01

    A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n=200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1,217 μg L(-1). The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4,979 mg kg(-1)) followed by Callitriche stagnalis (1963mgkg(-1)), Callitriche hamulata (379 mg kg(-1)), Ranunculus peltatus subsp. saniculifolius (243 mg kg(-1)), Callitriche lusitanica (218 mg kg(-1)), and Ranunculus trichophyllus (65.8 mg kg(-1)). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg(-1)). Among the free-floating species, the highest U content (42.5 mg kg(-1)) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production.

  12. Production Cycle for Large Scale Fission Mo-99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets

    Directory of Open Access Journals (Sweden)

    Abdel-Hadi Ali Sameh

    2013-01-01

    Full Text Available Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidizing dissolution of the fuel meat in hydrofluoric acid at room temperature. The resulting solution is directly behind added to an over stoichiometric amount of potassium hydroxide solution. Uranium and the bulk of fission products are precipitated together with the transuranium compounds. The filtrate contains the molybdenum and the soluble fission product species. It is further treated similar to the in-full scale proven process. The generated off gas stream is handled also as experienced before after passing through KOH washing solution. The generated alkaline fluoride containing waste solution is noncorrosive. Nevertheless fluoride can be selectively bonded as in soluble CaF2 by addition of a mixture of solid calcium hydroxide calcium carbonate to the sand cement mixture used for waste solidification. The generated elevated amounts of LEU remnants can be recycled and retargeted. The related technology permits the minimization of the generated fuel waste, saving environment, and improving processing economy.

  13. Capital and operating costs of irradiated natural uranium reprocessing plants; Couts d'investissement et d'exploitation des usines de retraitement de l'uranium naturel irradie

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet, L.; Jouannaud, C.; Couture, J.; Duboz, J. [Commissariat a l' Energie Atomique (France). Centre d' Etudes Nucleaires; Oger, C. [Saint Gobain Nucleaire (France)

    1966-07-01

    This paper presents first a method of analysing natural uranium reprocessing plants investment costs (method similar to LANG and BACH well known in the fuel oil industry) and their operating costs (analysed according to their economic type). This method helps establishing standard cost structures for these plants, allowing thus comparisons between existing or planned industrial facilities. It also helps evaluating the foreseeable consequences of technical progress. Some results obtained are given, concerning: the investment costs sensitivity to the various technical parameters defining the fuel and their comparison according to the country or the economic area taken into account. Finally, the influence of the plants size on their investment costs is shown. (author) [French] La communication expose d'abord une methode d'analyse des couts d'investissement des usines de retraitement de l'uranium naturel irradie (inspiree de celles de LANG et de BACH, bien connues dans l'industrie petroliere) et de leurs couts d'exploitation (selon leur nature economique). Cette methode permet d'etablir des structures types de couts de ces usines et de comparer les realisations industrielles et les projets. Elle facilite l'exploration des consequences previsibles du progres technique. On indique un certain nombre de resultats obtenus, concernant la sensibilite des couts d'investissement de ces usines aux differents parametres techniques definissant le combustible et leur confrontation selon les pays ou aires economiques envisages. On montre enfin comment doit pouvoir s'exprimer l'influence de la taille des usines sur leur cout d'investissement. (auteur)

  14. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  15. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.

    Science.gov (United States)

    Zhu, Liyang; Duan, Wuhua; Xu, Jingming; Zhu, Yongjun

    2012-11-30

    High-temperature gas-cooled reactors (HTGRs) are advanced nuclear systems that will receive heavy use in the future. It is important to develop spent nuclear fuel reprocessing technologies for HTGR. A new method for recovering uranium from tristructural-isotropic (TRISO-) coated fuel particles with supercritical CO(2) containing tri-n-butyl phosphate (TBP) as a complexing agent was investigated. TRISO-coated fuel particles from HTGR fuel elements were first crushed to expose UO(2) pellet fuel kernels. The crushed TRISO-coated fuel particles were then treated under O(2) stream at 750°C, resulting in a mixture of U(3)O(8) powder and SiC shells. The conversion of U(3)O(8) into solid uranyl nitrate by its reaction with liquid N(2)O(4) in the presence of a small amount of water was carried out. Complete conversion was achieved after 60 min of reaction at 80°C, whereas the SiC shells were not converted by N(2)O(4). Uranyl nitrate in the converted mixture was extracted with supercritical CO(2) containing TBP. The cumulative extraction efficiency was above 98% after 20 min of online extraction at 50°C and 25 MPa, whereas the SiC shells were not extracted by TBP. The results suggest an attractive strategy for reprocessing spent nuclear fuel from HTGR to minimize the generation of secondary radioactive waste.

  16. Environmental releases from fuel cycle facility: part 1: radionuclide resuspension vs. stack releases on ambient airborne uranium and thorium levels.

    Science.gov (United States)

    Masson, Olivier; Pourcelot, Laurent; Boulet, Béatrice; Cagnat, Xavier; Videau, Gérard

    2015-03-01

    Airborne activity levels of uranium and thorium series were measured in the vicinity (1.1 km) of a uranium (UF4) processing plant, located in Malvési, south of France. Regarding its impact on the environment, this facility is characterized by its routine atmospheric releases of uranium and by the emission of radionuclide-labelled particles from a storage pond filled with waste water or that contain dried sludge characterized by traces of plutonium and thorium ((230)Th). This study was performed during a whole year (November 2009-November 2010) and based on weekly aerosol sampling. Thanks to ICP-MS results, it was possible to perform investigations of uranium and thorium decay product concentration in the air. The number of aerosol filters sampled (50) was sufficient to establish a relationship between airborne radionuclide variations and the wind conditions. As expected, the more the time spent in the plume, the higher the ambient levels. The respective contributions of atmospheric releases and resuspension from local soil and waste ponds on ambient dust load and uranium-bearing aerosols were estimated. Two shutdown periods dedicated to facility servicing made it possible to estimate the resuspension contribution and to specify its origin (local or regional) according to the wind direction and remote background concentration. Airborne uranium mainly comes from the emission stack and, to a minor extent (∼20%), from wind resuspension of soil particles from the surrounding fields and areas devoted to waste storage. Moreover, weighed activity levels were clearly higher during operational periods than for shutdown periods.

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  18. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  19. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  20. Cost and quality of fuels for electric plants 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  1. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  2. Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency

    Science.gov (United States)

    2010-06-01

    Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency by Douglas M. Kroll B.S...Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase

  3. Uptake of uranium, thorium and radium isotopes by plants growing in dam impoundment Tasotkel and the Lower Shu region (Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Matveyeva, Ilona; Burkitbayev, Mukhambetkali [al-Farabi Kazakh National University, Almaty (Kazakhstan). Faculty of Chemistry and Chemical Technology; Jacimovic, Radojko [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Environmental Sciences; Planinsek, Petra; Smodis, Borut [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Environmental Sciences; Jozef Stefan International Postgraduate School, Ljubljana (Slovenia)

    2016-04-01

    The activity concentrations of isotopes of uranium, thorium and radium-226 in dominant species of plants (Xantium strumarium, Phragmites communis, Artemisia nitrosa and Artemisia serotina) growing on the territories contaminated by uranium industry of Kazakhstan (close to dam impoundment Tasotkel and the Lower Shu region) are presented. The obtained data showed the significant variations of activity concentrations of isotopes of uranium, thorium and radium-226 in above ground parts. The concentrations of most of the investigated radionuclides in the root system are higher than in the aboveground parts; it can be explained by root barrier. It was found that the highest root barrier has Xantium strumarium, especially for uranium isotopes. The concentration ratios of radionuclides were calculated, and as the result it was found that the highest accumulation ability in the investigated region has Artemisia serotina.

  4. 226Ra bioavailability to plants at the Urgeiriça uranium mill tailings site.

    Science.gov (United States)

    Madruga, M J; Brogueira, A; Alberto, G; Cardoso, F

    2001-01-01

    Large amounts of solid wastes (tailings) resulting from the exploitation and treatment of uranium ore at the Urgeiriça mine (north of Portugal) have been accumulated in dams (tailing ponds). To reduce the dispersion of natural radionuclides into the environment, some dams were revegetated with eucalyptus (Eucalyptus globolus) and pines (Pinus pinea). Besides these plants, some shrubs (Cytisus spp.) are growing in some of the dams. The objective of this study is to determine the 226Ra bioavailability from uranium mill tailings by quantifying the total and available fraction of radium in the tailings and to estimate its transfer to plants growing on the tailing piles. Plant and tailing samples were randomly collected and the activity concentration of 226Ra in plants (aerial part and roots) and tailings was measured by gamma-spectrometry. The exchangeable fraction of radium in tailings was quantified using one single step extraction with 1 mol dm-3 ammonium acetate (pH = 7) or 1 mol dm-3 calcium chloride solutions. The results obtained for 226Ra uptake by plants show that 226Ra concentration ratios for eucalyptus and pines decrease at low 226Ra concentrations in the tailings and appear relatively constant at higher radium concentrations. For shrubs, the concentration ratios increase at higher 226Ra solid waste concentrations approaching a saturation value. Percentage values of 16.0 +/- 8.3 and 12.9 +/- 8.9, for the fraction of radium extracted from the tailings, using 1 mol dm-3 ammonium acetate or calcium chloride solutions, respectively, were obtained. The 226Ra concentration ratios determined on the basis of exchangeable radium are one order of magnitude higher than those based on total radium. It can be concluded that, at a 95% confidence level, more consistent 226Ra concentration ratios were obtained when calculated on the basis of available radium than when total radium was considered, for all the dams.

  5. Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Favas, Paulo J.C., E-mail: pjcf@utad.pt [School of Life Sciences and the Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal); IMAR-CMA Marine and Environmental Research Centre, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); Pratas, João [Department of Earth Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); IMAR-CMA Marine and Environmental Research Centre, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra (Portugal); Varun, Mayank; D' Souza, Rohan; Paul, Manoj S. [Department of Botany, St. John' s College, Agra 282 002 (India)

    2014-02-01

    A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n = 200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1217 μg L{sup −1}. The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4979 mg kg{sup −1}) followed by Callitriche stagnalis (1963 mg kg{sup −1}), Callitriche hamulata (379 mg kg{sup −1}), Ranunculus peltatus subsp. saniculifolius (243 mg kg{sup −1}), Callitriche lusitanica (218 mg kg{sup −1}), and Ranunculus trichophyllus (65.8 mg kg{sup −1}). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg{sup −1}). Among the free-floating species, the highest U content (42.5 mg kg{sup −1}) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production. - Highlights: • Exploration of U contamination extent in uraniferous province of Central Portugal • A group of previously untested species with the ability to accumulate U was assessed • U accumulation patterns in the species indicate their potential in bioindication and phytoremediation of U-contaminated water.

  6. 10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.

    Science.gov (United States)

    2010-01-01

    ... effects from the effluents described in the Table, or estimates of releases of Radon-222 from the uranium...—Radiological (curies) Gases (including entrainment): Rn-222 Presently under reconsideration by the...

  7. BIO-MONITORING FOR URANIUM USING STREAM-SIDE TERRESTRIAL PLANTS AND MACROPHYTES

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, E.; Duff, M.; Hicks, T.; Coughlin, D.; Hicks, R.; Dixon, E.

    2012-01-12

    This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg{sup -1}. Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12500 mg U kg{sup -1} (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg{sup -1}), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active

  8. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    sensitive emissions, increase use of renewable energy , and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of...use of renewable energy , and reduce the use of fossil fuels . DISCLAIMER: The contents of this report are not to be used for advertising...increase agency use of renewable energy , and reduce the use of fossil fuels . For USACE floating plant, one of the main strategies of the USACE SSPP

  9. Effect of oxygen and nitrogen impurities on the thermodynamic properties of uranium-plutonium mixed carbide fuel

    Science.gov (United States)

    Saibaba, M.; Varamban, S. Vana; Mathews, C. K.

    1987-01-01

    The mixed carbide fuel being developed as an alternative to the mixed oxide to fuel fast breeder reactors consists of uranium-plutonium monocarbide with an admixture of 10-20 vol% of the sesqui-carbide. The monocarbide phase contains oxygen and nitrogen as dissolved impurities. These impurities as well as the sesquicarbide phase affect the performance of the fuel. The quantities of interest in assessing the performance of the fuel are its carbon potential and the partial pressures of carbon monoxide and plutonium. Both carbon potential and CO pressures are important in clad carburisation, the latter being involved in a gas phase carburisation mechanism. In the present study the partial pressures of CO, Pu and N 2 as well as the carbon potential of the fuel have been calculated as a function of plutonium fraction, impurity (O, N) concentration, sesquicarbide content and temperature. Two different caculational methods were used — one based on a set of equilibrium relations between the co-existing phases and the other based on free energy minimisation employing the computer programme SOLGASMIX-PV. The results are presented graphically and trends in the values are discussed.

  10. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional {sup 235}U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using {sup 233}U, {sup 242}Pu, {sup 150}Nd, and {sup 133}Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code.

  11. Literature review: Phytoaccumulation of chromium, uranium, and plutonium in plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Hossner, L.R.; Loeppert, R.H.; Newton, R.J. [Texas A& M Univ., College Station, TX (United States); Szaniszlo, P.J. [Univ. of Texas, Austin, TX (United States)

    1998-05-01

    Phytoremediation is an integrated multidisciplinary approach to the cleanup of contaminated soils, which combines the disciplines of plant physiology, soil chemistry, and soil microbiology. Metal hyperaccumulator plants are attracting increasing attention because of their potential application in decontamination of metal-polluted soils. Traditional engineering technologies may be too expensive for the remediation of most sites. Removal of metals from these soils using accumulator plants is the goal of phytoremediation. The emphasis of this review has been placed on chromium (Cr), plutonium (Pu), and uranium (U). With the exception of Cr, these metals and their decay products exhibit two problems, specifically, radiation dose hazards and their chemical toxicity. The radiation hazard introduces the need for special precautions in reclamation beyond that associated with non-radioactive metals. The uptake of beneficial metals by plants occurs predominantly by way of channels, pores, and transporters in the root plasma membrane. Plants characteristically exhibit a remarkable capacity to absorb what they need and exclude what they don`t need. But most vascular plants absorb toxic and heavy metals through their roots to some extent, though to varying degrees, from negligible to substantial. Sometimes absorption occurs because of the chemical similarity between beneficial and toxic metals. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metal from root to shoot. At the other extreme, hyperaccumulator plants absorb and concentrate metals in both roots and shoots. Some plant species endemic to metalliferous soils accumulate metals in percent concentrations in the leaf dry matter.

  12. Arid lands plants as feedstocks for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.J.

    1983-01-01

    The purpose of this paper is to review the recent research on arid-adapted plants that have potential as producers of fuels or chemicals. The major focus will be on plant species that appear to have commercial value. Research on guayule (Parthenium argentatum) and jojoba (Simmondsia chinensis) will be mentioned only briefly, since these plants have been discussed extensively in the literature, and excellent reviews are already in existence. In this review the literature on arid-adapted plants that have potential uses for solid fuels, liquid fuels, and chemical feedstocks is summarized, followed by an overview of the research directions and types of development that are needed in order for bio-energy production systems to reach the commercial stage. 127 references.

  13. On the possibility of using uranium-beryllium oxide fuel in a VVER reactor

    Science.gov (United States)

    Kovalishin, A. A.; Prosyolkov, V. N.; Sidorenko, V. D.; Stogov, Yu. V.

    2014-12-01

    The possibility of using UO2-BeO fuel in a VVER reactor is considered with allowance for the thermophysical properties of this fuel. Neutron characteristics of VVER fuel assemblies with UO2-BeO fuel pellets are estimated.

  14. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains

  15. A Preliminary Study on the Conceptual Design of Thorium/Uranium Mixed Nuclear Fuel for the Alternative of Burnable Poison in Commercial Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hwan; Kim, Song Hyun; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)

    2013-10-15

    Thorium has higher neutron absorption cross section than that of U-238. Thus, the thorium mixed uranium oxide nuclear fuel can reduce the initial excessive reactivity and the long-live radio-wastes with increasing the fuel utilization efficiency. In this study, a preliminary study on the application of the thorium/uranium mixed fuel is performed for the alternative of the PLUS7 fuel assembly which includes burnable poison. A conceptual design without geometrical change is proposed and the reactor characteristics are analyzed. In this study, a fuel assembly using the uranium/thorium mixed fuel was designed to substitute the assembly which includes burnable poison. The reactor characteristics, which are k{sub inf}, power distribution and plutonium production rate, were evaluated and the results are compared with the E1 assembly which is used in the OPR1000 reactor. The results show that the proposed design can efficiently reduce the excessive reactivity, peak power, and plutonium production with increasing the fuel utilization period.

  16. Volatile behaviour of enrichment uranium in the total nuclear fuel price; Volatilidad de los mercados de Uranio enriquecido. Impactos sobre el coste de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-07-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs.

  17. Alpha and gamma spectrometry for natural radioactive nuclides around uranium mines and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A.M.; Tome, F.V.; Bejarano, J.D.; Aparicio, A.G. (Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica)

    1992-01-01

    Concentration of uranium and [sup 234]U/[sup 238]U and [sup 235]U/[sup 238]U activity ratios were studied in water samples taken in the neighbourhood of two uranium mines ('El Lobo' and 'El Pedregal', Badajoz, Spain), and around two nuclear power plants and their cooling reservoirs (the Central Nuclear de Almaraz, which is working today, and the Central Nuclear de Valdecaballeros, which is in the construction phase), using alpha spectrometry with semiconductor detectors. The Valdecaballeros data were taken to check for comparison with those of the Central Nuclear de Almaraz and with future values after the start of operation. Measurements were also made of all soluble gamma emitting nuclides using a shielded coaxial high purity germanium detector. The data suggest that the mechanisms responsible for the changes in the concentrations and in the [sup 234]U/[sup 238]U activity ratios in surface waters are principally dilution and leaching. (author).

  18. Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values

    Science.gov (United States)

    Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed ...

  19. Cimarrones y palenques en las provincias al norte del Nuevo Reino de Granada siglo XVII

    Directory of Open Access Journals (Sweden)

    María Cristina Navarrete P.

    2001-01-01

    Full Text Available A finales del siglo XVII, ya existían comunidades de cimarrones en varias provincias de la jurisdicción de la Audiencia del Nuevo Reino de Granada. Hacia 1598, en Zaragoza, y en 1607, en Remedios, provincia de Antioquia, esclavos negros de las rancherías mineras se levantaron violentamente y fortificaron en palenques, causando perjuicios en el comercio, la vida de las ciudades y la labor de las minas. Otro de los más importantes alzamientos de esclavos fue el dirigido por Domingo Biohó quien se refugió con sus seguidores en la Ciénaga de la Matuna. Asimismo, las Sierras de María y la Serranía de San Lucas fueron espacios de establecimiento de palenques. Los cimarrones intentaron reconstruir organizaciones sociales con base en la herencia cultural africana, en la permanencia en las haciendas y minas al contacto con amos, capataces y compañeros de circunstancias y, en las nuevas condiciones que les ofrecía la vida de los palenques.

  20. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  1. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  2. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  3. The end of cheap uranium.

    Science.gov (United States)

    Dittmar, Michael

    2013-09-01

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10±2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58±4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54±5 ktons by 2025 and, with the decline steepening, to at most 41±5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  4. Evaluation of terrestrial plants extracts for uranium sorption and characterization of potent phytoconstituents.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Thulasidas, S K; Kulkarni, Madhuri J; Natarajan, V; Manchanda, Vijay K

    2016-01-01

    Sorption capacity of four plants (Funaria hygrometrica, Musa acuminata, Brassica juncea and Helianthus annuus) extracts/fractions for uranium, a radionuclide was investigated by EDXRF and tracer studies. The maximum sorption capacity, i.e., 100% (complete sorption) was observed in case of Musa acuminata extract and fractions. Carbohydrate, proteins, phenolics and flavonoids contents in the active fraction (having maximum sorption capacity) were also determined. Further purification of the most active fraction provided three pure molecules, mannitol, sorbitol and oxo-linked potassium oxalate. The characterization of isolated molecules was achieved by using FTIR, NMR, GC-MS, MS-MS, and by single crystal-XRD analysis. Of three molecules, oxo-linked potassium oxalate was observed to have 100% sorption activity. Possible binding mechanism of active molecule with the uranyl cation has been purposed.

  5. 77 FR 14010 - Rocky Ridge Wind Project, LLC, Blackwell Wind, LLC, CPV Cimarron Renewable Energy Company, LLC...

    Science.gov (United States)

    2012-03-08

    ... Cimarron Renewable Energy Company, LLC, Minco Wind Interconnection Services, LLC, Shiloh III Lessee, LLC, California Ridge Wind Energy LLC, Perrin Ranch Wind, LLC, Erie Wind, LLC: Notice of Effectiveness of Exempt... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  6. 78 FR 29318 - Pike and San Isabel National Forests and Cimarron and Comanche National Grasslands, Colorado and...

    Science.gov (United States)

    2013-05-20

    ... Forest Service Pike and San Isabel National Forests and Cimarron and Comanche National Grasslands.... ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The Pike and San Isabel... provides public meeting addresses, dates and times. ADDRESSES: Send written comments to: Pike and...

  7. Ancient natural uranium oxide as analog of spent fuel: Contribution to assessing the impact of helium production on long term evolution of UO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Roudil, D.; Folch, B.; Jegou, C. [CEA centre de Marcoule BP 17171 30207 Bagnols sur Ceze cedex (France); Pik, R. [CNRS CRPG- 54506 Vandoeuvre les Nancy (France); Cuney, M. [Nancy Universite, G2R, CNRS, CREGU, BP 239, 54506, Vandoeuvre les Nancy (France); Gauthier-Lafaye, F. [ULP-EOST-CNRS/CGS- 1, rue Blessig - 67084 Strasbourg (France)

    2008-07-01

    Nuclear waste management in particular for spent fuel disposal option, needs an improvement of the knowledge concerning the fate of helium produced by actinide decrease and its impact on the physical and structural changes on the fuel matrix in a repository. An original alternative to {alpha} ageing simulation concerns the study and characterization of different old natural uranium oxides, with increasing age of crystallization. Since 2005, in the framework of a collaboration between Cea DEN/DTCD, CREGU and CNRS a methodology devoted to the study of helium behavior in this kind of samples has been developed and applied to three natural uranium oxides. Coupling results from gas release mass spectrometry measurements and from HR-TEM showed: -) high helium mobility at low temperature, -) an helium retention always lower than 0,9 at% in the uranium oxide grains, and -) high concentration of nanometer size helium bubbles, poorly pressurized and released at high temperature (above 1300 deg. C). Predictable evolutions of spent fuel matrix under self irradiation are presented within the domain of physical, chemical and structural analogy between natural uranium oxides and spent fuels. (authors)

  8. HIGH ENERGY LIQUID FUELS FROM PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Nemethy, E. K.; Otvos, J. W.; Calvin, M.

    1980-10-01

    The heptane extract of Euphorbia lathyris has a low oxygen content and a heat valve of 42 MJ/kg which is comparable to that of crude oil (44 MJ/kg). These qualities indicate a potential for use as fuel or chemical feedstock material. Therefore we have investigated the chemical composition of this fraction in some detail. Since the amoun of the methanol fraction is quite substantial we have also identified the major components of this fraction.

  9. Field Measurement of Am241 and Total Uranium at a Mixed Oxide Fuel Facility with Variable Uranium Enrichments Ranging from 0.3% to 97% U235

    Energy Technology Data Exchange (ETDEWEB)

    Conway, K. C.

    2002-02-28

    The uranium and transuranic content of site soils and building rubble can be accurately measured using a NaI(Tl) well counter, without significant soil preparation. Accurate measurements of total uranium in uranium-transuranic mixtures can be made, despite a wide range (0.3% to 97%) of uranium enrichment, sample mass, and activity concentrations. The appropriate uranium scaling factors needed to include the undetected uranium isotopes, particularly U 234 can be readily determined on a sample by sample basis as a part of the field analysis, by comparing the relative response of the U 235 186 keV peak versus the K shell X rays of U 238 , U 235, and their immediate ingrowth daughters. The ratio of the two results is a sensitive and accurate predictor of the uranium enrichment and scaling factors. The case study will illustrate how NaI(Tl) gamma spectrometry was used to provide rapid turnaround uranium and transuranic activity levels for soil and building rubble with sample by sample determination of the appropriate scaling factor to include the U234 and Uranium238 content.

  10. The cycle of the nuclear fuel used in EDF power plants; Le cycle du combustible nucleaire utilise dans les centrales EDF

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    This document briefly indicates the different stages of the nuclear fuel cycle, from the purchase of natural uranium to waste storage. It also indicates the main responsibilities of EDF regarding this fuel cycle (to secure supplies, to organise material transportation, to process and store used fuels and associated wastes). It presents the different associated processes: uranium extraction, purification and concentration, conversion or fluoridation, enrichment. It briefly describes the fuel assembly fabrication, and indicates the main uranium producers in the world. Other addressed steps are: the transportation of fuel assembly, fuel loading, and spent fuel management, the processing of spent fuel and radioactive wastes

  11. DOE small scale fuel alcohol plant design

    Energy Technology Data Exchange (ETDEWEB)

    LaRue, D.M.; Richardson, J.G.

    1980-01-01

    The Department of Energy, in an effort to facilitate the deployment of rural-based ethanol production capability, has undertaken this effort to develop a basic small-scale plant design capable of producing anhydrous ethanol. The design, when completed, will contain all necessary specifications and diagrams sufficient for the construction of a plant. The design concept is modular; that is, sections of the plant can stand alone or be integrated into other designs with comparable throughput rates. The plant design will be easily scaled up or down from the designed flow rate of 25 gallons of ethanol per hour. Conversion factors will be provided with the final design package to explain scale-up and scale-down procedures. The intent of this program is to provide potential small-scale producers with sound information about the size, engineering requirements, costs and level of effort in building such a system.

  12. Uranium industry annual 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  13. Study of Reduced-Enrichment Uranium Fuel Possibility for Research Reactors

    Directory of Open Access Journals (Sweden)

    Ruppel V.A.

    2015-01-01

    Full Text Available Having analyzed the results obtained in the work, it is possible to conclude that the flux density of fast and thermal neutrons in the shell of fuel elements in EFA in REU-zone decreased on average by 5% for UO2 fuel and by 7% for U9%Mo fuel. Change of neutrons flux density during the cycle does not exceed 4% for both fuel types. On average the fuel burnup in reactor core during the cycle for UO2 and U9%Mo increased by 2.8%. It is 1% less that in HEU-zone, which is conditioned by higher initial loading of 235U in fuel assembly with REU fuel.

  14. Ecotoxicity evaluation of an amended soil contaminated with uranium and radium using sensitive plants

    Science.gov (United States)

    Abreu, M. M.; Lopes, J.; Magalhães, M. C. F.; Santos, E.

    2012-04-01

    In the centre-north granitic regions of Portugal, during the twenty century radium and uranium were exploited from approximately 60 mines. The closure of all uranium mines, in 2001, raised concerns regarding the possible chemical and radiological effects on the inhabitants health around the mine areas. The main objective of this work was to evaluate the effect of organic amendments and organic hydroxiapatite in the ecotoxicity reduction of agricultural soils contaminated with uranium and radium, by germination and growth tests of two sensitive plants (Lactuca sativa L. and Zea mays L.). Pot experiments, under controlled conditions, were undertaken during two months of incubation at 70% of the soil water-holding capacity. Fluvisol from Urgeiriça region containing large concentration of Utotal (635 mg/kg) and 226Ra (2310 Bq/kg) was used. The soil available fraction, extracted with ammonium acetate, corresponds to 90% and 25% of total concentration of Utotal and 226Ra, respectively. Fine ground bone (FB) and sheep manure (OM) single or mixtures were used as amendments. Four treatments, plus control were carried out in triplicate: (A) soil+40 Mg/ha of FB; (B) soil+70 Mg/ha of OM; (C) soil+70 Mg/ha of OM+40 Mg/ha of FB; (D) soil+70 Mg/ha of OM+20 Mg/ha of FB. After the incubation moist soils were kept at 4-5 °C and subsamples were used for leachates extraction following DIN 38414-S4 method. Maize and lettuce seeds were sown in filter paper moistened with the leachates aqueous solutions and in the moist soil for germination and growth tests. Seedlings after three days of germination were used for growth tests in hydroponic, during seven days, using the leachates. Five seeds per replicate were used. Soil presented: pH(H2O)=5.15, EC=7.3 µS/cm; and Corgnic=12.5 g/kg. After two months of incubation soil pH increased to a maximum of 6.53 in amended samples, and EC showed a dramatic increase when compared to the control (0.398 dS/m), from 1.5 dS/m (treatment-A) to 4.7 d

  15. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassioni, A.A.

    1980-08-01

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  16. Coconut husk-fueled pilot plant put to test

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A pilot electric-power plant, running on coconut husks, was successfully demonstrated in Laguna, Philippines. This 30-kW biomass-fed plant provides electricity for 50 remote households and a wood-carving shop using a motor. The system involves: burning coconut husks to obtain producer gas; filtering this gas and driving a generator with the power of the combusted gas. The village is saving 65 to 75% of their diesel fuel consumption with this system.

  17. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S; Lee, D.S. [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C.Y [Seoul National University, Seoul (Korea, Republic of)] [and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  18. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  19. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  20. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are

  1. Developments of metallic fuel materials - A study on the electrorefining of metallic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Young Hyun; Lee, Eung Cho; Ahn, Chong Kwan; Son, Sung Ho; Ban, Jang Ho; Lee, Jae Hun; Lee, Won Joon; Ha, Youn Chul; Woo, Dong Hun [Korea University, Seoul (Korea, Republic of)

    1996-07-01

    The uranium deposited from the liquid cadmium anode by electrotransport through molten KCI-LiCl eutectic electrolyte to low carbon steel cathode above 0.15 V, and the morphology of deposits was dendritic below 0.9 V. When the neodymium was added as a impurity, the cathode contaminated by neodymium above 0.7 V and pure uranium deposit about 99.5% was obtained at 0.5 V. The activity coefficient of metallic neodymium in liquid cadmium was 1.485 * 10{sub -7} at 500 deg C. When the zirconium added as impure element, Zr Cl{sub 4} existed less than 0.01 wt% in electrolyte and in the electrorefined deposit, regardlessly to the initial UC L{sub 3} concentration in electrolyte the purity of uranium was 99.98 wt.% and in this system, the proper initial UC l{sub 3} concentration was 3 mol%, 4 mol%. The solubility of U O{sub 2} is extremely low at 1123K in KF-LiF-NaF. In case of using Al oxygen trap, its solubility reaches 10 times compared with previous experiment. 27 refs., 18 tabs., 25 figs., 5 ills. (author)

  2. China's First Orimulsion-Fueled Power Plant Constructed in Zhanjiang

    Institute of Scientific and Technical Information of China (English)

    Xing Jianxiao

    2003-01-01

    @@ A ceremony commencement of Orimulsion-fueled electric power generation project was held in Zhanjiang City,Guangdong Province, on November 26. Vice Governor of Guangdong Province You Ningfeng, Vice President of PetroChina and other officials from the related departments attended the foundation-laying ceremony for the power plant.

  3. Cost and quality of fuels for electric utility plants, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  4. Cost and quality of fuels for electric utility plants, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  5. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  6. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Jhanis [Applied Spectra Inc., Fremont, CA (United States)

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  7. Determination of uranium traces in fuel cans of nuclear reactors; Determinacion de trazas de uranio en vainas de combustible de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Acosta L, C.E.; Benavides M, A.M.; Sanchez P, L.A.; Nava S, G.F. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The objective of this work is to quantify the uranium content that as impurity can be found in zircon and zircaloy alloys which are used in the construction of fuel cans. The determination of this serves as a quality control measure due to that the increment of uranium content in alloy, diminishing the corrosion resistance. The fluorimetric method was used to do this determination. It is a very sensitive, reliable, rapid method also high reproducibility and repeatability as well as low detection limits (0.25 mg/kg). (Author)

  8. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma....

  9. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant hydraulic conductivity values for the alluvial and terrace deposits along the Cimarron River from Freedom to...

  10. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital water-level elevation contours for the alluvial and terrace deposits along the Cimarron River in northwestern Oklahoma during...

  11. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of a constant recharge rate for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in...

  12. Uranium and thorium nuclides series determined in medicinal plants commonly used in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P.; Francisconi, L.; Damatto, S. [IPEN/CNEN-SP, Sao Paulo (Brazil)

    2014-07-01

    In recent years the study of medicinal plants has become the focus of ever more extensive research all over the world due to their diversity and potential as source of medicinal products. According to the World Health Organization approximately 80% of world population makes use of medicinal herbs due to their believed therapeutic action. Besides being used as medicine, medicinal plants are also largely used as dietary supplements. The presence of radionuclides in plants constitutes one of the main pathways for their transfer to man. The amount of radioactive nuclides from U and Th series in edible vegetables are relatively well known since they have been the main concern of research conducted worldwide. Medicinal plants, on the other hand, have been neglected in these studies, possibly because the ingestion of radioactive material through their consumption has not been recognized or was considered insignificant. The objective of the present study was to determine the content of natural radionuclides from {sup 238}U and {sup 232}Th series in 25 species of medicinal plants used in Brazil, both as medicine and as dietary supplement. The medicinal plant samples were obtained in specialized pharmacies and drugstores. The raw plant and their extracts, produced as recommended by the National Agency for Sanitary Vigilance, were analyzed by Instrumental Neutron Activation Analyses for the determination of U and Th and by Total Alpha and Beta Counting after Radiochemical Separation for determination of {sup 226}Ra, {sup 228}Ra and {sup 210}Pb. In the raw plants the activity concentrations varied from 0,08 Bq kg{sup -1} to 8,0 Bq kg{sup -1} for thorium, from < LID to 22 Bq kg{sup -1} for uranium, from 1,8 Bq kg{sup -1} to 12 Bq kg{sup -1} for {sup 226}Ra, from 33 Bq kg{sup -1} to 74 Bq kg{sup -1} for {sup 228}Ra and from 10 Bq kg{sup -1} to 120 Bq kg{sup -1} for {sup 210}Pb. In the extracts, the activity concentrations varied from 9 mBq kg{sup -1} to 137 mBq kg{sup -1} for Th

  13. Uptake of radionuclide thorium by twelve native plants grown in uranium mill tailings soils from south part of China

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xun, E-mail: m13836295186@163.com

    2016-08-01

    Highlights: • Screen dominant plants grown in uranium mill tailings soils. • Quantify the content of {sup 232}Th of soil samples from uranium mill tailings. • Quantify the transfer factor, bioconcentration factor and phytoremediation factor. • Screen out the plant species capable of remediating radionuclide contaminated soils. • Guide the reuse of study area in future. - Abstract: The concentrations of thorium ({sup 232}Th) in soil from a uranium mill tailings repository in South China were analyzed. The results showed that all the soil samples were acidic and the concentrations of {sup 232}Th in all the soil samples were more than the natural radionuclide content in soil of China. Through the field investigation, twelve kinds of dominant plants were discovered. The total quantity of {sup 232}Th in the whole plant is highest in rice flat sedge. We also found that Miscanthus floridulus has the greatest transfer factor (TF) for {sup 232}Th, rice flat sedge has the greatest bioconcentration factor (BF) for {sup 232}Th. At the mean time, M. floridulus has the greatest phytoremediation factor (PF) for {sup 232}Th. On the basis of the above conclusions and the definition for hyperaccumulator, rice flat sedge and M. floridulus could be the candidates of phytoremediation for radionuclide {sup 232}Th in the soil.

  14. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  15. The End of Cheap Uranium

    CERN Document Server

    Dittmar, Michael

    2011-01-01

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

  16. Clean fuels from biomass. [feasibility of converting plant systems to fuels

    Science.gov (United States)

    Hsu, Y. Y.

    1974-01-01

    The feasibility of converting biomass to portable fuels is studied. Since plants synthesize biomass from H2O and CO2 with the help of solar energy, the conversion methods of pyrolysis, anaerobic fermentation, and hydrogenation are considered. Cost reduction methods and cost effectiveness are emphasized.

  17. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated....... Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further...... investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative...

  18. Utilization of waste tires as alternative fuel in cement plant

    OpenAIRE

    2016-01-01

    Cement industry is regulated by legislation in which various measures are specified for prevention and reduction of air pollution as well as protection of human health, due to atmospheric emissions, which occur during cement production. Legislation also holds emission limit values for co-incineration of wastes i.e. alternative fuels. Waste tires as an alternative fuel can be co-incinerated i.e. co-processed in cement plants, where the high calorific value of the rubber is used to substitute f...

  19. India's Worsening Uranium Shortage

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  20. Licensing of the Process Uranium Plant Mineral, Retortillo-Santidad; Licenciamiento de la Planta de Proceso de Mineral de Uranio Retortillo-Sanidad

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez Arroyo, E.; Colilla Peletero, J.; Bellon del Rosal, F.; Mancipe Jimenez, D. C.; Garrido Delgado, C.; Garcia-Bermejo Fernandez, R.

    2013-07-01

    Berkeley Minera Spain, S.A. provides for the operation of the concession Retortillo-Santidad (Salamanca) mining and construction of a beneficiation plant of uranium ore, for the production of uranium concentrate (Yellow cake). In Spain, the project Quercus, ENUSA, obtained the last prior authorization in 1979. Since then, there has been a continuous evolution in the aspects technical and regulatory. This paper is the documentation and content necessary for the licensing of a uranium production plant. In particular, to obtain the prior authorization as radioactive installation of 1st category (RINR).

  1. Fuel Cell Balance-of-Plant Reliability Testbed Project

    Energy Technology Data Exchange (ETDEWEB)

    Sproat, Vern [Stark State College of Technology, North Canton, OH (United States); LaHurd, Debbie [Lockheed Martin Corp., Oak Ridge, TN (United States)

    2016-10-29

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEM fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.

  2. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    Energy Technology Data Exchange (ETDEWEB)

    You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as {sup 238}U and {sup 232}Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth.

  3. Failure behavior of plutonium-uranium mixed oxide fuel under reactivity-initiated accident condition

    Science.gov (United States)

    Abe, T.; Nakae, N.; Kodato, K.; Matsumoto, M.; Inabe, T.

    1992-06-01

    Two series of in-pile tests on MOX fuels were performed in the NSRR to study failure behavior under RIA (reactivity-initiated accident) conditions in water cooled reactors. PWR type MOX test rods were pulsed in a first series. The test rods were designed to have dimensions identical to standard UO 2 fuel, on which a large number of tests had been conducted previously. The test result was that the failure mechanism and the threshold of MOX fuel was consistent with those of UO 2 fuel. ATR-type MOX test rods with PuO 2 particles as well as reference rods without PuO 2 particles were subjected to pulsing in a second series. PuO 2 particles of 400 and 1100 μm in diameter were artificially embedded at the surface of MOX pellets. No effect of particles appeared on the threshold, and no significant indication of their effect was observed on the cladding.

  4. Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.E. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1995-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed.

  5. Optimization of enrichment distributions in nuclear fuel assemblies loaded with uranium and plutonium via a modified linear programming technique

    Science.gov (United States)

    Cuevas Vivas, Gabriel Francisco

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed OXide (MOX) fuels. MOX isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide-range of applicability of the optimization technique. The features of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or

  6. LABORATORY DEMONSTRATION OF A MULTISENSOR UNATTENDED CYLINDER VERIFICATION STATION FOR URANIUM ENRICHMENT PLANT SAFEGUARDS

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, David I [Univ. of Michigan, Ann Arbor, MI (United States); Rowland, Kelly L [Univ. of California, Berkeley, CA (United States); Smith, Sheriden [Colorado State Univ., Fort Collins, CO (United States); Miller, Karen A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flynn, Eric B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-10

    The objective of safeguards is the timely detection of the diversion of a significant quantity of nuclear materials, and safeguarding uranium enrichment plants is especially important in preventing the spread of nuclear weapons. The IAEA’s proposed Unattended Cylinder Verification Station (UCVS) for UF6 cylinder verification would combine the operator’s accountancy scale with a nondestructive assay system such as the Passive Neutron Enrichment Meter (PNEM) and cylinder identification and surveillance systems. In this project, we built a laboratory-scale UCVS and demonstrated its capabilities using mock UF6 cylinders. We developed a signal processing algorithm to automate the data collection and processing from four continuous, unattended sensors. The laboratory demonstration of the system showed that the software could successfully identify cylinders, snip sensor data at the appropriate points in time, determine the relevant characteristics of the cylinder contents, check for consistency among sensors, and output the cylinder data to a file. This paper describes the equipment, algorithm and software development, laboratory demonstration, and recommendations for a full-scale UCVS.

  7. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  8. Fluid bed gasification pilot plant fuel feeding system evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, W.A.; Fonstad, T.; Pugsley, T.; Gerspacher, R. (Univ. of Saskatchewan, Saskatoon (Canada)), Email: wac132@mail.usask.ca; Wang Zhiguo (Saskatchewan Research Council, Saskatoon (Canada)), Email: zhiguo.wang@src.sk.ca

    2009-07-01

    Fluidized bed gasification (FBG) is a method for thermally converting solid biomass to a gaseous product termed syngas, which can be used as fuel for heat or electricity generation. Accurate and consistent feeding of biomass fuel into biomass FBG converters is a continuing, challenge, and was the subject of experimentation at the University of Saskatchewan biomass FBG pilot plant. The 2-conveyor feeding system for this pilot plant was tested using meat and bone meal (MBM) as feedstock, by conveying the feedstock through the system, and measuring the output rate as the fuel was discharged. The relationship between average mass-flowrate (F{sub M}) and conveyor speed (S) for the complete feeding system was characterized to be F{sub M}=0.2188S-0.42 for the tests performed. Testing of the metering conveyor coupled to the injection conveyor showed that operating these conveyors at drive synchronized speeds, air pulsed into the injection hopper, and 50 slpm injection air, produced the most consistent feed output rate. Hot fluidized bed tests followed, which showed that plugging of the injection nozzle occurred as bed temperatures increased past 700C, resulting in loss of fuel flow. The pneumatic injection nozzle was subsequently removed, and the system was found to perform adequately with it absent. (orig.)

  9. Uranium industry annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  10. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Science.gov (United States)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-11-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s-1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  11. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  12. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  13. Structural Materials and Fuels for Space Power Plants

    Science.gov (United States)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  14. Need for higher fuel burnup at the Hatch Plant

    Energy Technology Data Exchange (ETDEWEB)

    Beckhman, J.T. [Georgia Power Co., Birmingham, AL (United States)

    1996-03-01

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make the conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.

  15. Investigation of Backscatter X-ray imaging techniques for Uranium Dioxide Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Timothy D [Rensselaer Polytechnic Institute (RPI); Hollenbach, Daniel F [ORNL; Shedlock, Daniel [Nucsafe, Inc.

    2011-01-01

    Radiography by Selective Detection (RSD), was investigated for its ability to determine the presence and types of defects in a UO{sub 2} fuel rod surrounded by zirconium cladding. Images created using a Monte Carlo model compared favorably with actual X-ray backscatter images from mock fuel rods. A fuel rod was modeled as a rectangular parallelepiped with zirconium cladding, and pencil beam X-ray sources of 160 kVp (79 keV avg) and 480 kVp (218 keV avg) were generated using the Monte Carlo N-Particle Transport Code to attempt to image void and palladium (Pd) defects in the interior and on the surface of the fuel pellet. It was found that the 160 kVp spectrum was unable to detect the presence of interior defects, whereas the 480 kVp spectrum detected them with both the standard and the RSD backscatter methods, though the RSD method was very inefficient. It was also found that both energy spectra were able to detect void and Pd defects on the surface using both imaging methods. Additionally, two mock fuel rods were imaged using a backscatter X-ray imaging system, one consisting of hafnium pellets in a Zircaloy-4 cladding and the other consisting of steel pellets in a Zircalloy-4 cladding which was then encased in a steel cladding (a double encapsulation configuration employed in irradiation and experiments). It was found that the system was capable of detecting individual HfO{sub 2} pellets in a Zircaloy-4 cladding and may be capable of detecting individual steel pellets in the double-encapsulated sample. It is expected that the system would also be capable of detecting individual UO{sub 2} pellets in a Zircaloy-4 cladding, though no UO{sub 2} fuel rod was available for imaging.

  16. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Farawila, Anne F.; O' Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used

  17. Uranium nitride as LWR TRISO fuel: Thermodynamic modeling of U-C-N

    Science.gov (United States)

    Besmann, Theodore M.; Shin, Dongwon; Lindemer, Terrence B.

    2012-08-01

    TRISO coated particle fuel is envisioned as a next generation replacement for current urania pellet fuel in LWR applications. To obtain adequate fissile loading the kernel of the TRISO particle will likely need to be UN instead of UO2. In support of the necessary development effort for this new fuel system, an assessment of phase regions of interest in the U-C-N system was undertaken as the fuel will be prepared by the carbothermic reduction of the oxide followed by nitriding, will be in equilibrium with carbon within the TRISO particle, and will react with minor actinides and fission products. The phase equilibria and thermochemistry of the U-C-N system is reviewed, including nitrogen pressure measurements above various phase fields. Measurements were used to confirm an ideal solution model of UN and UC adequately represents the UC1-xNx phase. Agreement with the data was significantly improved by effectively adjusting the Gibbs free energy of UN by +12 kJ/mol. This also required adjustment of the value for the sesquinitride by +17 kJ/mol to obtain agreement with phase equilibria. The resultant model together with reported values for other phases in the system was used to generate isothermal sections of the U-C-N phase diagram. Nitrogen partial pressures were also computed for regions of interest.

  18. [The assessment of no adverse effect doses for plant populations chronically exposed to radionuclides of uranium and thorium decay series].

    Science.gov (United States)

    Evseeva, T I; Maĭstrenko, T A; Belykh, E S; Geras'kin, S A

    2010-01-01

    Dose rates cause no adverse effects on natural populations of Pinus sylvestris L. and Vicia cracca L. inhabiting territories contaminated by uranium mill tailings and radium production wastes (Vodny settlement, Komi Republic) were determined. A significant increase in embryonic lethal mutation frequency in V. cracca legumes and decrease in seedlings survival rate as compared with control values were registered at dose rate equal to 1.67 mGy/day, that is 280 times higher than the one calculated for the reference site. The adverse effects in P. sylvestris expressed in increased frequency of chromosome aberrations in meristematic root tips and decreased reproductive capacity of seeds were determined at absorbed dose rate equal to 0.083 mGy/day. Data obtained show that the decrease in plant reproductive capacity in case of chronic exposure of radionuclides of uranium and thorium decay series can observe at lower weighted absorbed dose rates than in case of environmental contamination by artificial radionuclides.

  19. Compost in plant microbial fuel cell for bioelectricity generation.

    Science.gov (United States)

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation.

  20. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    Science.gov (United States)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-01

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of 235U. It operates in the open-cycle mode involving 233U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  1. Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003

    Science.gov (United States)

    Masoner, Jason R.; Mashburn, Shana L.

    2004-01-01

    Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from nitrate concentrations exceeding the maximum contaminant level of 10 milligrams per liter. Nitrate concentrations in agricultural areas were significantly greater than nitrate concentrations in grassland areas. Pesticides were detected in 15 of 45 ground-water samples. Atrazine and deethylatrazine, a metabolite of atrazine, were detected most frequently. Deethylatrazine was detected in water samples from 9 wells and atrazine was detected in samples from 8 wells. Tebuthiuron was detected in water samples from 5 wells; metolachlor was detected in samples from 4 wells; prometon was detected in samples from 4 wells; and alachlor was detected in 1 well. None of the detected pesticide concentrations exceeded the maximum contaminant level or health advisory level set by the U.S. Environmental Protection Agency. Wastewater compounds were detected in 28 of 45 groundwater samples. Of the 20 wastewater compounds

  2. Gas Cooled, Natural Uranium, D20 Moderated Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, R.C.; Beasley, E.G.; DeBoer, T.K.; Evans, T.C.; Molino, D.F.; Rothwell, W.S.; Slivka, W.R.

    1956-08-01

    The attractiveness of a helium cooled, heavy water moderated, natural uranium central station power plant has been investigated. A fuel element has been devised which allows the D20 to be kept at a low pressure while the exit gas temperature is high. A preliminary cost analysis indicates that, using currently available materials, competitive nuclear power in foreign countries is possible.

  3. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  4. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  5. Bioaccumulation of polonium ({sup 210}Po) and uranium ({sup 234}U, {sup 238}U) in plants around phosphogypsum waste heap in Wislinka (northern Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Borylo, A.; Skwarzec, B. [Gdansk Univ. (Poland). Faculty of Chemistry

    2011-07-01

    In the study the activities of polonium {sup 210}Po and uranium {sup 234}U, {sup 238}U in plants, collected near phosphogypsum waste heap in Wis'linka (northern Poland), were determined by using the alpha spectrometry. The obtained results revealed that the concentrations of {sup 210}Po, {sup 234}U, and {sup 238}U in the analyzed plants were differentiated. In the analyzed flora organisms the highest amounts of polonium and uranium were found in ruderal plant samples as well as willow samples (Salix viminalis) from protection zone of phosphogypsum waste heap. The concentrations of {sup 210}Po, {sup 234}U and {sup 238}U in the analyzed plants were higher in roots than in green parts of plants. The higher concentrations of {sup 210}Po and {sup 238}U radionuclides were estimated for hydrophyte (common sedge Carex nigra Reichard), the favourite habitat of which is particularly wet meadow and for plants collected in the vicinity of phosphogypsum waste heap. The major source of polonium and uranium in analyzed plants is root system. The values of {sup 234}U/ {sup 238}U activity ratio in all analyzed plants are closed to one, what indicated that source of uranium in analyzed plants is phosphogypsum. The highest uranium and polonium concentrations were characterized for plants, which are covered with tomentose. The comparability polonium and uranium contents were confirmed in edible plants, but higher accumulation was determined in ripe species than immature species of vegetables. The higher polonium and uranium concentrations were noticed in green parts of plant, the lower in roots. Polonium concentration in cultivated plants samples was not species diverse. Therefore, the significant source of polonium and uranium in analyzed plants is wet and dry atmospheric falls gathering the soil and air dust from phosphogypsum waste dump. The maximum {sup 210}Po and {sup 238}U radionuclides concentrations were found in green parts of red beet (Beta vulgaris esculenta), the

  6. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  7. Phosphoric acid fuel cell power plant system performance model and computer program

    Science.gov (United States)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  8. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    Science.gov (United States)

    Ariani, Menik; Satya, Octavianus Cakra; Monado, Fiber; Su'ud, Zaki; Sekimoto, Hiroshi

    2016-03-01

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on "Region-8" and "Region-10" core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  9. Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage

    Science.gov (United States)

    Orr, Robin; Godfrey, Hugh; Broan, Chris; Goddard, Dave; Woodhouse, Guy; Durham, Peter; Diggle, Andrew; Bradshaw, John

    2016-08-01

    The formation of uranium hydride is recognised as a hazard during the storage of uranium metal owing to its potentially pyrophoric properties. This study has assessed the influence of water vapour on the potential for uranium hydride to form at low temperatures and shows that it increases the duration of the induction period but does not necessarily prevent uranium hydride formation and also does not significantly change the reaction rate with hydrogen. It is further shown that the α-UH3 fraction in the uranium hydride gradually increases at decreasing temperatures and is likely to be the dominant phase formed under typical storage conditions. Particle morphology and specific surface area of uranium hydride prepared between 30 °C and 200 °C have also been characterised but show only modest variation compared with the phase composition.

  10. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  11. A fuel cell balance of plant test facility

    Science.gov (United States)

    Dicks, A. L.; Martin, P. A.

    Much attention is focused in the fuel cell community on the development of reliable stack technology, but to successfully exploit fuel cells, they must form part of integrated power generation systems. No universal test facilities exist to evaluate SOFC stacks and comparatively little research has been undertaken concerning the issues of the rest of the system, or balance of plant (BOP). BG, in collaboration with Eniricerche, has therefore recently designed and built a test facility to evaluate different configurations of the BOP equipment for a 1-5 kWe solid oxide fuel cell (SOFC) stack. Within this BOP project, integrated, dynamic models have been developed. These have shown that three characteristic response times exist when the stack load is changed and that three independent control loops are required to manage the almost instantaneous change in power output from an SOFC stack, maintain the fuel utilisation and control the stack temperature. Control strategies and plant simplifications, arising from the dynamic modelling, have also been implemented in the BOP test facility. An SOFC simulator was designed and integrated into the control system of the test rig to behave as a real SOFC stack, allowing the development of control strategies without the need for a real stack. A novel combustor has been specifically designed, built and demonstrated to be capable of burning the low calorific anode exhaust gas from an SOFC using the oxygen depleted cathode stream. High temperature, low cost, shell and tube heat exchangers have been shown to be suitable for SOFC systems. Sealing of high temperature anode recirculation fans has, however, been shown to be a major issue and identified as a key area for further investigation.

  12. Plant Composition in Certain Uranium Tailings Area in China and Their Accumulation on Uranium%某铀尾矿区植物组成及其对铀的积累作用研究

    Institute of Scientific and Technical Information of China (English)

    谢红艳; 胡劲松; 殷杰; 丁德馨

    2014-01-01

    分析研究了某铀尾矿区植物资源,并对这些植物的铀积累作用进行了研究。结果显示,该尾矿区污染土壤上植物群落较简单,共有高等植物31种,隶属12科,其中:禾本科最多,12种;其次是菊科植物,5种;凤尾蕨科和莎草科植物各3种;其他科各1种。1年生或多年生草本植物有28种,占总数的90.3%,其他3种为灌木或小乔木。对这31种植物进行了铀含量测定,结果发现,铀富集量在200 mg/kg以上的植物有14种,占总数的45%,其中富集量在600 mg/kg以上的有3种,分别是水莎草、牧草、小飞蓬。植物体内铀迁移系数大于1的有9种,其中燕麦、牧草、鼠曲草、青蒿中铀的迁移系数较大。这31种植物中,可考虑将水莎草、牧草作为超富集植物应用于铀污染土壤的修复,小飞蓬、盐肤木、枸骨、燕麦、鼠曲草、碎米莎草、龙葵等对铀污染土壤的修复具有潜在应用价值,可进一步研究。%In this study ,the plant resources and their accumulation of uranium element w ere analyzed in certain uranium tailings area ,in China .T he results show that the plant community are relatively simple in the soils polluted by uranium tailings ,in w hich there are only 31 species of higher plants ,belonging to 12 families ,including 12 species of gramineae plants , 5 species of compositae plants , 3 species of pteridaceae plants , 3 species of cyperaceae plants ,and 1 specie in every other family .There are 28 species of annual or perennial herbs ,accounting for 90.3% ,and 3 species of shrubs or small trees in this flora .The uranium contents in these 31 plants were also determined .Ura‐nium contents in 14 species of plants ,accounting for 45% ,are above 200 mg/kg .Of note ,uranium content is more than 600 mg/kg in 3 species of plants ,which are the w ater sedge ,phleum alpinum and conyza canadensis ,respectively .T he T F of uranium is more than 1 in 9

  13. The prospect of uranium nitride (UN-PuN) fuel for 25- 100MWe gas cooled fast reactor long life without refuelling

    Science.gov (United States)

    Syarifah, R. D.; Su'ud, Z.; Basar, K.; Irwanto, D.

    2016-11-01

    The prospect of uranium nitride (UN-PuN) fuel for 25-100MWe Gas Cooled Fast Reactor has been done. This research use helium coolant which has low neutron moderation, chemical inert and single phase. This study use natural uranium and plutonium. Plutonium taken from spent fuel of LWR (Light Water Reactor). So, it can reduced spent fuel in the world. The calculation use SRAC2006 and JENDL 4.0 for the data libraries. First, we calculate PIJ for fuel pin cell calculation and CITATION for core calculation. The reflector radial-axial width is 50 cm. The variation of fuel fraction is 40% until 65%, cladding 10%, and moderator 25% up to 50%. The variation of the power is 75-300 MWth (25-100 MWe). The calculation of survey parameter has been done. The variation of percentage plutonium is 7% up to 13%. We have optimum k-eff value in percentage of plutonium 11%. The high powers cause k-eff value high too. Second, the core configuration divided by three variation fuel (F1, F2, and F3). F1 is located in the central core, F2 middle core and F3 outer core. The variation percentage Plutonium for fuel F1:F2:F3 = 8%:10%:12%. The increasing power level make the burn up level increase. All case can reach burn up time plus than 20 years. The thermal powers increase cause the peak power density increase. The power 150 MWth, 225 MWth, and 300 MWth have excess reactivity (%Ak/k) less than 2%.

  14. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Science.gov (United States)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  15. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  16. Thermal decomposition of organic solvent with nitric acid in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Tadao; Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Miyata, Sadaichirou

    1995-02-01

    Since a thermal decomposition of organic solvent containing TBP (tributyl phosphate) with nitric acid and heavy metal nitrates is an exothermic reaction, it is possible to cause an explosive decomposition of TBP-complex materials formed by a nitration between the solvent and nitric acid, if the solvent involving TBP-complex is heated upto a thermal limit in an evaporator to concentrate a fuel liquid solution from the extraction process in the reprocessing plant. In JAERI, the demonstration test for explosive decomposition of TBP-complex by the nitration was performed to elucidate the safety margin of the evaporator in the event of hypothetical explosion under auspices of the Science and Technology Agency. The demonstration test was carried out by heating TBP/n-dodecane solvent mixed with nitric acid and uranium nitrate. In the test, the thermal decomposition behavior of the solvent was examined, and also a kinematic reaction constant and a heat formation of the TBP-complex decomposition were measured by the test. In the paper, a safety analysis of a model evaporator was conducted during accidental conditions under the explosive decomposition of the solvent. (author).

  17. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  18. Refuse-derived fuels and fuel preparation plants of proven quality from REMONDIS; Guetegesicherte Sekundaerbrennstoffe und Brennstoffanlagen von REMONDIS

    Energy Technology Data Exchange (ETDEWEB)

    Fendel, A. [Remondis AG und Co. KG, Luenen (Germany); Glorius, T. [Remondis Trade and Sales, Essen (Germany)

    2005-07-01

    Efforts to conserve resources have been reinvigorated by a number of factors, including the interest of various waste-producing industries in reutilisation and, initially on the part of the cement and lime industry but later also power plant operators, the search for a quantitatively and qualitatively reliable source of less expensive refuse-derived fuels of the greatest possible homogeneity. Other factors that have stimulated the demand for partially biogenic refuse-derived fuels have been the requirements imposed for the purpose of reducing climatically harmful emissions in accordance with the Kyoto Treaty and the now established market for CO{sub 2} emission trading. Rising primary energy prices are a powerful incentive for operators of power plants and industrial firing installations to lower their energy costs through the use of refuse-derived fuels. The refuse-derived fuel must be brought to a quality level where it can substitute fossil fuels without operational or technical constraints. This applies in particular to power plants and cement and lime works, since these depend on cocombustion. Refuse-derived fuels are therefore subject to very stringent quality requirements. In the ideal case this will result in a refuse-derived fuel whose properties come very close to those of the fuel being substituted. Novel preparation technologies have facilitated the breakthrough of two new generations of refuse-derived fuels, namely BPG registered and SBS registered. The quality requirements agreed upon with the purchasers of these fuels necessitate very extensive and involved preparation processes.

  19. Root uptake of uranium (6) in solution by a higher plant: speciation in hydroponic solution, bioavailability, micro-localisation and biological effects induced; Transfert racinaire de l'uranium (6) en solution chez une plante superieure: speciation en solution hydroponique, prise en charge par la plante, microlocalisation et effets biologiques induits

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, L

    2005-01-15

    Uranium exists naturally in the environment, usually present in trace quantities. In soil solution and oxic conditions, uranium is present in the +VI oxidation state and forms a large number of inorganic and organic complexes. The exposure medium, an artificial soil solution, was designed in such a way as to control the uranium species in solution. The geochemical speciation code JCHESS was used to calculate the uranium aqueous species concentration and to define the domains of interest, each of them characterized by a limited number of dominant U species. These domains were defined as follows: pH 4.9 with uranyl ions as dominant species, pH 5.8 with hydroxyl complexes and pH 7 where carbonates play a major role. For each pH, short-duration (5 hours of exposure) well-defined laboratory experiments were carried out with Phaseolus vulgaris as plant model. The effect of competitive ions such as Ca{sup 2+} or the presence of ligands such as phosphate or citrate on root assimilation efficiency was explored. Results have shown that uranium transfer was not affected by the presence of calcium, phosphate or citrate (but was decreased of 60% with citrate (10 {mu}M) at pH 5.8) in our experimental conditions. Moreover, observation in Transmission Electronic Microscopy (TEM), equipped with an EDAX probe, have shown that uranium was associated with granules rich in phosphorus and that there were some chloroplast anomalies. Finally, the presence of uranium affects root CEC by reducing it and stimulates root elongation at low uranium concentrations (100 nM, 400 nM and 2 {mu}M at pHs 4.9, 5.8 and 7 respectively) and inhibits it at high uranium concentrations. (author)

  20. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of recycle uranium to UF/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, J.W.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-04-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the amount of radioactive materials released from a model recycle uranium conversion and uranium hexafluoride (UF/sub 6/) production plant and to determine the radiological impact (dose commitment) of the released radioactive materials on the environment. This study is designed to assist the US NRC in defining the term ''as low as reasonably achievable'' as it applies to these nuclear facilities. The base case model plant is representative of a licensable UF/sub 6/ production plant and has an annual capacity of 1500 metric tons of uranium. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments is calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. The methodology used in estimating the costs is presented. (34 tables, 11 figs.)

  1. Study on the use of slightly enriched uranium fuel cycle in an existing CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Choong Sub; Kim, Hyun Dae [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1997-12-31

    To test the viability of CANFLEX-SEU bundles in an existing CANDU 6 reactor, core follow-up simulation has been carried out using the reactor fueling simulation program of the CANDU 6, RFSP computer code, and a lattice physics code, WIMS-AECL. During the core follow-up, bundle and channel powers and zone levels have been checked against their operating limits at each simulation. It is observed from the simulation results that an equilibrium core loaded with 0.9 w/o CANFLEX-SEU bundles could be refueled and maintained for 550 FPD without any significant violations in the channel and bundle power limits and the permissible operating range of the liquid zone controllers. 8 refs., 2 figs., 1 tab. (Author)

  2. Morphologies of uranium deposits produced during electrorefining of EBR-II spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    2000-02-15

    The morphologies of U metal samples from deposits produced by electrorefining of Experimental Breeder Reactor-II (EBR-II) spent fuel were examined using scanning electron microscopy, energy- and wavelength-dispersive X-ray spectroscopy, and metallography. The morphologies were analyzed to find correlations with the chemistry of the samples, the ER run conditions, and the deposit performance. A rough correlation was observed between morphology and Zr concentration; samples with Zr contents greater than approximately 200 ppm showed fine-grained, polycrystalline dendritic morphologies, while samples with Zr contents less than approximately 100 ppm were comprised of agglomerations or linked chains of rhomboidal single crystals. There were few correlations found between morphology, run conditions, and deposit performance.

  3. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  4. Study on PWR Thorium-uranium Breeding Cycle Using Uniformly Mixed Fuel Assembly%使用均匀混合型燃料组件的压水堆钍-铀增殖循环研究

    Institute of Scientific and Technical Information of China (English)

    周明; 沈季; 于悦海; 张文杰

    2014-01-01

    In order to improve the utilization rate of PWR nuclear fuel , a kind of uniformly mixed thorium-uranium assemblies which contain suitable quantity of 232 Th and 233 U were developed .Neutronics calculation and analysis show that kinf of the new assemblies decreases with the increase of burnup slowly .This property is very good for extending reactor core cycle lifetime .Unit 1 of Ling Ao Nuclear Power Plant was chosen as reference core , and thorium-uranium mixed core was formed by feeding thorium assemblies .Through corresponding analysis ,the conclusion indicates that uniformly mixed thorium-uranium assemblies suit exiting PWRs and have advantages in 235 U utilization and long cycle lifetime was obtained .%为提升压水堆燃料利用率,设计了一种包含适量232 T h和233 U的均匀混合型燃料组件。对该型燃料组件的核特性分析表明,其具备随燃耗增加 kinf下降更缓慢的特性,有利于堆芯获得更长的循环长度。以岭澳核电厂一号机组为例,对包含均匀混合型含钍燃料组件的堆芯进行了分析,结果表明,当前压水堆中采用均匀混合型含钍燃料组件是可行的,并且具备235 U利用率高、堆芯循环长度长的优势。

  5. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells.

  6. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  7. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  8. Spectroscopic Evidence of Uranium Immobilization in Acidic Wetlands by Natural Organic Matter and Plant Roots

    Science.gov (United States)

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah Ri...

  9. Solid oxide fuel cell power plant having a bootstrap start-up system

    Science.gov (United States)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  10. Technological study of electrochemical uranium fuel reprocessing in fused chloride bath; Estudo tecnologico do reprocessamento eletroquimico de combustiveis de uranio em meio de cloretos fundidos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Damaris

    2002-07-01

    This study is applied to metallic fuels recycling, concerning advanced reactor concept, which was proposed and tested in LMR type reactors. Conditions for electrochemical non-irradiated uranium fuel reprocessing in fused chloride bath in laboratory scale were established. Experimental procedures and parameters for dehydration treatment of LiCl-KCl eutectic mixture and for electrochemical study of U{sup 3+}/U system in LiCl-KCl were developed and optimized. In the voltammetric studies many working electrodes were tested. As auxiliary electrodes, graphite and stainless steels crucibles were verified, with no significant impurities inclusions in the system. Ag/AgCl in Al{sub 2}O{sub 3} with 1 w% in AgCl were used as reference electrode. The experimental set up developed for electrolyte treatment as well as for the study of the system U{sup 3+}/U in LiCl-KCl showed to be adequate and efficient. Thermogravimetric Techniques, Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry and cyclic voltametry showed an efficient dehydration method by using HCl gas and than argon flux for 12 h. Scanning Electron Microscopy, with Energy Dispersive X-Ray Spectrometry and Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry detected the presence of uranium in the cadmium phase. X-ray Diffraction and also Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry were used for uranium detection in the salt phase. The obtained results for the system U{sup 3+}/U in LiCl-KCl showed the viability of the electrochemical reprocessing process based on the IFR advanced fuel cycle. (author)

  11. The use of slightly alloyed uranium as fuel: its influence on the dissolution and other stages of treatment; Emploi de l'uranium faiblement allie comme combustible: son incidence sur la dissolution et les autres phases du retraitement

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P.; Leroy, P.; Lheureux, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    This report deals chiefly with the treatment of binary alloys (UAI, UMo, UZr, UCr, USi) with a low concentration of the additional element ({<=}2 per cent). The investigation was pursued with a view to the continued utilisation, with a minimum of modification, of the existing plants for treatment of non-alloyed irradiated uranium. In the first part, the usual process for the treatment of irradiated uranium by solvent extraction is briefly recalled. The second part is devoted to a study of the selective dissolution of the canning around certain of these alloys. The third part gives the behaviour of these different alloys at various phases of the usual treatment: a) dissolution; b) extractions; c) final treatment of fission products; d) final purification of plutonium. To conclude, possible alloys are classed as a function of their repercussions on the normal treatment. (author) [French] Il s'agit surtout du traitement d'alliages binaires (UAI, UMo, UZr, UCr, USi) a faible teneur en element etranger ({<=}2 pour cent). L'etude a ete conduite en vue d'utiliser un minimum de modifications les usines de traitement d'uranium irradie non allie. Dans une premiere partie, nous rappelons brievement le procede habituel de traitement de l'uranium irradie par extraction au solvant. La deuxieme partie est consacree a l'etude de la dissolution selective de la gaine entourant certains de ces alliages. La troisieme partie donne le comportement de ces differents alliages au cours des phases du traitement habituel: a) dissolution; b) extractions; c) traitement final des produits de fission; d) purification finale du plutonium. Enfin, en conclusion, nous etablirons un classement des alliages possibles en fonction des repercussions sur le traitement normal. (auteur)

  12. Modern power station practice mechanical boilers, fuel-, and ash-handling plant

    CERN Document Server

    Sherry, A; Cruddace, AE

    2014-01-01

    Modern Power Station Practice, Second Edition, Volume 2: Mechanical (Boilers, Fuel-, and Ash-Handling Plant) focuses on the design, manufacture and operation of boiler units and fuel-and ash-handling plants.This book is organized into five main topics-furnace and combustion equipment, steam and water circuits, ancillary plant and fittings, dust extraction and draught plant, and fuel-and ash-handling plant.In these topics, this text specifically discusses the influence of nature of coal on choice of firing equipment; oil-burner arrangements, ignition and control; disposition of the heating surf

  13. Model for the behaviour of thorium and uranium fuels at pelletization; Modelo para o comportamento de microesferas combustiveis de torio e uranio na peletizacao

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Neto, Ricardo Alberto

    2000-11-15

    In this work, a model for the behaviour of thorium-uranium-mixed oxide microspheres in the pelletizing process is presented. This model was developed in a program whose objective was to demonstrate the viability of producing fissile material through the utilization of thorium in pressurized water reactors. This is important because it allows the saving of the strategic uranium reserves, and makes it possible the nuclear utilization of the large brazilian thorium reserves. The objective was to develop a model for optimizing physical properties of the microspheres, such as density, fracture strength and specific surface, so as to produce fuel pellets with microstructure, density, open porosity and impurity content, in accordance with the fuel specification. And, therefore, to adjust the sol-gel processing parameters in order to obtain these properties, and produce pellets with an optimized microstructure, adequate to a stable behaviour under irradiation. The model made it clear that to achieve this objective, it is necessary to produce microspheres with density and specific surface as small as possible. By changing the sol-gel processing parameters, microspheres with the desired properties were produced, and the model was experimentally verified by manufacturing fuel pellets with optimized microstructures, density, open porosity and impurity content, meeting the specifications for this new nuclear fuel for pressurized water reactors. Furthermore it was possible to obtain mathematical expressions that enables to calculate from the microspheres properties and the utilized compaction pressure, the sinter density that will be obtained in the sintered pellet and the necessary compaction pressure to reach the sintered density specified for the fuel. (author)

  14. 1000kW phosphoric acid fuel cell power plant. Outline of the plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinobe, Kenji; Suzuki, Kazuo; Kaneko, Hideo

    1988-02-10

    The outline of the 1000KW phosphoric acid fuel cell power plant, developed as part of the Moonlight plan, was described. The plant was composed of 4 stacks of 260KW DC output. They were devided into two train with 680V and 765A. The generation efficiency of the plant was 40% and more. Steam reforming of natural gas was used. As the fuel, fuel cell exhaust gas was used in composition with the natural gas. The DC-AC inverter had an efficiency of 96%. The capacity of hot water generator and demineralized water plant for cell cooling were 2t/h and 1.6t/h, respectively, and air-system was incorporated. In September of 1987, the plant has succeeded in 1000KW power generation, and put in operation now. Under the 100% loaded condition, each cell had a voltage of 0.7V with little variation, and the current was 200mA/cm/sup 2/. No problems were found in cooling conditions and in the control of interpole differential pressure. The reformer has been operated for 1200h scince its commisioning, and had experiences of 100 times on start up-shut down operations, the reformer also indicated good performances in the gas compositions. The starting time of 8h and the load follow-up rate 10%/min remain as the subjects for shortening. DC-AC conversion was good. The concentration of NOx and the noise level satisfied the target values. (12 figs, 1 tab)

  15. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  16. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  17. Laser-based analytical monitoring in nuclear-fuel processing plants

    Energy Technology Data Exchange (ETDEWEB)

    Hohimer, J.P.

    1978-09-01

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.

  18. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into th

  19. Development of a 200kW multi-fuel type PAFC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu [NTT Integrated Information & Energy System Labs., Tokyo (Japan)

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  20. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Shibahara, Yuji [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); University of Fukui, Fukui-shi, Fukui, 910-8507 (Japan); Morimoto, Yasuyuki; Tokuyasu, Takashi; Takahashi, Nobuo; Tanaka, Yoshio; Sugitsue, Noritake [Japan Atomic Energy Agency, Kagamino-cho, Tomata-gun, Okayama, 708-0698 (Japan)

    2012-07-01

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management data such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered

  1. Economic evaluation of dual purpose desalination plants by fuel type in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seung-Su, Kim; Man-Ki, Lee [Korea Atomic Energy Research Institute, Dae-jeon city (Korea, Republic of)

    2007-07-01

    In light of the recent rapid increase in the fossil fuel prices it is meaningful to evaluate the impact of these price changes in the economics of dual-purpose desalination projects producing electricity and fresh water simultaneously. The price of crude oil and LNG (Liquefied Natural Gas) has increased by about 200% and 100% during the past three or four years. The uranium price has also increased by nearly 500% during the same period. The purpose of this paper is to analyze and compare the economics of SMART (System-integrated Modular Advanced ReacTor) which is being developed as a small size PWR type and the LNG Combine Cycle coupled with MED (Multi-Effect Distillation) which are being acknowledged as promising energy sources for the future in Korea. The methods of analysis used in this paper are the lifetime leveled cost method for the power and water cost calculation and the power credit method for the total cost allocation. DEEP (Devaluation Economic Evaluation Program) developed by IAEA was used to perform an economic comparison between the two dual-purpose desalination projects. From the results of the analysis it is found that the desalination by SMART-MED is much superior to that of LNG CC-MED under the current economic and technical situations. It is also shown that the relative superiority of SMART-MED to LNG CC-MED will be maintained even in case where an increase in the uranium price and the SMART construction cost would reach a maximum in the sensitivity analysis. In the case that the discount rate declines to 5% per year, the relative attractiveness of SMART-MED which is a capital intensive plant will be enhanced when compared to that for a 7% discount rate. In addition to this, it is thought that a nuclear energy source will be favored much more than now in the field of desalination if the regulations for the emission of greenhouse gases are to be strengthened. (authors)

  2. Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-09-01

    The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

  3. Chemical Interactions of Uranium in Water, Sediments, and Plants Along a Watershed Adjacent to the Abandoned Jackpile Mine

    Science.gov (United States)

    Blake, J.; De Vore, C. L.; Avasarala, S.; Ali, A.; Roldan, C.; Bowers, F.; Spilde, M.; Artyushkova, K.; Cerrato, J.

    2015-12-01

    The chemical interactions, mobility, and plant uptake of uranium (U) near abandoned mine wastes was investigated along the Rio Paguate, adjacent to the Jackpile Mine, located in Laguna Pueblo, New Mexico. Elevated U concentrations in surface water adjacent to mine waste range from 30 to 710 μg/L seasonally and decrease to 5.77 to 10.0 μg/L at a wetland 4.5 kilometers downstream of the mine. Although U concentrations in stream water are elevated, aqua regia acid digestions performed on co-located stream bed and stream bank sediments reveal that there is limited U accumulation on sediments along the reach between the mine and wetland, with most sediment concentrations being near the 3 mg/kg crustal average. However, U concentrations in sediments in the wetland are 4 times the background concentrations in the area. Individual results from salt cedar roots, stems, and leaves collected along the river transect show higher U concentrations in the roots adjacent to the mine waste (20 and 55 mg/kg) and lower in the stems and leaves. Translocation values calculated below 1 are evident in many of the plant samples, suggesting that U root to shoot translocation is minimal and U is accumulating in the roots. Concentrations of U in salt cedar roots from downstream of the mine waste decrease to 15 mg/kg. X-ray photoelectron spectroscopy analysis on sediment samples adjacent to the mine waste show a 75:25% ratio of Fe(III) to Fe(II), which can have an effect on adsorption properties. Electron microprobe results suggest that the ore in this area is present as a uranium-phosphate phase. Our results suggest that dilution, uptake by plants, and U sorption to wetland sediments are the dominant factors that help to decrease the U concentrations downstream of the mine.

  4. Uranium Immobilization in an Iron-Rich Rhizosphere of a Native Wetland Plant from the Savannah River Site under Reducing Conditions

    Science.gov (United States)

    The hypothesis of this study was that iron plaque formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted usin...

  5. Industrial Fuel Gas Demonstration Plant Program: environmental permit compliance plan

    Energy Technology Data Exchange (ETDEWEB)

    Bodamer, Jr., James W.; Bocchino, Robert M.

    1979-11-01

    This Environmental Permit Compliance Plan is intended to assist the Memphis Light, Gas and Water Division in acquiring the necessary environmental permits for their proposed Industrial Fuel Gas Demonstration Plant in a time frame consistent with the construction schedule. Permits included are those required for installation and/or operation of gaseous, liquid and solid waste sources and disposal areas. Only those permits presently established by final regulations are described. The compliance plan describes procedures for obtaining each permit from identified federal, state and local agencies. The information needed for the permit application is presented, and the stepwise procedure to follow when filing the permit application is described. Information given in this plan was obtained by reviewing applicable laws and regulations and from telephone conversations with agency personnel on the federal, state and local levels. This Plan also presents a recommended schedule for beginning the work necessary to obtain the required environmental permits in order to begin dredging operations in October, 1980 and construction of the plant in September, 1981. Activity for several key permits should begin as soon as possible.

  6. Control of a laser inertial confinement fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  7. Optimization of enrichment distributions in nuclear fuel assemblies loaded with Uranium and Plutonium via a modified linear programming technique

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas Vivas, Gabriel Francisco

    1999-12-01

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed Oxide (MOX) isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide range of applicability of the optimization technique. The feature of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactor (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or in the

  8. {alpha} grain refining and metallurgical study of alloyed uranium, Sicral F1, used for fuel elements; Affinage du grain {alpha} et etude metallurgique de l'alliage d'uranium sicral F1 pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This study was made to know more about grain refining in low alloyed uranium of composition not very different from SICRAL F 1. Alpha grain refining of fuel elements made of these alloys was studied after casting and quenching by the methods used for mass production. The author describes the effect: - of the metallurgical history before quenching: - casting - purity - rate of solidification - of quenching parameters: - annealing temperature before quenching - annealing time - quenching rate - of the composition of the alloy. For the graphite gas fuel elements of various dimensions, he suggests some modifications to give a better adaptation of fabrication to size. He describes the grain refining made during quenching and the {beta} -> {alpha} and {gamma} -> {alpha} transformation types. He proposes the use of a U-Fe-Si especially useful from the point of view of grain refining. (author) [French] Le but de l'etude est de determiner les facteurs metallurgiques favorables a l'affinage du grain {alpha} des alliages d'uranium a tres faibles teneurs en elements d'addition voisins du SICRAL F 1 au cours du cycle de fabrication et de trempe industrielle des elements combustibles nucleaires prepares avec ces alliages. L'auteur met en evidence l'influence: - de l'histoire metallurgique avant trempe: - coulee - teneur en impuretes - vitesse de solidification - des parametres de la trempe: - temperature de trempe - temps et maintien a cette temperature - vitesse de trempe - des variations de composition de l'alliage. Il envisage les modifications a apporter au cycle de fabrication du SICRAL F 1 de facon a l'adapter aux differentes geometries des elements combustibles des reacteurs de la filiere graphite-gaz. L'auteur presente a cette occasion les mecanismes de l'affinage du grain {alpha} par trempe dans les alliages d'uranium et les modes de transformation {beta} -> {alpha} et {gamma} -> {alpha} au cours de la trempe

  9. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    Science.gov (United States)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  10. Spent Fuel Source Term Calculation of Daya Bay Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    XU; Zhi-long; WAN; Hai-xia; LI; Long; WU; Xiao-chun; SHAO; Jing; LIU; Li-li; ZHANG; Jing

    2013-01-01

    The spent fuel of nuclear power plant should be transported to reprocessing plant for reprocessing after reserving for a period of time.Before that,safety analysis and environmental impact assessment should be carried on to the transportation process,which need radioactive source term calculation and analysis.The task of Daya Bay Nuclear Power Plant spent fuel source term calculation includes estimation of

  11. Uranium isotopic data in uraninite spent fuel from the Bangombe natural nuclear reactor (Gabon) and its surroundings

    Science.gov (United States)

    Fernandez-Diaz; Quejido; Crespo; Perez del Villar L; Martin-Sanchez; Lozano

    2000-07-01

    In the framework of the "Oklo-Natural Analogue Phase II" Project, uraninite from the Bangombe natural reactor and samples from its host rock were analyzed to determine their uranium isotopic composition by thermal ionisation mass spectrometry, inductively coupled plasma mass spectrometry and alpha spectrometry. There were several objectives for this work: (i) to validate the 235U/238U isotopic ratios obtained by these techniques; (ii) to test the use of the 235U/238U ratio of uraninite as a tracer of migration/retention processes of uranium from the source term to the far field; (iii) to evaluate the most recent migration/retention processes of uranium in the system by U-series disequilibrium.

  12. Uranium isotopic data in uraninite spent fuel from the Bangombe natural nuclear reactor (Gabon) and its surroundings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Diaz, M.; Quejido, A.J.; Crespo, M.T.; Villar, L.P. del; Martin-Sanchez, A. E-mail: ams@unex.es; Lozano, J.C

    2000-07-15

    In the framework of the 'Oklo-Natural Analogue Phase II' Project, uraninite from the Bangombe natural reactor and samples from its host rock were analyzed to determine their uranium isotopic composition by thermal ionisation mass spectrometry, inductively coupled plasma mass spectrometry and alpha spectrometry. There were several objectives for this work: (i) to validate the {sup 235}U/{sup 238}U isotopic ratios obtained by these techniques; (ii) to test the use of the {sup 235}U/{sup 238}U ratio of uraninite as a tracer of migration/retention processes of uranium from the source term to the far field; (iii) to evaluate the most recent migration/retention processes of uranium in the system by U-series disequilibrium.

  13. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium-10 wt% molybdenum fuel plate assembly

    Science.gov (United States)

    Brown, D. W.; Okuniewski, M. A.; Almer, J. D.; Balogh, L.; Clausen, B.; Okasinski, J. S.; Rabin, B. H.

    2013-10-01

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U-10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U-10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U-10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U-10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  14. Industrial Fuel Gas Demonstration Plant Program. Volume III. Demonstration plant environmental analysis (Deliverable No. 27)

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    An Environmental Report on the Memphis Light, Gas and Water Division Industrial Fuel Demonstration Plant was prepared for submission to the US Department of Energy under Contract ET-77-C-01-2582. This document is Volume III of a three-volume Environmental Report. Volume I consists of the Summary, Introduction and the Description of the Proposed Action. Volume II consists of the Description of the Existing Environment. Volume III contains the Environmental Impacts of the Proposed Action, Mitigating Measures and Alternatives to the Proposed Action.

  15. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  16. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  17. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel; Diseno de un nucleo de equilibrio de un reactor tipo BWR basado en un combustible de Torio-Uranio

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L.; Nunez C, A. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria-UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)

    2003-07-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  18. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  19. 76 FR 10918 - License Transfer Order for the Cimarron Facility at Crescent, OK

    Science.gov (United States)

    2011-02-28

    ... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... Kalman, Project Manager, Decommissioning and Uranium Recovery Licensing Directorate, Division of Waste... number 301-415-5369; e-mail: kenneth.kalman@nrc.gov . SUPPLEMENTARY INFORMATION: I. Introduction The...

  20. The Separation Method of Neptunium in Reprocessed Uranium Product by TEVA-UTEVA Column Extraction Chromatography

    Institute of Scientific and Technical Information of China (English)

    JIN; Hua; SU; Yu-lan; YING; Zhe-cong; ZHAO; Sheng-yang

    2012-01-01

    <正>237Np, as a highly toxic nuclide, is limited strictly in the final uranium product of spent nuclear fuel reprocessing plant. Due to the low concentration level of 237Np, which is lower than 2.5 μg/g U, its accurate measurement is one of the most difficult analytical works in

  1. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  2. A suitable model plant for control of the set fuel cell-DC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)

    2008-04-15

    In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)

  3. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  4. Determination of uranium content in phosphate ores using different measurement techniques

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Eshaikh

    2016-01-01

    Full Text Available The most important unconventional source of uranium is found in phosphate deposits; unfortunately, nowadays its exploitation is limited by economic constraints. The uranium concentrations in phosphate ores in the world vary regionally and most countries with large phosphate deposits have either plant in operation to extract uranium or are at the stage of pilot extraction plants. The aim of this investigation is to evaluate uranium content in the Saudi phosphate ores for, at least, two reasons: firstly, upgrading the phosphate quality by removing the uranium content in order to reduce the radioactivity in the fertilizer products. Secondly, getting benefit from the extracted uranium for its domestic use as a fuel in nuclear power and desalination plants. The results of this study show that the uranium concentration in Saudi phosphate rocks is relatively low (less than 100 ppm, which is not economically encouraging for its direct extraction. However, its extraction as a byproduct from the phosphoric acid, which will have higher concentration could be quite promising and worth exploiting.

  5. Investigation of deuterium cross section data by integral testing: ZED-2 measurements of high-enriched uranium fuel substituted into a natural uranium core

    Energy Technology Data Exchange (ETDEWEB)

    Atfield, J.E.; Kozier, K.S.; Roubtsov, D.; Zeller, M.B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    Historical ZED-2 measurements of an HEU fuel rod substituted into a lattice of NU rods were analysed to determine their reactivity sensitivity to differences between the neutron elastic scattering cross-sections of deuterium from different evaluated nuclear data libraries. The differences in the deuterium nuclear data concern the angular probability distribution at neutron energies below 3.2 MeV. These ZED-2 experiments were selected due to the presence of HEU fuel in D{sub 2}O, since analyses of other critical experiments involving solutions of HEU fluoride in D{sub 2}O show substantial sensitivity (~10 mk) to these differences in the deuterium nuclear data. This analysis shows that the existing ZED-2 HEU experiments are insufficiently sensitive to resolve the discrepancy between the different deuterium data libraries. Further analysis of hypothetical configurations with high sensitivity shows that the sensitivity to the angular probability distribution of deuterium is strongly correlated with the leakage of fast neutrons, and it is recommended that further experiments to address this deuterium nuclear data issue be designed/evaluated to maximize this quantity. (author)

  6. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  7. Profile of World Uranium Enrichment Programs-2009

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2009-04-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  8. An option for solar thermal repowering of fossil fuel fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Popov, D. [Technical University of Sofia, Sofia (Bulgaria)

    2011-02-15

    Global climate change urges immediate measures to be taken to limit greenhouse gas emission coming from the fossil fuel fired power plants. Solar thermal energy can be involved in different ways in existing power generation plants in order to replace heat produced by fossil fuels. Solar field feed water preheating is mainly discussed in this paper as an option for fast and feasible RES penetration. Rankine regenerative steam cycled power plant has been modelled with Thermoflow software. The plant model incorporates also a field with solar Fresnel collectors that directly heats boiler's feed water. The proposed plant modification yields substantial fossil fuel input reduction. The best results can be obtained when the group of high pressure heaters is replaced and feed water temperature exceeds its original design value. The solar power generation share can reach up to 23% of the power plant capacity in this case, having efficiency higher than 39% for the best solar hour of the year.

  9. Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant with a Kalina Cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud

    2015-01-01

    A hybrid plant that consists of a gasification system, Solid Oxide Fuel Cells (SOFC) and a Simple Kalina Cycle (SKC) is investigated. Woodchips are introduced into a fixed bed gasification plant to produce syngas, which is then fed into an integrated SOFC-SKC plant to produce electricity. The pre......-treated fuel then enters the anode side of the SOFC. Complete fuel oxidation is ensured in a burner by off-gases exiting the SOFC stacks. Off-gases are utilized as heat source for a SKC where a mixture of ammonia and water is expanded in a turbine to produce additional electric power. Thus, a triple novel...... system based on a gasification plant, a SOFC plant and a SKC plant is presented and investigated. The system is called IGSKC (Integrated Gasification SOFC Simple Kalina Cycle). The system layout is studied, and the optimal ammonia-water mole fraction is selected. An electrical efficiency of 58...

  10. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Frank, Steven M. [Idaho National Laboratory, Idaho Falls, ID 83402 (United States); Matyáš, Josef; Burns, Carolyne A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2015-04-15

    This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl–Li{sub 2}O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol–gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2} glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na{sup +} and Cl{sup −} to form halite in solution and Li{sub 2}O and SiO{sub 2} to form lithium silicates (e.g., Li{sub 2}SiO{sub 3} or Li{sub 2}Si{sub 2}O{sub 5}) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92 mass%) and low porosities using a solution-based approach and this LiCl–Li{sub 2}O salt but that the incorporation of Li into the sodalite is low.

  11. FDD-1 System On-line Monitoring Fuel Rod Failure of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; JISong-tao; GAOYong-guang; YINZhen-guo; HANChuan-bin

    2003-01-01

    The FDD-1 system developed by CIAE for on-line monitoring fuel rod failure of nuclear power plant consists of γ-ray detector, γ-ray spectrum analyzer, computer, and an analysis code for evaluating the status of fuel rod failure. It would be determined that the fuel rod failure occurs when a large amount of γ activity increases in the primary system measured by γ-ray detector near the CVCS.

  12. PURIFICATION OF URANIUM FROM URANIUM/MOLYBDENUM ALLOY

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R; Ann Visser, A; James Laurinat, J

    2007-10-15

    The Savannah River Site will recycle a nuclear fuel comprised of 90% uranium-10% molybdenum by weight. The process flowsheet calls for dissolution of the material in nitric acid to a uranium concentration of 15-20 g/L without the formation of precipitates. The dissolution will be followed by separation of uranium from molybdenum using solvent extraction with 7.5% tributylphosphate in n-paraffin. Testing with the fuel validated dissolution and solubility data reported in the literature. Batch distribution coefficient measurements were performed for the extraction, strip and wash stages with particular focus on the distribution of molybdenum.

  13. SCENARIO OF WOOD-FUEL PROCUREMENT FOR A NEW BOILER PLANT

    Directory of Open Access Journals (Sweden)

    Gerasimov Y. Y.

    2013-11-01

    Full Text Available This article shows the results of computer simulation of wood harvesting in the North Ladoga region with wood-fuel production and delivery of its part to the new boiler plant in Suojarvi being under construction

  14. What Is the Actual Local Crystalline Structure of Uranium Dioxide, UO2? A New Perspective for the Most Used Nuclear Fuel.

    Science.gov (United States)

    Desgranges, L; Ma, Y; Garcia, Ph; Baldinozzi, G; Siméone, D; Fischer, H E

    2017-01-03

    Up to now, uranium dioxide, the most used nuclear fuel, was said to have a Fm3̅m crystalline structure from 30 to 3000 K, and its behavior was modeled under this assumption. However, recently X-ray diffraction experiments provided atomic pair-distribution functions of UO2, in which UO distance was shorter than the expected value for the Fm3̅m space group. Here we show neutron diffraction results that confirm this shorter UO bond, and we also modeled the corresponding pair-distribution function showing that UO2 has a local Pa3̅ symmetry. The existence of a local lower symmetry in UO2 could explain some unexpected properties of UO2 that would justify UO2 modeling to be reassessed. It also deserves more study from an academic point of view because of its good thermoelectric properties that may originate from its particular crystalline structure.

  15. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  16. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  17. Implementation of integrated safeguards at nuclear fuel plant Pitesti Romania

    Energy Technology Data Exchange (ETDEWEB)

    Olaru, Vasilica; Tiberiu, Ivana; Epure, Gheorghe [Nuclear Safety Department, Nuclear Fuel Plant Pitesti, Cimpului, No 1, 115400 Mioveni (Romania)

    2010-07-01

    The nuclear activity in Romania was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now it has the opportunity to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (FCN) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited FCN and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the residence times for different nuclear materials, the applied chemical analysis, metrological methods, weighting method and elaborating the documents and lists. At that time the IAEA and FCN representatives established the main points for starting the IS at FCN: perform the Short Notice Random Inspections (SNRI), communicate the eligible days for SNRI for each year, communicate the estimated deliveries and shipments for first quarter and then for the rest of the year, daily mail box declaration (DD) with respect to the residence time for several nuclear material, advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and FCN (RO-D) has taken all measures to realize this objective. (authors)

  18. First principle active neutron coincidence counting measurements of uranium oxide

    Science.gov (United States)

    Goddard, Braden; Charlton, William; Peerani, Paolo

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (~0.2 wt% 235U) to high enriched (>20 wt% 235U); compositions consisting of U3O8, UO2, UF6, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since 235U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the 235U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the "known standard" method. This technique was primarily tested through simulations of 1000 g U3O8 samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact 235U sample masses.

  19. Long-term performance of a plant microbial fuel cell with Spartina anglica

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology

    2010-04-15

    The plant microbial fuel cell is a sustainable and renewable way of electricity production. The plant is integrated in the anode of the microbial fuel cell which consists of a bed of graphite granules. In the anode, organic compounds deposited by plant roots are oxidized by electrochemically active bacteria. In this research, salt marsh species Spartina anglica generated current for up to 119 days in a plant microbial fuel cell. Maximum power production was 100 mW m{sup -2} geometric anode area, highest reported power output for a plant microbial fuel cell. Cathode overpotential was the main potential loss in the period of oxygen reduction due to slow oxygen reduction kinetics at the cathode. Ferricyanide reduction improved the kinetics at the cathode and increased current generation with a maximum of 254%. In the period of ferricyanide reduction, the main potential loss was transport loss. This research shows potential application of microbial fuel cell technology in salt marshes for bio-energy production with the plant microbial fuel cell. (orig.)

  20. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.

    Science.gov (United States)

    Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J

    2010-02-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants.

  1. Survey of U.S. fuel ethanol plants

    Science.gov (United States)

    The ethanol industry is progressively growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so too ...

  2. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  3. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    ABSTRACT The findings presented in this report are results of a five year effort lead by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor

  4. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Demonstration plant design manual, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The plant will utilize fixed bed, stirred, two stage gasifiers. The lower stage will be a standard gasifier configuration. The upper stage will be an undivided distillation section containing a slowly rotating stirrer which will move vertically through the bed. The bottom of the gasifier will contain a standard dry grate and will have lock hoppers to discharge the ash. This type of gasifier provides high coal utilization. It also distills the tars and oils from the coal in the upper zone at minimum temperatures, thereby providing minimum viscosity liquid fuels which can be used for the induration of iron ore pellets. The very hot bottom gases leaving the combustion zone, after passing through a cyclone to remove coal and ash dust can be used to generate steam. This steam is in addition to the steam generated in the water jacket of the lower zone which is used in the steam air blast to the bottom of the gasifier retort.

  5. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Fuel Element Fabrication Plant... Appendix O to Part 110—Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority Note: Nuclear fuel elements are manufactured from source or...

  6. HTGR Generic Technology Program: materials technology reactor; operating experience; medium-enriched-uranium fuel development. Quarterly progress report for the period ending July 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    The work reported includes the development of the materials properties data base for noncore components, plant surveillance and testing performed at Fort St. Vrain, and work to demonstrate the feasibility of using medium-enriched fuel in Fort St. Vrain. Studies and analyses plus experimental procedures and results are discussed and data are presented.

  7. HTGR Generic Technology Program. Materials technology reactor operating experience medium-enriched-uranium fuel development. Quarterly progress report for the period ending April 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kaae, J. L.; Lai, G. Y.; Thompson, L. D.; Sheehan, J. E.; Rosenwasser, S. N.; Johnson, W. R.; Li, C. C.; Pieren, W. R.; Smith, A. B.; Holko, K. H.; Baenteli, G. J.; Cheung, K. C.; Orr, J. D.; Potter, R. C.; Baxter, A.; Bell, W.; Lane, R.; Wunderlich, R. G.; Neylan, A. J.

    1978-05-01

    The work reported includes the development of the materials properties data base for noncore components, plant surveillance and testing performed at Fort St. Vrain, and work to demonstrate the feasibility of using medium-enriched fuel in Fort St. Vrain. Studies and analyses plus experimental procedures and results are discussed and data are presented.

  8. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Demonstration plant design and economic evaluation, Phase I. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Fuel Gas Demonstration Plant Program envisions a coal gasification facility to provide low Btu gas to the Erie Mining Company taconite pelletizing operations at Hoyt Lakes, Minnesota. Initially, it will consist of a Demonstration Plant which will be sized to supply 7.4 billion Btu (HHV) of fuel energy per day, which is approximately 37% of the Erie Mining Company's daily energy requirement for the induration of pellets. The Demonstration Plant will be designed to permit ultimate expansion to a Commercial Plant capable of supplying the entire fuel gas requirement of the pellet plant. Erie Mining Company is one of the largest producers of iron ore pellets in the United States. Its plant consists of 27 shaft furnaces with an annual production capacity of 10.3 million tons. The furnaces now operate on natural gas and use ful oil as a backup energy supply. Fuel consumption is normally equivalent to 20 billion Btu per day. The contract arrangement between the Department of Energy and Erie Mining Company provides mutually advantageous opportunity and means for: employing coal gasification technology and equipment which is now commercially available, for production and use of low Btu gas in an industrial environment under actual operating conditions; identifying, defining and resolving problems and operational unknowns that have heretofore retarded industrial use of synthetic gas; establishing parameters for retrofitting existing industrial furnaces for use of low Btu gas; and determining and demonstrating the technical and economic feasibility of the proposed scheme.

  9. Overview of commercialization of stationary fuel cell power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hooie, D.T.; Williams, M.C.

    1995-07-01

    In this paper, DOE`s efforts to assist private sector organizations to develop and commercialize stationary fuel cell power plants in the United States are discussed. The paper also provides a snapshot of the status of stationary power fuel cell development occurring in the US, addressing all fuel cell types. This paper discusses general characteristics, system configurations, and status of test units and demonstration projects. The US DOE, Morgantown Energy Technology Center is the lead center for implementing DOE`s program for fuel cells for stationary power.

  10. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  11. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming;

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...... the internal circulation of S, Cl, Na, and K. Compounds containing these elements, such as alkali salts, evaporate when exposed to high temperatures and subsequently condense in colder parts of the plant. The transformation of the volatile inorganic species at different locations in the cement plant...

  12. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  13. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  14. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  15. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  16. Modeling of the filling and cooling processes of hot fuel mains in Liquid Fuel Rocket Power Plant (LFRPP)

    Science.gov (United States)

    Prisnyakov, V. F.; Pokrishkin, V. V.; Serebryansky, V. N.

    A mathematical model of heat and mass exchange processes during filling and cooling of hot fuel mains of the Liquid Fuel Rocket Power Plant (LFRPP), which allows to define a mass consumption and distribution of two-phase flow parameters by the length of pipeline. Results of calculations are compared with experimental data, taken during filling of the main with a supply of liquid oxygen from the tank into the combustion chamber. Also, the results of modeling of hydrogen main dynamic characteristics of LFRPP in the same conditions are given.

  17. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  18. In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi Nuclear Power Plant

    Science.gov (United States)

    Martin, P. G.; Griffiths, I.; Jones, C. P.; Stitt, C. A.; Davies-Milner, M.; Mosselmans, J. F. W.; Yamashiki, Y.; Richards, D. A.; Scott, T. B.

    2016-03-01

    Traditional methods to locate and subsequently study radioactive fallout particles have focused heavily on autoradiography coupled with in-situ analytical techniques. Presented here is the application of a Variable Pressure Scanning Electron Microscope with both backscattered electron and energy dispersive spectroscopy detectors, along with a micromanipulator setup and electron-hardening adhesive to isolate and remove individual particles before synchrotron radiation analysis. This system allows for a greater range of new and existing analytical techniques, at increased detail and speed, to be applied to the material. Using this method, it was possible to erform detailed energy dispersive spectroscopy and synchrotron radiation characterisation of material likely ejected from the Fukushima Daiichi Nuclear Power Plant found within a sediment sample collected from the edge of the 30 km exclusion zone. Particulate material sub-micron in maximum dimension examined during this work via energy dispersive spectroscopy was observed to contain uranium at levels between 19.68 and 28.35 weight percent, with the application of synchrotron radiation spectroscopy confirming its presence as a major constituent. With great effort and cost being devoted to the remediation of significant areas of eastern Japan affected by the incident, it is crucial to gain the greatest possible understanding of the nature of this contamination in order to inform the most appropriate clean-up response.

  19. Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode

    NARCIS (Netherlands)

    Wetser, K.; Sudirjo, E.; Buisman, C.J.N.; Strik, D.P.B.T.B.

    2015-01-01

    In this study we show that a chemical ferricyanide cathode can be replaced by a biological oxygen reducing cathode in a plant microbial fuel cell (PMFC) with a new record power output. A biocathode was successfully integrated in a PMFC and operated for 151 days. Plants growth continued and the power

  20. Structure and thermal properties of as-fabricated U-7Mo/Mg and U-10Mo/Mg low-enriched uranium research reactor fuels

    Science.gov (United States)

    Kulakov, Mykola; Saoudi, Mouna; Piro, Markus H. A.; Donaberger, Ronald L.

    2017-02-01

    Aluminum-clad U-7Mo/Mg and U-10Mo/Mg pin-type mini-elements (with a core uranium loading of 4.5 gU/cm3) have been fabricated at the Canadian Nuclear Laboratories for experimental tests and ultimately for use in research and test reactors. In this study, the microstructure and phase composition of unirradiated U-7Mo/Mg and U-10Mo/Mg fuel cores were analyzed using optical and scanning electron microscopy, and neutron powder diffraction. Thermal properties were characterized using a combination of experimental measurements and thermodynamic calculations. The thermal diffusivity was measured using the laser flash method. The temperature-dependent specific heat capacities were calculated based on the linear rule of mixture using the weight fraction of different crystalline phases and their specific heat capacity values taken from the literature. The thermal conductivity was then calculated using the measured thermal diffusivity, the measured density and the calculated specific heat capacity. The resulting thermal conductivity is practically identical for both types of fuel. The in-reactor temperatures were predicted using conjugate heat transfer simulations.

  1. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.

    Science.gov (United States)

    Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia

    2011-08-15

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities.

  2. Vegetation composition and ²²⁶Ra uptake by native plant species at a uranium mill tailings impoundment in South China.

    Science.gov (United States)

    Hu, Nan; Ding, Dexin; Li, Guangyue; Zheng, Jifang; Li, Le; Zhao, Weichao; Wang, Yongdong

    2014-03-01

    A field investigation was conducted for the vegetation composition and (226)Ra uptake by native plant species at a uranium mill tailings impoundment in South China. 80 species belonging to 67 genera in 32 families were recorded in the sampling sites. The Poaceae and Asteraceae were the dominant families colonizing the impoundment. The number of the plant species and vegetation community composition in the sampling sites seemed most closely related to the activities of (226)Ra and the pH value of the uranium tailings. The plant species in the sampling sites with relatively low activities of (226)Ra and relatively high pH value formed a relatively stable vegetation community. The plant species in the sampling sites with medium activities of (226)Ra and medium pH value formed the transitional vegetation community. The plant species in the sampling sites with relatively high activities of (226)Ra and relatively low pH value formed a simple unstable vegetation community that was similar to that on the unused grassland. The activities of (226)Ra and transfer factors (TFs) varied greatly with the plant species. The high activities of (226)Ra and TFs were found in the leaves of Pteris multifida (150.6 Bq/g of AW; 9.131), Pteridium aquilinum (122.2 Bq/g of AW; 7.409), and Dryopteris scottii (105.7 Bq/g of AW; 6.408). They satisfied the criteria for a hyperaccumulator for (226)Ra. They may be the candidates for phytoremediation of (226)Ra in the uranium mill tailings impoundment areas and the contaminated soils around.

  3. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  4. Plant Characteristics af a Multi-Fuel Sofc-Stirling Hybrid Configuration

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    is generated. Simulations for the proposed system were conducted using different fuels which facilitate use of variety of fuels depending on availability. Here, results for Natural Gas (NG), ammonia, Di-Methyl Ether (DME), methanol and ethanol are presented and analysed. System behaviour is further...... efficiency compared with the stand alone Stirling engine or SOFC plant. For the SOFC and Stirling combined configuration, the overall power production has increased by about 10% compared to the stand alone SOFC plant. System efficiencies of about 60% are achieved which is remarkable for such small plant...

  5. Separation and Purification of Fissiogenic Ruthenium From Irradiated Uranium

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Ruthenium is an important fission product. Its isotopic composition may reflect the burnup or the initial uranium enrichment of nuclear fuel. So the separation and purification method of fission products of Ruthenium from irradiated uranium was studied and established.

  6. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    Science.gov (United States)

    2010-03-05

    with uranium to make mixed-oxide ( MOX ) fuel, in which the 239Pu largely substitutes for 235U. Two French reprocessing plants at La Hague can each...and France also have older plants to reprocess gas-cooled reactor fuel, and India has a 275-ton plant.53 About 200 metric tons of MOX fuel is used...to make MOX fuel for today’s nuclear power plants are modest. Existing commercial light water reactors use ordinary water to slow down, or “moderate

  7. Improvements made in the methods of purifying uranium compounds and in the production of uranium metal at the Bouchet plant; Ameliorations apportees aux procedes de purification des composes d'uranium et a la fabrication de l'uranium metal a l'usine du Bouchet

    Energy Technology Data Exchange (ETDEWEB)

    Decrop, J.; Delange, M.; Holder, J.; Huet, H.; Sauteron, J.; Vertes, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We intend to chart the development of the techniques used at the Bouchet plant since the First International Conference held in Geneva in 1955. During that Conference, the methods adopted at that time were described by B. GOLDSCHMIDT and P. VERTES. Generally speaking, the development since that time has been governed by the following factors: 1- Conversion to a mass-production scale: The metal output, which amounted to approximately 10 tons in 1952, practically doubled each year, reaching successive figures of 80 tons in 1955, 160 tons in 1956 and 300 tons in 1957. At this very moment the output capacity of the plant is approaching its maximum, set at 500 tons/year, which it will reach at the end of the year. Beyond this output figure, the work will be carried on by the second French uranium production plant, which is now being erected at Narbonne. 2- Gradual abandoning of ore treatment, resulting from the decentralization of the duties performed by the CEA; The Bouchet Plant had, as a matter of fact, the first French treatment facilities, operating on the basis of 10 to 20 tons of ore per day. This ore, first concentrated at the production site proper by means of physical or physico-chemical methods to at least a 2 per cent uranium content, was sufficiently valuable to warrant quite well the cost involved in shipping it. However, the increase in the production schedules led to the treatment of ores of lower and lower grades, and it became more profitable to proceed with the chemicalating of these low-grade ores at the site after more or less thorough grading and, if necessary, preconcentration. As a result, the Bouchet plant scarcely ever receives uranium ores; on the contrary, the mining companies send their chemical concentrates, uranous phosphate and then sodium uranate from the Gueugnon Works in Saone-et-Loire since 1955; magnesium uranate from the Ecarpiere Works in Vendee since the beginning of 1957 and, very soon, products from the works which are now being

  8. Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants.

    Science.gov (United States)

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-12-01

    Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants. However, since the speciation of U, and hence its toxicity, is strongly dependent on environmental factors such as the pH, it is important to investigate the effects of U at different environmentally relevant pH levels. Although U is poorly translocated from the roots to the shoots, resulting in a low U concentration in the leaves, it has been demonstrated that toxic effects in the leaves were already visible after 1 day exposure at pH 5.5, although only when exposed to relatively high U concentrations (100 μM). Therefore, the present study aimed to analyse the effects of different U concentrations (ranging from 0 to 100 μM) at pH 4.5 in leaves of Arabidopsis thaliana plants. Results indicate that U induces early senescence in A. thaliana leaves as was suggested by a decreased expression of CAT2 accompanied by an induction of CAT3 expression, a decreased CAT capacity and an increased lipid peroxidation. In addition, miRNA398b/c is involved in the regulation of the SOD response in the leaves. As such, an increased MIR398b/c expression was observed leading to a decreased transcript level of CSD1/2. Finally, the biosynthesis of ascorbate was induced after U exposure. This can point towards an important role for this metabolite in the scavenging of reactive oxygen species under U stress.

  9. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms.

    Science.gov (United States)

    Tuovinen, Tiina S; Kasurinen, Anne; Häikiö, Elina; Tervahauta, Arja; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low.

  10. Investigative studies on the effects of cadmium rabbits on high enriched uranium-fueled and low enriched uranium-fueled cores of Ghana Research Reactor-1 using MCNP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Boffie, J., E-mail: jboffie@yahoo.com [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Akaho, E.H.K. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); Nyarko, B.J.B.; Odoi, H.C.; Tuffour-Achampong, K.; Abrefah, R.G. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana)

    2013-12-15

    Highlights: • The operating parameters for both the HEU core and proposed LEU core were similar. • The length of the Cd in the capsules must be increased for its use in the LEU core. • Cd rabbits can emergently be used to shut down MNSRs. - Abstract: Miniature Neutron Source Reactors (MNSRs) are noted to be among highly safe research reactors. However, because of its use of one control rod for reactivity control and shutdown purposes, alternative methods of shutting it down are important. The Ghana MNSR uses four cadmium rabbits of approximate dimensions 6.5 cm × 5.0 cm × 0.1 cm and mass of 9.48 g each to emergently shut down the reactor. The Monte Carlo N-Particle code; version 5, (MCNP5) was used to design the high enriched uranium (HEU) and low enriched uranium (LEU) cores of the MNSR with four cadmium rabbits inserted in four inner irradiation sites of each core. The operating parameters and shutdown parameters for both cores with the central control rod (CCR) either fully withdrawn or fully inserted had similar results with the HEU core having slightly better results in terms of safety. However, the results show that the four inserted cadmium rabbits make the HEU core subcritical whiles in the LEU core, it still remains critical (k{sub eff} = 1.00005 ± 0.00007). The length of the cadmium material in each cadmium rabbit must therefore be increased by at least 0.5 cm in order to attain subcriticality (k{sub eff} = 0.99989 ± 0.00006) and shutdown margin of 0.11 mk when inserted in the LEU core.

  11. Profile of World Uranium Enrichment Programs - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2007-11-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  12. Nuclear power plants. Fundamentals, application and hazards of radioactivity; Atomkraftwerke. Grundlagen, Nutzung, Gefahren der Radioaktivitaet

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Michael

    2011-07-01

    The book includes the following chapters: (1) Fundamentals of atomic physics.(2) Radioactive radiation. (3) Nuclear power plants. (4) Reactor types: light water-cooled reactor, heavy-water reactor, high-temperature reactor, breeding reactor. (5) Fuel cycle: uranium mining, uranium isotope enrichment, NPP operation, spent fuel processing, radioactive waste disposal. (6) Measured variables and units: radiation, radiation dose, mass end energy. (7) Radioactivity measurement. (8) Hazards due to radioactive radiation.

  13. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  14. Accurate and Precise Determination of Uranium by Means of Extraction Spectrophotometric

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Uranium is an important nuclear material. Accurate determination of uranium is significant in the nuclear fuel production, accountancy, nuclear safeguards and other procedures of nuclear fuel cycle.

  15. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S., E-mail: tiina.tuovinen@uef.fi [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Kasurinen, Anne; Häikiö, Elina [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Tervahauta, Arja [Department of Biology, University of Eastern Finland, P.O. Box FI-70211, Kuopio (Finland); Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. - Highlights: • We studied transfer of elements in boreal food chain using meso- and microcosms. • Elements related to nuclear fuel cycle and mining were examined. • Higher uptake at lower soil concentrations was observed for primary producers. • Snails took up elements mainly from food but for U also soil was an element source. • Non-linear transfer of essential elements was observed for herbivore and decomposer.

  16. Preparation of reference material for uranium and plutonium measurements using cellulose compound as a stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Surugaya, Naoki; Sato, Soichi; Hina, Tetsuro; Hiyama, Toshiaki [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2003-03-01

    Isotope dilution mass spectrometry, considered the most reliable analytical technique for input accountancy measurements of uranium and plutonium in spent fuel reprocessing plants, requires a well-characterized uranium/plutonium spike. Solid spikes containing {sup 235}U and {sup 239}Pu have been successfully utilized in safeguards inspections and in accountability analysis. They contain relatively large amounts of uranium and plutonium isotopically different to the uranium and plutonium of the sample, and are usually in the dried nitrate form. However, it is difficult to maintain and guarantee the integrity of the spike over long periods as they are in the dried nitrate form that can flake off the glass ampoule surface. Organic coatings were investigated using cellulose acetate butyrate as a stabilizer. The cellulose acetate butyrate had good characteristics, maintaining a thin film for a long time. (author)

  17. Co-combustion of solid recovered fuels in coal-fired power plants.

    Science.gov (United States)

    Thiel, Stephanie; Thomé-Kozmiensky, Karl Joachim

    2012-04-01

    Currently, in ten coal-fired power plants in Germany solid recovered fuels from mixed municipal waste and production-specific commercial waste are co-combusted and experiments have been conducted at other locations. Overall, in 2010 approximately 800,000 tonnes of these solid recovered fuels were used. In the coming years up to 2014 a slight decline in the quantity of materials used in co-combustions is expected. The co-combustion activities are in part significantly influenced by increasing power supply from renewable sources of energy and their impact on the regime of coal-fired power plants usage. Moreover, price trends of CO₂ allowances, solid recovered fuels as well as imported coal also have significant influence. In addition to the usage of solid recovered fuels with biogenic content, the co-combustion of pure renewable biofuels has become more important in coal-fired power plants. The power plant operators make high demands on the quality of solid recovered fuels. As the operational experience shows, a set of problems may be posed by co-combustion. The key factors in process engineering are firing technique and corrosion. A significant ecological key factor is the emission of pollutants into the atmosphere. The results of this study derive from research made on the basis of an extensive literature search as well as a survey on power plant operators in Germany. The data from operators was updated in spring 2011.

  18. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  19. Airborne effluent control for LMFBR fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-01-01

    A significant part of the LMFBR fuel reprocessing development program has been devoted to the development of efficient removal systems for the volatile fission products, including /sup 131/I, krypton, tritium, /sup 129/I, and most recently /sup 14/C. Flowsheet studies have indicated that very significant reductions of radioactive effluents can be achieved by integrating advanced effluent control systems with new concepts of containment and ventilation; however, the feasibility of such has not yet been established, nor have the economics been examined. This paper presents a flowsheet for the application of advanced containment systems to the processing of LMFBR fuels and summarizes the status and applicability of specific fission product removal systems.

  20. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ushiba, K. K.

    1980-02-01

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  1. Mechanical properties examined by nanoindentation for selected phases relevant to the development of monolithic uranium-molybdenum metallic fuels

    Science.gov (United States)

    Newell, Ryan; Park, Youngjoo; Mehta, Abhishek; Keiser, Dennis; Sohn, Yongho

    2017-04-01

    Nanomechanical properties, specifically the reduced modulus and hardness of several intermetallic and solid solution phases are reported to assist the development of the U-10 wt% Mo (U-10Mo) monolithic fuel system for research and test reactors. Findings from this study and reported values of mechanical properties provide data critical for understanding and predicting the structural behavior of the fuel system during fabrication and irradiation. The phases examined are products of interdiffusion and reaction between (1) the AA6061 cladding and the Zr diffusion barrier, namely (Al,Si)3Zr and Al3Zr, (2) the U-10Mo fuel and the Zr diffusion barrier, namely UZr2, Mo2Zr, and α-U, and (3) the U (or U-10Mo) and Mo, namely a mixture gradient of α- and γ-phases. The UC inclusions observed within the fuel alloy were also examined. Only phases present in thick or continuous microstructure on cross-sectioned fuel plates and diffusion couples were investigated for reduced modulus and hardness. Concentration-dependence of room-temperature reduced modulus in U solid solution with 0-10 wt% Mo was semi-quantitatively modeled based on mixture of α- and γ-phases and solid solutioning within the γ-phase.

  2. Monensin inhibits growth of bacterial contaminants from fuel ethanol plants

    Science.gov (United States)

    Contamination of commercial fermentation cultures by lactic acid bacteria (LAB) is a common and costly problem to the fuel ethanol industry. Virginiamycin (VIR) and penicillin (PEN) are frequently used to control bacterial contamination but extensive use of antibiotics may select for strains with d...

  3. Uranium-molybdenum nuclear fuel plates behaviour under heavy ion irradiation: An X-ray diffraction analysis

    Science.gov (United States)

    Palancher, H.; Wieschalla, N.; Martin, P.; Tucoulou, R.; Sabathier, C.; Petry, W.; Berar, J.-F.; Valot, C.; Dubois, S.

    2009-03-01

    Heavy ion irradiation has been proposed for discriminating UMo/Al specimens which are good candidates for research reactor fuels. Two UMo/Al dispersed fuels (U-7 wt%Mo/Al and U-10 wt%Mo/Al) have been irradiated with a 80 MeV 127I beam up to an ion fluence of 2 × 1017 cm-2. Microscopy and mainly X-ray diffraction using large and micrometer sized beams have enabled to characterize the grown interaction layer: UAl3 appears to be the only produced crystallized phase. The presence of an amorphous additional phase can however not be excluded. These results are in good agreement with characterizations performed on in-pile irradiated fuels and encourage new studies with heavy ion irradiation.

  4. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  5. Statistical data of the uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document is a compilation of historical facts and figures through 1977. These statistics are based primarily on information provided voluntarily by the uranium exploration, mining, and milling companies. The production, ore reserve, and production capability information has been reported in a manner which avoids disclosure of proprietary information. Due to mining and milling cost increases, references to $10 per pound reserves and potential resources have been deleted, and statistics for $50 per pound have been added for 1/1/78. Also, the size-depth-thickness and the size-grade matrices have been revised to present $50 rather than $30 per pound resources. The graphic distribution of reported future U/sub 3/O/sub 8/ prices has been replaced by a table of historical and projected average prices for U/sub 3/O/sub 8/ delivery commitments. The results of a survey of capital investment for uranium production and the history of annual U.S. nuclear plant ordering have been included for the first time. A new section, Production Capability of the Uranium Industry, presents the results of a 1977 GJO assessment of the nation's ability to produce U/sub 3/O/sub 8/ from the 1/1/77 $30 per pound reserves and probable potential. Appendices give the historical AEC uranium procurement statistics, World Uranium Resources and Production Capability by Continent, a distribution of 1/1/77 $30 reserves and potential by land status, and a diagram of the nuclear fuel cycle.

  6. In-pile and out-of-pile testing of a molybdenum-uranium dioxide cermet fueled themionic diode

    Science.gov (United States)

    Diianni, D. C.

    1972-01-01

    The behavior of Mo-UO2 cermet fuel in a diode for thermionic reactor application was studied. The diode had a Mo-0.5 Ti emitter and niobium collector. Output power ranged from 1.4 to 2.8 W/cm squared at emitter and collector temperatures of 1500 deg and 540 C. Thermionic performance was stable within the limits of the instrumentation sensitivity. Through 1000 hours of in-pile operation the emitter was dimensionally stable. However, some fission gases (15 percent) leaked through an inner clad imperfection that occurred during fuel fabrication.

  7. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    Science.gov (United States)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  8. Spent Fuel Characteristics Analyses for Thorium-Uranium Breeding Recycle in PWRs%压水堆内钍-铀增殖循环研究——乏燃料特性分析

    Institute of Scientific and Technical Information of China (English)

    毕光文; 司胜义; 张海俊

    2012-01-01

    利用ORIGEN-S程序对压水堆钍基乏燃料的特性进行分析,揭示了钍基乏燃料在放射性毒性、衰变热、γ射线等方面的特性,相关结果可为钍基乏燃料的贮存、后处理和地质处置提供必要的参考.研究的乏燃料是压水堆内钍-铀增殖循环堆芯设计方案中的4种,包括UOX(铀氧化物)、MOX(钚铀混合氧化物)、PuThOX(钚钍混合氧化物)和U3ThOX(工业级233 U-钍混合氧化物).研究结果表明:1)由于超铀核素的含量极低,在卸料后1000年内,U3ThOX的放射性毒性显著低于超铀核素含量高的乏燃料;2)由于232U衰变链中208T1的贡献,钍基乏燃料中2.6 MeV能量附近的γ射线强度明显高于铀基乏燃料,而这一能量附近的γ射线强度在卸料后约10年达到局部峰值,所以,钍基乏燃料的后处理最好避开此时间.%Spent fuel characteristics analyses of thorium-based fuel were investigated using ORIGEN-S code compared with uranium-based fuel. Such parameters as radioactivity, radiotoxicity, decay heat, and gamma ray were considered. Relative results in this work could provide some reference informations for storage, reprocessing and disposal of thorium-based spent fuel. Four type fuels, thorium-based fuel U3ThOX (mixed reactor grade 233U-thorium oxide), PuThOX (mixed reactor grade plutonium-thorium oxide) , uranium-based fuel UOX (uranium oxide) and MOX (mixed reactor grade plu-tonium-uranium oxide) , on the basis of core designs for thorium-uranium breeding recycle in PWRs were investigated. The calculated results show that: 1) Due to extremely low content of transuranic nuclides, the radiotoxicity of U3ThOX is dramatically lower than that of three other types of spent fuel in 1 000 years after discharge; 2) In thorium-based spent fuel the intensity of gamma ray near 2. 6 MeV mainly generated by 208Tl in 232 U decay chain is much stronger than that in uranium-based fuel. The intensity of y ray near 2. 6 MeV reaches a local peak in

  9. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.

    1982-09-01

    Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

  10. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  11. Breeding of {sup 233}U in the thorium–uranium fuel cycle in VVER reactors using heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M. [Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics (VNIIEF) (Russian Federation)

    2015-12-15

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the {sup 233}U–{sup 232}Th oxide fuel of water-moderated reactors with variable water composition (D{sub 2}O, H{sub 2}O) that ensures breeding of the {sup 233}U and {sup 235}U isotopes. The method is comparatively simple to implement.

  12. Breeding of 233U in the thorium-uranium fuel cycle in VVER reactors using heavy water

    Science.gov (United States)

    Marshalkin, V. E.; Povyshev, V. M.

    2015-12-01

    A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the 233U-232Th oxide fuel of water-moderated reactors with variable water composition (D2O, H2O) that ensures breeding of the 233U and 235U isotopes. The method is comparatively simple to implement.

  13. Synthesis of Uranium nitride powders using metal uranium powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N{sup 15} gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work.

  14. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  15. Evaluation of a Cogeneration Plant with Integrated Fuel Factory; Integrerad braenslefabrik med kraftvaermeanlaeggning - en utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Atterhem, Lars

    2002-12-01

    A feasibility study was carried out in 1993 by Skellefteaa Kraft AB, to analyse the technical and economical possibilities to build a new baseload district heating production plant. The conclusion from the study was that, as a first step, a new cogeneration plant, based on a circulating fluidised bed boiler, should be built. The commissioning of the cogeneration plant took place in autumn 1996. The plant was prepared for a future integration with a biofuel drying process for pellets production. During spring 1996 an investment decision was taken and the fuel factory was erected in may 1997. Vaermeforsk Service AB has financed this research project and the Swedish state energy program (Fabel) has contributed with 33,7 Million SEK to the financing of the recovery electric power generation part of the fuel factory. The aim with this research project has been to evaluate and compare the integrated cogeneration plant fuel factory concept with a conventional co-generation plant, specially when it comes to increased power generation. The fuel factory comprises of fuel feeding system, fuel dryer, steam converter from fuel moisture to low pressure process steam, low pressure condensing turbine, cooling water system, fuel pellets production and storage with ship loading plant in the harbour of Skellefteaa. The steam to the fuel factory is extracted from the cogeneration turbine at a pressure level between 12-26 bar and the extraction flow has then already generated power in the cogeneration turbine. Power is also generated in the low pressure condensing turbine of the fuel factory. The low pressure steam is generated with fuel moisture in the steam converter. During the first years of operation there has been both conventional commissioning problems but also technical problems related to the new process concept. The last are for example corrosion and erosion problems, fouling problems of heat exchangers, capacity and leakage problems. The performance goals of the fuel

  16. Decommissioning of a mixed oxide fuel fabrication plant at Winfrith Technolgy Centre

    Energy Technology Data Exchange (ETDEWEB)

    Pengelly, M.G.A. [AEA Technology, Dorchester (United Kingdom)

    1994-01-01

    The Alpha Materials Laboratory (Building A52) at Winfrith contained a mixed oxide fuel fabrication plant which had a capability of producing 10 te/yr of pelleted/compacted fuel and was in operation from 1962 until 1980, when the requirement for this type of fuel in the UK diminished, and the plant became surplus to requirements. A program to develop decommissioning techniques for plutonium plants was started in 1983, addressing the following aspects of alpha plant decommissioning: (1) Re-usable containment systems, (2) Strippable coating technology, (3) Mobile air filtration plant, (4) Size reduction primarily using cold cutting, (5) techniques, (6) Waste packing, and (7) Alpha plant decommissioning methodology. The technology developed has been used to safely and efficiently decommission radioactive plant and equipment including Pu contaminated glove boxes. (63 glove boxes to date) The technology has been widely adopted in the United Kingdom and elsewhere. This paper outlines the general strategies adopted and techniques used for glove box decommissioning in building A52.

  17. Boiling water reactors with Uranium-Plutonium mixed oxide fuel. Report 1: Accuracy of the nuclide concentrations calculated by CASMO-4

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    1999-07-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. These CMS (Core Management System) programs have been extensively compared with both measurements and reference codes. Nevertheless some data are proprietary in particular the comparison of the calculated nuclide concentrations versus experiments (because of the cost of this kind of experimental study). This is why this report describes such a comparative investigation carried out with a General Electric 7x7 BWR bundle. Unfortunately, since some core history parameters were unknown, a lot of hypotheses have been adopted. This invokes sometimes a significant discrepancy in the results without being able to determine the origin of the differences between calculations and experiments. Yet one can assess that, except for four nuclides - Plutonium-238, Curium-243, Curium-244 and Cesium-135 - for which the approximate power history (history effect) can be invoked, the accuracy of the calculated nuclide concentrations is rather good if one takes the numerous approximations into account.

  18. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Utilized in the Reprocessing of Used Uranium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyas, Josef; Burns, Carolyn A.

    2015-04-01

    This paper describes various approaches for making sodalite with a LiCl-Li2O oxide reduction salt used to recover uranium from used oxide fuel. The approaches include sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt.

  19. Studies on the safety and transmutation behaviour of innovative fuels for light water reactors; Untersuchungen zum Sicherheits- und Transmutationsverhalten innovativer Brennstoffe fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Schitthelm, Oliver

    2012-07-01

    Nuclear power plants contribute a substantial part to the energy demand in industry. Today the most common fuel cycle uses enriched uranium which produces plutonium due to its {sup 238}U content. With respect to the long-term waste disposal Plutonium is an issue due to its heat production and radiotoxicity. This thesis consists of three main parts. In the first part the development and validation of a new code package MCBURN for spatial high resolution burnup simulations is presented. In the second part several innovative uranium-free and plutonium-burning fuels are evaluated on assembly level. Candidates for these fuels are a thorium/plutonium fuel and an inert matrix fuel consisting of plutonium dispersed in an enriched molybdenum matrix. The performance of these fuels is evaluated against existing MOX and enriched uranium fuels considering the safety and transmutation behaviour. The evaluation contains the boron efficiency, the void coefficient, the doppler coefficient and the net balances of every radionuclide. In the third part these innovative fuels are introduced into a German KONVOI reactor core. Considering todays approved usage of MOX fuels a partial loading of one third of innovative fuels and two third of classical uranium fuels was analysed. The efficiency of the plutonium depletion is determined by the ratio of the production of higher isotopes compared to the plutonium depletion. Todays MOX-fuels transmutate about 25% to 30% into higher actinides as Americium or Curium. In uranium-free fuels this ratio is about 10% due to the lack of additional plutonium production. The analyses of the reactor core have shown that one third of MOX fuel is not capable of a net reduction of plutonium. On the other hand a partial loading with thorium/plutonium fuel incinerates about half the amount of plutonium produced by an uranium only core. If IMF is used the ratio increases to about 75%. Considering the safety behavior all fuels have shown comparable results.

  20. In Plant Measurement and Analysis of Mixtures of Uranium and Plutonium TRU-Waste Using a {sup 252}Cf Shuffler Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, J.R.

    1998-11-02

    The active-passive {sup 252}Cf shuffler instrument, installed and certified several years ago in Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here.

  1. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  2. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  3. Exergo-Economic Fuel-Impact Analysis for Steam Turbines Sections in Power Plants

    Directory of Open Access Journals (Sweden)

    Javier Royo

    2003-09-01

    Full Text Available In this paper exergoeconomic fuel-impact models for steam turbines in power plants are proposed. They are applied to calculate the impact on the steam cycle when malfunctions are occurring during the operation of steam turbine sections. Concepts such as the exergetic consumption and the dissipation temperature are used to understand the proposed fuel-impact analysis. In order to validate these fuel-impact methods, well-known procedures, to simulate on- and off-design conditions of a steam power cycle, are used as references. Three different methods a ASME PTC-6, b existing fuel-impact formula, and c proposed exergoeconomic Fuel–Impact formulation, are compared with respect to the simulator results. The proposed models allow evaluating fuel-impact cost with more accurate results than conventional procedures. An example of a 158 MW conventional power plant is presented herein. The malfunction costs occurring in the steam turbines are inferred from the results. One perspective of this analysis is to establish an on-line monitoring system into power plants that permits to opportunely detect steam turbine malfunctions, without simulators.

  4. Thermo-economic analysis of a solid oxide fuel cell and steam injected gas turbine plant integrated with woodchips gasification

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2014-01-01

    This paper presents a thermo-economic analysis of an integrated biogas-fueled solid oxide fuel cell (SOFC) system for electric power generation. Basic plant layout consists of a gasification plant (GP), an SOFC and a retrofitted steam-injected gas turbine (STIG). Different system configurations...

  5. Reprocessing method for spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hoshikawa, Tadahiro; Sawa, Toshio; Suzuoki, Akira [Hitachi Ltd., Tokyo (Japan); Takashima, Yoichi; Kumagai, Mikiro

    1998-09-29

    The present invention provides a method of reprocessing spent fuels to form MOX having a Pu/U ratio suitable to fuels of LWR or fast reactors and uranium oxides of fuels of an LWR reactor. In a brief separation step for uranium, carbonate is added to a nitric acid solution in which spent fuels are dissolved, to dissolve a portion of uranium in the nitric acid solution. The residual uranium, plutonium and fission products are made into complexes of carboxylic acid ions and precipitated. The precipitated complexes of carboxylic acid ions are brought into contact with a different nitric acid solution to recover the uranium, plutonium and fission products. The concentration of the carbonate in the nitric acid solution in which uranium is partially dissolved is determined in accordance with the plutonium/uranium ratio based on the relation between the saturation concentration of uranium to the concentration of carbonate in the nitric acid solution. (T.M.)

  6. Design of Uranium Solution Critical Experimental Device

    Institute of Scientific and Technical Information of China (English)

    YI; Da-yong; GUO; Zhi-jia; YAO; Cheng-zhi; SHI; Chen-lei

    2012-01-01

    <正>In 2012, Department of reactor engineering design completes the design and mechanical analysis of Uranium solution critical experimental device. According to user’s requirements and nuclear safety regulations, design and analysis mainly involves two sets of core structure, uranium solution loop, water loop and experimental bench, etc. The core which includes a core vessel, reactor core support, safety rods, control rods, and so on, is used for containing uranium solution and fuel element and fulfilling the

  7. Electricity generation by living plants in a plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.

    2012-01-01

    Society is facing local and global challenges to secure needs of people. One of those needs is the increasing demand of energy. Currently most energy is generated by conversion of fossil fuels. The major drawback of using fossil fuels is pollution of the environment by emission of carbon dioxide, ni

  8. Increase of power output by change of ion transport direction in a plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2013-01-01

    The plant microbial fuel cell (PMFC) is a technology for the production of renewable and clean bioenergy based on photosynthesis. To increase the power output of the PMFC, the internal resistance (IR) must be reduced. The objective of the present study was to reduce the membrane resistance by changi

  9. Manual of phosphoric acid fuel cell power plant cost model and computer program

    Science.gov (United States)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis.

  10. Revegetation of fossil-fuel power plant spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Maly, V.

    1981-10-01

    This paper evaluates land reclamation of spoil banks used for disposal of fly ash from the Hodonin and Opatovice coal power plants. The evaluation concentrates on assessment of plant growth over a 5 year period. Types of fertilizers, quantity ratio per ha and fertilizer composition are given. During the first year 54 kg nitrogen, 60 kg phosphorous pentoxide and 120 kg potassium oxide were used for one ha of spoil bank. In the second year 150 kg/ha of calcium nitrate were used. During the third year 150 kg ammonium sulfates and 300 kg superphosphate were used for one ha. During the fifth year 150 kg/ha calcium nitrate were used for the second time. Growth intensity of plants is evaluated in two tables. The following plants were used: Onobrychis sativa, Melilotus albus, Trifolium hybrydum, Lotus corniculatus, Festuca rubra, Lovium multiflorum. In the Hodonin spoil bank growth of Onobrychis sativa was most intensive. In the Opatovice spoil bank growth of Lolium multiflorum was satisfactory. (8 refs.) (In Czech)

  11. Technical specifications on the welding in fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Karino, Motonobu; Uryu, Mitsuru; Matsui, N.; Nakazawa, Fumio; Imanishi, Makoto; Koizumi; Kazuhiko; Sugawara, Junichi; Tanaka, Hideo

    1999-04-01

    The past specifications SGN of the welding in JNC was reexamined for the reprocessing plants in order to further promote the quality control. The specification first concerns the quality of raw materials, items of the quality tests, material management, and qualification standards of the welders. It extends over details of the welding techniques, welding design, welding testings, inspection and the judgment standards. (H. Baba)

  12. Optimization of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; From, Niels

    2011-01-01

    Brovst is a small district in Denmark. Based on the case of Brovst, this paper analyses the role of district heating in future Renewable Energy Systems. The present use of fossil fuels in the Brovst DHP (district heating plant) represents an increasing environmental and climate-related load. So......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (Biogas, Solar and Geothermal) for district heating purpose. In this article, the techno-economic assessment is achieved through the development of a suite of models...... that are combined to give cost and performance data for this district heating system. Different local fuels have been analyzed for different perspectives to find the way to optimize the whole integrated system in accordance with fuel availability and cost. This paper represents the energy system analysis mode...

  13. Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Sean R. Morrell

    2012-09-01

    Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace

  14. 77 FR 53236 - Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion...

    Science.gov (United States)

    2012-08-31

    ... COMMISSION Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion... International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion Plant (INIS) in Lea County... construction, operation, and decommissioning of a fluorine extraction and depleted uranium...

  15. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsai A, Banta L, Tucker D

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  16. On the interaction between fuel crud and water chemistry in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxin Chen [Studsvik Material AB, Nykoeping (Sweden)

    2000-01-01

    This report has surveyed the current understanding about the characteristics of fuel crud, its deposition and dissolution behaviour, the influences of water chemistry, and the radioactivity transport in nuclear power plants. The references were mainly sought for from the International Nuclear Information System (INIS) database and some internal reports of Studsvik Material AB. The characteristics of fuel crud from discharged fuel rods have been extensively investigated over the last three decades. Fuel crud mainly consists of iron, nickel and chromium oxides. For BWR fuel crud the main phases are hematite and nonstoichiometric nickel ferrite spinels. For PWR fuel crud the main phases are nonstoichiometric nickel ferrite and nickel metal or nickel oxide. Fuel crud is usually thin and relatively porous in the outer layer but dense in the inner layer. Important information is lacking about the adhesion property of crud particles or agglomerates on fuel rods. Little, if any, information is reported about the characteristics of fuel crud before discharging in pool. It is uncertain if the fuel crud can, after pool discharge, largely preserve its characteristics appearing during reactor operation. Deposition behaviour of corrosion products on fuel rods, in both solid particles and ionic forms in reactor water, has been well studied in the simulated reactor water environments without irradiation. The influences on deposition rate of pH, heat flux, particle size, crud concentration, and flow rate have also been studied in detail. Most of the experimental observations may be qualitatively explained by the theories developed. However, the importance of each influencing parameter remains largely unknown in the complicated reactor water environments, because irradiation, among various influencing factors, may play an important role. The behaviour of crud dissolution has been extensively studied in various reactor water environments. Generally speaking, the more easily crud

  17. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J.; Leo, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); O`Shea, T.P. [Santa Clara Demonstration Project, CA (United States)

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  18. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  19. Atmospheric benzenoid emissions from plants rival those from fossil fuels.

    Science.gov (United States)

    Misztal, P K; Hewitt, C N; Wildt, J; Blande, J D; Eller, A S D; Fares, S; Gentner, D R; Gilman, J B; Graus, M; Greenberg, J; Guenther, A B; Hansel, A; Harley, P; Huang, M; Jardine, K; Karl, T; Kaser, L; Keutsch, F N; Kiendler-Scharr, A; Kleist, E; Lerner, B M; Li, T; Mak, J; Nölscher, A C; Schnitzhofer, R; Sinha, V; Thornton, B; Warneke, C; Wegener, F; Werner, C; Williams, J; Worton, D R; Yassaa, N; Goldstein, A H

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  20. The re-enrichment of depleted uranium tails in the US versus de-conversion and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, M.R.; Schneider, E.A. [Department of Mechancial Engineering, The University of Texas at Austin, 1 University Station, C2200, Austin, TX 1 University Station, C2200 (United States)

    2009-06-15

    International consumption of uranium currently outpaces production by nearly a factor of two. Secondary supplies from dismantled nuclear weapons, along with civilian and governmental stockpiles, are being used to make up the difference but supplies are limited. However, large amounts of {sup 235}U are contained in the depleted uranium tails left over from past uranium enrichment. The usability of these inhomogeneous uranium supplies depends on their isotopics and the cost of SWU. In the US the current plan is to de-convert depleted uranium tails and to dispose of them in a low level nuclear repository [1]. We present data on cost of re-enriching depleted uranium tails in the US inventory and compare its cost to the disposal option currently under consideration. Historically, the majority of commercial nuclear power has been generated using light-water reactors (LWRs) burning low enriched uranium. While research into technologies that could close the nuclear fuel cycle continues in the US and elsewhere, the maturity and economic competitiveness of LWRs will make them a major presence for decades to come. Because of this, global demand for uranium is likely to remain strong and its future price uncertain, with acceptable alternatives to mined natural uranium being of significant interest as a result. At present, substitutes include down-blending of highly enriched uranium, uranium released from government or utility stockpiles, enrichable depleted uranium (DU) and reprocessable uranium (RU) from spent LWR fuel (SF) [2]. The decision of whether to mine fresh uranium or exploit alternative sources is largely a matter of economics. Depleted uranium stockpiles have a variable {sup 235}U composition and would typically require additional enrichment beyond what is needed for manufacturing LWR fuel from natural uranium. As a result, the price of using DU depends on the costs of enrichment, DU cylinder transport from storage to the enrichment plant, UF{sub 6} tails storage

  1. Design of the fuel element 'snow-flake' in uranium oxide, canned with aluminium, for the experimental reactor EL 3 (1960); Etude d'un element combustible en oxyde d'uranium gaine d'aluminium, type ''cristal de neige'' pour la pile EL 3 (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M.; Guibert, B. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This report sums up the main studies have been carried out on the fuel element 'Snowflake' (uranium oxide, canned with aluminium), designed to replace the present element of the experimental reactor EL3 in order to increase the reactivity without modifying the neutron flux/thermal power ratio. (author) [French] Ce rapport resume les principales etudes qui ont ete faites sur l'element combustible 'Cristal de Neige' (a oxyde d'uranium, gaine d'aluminium) destine a remnlacer l'element actuel du reacteur experimental EL3, afin d'en augmenter la reactivite sans modifier le rapport flux neutronique-puissance thermique. (auteur)

  2. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle; Determinacion de Uranio en Muestras Procedentes del Desmantelamiento de Instalaciones de la Primera Parte del Cielo del Combustible Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.; Correa, E.; Navarro, N.; Sancho, C. [Ciemat, Madrid (Spain); Angeles, A.

    2000-07-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  3. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    Science.gov (United States)

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced.

  4. Removal and Recovery of Uranium using Microorganisms Isolated from North American Uranium Deposits

    Directory of Open Access Journals (Sweden)

    Takehiko Tsuruta

    2007-01-01

    Full Text Available Some attempts were made to remove and recover uranium that may be present in nuclear fuel effluents and mine tailings using microorganisms isolated from North American uranium deposits. To establish which microorganisms accumulate the most uranium, hundreds strains of microorganisms were screened. Of these strains of microorganisms tested, extremely high uranium accumulating ability was found in some bacteria isolated from North American uranium deposits. These bacterial strains, such as Arthrobacter and Bacillus sp., can accumulate about 2500 µmol uranium per gram dry wt. of microbial cells within one hour. These microbial cells can remove uranium from the uranium refining waste water with high efficiency. These microbial cells can also accumulate thorium as well as uranium with high efficiency. The microbial cells immobilized with polyacrylamide gel have excellent handling characteristics and can be used repeatedly in the adsorption-desorption cycles. These new microorganisms isolated from uranium deposits can be used as an adsorbing agent for the removal of the nuclear fuel elements, which may be present in nuclear fuel effluents, mine tailings and other waste sources.

  5. Durability testing modified compression ignition engines fueled with straight plant oil

    Energy Technology Data Exchange (ETDEWEB)

    Basinger, M.; Lackner, K.S. [Earth and Environmental Engineering, Columbia University, New York City 10027 (United States); Reding, T. [Mechanical Engineering, Manhattan College, New York City (United States); Rodriguez-Sanchez, F.S. [Mali Biocarburant, Bamako (Mali); Modi, V. [Mechanical Engineering, Columbia University, New York City 10027 (United States)

    2010-08-15

    Many short-run studies point to the potential for direct fueling of compression ignition engines with plant oil fuels. There is a much smaller body of work that examines the potential for these fuels in long-run tests that illuminate engine endurance and longevity issues. Generally, longevity studies involving direct fueling of engines with straight plant oils have shown significant impact to the life of the engine, though test results vary widely depending on the oil, engine type, test conditions, and measurement approach. This study utilizes a previously designed modification kit to investigate the longevity implications of directly fueling straight plant oil in an indirect injection (IDI) listeroid type, slow speed stationary engine common in agro-processing applications in developing countries. Specifically this study focuses on the lubrication oil by developing a model to characterize the engine wear and estimate lube oil change frequency. The model is extended to an analysis of the piston rings. Cylinder liner wear, emissions, engine performance, and a visual investigation of several critical engine components are also studied. The 500 hour test with waste vegetable oil fuel resulted in several important findings. The engine break-in period was identified as taking between 200 and 300 h. Emissions analysis supported the break-in definition as smoke opacity and carbon monoxide values fell from 9% and 600 ppm (respectively) during the first few hundred hours, to 5% and 400 ppm in the final 200 h. Lubrication oil viscosity was found to be the limiting degradation factor in the lube oil, requiring oil to be changed every 110 h. Piston ring mass loss was found to correlate very closely with chromium buildup in the lubrication oil and the mathematical model that was developed was used to estimate that piston ring inspection and replacement should occur after 1000 h. Cylinder ovalisation was found to be most sever at top dead center (TDC) at 53 microns of averaged

  6. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of /sup 85/Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of /sup 85/Kr. Instead of releasing the /sup 85/Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing /sup 85/Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from /sup 85/Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of /sup 85/Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for /sup 85/Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated /sup 3/H and /sup 14/C also encourage delaying implementation of the /sup 85/Kr recovery in the early plants.

  7. Experiences from the Swedish programme - heavy water and natural uranium in the Aagesta cogeneration plant; Erfarenheter av den svenska linjen tungt vatten och naturligt uran i Aagesta kraftvaermeverk

    Energy Technology Data Exchange (ETDEWEB)

    Oestman, Alvar

    2002-11-01

    A short review of the Swedish programme for nuclear power in the 50's and the 60's is given, and in particular a description of the operating experiences of the Aagesta nuclear cogeneration plant, producing district heating for the south Stockholm area (12 MW{sub el} and 68 MW{sub heat}). The original Swedish nuclear programme was built on heavy water and natural uranium and had the objective to construct small nuclear plants in the vicinity of some 10 large cities in south and middle Sweden. Aagesta was the only full-scale plant to be built according to this programme, as Sweden adopted the light-water reactor policy and eventually constructed 12 large reactors at four sites. The report is based on the experiences of the author from his work at the Aagesta plant in the sixties. In an appendix, the experiences from Vattenfall (the Swedish electric utility which took over the operating responsibility for the Aagesta plant), of the plant operation is reviewed.

  8. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  9. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  10. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  11. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  12. Environmental benchmarking of the largest fossil-fueled electricity generating plants in the U.S

    Science.gov (United States)

    Sarkis, Joseph

    2004-02-01

    Environmental management, to be effective, requires performance evaluation and process improvement. This is especially the case in fossil-fueled electricity generating plants. Although eco-efficient management of these types of organizations are critical to local, national and global environmental issues, few studies have focused on performance measurement and eco-efficiency improvements in this industry. This study evaluates the eco-efficiencies of the top 100 major U.S. fossil-fueled electricity generating plants from 1998 data. Using a multi-criteria non-parametric productivity model (data envelopment analysis) efficiency scores are determined. These efficiency scores are treated by a clustering method in identifying benchmarks for improving poorly performing plants. Efficiency measures are based on three resource input measures including boiler generating capacity, total fuel heat used, and total generator capacity, and four output measures including actual energy generated, SO2, NOx, and CO2 emissions. The purpose of this paper is two-fold, to introduce the methodology"s application to eco-efficiency performance measurement and show some characteristics of the benchmarked plants and groups.

  13. Steam/fuel system optimization report: 6000-tpd SRC-I Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Vakil, T.D.

    1983-07-01

    The design and configuration of the steam and fuel system for the 6000-ton-per-day (tpd) SRC-I Demonstration plant have been optimized, based on requirements for each area of the plant that were detailed in Area Baseline Designs of December 1982. The system was optimized primarily for the two most likely modes of plant operation, that is, when the expanded-bed hydrocracker (EBH) is operating at either high or low conversion, with all other units operating. However, the design, as such, is also operable under four other anticipated operating modes. The plant is self-sufficient in fuel except when the coker/calciner unit is not operating; then the required fuel oil import ranges from 80 to 125 MM Btu/h, lower heating value (LHV). The system affords stable operation under varying fuel gas availability and is reliable, flexible, and efficient. The optimization was based on maximizing overall efficiency of the steam system. The system was optimized to operate at five different steam-pressure levels, which are justifiable based on the plant's team requirements for process, heat duty, and power. All identified critical equipment drives will be run by steam turbines. Also part of the optimization was elimination of the steam evaporator in the wastewater treatment area. This minimized the impact on the steam system of operating in either the discharge of zero-discharge mode; the steam system remains essentially the same for either mode. Any further optimization efforts should be based on overall cost-effectiveness.

  14. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils

    Energy Technology Data Exchange (ETDEWEB)

    Lottermoser, Bernd G., E-mail: Bernd.Lottermoser@utas.edu.au [School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001 (Australia); Schnug, Ewald; Haneklaus, Silvia [Institute for Crop and Soil Science, Federal Institute for Cultivated Plants, Julius Kuehn-Institute (JKI), Bundesallee 50, D-38116 Braunschweig (Germany)

    2011-08-15

    environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. - Highlights: {yields} There is a need for new simple procedures that test metal bioaccessibility in soils. {yields} Cola Classic (registered) produced extractable uranium fractions identical to those of DTPA. {yields} Cola extraction of soils indicated uranium uptake into the Sodom apple. {yields} Cola soft drinks may be used for environmental impact assessments of mine sites.

  15. 76 FR 72984 - Revised Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2011-11-28

    ... COMMISSION Revised Application for a License To Export High-Enriched Uranium The application for a license to export high-enriched Uranium has been revised as noted below. Notice of this application was previously... kilograms To fabricate fuel France. Security Complex; October 18, Uranium (93.35%). uranium (174.0...

  16. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    Directory of Open Access Journals (Sweden)

    Norwazan Abdul Rahim

    2016-08-01

    Full Text Available This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25 and coconut oil methyl ester blend 25 (COME B25 blended at 25% by volume in diesel fuel produced lower carbon monoxide (CO and unburned hydrocarbon (UHC emissions due to more complete combustion. Overall, JOME B25 had the highest CO emission reduction, at about 42.25%, followed by COME B25 at 26.44% emission reduction relative to pure diesel fuel. By contrast, the palm oil methyl ester blend 25 (POME B25 showed a 48.44% increase in these emissions. The results showed that the nitrogen oxides (NOx emissions were slightly higher for all biodiesel blend fuels compared with pure diesel fuel combustion. In case of sulphur dioxide (SO2 and UHC emissions, all biodiesel blends fuels have significantly reduced emissions. In the case of SO2 emission, the POME B25, JOME B25 and COME B25 emissions were reduced 14.62%, 14.45% and 21.39%, respectively, relative to SO2 emission from combusting pure diesel fuel. UHC emissions of POME B25, JOME B25 and COME B25 showed 51%, 71% and 70% reductions, respectively, compared to diesel fuel. The conclusion from the results is that all the biodiesel blend fuels are suitable and can be recommended for use in liquid fuel burners in order to get better and ‘greener’ environmental outcomes.

  17. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    Science.gov (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  18. Canada's deadly secret : Saskatchewan uranium and the global nuclear system

    Energy Technology Data Exchange (ETDEWEB)

    Harding, J.

    2007-07-01

    Although Canada has a reputation for its support of multilateralism and international peacekeeping, it has provided fuel for American and British nuclear weapons, and continues to provide uranium fuel for nuclear reactors and power plants throughout the world. This book provided a detailed outline of Canada's involvement in uranium mining in Saskatchewan, the largest uranium-producing region in the world. The ways in which Canada has been complicit in the expansion of the global nuclear system were examined. A history of the province's role in the first nuclear arms race between the Soviet Union and the United States was provided, and details of provincial public inquiries conducted to legitimize the expansion of uranium mining were revealed. Issues related to the exploitation of ancestral lands belonging to Aboriginal peoples were discussed along with the impact of uranium mining on communities in the province. It was concluded that the province is now being targeted as a storage site for nuclear waste. refs.

  19. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  20. Investment appraisal for small CHP technology in biomass-fuel power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper is essentially an investment appraisal for small CHP (combined heat and power) technology in biomass-fuel power plant and discusses and presents data on the combustion/steam cycle technologies to demonstrate the economic viability of CHP projects using established market costs for technology and employing energy crops as biomass fuel. The data is based on the UK, where electricity prices are low, but the overseas market (where prices are higher and there is potential for UK exports) is also discussed. The report aims to synthesise up-to-date technical and economic information on biomass-fuel CHP projects of small scale and focuses on technical and financial information on equipment, capital, construction and operating costs, and revenue streams.

  1. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    Science.gov (United States)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  2. Nuclear, uranium, reserves, sustainability, independence; Nucleaire, Uranium, reserves, durabilite, independance

    Energy Technology Data Exchange (ETDEWEB)

    Acket, C

    2007-06-15

    In order to evaluate the energy independence concerning the nuclear energy, the author takes the state of the art about the uranium. He details the fuel needs, the reserves on the base of the today available techniques, the reserves on the base of the future techniques and concludes positively on the energy independence for the nuclear. (A.L.B.)

  3. Electricity generation of Plant Microbial Fuel Cell (PMFC using Cyperus Involucratus R.

    Directory of Open Access Journals (Sweden)

    Nuttawut Klaisongkram

    2015-03-01

    Full Text Available This research is a study of microbial fuel cells produce electricity from plants using Cyperus involucratus R. called Plant Microbial Fuel Cell (PMFC. As a result of the polarization curve, by adjusting the external resistance between 10 to 12,000 ohms, it was found that the internal resistance of PMFC1 , PMFC2 , MFC1 and MFC2 was 9.78, 11.06, 9.47 and 11.92 ohms respectively. The results showed that the optimum size of the anode electrode is 242 square centimeters and adding soil by using the external resistance 100 ohms. The highest average power density equaled to 5.99 milliwatts per square meter of the anode electrode. Finally the wastewater in PMFC was reduced 53.5 percent in the period of 5 days compared with un-treated wastewater.

  4. Studies on production planning of IPEN fuel-element plant in order to meet RMB demand

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel L.M.; Saliba-Silva, Adonis M.; Durazzo, Michelangelo, E-mail: mlnegro@ipen.br, E-mail: saliba@ipen.br, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The plant of the Nuclear Fuel Center (CCN) will have to change its current laboratorial production level to an industrial level in order to meet the fuel demand of RMB and of IEA-R1. CCN's production process is based on the hydrolysis of UF6, which is not a frequent production route for nuclear fuel. The optimization of the production capacity of such a production route is a new field of studies. Two different approaches from the area of Operations Research (OR) were used in this paper. The first one was the PERT/CPM technique and the second one was the creation of a mathematical linear model for minimization of the production time. PERT/CPM's results reflect the current situation and disclose which production activities may not be critical. The results of the second approach show a new average time of 3.57 days to produce one Fuel Element and set the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. CCN's management team will therefore have a clearer view of the process times and production and inventory levels. That may help to shape the decisions that need to be taken for the enlargement of the plant's production capacity. (author)

  5. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  6. Solar Cogeneration Facility: Cimarron River Station, Central Telephone and Utilities-Western Power

    Science.gov (United States)

    1981-08-01

    A site-specific conceptual design and evaluation of a solar central receiver system integrated with an existing cogeneration facility are described. The system generates electricity and delivers a portion of that electricity and process steam to a natural gas processing plant. Early in the project, tradeoff studies were performed to establish key system characteristics. As a result of these studies the use of energy storage was eliminated, the size of the solar facility was established at 37.13 MW (sub t), and other site-specific features were selected. The conceptual design addressed critical components and system interfaces. The result is a hybrid solar/fossil central receiver facility which utilizes a collector system of Department of Energy second generation heliostats.

  7. Model-based Fuel Flow Control for Fossil-fired Power Plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr

    2010-01-01

    -fired power plants represent the largest reserve of such controllable power sources in several countries. However, their production take-up rates are limited, mainly due to poor fuel flow control. The thesis presents analysis of difficulties and potential improvements in the control of the coal grinding...... such sources may vary unpredictably meaning that the desired level of generation cannot always be achieved upon request. On-demand production from controllable units, such as thermal power plants, must change quickly in order to ensure balance between consumer demands and electricity generation. Coal...

  8. Industrial Fuel Gas Demonstration Plant Project. Management plan (Deliverable No. 1)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-31

    This Project Management Plan establishes the organization and procedures by which the Memphis Medium-Btu Fuel Gas Demonstration Plant will be managed and defines the responsibilities and functions of project participants. This plan should not be construed as modifying contract provisions or documents in any way. It applies mainly to Phase I activities; the conceptual design and development of the demonstration plant. Plans for Phases II and III will be prepared before these phases are initiated. This management plan is intended to be a working document to be revised as the needs of the project dictate. The looseleaf format will facilitate changes by making it possible to add and remove pages.

  9. Model of iodine transport and reaction kinetics in a nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.

    1977-05-01

    A model is presented to describe the time-dependent flow and retention of stable iodine isotopes and the decay of /sup 131/I in a nuclear fuel reprocessing plant. The plant consists of 16 units of equipment such as a voloxidizer or graphite burner, fuel dissolver, solvent extractors, storage tanks, vaporizers, primary iodine sorbers, and silver zeolite. The rate of accumulation of bulk and radioactive iodine in these units and in the environment is described using 19 differential equations. Reasonable time-dependence of iodine retention factors (RFs) by the plant were calculated. RFs for a new plant in excess of 10/sup 6/ for stable iodine and /sup 129/I decrease to the range of 10/sup 3/ to 10/sup 2/ as plant operating times exceed 50 to 100 days. The RFs for /sup 131/I also decrease initially, for a period of approximately 10 days, but then increase by several orders of magnitude due to radioactive decay and isotopic exchange. Generally, the RFs for /sup 131/I exceed those for stable iodine by factors of 10/sup 4/ or more. 19 references, 13 figures, 2 tables. (DLC)

  10. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  11. Feasibility of converting a sugar beet plant to fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hammaker, G S; Pfost, H B; David, M L; Marino, M L

    1981-04-01

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  12. Industrial Fuel Gas Demonstration Plant Program. Demonstration plant operation plan (Deliverable No. 38)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Demo Plant Operating Plan is composed of the following sequence of events starting with the training or personnel, familiarizing of the personnel with the plant and completing the long-term run in the following sequences: inspection during construction, plant completion, shakedown of equipment, process unit startup, shakedown of process units, variable run operation and a turnaround. During the construction period, technical personnel from DRC, MLGW and IGT will be at the plant site becoming familiar with the equipment, its installation and all of the auxiliaries so that on completion of construction they will be well grounded on the plant detail and its configuration. At the same time the supervisory operating personnel will have hands on training the gasifier operation at the IGT pilot plant to develop a field for gasifier operation. As a plant sections are completed, they will be checked out in accordance with the contractor and operator (client) procedure as outlined. Subsequent to this, various vendor designs and furnished equipment will be checked out operating-wise and a performance test run if feasible. The actual startup of the plant will be subsequential with the support areas as utilities, coal handling and waste treatment being placed in operation first. Subsequent to this the process units will be placed in operation starting from the rear of the process train and working forward. Thus the downstream units will be operating before the reactor is run on coal. The reactor will be checked out on coke operation.

  13. Industrial Fuel Gas Demonstration Plant Program. Volume II. Commercial plant design (Deliverable Nos. 15 and 16)

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This report presents a Conceptual Design and Evaluation of Commercial Plant report in four volumes as follows: I - Executive Summary, II - Commercial Plant Design, III - Economic Analyses, IV - Demonstration Plant Recommendations. Volume II presents the commercial plant design and various design bases and design analyses. The discussion of design bases includes definition of plant external and internal considerations. The basis is described for process configuration selection of both process units and support facilities. Overall plant characteristics presented include a summary of utilities/chemicals/catalysts, a plant block flow diagram, and a key plot plan. Each process unit and support facility is described. Several different types of process analyses are presented. A synopsis of environmental impact is presented. Engineering requirements, including design considerations and materials of construction, are summarized. Important features such as safety, startup, control, and maintenance are highlighted. The last section of the report includes plant implementation considerations that would have to be considered by potential owners including siting, coal and water supply, product and by-product characteristics and uses, overall schedule, procurement, construction, and spare parts and maintenance philosophy.

  14. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  15. Adjustment of machine equipment in heating plants to facilitate addition of straw fuel; Anpassning av vaermeverksutrustning till halminblandning

    Energy Technology Data Exchange (ETDEWEB)

    Stridsberg, Sven [BIOSYD (Sweden)

    1999-10-01

    The ground of the project is a development work, carried out by BIOSYD according combustion of straw in heating plants. First we have handled combustion experiments with addition of straw in some plants working with wood fuels, mainly with good results. In the next step we have worked with new techniques for handling and delivery of straw to the plants, also including experiments with chopping of the straw on the field, storing it in outdoor uncovered piles and consequently delivered in the shape of 'chips' to the heating plant. The whole cycle from cutting to combustion has been checked. The results indicate a possible price of the straw at the heating plant of approx 85 SEK/MWh, which can easily compete with wood fuels. The present project will describe which adjustments of the machine equipment are needed to allow a 25 % addition of straw in the fuel mix, how much these adjustments will cost and if they should be profitable in competition with wood fuels for 110 SEK/MWh. In total 37 heating plants from Skaane up to Uppland have been visited and the process from fuel reception to combustion analyzed. The costs of adjustments needed have been calculated from similar examples. The main impression from the studies is that the fuel reception has too small volumes to allow more numerous kinds of fuel and specially make it possible to give a good mix. This is often not critical for wood fuels but for straw we must guarantee a good mix to get a good combustion. Other critical points are crossings between conveyors, for example dips and feeding out devices, which often have to be adjusted. In the combustion there is a risk for sintering as well as coatings on tubes and walls. These functions must be avoided by air distribution, feed back of fuel gas and better carbon removing. In our analyses we would have judged on results from practical tests, but as this would have been too extensive, we must trust in former experiences, transferred to respective plants. Our

  16. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, J.B.; Urano de Carvalho, E.F.; Oliveira, F.B.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: jbsneto@ipen.br; elitaucf@ipen.br; fabio@ipen.br; Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)]. E-mail: riella@enq.ufsc.br

    2007-07-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium silicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydrofluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U miniplates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN-CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}O{sub 8}-Al fuel. (author)

  17. Uranium comparison by means of AMS and ICP-MS and Pu and 137Cs results around an Italian Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    De Cesare M.

    2015-01-01

    Full Text Available Italy built and commissioned 4 nuclear power plants between 1958-1978, which delivered a total of 1500 MW. All four were closed down after the Chernobyl accident following a referendum in 1987. One of the plants was Garigliano, commissioned in 1959. This plant used a 160 MW BWR1 (SEU of 2.3 % and was operational from 1964 to 1979, when it was switched off for maintenance. It was definitively stopped in 1982, and is presently being decommissioned. We report here details on the chemistry procedure and on the measurements for soil samples, collected up to 4.5 km from the Nuclear Plant. A comparison between uranium (238U concentration as determined by means of AMS (Accelerator Mass Spectrometry and by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry techniques respectively at the ANU (Australian National University and at the Ecowise company in Canberra, Australia, is reported, as well as 236U and 239;240Pu concentration results detected by AMS. 236U/238U and 240Pu/239Pu isotopic ratios by means of AMS are also provided. A contamination from Chernobyl is visible in the 137Cs/239+240Pu activity ratio measurements.

  18. Uranium comparison by means of AMS and ICP-MS and Pu and 137Cs results around an Italian Nuclear Power Plant

    Science.gov (United States)

    De Cesare, M.; Tims, S. G.; Fifield, L. K.

    2015-04-01

    Italy built and commissioned 4 nuclear power plants between 1958-1978, which delivered a total of 1500 MW. All four were closed down after the Chernobyl accident following a referendum in 1987. One of the plants was Garigliano, commissioned in 1959. This plant used a 160 MW BWR1 (SEU of 2.3 %) and was operational from 1964 to 1979, when it was switched off for maintenance. It was definitively stopped in 1982, and is presently being decommissioned. We report here details on the chemistry procedure and on the measurements for soil samples, collected up to 4.5 km from the Nuclear Plant. A comparison between uranium (238U) concentration as determined by means of AMS (Accelerator Mass Spectrometry) and by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) techniques respectively at the ANU (Australian National University) and at the Ecowise company in Canberra, Australia, is reported, as well as 236U and 239;240Pu concentration results detected by AMS. 236U/238U and 240Pu/239Pu isotopic ratios by means of AMS are also provided. A contamination from Chernobyl is visible in the 137Cs/239+240Pu activity ratio measurements.

  19. Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

    Directory of Open Access Journals (Sweden)

    F. Dalir

    2017-12-01

    Full Text Available In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient condition effect on carbon footprint assessment of fossil fuel power plant is the specific feature of the proposed model. To evaluate the model, a sensitivity analysis is performed under different scenarios covering all possible choices for investigated parameters. The results show that carbon footprint of fossil fuel electrical energy that is produced, transmitted and distributed, varies from 321 g CO2 eq/kWh to 980 g CO2 equivalent /kWh. Carbon footprint of combined cycle with natural gas as main fuel is the minimum carbon footprint. Other factors can also cause indicative variation. Fuel type causes a variation of 28%. Ambient condition may change the result up to 13%. Transmission makes the carbon footprint larger by 4%. Internal consumption and degradation influence the result by 2 and 2.5%, respectively. Therefore, to minimize the carbon footprint of fossil fuel electricity, it is recommended to construct natural gas ignited combined cycles in low lands where the temperature is low and relative humidity is high. And the internal consumption is as least as possible and the maintenance and overhaul is as regular as possible.

  20. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem.

  1. Performance Comparison on Repowering of a Steam Power Plant with Gas Turbines and Solid Oxide Fuel Cells

    OpenAIRE

    Masoud Rokni

    2016-01-01

    Repowering is a process for transforming an old power plant for greater capacity and/or higher efficiency. As a consequence, the repowered plant is characterized by higher power output and less specific CO2 emissions. Usually, repowering is performed by adding one or more gas turbines into an existing steam cycle which was built decades ago. Thus, traditional repowering results in combined cycles (CC). High temperature fuel cells (such as solid oxide fuel cell (SOFC)) could also be used as a ...

  2. Evaluation of the magnitude and effects of bundle duct interaction in fuel assemblies at developmental plant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Serell, D.C.; Kaplan, S.

    1980-09-01

    Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers.

  3. REE, Uranium (U) and Thorium (Th) contents in Betula pendula leaf growing around Komsomolsk gold concentration plant tailing (Kemerovo region, Western Siberia, Russia)

    Science.gov (United States)

    Yusupov, D. V.; Karpenko, Yu A.

    2016-09-01

    The article deals with the research findings of peculiarities of REE, Uranium and Thorium distribution in the territory surrounding the tailing of former Komsomolsk gold concentration plant according to the data from Betula pendula leaf testing. In the leaf element composition the slight deficiency of MREE and substantial excess of HREE are presented. In the nearest impacted area around the tailing, La, Yb, U and Th content, and Th/U ratio are lower than in the distant buffer area. It is shown, that value of Th/U ratio and REE can be an indicator for geochemical transformations of technogenic landscapes in mining districts. The results of the research can be used for biomonitoring of the territory around the tailing.

  4. Optimum power yield for bio fuel fired combined heat and power plants

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Nystroem, Olle; Joensson, Mikael

    2012-05-15

    Plant owners, suppliers, research institutions, industry representatives and (supporting) authorities are continuing to question the viability of what can be expected by increasing the steam data and the efficiency of cogeneration plants. In recent years, the overall conditions for investment in CHP have changed. Today, there is access to new materials that allow for more advanced steam data while maintaining availability. Although the financial environment with rising prices of electricity, heating and fuel along with the introduction of energy certificates and the interest in broadening the base of fuel has changed the situation. At the same time as the increased interest in renewable energy production creates competition among energy enterprises to find suppliers, increased prices for materials and labor costs have also resulted in increased investment and maintenance costs. Research on advanced steam data for biomass-fired power cogeneration plants has mainly emphasized on technical aspects of material selection and corrosion mechanisms based on performance at 100 % load looking at single years. Reporting has rarely been dealing with the overall economic perspective based on profitability of the CHP installations throughout their entire depreciation period. In the present report studies have been performed on how the choice of steam data affects the performance and economy in biomass-fired cogeneration plants with boilers of drum type and capacities at 30, 80 and 160 MWth with varied steam data and different feed water system configurations. Profitability is assessed on the basis of internal rate of return (IRR) throughout the amortization period of the plants. In addition, sensitivity analyses based on the most essential parameters have been carried out. The target group for the project is plant owners, contractors, research institutions, industry representatives, (supporting) authorities and others who are faced with concerns regarding the viability of what

  5. Updated NGNP Fuel Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    A Next Generation Nuclear Plant (NGNP) fuel acquisition strategy was first established in 2007. In that report, a detailed technical assessment of potential fuel vendors for the first core of NGNP was conducted by an independent group of international experts based on input from the three major reactor vendor teams. Part of the assessment included an evaluation of the credibility of each option, along with a cost and schedule to implement each strategy compared with the schedule and throughput needs of the NGNP project. While credible options were identified based on the conditions in place at the time, many changes in the assumptions underlying the strategy and in externalities that have occurred in the interim requiring that the options be re-evaluated. This document presents an update to that strategy based on current capabilities for fuel fabrication as well as fuel performance and qualification testing worldwide. In light of the recent Pebble Bed Modular Reactor (PBMR) project closure, the Advanced Gas Reactor (AGR) fuel development and qualification program needs to support both pebble and prismatic options under the NGNP project. A number of assumptions were established that formed a context for the evaluation. Of these, the most important are: • Based on logistics associated with the on-going engineering design activities, vendor teams would start preliminary design in October 2012 and complete in May 2014. A decision on reactor type will be made following preliminary design, with the decision process assumed to be completed in January 2015. Thus, no fuel decision (pebble or prismatic) will be made in the near term. • Activities necessary for both pebble and prismatic fuel qualification will be conducted in parallel until a fuel form selection is made. As such, process development, fuel fabrication, irradiation, and testing for pebble and prismatic options should not negatively influence each other during the period prior to a decision on reactor type

  6. Evaluating top soil trace element pollution in the vicinity of a cement plant and a former open-cast uranium mine in central Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Gonzalo M.A.; Pignata, Maria Luisa [Cordoba Univ. Nacional (AR). Inst. Multidisciplinario de Biologia Vegetal (IMBIV); Moreno, Monica; Invernizzi, Rodrigo; Pla, Rita [Comision Nacional de Energia Atomica (CAE), Buenos Aires (Argentina). Tecnicas Analiticas Nucleares

    2010-10-15

    Heavy metals are especially dangerous because of their persistence and toxicity. Soil behaves as a sink of heavy metals by aerial deposition of particles emitted by different human activities. The aims of this work were to identify the levels and sources of heavy metal and trace elements in agricultural and residential areas in Argentina and to evaluate the enrichment of total and HCl-extracted heavy metals. Materials and methods: Ninety-four topsoil samples were collected in Cordoba, Argentina (0-10 cm). The majority of the samples were subject to agricultural practices. The possible metal pollution sources were a cement plant and an industrial waste incinerator, a former open-cast uranium mine, petrochemical, and mechanical and metallurgical industries among others. The elements As, Ba, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, U, Yb, and Zn were measured by neutron activation analysis, and Co, Cu, Fe, Mn, Ni, Pb, and Zn were partially extracted by 0.5-M HCl and measured using atomic absorption spectroscopy. Several nonparametric statistics were performed to the dataset in order to accomplish the objectives of the study. Results and discussion: The mean total Ba concentration exceeded soil quality guidelines for residential areas, with the maximum total As and Co concentrations surpassing the agricultural and residential limits stated in national and international legislations. The elements As and Ba were found to be controlled by parent factors, whereas Ca, Co, Cr, Cu, Mn, Ni, Pb, and Zn were controlled by both anthropogenic and pedogenic factors. A cement plant was the main source of Ca, Co, Cr, Cu, Mn, Ni, Pb, and Zn, whereas lanthanides, Fe, K, U, and also Zn were associated with a former open-cast operation uranium mine. A correlation analysis showed that soil organic matter and pH had strong associations with 0.5-M HCl-extracted Co, Cu, Mn, Ni, Pb, and Zn. Conclusions: Fe-normalized enrichment factors calculated for

  7. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    Energy Technology Data Exchange (ETDEWEB)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  8. Cycle for fuel elements. Uranium production, programs for nuclear power stations and capital expenditure involved; Cycles de combustibles. Production d'uranium, programme de centrales electriques et effort financier correspondant

    Energy Technology Data Exchange (ETDEWEB)

    Andriot, J.; Gaussens, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A number of different possible programs for nuclear power stations of various types are presented in this survey. These programs are established in relation to the use of uranium and thorium in amounts similar to those that shall probably be produced in France during the next fifteen years. As it is possible to draw plans for nuclear power stations in which several processes exist simultaneously, an unlimited number of variations being thinkable, this survey is limited to successive analysis of the results obtained by use of only one of each of the following three systems: - system natural uranium-graphite, - system natural uranium-heavy water, -system enriched uranium-pressurised light water. All schemes are considered as assemblages of these three simple systems. The effects of plutonium recycling are also considered for each system. The electric power installed and the capacity of stations situated up-stream and down-stream have been calculated by this method and an attempt has been made to establish the sum to be invested during the fifteen years necessary for the launching of the programs scheduled. A table of timing for the investments groups the results obtained. Considering the fact that French availabilities in capital shall not be unlimited during the coming years, this way of presenting the results seems to be interesting. (author)Fren. [French] L'etude presentee comporte l'examen d'un certain nombre d'hypotheses de programmes de centrales nucleaires de types differents. Ces programmes correspondent a l'utilisation de tonnages d'uranium et de thorium de l'ordre de grandeur de ceux qui seront probablement produits par la France dans les quinze prochaines annees. Comme il est possible de batir un programme de centrales nucleaires, comportant a la fois plusieurs filieres suivant des variantes en nombre infini, on s'est contente d'examiner successivement les resultats ous si on utilisait exclusivement l

  9. Determination of Trace Plutonium in Uranium Product by ID-ICP-MS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Plutonium is strictly limited in the uranium product of spent fuel reprocessing. The analysis of plutonium in uranium product is the key point of product quality control. Plutonium concentration is limited below

  10. Profile of World Uranium Enrichment Programs-2009

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2009-04-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  11. Repowering of an Existing Power Plant by Means of Gas Turbine and Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    and less specific CO2 emissions. Usually, a repowering is performed adding one or more gas turbines to an existing steam cycle which was built decades ago. Thus, traditional repowering results in combine d cycles (CC). High temperature fuel cells (such as SOFC) could also be used as a topping cycle...... for topping an existing steam cycle, instead of gas turbine on the top. This is also the target of this study, r epowering of an existing power plant with SOFC as well as gas turbines. The plant used here for repowering is the Kyndby power station is an emergency and peak load facility for Zealand in Denmark....... This means the facilities at the station can be started up within minutes if operational irregularities occur in the high voltage electricity grid or problems arise at other power stations. Nowadays this station is repowered with two gas turbines but the current study is about the original steam plant before...

  12. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    Science.gov (United States)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes

  13. Adequacy of radioiodine control and monitoring at nuclear fuels reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Burger, L.L.; Soldat, J.K.

    1984-06-01

    The present backlog of irradiated reactor fuel leads to projections that no fuel out of the reactor less than 10 years need be reprocessed prior to the year 2000. The only radioiodine present in such aged fuel is /sup 129/I (half-life 1.6 x 10/sup 7/ y). The /sup 131/I initially present in the fuel decays to insignificance in the first few hundred days post-reactor. The /sup 129/I content of irradiated fuel is about 1 Ci per gigawatt-year of electricity generated (Ci/GW(e)-y). The US EPA has specified, in 40 CFR 190, a release limit for /sup 129/I of 5 mCi/GW(e)-y. Thus a retention factor (RF) of 200 for /sup 129/I at the fuel reprocessing plant (FRP) is required. Experience indicates that RF values obtained under actual FRP operating conditions can average as little as 10% of experimentally determined RF values. Therefore processes theoretically capable of achieving RF values of up to 10/sup 4/ have been investigated. The US EPA has also specified in 40 CFR 90 a thyroid dose limit of 75 mrem/y for a member of the general public. This dose limit could be readily met at a typical FRP site with an RF value of about 10 or less. Therefore, the limit of 5 mCi/GW(e)-y is more restrictive than the thyroid dose limit for /sup 129/I. The absence of /sup 131/I in effluents from processing of aged fuels makes analysis of /sup 129/I somewhat easier. However, in-line, real-time monitoring for /sup 129/I in FRP gas streams is currently not feasible. Moisture, chemicals, and other radioactive fission products interfere with in-plant measurements. Samples collected over several days must be taken to a laboratory for /sup 129/I analysis. Measurement techniques currently in use or under investigation include neutron activation analysis, scintillation counting, mass spectroscopy, and gas chromatography coupled with electron capture detection. 26 references, 3 figures, 7 tables.