WorldWideScience

Sample records for ciliary-propelling mechanism effect

  1. Ciliary-propelling mechanism, effect of temperature and viscosity on swimming speed, and adaptive significance of ‘jumping’ in the ciliate Mesodinium rubrum

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel

    2009-01-01

    Beating cilia are important organelles, not only for water pumping in many active filter-feeding organisms, but also for the swimming activity of ciliates and other aquatic organisms that use cilia for propulsion. The present study concerns the effect of temperature-dependent viscosity of the amb...

  2. Effectively calculable quantum mechanics

    OpenAIRE

    Bolotin, Arkady

    2015-01-01

    According to mathematical constructivism, a mathematical object can exist only if there is a way to compute (or "construct") it; so, what is non-computable is non-constructive. In the example of the quantum model, whose Fock states are associated with Fibonacci numbers, this paper shows that the mathematical formalism of quantum mechanics is non-constructive since it permits an undecidable (or effectively impossible) subset of Hilbert space. On the other hand, as it is argued in the paper, if...

  3. Domino Effect: mechanic factors role

    Science.gov (United States)

    Nardi, Alfredo; Tarantino, Umberto; Ventura, Lorenzo; Armotti, Pierantonio; Resmini, Giuseppina; Cozzi, Luisella; Tonini, Greta; Ramazzina, Emilio; Rossini, Maurizio

    2011-01-01

    Summary The rapid onset of the Domino Effect following the first Vertebral Compression Fracture is a direct consequence of the mechanical variations that affect the spine when physiological curves are modified. The degree of kyphosis influences the intensity of the Flexor Moment; this is greater on vertebrae D7, D8 and on vertebrae D12, L1 when the spine flexes. Fractures of D7, D8, D12 and L1 are, by far, the most frequent and also the main cause of the mechanical alterations that can trigger the Domino Effect. For these considerations vertebrae D7, D8, D12 and L1 have to be taken in consideration as “critical". In the case of critical clinical vertebral fractures it is useful to provide an indication for minimally invasive surgical reduction or intrasomatic stabilization. When occurs a fracture of a “critical vertebra”, prompt restoration of the heights leads to a reduction in the Kyphosis Index and therefore in the Flexor Moment, not only of the fractured vertebra but also, in turn, of all the other metameres which, even if morphologically still intact, are structurally fragile; so, through the restoration of the mechanical vertebral proprieties, we can reduce the risk of the Domino Effect. At the same time the prompt implementation of osteoinductive therapy is indispensable in order to achieve rapid and intense reconstruction of the trabecular bone, the strength of which increases significantly in a short period of time. Clinical studies are necessary to confirm the reduction of the domino effect following a fragility fracture of "critical vertebrae" with the restoration of the mechanical properties together with anabolic therapy. PMID:22461815

  4. Mechanical effects in cookoff modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.J.; Baer, M.R.; Hobbs, M.L.

    1994-07-01

    Complete cookoff modeling of energetic material in confined geometries must couple thermal, chemical and mechanical effects. In the past, modeling has focused on the prediction of the onset of combustion behavior based only on thermal-chemistry effects with little or no regard to the mechanical behavior of the energetic material. In this paper, an analysis tool is outlined which couples thermal, chemical, and mechanical behavior for one-dimensional Geometries comprised of multi-materials. A reactive heat flow code, XCHEM, and a quasistatic mechanics code, SANTOS, have been completely coupled using, a reactive, elastic-plastic constitutive model describing pressurization of the energetic material. This new Thermally Reactive Elastic-plastic explosive code, TREX, was developed to assess the coupling, of mechanics with thermal chemistry making multidimensional cookoff analysis possible. In this study, TREX is applied to confined and unconfined systems. The confined systems simulate One-Dimensional Time to explosion (ODTX) experiments in both spherical and cylindrical configurations. The spherical ODTX system is a 1.27 cm diameter sphere of TATB confined by aluminum exposed to a constant external temperature. The cylindrical ODTX system is an aluminum tube filled with HMX, NC, and inert exposed to a constant temperature bath. Finally. an unconfined system consisting of a hollow steel cylinder filled with a propellant composed of Al, RMX, and NC, representative of a rocket motor, is considered. This model system is subjected to transient internal and external radiative/convective boundary conditions representative of 5 minutes exposure to a fire. The confined systems show significant pressure prior to ignition, and the unconfined system shows extrusion of the propellent suggesting that the energetic material becomes more shock sensitive.

  5. Effective dimension in flocking mechanisms

    Science.gov (United States)

    Baglietto, Gabriel; Albano, Ezequiel V.

    2011-03-01

    Even in its minimal representation (Vicsek Model, VM [T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet. Phys. Rev. Lett. 75, 1226 (1995).]), the widespread phenomenon of flocking raises intriguing questions to the statistical physicists. While the VM is very close to the better understood XY Model because they share many symmetry properties, a major difference arises by the fact that the former can sustain long-range order in two dimensions, while the latter can not. Aiming to contribute to the understanding of this feature, by means of extensive numerical simulations of the VM, we study the network structure of clusters showing that they can also sustain purely orientational, mean-field-like, long-range order. We identify the reason of this capability with the key concept of "effective dimension." In fact, by analyzing the behavior of the average path length and the mean degree, we show that this dimension is very close to four, which coincides with the upper critical dimension of the XY Model, where orientational order is also of a mean-field nature. We expect that this methodology could be generalized to other types of dynamical systems.

  6. Nootropic effects and mechanism of ginsenoside Rg

    Institute of Scientific and Technical Information of China (English)

    Jun-tianZHANG

    2004-01-01

    Ginsenoside Rg 1 is a main active principle of ginseng which shares many activities of ginseng. In present paper we will take overview of the proven memory-enhancing effect of Rgl and discuss all its possible mechanics in detail.

  7. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  8. Cation Effect on Copper Chemical Mechanical Polishing

    Science.gov (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin

    2009-02-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  9. Mechanisms underlying the hepatotoxic effects of ecstasy.

    Science.gov (United States)

    Carvalho, Márcia; Pontes, Helena; Remião, Fernando; Bastos, Maria L; Carvalho, Félix

    2010-08-01

    3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is a worldwide illegally used amphetamine-derived designer drug known to be hepatotoxic to humans. Jaundice, hepatomegaly, centrilobular necrosis, hepatitis and fibrosis represent some of the adverse effects caused by MDMA in the liver. Although there is irrefutable evidence of MDMA-induced hepatocellular damage, the mechanisms responsible for that toxicity remain to be thoroughly clarified. One well thought-of mechanism imply MDMA metabolism in the liver into reactive metabolites as responsible for the MDMA-elicited hepatotoxicity. However, other factors, including MDMA-induced hyperthermia, the increase in neurotransmitters efflux, the oxidation of biogenic amines, polydrug abuse pattern, and environmental features accompanying illicit MDMA use, may increase the risk for liver complications. Liver damage patterns of MDMA in animals and humans and current research on the mechanisms underlying the hepatotoxic effects of MDMA will be highlighted in this review.

  10. Teratogenic effects of thalidomide: molecular mechanisms.

    Science.gov (United States)

    Ito, Takumi; Ando, Hideki; Handa, Hiroshi

    2011-05-01

    Fifty years ago, prescription of the sedative thalidomide caused a worldwide epidemic of multiple birth defects. The drug is now used in the treatment of leprosy and multiple myeloma. However, its use is limited due to its potent teratogenic activity. The mechanism by which thalidomide causes limb malformations and other developmental defects is a long-standing question. Multiple hypotheses exist to explain the molecular mechanism of thalidomide action. Among them, theories involving oxidative stress and anti-angiogenesis have been widely supported. Nevertheless, until recently, the direct target of thalidomide remained elusive. We identified a thalidomide-binding protein, cereblon (CRBN), as a primary target for thalidomide teratogenicity. Our data suggest that thalidomide initiates its teratogenic effects by binding to CRBN and inhibiting its ubiquitin ligase activity. In this review, we summarize the biology of thalidomide, focusing on the molecular mechanisms of its teratogenic effects. In addition, we discuss the questions still to be addressed.

  11. Dissipation effects in mechanics and thermodynamics

    CERN Document Server

    Guemez, Julio

    2016-01-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to a heat transfer to the surrounding. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned the effects of the dissipative forces are include in the Newton's equations as impulses and pseudo-works.

  12. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  13. Mechanism of Warburg Effect and Its Effect on Tumor Metastasis

    Directory of Open Access Journals (Sweden)

    Huijun WEI

    2015-03-01

    Full Text Available Cancer cells exhibit altered glucose metabolism characterized by a preference for aerobic glycolysis even when the oxygen content is normal, a phenomenon termed “Warburg effect”. However the definite molecular mechanisms of Warburg effect remains unclear, recent works indicated that it might be related to the abnormal activity of the oncogene and tumor suppressor genes, also the change of tumor microenvironment, the abnormal expression of glucose metabolic enzyme and so on. Warburg effect has a relationship with tumor progression and provide suitable conditions for tumor metastasis. This review will summarizes the mechanism of Warburg effect and its effect on tumor metastasis.

  14. Size Effects in Linear Elastic Fracture Mechanics

    Science.gov (United States)

    1988-01-01

    Recent Theoretical and Experimental Developments in Fracture Mechanics", Fracture 1977, 1 (1977) 695-723. 40 S. Mindess and J. S. Nadeau," Effect of Notch...0.4 1.42 b 2.0 0.80 b Mindess and Nadeau [40], 1.0 3.98 0.86 b Mortar, 3PB 8.03 0.80 b 12.0 0.82 b 16.0 0.84 b 20.0 0.83 b Concrete, 3PB 1.0 3.54 1.08

  15. Mechanisms of genotoxic effects of hormones

    Directory of Open Access Journals (Sweden)

    Đelić Ninoslav J.

    2002-01-01

    Full Text Available A concept that compounds commonly present in biological systems lack genotoxic and mutagenic activities is generally in use, hence a low number of endogenous substances have ever been tested to mutagenicity. Epidemiological and experimental analyses indicated, however, that sexual steroids could contribute to initiation and/or continuation of malign diseases. Detailed studies using methods of biochemistry, molecular biology, cytogenetics and other branches, showed that not only epigenetic mechanisms, such as a stimulation of cell proliferation, but also certain hormones, that can express genotoxic effects, such as covalent DNA modification, then chromosomal lesions and chromosomal aberrations, are in the background of malign transformation under activities of hormones. In the case of oestrogens, it was shown that excessive hormonal stimulation led to a metabolic conversion of these hormones to reactive intermediates with formation of reactive oxygenic derivates, so that cells were virtually under conditions of oxidative stress. Individual and tissue susceptibility to occurrence of deterioration of DNA and other cell components generally results from the differences in efficiency of enzymic and non-enzymic mechanisms of resistance against oxidative stress. Besides, steroid thyeroid hormones and catecholamine (dopamine, noradrenaline/norepinephrine and adrenaline can express genotoxic effects in some test-systems. It is interesting that all above mentioned hormones have a phenolic group. Data on possible genotoxic effects of peptide and protein hormones are very scarce, but based on the available literature it is considered that this group of hormones probably lacks mutagenic activities. The possibility that hormones, as endogenous substances, express mutagenic activities results from the fact that DNA is, regardless of chemical and metabolic stability susceptible, to a certain extent, to changeability compatible with the processes of the

  16. Mechanisms and therapeutic effectiveness of lactobacilli

    Science.gov (United States)

    Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso

    2016-01-01

    The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects. PMID:26578541

  17. Mechanisms and therapeutic effectiveness of lactobacilli.

    Science.gov (United States)

    Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso

    2016-03-01

    The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword 'Lactobacillus'. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects.

  18. Mechanisms of Bone Mineralization and Effects of Mechanical Loading

    Science.gov (United States)

    Babich, Michael

    1996-01-01

    The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.

  19. Antihepatocarcinoma Effect of Solanine and Its Mechanisms

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; GAO Shi-yong

    2012-01-01

    Objective To explore the antitumor effect of solanine and its mechanisms.Methods The in vivo antitumor effect of solanine was observed using models developed through in vivo transplantation of tumor cells; In vitro lines of sensitive antitumor cells were selected from the digestive system using MTT assay; The effect of solanine on cell morphology was observed using transmission electronic microscopy; The morphology of apoptotic cells was observed using Annexin V/PI double staining and laser confocal scanning microscopy (LCSM); The rate of cell apoptosis was measured using Annexin V/PI double staining and flow cytometry; The concentration of intracellular Ca2+ ([Ca2+]1) was determined using Fluo-3/AM staining and LCSM; The membrane potential of cellular mitochondria was determined using TMRE staining and LCSM; The protein expression of Bcl-2 and Bax was measured using immunological marking and LCSM; And the activity of caspase-3 was measured using the colorimetric method.Results Solanine could inhibit the growth of tumor weight in S180 tumor-bearing mice and prolong the survival time of H22 tumor-bearing mice.MTT assay revealed that HepG2 cells were quite sensitive to solanine because solanine could induce morphological changes in HepG2 cells,with the rate of early apoptosis being 4%,8.5%,and 20.1%,for HepG2 cells treated for 24 h with solanine at concentration of 0.4,2,and 10 μg/mL,respectively.Solanine could raise the [Ca2+]i and lower the membrane potential.It could reduce the protein expression of Bcl-2 while increase that of Bax,thus increasing the activity of caspase-3.Conclusion The obvious antitumor activity of sotanine in human hepatocarcinoma is demonstrated.This inhibitory effect is achieved through solanine decreasing the Bcl-2/Bax ratio,thus increasing [Ca2+]i,which could enhance the enzymatic activity of the caspase family,thus inducing the apoptosis of HepG2 cells.

  20. Corn stalk orientation effect on mechanical cutting

    Energy Technology Data Exchange (ETDEWEB)

    Igathinathane, C. [Mississippi State University (MSU); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

    2010-07-01

    Research efforts that increase the efficiency of size reduction of biomass can lead to a significant energy saving. This paper deals with the determination of the effect of sample orientation with respect to cutting element and quantify the possible cutting energy reduction, utilising dry corn stalks as the test material (15%e20% wet basis). To evaluate the mechanical cutting characteristics of corn stalks, a Warnere Bratzler device was modified by replacing its blunt edged cutting element with one having a 30_ single bevel sharp knife edge. Cutting force-deformation characteristics obtained with a universal testing machine were analysed to evaluate the orientation effects at perpendicular (90o), inclined (45o), and parallel (0o) orientations on internodes and nodes for cutting force, energy, ultimate stress, and specific energy of corn stalks. The corn stalks cutting force-displacement characteristics were found to differ with orientation, and internode and node material difference. Overall, the peak failure force, and the total cutting energy of internodes and nodes varied significantly (P < 0.05) with stalk cross-sectional area. The specific energy values (total energy per unit cut area) of dry corn stalk internodes ranged from 11.3 to 23.5 kN m_1, and nodes from 8.6 to 14.0 kN m_1. The parallel orientation (along grain) compared to perpendicular (across grain) produced a significant reduction of the cutting stress and the specific energy to one tenth or better for internodes, and to about one-fifth for nodes.

  1. Mechanic waves in sand: effect of polydispersity

    NARCIS (Netherlands)

    Luding, S.; Mouraille, O.; Peukert, W.; Schreglmann, C.

    2008-01-01

    The sound propagation mechanisms inside dense granular matter are challenging the attempts to describe it because of the discrete nature of the material. Phenomena like dissipation, scattering, and dispersion are hard to predict based on the material state and/or properties and vice-versa. We propos

  2. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  3. A Mechanical Analogy for the Photoelectric Effect

    Science.gov (United States)

    Kovacevic, Milan S.; Djordjevich, Alexandar

    2006-01-01

    Analogy is a potent tool in the teacher's repertoire. It has been particularly well recognized in the teaching of science. However, careful planning is required for its effective application to prevent documented drawbacks when analogies are stretched too far. Befitting the occasion of the World Year of Physics commemorating Albert Einstein's 1905…

  4. Effect of TTC on Satellite Orbital Mechanics

    CERN Document Server

    Pinheiro, Mario J

    2016-01-01

    The modified dynamical equation of motions introduced in previous publication topological torsion current (TTC) [Mario J. Pinheiro (2013) 'A Variational Method in Out-of-Equilibrium Physical Systems', Scientific Reports {\\bf 3}, Article number: 3454] predicts a so-far unforeseen anomalous acceleration detected in spacecrafts during close planetary flybys in retrograde direction, and a null-effect when the spacecraft approach the planet in posigrade direction.

  5. Mechanisms and methods to resolve edge effect.

    Science.gov (United States)

    Kuchulakanti, Pramod; Lew, Robert; Waksman, Ron

    2003-06-01

    Vascular brachytherapy (VBT) has established itself as a viable modality to treat in-stent restenosis (ISR). The problems associated with VBT have been understood well and remedied. Late thrombosis has been overcome to a great extent by prolonged antiplatelet therapy. Edge effect is another important limitation of VBT and is due to inadequate radiation coverage of the edges following VBT. It may be overcome by confining injury to the lesion segment and extending the radiation sources by a few millimeters from the injured segment.

  6. Effective Mechanism for Social Recommendation of News

    CERN Document Server

    Wei, Dong; Cimini, Giulio; Wu, Pei; Liu, Weiping; Zhang, Yi-Cheng

    2011-01-01

    Recommendation systems represent an important tool for news distribution on the Internet. In this work we modify a recently proposed social recommendation model in order to deal with no explicit ratings of users on news. The model consists of a network of users which continually adapts in order to achieve an efficient news traffic. To optimize network's topology we propose different stochastic algorithms that are scalable with respect to the network's size. Agent-based simulations reveal the features and the performance of these algorithms. To overcome the resultant drawbacks of each method we introduce two improved algorithms and show that they can optimize network's topology almost as fast and effectively as other not-scalable methods that make use of much more information.

  7. Emerging evidence of ozone metabolic effects and potential mechanisms

    Science.gov (United States)

    SOT 2014 Abstract: Invitational Emerging evidence of ozone metabolic effects and potential mechanisms U.P. Kodavanti NHEERL, USEPA, Research Triangle Park, NC Recent evidence suggests that air pollutants are linked to metabolic syndrome and impact several key metabolic proce...

  8. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  9. Mechanics and modelling of high frequency mechanical impact and its effect on fatigue

    OpenAIRE

    LE QUILLIEC, Guenhael; LIEURADE, Henri Paul; DRISSI-HABTI, Monssef; INGLEBERT, Geneviève; MACQUET, Pascal; JUBIN, Laurent; BOUSSEAU, Marc

    2013-01-01

    High frequency mechanical impact is a recent improvement method which is probably one of the most effective for treating welded assemblies. A number of experimental results relating to this process are presented in this article. These results lead to better understand the mechanisms of the process, to outline the influence of the operating parameters and to confirm the role played by the initial quality of treated welds. In addition, a process is proposed in order to numerically estimate the ...

  10. Thermal-mechanical coupled effect on fracture mechanism and plastic characteristics of sandstone

    Institute of Scientific and Technical Information of China (English)

    ZUO; JianPing; XIE; HePing; ZHOU; HongWei; PENG; SuPing

    2007-01-01

    Scanning electronic microscopy (SEM) was employed to investigate fractographs of sandstone in mine roof strata under thermal-mechanical coupled effect. Based on the evolution of sandstone surface morphology in the failure process and fractography, the fracture mechanism was studied and classified under meso and micro scales, respectively. The differences between fractographs under different temperatures were examined in detail. Under high temperature, fatigue fracture and plastic deformation occurred in the fracture surface. Therefore, the temperature was manifested by these phenomena to influence strongly on micro failure mechanism of sandstone. In addition, the failure mechanism would transit from brittle failure mechanism at low temperature to coupled brittle-ductile failure mechanism at high temperature. The variation of sandstone strength under different temperature can be attributed to the occurrence of plastic deformation, fatigue fracture, and microcracking. The fatigue striations in the fracture surfaces under high temperature may be interpreted as micro fold. And the coupled effect of temperature and tensile stress may be another formation mechanism of micro fold in geology.

  11. Mechanisms of acupuncture analgesia: effective therapy for musculoskeletal pain?

    Science.gov (United States)

    Staud, Roland

    2007-12-01

    Acupuncture (AP) is effective for the treatment of postoperative and chemotherapy-induced nausea/vomiting and for postoperative dental pain. Several recent randomized trials have provided strong evidence for beneficial AP effects on chronic low-back pain and pain from knee osteoarthritis. For many other chronic pain conditions, including headaches, neck pain, and fibromyalgia, the evidence supporting AP's efficacy is less convincing. AP's effects on experimental pain appear to be mediated by analgesic brain mechanisms through the release of neurohumoral factors, some of which can be inhibited by the opioid antagonist naloxone. In contrast to placebo analgesia, AP-related pain relief takes considerable time to develop and to resolve. Thus, some of the long-term effects of AP analgesia cannot be explained by placebo mechanisms. Furthermore, it appears that some forms of AP are more effective for providing analgesia than others. Particularly, electro-AP seems best to activate powerful opioid and non-opioid analgesic mechanisms.

  12. The Effect of Headquarter Integration Mechanisms on Subsidiaries’ New Product Success: From Control to Coordination Mechanism

    Directory of Open Access Journals (Sweden)

    Firmanzah

    2007-10-01

    Full Text Available New product launching (NPL to the local market by subsidiary managers is a strategic activity, which requires organizational supports from MNC global network. The NPL activity is marked by high level of uncertainty, risk, and market failure. Thus, a headquarter needs to integrate the subsidiary NPL into global strategy. There are two mechanisms to integrate subsidiaries’ activities during NPL process; coordination and control process. By testing the effect of each mechanism on role clarity and functional conflict, I found that coordination mechanism increase role clarity between headquarter and subsidiaries’ managers. In contrast, exercising control mechanism reduces role clarity and functional conflict between headquarter and subsidiaries’ managers during NPL. This research shows that both role clarity and functional conflict increase new product commercial performance introduced by subsidiary in the local market.

  13. Effects of mechanical stimuli on adaptive remodeling of condylar cartilage.

    Science.gov (United States)

    Sriram, D; Jones, A; Alatli-Burt, I; Darendeliler, M A

    2009-05-01

    Trabecular bone has been shown to be responsive to low-magnitude, high-frequency mechanical stimuli. This study aimed to assess the effects of these stimuli on condylar cartilage and its endochondral bone. Forty female 12-week-old C3H mice were divided into 3 groups: baseline control (killed at day 0), sham (killed at day 28 without exposure to mechanical stimuli), and experimental (killed following 28 days of exposure to mechanical stimuli). The experimental group was subjected to mechanical vibration of 30 Hz, for 20 minutes per day, 5 days per week, for 28 days. The specimens were analyzed by micro-computed tomography. The experimental group demonstrated a significant decrease in the volume of condylar cartilage and also a significant increase in bone histomorphometric parameters. The results suggest that the low-magnitude, high-frequency mechanical stimuli enhance adaptive remodeling of condylar cartilage, evidenced by the advent of endochondral bone replacing the hypertrophic cartilage.

  14. The effect of temperature on pinning mechanisms in HTS composites

    Science.gov (United States)

    Sotnikova, A. P.; Rudnev, I. A.

    2016-09-01

    Pinning mechanism in samples of second generation tapes (2G) of high-temperature superconductors (HTS) was studied The critical current and the pinning force were calculated from the magnetization curves measured in the temperature range of 4.2 - 77 K in magnetic fields up to 14 Tesla using vibration sample magnetometer. To determine the pinning mechanism the dependences of pinning force on magnetic field were constructed according to the Dew-Hughes model and Kramer's rule. The obtained dependences revealed a significant influence of the temperature on effectiveness of different types of pinning. At low temperatures the 2G HTS tapes of different manufacturers demonstrated an equal efficiency of the pinning centers but with temperature increase the differences in pinning mechanisms as well as in properties and effectiveness of the pinning centers become obvious. The influence of the pinning mechanism on the energy losses in HTS tapes was shown.

  15. Euroasian Integration Process and Effective Institutional Mechanism Creation Problems

    Directory of Open Access Journals (Sweden)

    Olga M. Mesheriakova

    2014-06-01

    Full Text Available In the present article "Euroasian Integration Process and Effective Institutional Mechanism Creation Problems" author investigates the problem of effective and balanced decision-making mechanism in the integration communities creation. Process of the Customs union creation on the Euroasian space began relatively long ago. Creation of such union was started by the Russian Federation and the Republic of Belarus in the 1995. The same year Republic of Kazakhstan joined an integration process. A little later Kyrgyzstan and Tajikistan joined the Customs union – in 1996 and in 1999 respectively. Author on the basis of careful study of the decision-making mechanisms in the Customs union, CIS, EurAsEC and EU, carries out the comparative analysis of the specified mechanisms. Author conducts detailed analytics, gives opinions of jurists, state and public figures, proves own opinions. On the basis of the comparative research conducted by the author the criteria of legal mechanism of decision-making in the integration process efficiency are researched and discussed, what allows to speak about the integration of the legal system. At the end of the article author draws a conclusion that coordination of sovereign desires of states in the integration community represents difficult and many-sided process which has to be based on the balanced decision-making mechanism, which is a main criterion of the institutional mechanism of integration efficiency.

  16. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening – an appa......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also...

  17. Effect of mechanization level on manpower needs in forestry

    Directory of Open Access Journals (Sweden)

    Błuszkowska Urszula

    2014-12-01

    Full Text Available High work consumption in forest operations is above all the result of the character and task realization mode in works undertaken in forestry. Development of mechanization in forest management activities allows to considerably decrease manpower needs. In the present study, there were analyzed the possibilities of reduction of work consumption by improving the mechanization level of forest works. The method was developed to consider the following assessments: 1 variant W1 - basic option comprising factual work consumption values in works carried out on the area administered by the Regional Directorate of State Forests (RDLP; 2 W2 - showing the effect of 25% upgrade of works to a higher level of mechanization; 3 W3 - showing the effect of 50% upgrade of works to a higher level of mechanization; 4 W4 - comprising analogous calculations to those in variant W1 , but work consumption upgrading was 75%. Simulation calculations revealed considerable differences in needs for labor of different categories of forest workers. On the other hand, with increasing mechanization level, there increase the demands concerning worker qualifications, e.g. a harvester operator must be trained for about 2 years, and the training has to include both simulator exercises (first using software and next - harvester simulator and field work under supervision to gain sufficient experience. The introduction of higher levels of mechanization into forest operations, and hence considerable reduction of jobs for unqualified workers who are replaced by qualified employees, can help decreasing work consumption in forest operations.

  18. Effects of Mechanical and Radiative Supernova Feedback on Subhalo Evolution

    Science.gov (United States)

    Quirk, Amanda; Choi, Ena; Ostriker, Jeremiah P.

    2017-01-01

    Using cosmological hydrodynamical simulations, we investigate the effects supernova feedback has on populations of subhalos at current redshift. A group of halos was run through two simulations, each with different feedback models. One had thermal feedback, and the other had mechanical and radiative feedback. We used a friend-of-friend halo finder on the output of these simulations to explore the stellar and dark matter subhalos created. The number of stellar subhalos created by the mechanical feedback simulation was significantly less than the number created by the thermal feedback model, especially at low mass. Thus, the mechanical feedback model created a number of stellar subhalos more consistent with observations. The mechanical feedback model also showed a presence of dark matter subhalos that lacked stellar particles, or dark subhalos. The results of this analysis can give insight to the Missing Satellite Problem.

  19. The effect of the forget-remember mechanism on spreading

    CERN Document Server

    Gu, Jiao; Cai, Xu

    2010-01-01

    We introduce a new mechanism---the forget-remember mechanism into the spreading process. Equipped with such a mechanism an individual is prone to forget the "message" received and remember the one forgotten, namely switching his state between active (with message) and inactive (without message). The probability of state switch is governed by linear or exponential forget-remember functions of history time which is measured by the time elapsed since the most recent state change. Our extensive simulations reveal that the forget-remember mechanism has significant effects on the saturation of message spreading, and may even lead to a termination of spreading under certain conditions. This finding may shed some light on how to control the spreading of epidemics. It is found that percolation-like phase transitions can occur. By investigating the properties of clusters, formed by connected, active individuals, we may be able to justify the existence of such phase transitions.

  20. Effect of hydrogen on mechanical properties of -titanium alloys

    Indian Academy of Sciences (India)

    H-J Christ; A Senemmar; M Decker; K Prüßner

    2003-06-01

    Conflicting opinions exist in the literature on the manner in which hydrogen influences the mechanical properties of -titanium alloys. This can be attributed to the -stabilizing effect of hydrogen in these materials leading to major changes in the microstructure as a result of hydrogen charging. The resulting (extrinsic) effect of hydrogen on the mechanical properties can possibly cover up the direct (intrinsic) influences. On the basis of experimentally determined thermodynamic and kinetic data regarding the interaction of hydrogen with -titanium alloys, hydrogen concentrations of up to 8 at.% were established in three commercial alloys by means of hydrogen charging from the gas phase. In order to separate intrinsic and extrinsic effects the charging was carried out during one step of the two-step heat treatment typical of metastable -titanium alloys, while the other step was performed in vacuum. The results on the single-phase condition represent the intrinsic hydrogen effect. Monotonic and cyclic strength increase at the expense of ductility with increasing hydrogen concentration. The brittle to ductile transition temperature shifts to higher values and the fatigue crack propagation threshold value decreases. The microstructure of the metastable, usually two-phase -titanium alloys is strongly affected by hydrogen, although the extent of this effect depends not only on the hydrogen concentration but also on the temperature of charging. This microstructural influence (extrinsic effect) changes the mechanical properties in the opposite direction as compared to the intrinsic hydrogen effect.

  1. Cultural Mechanisms in Neighborhood Effects Research in the United States

    Science.gov (United States)

    Harding, David J.; Hepburn, Peter

    2015-01-01

    This paper discusses the current state of the U.S. literature on cultural mechanisms in neighborhood effects research. We first define what we mean by neighborhood effects and by cultural mechanisms. We then review and critique two theoretical perspectives on the cultural context of disadvantaged neighborhoods that are explicitly integrated into recent neighborhood effects literature in the U.S.: “deviant subculture” and “cultural heterogeneity.” We then draw on other related U.S. literatures from urban studies, cultural sociology, and culture and inequality to suggest some other conceptualizations that may be useful in advancing our understanding of the role of culture in neighborhood effects. We discuss the conceptual and methodological issues that will have to be grappled with in order to move this literature forward and conclude by offering concrete suggestions, both short-term and long-term, for a research agenda. PMID:26504263

  2. Thermo-mechanical effects in majorana type quantum devices

    NARCIS (Netherlands)

    Gielen, A.W.J.; Mackenzie, F.O. Valega

    2015-01-01

    We have developed a multi-scale model, consisting of an atomistic model in LAMMPS of an InSb nanowire, and a continuum model in COMSOL of a socalled Majorana research device, to study the effects of thermo-mechanical deformations during the cool down from room temperature to the operating temperatur

  3. Mechanisms of therapeutic effects of rhubarb on gut origin sepsis

    Institute of Scientific and Technical Information of China (English)

    CHEN De-chang; WANG Lü

    2009-01-01

    @@ It is proposed that gut-liver-lung axis plays an important role in the pathophysiologic development of the critical illness, and it induces excessive inflammatory response in vivo and multiple organ dysfunction syndrome. The mechanisms of therapeutic effects of rhubarb on critical patients are studied based on the theory of Chinese traditional medicine.

  4. Effective equations for the quantum pendulum from momentous quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  5. Roasting Effects on Formation Mechanisms of Coffee Brew Melanoidins

    NARCIS (Netherlands)

    Bekedam, E.K.; Loots, M.J.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2008-01-01

    The effect of the roasting degree on coffee brew melanoidin properties and formation mechanisms was studied. Coffee brew fractions differing in molecular weight (Mw) were isolated from green and light-, medium-, and dark-roasted coffee beans. Isolated fractions were characterized for their melanoidi

  6. Growth mechanism and quantum confinement effect of silicon nanowires

    Institute of Scientific and Technical Information of China (English)

    冯孙齐; 俞大鹏; 张洪洲; 白志刚; 丁彧; 杭青岭; 邹英华; 王晶晶

    1999-01-01

    The methods for synthesizing one-dimensional Si nanowires with controlled diameter are introduced. The mechanism for the growth of Si nanowires and the growth model for different morphologies of Si nanowires are described, and the quantum confinement effect of the Si nanowires is presented.

  7. Study on Payload Effects on the Joint Motion Accuracy of Serial Mechanical Mechanisms

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2016-11-01

    Full Text Available Robotic manipulators have been widely used in many arenas, when the robotic arm performs positioning, a traditional controller (e.g., a proportional-integral-derivative, PID controller has the problem of not being able to compensate the payload variations. When the end-effector of the robotic arm grasps different payload masses as most applications require, the output of joint motion will vary under different payload masses, which will decrease the end-effector positioning accuracy of the robotic arm system. Based on the model reference adaptive control technique, the payload variation effect can be solved, therefore improving the positioning accuracy. This paper studies payload effects on the joint motion accuracy of serial mechanical mechanisms.

  8. Possible mechanism(s) for relaxant effects of Foeniculum vulgare on guinea pig tracheal chains.

    Science.gov (United States)

    Boskabady, M H; Khatami, A; Nazari, A

    2004-07-01

    In a previous study the relaxant (bronchodilatory) effect of Foeniculum vulgare on isolated guinea pig tracheal chains was demonstrated. To study mechanisms responsible for this effect the present study evaluated the inhibitory effect of this plant on contracted tracheal chains of guinea pig. The relaxant effects of aqueous and ethanol extracts and an essential oil from Foeniculum vulgare were compared to negative controls (saline for aqueous extract and essential oil and ethanol for ethanol extract) and a positive control (diltiazem) using isolated tracheal chains of the guinea pig precontracted by 10 microM methacholine (group 1) and 60 mM KCl (group 2, n = 7 for each group). In the group 1, experiments diltiazem, ethanol extract, and essential oil from Foeniculum vulgare showed a significant relaxant effect on methacholine induced contraction of tracheal chains compared to those of negative controls (p Foeniculum vulgare. However with regard to the effect of KCl on calcium channels, the results indicated that the inhibitory effect of ethanol extracts and essential oil from Foeniculum vulgare on calcium channels is not contributing to their relaxant (bronchodilatory) effects on guinea pig tracheal chains. However the results suggest a potassium channel opening effect for this plant, which may contribute on its relaxant effect on guinea pig tracheal chains.

  9. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    Science.gov (United States)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  10. Mechanical behavior and stress effects in hard superconductors: a review

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C. C.; Easton, D. S.

    1977-11-01

    The mechanical properties of type II superconducting materials are reviewed as well as the effect of stress on the superconducting properties of these materials. The bcc alloys niobium-titanium and niobium-zirconium exhibit good strength and extensive ductility at room temperature. Mechanical tests on these alloys at 4.2/sup 0/K revealed serrated stress-strain curves, nonlinear elastic effects and reduced ductility. The nonlinear behavior is probably due to twinning and detwinning or a reversible stress-induced martensitic transformation. The brittle A-15 compound superconductors, such as Nb/sub 3/Sn and V/sub 3/Ga, exhibit unusual elastic properties and structural instabilities at cryogenic temperatures. Multifilamentary composites consisting of superconducting filaments in a normal metal matrix are generally used for superconducting devices. The mechanical properties of alloy and compound composites, tapes, as well as composites of niobium carbonitride chemically vapor deposited on high strength carbon fibers are presented. Hysteretic stress-strain behavior in the metal matrix composites produces significant heat generation, an effect which may lead to degradation in the performance of high field magnets. Measurements of the critical current density, J/sub c/, under stress in a magnetic field are reported. Modest stress-reversible degradation in J/sub c/ was observed in niobium-titanium composites, while more serious degradation was found in Nb/sub 3/Sn samples. The importance of mechanical behavior to device performance is discussed.

  11. Hygrothermal effect of bamboo by dynamic mechanical analysis

    Institute of Scientific and Technical Information of China (English)

    GUAN Mingjie; ZHANG Qisheng

    2006-01-01

    Dynamic properties of bamboo,Phyllostachys pubescens,with moisture content (MC) ranging from -130 to 130℃,were studied by dynamic mechanical analysis (DMA).The results showed that the hygrothermal effect on dynamic mechanical properties was negative.The storage modulus decreases with increasing temperature and MC,and glass transition temperature decreases with increasing MC.The glass transition temperature and tan delta of bamboo were 30.5℃,0.02 and 10.61℃,0.04,when MC was 10% and 34%,respectively.

  12. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  13. Interaction mechanisms and biological effects of static magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.

  14. Emergence and mechanism in the fractional quantum Hall effect

    Science.gov (United States)

    Bain, Jonathan

    2016-11-01

    For some authors, an adequate notion of emergence must include an account of a mechanism by means of which emergent behavior is realized. This appeal to mechanism is problematic in the case of the fractional quantum Hall effect (FQHE). There is a consensus among physicists that the FQHE exhibits emergent phenomena, but there are at least four alternative explanations of the latter that, arguably, appeal to ontologically distinct mechanisms, both at the microphysics level and at the level of general organizing principles. In light of this underdetermination of mechanism, one is faced with the following options: (I) deny that emergence is present in the FQHE; (II) argue for the priority of one mechanistic explanation over the others; or (III) temper the desire for a mechanism-centric account of emergence. I will argue that there are good reasons to reject (I) and (II) and accept (III). In particular, I will suggest that a law-centric account of emergence does just fine in explaining the emergent phenomena associated with the FQHE.

  15. The effect of composition on mechanical properties of brushite cements.

    Science.gov (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan

    2014-01-01

    Due to a fast setting reaction, good biological properties, and easily available starting materials, there has been extensive research within the field of brushite cements as bone replacing material. However, the fast setting of brushite cement gives them intrinsically low mechanical properties due to the poor crystal compaction during setting. To improve this, many additives such as citric acid, pyrophosphates, and glycolic acid have been added to the cement paste to retard the crystal growth. Furthermore, the incorporation of a filler material could improve the mechanical properties when used in the correct amounts. In this study, the effect of the addition of the two retardants, disodium dihydrogen pyrophosphate and citric acid, together with the addition of β-TCP filler particles, on the mechanical properties of a brushite cement was investigated. The results showed that the addition of low amounts of a filler (up to 10%) can have large effects on the mechanical properties. Furthermore, the addition of citric acid to the liquid phase makes it possible to use lower liquid-to-powder ratios (L/P), which strongly affects the strength of the cements. The maximal compressive strength (41.8MPa) was found for a composition with a molar ratio of 45:55 between monocalcium phosphate monohydrate and beta-tricalcium phosphate, an L/P of 0.25ml/g and a citric acid concentration of 0.5M in the liquid phase.

  16. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    K T Kashyap; T Chandrashekar

    2001-08-01

    Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the scientific literature. The nucleant effects i.e. which particle and its characteristics nucleate -Al, has been the subject of intensive research. Lately the solute effect i.e. the effect of dissolved titanium on grain refinement, has come into forefront of grain refinement research. The present paper attempts to review the literature on the nucleant effects and solute effects on grain refinement and addresses the importance of dissolved titanium in promoting nucleation of -Al on nucleant particles.

  17. The effects of dissipation on topological mechanical systems

    Science.gov (United States)

    Xiong, Ye; Wang, Tianxiang; Tong, Peiqing

    2016-09-01

    We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.

  18. A hypothesis on chemical mechanism of the effect of hydrogen

    Directory of Open Access Journals (Sweden)

    Shi Penghui

    2012-06-01

    Full Text Available Abstract Many studies have shown that hydrogen can play important roles on the antioxidant, anti-inflammatory and other protective effects. Ohsawa et al have proved that hydrogen can electively and directly scavenge hydroxyl radical. But this mechanism cannot explain more new experimental results. In this article, the hypothesis, which is inspired by H2 could bind to the metal as a ligand, come up to explain its extensive biology effect: Hydrogen could regulate particular metalloproteins by bonding (M–H2 interaction it. And then it could affect the metabolization of ROS and signal transduction. Metalloproteins may be ones of the target molecules of H2 action. Metal ions may be appropriate role sites for H2 molecules. The hypothesis pointed out a new direction to clarify its mechanisms.

  19. Effective approach to non-relativistic quantum mechanics

    CERN Document Server

    Jacobs, David M

    2015-01-01

    Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...

  20. Effect of Chemicals on Chemical Mechanical Polishing of Glass Substrates

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; ZHANG Kai-Liang; SONG Zhi-Tang; FENG Song-Lin

    2007-01-01

    @@ We investigate the effect of chemicals on chemical mechanical polishing (CMP) of glass substrates. Ceria slurry in an ultra-low concentration of 0.25wt.% is used and characterized by scanning electron microscopy. Three typical molecules, i.e. acetic acid, citric acid and sodium acrylic polymer, are adopted to investigate the effect on CMP performance in terms of material removal rate (MRR) and surface quality. The addition of sodium acrylic polymer shows the highest MRR as well as the best surface by atomic force microscopy after CMP, vhile the addition of citric acid shows the worst performance. These results reveal a mechanism that a long-chain molecule without any branches rather than small molecules and common molecules with ramose abundant-electron groups is better for the dispersion of the slurry and thus better for the CMP process.

  1. Effect of Natural Fillers on Mechanical Properties of GFRP Composites

    Directory of Open Access Journals (Sweden)

    Vikas Dhawan

    2013-01-01

    Full Text Available Fiber reinforced plastics (FRPs have replaced conventional engineering materials in many areas, especially in the field of automobiles and household applications. With the increasing demand, various modifications are being incorporated in the conventional FRPs for specific applications in order to reduce costs and achieve the quality standards. The present research endeavor is an attempt to study the effect of natural fillers on the mechanical characteristics of FRPs. Rice husk, wheat husk, and coconut coir have been used as natural fillers in glass fiber reinforced plastics (GFRPs. In order to study the effect of matrix on the properties of GFRPs, polyester and epoxy resins have been used. It has been found that natural fillers provide better results in polyester-based composites. Amongst the natural fillers, in general, the composites with coconut coir have better mechanical properties as compared to the other fillers in glass/epoxy composites.

  2. Mechanism of the industrial enterprises marketing communication synthesized effect formation

    Directory of Open Access Journals (Sweden)

    Ya.O. Tymokhina

    2014-09-01

    Full Text Available The aim of the article. The main purpose of the article is to propose mechanism of the industrial enterprises marketing communication (MC synthesized effect formation. An indispensable component of MC mechanism synthesized effect of industrial enterprise is the legislation that governs use of synthesized marketing communications and obtaines synthesized effect from using them. It can be divided into three groups: legislation that regulates entrepreneurial activities, legislation governing communication activities, legislation governing innovation activities. Legislation of Ukraine regulating communication activities needs to be clarified in regulation of using the latest MC tools, features of their combination, rules of their using and order of action in violation case of applicable law. The results of the analysis. Any economic activity of enterprises governed by principles that are divided into general and specific by the level of coverage. The proposed set of formation principles of synthesized effect are principles of systematic using that focus on the result and periodicity which refer to general. Within the principle of periodicity it should consider principles that characterize each level of management that are such principles as using synthesis, using synergy and complexity. Functions of synthesized effect that are subject to general principles of economic analysis are: searching, score, analysis and accounting. Essence of specific features of MC synthesized effect consists the following positions: planning function, integration function, communicative function, synthesis implementation function. Mechanism formation MC synthesized effect of industrial enterprise is a set of systems that are used in process of its creation by management levels that reflects subject-object relationship between these systems. Input elements system form factors of external and internal environment, information about which enterprise collects through market

  3. Calendula extract: effects on mechanical parameters of human skin.

    Science.gov (United States)

    Akhtar, Naveed; Zaman, Shahiq Uz; Khan, Barkat Ali; Amir, Muhammad Naeem; Ebrahimzadeh, Muhammad Ali

    2011-01-01

    The aim of this study was to evaluate the effects of newly formulated topical cream of Calendula officinalis extract on the mechanical parameters of the skin by using the cutometer. The Cutometer 580 MPA is a device that is designed to measure the mechanical properties of the skin in response to the application of negative pressure. This non-invasive method can be useful for objective and quantitative investigation of age related changes in skin, skin elasticity, skin fatigue, skin hydration, and evaluation of the effects of cosmetic and antiaging topical products. Two creams (base and formulation) were prepared for the study. Both the creams were applied to the cheeks of 21 healthy human volunteers for a period of eight weeks. Every individual was asked to come on week 1, 2, 3, 4, 5, 6, 7, and 8 and measurements were taken by using Cutometer MPA 580 every week. Different mechanical parameters of the skin measured by the cutometer were; R0, R1, R2, R5, R6, R7, and R8. These were then evaluated statistically to measure the effects produced by these creams. Using ANOVA, and t-test it was found that R0, and R6 were significant (p 0.05). The instrumental measurements produced by formulation reflected significant improvements in hydration and firmness of skin.

  4. Physiological mechanisms of the effect of weightlessness on the body

    Science.gov (United States)

    Kasyan, I. I.; Kopanev, V. I.

    1975-01-01

    Experimental data show that physiological reactions observed under weightlessness conditions are caused by: (1) The direct effect of weightlessness, as a consequence of decrease (""disappearance'') of the weight of body tissues and organs; and (2) the mediated effect of weightlessness, as a result of changes in the functional state of the central nervous system and the cooperative work of the analyzers. The human body adopts to weightless conditions under the prolonged effects of it. In this case, four periods can be distinguished: The first period, a transitional process lasting from 1 to 24 hours; second period, initial adaptation to conditions of weightlessness and readjustment of all functional systems of the body; the third period, adaptation to the unusual mechanical conditions of the external environment, lasting from 3 to 8 days and more; and the fourth period, the stage of possible imbalance of the functions and the systems of some astronauts, as a result of the prolonged effect of weightlessness.

  5. Effect of thermodisinfection on mechanic parameters of cancellous bone.

    Science.gov (United States)

    Fölsch, Christian; Kellotat, Andreas; Rickert, Markus; Ishaque, Bernd; Ahmed, Gafar; Pruss, Axel; Jahnke, Alexander

    2016-09-01

    Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6-8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at -20 °C immediately and were put into 21 °C Ringer's solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.

  6. Physical Effects of Mechanical Processes on Bi-2223 Tapes

    Institute of Scientific and Technical Information of China (English)

    Wu-Ming Chen; Jian-Xun Jin; Mustafa Yavuz

    2008-01-01

    The effects of intermediate mechanical deformation (IMD) and bending processing on Bi-2223 tapes were studied. Bi-2223 tapes were manufactured by powder-in-tube process with an IMD. Normal rolling (NR), pressing (P) and sandwich rolling (SR) with different reduction rate were used in the IMD. And there were an optimum reduction rate existing for the three MID techniques, at which critical current reached maximum. Critical current densities Jc of Bi-2223 crystals were measured with an applied magnetic field B respectively parallel to ab face and c axis. Relations of Jc dependences of reduction rate and superconducting materials density D were respectively studied and showed a Gaussian distribution law. Maximum pinning force density Fmax and irreversible magnetic field Birr were introduced to describe the effects of mechanical processing. Analysis of experimental results showed that Jc, Fmax and Birr were linear dependence on D. Obviously, increasing D was a vital way to enhance Jc. Bending experiments were performed for SR tapes sheathed by Ag and Ag/Sb and Ag/Mg alloy, respectively. Silver alloy sheathed tapes showed better bending properties than pure silver sheathed one. Therefore, silver alloy sheathed, optimum reduction rate of IMD, and increasing D for Bi-2223 tapes' applications were important technical strategies to enhance their mechanical, electrical, and magnetic properties.

  7. The effect of glycation on arterial microstructure and mechanical response.

    Science.gov (United States)

    Stephen, Elizabeth A; Venkatasubramaniam, Arundhathi; Good, Theresa A; Topoleski, L D T

    2014-08-01

    Like engineered materials, an artery's biomechanical behavior and function depend on its microstructure. Glycation is associated with both normal aging and diabetes and has been shown to increase arterial stiffness. In this study we examined the direct effect of glycation on the mechanical response of intact arteries and on the mechanical response and structure of elastin isolated from the arteries. Samples of intact arteries and isolated elastin were prepared from porcine aortas and glycated. The mechanical response of all samples was completed using a uniaxial material test system. Glycation levels were measured using ELISA. A confocal microscope was used to image differences in the structure of the glycated and untreated elastin fibers. We found that, under the conditions used in this study, glycation led to decreased stiffness of elastin isolated from arteries, which was associated with a thinning of elastin fibers as imaged by confocal microscopy. We observed no effect of glycation on collagen fibers under our treatment conditions. These results suggest that glycation leads to weakening of the elastin component of arteries that could contribute to vascular defects seen in diabetes and aging. Prevention of glycation reactions may be an important consideration for vascular health later in life.

  8. Mephedrone: Public health risk, mechanisms of action, and behavioral effects.

    Science.gov (United States)

    Dybdal-Hargreaves, Nicholas F; Holder, Nicholas D; Ottoson, Paige E; Sweeney, Melanie D; Williams, Tyisha

    2013-08-15

    The recent shortage of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) has led to an increased demand for alternative amphetamine-like drugs such as the synthetic cathinone, 4-methylmethcathinone (mephedrone). Despite the re-classification of mephedrone as a Class B restricted substance by the United Kingdom and restrictive legislation by the United States, international policy regarding mephedrone control is still developing and interest in synthetic amphetamine-like drugs could drive the development of future mephedrone analogues. Currently, there is little literature investigating the mechanism of action and long-term effects of mephedrone. As such, we reviewed the current understanding of amphetamines, cathinones, and cocaine emphasizing the potentially translational aspects to mephedrone, as well as contrasting with the work that has been done specifically on mephedrone in order to present the current state of understanding of mephedrone in terms of its risks, mechanisms, and behavioral effects. Emerging research suggests that while there are structural and behavioral similarities of mephedrone with amphetamine-like compounds, it appears that serotonergic signaling may mediate more of mephedrone's effects unlike the more dopaminergic dependent effects observed in traditional amphetamine-like compounds. As new designer drugs are produced, current and continuing research on mephedrone and other synthetic cathinones should help inform policymakers' decisions regarding the regulation of novel 'legal highs.'

  9. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    Directory of Open Access Journals (Sweden)

    Carmen Sandi

    2007-01-01

    Full Text Available Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge or extrinsic (induced by conditions completely unrelated to the cognitive task, tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner, while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect. Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects.

  10. Investigation of temperature effect on cell mechanics by optofluidic microchips.

    Science.gov (United States)

    Yang, Tie; Nava, Giovanni; Minzioni, Paolo; Veglione, Manuela; Bragheri, Francesca; Lelii, Francesca Demetra; Vazquez, Rebeca Martinez; Osellame, Roberto; Cristiani, Ilaria

    2015-08-01

    Here we present the results of a study concerning the effect of temperature on cell mechanical properties. Two different optofluidic microchips with external temperature control are used to investigate the temperature-induced changes of highly metastatic human melanoma cells (A375MC2) in the range of ~0 - 35 °C. By means of an integrated optical stretcher, we observe that cells' optical deformability is strongly enhanced by increasing cell and buffer-fluid temperature. This finding is supported by the results obtained from a second device, which probes the cells' ability to be squeezed through a constriction. Measured data demonstrate a marked dependence of cell mechanical properties on temperature, thus highlighting the importance of including a proper temperature-control system in the experimental apparatus.

  11. Effect of graphene on mechanical properties of cement mortars

    Institute of Scientific and Technical Information of China (English)

    曹明莉; 张会霞; 张聪

    2016-01-01

    Functionalized graphene nano-sheets (FGN) of 0.01%−0.05% (mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.

  12. Is the Clean Development Mechanism Effective for Emission Reductions?

    DEFF Research Database (Denmark)

    Tarp, Finn; Huang, Yongfu; He, Jingjing

    2014-01-01

    The UNFCCC COP 17 Durban conference confirmed the need to reach an all‐party‐inclusive global climate agreement by 2015 as the successor of the Kyoto Protocol. Although this Durban ‘road map’ is promising, the international negotiation process for reaching such a deal is bound to be filled...... with great challenges, given the wide divide between developed and developing nations. Against this background, comprehensive evaluations of the effectiveness of Kyoto market‐based mechanisms such as the Clean Development Mechanism (CDM) in terms of mitigating human‐induced climate change are urgently needed....... Such information is required to assess how the world's collective actions against climate change should proceed after Kyoto. This paper studies whether CDM is achieving its objective of emission reductions in the host countries. Here we empirically investigate the impacts of CDM projects on CO 2 emission...

  13. Mechanism of sulfide effect on viscosity of HPAM polymer solution

    Institute of Scientific and Technical Information of China (English)

    康万利; 周阳; 王志伟; 孟令伟; 刘述忍; 白宝君

    2008-01-01

    The effect of sulfide on HPAM solution viscosity was studied using BROOKFIELD DV-II viscometer,and the interaction mechanism was discussed.The HPAM solution viscosity was investigated through fully reducing sulfide by the addition of hydrogen peroxide oxidation,and the mechanism of increasing polymer viscosity was investigated.The experimental results also show that there is a critical concentration of 15 mg/L.Below it,the loss rate of HPAM solution viscosity increases more rapidly,but becomes slowly above the critical concentration.A theoretical guidance for oilfields to prepare polymer solution using sewage-water by eliminating sulfide,and it is also importance to prepare polymer solution using sewage-water and save fresh water.

  14. The effects and mechanisms of Gushudan against osteoporosis

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng; ZHANG Dan; LI Fa-mei; LI Jian-chun

    2008-01-01

    Objective To evaluate and analyze the preventive and therapeutic effects of Gushudan on osteoporosis in rats after administrated prednisolone and investigate the mechanisms by study Osteoblast-like cells. Methods 60 Wistar male rats were divided into 6 groups: normal control group, model control group, Gushudan Prescription groups of 3, 1,0.3 g/kg dose, Gushukang 1 g·kg-1 group. The effect was observed by measuring the levels of blood calcium, blood phosphorus, blood BGP content, bone calcium, bone phosphorus, bone density and bone biomechanies. Results After 8 weeks, Gushudan significantly increases the bone density, bone biomechanics, blood BGP content, bone calcium, bone phosphorus in model control group rats. Conclusions Gushudan can increases bone density, bone biomechanies, blood BGP content, bone calcium and bone phosphorus induced by prednisolone. These results suggest that Gushudan has a distinct preventive and therapeutic effect on osteoporosis rats caused by administrated prednisolone.

  15. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  16. Evanescent radiation, quantum mechanics and the Casimir effect

    Science.gov (United States)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  17. Anticarcinogenic Effects of Dietary Phytoestrogens and Their Chemopreventive Mechanisms.

    Science.gov (United States)

    Hwang, Kyung-A; Choi, Kyung-Chul

    2015-01-01

    Phytoestrogens are phenolic compounds derived from plants and exert an estrogenic as well as an antiestrogenic effect and also various biological efficacies. Chemopreventive properties of phytoestrogens has emerged from epidemiological observations indicating that the incidence of some cancers including breast and prostate cancers is much lower in Asian people, who consume significantly higher amounts of phytoestrogens than Western people. There are 4 main classes of phytoestrogens: isoflavones, stilbenes, coumestans, and lignans. Currently, resveratrol is recognized as another major phytoestrogen present in grape and red wine and has been studied in many biological studies. Phytoestrogens have biologically diverse profitabilities and advantages such as low cytotoxicity to patients, lack of side effects in clinical trials, and pronounced benefits in a combined therapy. In this review, we highlighted the effects of genistein, daidzein, and resveratrol in relation with their anticarcinogenic activity. A lot of in vitro and in vivo results on their chemopreventive properties were presented along with the underlying mechanisms. Besides well-known mechanisms such as antioxidant property and apoptosis, newly elucidated anticarcinogenic modes of action including epigenetic modifications and topoisomerase inhibition have been provided to examine the possibility of phytoestrogens as promising reagents for cancer chemoprevention and/or treatment and to suggest the importance of plant-based diet of phytoestrogens.

  18. Quantum mechanical effects analysis of nanostructured solar cell models

    Directory of Open Access Journals (Sweden)

    Badea Andrei

    2016-01-01

    Full Text Available The quantum mechanical effects resulted from the inclusion of nanostructures, represented by quantum wells and quantum dots, in the i-layer of an intermediate band solar cell will be analyzed. We will discuss the role of these specific nanostructures in the increasing of the solar cells efficiency. InAs quantum wells being placed in the i-layer of a gallium arsenide (GaAs p-i-n cell, we will analyze the quantum confined regions and determine the properties of the eigenstates located therein. Also, we simulate the electroluminescence that occurs due to the nanostructured regions.

  19. Enzymes approved for human therapy: indications, mechanisms and adverse effects.

    Science.gov (United States)

    Baldo, Brian A

    2015-02-01

    Research and drug developments fostered under orphan drug product development programs have greatly assisted the introduction of efficient and safe enzyme-based therapies for a range of rare disorders. The introduction and regulatory approval of 20 different recombinant enzymes has enabled, often for the first time, effective enzyme-replacement therapy for some lysosomal storage disorders, including Gaucher (imiglucerase, taliglucerase, and velaglucerase), Fabry (agalsidase alfa and beta), and Pompe (alglucosidase alfa) diseases and mucopolysaccharidoses I (laronidase), II (idursulfase), IVA (elosulfase), and VI (galsulfase). Approved recombinant enzymes are also now used as therapy for myocardial infarction (alteplase, reteplase, and tenecteplase), cystic fibrosis (dornase alfa), chronic gout (pegloticase), tumor lysis syndrome (rasburicase), leukemia (L-asparaginase), some collagen-based disorders such as Dupuytren's contracture (collagenase), severe combined immunodeficiency disease (pegademase bovine), detoxification of methotrexate (glucarpidase), and vitreomacular adhesion (ocriplasmin). The development of these efficacious and safe enzyme-based therapies has occurred hand in hand with some remarkable advances in the preparation of the often specifically designed recombinant enzymes; the manufacturing expertise necessary for commercial production; our understanding of underlying mechanisms operative in the different diseases; and the mechanisms of action of the relevant recombinant enzymes. Together with information on these mechanisms, safety findings recorded so far on the various adverse events and problems of immunogenicity of the recombinant enzymes used for therapy are presented.

  20. Effect of Carbon Nanofiber on Mechanical Behavior of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Saeed Ghaffarpour Jahromi

    2015-09-01

    Full Text Available Uses of fibers to improve material properties have a scientific background in recent years in civil engineering. Use of Nanofiber reinforcement of materials refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers for improvement is not a new phenomenon as the technique of fiber-reinforced bitumen began as early as 1950, but using nanofiber is a new idea. In this research the mechanical properties of asphalt mixture that have been modified with carbon nanofiber were investigated using mechanical tests, which can improve the performance of flexible pavements. To evaluate the effect of nanofiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without nanofibers. During the course of this study, various tests were undertaken applying the Marshall test, indirect tensile test, resistance to fatigue cracking by using repeated load indirect tensile test and creep test. Carbon nanofiber exhibited consistency in results and it was observed that the addition of nanofiber can change the properties of bituminous mixtures, increase its stability and decrease the flow value. Results indicate that nanofiber have the potential to resist structural distress in the pavement and thus improve fatigue by increasing resistance to cracks or permanent deformation, when growing traffic loads. On the whole, the results show that the addition of carbon nanofiber will improve some of the mechanical properties such as fatigue and deformation in the flexible pavement.

  1. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2014-03-01

    Full Text Available Epigallocatechin-3-gallate (EGCG is a type of catechin found in green tea. EGCG exhibits a variety of activities, including anti-inflammatory, antidiabetes, antiobesity, and antitumor. In this review, we focus on the antitumor effects of EGCG. EGCG inhibits carcinogen activity, tumorigenesis, proliferation, and angiogenesis, and induces cell death. These effects are associated with modulation of reactive oxygen species (ROS production. Although EGCG has a dual function of antioxidant and pro-oxidant potential, EGCG-mediated modulation of ROS production is reported to be responsible for its anticancer effects. The EGCG-mediated inhibition of nuclear factor-κB signaling is also associated with inhibition of migration, angiogenesis, and cell viability. Activation of mitogen-activated protein kinases activity upregulates the anticancer effect of EGCG on migration, invasion, and apoptosis. In addition, EGCG could also induce epigenetic modification by inhibition of DNA methyltransferase activity and regulation of acetylation on histone, leading to an upregulation of apoptosis. Although EGCG promotes strong anticancer effects by multiple mechanisms, further studies are needed to define the use of EGCG in clinical treatment.

  2. Brain Mechanisms of Social Threat Effects on Working Memory.

    Science.gov (United States)

    van Ast, V A; Spicer, J; Smith, E E; Schmer-Galunder, S; Liberzon, I; Abelson, J L; Wager, T D

    2016-02-01

    Social threat can have adverse effects on cognitive performance, but the brain mechanisms underlying its effects are poorly understood. We investigated the effects of social evaluative threat on working memory (WM), a core component of many important cognitive capabilities. Social threat impaired WM performance during an N-back task and produced widespread reductions in activation in lateral prefrontal cortex and intraparietal sulcus (IPS), among other regions. In addition, activity in frontal and parietal regions predicted WM performance, and mediation analyses identified regions in the bilateral IPS that mediated the performance-impairing effects of social threat. Social threat also decreased connectivity between the IPS and dorsolateral prefrontal cortex, while increasing connectivity between the IPS and the ventromedial prefrontal cortex, a region strongly implicated in the generation of autonomic and emotional responses. Finally, cortisol response to the stressor did not mediate WM impairment but was rather associated with protective effects. These results provide a basis for understanding interactions between social and cognitive processes at a neural systems level.

  3. The Immunopharmaceutical Effects and Mechanisms of Herb Medicine

    Institute of Scientific and Technical Information of China (English)

    Chien-Fu Huang; Shih-Shen Lin; Pao-Hsin Liao; Su-Chung Young; Chi-Chiang Yang

    2008-01-01

    In recent years. studies on evaluation of the therapeutic and toxic activity of herbal medicinal products became available and popular. The advances in modern biotechnology have led to discovery of many new active constituents. However, it is a constant challenge to establish the pharmacological basis for efficacy and safety of herbal medicinal products. A better understanding of the effects and bioavailability of phytopharmaceuticals can help in discovering suitable and rational therapies. In this review, we present the bioavailability studies in immune system that has been conducted for some of the more important or widely used phytopharmaceuticals. Furthermore. various new drug targets worthy of using for drug development in immunomodulating herbal medicine area and their regulatory mechanisms are also discussed. Adverse effects, drug interactions, and contraindications are also discussed which show that caution should be exercised when combining phytopharmaceuticals with chemically derived pharmaceutical components Cellular & Molecular Immunology.2008;5(1):23-31.

  4. Modeling of biological doses and mechanical effects on bone transduction

    CERN Document Server

    Rieger, Romain; Jennane, Rachid; 10.1016/j.jtbi.2011.01.003

    2012-01-01

    Shear stress, hormones like parathyroid and mineral elements like calcium mediate the amplitude of stimulus signal which affects the rate of bone remodeling. The current study investigates the theoretical effects of different metabolic doses in stimulus signal level on bone. The model was built considering the osteocyte as the sensing center mediated by coupled mechanical shear stress and some biological factors. The proposed enhanced model was developed based on previously published works dealing with different aspects of bone transduction. It describes the effects of physiological doses variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the stimulus level sensed by osteocytes in response to applied shear stress generated by interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We t...

  5. Cellular and molecular mechanisms of antiretroviral effects of HPA23.

    Science.gov (United States)

    Dormont, D; Yeramian, P; Lambert, P; Spire, B; Daveloose, D; Barre-Sinoussi, F C; Chermann, J C

    1988-01-01

    HPA23 is an antimonio-tungstate that exhibits numerous antiviral activities both in vivo and in vitro. It has been described as a competitive inhibitor of human immunodeficiency virus (HIV) reverse transcriptase (RT). Patients treated with daily injections of HPA23 show an inhibition of HIV RT activity in cell culture in 60% of the cases. Using biophysical (electronic spin resonance [ESR]), ultrastructural (microspectroscopic analysis), chemical (spectroscopy), and biological (cell culture) assays, HPA23 cellular and molecular mechanisms may be summarized as follows: 1) competitive inhibition of HIV-RT, 2) no or slight effect on cells infected with HIV in culture, 3) interactions with the cell membranes when long incubations are performed, and 4) antiviral activity possibly mediated by immune modulator effect of the drug.

  6. Telomeric position effect--a third silencing mechanism in eukaryotes.

    Directory of Open Access Journals (Sweden)

    J Greg Doheny

    Full Text Available Eukaryotic chromosomes terminate in telomeres, complex nucleoprotein structures that are required for chromosome integrity that are implicated in cellular senescence and cancer. The chromatin at the telomere is unique with characteristics of both heterochromatin and euchromatin. The end of the chromosome is capped by a structure that protects the end and is required for maintaining proper chromosome length. Immediately proximal to the cap are the telomere associated satellite-like (TAS sequences. Genes inserted into the TAS sequences are silenced indicating the chromatin environment is incompatible with transcription. This silencing phenomenon is called telomeric position effect (TPE. Two other silencing mechanisms have been identified in eukaryotes, suppressors position effect variegation [Su(vars, greater than 30 members] and Polycomb group proteins (PcG, approximately 15 members. We tested a large number of each group for their ability to suppress TPE [Su(TPE]. Our results showed that only three Su(vars and only one PcG member are involved in TPE, suggesting silencing in the TAS sequences occurs via a novel silencing mechanism. Since, prior to this study, only five genes have been identified that are Su(TPEs, we conducted a candidate screen for Su(TPE in Drosophila by testing point mutations in, and deficiencies for, proteins involved in chromatin metabolism. Screening with point mutations identified seven new Su(TPEs and the deficiencies identified 19 regions of the Drosophila genome that harbor suppressor mutations. Chromatin immunoprecipitation experiments on a subset of the new Su(TPEs confirm they act directly on the gene inserted into the telomere. Since the Su(TPEs do not overlap significantly with either PcGs or Su(vars, and the candidates were selected because they are involved generally in chromatin metabolism and act at a wide variety of sites within the genome, we propose that the Su(TPE represent a third, widely used, silencing

  7. Longitudinal vibrations of mechanical systems with the transportation effect

    Directory of Open Access Journals (Sweden)

    A. Buchacz

    2009-01-01

    Full Text Available Purpose: this thesis purpose is a new way of modelling systems working with high speeds of mechanisms. Systems are analyzed with taking into consideration the rotational movement and with criterions of using materials with high flexibility and high precision of work. The dynamical analysis was done with giving into consideration the interaction between working motion and local vibrations. During the motion a model is loaded by longitudinal forces.Design/methodology/approach: equations of motion were derived by the Lagrange method, with generalized coordinates and generalized velocities assumed as orthogonal projections of individual quantities of the rod and manipulators to axes of the global reference frame.Findings: the model of longitudinally vibrating systems in plane motion was derived, after that the model can be transformed to the dynamical flexibility of these systems. Derived equations are the beginning of analysis of complex systems, especially can be used in deducing of the substitute dynamical flexibility of multilinked systems in motion.Research limitations/implications: mechanical systems vibrating longitudinally in terms of rotation were considered in this thesis. Successive problem of the dynamical analysis is the analysis of systems in spatial transportation and systems loaded by transversal forces.Practical implications: effects of presented calculations can be applied into machines and mechanisms in transportation such as: high speed turbines, wind power plant, water-power plants, manipulators, aerodynamics issues, and in different rotors etc.Originality/value: the contemporary analysis of beams and rods were made in a separate way, first working motion of the main system and next the local vibrations. A new way of modelling took into consideration the interaction between those two displacement. There was defined the transportation effect for models vibrating longitudinally in this paper.

  8. Suppressive Effect of Icaritin on Angiogenesis and Its Mechanisms

    Directory of Open Access Journals (Sweden)

    ZHANG Da

    2014-09-01

    Full Text Available Objective: To explore the suppressive effect of icaritin on angiogenesis and its mechanisms. Methods: After 48 or 24 h exposure to different concentrations of icaritin, cell proliferation was analyzed using tetrazolium blue (MTT assay, the migration ability of Human umbilical vein endothelial cells (HUVEC was tested in a Transwell Chamber and tube formation ability of HUVEC was determined by tube formation assay in vitro. Results: Icaritin inhibited the proliferation of HUVEC in dose-dependent manner; Tubes with high density formed in control group while treated with icaritin in 15~60 μg/mL range of concentrations, the number of tubes decreased and the lumen was incomplete. After treatment with icaritin, migration cells were significantly less than those in control group. Tube formation and migration ability was inhibited in dose-dependent manner with a correlation coefficient of -0.934 and -0.933, respectively. Conclusion: Icaritin can effectively inhibit the angiogenesis of HUVEC in vitro and its mechanism may be related to the inhibition of proliferation, migration and tube formation.

  9. Antiatherogenic effects of n-3 fatty acids - evidence and mechanisms

    Directory of Open Access Journals (Sweden)

    Antonella Zampolli

    2006-12-01

    Full Text Available N-3 (omega-3 (polyunsaturated fatty acids are thought to display a variety of beneficial effects for human health. Clues to the occurrence of cardiovascular protective effects have been, however, the spur for the first biomedical interest in these compounds, and are the best documented. Historically, the epidemiologic association between dietary consumption of n-3 fatty acids and cardiovascular protection was first suggested by Bang and Dyerberg, who identified the high consumption of fish, and therefore, of fish oil-derived n-3 fatty acids, as the likely explanation for the strikingly low rate of coronary heart disease events reported in the Inuit population. Since their initial reports, research has proceeded in parallel to provide further evidence for their cardioprotection and to understand underlying mechanisms. Decreased atherogenesis is currently thought to be a part of the cardiovascular protection by n-3 fatty acids. This article summarizes the evidence for such a claim and the mechanisms putatively involved. (Heart International 2006; 3-4: 141-54

  10. Mechanisms and Effects of Transcranial Direct Current Stimulation

    Science.gov (United States)

    Giordano, James; Bikson, Marom; Kappenman, Emily S.; Clark, Vincent P.; Coslett, H. Branch; Hamblin, Michael R.; Hamilton, Roy; Jankord, Ryan; Kozumbo, Walter J.; McKinley, R. Andrew; Nitsche, Michael A.; Reilly, J. Patrick; Richardson, Jessica; Wurzman, Rachel

    2017-01-01

    The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose–response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged. PMID:28210202

  11. A New Mechanism of Canopy Effect in Unsaturated Freezing Soils

    Directory of Open Access Journals (Sweden)

    Teng Jidong

    2016-01-01

    Full Text Available Canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. Field observation reveals that canopy effect can take place in relatively dry soils where the groundwater table is deep and can lead to full saturation of the soil immediately underneath the impervious cover. On the other hand, numerical analysis based on existing theories of heat and mass transfer in unsaturated soils can only reproduce a minor amount of moisture accumulation due to an impervious cover, particularly when the groundwater table is relatively deep. In attempt to explain the observed canopy effect in field, this paper proposes a new mechanism of moisture accumulation in unsaturated freezing soils: vapour transfer in such a soil is accelerated by the process of vapour-ice desublimation. A new approach for modelling moisture and heat movements is proposed, in which the phase change of evaporation, condensation and de-sublimation of vapor flow are taken into account. The computed results show that the proposed model can indeed reproduce the unusual moisture accumulation observed in relatively dry soils. The results also demonstrate that soil freezing fed by vapour transfer can result in a water content close to full saturation. Since vapour transfer is seldom considered in geotechnical design, the canopy effect deserves more attention during construction and earth works in cold and arid regions.

  12. Structural mechanism and effect of hole compressibility on mechanical strength of MFLB

    Institute of Scientific and Technical Information of China (English)

    Yan MA; Alun

    2008-01-01

    We have studied the structural mechanism of micron flaky wood fiber light density board (MFLB), of which voids are an important structural characteristic. A new parameter called hole compressibility (η) was added to study the characteristics of MFLB further, in order to produce various levels of hole compressibility. A set of hot pressures was applied, and uniform parts at cross-sections of MFLB were selected to study the effects of hole com-pressibility on the modulus of elasticity (MOE) and modulus of rupture (MOR) of MFLB by microscopic analyses. The results showed that MFLB (0.3 g/cm in density) processed at various hot pressures (from 1.6 to 2.2 MPa) all meet the norms of the Japan Light Parti-cleboard Industrial Standard JISA 5908, where η≤ 0 ran-ging from -0.0487 to -0.068. The critical value of hole compressibility at which the strength began to decrease was also obtained. We compared the void distribution, size and shape at different void contents and hole com-pressibility and discussed the effects of hole compressibil-ity on MOE and MOR of MFLB as well. To a certain density of raw material and micro-fiber of a certain thick-ness, the strength of MFLB can be decreased with an increase in hole compressibility. When the hole compres-sibility of MLFB exceeds a certain critical value, loading at a lower level will decrease MOR and MOE of MFLB considerably.

  13. Exact solution of the classical mechanical quadratic Zeeman effect

    Indian Academy of Sciences (India)

    Sambhu N Datta; Anshu Pandey

    2007-06-01

    We address the curious problem of quadratic Zeeman effect at the classical mechanical level. The problem has been very well understood for decades, but an analytical solution of the equations of motion is still to be found. This state of affairs persists because the simultaneous presence of the Coulombic and quadratic terms lowers the dynamical symmetry. Energy and orbital angular momentum are still constants of motion. We find the exact solutions by introducing the concept of an image ellipse. The quadratic effect leads to a dilation of space–time, and a one-to-one correspondence is observed for pairs of physical quantities like energy and angular momentum, and the maximum and minimum distances from the Coulomb center for the Zeeman orbit and the corresponding pairs for the image ellipse. Thus, instead of finding additional conserved quantities, we find constants of motion for an additional dynamics, namely, the image problem. The trajectory is open, in agreement with Bertrand's theorem, but necessarily bound. A stable unbound trajectory does not exist for real values of energy and angular momentum. The radial distance, the angle covered in the plane of the orbit, and the time are uniquely determined by introducing further the concept of an image circle. While the radial distance is defined in a closed form as a transcendental function of the image-circular angle, the corresponding orbit angle and time variables are found in the form of two convergent series expansions. The latter two variables are especially contracted, thereby leading to a precession of the open cycles around the Coulomb center. It is expected that the space–time dilation effect observed here would somehow influence the solution of the quantum mechanical problem at the non-relativistic level.

  14. Effects of manual hyperinflation in preterm newborns under mechanical ventilation

    Science.gov (United States)

    Viana, Camila Chaves; Nicolau, Carla Marques; Juliani, Regina Celia Turola Passos; de Carvalho, Werther Brunow; Krebs, Vera Lucia Jornada

    2016-01-01

    Objective To assess the effects of manual hyperinflation, performed with a manual resuscitator with and without the positive end-expiratory pressure valve, on the respiratory function of preterm newborns under mechanical ventilation. Methods Cross-sectional study of hemodynamically stable preterm newborns with gestational age of less than 32 weeks, under mechanical ventilation and dependent on it at 28 days of life. Manual hyperinflation was applied randomly, alternating the use or not of the positive end-expiratory pressure valve, followed by tracheal aspiration for ending the maneuver. For nominal data, the two-tailed Wilcoxon test was applied at the 5% significance level and 80% power. Results Twenty-eight preterm newborns, with an average birth weight of 1,005.71 ± 372.16g, an average gestational age of 28.90 ± 1.79 weeks, an average corrected age of 33.26 ± 1.78 weeks, and an average mechanical ventilation time of 29.5 (15 - 53) days, were studied. Increases in inspiratory and expiratory volumes occurred between time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in both the maneuver with the valve (p = 0.001 and p = 0.009) and without the valve (p = 0.026 and p = 0.001), respectively. There was also an increase in expiratory resistance between time-points A5 and C1 (p = 0.044). Conclusion Lung volumes increased when performing the maneuver with and without the valve, with a significant difference in the first minute after aspiration. There was a significant difference in expiratory resistance between the time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in the first minute after aspiration within each maneuver. PMID:27737427

  15. Mechanical Parameters Effects on Acoustic Absorption at Polymer Foam

    Directory of Open Access Journals (Sweden)

    Lyes Dib

    2015-01-01

    Full Text Available Polymer foams have acoustic absorption properties that play an important role in reducing noise level. When the skeleton is set to motion, it is necessary to use generalized Biot-Allard model which takes into account the deformation of the skeleton and the fluid and the interactions between them. The aim of this work is to study the quality of acoustic absorption in polyurethane foam and to show the importance of the structural vibration of this foam on the absorption by varying mechanical parameters (Young’s modulus E, Poisson’s coefficient ν, structural damping factor η, and the density ρ1. We calculated the absorption coefficient analytically using classical Biot formulation (us, uf and numerically using Biot mixed formulation (us, p in 3D COMSOL Multiphysics. The obtained results are compared together and show an excellent agreement. Afterwards, we studied the effect of varying each mechanical parameter independently on the absorption in interval of ±20%. The simulations show that these parameters have an influence on the sound absorption around the resonance frequency fr.

  16. Molecular mechanisms underlying the effects of acupuncture on neuropathic pain**

    Institute of Scientific and Technical Information of China (English)

    Ziyong Ju; Huashun Cui; Xiaohui Guo; Huayuan Yang; Jinsen He; Ke Wang

    2013-01-01

    Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity fol owing chronic constriction injury, es-pecial y electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function.

  17. Inhibitory effect and mechanism of chuanxiongzine on multiplication of VSMC

    Institute of Scientific and Technical Information of China (English)

    Qingxian Li; Yuhua Liao; Huiling Zhang; Yanying Jiang; Yanfu Wang

    2007-01-01

    Objective: To study the inhibitory effect of chuanxiongzine on vascular smooth muscle cell (VSMC) proliferation and explore its molecular biology basis. Methods: we selected the VSMC cultured 4~8 generation from rat aorta thoracalis as research object.The objects were divided into four groups( Ⅰ )control group, ( Ⅱ )chuanxiongzine(50 μg/ml)group, ( Ⅲ )chuanxiongzine (100 μg/ml) group and( Ⅳ ) chuanxiongzine (200 μg/ml) group. The inhib itory effect of chuanxiongzine on VSMC proliferation was investigated by cell counting, MTT and 3H-TdR incorporation assay. In order to illuminate the molecular biology mechanism of chuanxiongzine inhibiting VSMCs proliferation, the expression of proliferating cell nuclear antigen (PCNA) and C-myc were detected.Results: Chuanxiongzine could inhibit the proliferation of VSMC significantly in a dose- and time-dependent manner, compared with control group (P < 0.05). The expression of PCNA and c-myc were inhibited obviously and correlated with the concentration of chuanxiongzine (P < 0.05). Conclusion: Chuanxiongzine may play a considerable role in VSMC proliferation process. The inhibitory effect of chuanxiongzine in a dose- and time-dependent manner can be realized via down regulating the expression of PCNA and c-myc. In this study, The great theoretical fundament about Chinese medicine, which is used to treat atherosclerosis (AS), has been obtained.

  18. Conceptual Conditioning: Mechanisms Mediating Conditioning Effects on Pain.

    Science.gov (United States)

    Jepma, Marieke; Wager, Tor D

    2015-11-01

    Classical conditioning can profoundly modify subsequent pain responses, but the mechanisms that drive this effect are unresolved. In pain-conditioning studies, cues are typically conditioned to primary aversive reinforcers; hence, subsequent pain modulation could reflect learned precognitive associations (i.e., those involving neural plasticity independent of expectations and other forms of conceptual thought) or conceptual expectancies. We isolated conceptual contributions using a thermal pain-conditioning procedure in which different conditioned stimulus (CS) cues were repeatedly paired with symbolic representations of high and low noxious heat. In a subsequent test phase, identical noxious stimuli evoked larger skin conductance responses (SCRs) and pain ratings when preceded by CS cues associated with high temperature than by those associated with low temperature. These effects were mediated by participants' self-reported expectancies. CS cues associated with high temperature also evoked larger anticipatory SCRs than did CS cues associated with low temperature, but larger anticipatory SCRs predicted smaller subsequent heat-evoked SCRs. These results provide novel evidence that conditioned modulation of pain physiology can be acquired through purely conceptual processes, and that self-reported expectancies and physiological threat responses have opposing effects on pain.

  19. Antifungal effect and mechanism of garlic oil on Penicillium funiculosum.

    Science.gov (United States)

    Li, Wen-Ru; Shi, Qing-Shan; Liang, Qing; Huang, Xiao-Mo; Chen, Yi-Ben

    2014-10-01

    Garlic oil is a kind of fungicide, but little is known about its antifungal effects and mechanism. In this study, the chemical constituents, antifungal activity, and effects of garlic oil were studied with Penicillium funiculosum as a model strain. Results showed that the minimum fungicidal concentrations (MFCs, v/v) were 0.125 and 0.0313 % in agar medium and broth medium, respectively, suggesting that the garlic oil had a strong antifungal activity. The main ingredients of garlic oil were identified as sulfides, mainly including disulfides (36 %), trisulfides (32 %) and monosulfides (29 %) by gas chromatograph-mass spectrometer (GC/MS), which were estimated as the dominant antifungal factors. The observation results by transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that garlic oil could firstly penetrate into hyphae cells and even their organelles, and then destroy the cellular structure, finally leading to the leakage of both cytoplasm and macromolecules. Further proteomic analysis displayed garlic oil was able to induce a stimulated or weakened expression of some key proteins for physiological metabolism. Therefore, our study proved that garlic oil can work multiple sites of the hyphae of P. funiculosum to cause their death. The high antifungal effects of garlic oil makes it a broad application prospect in antifungal industries.

  20. [Mechanisms of the Effects of Probiotics on Symbiotic Digestion].

    Science.gov (United States)

    Usakova, N A; Nekrasov, R V; Pravdin, I V; Sverchkova, N V; Kolomiyets, E I; Pavlov, D S

    2015-01-01

    The published data and our own data on the mechanisms of the influence of microbial probiotics, prebiotics, and their combinations on the processes of symbiotic digestion have been considered and generalized. It is shown that the effects on an organism are associated with the enhanced metabolic activity of intestinal bacteria: stimulation of bacterial fermentation of carbohydrates and formation of short-chained fatty acids, an increase in the blotting capacity of the intestines due to elongation of villi and deepening of crypts, and a decrease in secretion of toxic proteolytic products (ammonia, phenols, thiols, indoles, etc.). It has been shown that a combination of probiotics and prebiotic enhances the biological efficiency of a complex preparation, which contributes to activation of carbohydrate, protein, and mineral metabolism.

  1. Aging and emotional memory: cognitive mechanisms underlying the positivity effect.

    Science.gov (United States)

    Spaniol, Julia; Voss, Andreas; Grady, Cheryl L

    2008-12-01

    Younger adults tend to remember negative information better than positive or neutral information (negativity bias). The negativity bias is reduced in aging, with older adults occasionally exhibiting superior memory for positive, as opposed to negative or neutral, information (positivity bias). Two experiments with younger (N=24 in Experiment 1, N=25 in Experiment 2; age range: 18-35 years) and older adults (N=24 in both experiments; age range: 60-85 years) investigated the cognitive mechanisms responsible for age-related differences in recognition memory for emotional information. Results from diffusion model analyses (R. Ratcliff, 1978) indicated that the effects of valence on response bias were similar in both age groups but that Age x Valence interactions emerged in memory retrieval. Specifically, older adults experienced greater overall familiarity for positive items than younger adults. We interpret this finding in terms of an age-related increase in the accessibility of positive information in long-term memory.

  2. On the mechanism of the Ranque-Hilsch effect

    Science.gov (United States)

    Tyutyuma, V. D.

    2011-05-01

    A model of flow in a Ranque vortex tube is suggested. It is based not on the thermal interaction between hot and cold flows, but rather on a mechanical one. It is shown that to describe the Ranque-Hilsch effect it is necessary, along with the radial flow, to take into account the uptake or addition of mass, as well as to ensure a smoother conjugation between a forced and a peripheral vortices, demanding the continuity not only of the tangential velocity component, but also of its first derivative with respect to the radius. In this case, the motion in the vortex tube is considered as a system of vortex flows and vortex sources interacting between themselves.

  3. The transport mechanism of the integer quantum Hall effect

    CERN Document Server

    LiMing, W

    2016-01-01

    The integer quantum Hall effect is analysed using a transport mechanism with a semi-classic wave packages of electrons in this paper. A strong magnetic field perpendicular to a slab separates the electron current into two branches with opposite wave vectors $({\\it k})$ and locating at the two edges of the slab, respectively, along the current. In this case back scattering of electrons ($k\\rightarrow -k$) is prohibited by the separation of electron currents. Thus the slab exhibits zero longitudinal resistance and plateaus of Hall resistance. When the Fermi level is scanning over a Landau level when the magnetic field increases, however, the electron waves locate around the central axis of the slab and overlap each other thus back scattering of electrons takes place frequently. Then longitudinal resistance appears and the Hall resistance goes up from one plateau to a new plateau.

  4. The molecular mechanisms of offspring effects from obese pregnancy.

    LENUS (Irish Health Repository)

    Dowling, Daniel

    2013-01-01

    The incidence of obesity, increased weight gain and the popularity of high-fat \\/ high-sugar diets are seriously impacting upon the global population. Billions of individuals are affected, and although diet and lifestyle are of paramount importance to the development of adult obesity, compelling evidence is emerging which suggests that maternal obesity and related disorders may be passed on to the next generation by non-genetic means. The processes acting within the uteri of obese mothers may permanently predispose offspring to a diverse plethora of diseases ranging from obesity and diabetes to psychiatric disorders. This review aims to summarise some of the molecular mechanisms and active processes currently known about maternal obesity and its effect on foetal and neonatal physiology and metabolism. Complex and multifactorial networks of molecules are intertwined and culminate in a pathologically synergistic manner to cause disruption and disorganisation of foetal physiology. This altered phenotype may potentiate the cycle of intergenerational transmission of obesity and related disorders.

  5. Photochromic fulgides and spirooxazines: mechanism and substituent effect on photoreactions

    Institute of Scientific and Technical Information of China (English)

    樊美公; 明阳福; 于联合; 张新宇; 孟宪娟; 梁永超; 杨茁

    1996-01-01

    Molecular design, synthesis and photochromic properties of spirooxazines and fulgides are described. In the case of fulgides, the change of the substituents may lead to different photochromic properties and different photoreactions of the kind of compounds. In photochromic process of pyrryl-substituted fulgides, the excited singlet state is the mam species, but the excited triplet state is also involved. However, no excited triplet state has been observed in cyclization of aryl-substituted fulgides. In the case of spirooxazines, the substituents at 2’-position have great effect on the formation of photoproduct and on the mechanism of photoreaction. The increase of steric hindrance of the 2’-position substituent gives rise to the decrease of the quantum yield for the formation of photochromic merocyanine (PMC) and the increase of the relative quantum yield for the charge separated twist intermediate (CT).

  6. Effects and mechanism of Tripterygium wilfordii on chronic glomerulo nephritis.

    Science.gov (United States)

    Pei, W Y; Yang, C H; Zhang, X L

    2016-02-05

    The objective of this study was to investigate the clinical effects of Tripterygium wilfordii on chronic glomerulo nephritis (CGN) and its mechanisms. Eighty-two cases of CGN treated in our hospital were randomly divided into observation and control groups. The control group was treated with conventional western medicine, and the observation group was treated with conventional western medicine and orally-administered T. wilfordii pills for three courses of treatment, each consisting of 4 weeks. Changes in serum reatinine, blood urea nitrogen, blood total cholesterol, blood albumin, and 24-h urine protein were observed. The levels of peripheral tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined with enzyme-linked immunosorbent assay. The curative effects of both groups were evaluated respectively. Both groups had significantly improved serum creatinine, blood urea nitrogen, blood total cholesterol, blood albumin, and 24-h urine protein (P < 0.05), and the observation group exhibited a more significant improvement (P < 0.05). TNF-α and IL-6 levels in both groups obviously decreased (P < 0.05), and the observation group exhibited remarkable changes (P < 0.05). After treatment, the total efficiency of the observation group was 90.24%, which was significantly higher than the 73.17% of the control group (P < 0.05). In conclusion, T. wilfordii can significantly improve kidney function and clinical symptoms in CGN patients, and the mechanism is possibly related to its inhibition of the secretion of TNF-α and IL-6.

  7. The effect of mechanical discontinuities on the growth of faults

    Science.gov (United States)

    Bonini, Lorenzo; Basili, Roberto; Bonanno, Emanuele; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca

    2016-04-01

    The growth of natural faults is controlled by several factors, including the nature of host rocks, the strain rate, the temperature, and the presence of fluids. In this work we focus on the mechanical characteristics of host rocks, and in particular on the role played by thin mechanical discontinuities on the upward propagation of faults and on associated secondary effects such as folding and fracturing. Our approach uses scaled, analogue models where natural rocks are simulated by wet clay (kaolin). A clay cake is placed above two rigid blocks in a hanging wall/footwall configuration on either side of a planar fault. Fault activity is simulated by motor-controlled movements of the hanging wall. We reproduce three types of faults: a 45°-dipping normal fault, a 45°-dipping reverse fault and a 30°-dipping reverse fault. These angles are selected as representative of most natural dip-slip faults. The analogues of the mechanical discontinuities are obtained by precutting the wet clay cake before starting the hanging wall movement. We monitor the experiments with high-resolution cameras and then obtain most of the data through the Digital Image Correlation method (D.I.C.). This technique accurately tracks the trajectories of the particles of the analogue material during the deformation process: this allows us to extract displacement field vectors plus the strain and shear rate distributions on the lateral side of the clay block, where the growth of new faults is best seen. Initially we run a series of isotropic experiments, i.e. experiments without discontinuities, to generate a reference model: then we introduce the discontinuities. For the extensional models they are cut at different dip angles, from horizontal to 45°-dipping, both synthetic and antithetic with respect to the master fault, whereas only horizontal discontinuities are introduced in the contractional models. Our experiments show that such discontinuities control: 1) the propagation rate of faults

  8. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  9. Physical and Mechanical Properties of Plasticized HMX under Effect of Mechanical Loadings, Temperature Drops and Shock Waves

    Institute of Scientific and Technical Information of China (English)

    E.N. Kostyukov; L.V. Fomicheva; Yu. A. Vlasov; E.A.Pazhina

    2004-01-01

    @@ During their life cycles, energetic materials (EM) can be subjected to various external effects, including non-authorized effects. Due to these effects, irreversible changes can occur in EM structures that, in turn, can be the reason for change of their physical and mechanical properties.

  10. Mechanisms of Cigarette Smoke Effects on Human Airway Smooth Muscle.

    Directory of Open Access Journals (Sweden)

    Mark E Wylam

    Full Text Available Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca(2+ ([Ca(2+]i responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca(2+ regulatory proteins leading to increased store operated Ca(2+ entry (SOCE and cell proliferation. Using isolated human ASM (hASM cells, incubated in the presence and absence cigarette smoke extract (CSE we determined ([Ca(2+]i responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS and cytokine generation. CSE enhanced [Ca(2+]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca(2+ regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.

  11. Effects of scuba diving on vascular repair mechanisms.

    Science.gov (United States)

    Culic, Vedrana Cikes; Van Craenenbroeck, Emeline; Muzinic, Nikolina Rezic; Ljubkovic, Marko; Marinovic, Jasna; Conraads, Viviane; Dujic, Zeljko

    2014-01-01

    A single air dive causes transient endothelial dysfunction. Endothelial progenitor cells (EPCs) and circulating angiogenic cells (CAC) contribute synergistically to endothelial repair. In this study (1) the acute effects of diving on EPC numbers and CAC migration and (2) the influence of the gas mixture (air/nitrox-36) was investigated. Ten divers performed two dives to 18 meters on Day (D) 1 and D3, using air. After 15 days, dives were repeated with nitrox-36. Blood sampling took place before and immediately after diving. Circulating EPCs were quantified by flow cytometry, CAC migration of culture was assessed on D7. When diving on air, a trend for reduced EPC numbers is observed post-dive, which is persistent on D1 and D3. CAC migration tends to improve acutely following diving. These effects are more pronounced with nitrox-36 dives. Diving acutely affects EPC numbers and CAC function, and to a larger extent when diving with nitrox-36. The diving-induced oxidative stress may influence recruitment or survival of EPC. The functional improvement of CAC could be a compensatory mechanism to maintain endothelial homeostasis.

  12. Neurobiological mechanisms underlying the blocking effect in aversive learning.

    Science.gov (United States)

    Eippert, Falk; Gamer, Matthias; Büchel, Christian

    2012-09-19

    Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.

  13. Elastodynamic metasurface: Depolarization of mechanical waves and time effects

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, Claude, E-mail: claude.boutin@entpe.fr [Ecole Nationale des Travaux Publics de l' Etat, Université de Lyon, LGCB, UMR CNRS 5513, Vaulx-en-Velin (France); Schwan, Logan [Acoustics Research Center, University of Salford, Newton Building, Salford M5 4WT (United Kingdom); Dietz, Matthew S. [Department of Civil Engineering, University of Bristol, Queen' s Building, Bristol BS8 1TR (United Kingdom)

    2015-02-14

    We report the concept of microstructured surfaces with inner resonance in the field of elastodynamics, so-called elastodynamic metasurfaces. Such metasurfaces allow for wavefield manipulation of mechanical waves by tuning the boundary conditions at specific frequencies. In particular, they can be used to depolarize elastic waves without introducing heterogeneities in the medium itself; the physical means to do so in homogeneous elastic media used to remain, surprisingly, an open question while depolarization is commonplace in electromagnetism. The principle relies on the anisotropic behaviour of a subwavelength array of resonators: Their subwavelength configuration confines the Bragg interferences scattered by resonators into a boundary layer. The effective behaviour of the resonating array is expressed with homogenization as an unconventional impedance, the frequency-dependence, and anisotropy of which lead to depolarization and time effects. The concept of the elastodynamic metasurface is tested experimentally and results bear testament to its efficacy and robustness. Elastodynamic metasurfaces are easily realized and analytically predictable, opening new possibilities in tomography techniques, ultrasonics, geophysics, vibration control, materials and structure design.

  14. Effect of mechanical parameters on dielectric elastomer minimum energy structures

    Science.gov (United States)

    Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert R.

    2013-04-01

    Soft robotics may provide many advantages compared to traditional robotics approaches based on rigid materials, such as intrinsically safe physical human-robot interaction, efficient/stable locomotion, adaptive morphology, etc. The objective of this study is to develop a compliant structural actuator for soft a soft robot using dielectric elastomer minimum energy structures (DEMES). DEMES consist of a pre-stretched dielectric elastomer actuator (DEA) bonded to an initially planar flexible frame, which deforms into an out-of-plane shape which allows for large actuation stroke. Our initial goal is a one-dimensional bending actuator with 90 degree stroke. Along with frame shape, the actuation performance of DEMES depends on mechanical parameters such as thickness of the materials and pre-stretch of the elastomer membrane. We report here the characterization results on the effect of mechanical parameters on the actuator performance. The tested devices use a cm-size flexible-PCB (polyimide, 50 μm thickness) as the frame-material. For the DEA, PDMS (approximately 50 μm thickness) and carbon black mixed with silicone were used as membrane and electrode, respectively. The actuators were characterized by measuring the tip angle and the blocking force as functions of applied voltage. Different pre-stretch methods (uniaxial, biaxial and their ratio), and frame geometries (rectangular with different width, triangular and circular) were used. In order to compare actuators with different geometries, the same electrode area was used in all the devices. The results showed that the initial tip angle scales inversely with the frame width, the actuation stroke and the blocking force are inversely related (leading to an interesting design trade-off), using anisotropic pre-stretch increased the actuation stroke and the initial bending angle, and the circular frame shape exhibited the highest actuation performance.

  15. Driving Mechanism of the Brazil Nut Effect in Asteroids

    Science.gov (United States)

    Perera, Viranga; Jackson, Alan P.; Asphaug, Erik; Ballouz, Ronald

    2016-10-01

    Asteroids are remnant objects from the early planet formation process. Most asteroids are considered rubble-piles since they are likely conglomerates of smaller objects held together by gravity and possibly cohesion. Due to that particular structure, asteroids may be studied using techniques of granular flow. One particular effect called the Brazil Nut Effect (BNE) has previously been proposed to be relevant to asteroids. This effect entails the size-sorting of particles when shaken, where larger particles migrate against the direction of gravity while the smaller particles migrate towards the direction of gravity. Analysis of data from the Hayabusa mission led to asteroid 25143 Itokawa being considered an example where the BNE has occurred bringing large boulders to its surface. Since spacecraft data are limited due to the cost of space missions, there are two other methods of studying this effect: experiments and computer simulations. Though experiments have been done under terrestrial gravity and in low-gravity conditions on parabolic flights, experimental setups cannot fully model the BNE for three-dimensional, self-gravitating, conglomerate objects such as asteroids. Computer simulations have been done in low-gravity conditions utilizing rectangular and cylindrical box configurations and recently in a spherical configuration of particles. Most works have focused on using one large particle embedded with smaller particles (i.e. the intruder model). This has been due to the simplicity and the lack of detailed knowledge about the interior of asteroids. However, in this work we show that the intruder BNE, though important in a wider granular flow context, is not relevant to asteroids. We have run BNE simulations for one, two, and three intruders in a spherical configuration of particles and we find that unless the intruder starts off near the surface of our simulated aggregates they generally do not rise to the surface. This contrasts with a bimodal population of

  16. Mechanism of lanthanum effect on chlorophyll of spinach

    Institute of Scientific and Technical Information of China (English)

    HONG; Fashui(洪法水); WEI; Zhenggui(魏正贵); ZHAO; Guiwen(赵贵文)

    2002-01-01

    The mechanism of La3+ effect on chlorophyll (chl) of spinach in solution culture has been studied. The results show that La3+ can obviously promote growth, increase chlorophyll contents and photosynthetic rate of spinach. La3+ may substitute Mg2+ for chlorophyll formation of spinach when there is no Mg2+ in solution. La3+ improves significantly PSII formation and enhances electron transport rate of PSII. By ICP-MS and atom absorption spectroscopy methods, it has been revealed that rare earth elements (REEs) can enter chloroplasts and increase Mg2+-chl contents; and REEs bind to chlorophyll and also form REE-chl. REE-chl is about 72% in total chlorophyll with La3+ treatment and without Mg2+ in solution. By UV-Vis, FT-IR and extended X-ray absorption fine structure spectroscopy (EXAFS) methods, it has been found that La3+ coordinates with nitrogen of porphyrin rings with the average La-N bond length of 0.253 nm.

  17. Effect of bracing on dynamic patellofemoral contact mechanics.

    Science.gov (United States)

    Wilson, Nicole A; Mazahery, B Tom; Koh, Jason L; Zhang, Li-Qun

    2010-01-01

    Decreases in patellofemoral pain have been demonstrated with bracing; however, the mechanisms of pain reduction remain unclear. Our purpose was to evaluate the hypothesis that patellofemoral bracing decreases peak pressure on the retropatellar surface through an increase in patellofemoral contact area. Nine cadaveric knees were tested during simulated free-speed walking with no brace, a knee sleeve, two different patellar stabilization sleeves, and a wrap-style patellar stabilization brace. Contact area and pressure were measured using a dynamic pressure sensor located in the patellofemoral joint. For the unbraced knee, contact area and peak pressure varied with knee flexion angle, ranging from 0.30 ± 0.3 cm(2) and 1.80 ± 1.7 MPa at full extension to 2.28 ± 0.5 cm(2) and 4.19 ± 1.7 MPa at peak knee flexion. All braces increased contact area, while the wrap-style brace decreased peak pressure (p < 0.001). Sleeve braces compress the quadriceps tendon causing the patella to engage the trochlear groove earlier during knee flexion. The wrap-style brace reduced peak pressure by shifting the location of highest pressure to a region with increased articular cartilage thickness. Sleeve braces may be useful for treatment of patellar subluxation disorders, while wrap-style braces may be effective for treatment of disorders associated with degenerative cartilage changes.

  18. Effect of Precuring Warming on Mechanical Properties of Restorative Composites

    Directory of Open Access Journals (Sweden)

    Kareem Nada

    2011-01-01

    Full Text Available To investigate the effect of prepolymerization warming on composites' mechanical properties, three composites were evaluated: Clearfil Majesty (CM (Kuraray, Z-100 (3M/ESPE, and Light-Core (LC (Bisco. Specimens were prepared from each composite at room temperature as control and 2 higher temperatures (37∘C and 54∘C to test surface hardness (SH, compressive strength (CS, and diametral tensile strength (DTS. Data were statistically analyzed using ANOVA and Fisher's LSD tests. Results revealed that prewarming CM and Z100 specimens significantly improved their SH mean values (P<0.05. Prewarming also improved mean CS values of Z100 specimens (P<0.05. Furthermore, DTS mean value of CM prepared at 52∘ was significantly higher than that of room temperature specimens (P<0.05. KHN, CS, and DTS mean values varied significantly among the three composites. In conclusion, Prewarming significantly enhanced surface hardness of 2 composites. Prewarming also improved bulk properties of the composites; however, this improvement was significant in only some of the tested materials.

  19. EFFECTS OF MECHANICAL AGITATION AND OF TEMPERATURE UPON COMPLEMENT.

    Science.gov (United States)

    Noguchi, H; Bronfenbrenner, J

    1911-02-01

    1. Under certain conditions, mechanical agitation destroys the complementary activity of guinea pig serum. It is most injurious when carried out constantly at a temperature of 37 degrees C., but it is extremely insignificant at 10 degrees C. After the first few hours at 37 degrees C., the destruction of complement proceeded much more rapidly, and after six hours it was almost complete. On the other hand, within one hour shaking had almost no destructive effect on complement, even at 37 degrees C. From this we may conclude that the several shakings which are necessary for fixation experiments during incubation do not modify perceptibly the outcome of the reactions. 2. The rate of destruction of the complement of guinea pig serum at temperatures above 45 degrees C. is progressively greater as it approaches 55 degrees C., at which temperature the activity is reduced in thirty minutes to one-thirtieth to one-fortieth of the original strength of the unheated serum; but it is not completely destroyed, as is commonly assumed. The velocity of destruction of guinea pig complement when exposed to 55 degrees C. for various lengths of time is found to be quite irregular, and not proportional to the length of time. This irregularity, however, presents a certain rhythm, a period of greater destruction alternating with one of less destruction.

  20. Mechanisms underlying the antihypertensive effects of garlic bioactives.

    Science.gov (United States)

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H

    2014-02-01

    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management.

  1. Effects of bileaflet mechanical heart valve orientation on coronary flow

    Science.gov (United States)

    Haya, Laura; Tavoularis, Stavros

    2015-11-01

    The aortic sinus is approximately tri-radially symmetric, but bileaflet mechanical heart valves (BMHVs), which are commonly used to replace diseased aortic valves, are bilaterally symmetric. This mismatch in symmetry suggests that the orientation in which a BMHV is implanted within the aortic sinus affects the flow characteristics downstream of it. This study examines the effect of BMHV orientation on the flow in the coronary arteries, which originate in the aortic sinus and supply the heart tissue with blood. Planar particle image velocimetry measurements were made past a BMHV mounted at the inlet of an anatomical aorta model under physiological flow conditions. The complex interactions between the valve jets, the sinus vortex and the flow in the right coronary artery were elucidated for three valve orientations. The coronary flow rate was directly affected by the size, orientation, and time evolution of the vortex in the sinus, all of which were sensitive to the valve's orientation. The total flow through the artery was highest when the valve was oriented with its axis of symmetry intersecting the artery's opening. The findings of this research may assist surgeons in choosing the best orientation for BMHV implantation. The bileaflet valve was donated by St. Jude Medical. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.

  2. Mechanism of renal effects of intracerebroventricular histamine in rabbits.

    Science.gov (United States)

    Kook, Y J; Kim, K K; Yang, D K; Ahn, D S; Choi, B K

    1988-01-01

    Histamine, when given intracerebroventricularly (i.c.v.), has been reported to produce antidiuresis in the rabbit. In this study it was attempted to elucidate the mechanism involved in the effect. Histamine (H), 100 micrograms/kg i.c.v., produced antidiuresis with decreases in renal plasma flow and glomerular filtration rate in urethane-anesthetized rabbits. With larger doses, a tendency towards increased electrolyte excretion was noted in spite of decreased filtration. In the denervated kidney, marked diuresis and natriuresis were observed following i.c.v. H, whereas the contralateral innervated kidney responded with typical antidiuresis. Reserpinized rabbits also responded with marked natriuresis to i.c.v. H. Diphenhydramine (D), 250 micrograms/kg i.c.v., increased urine flow rate, sodium and potassium excretion, along with increase in renal perfusion. With 750 micrograms/kg i.c.v., marked natriuresis was observed in spite of decreased filtration. When H was given after D (250 micrograms/kg) the antidiuresis was completely abolished, and diuresis became more prominent. Cimetidine, 250 micrograms/kg i.c.v., elicited antidiuresis with decreases in renal hemodynamics, the pretreatment with cimetidine did not influence the antidiuresis by H and no natriuresis was noted. The present study suggests that histamine, given i.c.v., influences renal function in dual ways, i.e., antidiuresis by increasing the sympathetic tone to the kidney and diuresis due to some humoral natriuretic factor, the latter becoming apparent only when the former influence has been removed, and further suggests that H1-receptors might be involved in the nerve-mediated antidiuresis, whereas H2-receptors might mediate the humorally induced natriuresis and diuresis.

  3. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  4. Quantum mechanics of effective potential at a metal surface

    Science.gov (United States)

    Solomatin, Alexander

    In this thesis we study the nonuniform electron density system at a metal-vacuum interface via the corresponding local effective potential confining the electrons, the metal being represented by the jellium and structureless pseudopotential models. The study is performed within conventional Kohn-Sham (KS) density-functional theory and its recently derived quantum-mechanical interpretation. In the latter, properties are determined in terms of the separate electron correlations due to the Pauli exclusion principle, Coulomb repulsion and the correlation contribution to the kinetc energy. We have derived the exact analytical structure, valid for self-consistent orbitals, of the KS theory exchange potential in the classically forbidden region. This structure is image-potential-like of the form -alphasb{KS,x}(beta)chi where the parameter betasp2 is the ratio of the surface barrier height to the metal Fermi energy. For a Wigner-Seitz radius of rsb{s} = 4.1, which is approximately that for which jellium metal is stable, the decay coefficient is precisely 1/4. Over the metallic range of densities rsb{s} = 2-6, the coefficient ranges from 0.195 to 0.274. Thus, if the asymptotic structure of the KS exchange-correlation potential is the image potential, then this structure is due principally to KS exchange effects, the KS correlation contribution being an order of magnitude smaller. These results, then lead to the concept of an 'image' charge localized to the surface region for asymptotic positions of the electron. We have further derived the exact analytical structure in the vacuum of the Slater exchange potential, and of the Pauli-correlation and correlation-kinetic components of the KS exchange potential. These structures are all image-potential-like, decaying respectively as -alphasb{S}(beta)chi,\\ -alphasb{W}(beta)chi and alphasbsp{tsb{c}}{(1)}(beta)/chi. The Pauli-correlation component constitutes the major fraction of the KS exchange potential asymptotically, but there

  5. Effect of cerium/lanthanum addition on microstructure and mechanical properties of Al7075 alloyvia mechanical alloying and sintering

    Institute of Scientific and Technical Information of China (English)

    R Prez-Bustamante; A Reyna-Cruz; D C Acosta-Pea; C R Santilln-Rodrguez; J A Matutes-Aquino; F Prez-Bustamante; M C Maldonado-Orozco; J Aguilar-Santilln; R Martnez-Snchez

    2016-01-01

    The effect of the Al-6Ce-3La (ACL) on the microstructural behavior of the Al7075 was investigated. Materials were syn-thesized by mechanical alloying with variation in the ACL content and milling time. Products were characterized and studied in the as-milled condition and mechanically evaluated after sintering. The synergetic effect of milling time and ACL content in the modified materials led to a reduction in the particle size. Results from electron microscopy showed a homogeneous dispersion of Ce/La phases up to 20 wt.% of ACL content after 10 h of milling. Mechanical evaluation under compressive test showed an improved performance for those alloys reinforced with 0.2 wt.% and 0.5 wt.% of ACL.

  6. Influence of effective stress coefficient on mechanical failure of chalk

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Hjuler, M.L.

    2012-01-01

    , as this process could affect the grain contact cement. If this happens, the effective stress at the grain contacts in a reservoir will change according to the effective stress principle of Biot. In a p′-q space for failure analysis, we observed that a higher effective stress coefficient reduces the elastic region...... and vice versa. However, as the effective stress working on the rock decreases with increased effective stress coefficient, the reduction of elastic region will have less effect on pore collapse strength if we consider the change in the effective stress coefficient. This finding will help estimate a more......The Effective stress coefficient is a measure of how chalk grains are connected with each other. The stiffness of chalk may decrease if the amount of contact cements between the grains decreases, which may lead to an increase of the effective stress coefficient. We performed CO2 injection in chalk...

  7. Relaxant effects of Ocimum basilicum on guinea pig tracheal chains and its possible mechanism(s

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Boskabady

    2005-01-01

    Full Text Available Therapeutic effects of Ocimum basilicum on respiratory diseases especially dyspnea have been reported in Iranian ancient medical books. In the present study, the relaxant effects of macerated and soxhlet extracts of this plant on tracheal chains of guinea pigs were evaluated. The relaxant effects of 4 cumulative concentrations of macerated and soxhlet extracts (0.25, 0.5, 0.75 and 1.0 W/V in comparison with saline as negative control and 4 cumulative concentrations of theophylline (0.25, 0.5, 0.75, and 1.0 mM as positive control were examined on precontracted tracheal chains of two groups of 6 guinea pig by 60 mM KCl (group 1 and 10 µM methacholine (group 2. Decrease in contractile tone of tracheal chains was considered as relaxant effect. In group 1 experiments only the last two higher concentrations of theophylline showed significant relaxant effect compared to that of saline (p<0.001 for both concentrations, which were significantly greater than those of macerated and soxhlet extracts (p<0.001 for all cases and in group 2 experiments both macerated and soxhlet extracts showed concentrationdependent relaxant effects compared to that of saline (p<0.05 to p<0.001 for both extracts. There were significant differences between the relaxant effects of both extracts with those of theophylline in group 2 experiments (p<0.01 to p<0.001. The relaxant effects of macerated and soxhlet extracts in group 1 were significantly lower than those of groups 2. These results showed a potent relaxant effect of Ocimum basilicum on tracheal chains of guinea pigs which were lower than theophylline at concentrations used.

  8. Hydrogen Embrittlement - Loading Rate Effects in Fracture Mechanics Testing

    NARCIS (Netherlands)

    Koers, R.W.J.; Krom, A.H.M.; Bakker, A.

    2001-01-01

    The fitness for purpose methodology is more and more used in the oil and gas industry to evaluate the significance of pre-existing flaws and material deficiencies with regard to the suitability of continued operation of equipment. In this methodology, traditional fracture mechanics is integrated wit

  9. Reaction kinetics and mechanism of magnetic field effects in cryptochrome

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Schulten, Klaus

    2012-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and birds have an intriguing sixth sense that allows them to orient themselves in the Earth's magnetic field. Despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically...

  10. ["Water Hammer effect": a rare mechanism of hydrocephalus].

    Science.gov (United States)

    Hage, P; El Helou, A

    2012-10-01

    We are reporting a case of functional hydrocephalus in a 66-year-old male patient presenting for gait disturbance. The etiology of the disease is a cerebrospinal fluid flow disturbance due to an ectatic basilar artery at the level of Monro foramen. Different pathophysiological mechanisms are discussed below.

  11. Cigarette smoke effects on innate immune mechanisms in the nasal mucosa. Potential effects on the microbiome.

    Science.gov (United States)

    Jaspers, Ilona

    2014-01-01

    It is well established that exposure to cigarette smoke (CS), through active smoking and through exposure to secondhand smoke, has immunosuppressive effects, yet how this might affect the microbiome is not known. In this manuscript we focus on the effects of CS on innate host defense response, with particular emphasis on the role of epithelial cells and mucosal immune responses in the nose and the potential effects on the microbiome. The studies described here briefly summarize the effects of CS on specific innate immune cells, such as neutrophils, macrophages/monocytes, natural killer cells, and dendritic cells. A detailed description of how CS affects epithelial cells and why we consider this to be a central defect in the overall immunosuppressive effects of CS in the lung is provided. We summarize data on the role of the "epimmunome" in the context of CS exposure, including the effects on soluble mediator production, such as cytokines, chemokines, and antimicrobial defense mediators. Separate emphasis is put on the expression of ligands on epithelial cells, which directly interact with receptors on immune cells, and the effects of CS on these interactions. We introduce the nose and nasal mucosa as a model to study the effects of CS exposure on host defense responses and changes in the microbiome in humans in vivo. Understanding the dynamics of a healthy microbiome and how CS affects this balance is important to uncovering the mechanisms of CS-induced disease.

  12. Myocardial salvaging effects and mechanisms of metformin in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Manjusha K. Borde

    2016-04-01

    Conclusions: The present study concluded that Metformin at 100 mg/kg demonstrated myocardial salvaging effects in type II diabetic rats challenged with experimental Myocardial infarction. The antioxidant, hypoglycemic, hypolipidemic and anti-inflammatory effects of Metformin may contribute to its beneficial effects. [Int J Basic Clin Pharmacol 2016; 5(2.000: 341-349

  13. Relaxant effect of Pimpinella anisum on isolated guinea pig tracheal chains and its possible mechanism(s).

    Science.gov (United States)

    Boskabady, M H; Ramazani-Assari, M

    2001-01-01

    We have studied the relaxant effect of Pimpinella anisum on isolated guinea pig tracheal chains and its possible mechanism(s). The bronchodilatory effects of aqueous and ethanol extracts and essential oil were examined on precontracted isolated tracheal chains of the guinea pig by 10 microM methacholine in two different conditions including: non-incubated tissues (group 1) and incubated tissues with 1 microM propranolol and 1 microM chlorpheniramine (group 2). In addition, the anticholinergic effects of essential oil and 10 nM atropine were tested by comparing the cumulative log concentration-response curves of methacholine induced contraction of tracheal chains and the effective concentration of methacholine, causing 50% of maximum response (EC(50)) in the presence of essential oil or atropine. Aqueous and ethanol extracts, essential oil and theophylline (1 mM) showed significant relaxant effects compared to those of controls. Although relaxant effect of essential oil was lower than theophylline, there was no significant difference between the effect of aqueous and ethanol extracts and that of theophylline. There was also no significant difference between the relaxant effects obtained in group 1 and 2 experiments. The results also showed parallel rightward shifts of methacholine-response curves and significant increase in EC(50) with the presence of atropine or essential oil. These results indicated bronchodilatory effects of essential oil, aqueous, and ethanol extracts from P. anisum. The results also showed that the relaxant effect of this plant is not due to an inhibitory effect of histamine (H(1)) or stimulatory effect of beta(2)-adrenergic receptors, but due to inhibitory effects on muscarinic receptors.

  14. Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.

    2008-01-01

    A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.

  15. Modeling mechanical effects on promotion and retardation of martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Maalekian, Mehran, E-mail: mehran.maalekian@ubc.ca [Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, B.C. V61Z4 (Canada); Kozeschnik, Ernst [Christian Doppler Laboratory for ' Early Stages of Precipitation' , Institute of Materials Science and Technology, Vienna University of Technology (Austria)

    2011-01-25

    Research highlights: {yields} Compressive elastic stresses up to 250 MPa are applied in continuous cooling. {yields} Using the thermodynamic data and maximum value of the mechanical driving force the predicted increase in M{sub s} ({approx}0.1 K/MPa) is in agreement with experiment {yields} Austenite was deformed plastically at different temperatures (800 deg. C-1100 deg. C). {yields} High deformation temperature (i.e. 1100 deg. C) as well as low plastic strain (i.e. {epsilon}{sub ave} {approx} 30%) do not affect martensite transformation noticeably, whereas lower deformation temperature (e.g. 900 deg. C) and large plastic strain (i.e. {epsilon}{sub ave} {approx} 70%) retards martensite transformation. {yields} The theory of mechanical stabilization predicts the depression of M{sub s}. - Abstract: The influence of compressive stress and prior plastic deformation of austenite on the martensite transformation in a eutectoid steel is studied both experimentally and theoretically. It is demonstrated that martensite formation is assisted by stress but it is retarded when transformation occurs from deformed austenite. With the quantitative modeling of the problem based on the theory of displacive shear transformation, the explanation of the two opposite roles of mechanical treatment prior to or simultaneously to martensite transformation is presented.

  16. Effects of spinal manipulation in patients with mechanical neck pain

    Directory of Open Access Journals (Sweden)

    Diana Gregoletto

    2014-12-01

    Full Text Available Objective: To analyse changes in the range of motion (ROM and pain after spinal manipulation of the cervical spine and thoracic spine in subjects with mechanical neck pain. Methods : Spinal manipulations were performed in the cervical and thoracic spine with the Gonstead and Diversified DTV techniques. To assess cervical ROM an inclinometer was used. Cervical pain was assessed by Visual Analogue Scale (VAS. The participation of 73 patients was obtained. Ages ranged from 18 to 63 years, with an average of 42.27 years. The subjects of this study were characterized by having mechanical neck pain and restricted cervical ROM. Results: We observed a reduction in the intensity of pain perceived by patients and increased cervical ROM. There were significant differences between pre-treatment values (first visit and the fifth and tenth visits (p<0.01, and between the fifth and tenth visits (p<0.01 in all parameters except in the cervical extension of 70º. Conclusions: The results of this study suggest that spinal manipulation of the cervical and thoracic regions with the Gonstead and Diversified DTV techniques could subjectively reduce pain and produce considerable increase in cervical ROM in adults with mechanical neck pain.

  17. On fair, effective and efficient REDD mechanism design

    Directory of Open Access Journals (Sweden)

    Gusti Mykola

    2009-11-01

    Full Text Available Abstract The issues surrounding 'Reduced Emissions from Deforestation and Forest Degradation' (REDD have become a major component of continuing negotiations under the United Nations Framework Convention on Climate Change (UNFCCC. This paper aims to address two key requirements of any potential REDD mechanism: first, the generation of measurable, reportable and verifiable (MRV REDD credits; and secondly, the sustainable and efficient provision of emission reductions under a robust financing regime. To ensure the supply of MRV credits, we advocate the establishment of an 'International Emission Reference Scenario Coordination Centre' (IERSCC. The IERSCC would act as a global clearing house for harmonized data to be used in implementing reference level methodologies. It would be tasked with the collection, reporting and subsequent processing of earth observation, deforestation- and degradation driver information in a globally consistent manner. The IERSCC would also assist, coordinate and supervise the computation of national reference scenarios according to rules negotiated under the UNFCCC. To overcome the threats of "market flooding" on the one hand and insufficient economic incentives for REDD on the other hand, we suggest an 'International Investment Reserve' (IIR as REDD financing framework. In order to distribute the resources of the IIR we propose adopting an auctioning mechanism. Auctioning not only reveals the true emission reduction costs, but might also allow for incentivizing the protection of biodiversity and socio-economic values. The introduced concepts will be vital to ensure robustness, environmental integrity and economic efficiency of the future REDD mechanism.

  18. Piezotronic Effect: An Emerging Mechanism for Sensing Applications

    Science.gov (United States)

    Jenkins, Kory; Nguyen, Vu; Zhu, Ren; Yang, Rusen

    2015-01-01

    Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlighting important applications for strain sensors, pressure sensors, chemical sensors, photodetectors, humidity sensors and temperature sensors. Finally, the review offers some perspectives and outlook for this new field of multi-functional sensing enabled by the piezotronic effect. PMID:26378536

  19. Piezotronic Effect: An Emerging Mechanism for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Kory Jenkins

    2015-09-01

    Full Text Available Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlighting important applications for strain sensors, pressure sensors, chemical sensors, photodetectors, humidity sensors and temperature sensors. Finally, the review offers some perspectives and outlook for this new field of multi-functional sensing enabled by the piezotronic effect.

  20. Bacterial mechanisms to overcome inhibitory effects of dietary tannins

    NARCIS (Netherlands)

    Smith, A.H.; Zoetendal, E.G.; Mackie, R.I.

    2005-01-01

    High concentrations of tannins in fodder plants inhibit gastrointestinal bacteria and reduce ruminant performance. Increasing the proportion of tannin-resistant bacteria in the rumen protects ruminants from antinutritional effects. The reason for the protective effect is unclear, but could be elucid

  1. Mechanisms of Hexachlorobenzene-induced Adverse Immune Effects

    NARCIS (Netherlands)

    Ezendam, Janine

    2004-01-01

    Hexachlorobenzene (HCB) is an environmental pollutant that can induce adverse immune effects in humans and rats. Brown Norway rats (BN) appeared to be very susceptible to HCB-induced immune effects. Oral exposure causes inflammatory skin and lung lesions, enlarged spleen and lymph nodes (LN) and ele

  2. The Effects of Calorie Restriction in Depression and Potential Mechanisms

    Science.gov (United States)

    Zhang, Yifan; Liu, Changhong; Zhao, Yinghao; Zhang, Xingyi; Li, Bingjin; Cui, Ranji

    2015-01-01

    Depression, also called major depressive disorder, is a neuropsychiatric disorder jeopardizing an increasing number of the population worldwide. To date, a large number of studies have devoted great attention to this problematic condition and raised several hypotheses of depression. Based on these theories, many antidepressant drugs were developed for the treatment of depression. Yet, the depressed patients are often refractory to the antidepressant therapies. Recently, increasing experimental evidences demonstrated the effects of calorie restriction in neuroendocrine system and in depression. Both basic and clinical investigations indicated that short-term calorie restriction might induce an antidepressant efficacy in depression, providing a novel avenue for treatment. Molecular basis underlying the antidepressant actions of calorie restriction might involve multiple physiological processes, primarily including orexin signaling activation, increased CREB phosphorylation and neurotrophic effects, release of endorphin and ketone production. However, the effects of chronic calorie restriction were quite controversial, in the cases that it often resulted in the long-term detrimental effects via inhibiting the function of 5-HT system and decreasing leptin levels. Here we review such dual effects of calorie restriction in depression and potential molecular basis behind these effects, especially focusing on antidepressant effects. PMID:26412073

  3. COORDINATING NEW PRODUCT DEVELOPMENT AND MANUFACTURING - MECHANISMS AND THEIR PERFORMANCE EFFECTS

    DEFF Research Database (Denmark)

    Timenes Laugen, Bjørge; Acur, Nuran; Boer, Harry

    2009-01-01

    Appropriate coordination mechanisms between the new product development (NPD) and manufacturing functions are important for companies to implement and manage the balance between exploitative and explorative activities effectively. Although much research has been conducted in this area......, there is no complete understanding, supported by empirical evidence, of how different coordination mechanisms affect different areas of company performance. This paper tests the relationships between four different coordination mechanisms and four areas of operational performance, and explores the moderating effects...

  4. Mechanics of the cupula: effects of its thickness.

    Science.gov (United States)

    Njeugna, E; Eichhorn, J L; Kopp, C; Harlicot, P

    1992-01-01

    Mechanical aspects of the ampullar diaphragm, that is the crista ampullaris and the cupula, related to its thickness, are studied by a numerical method. Numerical methods are able to go beyond the limits of analytical approaches and are the only methods able to take into account this thickness. A finite elements method is applied to the median plane slice of the ampullar diaphragm. One assumes that the cupula sticks firmly without slipping, to the ampullar wall and to the crista ampullaris. The computation takes into account the pressures on the liquid interfaces and the deformations of the ampulla. So the volume swept over by the cupula during quasi-static deformations can be evaluated and the global elasticity coefficient of the human cupula can be calculated. The related value of the long time constant of the semicircular canal is close to the value obtained when measuring, in vivo, the activity on the vestibular nerve in animals. The thick cupula model clearly shows two different spatial distributions of strain on the hairs of the sensory cells, leading to a discrimination between the vestibular inflating pressure and the transcupular pressure difference. This result matches recent neurophysiological data and brings a new insight in the mechanics of the vestibular angular accelerometer and its regulation.

  5. An Effective Feedback Control Mechanism for DiffServ Architecture

    Institute of Scientific and Technical Information of China (English)

    王重钢; 隆克平; 杨健; 程时端

    2002-01-01

    As a scalable QoS (Quality of Service) architecture, DiffServ (Differentiated Service) mainly consists of two components: traffic conditioning at the edge of the DiffServ domain and simple packet forwarding inside the DiffServ domain. DiffServ has many advantages such as flexibility, scalability and simplicity. But when providing AF (Assured Forwarding)services, DiffServ has some problems such as unfairness among aggregated flows or among microflows belonging to an aggregated flow. In this paper, a feedback mechanism for AF aggregated flows is proposed to solve this problem. Simulation results show that this mechanism does improve the performance of DiffServ. First, it can improve the fairness among aggregated flows and make DiffServ more friendly toward TCP (Transmission Control Protocol) flows. Second,it can decrease the buffer requirements at the congested router and thus obtain lower delay and packet loss rate. Third, it also keeps almost the same link utility as in normal DiffServ.Finally, it is simple and easy to be implemented.

  6. Mechanism for Increasing Effective Inputs in Urban Agriculture through Industrial Value Chain

    OpenAIRE

    Yun, Xiao-lan

    2012-01-01

    This paper firstly introduces the value chain management thought, current situations of utilization, and connotation of mechanism for increasing effective inputs in urban agriculture through industrial value chain. On the basis of basic idea of value chain management, this paper is to explore the mechanism for increasing effective inputs in urban agriculture through the value chain of urban agriculture linking with other industries.

  7. Effect of transition metal dopants on mechanical properties and biocompatibility of zirconia ceramics.

    Science.gov (United States)

    Oh, Gye-Jeong; Park, Sang-Won; Yun, Kwi-Dug; Lim, Hyun-Pil; Son, Hye-Ju; Koh, Jeong-Tae; Lee, Kyung-Ku; Lee, Doh-Jae; Lee, Kwang-Min; Fisher, John G

    2013-06-01

    In this study, the effect of transition metal dopants, originally added as colouring agents, on the mechanical properties and biocompatibility of sintered zirconia was investigated. This study confirmed that transition metal dopants could have a slight detrimental effect on the mechanical properties of zirconia. The addition of metal dopants did not affect the adhesion and proliferation of gingival fibroblasts.

  8. Investigation of Resistance to Mechanical Effect of Braille Formed on Different Materials

    Directory of Open Access Journals (Sweden)

    Ingrida VENYTĖ

    2014-06-01

    Full Text Available Qualitative analysis of stresses emerged in paperboard during Braille embossing, using specialized polarimetric equipment, was carried out. Resistance to mechanical effect of Braille dot surfaces, formed with different printing types on different materials (paper, paperboard, polymer, textile, Al foil was investigated. It was determined that Braille dot height change after period mechanical effect is different.

  9. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge

  10. Mechanism of viscosity effect on magnetic island rotation

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailovskii, A.B.; Konovalov, S.V. [Institute of Nuclear Fusion, Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow (Russian Federation); Pustovitov, V.D. [National Inst. for Fusion Science, Toki, Gifu (Japan); Tsypin, V.S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, SP (Brazil)

    2000-04-01

    It is shown that plasma viscosity does not influence the magnetic island rotation directly. Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of the viscosity effect on island rotation. (author)

  11. Solvent effect on the absorption spectra of coumarin 120 in water: A combined quantum mechanical and molecular mechanical study.

    Science.gov (United States)

    Sakata, Tetsuya; Kawashima, Yukio; Nakano, Haruyuki

    2011-01-07

    The solvent effect on the absorption spectra of coumarin 120 (C120) in water was studied utilizing the combined quantum mechanical∕molecular mechanical (QM∕MM) method. In molecular dynamics (MD) simulation, a new sampling scheme was introduced to provide enough samples for both solute and solvent molecules to obtain the average physical properties of the molecules in solution. We sampled the structure of the solute and solvent molecules separately. First, we executed a QM∕MM MD simulation, where we sampled the solute molecule in solution. Next, we chose random solute structures from this simulation and performed classical MD simulation for each chosen solute structure with its geometry fixed. This new scheme allowed us to sample the solute molecule quantum mechanically and sample many solvent structures classically. Excitation energy calculations using the selected samples were carried out by the generalized multiconfigurational perturbation theory. We succeeded in constructing the absorption spectra and realizing the red shift of the absorption spectra found in polar solvents. To understand the motion of C120 in water, we carried out principal component analysis and found that the motion of the methyl group made the largest contribution and the motion of the amino group the second largest. The solvent effect on the absorption spectrum was studied by decomposing it in two components: the effect from the distortion of the solute molecule and the field effect from the solvent molecules. The solvent effect from the solvent molecules shows large contribution to the solvent shift of the peak of the absorption spectrum, while the solvent effect from the solute molecule shows no contribution. The solvent effect from the solute molecule mainly contributes to the broadening of the absorption spectrum. In the solvent effect, the variation in C-C bond length has the largest contribution on the absorption spectrum from the solute molecule. For the solvent effect on the

  12. The effect of selective desorption mechanisms during interstellar ice formation

    CERN Document Server

    Kalvans, Juris

    2015-01-01

    Major components of ices on interstellar grains in molecular clouds - water and carbon oxides - occur at various optical depths. This implies that selective desorption mechanisms are at work. An astrochemical model of a contracting low-mass molecular cloud core is presented. Ice was treated as consisting of the surface and three subsurface layers (sublayers). Photodesorption, reactive desorption, and indirect reactive desorption were investigated. The latter manifests itself through desorption from H+H reaction on grains. Desorption of shallow subsurface species was included. Modeling results suggest the existence of a "photon-dominated ice" during the early phases of core contraction. Subsurface ice is chemically processed by interstellar photons, which produces complex organic molecules. Desorption from the subsurface layer results in high COM gas-phase abundances at Av = 2.4...10mag. This may contribute towards an explanation for COM observations in dark cores. It was found that photodesorption mostly gove...

  13. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2012-02-01

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  14. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-03-17

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  15. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins

    Directory of Open Access Journals (Sweden)

    De-Xing Hou

    2004-01-01

    Full Text Available Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK pathway and activator protein 1 (AP-1 factor; (ii suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB pathway and cyclooxygenase 2 (COX-2 gene; (iii apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS / c-Jun NH2-terminal kinase (JNK-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.

  16. Neural Mechanisms of Exercise: Effects on Gut Miccrobiota and Depression.

    Science.gov (United States)

    Yuan, Ti-Fei; Ferreira Rocha, Nuno Barbosa; Paes, Flávia; Arias-Carrión, Oscar; Machado, Sergio; de Sá Filho, Alberto Souza

    2015-01-01

    Microbiota is a set of microorganisms resident in gut ecosystem that reacts to psychological stressful stimuli, and is involved in depressed or anxious status in both animals and human being. Interestingly, a series of studies have shown the effects of physical exercise on gut microbiota dynamics, suggesting that gut microbiota regulation might act as one mediator for the effects of exercise on the brain. Recent studies found that gut microbiota dynamics are also regulated by metabolism changes, such as through physical exercise or diet change. Interestingly, physical exercise modulates different population of gut bacteria in compared to food restriction or rich diet, and alleviates gut syndromes to toxin intake. Gut microbiota could as well contribute to the beneficial effects of exercise on cognition and emotion, either directly through serotonin signaling or indirectly by modulating metabolism and exercise performance.

  17. Analysis of friction effects on satellite antenna driving mechanism with clearance joints

    Science.gov (United States)

    Bai, Z. F.; Chen, J.; Bian, S.; Shi, X.

    2017-01-01

    The existence of clearance in joints of mechanism is inevitable. In this paper, the friction effects in clearance joints on dynamic responses of driving mechanism of satellite antenna are studied. Considering clearances in joints, the contact force model in clearance joints is established using a nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the dual-axis driving mechanism of satellite antenna with clearance joints is used as the application example. The numerical simulation of dual-axis driving mechanism with clearance joints is presented. The friction effects of clearance joint on dynamic responses of the dual-axis driving mechanism are discussed and analyzed quantitatively for four cases with different friction coefficients. The investigation results show that the increase of friction coefficient will decrease the vibration amplitude of the driving mechanism system.

  18. Effects of nutrient intake on sympathoadrenal activity and thermogenic mechanisms

    DEFF Research Database (Denmark)

    Astrup, A V; Christensen, N J; Simonsen, L

    1990-01-01

    Ingestion of carbohydrate results in a diphasic activation of the sympathoadrenal system. One component is an insulin-mediated activation of the sympathetic nervous system (SNS). This activation is partly a haemodynamic reflex, but it may cause a weak thermogenic effect via beta 1-adrenoceptors...... the physiological threshold for thermogenic effect. The target is mainly skeletal muscle where thermogenesis is stimulated via beta 2-adrenoceptors. Also the basal metabolic rate and the thermogenic responses to cold and heat exposure, mental stress and exercise, have facultative components. Inhibition...

  19. [Mechanism of the radiation-protective effect of indralin].

    Science.gov (United States)

    Vasin, M V; Chernov, G A; Koroleva, L V; L'vova, T S; Abramov, M M; Antipov, V V; Suvorov, N N

    1996-01-01

    Pharmacological test demonstrated that radioprotective activity of indralin occurs by interaction with alpha-adrenoreceptor. Radioprotective effect of indralin decreased by alpha-adrenoblocker, aminazine and theophylline. Normobaric hyperoxia during irradiation reduced radioprotective effect of indralin in doses about ED50. In experiment with mice and rats it was shown that indralin induced acute hypoxia, impaired oxygen consumption and heat production by 30-46%, spleen bloodflow to 26.3% of control level, rectal temperature by 1.5-2 degrees C (mouse). After 30-min indralin raised resistance of mice to hypoxic hypoxia that is believed due to rapid development of biochemical adaptive process in hypoxic cells.

  20. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    Science.gov (United States)

    2016-10-01

    including single- and multi- walled nanotubes, graphene, fullerenes, and any combinations thereof. Both of these toolkits are written in the Python...not carbonaceous impurities introduced during ultrasonication. While simple water washing alone removes the bulk SDS, the SEM analysis demonstrates...reagent treatment is effective compared to traditional water washing, however, additional characterization is required to determine the purity of the

  1. Weed-Suppressing Effect and Mechanism of Allelopathic Rice Accessions

    Institute of Scientific and Technical Information of China (English)

    HU Fei; KONG Chui-hua; XU Xiao-hua; ZHANG Chao-xian; CHEN Xiong-hui

    2004-01-01

    Two allelopathic rice accessions, PI312777 and Allelopathyl, significantly suppressedthe growth of associated weeds in the field. Moreover, their weed-suppressing effectswere correlated with the cultivation patterns. The weed-suppressing effects of throwingand transplanting were more effective than that of direct seeding. Furthermore, theamounts of allelochemicals (resorcinols, flavones and hydroxamic acids) produced andreleased from two allelopathic rice accessions were much higher than that from a non-allelopathic rice variety Hua-Jing-Xian 1, and reached the maximum concentration at the6th leaf stage. Differences in the weed-suppressing effects of rice accessions appear toresult from the accessions producing and releasing different amounts of allelochemicalsin the field. Further research confirmed that in PI312777 plants, allelochemicals weresynthesized by the above-ground parts, and then secreted through the root tissues. Roottissues of PI312777 plants never produced the allelochemicals. Root exudates fromPI312777 could significantly inhibit the growth of E. crus-galli surrounding rice plantsin water culture. However, when activated carbon was added to the culture solution, whichcould absorb allelochemicals from root exudates, the growth of E. crus-galli was nolonger significantly inhibited. Weed-suppressing effects of rice accessions depended onallelopathy, cultivation patterns and other factors in rice fields, while allelopathywas one of important factors. Interestingly, the amounts of allelochemicals produced andreleased from allelopathic rice plants may be induced by the presence of E. crus-galli.This suggests that there is a possible chemical recognition between rice and E. crus-galli.

  2. Defending the barrier: Effects of probiotics on endogenous defense mechanisms

    NARCIS (Netherlands)

    Lutgendorff, F.

    2009-01-01

    The 24th of January 2008 was the day that the BBC headlined: “Pancreatic deaths trouble Dutch” and the day that the field of probiotic research changed indefinitely. Probiotics, which had not shown any adverse effects in numerous conditions in the past, were for the first time associated with seriou

  3. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also...

  4. Conditions on exchange mechanisms for polarization effects in inclusive reactions

    CERN Document Server

    Salin, P

    1974-01-01

    In the framework of Mueller-Regge phenomenology the conditions under which one could expect to observe polarization effects in the fragmentation region for inclusive relations are investigated. On the basis of kinematical considerations and parity relations only, it is found that this requires exchange of states with mixed naturalities. (9 refs).

  5. Neurocognitive mechanisms of the "testing effect": A review

    NARCIS (Netherlands)

    Broek, G.S.E. van den; Takashima, A.; Wiklund-Hörnqvist, C.; Wirebring, L.K.; Segers, P.C.J.; Verhoeven, L.T.W.; Nyberg, L.

    2016-01-01

    Memory retrieval is an active process that can alter the content and accessibility of stored memories. Of potential relevance for educational practice are findings that memory retrieval fosters better retention than mere studying. This so-called testing effect has been demonstrated for different mat

  6. Effect of entanglements on mechanical properties of glassy polymers

    Science.gov (United States)

    Hoy, Robert Scott

    Glass forming polymers are of great industrial importance and scientific interest because of their unique mechanical properties, which arise from the connectivity and random-walk-like structure of the constituent chains. In this thesis I study the relation of entanglements to the mechanical properties of model polymer glasses and brushes using molecular dynamics simulations. We perform extensive studies of glassy strain hardening, which stabilizes polymers against strain localization and fracture. Fundamental inconsistencies in existing entropic models of strain hardening imply that our understanding of its microscopic origins is far from complete. The dependence of stress on strain and entanglement density is consistent with experiment and entropic models. However, many of the assumptions of these models are totally inconsistent with our simulation results. The dependence on temperature, rate and interaction strength can be understood as reflecting changes in the plastic flow stress rather than a network entropy. A substantial energetic contribution to the stress rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. The deformation of the entanglement network is not affine to the macroscopic stretch. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain. The entropic back stress responsible for shape recovery arises from chain orientation rather than entanglement. We also present some other results unrelated to strain hardening. We analyze the entanglement of polymer brushes embedded in long-chain melts and in implicit good and theta solvents. The melt-embedded brushes are more self-entangled than those in the solvents. The degree of self-entanglement of the brushes in the solvents follows a simple

  7. Weed-Suppressing Effect and Mechanism of Allelopathic Rice Accessions

    Institute of Scientific and Technical Information of China (English)

    HUFei; KONGChui-hua; XUXiao-hua; ZHANGChao-xian; CHENXiong-hui

    2004-01-01

    Two allelopathic rice accessions, PI312777 and Allelopathy i, significantly suppressed the growth of associated weeds in the field. Moreover, their weed-suppressing effects were correlated with the cultivation patterns. The weed-suppressing effects of throwing and transplanting were more effective than that of direct seeding. Furthermore, the amounts of allelochemicals (resorcinols, flavones and hydroxamic acids) produced and released from two allelopathic rice accessions were much higher than that from a nonallelopathic rice variety Hua-Jing-Xian i, and reached the maximum concentration at the 6th leaf stage. Differences in the weed-suppressing effects of rice accessions appear to result from the accessions producing and releasing different amounts of allelochemicals in the field. Further research confirmed that in PI312777 plants, allelochemicals were synthesized by the above-ground parts, and then secreted through the root tissues. Root tissues of PI312777 plants never produced the allelochemicals. Root exudates from PI312777 could significantly inhibit the growth of E. crus-galli surrounding rice plants in water culture. However, when activated carbon was added to the culture solution, which could absorb allelochemicals from root exudates, the growth of E. crus-galli was no longer significantly inhibited. Weed-suppressing effects of rice accessions depended on allelopathy, cultivation patterns and other factors in rice fields, while allelopathy was one of important factors. Interestingly, the amounts of allelochemicals produced and released from allelopathic rice plants may be induced by the presence of E. crus-galli.This suggests that there is a possible chemical recognition between rice and E. crus-galli.

  8. Thermal Mechanical Processing Effects on Microstructure Evolution and Mechanical Properties of the Sintered Ti-22Al-25Nb Alloy

    Directory of Open Access Journals (Sweden)

    Yuanxin Wang

    2016-03-01

    Full Text Available This work illustrates the effect of thermal mechanical processing parameters on the microstructure and mechanical properties of the Ti-22Al-25Nb alloy prepared by reactive sintering with element powders, consisting of O, B2 and Ti3Al phases. Tensile and plane strain fracture toughness tests were carried out at room temperature to understand the mechanical behavior of the alloys and its correlation with the microstructural features characterized by scanning and transmission electron microscopy. The results show that the increased tensile strength (from 340 to 500 MPa and elongation (from 3.6% to 4.2% is due to the presence of lamellar O/B2 colony and needle-like O phase in B2 matrix in the as-processed Ti-22Al-25Nb alloys, as compared to the coarse lath O adjacent to B2 in the sintered alloys. Changes in morphologies of O phase improve the fracture toughness (KIC of the sintered alloys from 7 to 15 MPa·m−1/2. Additionally, the fracture mechanism shifts from cleavage fracture in the as-sintered alloys to quasi-cleavage fracture in the as-processed alloys.

  9. Effective Incentive and Discipline Mechanisms for Top manage ment in SOEs

    Institute of Scientific and Technical Information of China (English)

    费章凤

    2001-01-01

    Key to energize State-Owned-Enterprises (hereinafter SOEs) is to set up effective incentive and discipline mechanisms. First of all, the paper analyses the problems existing in the current incentive and discipline mechanism system in SOEs, including low transparency income and considerable covert income, insider control,corporate governance nominalization and so on; next,the paper explores the causes behind these problems,such as incomplete corporate governance and imperfect market mechanism; finally, the paper proposes a series of solutions from the aspects of incentive mechanism and discipline mechanism.

  10. Effect of Temperature on Mechanical Properties of Solid Rocket Propellants

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar

    2011-10-01

    Full Text Available Mechanical properties of solid rocket propellants are dependent on temperature. Any change in temperature brings significant change in the tensile strength, percentage elongation, and elastic modulus of the propellant. Different classes of operational solid rocket propellants namely extruded double-base propellants, composite, extruded composite and nitrarte ester polyester propellants were evaluated at different temperatures in the operating range of the rockets and missiles preferably in the range of –50 oC to +55 oC. It was observed that for each class of propellant, as temperature reduces, propellant becomes hard. This is depicted by increase in elastic modulus and tensile strength of the material. However, trend of percentage elongation is not very uniform. Extruded double-base propellants show less percentage elongation (around 1 per cent at reduced temperature (–50 oC probably due to brittleness. So is the trend with case-bonded composite propellants. However, reverse trend is exhibited by cartridge-loaded composite propellants and nitrate ester polyester propellants. Such propellants show higher percentage elongation (6 per cent for CLCP and 35 per cent for NEPE at reduced temperature (–50 oC. This makes such propellants tough and more area under stress-strain curve at reduced temperature is observed.Defence Science Journal, 2011, 61(6, pp.529-533, DOI:http://dx.doi.org/10.14429/dsj.61.774

  11. Cardiac mechanical energy and effects on the arterial tree.

    Science.gov (United States)

    Muñoz, H R; Sacco, C M

    1997-05-01

    Blood flow pulsatility is the result of the heart's activity as a pump unable to develop steady flow, and its interaction with the arterial tree. Thus, the heart is a cyclic energy generator whose adequate function requires the two phases of this cycle to be normal. Diastolic properties determine the degree of filling of the ventricles and the strength of the following systole. Systole, in turn, must generate enough energy to overcome forces opposing ejection. These can be divided into internal (the mechanical characteristics of the ventricle itself) and external loads (the characteristics of the arterial tree). As a result, hydraulic energy is imparted to blood (external ventricular work) that manifests itself as blood pressure and flow. Given the cyclic nature of cardiac activity, the external ventricular work has steady and pulsatile components. The steady component is energy lost during steady flow because of vascular resistance, and the pulsatile work is that lost in arterial pulsations and mainly depends on the aortic impedance. Thus, the characteristics of the arterial tree will determine the relative contribution of these two components to blood flow and the efficency of the heart. In addition, the arterial tree modifies the different waves (pressure and flow) traveling in the circulation. These modifications have important consequences for cardiac function. The ventricle and the arterial tree constitute a coupled biological system, and its overall performance is a function of the behavior of each unit at any given moment.

  12. Effect of temperature on the mechanism of actin polymerization.

    Science.gov (United States)

    Zimmerle, C T; Frieden, C

    1986-10-21

    The rate of the Mg2+-induced polymerization of rabbit skeletal muscle G-actin has been measured as as function of temperature at pH 8 by using various concentrations of Mg2+, Ca2+, and G-actin. A polymerization mechanism similar to that proposed at this pH [Frieden, C. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6513-6517] was found to fit the data from 10 to 35 degrees C. From the kinetic data, no evidence for actin filament fragmentation was found at any temperature. Dimer formation is the most temperature-sensitive step, with the ratio of forward and reverse rate constants changing 4 orders of magnitude from 10 to 35 degrees C. Over this temperature change, all other ratios of forward and reverse rate constants change 7-fold or less, and the critical concentration remains nearly constant. The reversible Mg2+-induced isomerization of G-actin monomer occurs to a greater extent with increasing temperature, measured either by using N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled actin or by simulation of the full-time course of the polymerization reaction. This is partially due to Mg2+ binding becoming tighter, and Ca2+ binding becoming weaker, with increasing temperature. Elongation rates from the filament-pointed end, determined by using actin nucleated by plasma gelsolin, show a temperature dependence slightly larger than that expected for a diffusion-limited reaction.

  13. Mechanisms and effects of seizures in the immature brain.

    Science.gov (United States)

    Nardou, Romain; Ferrari, Diana C; Ben-Ari, Yehezkel

    2013-08-01

    The developing immature brain is not simply a small adult brain but rather possesses unique physiological properties. These include neuronal ionic currents that differ markedly from those in the adult brain, typically being longer-lasting and less selective. This enables immature heterogeneous neurons to connect and fire together but at the same time, along with other features may contribute to the enhanced propensity of the developing brain to become epileptic. Indeed, immature neurons tend to readily synchronize and thus generate seizures. Here, we review the differences between the immature and adult brain, with particular focus on the developmental sequence of γ-aminobutyric acid that excites immature neurons while being inhibitory in the normal adult brain. We review the mechanisms underlying the developmental changes to intracellular chloride levels, as well as how epileptiform activity can drive pathologic changes to chloride balance in the brain. We show that regulation of intracellular chloride is one important factor that underlies both the ease with which seizures can be generated and the facilitation of further seizures. We stress in particular the importance of understanding normal developmental sequences and how they are interrupted by seizures and other insults, and how this knowledge has led to the identification of potential novel treatments for conditions such as neonatal seizures.

  14. Temperature Effect on Mechanical Properties and Damage Identification of Concrete Structure

    Directory of Open Access Journals (Sweden)

    Yubo Jiao

    2014-01-01

    Full Text Available Static and dynamic mechanical properties of concrete are affected by temperature effect in practice. Therefore, it is necessary to investigate the corresponding influence law and mechanism. This paper demonstrates the variation of mechanical properties of concrete at temperatures from −20°C to 60°C. Temperature effects on cube compressive strength, splitting tensile strength, prism compressive strength, modulus of elasticity, and frequency are conducted and discussed. The results indicate that static mechanical properties such as compressive strength (cube and prism, splitting tensile strength, and modulus of elasticity have highly linear negative correlation with temperature; this law is also applied to the first order frequency of concrete slab. The coupling effect of temperature and damage on change rate of frequency reveals that temperature effect cannot be ignored in damage identification of structure. Mechanism analysis shows that variation of elastic modulus of concrete caused by temperature is the primary reason for the change of frequency.

  15. An Effective Storage Mechanism for High Performance Computing (HPC

    Directory of Open Access Journals (Sweden)

    Fatima El Jamiy

    2015-10-01

    Full Text Available All over the process of treating data on HPC Systems, parallel file systems play a significant role. With more and more applications, the need for high performance Input-Output is rising. Different possibilities exist: General Parallel File System, cluster file systems and virtual parallel file system (PVFS are the most important ones. However, these parallel file systems use pattern and model access less effective such as POSIX semantics (A family of technical standards emerged from a project to standardize programming interfaces software designed to operate on variant UNIX operating system., which forces the MPI-IO implementations to use inefficient techniques based on locks. To avoid this synchronization in these techniques, we ensure that the use of a versioning-based file system is much more effective.

  16. Aircraft noise effects on sleep: Mechanisms, mitigation and research needs

    Directory of Open Access Journals (Sweden)

    Mathias Basner

    2010-01-01

    Full Text Available There is an ample number of laboratory and field studies which provide sufficient evidence that aircraft noise disturbs sleep and, depending on traffic volume and noise levels, may impair behavior and well-being during the day. Although clinical sleep disorders have been shown to be associated with increased risk of cardiovascular diseases, only little is known about the long-term effects of aircraft noise disturbed sleep on health. National and international laws and guidelines try to limit aircraft noise exposure facilitating active and passive noise control to prevent relevant sleep disturbances and its consequences. Adopting the harmonized indicator of the European Union Directive 2002/49/EC, the WHO Night Noise Guideline for Europe (NNG defines four Lnight , outside ranges associated with different risk levels of sleep disturbance and other health effects ( 55 dBA. Although traffic patterns differing in number and noise levels of events that lead to varying degrees of sleep disturbance may result in the same Lnight , simulations of nights with up to 200 aircraft noise events per night nicely corroborate expert opinion guidelines formulated in WHO′s NNG. In the future, large scale field studies on the effects of nocturnal (aircraft noise on sleep are needed. They should involve representative samples of the population including vulnerable groups like children and chronically ill subjects. Optimally, these studies are prospective in nature and examine the long-term consequences of noise-induced sleep disturbances. Furthermore, epidemiological case-control studies on the association of nocturnal (aircraft noise exposure and cardiovascular disease are needed. Despite the existing gaps in knowledge on long-term health effects, sufficient data are available for defining limit values, guidelines and protection concepts, which should be updated with the availability of new data.

  17. Neurochemical Mechanism of Organophosphorus Compounds: Effect on Neuromembrane.

    Science.gov (United States)

    1984-06-30

    In vivo administration of tritiated leucine. To study the effects of OP’s on brain protein synthesis, we used intracerebroventricular (icy...vivo administration of tritiated leucine 7 DFP analysis 8 AChE assay 8 DFPase assay 8 DFP binding 8 Materials 9 Animals 9 RESULTS 9 Brain Protein...some bands was altered by DFP administration . ". Inactivation of DFP by Brain Tissue. When DFP was incubated at 370 C with mouse brain homogenates, a

  18. Defending the barrier: Effects of probiotics on endogenous defense mechanisms

    OpenAIRE

    Lutgendorff, F.

    2009-01-01

    The 24th of January 2008 was the day that the BBC headlined: “Pancreatic deaths trouble Dutch” and the day that the field of probiotic research changed indefinitely. Probiotics, which had not shown any adverse effects in numerous conditions in the past, were for the first time associated with serious adverse events. In the largest study on probiotics to that date, the Dutch Acute Pancreatitis Study Group showed that probiotic treatment was associated with a more than twofold increase in death...

  19. Traction reveals mechanisms of wall effects for microswimmers near boundaries

    Science.gov (United States)

    Shen, Xinhui; Marcos, Fu, Henry C.

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  20. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  1. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    Science.gov (United States)

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  2. Effect of mechanical optical clearing on near-infrared spectroscopy.

    Science.gov (United States)

    Idelson, Christopher R; Vogt, William C; King-Casas, Brooks; LaConte, Stephen M; Rylander, Christopher G

    2015-08-01

    Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations.

  3. Mechanism of Microwave Effects on Conductivity of Solution

    Institute of Scientific and Technical Information of China (English)

    Su Yongqing

    2006-01-01

    The relation between microwave conductivity and normal conductivity of solution is compared in this thesis. By building mathematical model and theoretical analyses, it indicates that the relationship of in situ conductivity of solution in microwave field and temperature is similar to that in non-microwave field. It can be expressed by quadratic equation but the values of both conductivities are different. Microwave field has effect on the mean path δ or hot vibrational frequency v of ions in solution. In microwave field, the mean energy barrier, which ions must surmount as they transit, is the function relation to temperature.

  4. Some Complex Pressure Effects on Spectra from Simple Classical Mechanics

    Science.gov (United States)

    Hartmann, Jean-Michel

    2016-06-01

    I will first recall how [the two Newton's equations, 1rst year of university] one can very easily compute the rotational and translational classical dynamics of an ensemble of linear molecules interacting through an (input) pair-wise intermolecular potential. These Classical Molecular Dynamics Simulations (CMDS), which provide the time dependence of the positions and axis-orientations of gas phase molecules, are then used to calculate a number of pressure effects manifesting in absorption and scattering spectra. The cases of CO2, O2 and N2 will be considered, systems for which fully quantum approaches are intractable, and comparisons with measured data will be made, free of any adjusted parameter. I will show that, with a few input ingredients from literature (molecule geometry, electric multipoles, polarizabilities, ...) an no adjusted parameter, excellent agreements with various measurements are obtained. Examples will be given for: (1) Collision induced absorption (due to the interaction induced dipole) ; (2) The far wings of absorption (due to the dipole) and light scattering (due to polarizability) bands ; (3) The broadening and shapes (with their deviations from the Voigt profile) of individual absorption lines for both "free" and spatially tightly confined gases. If times allows, additional demonstrations of the interest of CMDS will be given by considering line-mixing effects and the relaxation of laser-kicked molecules.

  5. Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites

    Science.gov (United States)

    Miguel-Carrasco, José Luis; Beaumont, Javier; San José, Gorka; Moreno, María U.; López, Begoña; González, Arantxa; Zalba, Guillermo; Díez, Javier; Fortuño, Ana; Ravassa, Susana

    2017-01-01

    Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with NG-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-β1-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts. PMID:28157237

  6. Effects and mechanisms of ginseng and ginsenosides on cognition.

    Science.gov (United States)

    Smith, Imogen; Williamson, Elizabeth M; Putnam, Sophie; Farrimond, Jonathan; Whalley, Benjamin J

    2014-05-01

    Reviewed here is the existing evidence for the effects of ginseng extracts and isolated ginsenosides relevant to cognition in humans. Clinical studies in healthy volunteers and in patients with neurological disease or deficit, evidence from preclinical models of cognition, and pharmacokinetic data are considered. Conditions under which disease modification may indirectly benefit cognition but may not translate to cognitive benefits in healthy subjects are discussed. The number of chronic studies of ginseng effects in healthy individuals is limited, and the results from acute studies are inconsistent, making overall assessment of ginseng's efficacy as a cognitive enhancer premature. However, mechanistic results are encouraging; in particular, the ginsenosides Rg3 , Rh1 , Rh2 , Rb1 , Rd, Rg2 , and Rb3 , along with the aglycones protopanaxadiol and protopanaxatriol, warrant further attention. Compound K has a promising pharmacokinetic profile and can affect neurotransmission and neuroprotection. Properly conducted trials using standardized tests in healthy individuals reflecting the target population for ginseng supplementation are required to address inconsistencies in results from acute studies. The evidence summarized here suggests ginseng has potential, but unproven, benefits on cognition.

  7. Effects and mechanisms of berberine in diabetes treatment

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2012-08-01

    Full Text Available Berberine from Rhizoma Coptidis is an oral hypoglycemic agent with anti-dyslipidemia and anti-obesity activities. Its metabolic activity of regulating blood glucose and lipids has been widely studied and evidenced in patients and various animal models. Berberine is known as an AMP-activated protein kinase (AMPK activator. Its insulin-independent hypoglycemic effect is related to inhibition of mitochondrial function, stimulation of glycolysis and activation of AMPK pathway. Additionally, berberine may also act as an α-glucosidase inhibitor. In the newly-diagnosed type 2 diabetic patients, berberine is able to lower blood insulin level via enhancing insulin sensitivity. However, in patients with poor β-cell function, berberine may improve insulin secretion via resuscitating exhausted islets. Furthermore, berberine may have extra beneficial effects on diabetic cardiovascular complications due to its cholesterol-lowering, anti-arrhythmias and nitric oxide (NO inducing properties. The antioxidant and aldose reductase inhibitory activities of berberine may be useful in alleviating diabetic nephropathy. Although evidence from animal and human studies consistently supports the therapeutic activities of berberine, large-scale multicenter trials are still necessary to evaluate the efficacy of berberine on diabetes and its related complications.

  8. Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Miao, L.

    2006-01-01

    Mechanics of fluid membranes may be described in terms of the concepts of mechanical deformations and stresses or in terms of mechanical free-energy functions. In this paper, each of the two descriptions is developed by viewing a membrane from two perspectives: a microscopic perspective, in which...... the membrane appears as a thin layer of finite thickness and with highly inhomogeneous material and force distributions in its transverse direction, and an effective, two-dimensional perspective, in which the membrane is treated as an infinitely thin surface, with effective material and mechanical properties....... A connection between these two perspectives is then established. Moreover, the functional dependence of the variation in the mechanical free energy of the membrane on its mechanical deformations is first studied in the microscopic perspective. The result is then used to examine to what extent different...

  9. Effect and mechanism of siderite on reverse flotation of hematite

    Institute of Scientific and Technical Information of China (English)

    Wan-zhong Yin; Dong Li; Xi-mei Luo; Jin Yao; Qian-yu Sun

    2016-01-01

    The effects of siderite on reverse flotation of hematite were investigated using micro flotation, adsorption tests, and Fourier trans-form infrared spectroscopy. The flotation results show that interactions between siderite and quartz are the main reasons that siderite signifi-cantly influences the floatability. The interactions are attributed to dissolved siderite species and fine siderite particles. The interaction due to the dissolved species is, however, dominant. Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical calculations reveal that adhesion on quartz increases when the siderite particle size decreases and that fine particles partly influence quartz floatability. Chemical solution calcula-tions indicate that the dissolved species of siderite might convert the surface of active quartz to CaCO3 precipitates that can be depressed by starch. The theoretical calculations are in good agreement with the results of adsorption tests and FTIR spectroscopy and explain the reasons why siderite significantly influences reverse flotation of hematite.

  10. General Relativistic Effects in the Core Collapse Supernova Mechanism

    CERN Document Server

    Bruenn, S W; Mezzacappa, A

    2001-01-01

    We apply our recently developed code for spherically symmetric, fully general relativistic (GR) Lagrangian hydrodynamics and multigroup flux-limited diffusion neutrino transport to examine the effects of GR on the hydrodynamics and transport during collapse, bounce, and the critical shock reheating phase of core collapse supernovae. Comparisons of models computed with GR versus Newtonian hydrodynamics show that collapse to bounce takes slightly less time in the GR limit, and that the shock propagates slightly farther out in radius before receding. After a secondary quasistatic rise in the shock radius, the shock radius declines considerably more rapidly in the GR simulations than in the corresponding Newtonian simulations. During the shock reheating phase, core collapse computed with GR hydrodynamics results in a substantially more compact structure from the center out to the stagnated shock. The inflow speed of material behind the shock is also increased. Comparisons also show that the luminosity and rms ene...

  11. Mechanisms of toxic effects and tumor induction by DDT

    Institute of Scientific and Technical Information of China (English)

    HardT; YamaS

    2002-01-01

    In order to clarify to medchanisms of toxiceffects and tumor induction by DDT,we conducted a 2-year feeding study of p,p'-DDT in F344 rats at doses of 5,50,and 500 ppm,Investigations on toxicokinetics,hematology,biochemistry and histopathology were performed after 26,52,78,and 104 weeks.In addition,potential factors involved in hepatocarcinogenesis were examined.Both sexes at 500ppm showed tremor,body weight depression,anemia,microsomal enzyme induction,and increases in hepatic tumors.The concentrations of DDT and its metabolites in the liver tended to be higher in males,while those in the brain and plasma were higher in females,which might contribute to sex differences in toxic effects and tumor induction.DDT was found to inhibit intercellular communication and to produce oxidative stress secondary to metabolic activation in the liver.The oxidative stress may be a key factor in hepatocarcinogenesis by DDT.Microarray analysis of hepatic lesions is now underway.

  12. Cytopathic effects incited by viroid RNAs and putative underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Francesco eDi Serio

    2013-01-01

    Full Text Available Viroids are infectious agents identified only in plants so far. In contrast to viruses, the genome of viroids is composed of a tiny circular RNA (250-400 nt not coding for proteins, but containing in its compact structure all the information needed for parasitizing the transcriptional and RNA trafficking machineries of their hosts. Viroid infections are frequently accompanied by cellular and developmental disorders that ultimately result in macroscopic symptoms. The molecular events linking the structural domains of viroid RNAs with cellular and macroscopic alterations remain largely unexplored, although significant progress has been lately achieved in one specific viroid-host combination, highlighting the ability of viroids to strongly interfere with their host RNA regulatory networks. Cytopathic effects induced by nuclear-replicating viroids, which were investigated since early studies on viroids, consist in irregular proliferations of cell membranes (paramural bodies or plasmalemmasomes, cell wall distortions, and chloroplast malformations. Different alternatives have been proposed regarding how these cytological alterations may influence the onset of macroscopic symptoms. Recently, the cytopathology and histopathology incited by a chloroplast-replicating viroid have been investigated in depth, with defects in chloroplast development having been related to specific molecular events that involve RNA silencing and impairment of chloroplast ribosomal RNA maturation. On this basis, a tentative model connecting specific cytopathologic alterations with symptoms has been put forward. Here, early and more recent studies addressing this issue will be reviewed and reassessed in the light of recent advances in the regulatory roles of small RNAs.

  13. The Molecular Mechanism of HDAC Inhibitors in Anticancer Effects

    Institute of Scientific and Technical Information of China (English)

    Gaofeng Bi; Guosheng Jiang

    2006-01-01

    HDACs and HATs are two kinds of enzymes which catalyse deacetylation and acetylation of histone in eukaryotes,whose dynamic balance has accurate regulation for gene transcription and gene expression of eukaryotes at DNA level. Disbalance of them can bring the disorder of proliferation and differentiation in normal cells, and then lead to the initiation of tumor. Their aberrant functions were directly related to the initiation and progression of various tumors, such as promyelocytic leukemia, Hodgkin lymphoma, colonic cancer and gastral cancer. The inhibitors of HDACs are used for treatment of tumor. They can restrain the activity of HDACs and block the inhibition of gene expression caused by the disorder of deacetylation. Its major biological effects lie in inducing differentiation of tumor cells, arresting cell circle at G0/G1, activating cell apoptosis gene, enhancing the sensitivity of chemical therapy and radioactive therapy. So far HDAC has been an important target enzyme in anticancer drug research.Cellular & Molecular Immunology. 2006;3(4):285-290.

  14. Mechanisms underlying the beneficial effects of Kaiyu Granule for depression

    Institute of Scientific and Technical Information of China (English)

    Xi Jin; Yidan Zhang; Qiaoying Li; Jianjun Zhao

    2013-01-01

    The proprietary Chinese medicine preparation Kaiyu Granule is made of bupleurum, nutgrass ga-lingale rhizome, szechwan lovage rhizome, turmeric root tuber, white peony alba, cape jasmine fruit, fried semen ziziphi jujubae, and prepared liquorice root. It is a common recipe for the clinical treatment of depression in China. In this study, after 21 days of unpredictable stress exposure, Wistar rats exhibited similar behavioral changes to patients with depression. Moreover, G-protein-coupled inwardly rectifying K+channel 1 mRNA and protein expression were significantly reduced in rat hippocampal CA1 and CA3 regions. However, G-protein-coupled inwardly rectifying K+channel 1 mRNA, protein expression, and rat behavior were clearly better after administration of 12, 8, or 4 g/kg of Kaiyu Granule when depression model rats underwent stress. 12 g/kg of Kaiyu Granule had the most obvious effects on the increased expression of G-protein-coupled inwardly rectifying K+channel 1 mRNA and protein in rat hippocampal CA1 and CA3 regions. These results suggested that Kaiyu Granule improved depression by affecting G-protein-coupled inwardly fying K+channel 1 expression in the rat hippocampus.

  15. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects.

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M; Zhu, Jun

    2016-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.

  16. Lipoprotein(a: Cellular Effects and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Kirsten Riches

    2012-01-01

    Full Text Available Lipoprotein(a (Lp(a is an independent risk factor for the development of cardiovascular disease (CVD. Indeed, individuals with plasma concentrations >20 mg/dL carry a 2-fold increased risk of developing CVD, accounting for ~25% of the population. Circulating levels of Lp(a are remarkably resistant to common lipid lowering therapies, and there are currently no robust treatments available for reduction of Lp(a apart from plasma apheresis, which is costly and labour intensive. The Lp(a molecule is composed of two parts, an LDL/apoB-100 core and a unique glycoprotein, apolipoprotein(a (apo(a, both of which can interact with components of the coagulation cascade, inflammatory pathways, and cells of the blood vessel wall (smooth muscle cells (SMC and endothelial cells (EC. Therefore, it is of key importance to determine the molecular pathways by which Lp(a exerts its influence on the vascular system in order to design therapeutics to target its cellular effects. This paper will summarise the role of Lp(a in modulating cell behaviour in all aspects of the vascular system including platelets, monocytes, SMC, and EC.

  17. Biological effects of exposure to intermediate neutron and repair mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Utsumi, Hiroshi; Sasaki, Masao [Kyoto Univ. (Japan); Onishi, Takeo; Onizuka, Masahiko

    2000-01-01

    An investigation was made on cytotoxic effects of neutron capture using chicken B-cell line mutants, DT40, KURO{sup -/-}, RAD54 {sup -/-} and KU70{sup -/-} / RAD54{sup -/-}. Suspensions of these cells were exposed to two times X-radiation at various doses and the cell surviving was evaluated. The sensitivity to radiation was highest in the double defective mutant, KU70{sup -/-} / RAD54{sup -/-} and followed by that of RAD54 {sup -/-}, a homologous recombination mutant, whereas KURO {sup -/-} cell, a non-homologous end-joining mutant showed a peculiar surviving curve composed of two phases and the cell was highly sensitive to a low-dose radiation. This indicates that there are two different DNA repair systems for double-strand breaks and the system for non-homologous end-joining repair can be involved in all phases of cell cycle, but the system for the homologous one is involved only in S-phase. Therefore, it was thought that variation of sensitivity to radiation exposure depending to the phase of cell cycle might explain the alternation of repair system depending to the phase progressing of cell cycle. It was thus likely that the recovery from radiation injury, which is still a black box might be explained with the double strand breaks of DNA. (M.N.)

  18. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2015-07-01

    Full Text Available Astaxanthin (ATX is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and peroxisome proliferator-activated receptor gamma (PPARγ. Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.

  19. Molecular mechanism: ERK signaling, drug addiction and behavioral effects

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M.; Zhu, Jun

    2017-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder, characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that results in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. PMID:26809997

  20. Mechanical advantage in wheelchair lever propulsion : effect on physical strain and efficiency

    NARCIS (Netherlands)

    van der Woude, L H; Botden, E; Vriend, I; Veeger, DirkJan (H. E. J.)

    1997-01-01

    In this experimental study on a prototype lever-propelled wheelchair, the effect of a range of mechanical advantages (MA) on physical strain, oxygen uptake, energy cost, mechanical efficiency, stroke frequency and perceived exertion was examined. Nine out of 10 male nonwheelchair users successfully

  1. Effectiveness of mechanical tongue cleaning on breath odour and tongue coating : a systematic review

    NARCIS (Netherlands)

    Van der Sleen, M. I.; Slot, D. E.; Van Trijffel, E.; Winkel, E. G.; Van der Weijden, G. A.

    2010-01-01

    Background: The objective of this review was to summarize the available evidence regarding the effects of mechanical tongue cleaning compared with no mechanical tongue cleaning on breath odour and tongue coating (TC). Methods: PubMed-MEDLINE, EMBASE and Cochrane-CENTRAL were searched to identify pot

  2. Effect of ultrasonic impact treatment on the mechanical properties of titanium nickelide single crystal

    Science.gov (United States)

    Surikova, N. S.; Narkevich, N. A.; Surikov, N. Yu.; Vlasov, I. V.; Ovchinnikov, S. V.; Mironov, Yu. P.; Gritsenko, B. P.

    2016-10-01

    Optical and transmission electron microscopy, X-ray diffraction analysis, nanoindentation, measurements of wear, and mechanical uniaxial tensile tests have been used to study the effect of ultrasonic impact surface treatment on the fine structure and the mechanical properties of the surface layers and the deformation behavior of TiNi(Fe, Mo) bulk single crystal samples.

  3. Effectiveness of mechanical tongue cleaning on breath odour and tongue coating: a systematic review

    NARCIS (Netherlands)

    M.I. van der Sleen; D.E. Slot; E. van Trijffel; E.G. Winkel; G.A. van der Weijden

    2010-01-01

    Background:  The objective of this review was to summarize the available evidence regarding the effects of mechanical tongue cleaning compared with no mechanical tongue cleaning on breath odour and tongue coating (TC). Methods:  PubMed-MEDLINE, EMBASE and Cochrane-CENTRAL were searched to identify p

  4. Validation Effectiveness of Develop Maintainability Allocation on Aircraft Mechanical Components

    Directory of Open Access Journals (Sweden)

    Wan Husain W.M.S.

    2016-01-01

    Full Text Available Maintainability Allocation is a process to identify the allowable maximum task time for each individual component. Consequently, this provides clear pictures to the designers to design and identify potential design improvement within allowable maintenance allocation time limits. During the design process elements such as missteps or misapplications most commonly occur. Here, the authors propose having the maximum target for each individual maintainability component. The main objective of this paper is to present the validation process of developed Maintainability Allocation to potentially eliminate previous problems. The process of validation begins with analysed all the data collected from Service Difficulty Reports (SDR for selected aircraft. This is to understand the problems from existing aircraft before a new design is proposed through the process of Maintainability Allocation prediction. The validation processes have discovered the importance of utilising historical information such as feedback information. The second area is looking at the element of quantifying the data collected from aircraft feedback information which contains various types of information that could be used for future improvement. Validation process shows that feedback information has helped to identify the critical and sensitive components that need more attention for further improvement. The study shows that the aircraft maintenance related feedback information systems analyses were very useful for deciding maintainability effectiveness; these include planning, organising maintenance and design improvement. There is no doubt that feedback information has the ability to contribute an important role in design activities. The results also show that maintainability is an important measure that can be used as a guideline for managing efforts made for the improvement of aircraft components.

  5. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign divergence

  6. Protective effect of resveratrol on 5/6 nephrectomized rats and its mechanism

    Institute of Scientific and Technical Information of China (English)

    黄新忠

    2013-01-01

    Objective To investigate the protective effect of res-veratrol(RSV)on 5/6 nephrectomized rats and its mechanism.Methods Fifty male SD rats were randomly divided into three groups:sham operated(Sham,n=10)

  7. Mechanism and Effectiveness of Reduction Action of Unsaturated Polyester Resin Reducer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The reduction action mechanism of unsaturated polyester resin reducer is analysed.The experimental results show that the active reducer bearing reactive functional group on the ends of molecules effectively lowers the curing shrinkage of unvaturated polyester resin.

  8. Supplementary Material to: Realization of Three-port Spring Networks with Inerter for Effective Mechanical Control

    OpenAIRE

    Michael Z. Q. Chen; Wang, Kai; Zou, Yun; Chen, Guanrong

    2015-01-01

    This is a supplementary material to "Realization of three-port spring networks with inerter for effective mechanical control" [1], which provides the detailed proofs of some results. For more background information, refer to [2]-[32] and references therein.

  9. Effect of grain boundary on the mechanical behaviors of irradiated metals: a review

    Science.gov (United States)

    Xiao, XiaZi; Chu, HaiJian; Duan, HuiLing

    2016-06-01

    The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.

  10. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    mechanical properties in the glucocorticoid-2. In conclusion, 7 months glucocorticoid treatment with malnutrition had significant impact on cortical microarchitecture of sheep femur midshaft. These changes occurred particularly 3 months after the glucocorticoid cessation suggesting a delayed effect......The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory...

  11. Mechanism for Increasing Effective Inputs in Urban Agriculture through Industrial Value Chain

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This paper firstly introduces the value chain management thought,current situations of utilization,and connotation of mechanism for increasing effective inputs in urban agriculture through industrial value chain.On the basis of basic idea of value chain management,this paper is to explore the mechanism for increasing effective inputs in urban agriculture through the value chain of urban agriculture linking with other industries.

  12. Mercury Methylation by Cobalt Corrinoids: Relativistic Effects Dictate the Reaction Mechanism.

    Science.gov (United States)

    Demissie, Taye B; Garabato, Brady D; Ruud, Kenneth; Kozlowski, Pawel M

    2016-09-12

    The methylation of Hg(II) (SCH3 )2 by corrinoid-based methyl donors proceeds in a concerted manner through a single transition state by transfer of a methyl radical, in contrast to previously proposed reaction mechanisms. This reaction mechanism is a consequence of relativistic effects that lower the energies of the mercury 6p1/2 and 6p3/2 orbitals, making them energetically accessible for chemical bonding. In the absence of spin-orbit coupling, the predicted reaction mechanism is qualitatively different. This is the first example of relativity being decisive for the nature of an observed enzymatic reaction mechanism.

  13. DTA and DSC study on the effect of mechanical dispersion on poly(tetrafluorethylene properties

    Directory of Open Access Journals (Sweden)

    Dumitraşa Mihai

    2014-12-01

    Full Text Available Poly(tetrafluorethylene particles were obtained by mechanical processing of the formed polymer (Teflon bar. In order to assess the effect of mechanical wear on polymer properties, their melting and crystallization behaviour was investigated by DSC and DTA, and the results were compared to the ones obtained for the native polymer. An increase of the crystallinity degree and an accentuated decrease of the average molecular weight were found for the samples submitted to mechanical wear, as a result of mechanical degradation of the polymer

  14. Effect of fluorapatite additive on the mechanical properties of tricalcium phosphate-zirconia composites

    Science.gov (United States)

    Sallemi, I.; Ben Ayed, F.; Bouaziz, J.

    2012-02-01

    The effect of fluorapatite addition on the mechanical properties of tricalcium phosphate - 50 wt% zirconia composites was investigated during the sintering process. The Brazilian test was used to measure the mechanical resistance of bioceramics. The mechanical properties of composites increase with the sintering temperature and with fluorapatite additive. At 1400°C, the fluorapatite additive ameliorates the densification and the mechanical resistance of tricalcium phosphate - 50 wt% zirconia composites. The 31P magic angle spinning nuclear magnetic resonance analysis of tricalcium phosphate - zirconia composites sintered with fluorapatite additives reveals the presence of tetrahedral P sites.

  15. Canceling effect: a natural mechanism to reduce the effects of global warming

    Science.gov (United States)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; kuzyakov, Yakov

    2016-04-01

    The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters Vmax and Km will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of Vmax and Km of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase) and hemicelluloses (xylanase) were analyzed in situ from 0 to 40 °C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol-1 corresponding to the Q10 values of the enzyme activities of 1.4-1.9 (with Vmax-Q10 1.0-2.5 and Km-Q10 0.94-2.3). Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that,the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10-15 °C and 25-30 °C, which were less pronounced for xylanase. The nonlinearity between 10 and 15 °C was explained by 30-80% increase in Vmax. At 25-30 °C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of Vmax and Km to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15 °C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10 °C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be investigated for other enzymes

  16. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    Science.gov (United States)

    Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K.

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment.

  17. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.

    Science.gov (United States)

    Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong

    2011-03-22

    High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.

  18. Effect of oven residence time on mechanical properties in rotomoulding of LLDPE

    Indian Academy of Sciences (India)

    P L RAMKUMAR; SACHIN D WAIGAONKAR; D M KULKARNI

    2016-05-01

    In rotational moulding of plastics, improving the mechanical properties without sacrificing the processibility is a challenging task. In this paper, an attempt has been made to investigate the effect of oven residence time on the mechanical properties of the rotationally moulded products made using linear low densitypolyethylene. Simulation studies were conducted using ROTOSIM software to analyze thermal transitions and phase changes during the process. Degree of curing of the polymers was also assessed and correlated with mechanical properties. Experiments were further conducted to obtain favourable oven residence time to obtain highest mechanical properties. Experimental investigation revealed that there exist regions where the part was ‘under-cured’ and mechanical properties were found to be inferior. It was also found that when parts were ‘overcured’, the mechanical properties were severely affected. A regime of favourable processing window was identified where the highest tensile, flexural and impact properties were noticed.

  19. The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ji Changjiang; Park, Harold S [Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235 (United States)

    2007-08-01

    We have performed atomistic simulations of the tensile loading of <100> and <110> copper nanowires to investigate the coupled effects of geometry and surface orientation on their mechanical behaviour and properties. By varying the nanowire cross section from square to rectangular, nanowires with dominant surface facets are created that exhibit distinct mechanical properties due to the different inelastic deformation mechanisms that are activated. In particular, we find that non-square nanowires generally exhibit lower yield stresses and strains, lower toughness, elevated fracture strains, and a propensity to deform via twinning; we quantify the links between the observed deformation mechanisms due to non-square cross section and the resulting mechanical properties, while illustrating that geometry can be utilized to tailor the mechanical properties of nanowires.

  20. Quantum-mechanical description of Lense-Thirring effect for relativistic scalar particles

    CERN Document Server

    Silenko, Alexander J

    2014-01-01

    Exact expression for the Foldy-Wouthuysen Hamiltonian of scalar particles is used for a quantum-mechanical description of the relativistic Lense-Thirring effect. The exact evolution of the angular momentum operator in the Kerr field approximated by a spatially isotropic metric is found. The quantum-mechanical description of the full Lense-Thirring effect based on the Laplace-Runge-Lenz vector is given in the nonrelativistic and weak-field approximation. Relativistic quantum-mechanical equations for the velocity and acceleration operators are obtained. The equation for the acceleration defines the Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the frame-dragging effect.

  1. Microwave effect on diffusion: a possible mechanism for non-thermal effect.

    Science.gov (United States)

    Hinrikus, Hiie; Lass, Jaanus; Karai, Denis; Pilt, Kristjan; Bachmann, Maie

    2015-01-01

    In this study, we assume that microwave radiation affects hydrogen bonding between dipolar water molecules and through that diffusion in water at constant temperature. The experimental study was performed on the setup of two identical reservoirs filled with pure water and 0.9% NaCl solution and connected by a thin tube. Alterations of NaCl concentration in the reservoir initially filled with pure water were measured using the resistance of the solution as an indicator. The applied 450 MHz continuous-wave microwave field had the maximal specific absorption rate of 0.4 W/kg on the connecting tube. The standard deviation of water temperature in the setup was 0.02 °C during an experiment. Our experimental data demonstrated that microwave exposure makes faster the process of diffusion in water. The time required for reduction of initial resistance of the solution by 10% was 1.7 times shorter with microwave. This result is consistent with the proposed mechanism of low-level microwave effect: microwave radiation, rotating dipolar water molecules, causes high-frequency alterations of hydrogen bonds between water molecules, thereby affects its viscosity and makes faster diffusion.

  2. Effects of Mechanical Harvesting on Sugarcane Stubble Quality and Growth of Ratoon

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The experiment was conducted with the traditional manual harvesting and mechanical harvesting of sugarcane,to compare the effects of different harvesting method on the sugarcane stubble quality and the growth of ratoon.The experimental results are as follows.(i) The stubble height and breaking stubble rate of mechanical harvesting was significantly higher than manual harvesting,the stubble height of lodging species and difficult defoliation species increased in mechanical harvesting condition.Varieties with higher levels of fiber had lower rate of broken stubble.(ii) The effects of mechanical harvesting on germination of next year ratoon were quite different due to different varieties,indicating that the better perennial species have less impact than the poor perennial species.(iii) Compared with manual harvesting,mechanical harvesting had slightly higher plant height and single-stem weight and less effective stems number,the difference of cane yield was not significant,but sucrose content increased 0.53%.(iv) Mechanical harvesting combining with leaves crushing could reduce the impact on the germination of ratoon,improve the single-stem weight and increase the effective number of stems.

  3. Possible Effects of Quantum Mechanics Violation Induced by Certain Quantum Gravity on Neutrino Oscillations

    CERN Document Server

    Chang, C H; Li Xue Qian; Liu, Y; Ma, F C; Tao, Z; CHANG, Chao-Hsi; DAI, Wu-Sheng; LI, Xue-Qian; LIU, Yong; MA, Feng-Cai; TAO, Zhi-jian

    1999-01-01

    In this work we tried extensively to apply the EHNS postulation about the quantum mechanics violation effects induced by the quantum gravity of black holes to neutrino oscillations. The possibilities for observing such effects in the neutrino experiments (in progress and/or accessible in the near future) were discussed. Of them, an interesting one was outlined specially.

  4. Application of natural attenuation for the control of petroleum hydrocarbon plume: Mechanisms and effectiveness evaluation

    Science.gov (United States)

    Chiu, H. Y.; Hong, A.; Lin, S. L.; Surampalli, R. Y.; Kao, C. M.

    2013-11-01

    The effectiveness and mechanisms of NA were evaluated in the field-scale study.Significant BTEX removal was observed via different intrinsic bioremediation processes.The calculated biodegradation capacity confirmed that NA can effectively contain the plume.BTEX-degrading bacteria appeared in groundwater via PCR/nucleotide sequence analyses.

  5. Pyrimethamine-induced alterations in human lymphocytes in vitro. Mechanisms and reversal of the effect

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    1985-01-01

    . The effects of PYR were completely corrected by low concentrations of folinic acid and high concentrations of folic acid, indicating that the basic mechanism of action of PYR is competitive blocking of dihydrofolate reductase. However, the effect of PYR was poorly corrected by exogenous thymidine; therefore...

  6. Inhibitory effects of rapamycin on proliferation of chronic myelogenous leukemia cells and its mechanism

    Institute of Scientific and Technical Information of China (English)

    李杰

    2012-01-01

    Objective To explore the inhibitory effects of rapamycin on proliferation of chronic myelogenous leukemia (CML) cells and its possible mechanism. Methods The effects of rapamycin at various concentrations on cell proliferation of CML cell line K562 cells were analyzed by MTT. The expressions

  7. THE MECHANISM STUDY OF EFFECT OF CALCIUM AND ALUMINIUM IONS ON FLOCCULATING PROCESS OF KAOLIN

    Institute of Scientific and Technical Information of China (English)

    何绪文; 狄平宽; 单忠健

    1995-01-01

    The effects of Ca2+and Al3+ious on flocculating process of kaolin using ployacrylamide as flocculant was studied. Mechanism of the effects was investigated and discussed through molecularorbit (MO) theory, solution chemistry calculation and electronic probe examination in this article.

  8. Effectiveness of feeding large kibbles with mechanical cleaning properties in cats with gingivitis

    NARCIS (Netherlands)

    Vrieling, HE; Theyse, LFH; van Winkelhoff, AJ; Dijkshoorn, NA; Logan, EI; Picovet, P

    2005-01-01

    Effectiveness of feeding large kibbles with mechanical cleaning properties in cats with gingivitis periodontal disease is the most common acquired oral disease in cats. it starts with plaque accumulation and gingivitis. The aim of this study was to evaluate the effectiveness of different types of ki

  9. Metal-ceramic materials. Study and prediction of effective mechanical properties

    Science.gov (United States)

    Karakulov, Valerii V.; Smolin, Igor Yu.

    2016-08-01

    Mechanical behavior of stochastic metal-ceramic composite materials was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites, whose structure consists of a metal matrix and randomly distributed ceramic inclusions, was numerically simulated. The results of the numerical simulation were used for evaluation of the effective elastic and strength properties of metal-ceramic materials with different parameters of the structure. The values of the effective mechanical properties of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites was determined.

  10. Differentiation mechanism and function of the cereal aleurone cells and hormone effects on them.

    Science.gov (United States)

    Zheng, Yankun; Wang, Zhong

    2014-11-01

    The cereal aleurone cells differentiate from the endosperm epidermis with the exception of endosperm transfer cells. Aleurone cells contain proteins, lipids, and minerals, and are important for digesting the endosperm storage products to nurse the embryo under effects of several hormones during the seed germination. The differentiation of aleurone cells is related to location effect and special gene expression. Moreover, the differentiation of aleurone cells is probably affected by the cues from maternal tissues. In the paper, differentiation mechanism and function of aleurone cells and hormone effects on them are reviewed. Some speculations about the differentiation mechanism of aleurone cells are given here.

  11. Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities

    Science.gov (United States)

    ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François

    2016-09-01

    The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.

  12. Study on cavitation effect of mechanical seals with laser-textured porous surface

    Science.gov (United States)

    Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.

    2012-11-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  13. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    Science.gov (United States)

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates.

  14. Evaluation of the behavior of ceramic powders under mechanical vibration and its effect on the mechanics of auto-granulation

    Science.gov (United States)

    Ku, Nicholas

    In ceramic powder processing, the correlations between the constituent particles and the product structure-property outcomes are well established. However, the influence of static powder properties on the dynamic bulk powder behavior in such advance powder processes remains elusive. A multi-scale evaluation is necessary to understand the full effects of the particle ensemble on the bulk powder behavior, ranging from the particle micro-scale to the bulk powder macro-scale. Fine powders, with particle size of 10 ?m or less, often exhibit cohesive behavior. Cohesion in powders can cause poor flowability, affect agglomerate formation, as well as induce powder caking, all of which can be detrimental to the processing of the powders and/or final product structure-property outcomes. For this reason, it is critical to correlate the causal properties of the powders to this detrimental behavior. In this study, the bulk behavior of ceramic powders is observed under a simple powder process: harmonic, mechanical vibration. Four powder samples, two titania and two alumina powders, were studied. The main difference between the two powder variants of each material is particle size. The two alumina (Al2O3) powder samples had a primary particle size at 50% less than, or d50 of, 0.5 and 2.3 microm and the titania (TiO2) powder samples had a d 50 particle size of 0.1 and 1 microm. Due to mechanical vibration, the titania powder variant with a primary particle size of 0.1 microm exhibited a clustering behavior known as auto-granulation. Auto-granulation is the growth of particle clusters within a dry, fine powder bed without the addition of any binder or liquid to the system. The amplitude and frequency of the mechanical vibration was varied to view the effect on the equilibrium granule size and density. Furthermore, imaging of cross-sections of the granules was conducted to provide insight into to the internal microstructure and measure the packing fraction of the constituent

  15. DMPD: Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18336664 Mechanisms for the anti-inflammatory effects of adiponectin in macrophages...(.html) (.csml) Show Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. PubmedID 18...336664 Title Mechanisms for the anti-inflammatory effects of adiponectin in macro

  16. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects

    Science.gov (United States)

    Dhote, R. P.; Gomez, H.; Melnik, R. N. V.; Zu, J.

    2015-07-01

    Employing the Ginzburg-Landau phase-field theory, a new coupled dynamic thermo-mechanical 3D model has been proposed for modeling the cubic-to-tetragonal martensitic transformations in shape memory alloy (SMA) nanostructures. The stress-induced phase transformations and thermo-mechanical behavior of nanostructured SMAs have been investigated. The mechanical and thermal hysteresis phenomena, local non-uniform phase transformations and corresponding non-uniform temperatures and deformations' distributions are captured successfully using the developed model. The predicted microstructure evolution qualitatively matches with the experimental observations. The developed coupled dynamic model has provided a better understanding of underlying martensitic transformation mechanisms in SMAs, as well as their effect on the thermo-mechanical behavior of nanostructures.

  17. The effects of starches on mechanical properties of paracetamol tablet formulations. I. Pregelatinization of starch binders.

    Science.gov (United States)

    Alebiowu, Gbenga; Itiola, Oludele Adelanwa

    2003-09-01

    A study has been made of the effects of pregelatinization of native sorghum and plantain starches on the mechanical properties of a paracetamol tablet formulation in comparison with corn starch BP. The mechanical properties tested, viz. tensile strength (T) and brittle fracture index (BFI) of the paracetamol tablets were affected by pregelatinization of the starch. The results suggest that pregelatinized starches may be useful as binders when a particular degree of bond strength and brittleness is desired.

  18. Effect of Aging on the Mechanical Properties of Li-Ion Cell Components - A Preliminary Look

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-05-03

    DOE/VTO/ES initiated the Computer Aided Engineering for Batteries (CAEBAT) in 2010. CAEBAT had a strong focus on building electrochemical-thermal models that simulate the performance of lithium-ion batteries. Since the start of CAEBAT-2 projects in FY14, our emphasis has been on safety aspects -- mechanical deformation in particular. This presentation gives a preliminary look at the effect of aging on the mechanical properties of lithium-ion cell components.

  19. Place of Mitochondrial Potassium-ATP Channels in The Mechanism of Effect of Ischemic Conditionings

    Directory of Open Access Journals (Sweden)

    İlker Şengül

    2012-07-01

    Full Text Available Ischemia-reperfusion episodes in a short interval “just before” ischemia performed experimentally have been called preconditioning, where as “just after” ischemia have been called postconditioning and tissue protective effects of these endogenous mechanisms have been shown in various organs via various studies. Although multipl mechanisms have been being propounded about these phenomenons which have been found area of usage from hearth surgery to organ transplantation, mitochondrial potassium ATP-channels have been maintaining its importance.

  20. Effects of Anatomical Characteristics of Ethiopian Lowland Bamboo on Physical and Mechanical Properties

    Institute of Scientific and Technical Information of China (English)

    SEYOUM; Kelemwork

    2009-01-01

    The main aim of this study was to evaluate the effects of anatomical characteristics of Ethiopian lowland bamboo on selected physical and mechanical properties. A total of 45 solid culms from three different age groups (2-, 3- and 4- year-old) were harvested from natural bamboo forest in Ethiopia and then samples were transported to China for carrying out anatomical characteristics test. Physical and mechanical properties testing were conducted in Ethiopia. The result indicates that age and height had signi...

  1. Effect of Flyash Addition on Mechanical and Gamma Radiation Shielding Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Kanwaldeep Singh

    2014-01-01

    Full Text Available Six concrete mixtures were prepared with 0%, 20%, 30%, 40%, 50%, and 60% of flyash replacing the cement content and having constant water to cement ratio. The testing specimens were casted and their mechanical parameters were tested experimentally in accordance with the Indian standards. Results of mechanical parameters show their improvement with age of the specimens and results of radiation parameters show no significant effect of flyash substitution on mass attenuation coefficient.

  2. Effects of Crimping on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis

    Science.gov (United States)

    Nematzadeh, F.; Sadrnezhaad, S. K.

    2013-11-01

    Nitinol stents are used to minimize improper dynamic behavior, low twistability, and inadequate radial mechanical strength of femoral artery stents. In this study, finite element method is used to investigate the effect of crimping and Austenite finish temperature ( A f) of Nitinol on mechanical performance of Z-shaped open-cell femoral stent under crimping conditions. Results show that low A f Nitinol has better mechanical and clinical performance due to small chronic outward force, large radial resistive force, and appropriate superelastic behavior.

  3. The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties.

    Science.gov (United States)

    Yu, Xiaohua; Zhan, Zhaolin

    2014-01-01

    This work has considered the intrinsic influence of bond energy on the macroscopic, thermodynamic, and mechanical properties of crystalline materials. A general criterion is proposed to evaluate the properties of nanocrystalline materials. The interrelation between the thermodynamic and mechanical properties of nanomaterials is presented and the relationship between the variation of these properties and the size of the nanomaterials is explained. The results of our work agree well with thermodynamics, molecular dynamics simulations, and experimental results. This method is of significance in investigating the size effects of nanomaterials and provides a new approach for studying their thermodynamic and mechanical properties.

  4. Effects of fibrillation on the wood fibers' enzymatic hydrolysis enhanced by mechanical refining.

    Science.gov (United States)

    Liu, Wei; Wang, Bing; Hou, Qingxi; Chen, Wei; Wu, Ming

    2016-04-01

    The hardwood bleached kraft pulp (HBKP) fibers were pretreated by PFI mill to obtain the substrates, the effects of fibrillation on HBKP fibers' enzymatic hydrolysis was studied. The results showed that the enzymatic hydrolysis efficiency was enhanced obviously by mechanical refining. The mechanical refining alterated the fibers' characteristics such as fibrillation degree, specific surface area, swelling ability, crystallinity, fiber length and fines content. All these factors correlating to the enzymatic hydrolysis were evaluated through mathematical analysis. Among these factors, the fibrillation degree has the profoundest impact on the enzymatic hydrolysis of wood fibers. Consequently, the mechanical refining aiming for a high fibrillation degree was feasible to enhance the enzymatic hydrolysis of lignocellulosic biomass.

  5. Effect of Heat Treatment on Mechanical Property of High Cr-W Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Liu Jianping; Li Lixia

    2007-01-01

    The microstructure of high Cr-W cast iron after heat treatment were analyzed, and the effect of various heat treatment temperature and time on mechanical properties of high Cr-W cast iron were studied, and the best process parameter of heat treatment was provided in this paper. The results show that the heat treatment can improve the mechanical property of high Cr-W cast iron, and higher synthetic mechanical property of high Cr-W cast iron can be obtained when treated with normalization at 980℃ for 2h and tempered at 400℃ for 2h.

  6. Strain engineering for mechanical properties in graphene nanoribbons revisited: The warping edge effect

    Science.gov (United States)

    Jiang, Jin-Wu

    2016-06-01

    We investigate the strain engineering and the edge effect for mechanical properties in graphene nanoribbons. The free edges of the graphene nanoribbons are warped due to compressive edge stresses. There is a structural transformation for the free edges from the three-dimensional warping configuration to the two-dimensional planar structure at the critical strain ɛc = 0.7%, at which the applied mechanical stress is equal to the intrinsic compressive edge stress. This structural transformation leads to step-like changes in several mechanical properties studied in the present work, including the Young's modulus, the Poisson's ratio, the quality factor of nanomechanical resonators, and the phonon edge mode.

  7. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training

    DEFF Research Database (Denmark)

    Kongsgaard, Mads; Qvortrup, Klaus; Larsen, Jytte;

    2010-01-01

    BACKGROUND: Patellar tendinopathy is characterized by pathologic abnormalities. Heavy slow resistance training (HSR) is effective in the management of patellar tendinopathy, but the underlying functional mechanisms remain elusive. PURPOSE: To investigate fibril morphology and mechanical properties...... area decreased (-26% +/- 21%, P = .04) in tendinopathic tendons after HSR. CONCLUSION: Fibril morphology is abnormal in tendinopathy, but tendon mechanical properties are not. Clinical improvements after HSR were associated with changes in fibril morphology toward normal fibril density and mean fibril...... area. Heavy slow resistance training improved the clinical outcome of patellar tendinopathy, and these improvements were associated with normalization of fibril morphology, most likely due to a production of new fibrils....

  8. Catalytic effect and reaction mechanism of Ti doped in NaAlH4: A review

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; CHEN YunGui; WU ChaoLing; TAO MingDa

    2008-01-01

    Catalytic effect and hydrogen reaction mechanism of Ti doped in NaAlH4 were elaborated in this paper, and current viewpoints about Ti active species in hydrogen reaction were discussed, in a further step, the possibility and practicality of the hydrogen reaction mechanism of Ti-doped NaAlH4 were elucidated. They could be summarized as follows: while the current theory about the hydrogen reaction mecha-nism of Ti-doped NaAlH4 should be further improved and modified, the research on Ti-doped NaAlH4 would be a recommendable pattern for the catalyst research in other metal complex hydrides.

  9. Effects of plantain and corn starches on the mechanical and disintegration properties of paracetamol tablets

    OpenAIRE

    Akin-Ajani, Olufunke D.; Itiola, Oludele A.; ODEKU, OLUWATOYIN A.

    2005-01-01

    The effects of plantain starch obtained from the unripe fruit of the plantMusa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 23 factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and...

  10. Effects of ligand binding on the mechanical properties of ankyrin repeat protein gankyrin.

    Directory of Open Access Journals (Sweden)

    Giovanni Settanni

    Full Text Available Ankyrin repeat proteins are elastic materials that unfold and refold sequentially, repeat by repeat, under force. Herein we use atomistic molecular dynamics to compare the mechanical properties of the 7-ankyrin-repeat oncoprotein Gankyrin in isolation and in complex with its binding partner S6-C. We show that the bound S6-C greatly increases the resistance of Gankyrin to mechanical stress. The effect is specific to those repeats of Gankyrin directly in contact with S6-C, and the mechanical 'hot spots' of the interaction map to the same repeats as the thermodynamic hot spots. A consequence of stepwise nature of unfolding and the localized nature of ligand binding is that it impacts on all aspects of the protein's mechanical behavior, including the order of repeat unfolding, the diversity of unfolding pathways accessed, the nature of partially unfolded intermediates, the forces required and the work transferred to the system to unfold the whole protein and its parts. Stepwise unfolding thus provides the means to buffer repeat proteins and their binding partners from mechanical stress in the cell. Our results illustrate how ligand binding can control the mechanical response of proteins. The data also point to a cellular mechano-switching mechanism whereby binding between two partner macromolecules is regulated by mechanical stress.

  11. Numerical analysis of the texture effect on the hydrodynamic performance of a mechanical seal

    Science.gov (United States)

    Adjemout, M.; Brunetiere, N.; Bouyer, J.

    2016-03-01

    The purpose of this paper is to analyze the effect of the main geometrical characteristics of texture on the hydrodynamic lubrication of a mechanical seal. A parametric study was carried out in order to improve the performance of a mechanical seal. The numerical model used in this study solves the Reynolds equation coupled with a mass conservative model which takes into account the cavitation phenomenon. It is shown that among the six dimple shapes tested herein, namely cylinder, square, triangle, truncated cone, truncated pyramid, and spherical cap, the triangular dimples placed symmetrically with respect to their bases are more effective for enhancing the hydrodynamic performance of the mechanical seal. The effect of the area and depth ratios is studied and optimized as well. The optimized solution is able to minimize friction and leakage under a range of operating conditions.

  12. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghak [Korea KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed.

  13. Effects of fibre reinforcement on the mechanical properties of brushite cement.

    Science.gov (United States)

    Gorst, N J S; Perrie, Y; Gbureck, U; Hutton, A L; Hofmann, M P; Grover, L M; Barralet, J E

    2006-01-01

    In this study the effect of structure and amount of polyglactin fibre incorporation into a brushite forming calcium phosphate cement system and the effect of mechanical compaction on the fibre modified system were investigated. In comparison the effect of resorbable polycaprolactone surface coating of cement specimens was investigated. The results showed that, apart from the mechanical properties of the reinforcing material, the structure of the incorporated fibres, regular or random, is crucial for the resulting flexural strength and modulus of elasticity. Fibre reinforcement could also be combined with mechanical compaction of the cement/fibre composite paste leading to a possible 7-fold increase in flexural strength or an almost 5-fold increase in modulus of elasticity. Reinforcement of the tensile surface of cement grafts may ultimately improve strength where required, especially in conjunction with bone fixation devices.

  14. Effects of Microstructural Variability on Thermo-Mechanical Properties of a Woven Ceramic Matrix Composite

    Science.gov (United States)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    The objectives of this paper include identifying important architectural parameters that describe the SiC/SiC five-harness satin weave composite and characterizing the statistical distributions and correlations of those parameters from photomicrographs of various cross sections. In addition, realistic artificial cross sections of a 2D representative volume element (RVE) are generated reflecting the variability found in the photomicrographs, which are used to determine the effects of architectural variability on the thermo-mechanical properties. Lastly, preliminary information is obtained on the sensitivity of thermo-mechanical properties to architectural variations. Finite element analysis is used in combination with a response surface and it is shown that the present method is effective in determining the effects of architectural variability on thermo-mechanical properties.

  15. Mechanical robustness of the calcareous tubeworm Hydroides elegans: warming mitigates the adverse effects of ocean acidification.

    Science.gov (United States)

    Li, Chaoyi; Meng, Yuan; He, Chong; Chan, Vera B S; Yao, Haimin; Thiyagarajan, V

    2016-01-01

    Development of antifouling strategies requires knowledge of how fouling organisms would respond to climate change associated environmental stressors. Here, a calcareous tube built by the tubeworm, Hydroides elegans, was used as an example to evaluate the individual and interactive effects of ocean acidification (OA), warming and reduced salinity on the mechanical properties of a tube. Tubeworms produce a mechanically weaker tube with less resistance to simulated predator attack under OA (pH 7.8). Warming (29°C) increased tube volume, tube mineral density and the tube's resistance to a simulated predatory attack. A weakening effect by OA did not make the removal of tubeworms easier except for the earliest stage, in which warming had the least effect. Reduced salinity (27 psu) did not affect tubes. This study showed that both mechanical analysis and computational modeling can be integrated with biofouling research to provide insights into how fouling communities might develop in future ocean conditions.

  16. Effect of mold temperature on short and long-term mechanical properties of PBT

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available In this work, the effect of mold temperature variation on the short-term mechanical properties obtained from the tensile and Charpy impact tests, and the long-term mechanical properties obtained from dynamic mechanical loading and flexural creep of injection molded polybutylene terepthalate (PBT are reported. It has been observed that the effect of changing the processing condition viz. mold temperature on the viscoelastic properties are more pronounced when their long-term behavior is tested. The tensile and impact properties showed only a negligible effect to the change in mold temperature. Further, analysis of the creep curves by applying a four-element Burger model presented a comprehensive understanding of their long-term viscoelastic behavior with respect to the change in mold temperature.

  17. Core self-evaluations and training effectiveness: prediction through motivational intervening mechanisms.

    Science.gov (United States)

    Stanhope, Daniel S; Pond, Samuel B; Surface, Eric A

    2013-09-01

    Understanding the processes through which trainee characteristics influence learning is important for identifying mechanisms that drive training effectiveness. We examine the direct and indirect paths through which core self-evaluations (CSE) impact learning. We also include general cognitive ability (GCA) to explore whether CSE's paths to effectiveness differ from those of a well-documented predictor of learning. We proposed a model in which CSE contributes to training effectiveness through its influence on motivational intervening mechanisms, and we tested this model empirically with military personnel (N = 638) who participated in job-required training. The data supported a partially mediated model. Irrespective of inclusion of GCA as a control variable, motivation and effort allocation (MEA) process variables (i.e., training motivation, midtraining self-efficacy, and midtraining goal setting) mediated (or partially mediated) the relationship between CSE and training outcomes that included affective (e.g., intentions to transfer), cognitive (e.g., declarative knowledge), and skill-based (e.g., proficiency) learning. Conversely, GCA had neither direct nor indirect effects on affective learning but did demonstrate direct effects on cognitive and skill-based learning. Results support the utility of including CSE in training research and practice, suggest that MEA serves as an explanatory mechanism for CSE's relation to learning outcomes, and demonstrate that CSE and GCA differentially influence training effectiveness and do so through different explanatory mechanisms.

  18. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Qi

    2012-01-01

    Structural information contained in financial time series can be magnified effectively by constructing the accumulative return.In order to make the magnification effects of different financial time series comparative,we first propose a standard method to characterize the strength of the accumulative magnification effect.Then,we employ decomposed-randomized technology to uncover the formation mechanism of the accumulative magnification effect.Our results show that (1) the standard deviation pattern is determined by volatility dependence,(2) the Hurst exponent pattern is induced by sign dependence,(3) an approximate entropy pattern is caused by the combined effect of sign dependence and volatility dependence.

  19. [Effects of SERMs on bone health. Mechanisms of bone mass control by selective estrogen receptor modulator].

    Science.gov (United States)

    Imai, Yuuki; Kato, Shigeaki

    2010-03-01

    The bone mass, which is controlled by the balances between bone formation and bone resorption can be reduced by estrogen deficiency in post-menopausal osteoporosis. Reduced bone mass can be recovered by hormone replacement therapy (HRT) , however, HRT has various side effects. Although SERMs can rescue the bone mass with less side effect compared to HRT, the precise mechanisms of this effect is still elusive. From the results of the analyses for osteoclast specific estrogen receptor (ER) alphaknockout mice and the genome wide approach of ERalphabinding site, estrogen and SERMs can, at least in part, protect the bone mass by inducing the expression of Fas ligand and controling the life span of osteoclasts. More precise molecular mechanisms of the effect of SERM, especially in tissue/cell type specificity, may help to investigate new SERM, which is more specific and effective to treat post-menopausal osteoporosis.

  20. Naloxone potentiates the inotropic effects of isoproterenol in vitro by a nonopiate receptor mechanism.

    Science.gov (United States)

    Lechner, R B

    1992-11-01

    Naloxone potentiates the effects of adrenergic agonists when administered to hypovolemic dogs, and it has been assumed that this effect is due to naloxone's action at opiate receptors. To help determine the site and mechanism of this interaction, we administered naloxone and its "d" stereo-isomer (which does not bind to opiate receptors) to guinea pig papillary muscles in the presence and absence of pharmacologic (isoproterenol) and physiologic (treppe) inotropic stimulation. In control muscles and in rapidly paced muscles, naloxone was without significant inotropic effect. In the presence of isoproterenol, d- and l-naloxone exerted significant positive inotropic effects that were dose dependent. We conclude that, since both d- and l-naloxone potentiated the inotropic effects of isoproterenol and this was seen in the absence of opioids, naloxone may increase contractility by a nonopiate receptor-mediated mechanism.

  1. Molecular mechanisms underlying the effects of statins in the central nervous system.

    Science.gov (United States)

    McFarland, Amelia J; Anoopkumar-Dukie, Shailendra; Arora, Devinder S; Grant, Gary D; McDermott, Catherine M; Perkins, Anthony V; Davey, Andrew K

    2014-11-10

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins' effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins' effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins' possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.

  2. Effects of inhaled acid aerosols on lung mechanics: an analysis of human exposure studies.

    Science.gov (United States)

    Utell, M J

    1985-11-01

    There exist significant gaps in our understanding of human health effects from inhalation of pollutants associated with acid precipitation. Controlled clinical studies examine effects of criteria pollutants almost exclusively by assessing changes in lung mechanics. One constituent of acid precipitation, sulfuric acid aerosols, has been shown to induce bronchoconstriction in exercising extrinsic asthmatics at near ambient levels. These asthmatics may be an order of magnitude more sensitive to sulfuric acid aerosols than normal adults. More recently, a second component nitrogen dioxide has been observed to provoke changes in lung mechanics at progressively lower concentrations. To date, virtually no data exist from clinical exposures to acidic aerosols for subjects with chronic obstructive pulmonary disease.

  3. Effects of Ultrasonic on the Dehydration Function of Sludge and Discussion on Internal Mechanism

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the effects of ultrasonic on the dehydration function of sludge and internal mechanism.[Method] Taking the residual sludge from a municipal domestic sewage treatment plant as an object,the effects of ultrasonic time and sound energy density on the dehydration function of sludge were studied firstly,then the internal mechanism of improvement of sludge dehydration function by ultrasonic was discussed.[Result] As the increase of ultrasonic time,sludge particles became smaller,a...

  4. Effect of LiF on Densification and Mechanical Properties of Dy-α-Sialon Ceramics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of LiF on the densification and mechanical properties of hot-pressed Dy-α-sialon ceramics was studied. Comparatively, without LiF as sintering additive, the pure Dy-α-sialon ceramic should be sintered at 1750 ℃. When LiF is used, the sintering temperature of the Dy-α-sialon is greatly lowered to 1500~1650 ℃. Obviously, the addition of LiF has a strong effect on the improvement in densification. Meanwhile, the resultant Dy-α-sialon has no significant changes in the mechanical properties.

  5. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2013-09-01

    A reaction mechanism having molecular growth up to benzene for hydrocarbon fuels with up to four carbon-atoms was extended to include the formation and growth of polycyclic aromatic hydrocarbons (PAHs) up to coronene (C24H12). The new mechanism was tested for ethylene premixed flames at low (20torr) and atmospheric pressures by comparing experimentally observed species concentrations with those of the computed ones for small chemical species and PAHs. As compared to several existing mechanisms in the literature, the newly developed mechanism showed an appreciable improvement in the predicted profiles of PAHs. The new mechanism was also used to simulate PAH formation in counterflow diffusion flames of ethylene to study the effects of mixing propane and benzene in the fuel stream. In the ethylene-propane flames, existing experimental results showed a synergistic effect in PAH concentrations, i.e. PAH concentrations first increased and then decreased with increasing propane mixing. This PAH behavior was successfully captured by the new mechanism. The synergistic effect was predicted to be more pronounced for larger PAH molecules as compared to the smaller ones, which is in agreement with experimental observations. In the experimental study in which the fuel stream of ethylene-propane flames was doped with benzene, a synergistic effect was mitigated for benzene, but was observed for large PAHs. This effect was also predicted in the computed PAH profiles for these flames. To explain these responses of PAHs in the flames of mixture fuels, a pathway analysis has been conducted, which show that several resonantly stabilized species as well as C4H4 and H atom contribute to the enhanced synergistic behaviors of larger PAHs as compared to the small ones in the flames of mixture fuels. © 2013 The Combustion Institute.

  6. Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy

    Institute of Scientific and Technical Information of China (English)

    M.H. Shaeri; M. Shaeri; M. Ebrahimi; M.T. Salehi; S. H Seyyedein

    2016-01-01

    The effect of equal channel angular pressing (ECAP) at different temperatures (room temperature, 120, 150 and 180 °C) on microstructure and mechanical properties of Al-7075 solid solution alloy was in-vestigated. Microstructure of the specimens was examined using orientation imaging microscopy, transmission electron microscopy as well as X-ray diffractometer, and mechanical properties were measured by Vickers microhardness and tensile tests. Microstructural investigations showed that after 3 or 4 passes of ECAP, fine grains with average grain sizes in range of 300–1000 nm could be obtained at different ECAP temperatures. Increasing ECAP temperature from 120 to 180 °C caused a decrease in mechanical properties as a result of increasing grains and precipitates sizes, decreasing fraction of high angle boundaries and also transformation ofη′intoηphase, while increasing ECAP temperature from RT to 120 °C leads to an increase in mechanical properties due to the formation of smallη′precipitates. So it can be concluded that ECAP process at 120 °C is the optimum process for attaining maximum mechanical properties. Quantitative estimates of various strengthening mechanisms revealed that the improvement of mechanical properties was mainly attributed to grain refinement strengthening, precipitation strengthening and dislocation strengthening.

  7. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy

    Directory of Open Access Journals (Sweden)

    M.H. Shaeri

    2016-04-01

    Full Text Available The effect of equal channel angular pressing (ECAP at different temperatures (room temperature, 120, 150 and 180 °C on microstructure and mechanical properties of Al-7075 solid solution alloy was investigated. Microstructure of the specimens was examined using orientation imaging microscopy, transmission electron microscopy as well as X-ray diffractometer, and mechanical properties were measured by Vickers microhardness and tensile tests. Microstructural investigations showed that after 3 or 4 passes of ECAP, fine grains with average grain sizes in range of 300–1000 nm could be obtained at different ECAP temperatures. Increasing ECAP temperature from 120 to 180 °C caused a decrease in mechanical properties as a result of increasing grains and precipitates sizes, decreasing fraction of high angle boundaries and also transformation of η′ into η phase, while increasing ECAP temperature from RT to 120 °C leads to an increase in mechanical properties due to the formation of small η′ precipitates. So it can be concluded that ECAP process at 120 °C is the optimum process for attaining maximum mechanical properties. Quantitative estimates of various strengthening mechanisms revealed that the improvement of mechanical properties was mainly attributed to grain refinement strengthening, precipitation strengthening and dislocation strengthening.

  8. Effects of Chemotherapy-Induced Alterations in Cell Mechanical Properties on Cancer Metastasis

    Science.gov (United States)

    Prathivadhi, Sruti; Ekpenyong, Andrew; Nichols, Michael; Taylor, Carolyn; Ning, Jianhao

    Biological cells can modulate their mechanical properties to suit their functions and in response to changes in their environment. Thus, mechanical phenotyping of cells has been employed for tracking stem cell differentiation, bacterial infection, cell death, etc. Malignant transformation of cells also involves changes in mechanical properties. However, the extent to which mechanical properties of cancer cells contribute to metastasis is not well understood. Yet, more than 90% of all cancer deaths are directly related to metastasis. Transit of cells through the microcirculation is one of the key features of metastasis. We hypothesize that cancer treatment regimens do inadvertently alter cell mechanical properties in ways that might promote cancer metastasis. We use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that cancer cells treated with chemotherapeutic drugs such as daunorubicin, become more deformable at short timescales (0.1 s) and transit faster through the device. Our results are first steps in evaluating the pro- or anti-metastatic effects of chemotherapeutic drugs based on their induced alterations in cell mechanical properties.

  9. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  10. Effect of tow alignment on the mechanical performance of 3D woven textile composites

    Science.gov (United States)

    Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave

    1993-01-01

    Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.

  11. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, L.G. [Federal Institute of Rio Grande do Sul, IFRS, Campus Restinga, Estrada Joao Antonio da Silveira, 351, Porto Alegre 91790-400 (Brazil); Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E. [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil); Liberman, S.A.; Oviedo, M.A.S. [Braskem S.A., III Polo Petroquimico, Via Oeste, Lote 5, Triunfo 95853-000 (Brazil); Mauler, R.S., E-mail: mauler@iq.ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil)

    2011-08-25

    Highlights: {yields} Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. {yields} Polypropylene Nanocomposites with higher increase on impact resistance. {yields} Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  12. An effective stress approach for hydro-mechanical coupling of unsaturated soils

    Directory of Open Access Journals (Sweden)

    Arroyo Hiram

    2016-01-01

    Full Text Available The simulation of the mechanical and hydraulic behaviour of soils is one of the most important tasks in soil mechanics. It is inaccurate to consider that the behaviour of saturated and unsaturated soils as if their governing laws were utterly different, this last condition is not sufficient to do so. However, unlike the laws governing the behaviour of saturated soils, those used to describe the behaviour of unsaturated soils lack the simplicity and predictability associated to the complexity of the phenomena that occur within these porous media. This is why it is important to establish a unified soil mechanics theory to reconcile saturated and unsaturated soil mechanics. In the present work, we describe a simple analytical equation to obtain effective stresses for any type of soil. The equation is coupled to an elastoplastic constitutive model which is capable to reproduce the stress-strain relationship of soil taking into account the hydro-dynamic coupling.

  13. Effects of mechanical milling on the carbothermal reduction of oxide of WC/Co hardmetal scrap

    Science.gov (United States)

    Lee, Gil-Geun; Ha, Gook-Hyun

    2016-03-01

    The effects of mechanical milling on the carbothermal reduction of oxidized WC/Co hardmetal scrap with solid carbon were examined. Mixed powders were manufactured by milling the WC/Co hard metal scrap oxide and carbon powder in either a tumbler-ball mill or a planetary-ball mill. The milling type affected the carbothermal reduction of the oxide owing to the differing collision energies (mechanical milling energies) in the mills. The hardmetal scrap oxide powder (WO3, CoWO4) milled at high energy was more greatly reduced and at a lower temperature than that milled at lower mechanical energy. The formation of WC by the carburization reaction with solid carbon reached completion at a lower temperature after higher-energy milling than after lower-energy milling. The WC/Co composite particles synthesized by the combined oxidationmechanical milling-carbothermal reduction process were smaller when the initial powder was milled at higher mechanical energy.

  14. Soil erosion and sediment transport in the gullied Loess Plateau:Scale effects and their mechanisms

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Scale effects exist in the whole process of rainfall―runoff―soil erosion―sediment transport in river basins.The differences of hydrographs and sediment graphs in different positions in a river basin are treated as basic scale effects,which are more complex in the gullied Loess Plateau,a region notorious for high intensity soil erosion and hyper-concentrated sediment-laden flow.The up-scaling method of direct extrapolation that maintains dynamical mechanism effective in large scale application was cho-sen as the methodology of this paper.Firstly,scale effects of hydrographs and sediment graphs were analyzed by using field data,and key sub-processes and their mechanisms contributing to scale effects were clearly defined.Then,the Digital Yellow River Model that integrates sub-models for the sub-processes was used with high resolution to simulate rainfall―runoff―soil erosion―sediment transport response in Chabagou watershed,and the distributed results representing scale effects were obtained.Finally,analysis on the simulation results was carried out.It was shown that gravitational erosion and hyper-concentrated flow contribute most to the spatial variation of hydrographs and sediment graphs in the spatial scale.Different spatial scale distributions and superposition of different sub-processes are the mechanisms of scale effects.

  15. Soil erosion and sediment transport in the gullied Loess Plateau: Scale effects and their mechanisms

    Institute of Scientific and Technical Information of China (English)

    LI TieJian; WANG GuangQian; XUE Hai; WANG Kai

    2009-01-01

    Scale effects exist in the whole process of rainfall--runoff--soil erosion--sediment transport in river basins. The differences of hydrographa and sediment graphs in different positions in a river basin are treated as basic scale effects, which are more complex in the gullied Loess Plateau, a region notorious for high intensity soil erosion and hyper-concentrated sediment-laden flow. The up-scaling method of direct extrapolation that maintains dynamical mechanism effective in large scale application was cho-sen as the methodology of this paper. Firstly, scale effects of hydrographa and sediment graphs were analyzed by using field data, and key sub-processes and their mechanisms contributing to scale effects were clearly defined. Then, the Digital Yellow River Model that integrates sub-models for the sub-processes was used with high resolution to simulate rainfall--runoff--soil erosion--sediment transport response in Chabagou watershed, and the distributed results representing scale effects were obtained.Finally, analysis on the simulation results was carried out. It was shown that gravitational erosion and hyper-concentrated flow contribute most to the spatial variation of hydrographs and sediment graphs in the spatial scale. Different spatial scale distributions and superposition of different sub-processes are the mechanisms of scale effects.

  16. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects

    Directory of Open Access Journals (Sweden)

    Dwyer Donard S

    2005-08-01

    Full Text Available Abstract Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1 different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2 polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3 inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone.

  17. Fructus Aurantii induced antidepressant effect via its monoaminergic mechanism and prokinetic action in rat.

    Science.gov (United States)

    Zhang, Ying-Jin; Huang, Wei; Huang, Xi; Wang, Yang; Wang, Zhe; Wang, Cheng; Zhong, Bing-Wu; Sheng, Chen-Xia; Wang, Bing; Zhang, Si-Fang; Su, Nan-Xiang; Liu, Zhao-Qian; Zhou, Hong-Hao; Ren, Ping

    2012-09-15

    Depression could hardly get a satisfactory effect from the currently available antidepressants. To get a more effective treatment, antidepressant effect and monoaminergic mechanism of Fructus Aurantii (FRA) in the rat forced swimming test (FST) and open field test (OFT), and its prokinetics were examined. FST and OFT were respectively used to evaluate the antidepressant effect and locomotor activity of FRA. We observed the effects of monoamine receptor antagonists on FRA-induced antidepressant effect in rat. The effects of FRA on intestinal transit, gastric emptying and in vitro jejunum contractile activity were assessed. FRA decreased significantly the immobility time (32.6±8.5, 30.3±5.2 vs 56.4±9.4, all psulpiride, yohimbine, but not prazosin. FRA could simultaneously induce prokinetics and antidepressant effect, deserves further to investigate.

  18. Time-dependent combinatory effects of active mechanical loading and passive topographical cues on cell orientation.

    Science.gov (United States)

    Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-10-01

    Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This

  19. Effect of STI-induced mechanical stress on leakage current in deep submicron CMOS devices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The shallow trench isolation (STI) induced mechanical stress significantly affects the CMOS device off-state leakage behaviour. In this paper, we designed two types of devices to investigate this effect, and all leakage components,including sub-threshold leakage (Isub), gate-induced-drain-leakage (IGIDL), gate edge-direct-tunnelling leakage (IEDT) and band-to-band-tunnelling leakage (IBTBT) were analysed. For NMOS, Isub can be reduced due to the mechanical stress induced higher boron concentration in well region. However, the GIDL component increases simultaneously as a result of the high well concentration induced drain-to-well depletion layer narrowing as well as the shrinkage of the energy gap. For PMOS, the only mechanical stress effect on leakage current is the energy gap narrowing induced GIDL increase.

  20. The Effect of Nanoparticles Percentage on Mechanical Behavior of Silica-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Md Saiful Islam

    2013-01-01

    Full Text Available Silica-epoxy nanocomposites are very common among nanocomposites, which makes them very important. Several researchers have studied the effect of nanoparticle’s size, shape, and loading on mechanical behavior of silica-epoxy nanocomposites. This paper reviews the most important research done on the effect of nanoparticle loading on mechanical properties of silica-epoxy nanocomposites. While the main focus is the tensile behavior of nanocomposite, the compressive behavior and flexural behavior were also reviewed. Finally, some of the published experimental data were combined in the graphs, using dimensionless parameters. Later, the best fitted curves were used to derive some empirical formulas for mechanical properties of silica-epoxy nanocomposites as functions of weight or volume fraction of nanoparticles.

  1. Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di

    2007-01-01

    Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS× TEL) are obtained at 20 min.

  2. Quantum Zeno Effect Underpinning the Radical-Ion-Pair Mechanism of Avian Magnetoreception

    CERN Document Server

    Kominis, I K

    2008-01-01

    The intricate biochemical processes underlying avian magnetoreception, the sensory ability of migratory birds to navigate using earths magnetic field, have been narrowed down to spin-dependent recombination of radical-ion pairs to be found in avian species retinal proteins. The avian magnetic field detection is governed by the interplay between magnetic interactions of the radicals unpaired electrons and the radicals recombination dynamics. Critical to this mechanism is the long lifetime of the radical-pair spin coherence, so that the weak geomagnetic field will have a chance to signal its presence. It is here shown that a fundamental quantum phenomenon, the quantum Zeno effect, is at the basis of the radical-ion-pair magnetoreception mechanism. The quantum Zeno effect naturally leads to long spin coherence lifetimes, without any constraints on the systems physical parameters, ensuring the robustness of this sensory mechanism. Basic experimental observations regarding avian magnetic sensitivity are seamlessly...

  3. The Double-Edged Sword Effects of Mechanisms Disconnecting Cash-Flow Rights From Voting Rights

    DEFF Research Database (Denmark)

    Fattoum, Asma; Zied Guedri, Zied Guedri

    On the one hand, defensive mechanisms such as dual class shares, pyramid structures and pact agreements may produce positive effects on firm performance because they enable CEOs to make long-term and risky investments without being worried by short-term market forces and risk-averse shareholders....... whereas CEO’s human and social capital reinforce positively the performance consequences of defensive mechanisms......On the one hand, defensive mechanisms such as dual class shares, pyramid structures and pact agreements may produce positive effects on firm performance because they enable CEOs to make long-term and risky investments without being worried by short-term market forces and risk-averse shareholders...

  4. EFFECT OF STEAM-HEAT TREATMENT ON MECHANICAL PROPERTIES OF CHINESE FIR

    Directory of Open Access Journals (Sweden)

    Yongjian Cao

    2012-01-01

    Full Text Available Heat treatment often brings about some negative effects on mechanical properties of wood. Chinese fir is currently underutilized due to some inherent properties that limit its further applications. Using steam as a heating medium and a shielding gas, the heartwood and sapwood of Chinese fir were treated at a temperature ranging from 170ºC to 230ºC and time from 1 to 5 hours in an airtight chamber. Both the modulus of rupture (MOR and modulus of elasticity (MOE were increased for the sapwood specimens under the temperature less than 200ºC for short treatment times. The hardness was increased for both two kinds of specimens under the temperature less than or about 200ºC, compared to the untreated specimens. The temperature has a stronger effect on mechanical properties of wood than the time, and the temperature of 200 ºC is a critical point in modifying mechanical properties of wood.

  5. Effect of Moisture Absorption Behavior on Mechanical Properties of Basalt Fibre Reinforced Polymer Matrix Composites

    Directory of Open Access Journals (Sweden)

    Amuthakkannan Pandian

    2014-01-01

    Full Text Available The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.

  6. Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects

    CERN Document Server

    Navarro-Urrios, D; Capuj, N E; Alzina, F; Griol, A; Puerto, D; Martínez, A; Sotomayor-Torres, C M

    2016-01-01

    We report on the modification of the optical and mechanical properties of a silicon 1D optomechanical crystal cavity due to thermo-optic effects in a high phonon/photon population regime. The cavity heats up due to light absorption in a way that shifts the optical modes towards longer wavelengths and the mechanical modes to lower frequencies. By combining the experimental optical results with finite-difference time-domain simulations we establish a direct relation between the observed wavelength drift and the actual effective temperature increase of the cavity. By assuming that the Young's modulus decreases accordingly to the temperature increase, we find a good agreement between the mechanical mode drift predicted using a finite element method and the experimental one.

  7. Effect of longwall length on mechanical characteristics of surrounding rock stress shell in mining face

    Energy Technology Data Exchange (ETDEWEB)

    Guang-Xiang Xie; Lei Wang [Anhui University of Science and Technology, Huainan (China)

    2008-12-15

    The mechanical characteristics of surrounding rock stress shell in longwall mining face were studied, based on the results of in-situ measurement combined with numerical simulation, and the effect of longwall length on mechanical characteristics of surrounding rock stress shell was discovered. The results show that the mechanical characteristics of surrounding rock stress shell are influenced by the length of the face. With an increase of mining face length, the level of concentration of shell stress located in the front face and surrounding rock of roadway is amplified and the three- dimensional stress is focused in the working face. The damage lies in the head entry corner of face and the vertical displacement is reduced but horizontal displacement is enlarged. The dynamic balance of surrounding rock stress shell is improved with rational adjustment of face length. It is effective in protecting the working face and controlling strata behavior. 5 refs., 7 figs.

  8. The effect of artificial accelerated weathering on the mechanical properties of maxillofacial polymers PDMS and CPE

    Energy Technology Data Exchange (ETDEWEB)

    Eleni, P N; Krokida, M K [Department of Chemical Engineering, National Technical University of Athens, Zografou, Campus, 15780 Athens (Greece); Polyzois, G L [Division of Removable Prosthodontics, University of Athens, Dental School, 2 Thivon Street, 11527 Athens (Greece)

    2009-06-15

    The effect of UVA-UVB irradiation on the mechanical properties of three different industrial types of polydimethylsiloxane and chlorinated polyethylene samples, used in maxillofacial prostheses, was investigated in this study. Mechanical properties and thermal analysis are commonly used to determine the structural changes and mechanical strength. An aging chamber was used in order to simulate the solar radiation and assess natural aging. Compression and tensile tests were conducted on a Zwick testing machine. Durometer Shore A hardness measurements were carried out in a CV digital Shore A durometer according to ASTM D 2240. Glass transition temperature was evaluated with a differential scanning calorimeter. Simple mathematical models were developed to correlate the measured properties with irradiation time. The effect of UVA-UVB irradiation on compressive behavior affected model parameters. Significant deterioration seems to occur due to irradiation in samples.

  9. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms.

    Science.gov (United States)

    Lee, Seung-Hong; Jeon, You-Jin

    2013-04-01

    Marine algae are popular and abundant food ingredients mainly in Asian countries, and also well known for their health beneficial effects due to the presence of biologically active components. The marine algae have been studied for biologically active components and phlorotannins, marine polyphenols are among them. Among marine algae, brown algae have extensively studied for their potential anti-diabetic activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their various anti-diabetic mechanisms such as α-glucosidase and α-amylase inhibitory effect, glucose uptake effect in skeletal muscle, protein tyrosine phosphatase 1B (PTP 1B) enzyme inhibition, improvement of insulin sensitivity in type 2 diabetic db/db mice, and protective effect against diabetes complication. In this review, we have made an attempt to discuss the various anti-diabetic mechanisms associated with phlorotannins from brown algae that are confined to in vitro and in vivo.

  10. The significance of task significance: Job performance effects, relational mechanisms, and boundary conditions.

    Science.gov (United States)

    Grant, Adam M

    2008-01-01

    Does task significance increase job performance? Correlational designs and confounded manipulations have prevented researchers from assessing the causal impact of task significance on job performance. To address this gap, 3 field experiments examined the performance effects, relational mechanisms, and boundary conditions of task significance. In Experiment 1, fundraising callers who received a task significance intervention increased their levels of job performance relative to callers in 2 other conditions and to their own prior performance. In Experiment 2, task significance increased the job dedication and helping behavior of lifeguards, and these effects were mediated by increases in perceptions of social impact and social worth. In Experiment 3, conscientiousness and prosocial values moderated the effects of task significance on the performance of new fundraising callers. The results provide fresh insights into the effects, relational mechanisms, and boundary conditions of task significance, offering noteworthy implications for theory, research, and practice on job design, social information processing, and work motivation and performance.

  11. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout;

    2015-01-01

    provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible...... for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  12. Effects of inhaled acid aerosols on lung mechanics: an analysis of human exposure studies.

    OpenAIRE

    Utell, M J

    1985-01-01

    There exist significant gaps in our understanding of human health effects from inhalation of pollutants associated with acid precipitation. Controlled clinical studies examine effects of criteria pollutants almost exclusively by assessing changes in lung mechanics. One constituent of acid precipitation, sulfuric acid aerosols, has been shown to induce bronchoconstriction in exercising extrinsic asthmatics at near ambient levels. These asthmatics may be an order of magnitude more sensitive to ...

  13. Effect of small additions of vanadium and niobium on structure and mechanical properties of ductile iron

    Directory of Open Access Journals (Sweden)

    Fraś E.

    2007-01-01

    Full Text Available Results of investigations of influence of small additions of vanadium (up to 0,15 % V and niobium (up to 0,04% Nb on structure of ductile iron is presented in this work. Effect of these additions on distribution of graphite nodule diameter, nodule count, fraction and carbide count have been determined. Investigations of effect of small additions of vanadium and niobium on mechanical properties taking into account tensile strength, yield strength and elongation have also been made.

  14. MODEL ANALYSIS AND PARAMETER EXTRACTION FOR MOS CAPACITOR INCLUDING QUANTUM MECHANICAL EFFECTS

    Institute of Scientific and Technical Information of China (English)

    Hai-yan Jiang; Ping-wen Zhang

    2006-01-01

    The high frequency CV curves of MOS capacitor have been studied. It is shown that semiclassical model is a good approximation to quantum model and approaches to classical model when the oxide layer is thick. This conclusion provides us an efficient (semiclassical) model including quantum mechanical effects to do parameter extraction for ultrathi noxide device. Here the effective extracting strategy is designed and numerical experiments demonstrate the validity of the strategy.

  15. The Aharonov-Casher effect for spin-1 particles in non-commutative quantum mechanics

    CERN Document Server

    Dulat, Sayipjamal

    2008-01-01

    By using a generalized Bopp's shift formulation, instead of star product method, we investigate the Aharonov-Casher(AC) effect for a spin-1 neutral particle in non-commutative(NC) quantum mechanics. After solving the Kemmer equations both on a non-commutative space and a non-commutative phase space, we obtain the corrections to the topological phase of the AC effect for a spin-1 neutral particle both on a NC space and a NC phase space.

  16. Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz

    DEFF Research Database (Denmark)

    Laier, Peter; Metzdorff, Stine Broeng; Boberg, Julie

    2006-01-01

    The fungicide prochloraz has got multiple mechanisms of action that may influence the demasculinizing and reproductive toxic effects of the compound. In the present study, Wistar rats were dosed perinatally with prochloraz (50 and 150 mg/kg/day) from gestational day (GD) 7 to postnatal day (PND) ...... acts directly on the fetal testis to inhibit steroidogenesis and that this effect is exhibited at protein, and not at genomic, level. (c) 2005 Elsevier Inc. All rights reserved....

  17. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones

    Science.gov (United States)

    Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.

  18. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    Science.gov (United States)

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  19. Effects of anchored flexible polymers on mechanical properties of model biomembranes

    CERN Document Server

    Wu, Hao; 10.1063/1.4794653

    2013-01-01

    We have studied biomembranes with grafted polymer chains using a coarse-grained membrane simulation, where a meshless membrane model is combined with polymer chains. We focus on the polymer-induced entropic effects on mechanical properties of membranes. The spontaneous curvature and bending rigidity of the membranes increase with increasing polymer density. Our simulation results agree with the previous theoretical predictions.

  20. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    Science.gov (United States)

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  1. Effects of lecithin on the mechanical properties of hydroxypropylmethylcellulose free films.

    Science.gov (United States)

    Bajdik, J; Pintye-Hódi, K

    2009-05-01

    The effects of the biocompatible surfactant lecithin (a pigment-stabilizing agent) on the mechanical properties of free hydroxypropylmethylcellulose films were evaluated. The film thickness and the characteristics of the deformation curve were not altered relevantly by the incorporation of lecithin. The deformation force decreased markedly when the lecithin content of the film exceeded 5%.

  2. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics

    Science.gov (United States)

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L.

    2013-01-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. Purpose: To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Method: Eighteen men performed the following tasks: unloaded…

  3. Effect of Cooperative Learning on the Acquisition of Second Language Rules and Mechanics.

    Science.gov (United States)

    Ghaith, G. M.; Yaghi, H. M.

    1998-01-01

    Examined the effect of cooperative learning on Lebanese elementary students' acquisition of English-as-a-Second-Language rules and mechanics. Pretest and posttest comparison of experimental and control classes did not significantly favor cooperative learning as compared to individualistic instruction, though low achieving experimental class…

  4. Effect of chordwise deformation on unsteady aerodynamic mechanisms in hovering flapping flight

    NARCIS (Netherlands)

    Noyon, T.A.; Tay, W.B.; Van Oudheusden, B.W.; Bijl, H.

    2014-01-01

    A three-dimensional simulation of hovering flapping wings was performed using an immersed boundary method. This was done to investigate the effects of chordwise wing deformation on three important unsteady aerodynamic mechanisms found in flapping flight, namely Leading Edge Vortex (LEV) shedding, wa

  5. Protective effect of acupuncture on heart in mice with hyperlipemia and its mechanism

    Institute of Scientific and Technical Information of China (English)

    申洪波

    2014-01-01

    Objective To observe the inhibiting effect of acupuncture on blood lipid,myocardial hypertrophy and fibrosis in mice with hyperlipemia,and explore its possible action mechanism.Methods Ten inbred mice(C57)were applied.Forty ApoE(-/-)mice removed gene of apolipoprotein E were randomly divided into a control

  6. Effective thermal/mechanical properties of honeycomb core panels for hot structure applications

    NARCIS (Netherlands)

    Fatemi, J.; Lemmen, M.H.J.

    2009-01-01

    The present work addresses the computation of the effective thermal and mechanical properties of a honeycombcore sandwich panel. The panel considered has a hexagon-cell honeycomb core. An alternative method, based on the Gebhart factors within a hexagonal cell, is presented in addition to the famili

  7. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    NARCIS (Netherlands)

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    2008-01-01

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne pa

  8. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  9. The mechanical effects of different levels of cement penetration at the cement–bone interface

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.W.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement–bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement–bone interface were created from micro-computed tomography data and the p

  10. Effect of mechanical cycling on the flexural strength of densely sintered ceramics

    NARCIS (Netherlands)

    Itinoche, Koiti Marco; Ozcan, Mudu; Bottino, Marco Antonio; Oyafuso, Denise

    2006-01-01

    Objectives. The aim of this study was to evaluate the effect of mechanical cycling on the biaxial flexural strength of two densely sintered ceramic materials. Methods. Disc shaped zirconia (In-Ceram Zirconia) and high alumina (Procera AllCeram) ceramic specimens (diameter: 15 min and thickness: 1.2

  11. Effects of Ondansetron on Morphine-induced Place Preference in Mice and Its Possible Mechanism

    Institute of Scientific and Technical Information of China (English)

    XUMei-Lin; YUJuan; CHENChong-Hong

    2004-01-01

    AIM To elucidate the effect of ondansetron (OND), a5-HT3 receptor antagonist, on the morphine-induced conditioned place preference in mice and its possible mechanism. METHODS Morphine - induced conditioned place preference model in mice was adopted in the present research. Nitric oxide synthase (NOS) activity and Nitric oxide (NO) output

  12. On the Effective Optical Density of the Pupil Mechanism in Fly Photoreceptors

    NARCIS (Netherlands)

    Roebroek, Jos G.H.; Stavenga, Doekele G.

    1990-01-01

    A simple electrophysiological method is described for determining the effective optical density of the intracellular pupil mechanism of insect photoreceptor ceils. The method depends on the fact that the photoreceptors can not only be illuminated in the normal, orthodromic way, but also antidromical

  13. Effects of Representation Sequences and Spatial Ability on Students' Scientific Understandings about the Mechanism of Breathing

    Science.gov (United States)

    Wu, Hsin-Kai; Lin, Yu-Fen; Hsu, Ying-Shao

    2013-01-01

    The purpose of this study was to investigate the effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing in human beings. 130 seventh graders were assigned to two groups with different sequential combinations of static and dynamic representations: SD group (i.e., viewing…

  14. Mechanism for the Environmental Process & Ecological Effects of Typical Chemical Pollutants

    Institute of Scientific and Technical Information of China (English)

    XU Xiaobai; WANG Liansheng; DAI Shugui; HUANG Yuyao

    2007-01-01

    @@ Principally being engaged in the field of earth sciences, this research project explores the mechanism which governs the environmental process of some typical chemical contaminants and their eco-toxic effects at various levels. The research project features the following achievements:

  15. Differential effect of ketamine and lidocaine on spontaneous and mechanical evoked pain in patients with nerve injury pain

    DEFF Research Database (Denmark)

    Gottrup, Hanne; Bach, Flemming Winther; Juhl, Gitte Irene;

    2006-01-01

    BACKGROUND: The mechanisms underlying neuropathic pain are incompletely understood. Targeting specific molecular mechanisms in the pain signaling system may assist in understanding key features in neuropathic pains such as allodynia. This study examined the effect of systemically administered ket...

  16. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms.

    Science.gov (United States)

    You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J

    2013-04-01

    Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.

  17. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms.

    Science.gov (United States)

    Cholewa, Jason M; Guimarães-Ferreira, Lucas; Zanchi, Nelo Eidy

    2014-08-01

    Betaine is a methyl derivative of glycine first isolated from sugar beets. Betaine consumed from food sources and through dietary supplements presents similar bioavailability and is metabolized to di-methylglycine and sarcosine in the liver. The ergogenic and clinical effects of betaine have been investigated with doses ranging from 500 to 9,000 mg/day. Some studies using animal models and human subjects suggest that betaine supplementation could promote adiposity reductions and/or lean mass gains. Moreover, previous investigations report positive effects of betaine on sports performance in both endurance- and resistance-type exercise, despite some conflicting results. The mechanisms underlying these effects are poorly understood, but could involve the stimulation of lipolysis and inhibition of lipogenesis via gene expression and subsequent activity of lipolytic-/lipogenic-related proteins, stimulation of autocrine/endocrine IGF-1 release and insulin receptor signaling pathways, stimulation of growth hormone secretion, increased creatine synthesis, increases in protein synthesis via intracellular hyper-hydration, as well as exerting psychological effects such as attenuating sensations of fatigue. However, the exact mechanisms behind betaine action and the long-term effects of supplementation on humans remain to be elucidated. This review aims to describe evidence for the use of betaine as an ergogenic and esthetic aid, and discuss the potential mechanisms underlying these effects.

  18. [Mathematical model for carbohydrate energy metabolism. Mechanism of the Pasteur effect].

    Science.gov (United States)

    Khainrikh, R; Dynnik, V V; Sel'kov, E E

    1980-06-01

    The simple mathematical model based on the stoichiometric structure of carbohydrate metabolism and the only allosteric regulation presented, i. e. activation of phosphofructokinase by AMP, was used to study the mechanism of the Pasteur effect, e. g. interrelationship of glycolysis, the Krebs cycle and H-transporting shuttles at varying rates of oxidative phosphorylation and ATPase load. It was shown that the mechanism of the Pasteur effect is based on the presence of two negative feed-back mechanisms in carbohydrate metabolism, namely by the level of ATP in glycolysis and by the level of mitochondrial NADH in the Krebs cycle and H-transporting shuttles. It was also shown that the value and sign of the Pasteur effect depend on the level of ATPase load. The role of this phenomenon in stabilization of ATP in the cell is discussed. The effects of changes in the allosteric properties of phosphofructokinase and low activity of H-transporting shuttles on the Pasteur effect was studied. It was shown that the low values of the pasteur effect in tumour tissues are mainly determined by an insufficient activity of oxidative phosphorylation.

  19. The 2013 Workshop on Electromagnetic and Mechanical Effects in Superconductors (MEM13) The 2013 Workshop on Electromagnetic and Mechanical Effects in Superconductors (MEM13)

    Science.gov (United States)

    Mitchell, Neil

    2013-11-01

    The 2013 MEM workshop is the sixth in the series and proved to be one of the largest, with over 60 participants and over 40 presentations. Only a small selection of these presentations have progressed from PowerPoint to a reviewed paper accepted for publication in Superconductor Science and Technology (SUST). However, the dynamics of a good workshop should not be judged solely by the output of high quality papers. The interplay between electromagnetic and mechanical effects in superconductors is proving to be one of the critical issues in understanding the factors that dominate the practical application of not only the more traditional low temperature superconductors (LTS) but also, perhaps surprisingly, the high temperature superconductors (HTS) materials too. The lessons learned in the design and the diagnostic techniques which have been developed for LTS now overlap into the HTS field. The MEM13 workshop provided an opportunity for informal discussion across these fields, to the benefit of all. The topics of the workshop were selected to allow, as far as practically possible, co-presentation of LTS and HTS materials, as follows: Electro-mechanical effects on practical conductor performance. Analysis of electro-mechanical effects. Diagnosis of electro-mechanical effects. Strain dependence. Simulations and standardized tests for electro-mechanical effects. Microstructure, properties and sensitivity. Coated conductors. Manufacture of LTS and HTS conductors. The papers were wide ranging, covering basic manufacturing issues through to sophisticated testing and advanced diagnosis tools. The MEM13 workshop provided many papers based on the ITER construction, and diagnoses using the large quantity of data available from the industrial scale fabrication and testing of ITER conductors, as well as papers on the frontiers of HTS industrial technologies. It was clear that the huge industrial fabrication of Nb3Sn conductors for ITER, and the associated test programmes, have

  20. Modulatory mechanisms of cortisol effects on emotional learning and memory: novel perspectives.

    Science.gov (United States)

    van Ast, Vanessa A; Cornelisse, Sandra; Marin, Marie-France; Ackermann, Sandra; Garfinkel, Sarah N; Abercrombie, Heather C

    2013-09-01

    It has long been known that cortisol affects learning and memory processes. Despite a wealth of research dedicated to cortisol effects on learning and memory, the strength or even directionality of the effects often vary. A number of the factors that alter cortisol's effects on learning and memory are well-known. For instance, effects of cortisol can be modulated by emotional arousal and the memory phase under study. Despite great advances in understanding factors that explain variability in cortisol's effects, additional modulators of cortisol effects on memory exist that are less widely acknowledged in current basic experimental research. The goal of the current review is to disseminate knowledge regarding less well-known modulators of cortisol effects on learning and memory. Since several models for the etiology of anxiety, such as post-traumatic stress disorder (PTSD), incorporate stress and the concomitant release of cortisol as important vulnerability factors, enhanced understanding of mechanisms by which cortisol exerts beneficial as opposed to detrimental effects on memory is very important. Further elucidation of the factors that modulate (or alter) cortisol's effects on memory will allow reconciliation of seemingly inconsistent findings in the basic and clinical literatures. The present review is based on a symposium as part of the 42nd International Society of Psychoneuroendocrinology Conference, New York, USA, that highlighted some of those modulators and their underlying mechanisms.

  1. The Effect of Heat Treatment and Mechanical Polishing on Nitinol Stent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Soo; Lee, Se Chol; Kim, Kyu Suk; Choi, Seong Hoon; Park, Chan Soo [Eulji University, Daejeon (Korea, Republic of); Yoon, Chang Jin; Kang, Sung Gwon [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2009-09-15

    To understand the effect of heat treatment and mechanical polishing of a Nitinol wire on the chemical composition and physical morphology of the wire surface. Stents with a diameter of 1.0 cm, length of 8-10 cm, and composed of a Nitinol wire, were heat-treated at 500 .deg. C for 30 minutes, and mechanically polished with walnut shell granules. The wire surface morphology was studied with both an optical and a scanning electron microscope (SEM). In addition, an elemental analysis was performed by Energy Dispersive X-ray spectroscopy (EDX). Long microcracks along the wire direction and short microcracks across the wire were observed by SEM from the raw Nitinol wire. Upon heat treatment, the color of the wire turned blue, and Na, K, Cl, Si, Al atoms were seen from the EDX of the heat treated wire, which were absent in the original wire. The microcracks disappeared with the mechanical polishing, and the Na, K, Cl, Si, Al atoms all disappeared after the mechanical polishing. Mechanical polishing using walnut shell granules effectively removed the microcracks of a nitinol wire and impurities produced from the heat treatment.

  2. Antihyperalgesic and antiallodynic effects of mianserin on diabetic neuropathic pain: a study on mechanism of action.

    Science.gov (United States)

    Üçel, Umut İrfan; Can, Özgür Devrim; Demir Özkay, Ümide; Öztürk, Yusuf

    2015-06-05

    This study used various experimental pain methods to investigate the effects of subacute mianserin administration on diabetes-induced neuropathic pain in rats. The effect of mianserin on hyperalgesia occurring in connection with peripheral diabetic neuropathy was examined using the Randall-Selitto (mechanical nociceptive stimulus), Hargreaves (thermal nociceptive stimulus), and cold-plate (4°C, thermal nociceptive stimulus) tests. The dynamic plantar aesthesiometer, which measures the threshold values for mechanical stimuli, was used for allodynia studies. Thermal allodynia was evaluated with the warm-plate (38°C) test. At 30 and 45 mg/kg, mianserin effectively improved mechanical and thermal hyperalgesia occurring in connection with diabetic neuropathy. Subacute administration of mianserin also reduced diabetes-associated mechanical and thermal allodynia. The ability of mianserin to reduce diabetic neuropathic pain was comparable to that of pregabalin (10mg/kg). The antihyperalgesic and antiallodynic effects of mianserin were reversed with α-methyl-para-tyrosine methyl ester (AMPT, an inhibitor of catecholamine synthesis), phentolamine (a non-selective α-adrenoceptor antagonist), propranolol (a non-selective β-adrenoceptor antagonist), and naloxone (a non-selective opioid receptor antagonist) administrations. The same effects were not reversed, however, by para-chlorophenylalanine methyl ester (PCPA; an inhibitor of serotonin synthesis). These results suggest that the beneficial effect of mianserin on diabetic neuropathic pain is mediated through an increase in catecholamine levels in the synaptic cleft as well as through interactions with both subtypes of adrenoceptors and opioid receptors. Considering that mianserin exhibits simultaneous antidepressant and antinociceptive effects, this drug could provide a good alternative for treating the pain associated with diabetic neuropathy and the mood disorders caused directly by diabetes.

  3. Effect of Moisture Absorption on the Mechanical Properties of Ceramic Filled Jute/Epoxy Hybrid Composites

    Science.gov (United States)

    Tapas Ranjan Swain, Priyadarshi; Biswas, Sandhyarani

    2017-02-01

    The present work emphasizes on the mechanical properties such as micro-hardness, flexural and impact strength of jute fiber and Al2O3 filler based polymer composites at dry and wet conditions. Composite samples reinforced with different wt.% of fibers and filler were prepared by hand lay-up technique. To improve the mechanical properties, jute fiber was hybridized with Al2O3 filler. The maximum flexural strength of 72.94 MPa and impact strength of 1.902 J is obtained for composites with 30 wt.% fiber content and 10 wt.% of filler content. The hardness of composite increases with increase in fiber and filler loading i.e 40 wt.% fiber content and 10 wt.% of filler content. The maximum hardness value is obtained 29.9 Hv. The effect of water absorption on mechanical properties of jute reinforced hybrid polymer composites is also investigated. To determine the influence of water absorption on the mechanical properties, specimens were immersed in distilled water for 10 days before testing. For reference purpose, dry specimens were tested. It is observed that the rate of water absorption depends on the fiber content as well as filler content. All the mechanical properties of composites are decreased after water absorption. Scanning electron microscopy (SEM) is used to characterise the microstructure and failure mechanisms of dry and wet jute fiber reinforced polymer composites.

  4. Mechanical Intestinal Obstruction in a Porcine Model: Effects of Intra-Abdominal Hypertension. A Preliminary Study.

    Directory of Open Access Journals (Sweden)

    L Correa-Martín

    Full Text Available Mechanical intestinal obstruction is a disorder associated with intra-abdominal hypertension and abdominal compartment syndrome. As the large intestine intraluminal and intra-abdominal pressures are increased, so the patient's risk for intestinal ischaemia. Previous studies have focused on hypoperfusion and bacterial translocation without considering the concomitant effect of intra-abdominal hypertension. The objective of this study was to design and evaluate a mechanical intestinal obstruction model in pigs similar to the human pathophysiology.Fifteen pigs were divided into three groups: a control group (n = 5 and two groups of 5 pigs with intra-abdominal hypertension induced by mechanical intestinal obstruction. The intra-abdominal pressures of 20 mmHg were maintained for 2 and 5 hours respectively. Hemodynamic, respiratory and gastric intramucosal pH values, as well as blood tests were recorded every 30 min.Significant differences between the control and mechanical intestinal obstruction groups were noted. The mean arterial pressure, cardiac index, dynamic pulmonary compliance and abdominal perfusion pressure decreased. The systemic vascular resistance index, central venous pressure, pulse pressure variation, airway resistance and lactate increased within 2 hours from starting intra-abdominal hypertension (p<0.05. In addition, we observed increased values for the peak and plateau airway pressures, and low values of gastric intramucosal pH in the mechanical intestinal obstruction groups that were significant after 3 hours.The mechanical intestinal obstruction model appears to adequately simulate the pathophysiology of intestinal obstruction that occurs in humans. Monitoring abdominal perfusion pressure, dynamic pulmonary compliance, gastric intramucosal pH and lactate values may provide insight in predicting the effects on endorgan function in patients with mechanical intestinal obstruction.

  5. Evolution and rupture of vulnerable plaques: a review of mechanical effects

    Directory of Open Access Journals (Sweden)

    Assemat P

    2013-04-01

    Full Text Available Pauline Assemat, Kerry Hourigan Fluids Laboratory for Aeronautical and Industrial Research (FLAIR, Department of Mechanical and Aerospace Engineering and Division of Biological Engineering, Monash University, Melbourne, VIC, Australia Abstract: Atherosclerosis occurs as a result of the buildup and infiltration of lipid streaks in artery walls, leading to plaques. Understanding the development of atherosclerosis and plaque vulnerability is of critical importance, since plaque rupture can result in heart attack or stroke. Plaques can be divided into two distinct types: those that rupture (vulnerable and those that are less likely to rupture (stable. In the last few decades, researchers have been interested in studying the influence of the mechanical effects (blood shear stress, pressure forces, and structural stress on the plaque formation and rupture processes. In the literature, physiological experimental studies are limited by the complexity of in vivo experiments to study such effects, whereas the numerical approach often uses simplified models compared with realistic conditions, so that no general agreement of the mechanisms responsible for plaque formation has yet been reached. In addition, in a large number of cases, the presence of plaques in arteries is asymptomatic. The prediction of plaque rupture remains a complex question to elucidate, not only because of the interaction of numerous phenomena involved in this process (biological, chemical, and mechanical but also because of the large time scale on which plaques develop. The purpose of the present article is to review the current mechanical models used to describe the blood flow in arteries in the presence of plaques, as well as reviewing the literature treating the influence of mechanical effects on plaque formation, development, and rupture. Finally, some directions of research, including those being undertaken by the authors, are described. Keywords: atherosclerosis, rupture

  6. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  7. Inversion mechanism of Joule-Thomson effect. Joule-Thomson koka no hannenkiko

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Echigo, R.; Yoshida, H.; Tada, S. (Tokyo Institute of Technology, Tokyo (Japan))

    1994-05-25

    An analysis by means of a molecular dynamics method using argon gas has been made on the Joule-Thomson effect and its inversion mechanism from a molecular theory viewpoint. System temperature, pressure and enthalpy under different conditions were calculated, individual results were compared, and amount of gaseous body temperature change before and after expansion was derived. As a result, an explanation was given successfully by using temperature change due to expansion of equivalent internal energy (Joule effect) and its inversion mechanism. Further, it was made clear that the temperature change due to expansion of equivalent enthalpy (Joule-Thomson effect) and its inversion are generated by two mechanisms: internal energy change as a result of inter-molecular works, and mutual conversion between motion and potential energies. The result therefrom verified that the molecular dynamics method is highly effective for quantitative analysis of the Joule-Thomson effect. The method is estimated applicable also to more complex molecules or mixed gaseous bodies. 4 refs., 11 figs.

  8. Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid.

    Science.gov (United States)

    Arlia-Ciommo, Anthony; Piano, Amanda; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I

    2014-09-18

    Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.

  9. Macro mechanical parameters' size effect of surrounding rock of Shuibuya project's underground power station

    Institute of Scientific and Technical Information of China (English)

    GUO Zhi-hua; ZHOU Chuang-bing; ZHOU Huo-ming; SHENG Qian; LENG Xian-lun

    2005-01-01

    Scale effect is one of the important aspects in the macro mechanical parameters' research of rock mass, from a new point of view, by means of lab and field rock mechanics test, establishment of E~Vp relation, classification of engineering rock mass, numerical simulation test and back analysis based on surrounding rock's displacement monitoring results of Shuibuya Project's underground power station, rock mass deformation module's size effect of surrounding rock of Shuibuya Project's undegroud power station was studied. It's shown that rock mass deformation module's scale effect of surrounding rock of Shuibuya Project's undeground power station is obvious, the rock mass deformation module to tranquilization is 20% of intact rock's. Finally the relation between rock mass deformation modules and the scale of research was established.

  10. Behavioral Effects of Upper Respiratory Tract Illnesses: A Consideration of Possible Underlying Cognitive Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrew P. Smith

    2012-03-01

    Full Text Available Previous research has shown that both experimentally induced upper respiratory tract illnesses (URTIs and naturally occurring URTIs influence mood and performance. The present study investigated possible cognitive mechanisms underlying the URTI-performance changes. Those who developed a cold (N = 47 had significantly faster, but less accurate, performance than those who remained healthy (N = 54. Illness had no effect on manipulations designed to influence encoding, response organisation (stimulus-response compatilibility or response preparation. Similarly, there was no evidence that different components of working memory were impaired. Overall, the present research confirms that URTIs can have an effect on performance efficiency. Further research is required to identify the physiological and behavioral mechanisms underlying these effects.

  11. Quantum Size Effect in ZnO Nanoparticles via Mechanical Milling

    Directory of Open Access Journals (Sweden)

    Nurul Azri Khalisah Aznan

    2012-01-01

    Full Text Available ZnO nanocrystals were successfully produced by mechanical milling. It is shown that mechanical milling is very effective and simple to produce ZnO nanoparticles with the possibility of obtaining large quantities of materials. Size effects in ZnO nanoparticles were probed by XRD and UV-vis and photoluminescence (PL spectroscopy. Absorption due to free electron was clearly observed, whereas strong PL lines were recorded in the UV and blue region. The absorbance and photoluminescence were found to increase with reduction in particle size. Blueshift of excitonic and emission peaks was observed as a consequence of the size quantization effect. Formation of pure ZnO phase was confirmed from XRD pattern and the optical spectroscopy.

  12. [M. sternocleidomastoideus mechanical stimulation produces lateralized effect on body schema perception].

    Science.gov (United States)

    Zartor, A S; Mikheev, M M; Popov, P V; Afanas'ev, S V

    2014-09-01

    Neck muscles play important role in body schema perception, pose and motor control. The mechanical neck muscles stimulation can influence these processes. On present investigation the kinesiology tape (KT) application was used as a local mechanical stimulation for M. sternocleidomastoideus. The results confirmed the influence of the KT application on the body schema perception. Moreover, the influence effect was lateralized in dependence on the side of the KT application. In most of the subjects the KT left application diminished the reaction time in the body schema mental rotation task. The right the KT application has not shown this effect. The possible causes of the KT application lateralized effect can be the proprioceptive asymmetry in neck muscles or the hemispheric functional asymmetry of the body schema perception process. The results may be useful for understanding the neurological nature of asymmetric body schema perception impairments as well as for the development of sport training methods.

  13. Cryoprotective effect of glycine betaine and glycerol is not based on a single mechanism.

    Science.gov (United States)

    Popova, A V; Busheva, M R

    2001-01-01

    The mechanism of action of the osmoregulatory substances glycine betaine and glycerol in the course of the freeze-thaw cycle was studied. Photochemical activity of isolated thylakoid membranes was effectively protected during freezing by both solutes by preventing dissociation of the peripheral cold labile proteins - the water splitting system and plastocyanin. It is suggested that the cryoprotective effect of glycine betaine and glycerol is based on a mechanism similar to the well documented stabilization of complex enzymes against dissociation into subunits at high salt concentrations. Specific solute-membrane interactions additionally contribute to the observed cryoprotective effect. The binding of the molecules of glycine betaine and glycerol is limited to the water lipid interface of thylakoid membranes.

  14. Mechanical properties and supporting effect of CRLD bolts under static pull test conditions

    Science.gov (United States)

    Sun, Xiao-ming; Zhang, Yong; Wang, Dong; Yang, Jun; Xu, Hui-chen; He, Man-chao

    2017-01-01

    A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation (CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt (rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.

  15. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    Science.gov (United States)

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed.

  16. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, W. [Dept. of Physics, Martin Luther Univ. Halle (Germany); Gerlach, R. [Univ. Clinic and Policlinic for Radiation Therapy, Martin Luther Univ. Halle (Germany); Hein, H.J. [Univ. Clinic and Policlinic for Orthopaedics and Physical Medicine, Martin Luther Univ. Halle (Germany); Schaller, H.G. [Dept. of Operative Dentistry and Periodontology, Martin Luther Univ. Halle (Germany)

    2006-07-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 {sup registered} or elmex gelee {sup registered}. The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 {sup registered} or elmex gelee {sup registered} led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  17. Effect of modifying process on mechanical properties of EN AC-43300 silumin cast into sand moulds

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-07-01

    Full Text Available Significance of alloy modification in course of casting process is the most explicitly visible on example of Al-Si alloys. Broad application of these alloys in foundry industry has become possible after invention of a method which changes solidification form of Al-Si eutectic mixture. Such primarily thick, acicular shape of silicon crystals becomes changed into fine and compact structure due to introduction of a small quantity of modifier to liquid alloy. The paper presents an attempt of assessment of melting and modification with strontium effects on mechanical properties of EN AC-43300 alloy cast into sand moulds. Obtained results concern selection of optimal quantity of strontium additive in aspect of obtained mechanical properties (Rm, A5, KCV, HB. Effect of strontium additive on change of mechanical properties of the investigated alloy was presented in graphical form. Further investigations shall be connected with determination of an effect of strontium additive on mechanical properties of the alloy after solution heat treatment and ageing treatment.

  18. Effect of Graphite Content and Granularity on Mechanical and Tribological Properties of Bronze Alloyed Powder Composite

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    The bronze alloyed powder composite containing nanoparticles was developed by hot pressing. The effects of the content and granularity of graphite on hardness, machinability, bending strength, compression strength, and friction and wear behavior of the composites were studied. The microstructures of the specimens were analyzed by SEM. The results showed that the graphites are distributed in net when nanographites are added, resulting in the decrease of mechanical properties and abrasive resistance. When the content of nanographite is 10%, the composite is brittle. The graphite is distributed in the form of block when micrographite is added, improving the mechanical properties and abrasive resistance. Wear track was studied by SEM.

  19. The effect of particles in different sizes on the mechanical properties of spray formed steel composites

    DEFF Research Database (Denmark)

    Petersen, Kenneth; Pedersen, A. S.; Pryds, N.

    2000-01-01

    The main objective of the work was to investigate the effect of addition of ceramic particles with different size distributions on the mechanical properties, e.g. wear resistance and tensile strength, of spray formed materials. The experiments were carried out in a spray-forming unit at Risø...... particle size of 46 and 134 μm were carried out with respect to their mechanical properties e.g. wear resistance and tensile strength. It was found that the addition of Al2O3 particles to the steel improves its wear properties and reduces the elongation and tensile strength of the material...

  20. Effect of vacuum impregnation temperature on the mechanical properties and osmotic dehydration parameters of apples

    OpenAIRE

    Sabrina Silva Paes; Gustavo Beulke Stringari; João Borges Laurindo

    2008-01-01

    The effect of sucrose solution temperature on the mechanical properties, water loss (WL), solids gain (SG) and weight reduction (WR) of apples (Fuji var.) treated by vacuum impregnation was studied. Temperatures were varied from 10 to 50 ºC, using a sucrose solution of 50 ºBrix. The mechanical properties were studied throughout a stress relaxation test. The results showed that the SG varied between 10.57 and 14.29 % and the WL varied between 10.55 and 14.48 %. The treated fruit soluble solids...

  1. Electro-oxidation process and mechanism of molybdenite decomposition under ultrasonic effect

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to the characteristics and shortcomings of the traditional roasting process and the electro-oxidation process in the molybdenum metallurgical industry,the ultrasound electro-oxidation process was proposed to strengthen the oxidative decomposition or leaching of molybdenum.Laboratory work was carried out in an electrochemical cell with 15 nun electrode spacing at 25℃ under ultrasonic effect.The optimum conditions were found through experiments.The electro-oxidation mechanism of molybdenite decomposition under ultrasonic was investigated.A model of electro-oxidation mechanism of molybdenum under ultrasonic was given.

  2. Effects of the high doses of irradiation on the mechanical properties of PS/PP blends

    Energy Technology Data Exchange (ETDEWEB)

    Albano, C. E-mail: calbano@ivic.vealbanoc@camelot.rect.ucv.ve; Reyes, J.; Ichazo, M.N.; Gonzalez, J.; Rodriguez, M

    2003-08-01

    The effect of gamma irradiation on the tensile behavior of the polystyrene/polypropylene (PS/PP) blend (80/20) without and with styrene-butadiene-styrene (SBS) points to a deterioration of the mechanical properties of the blends due to the scission and crosslinking reactions resulting from irradiation. A kinetic analysis of the behavior of mixtures of PS/PP with SBS shows that a radiation dose between 70 and 400 kGy, the dominant process is the chain scission meanwhile at higher doses appear a competitive mechanisms (chain scission and crosslinking) with a sensitive decrease of the properties in the break point.

  3. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.

    Science.gov (United States)

    Ghosal, Sandip

    2004-01-01

    Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.

  4. Effects of hydrogen upon the properties of thermo mechanical controlled process (TMCP steel

    Directory of Open Access Journals (Sweden)

    T. Tomić

    2016-01-01

    Full Text Available Research into the effects of hydrogen on the mechanical properties of the material is wide-ranging and time-consuming, since there is no single way of predicting cold cracking that would be applicable to all steel grades. Some research on the action of hydrogen in the weld area has focused on the effects of filler materials, welding parameters, the welding environment and welding process upon the hydrogen content of the weld metal and final effect of the hydrogen content upon the properties of the material.

  5. Robust design of microelectronics assemblies against mechanical shock, temperature and moisture effects of temperature, moisture and mechanical driving forces

    CERN Document Server

    Wong, E-H

    2015-01-01

    Robust Design of Microelectronics Assemblies Against Mechanical Shock, Temperature and Moisture discusses how the reliability of packaging components is a prime concern to electronics manufacturers. The text presents a thorough review of this important field of research, providing users with a practical guide that discusses theoretical aspects, experimental results, and modeling techniques. The authors use their extensive experience to produce detailed chapters covering temperature, moisture, and mechanical shock induced failure, adhesive interconnects, and viscoelasticity. Useful progr

  6. Effect of joint design on mechanical properties of AL7075 weldment

    Science.gov (United States)

    Li, Leijun; Orme, Kevin; Yu, Wenbin

    2005-06-01

    The effects of joint design on the mechanical properties of AL7075-T6 aluminum sheet were studied on the latest automated gas-tungsten arc-welding system. Using ER5356 filler metal, full-penetration welds were made on workpieces with various included joint angles. Testing of the mechanical properties of the joints was done in the as-welded, naturally aged, and postweld heat-treated conditions. The results show that by using crack-resistant filler, and by selecting the proper joint design and postweld heat treatment, strong, dependable welds can be produced on thin AL7075 sheet material. An elasticity model of the weld joint was established to help understand the mechanical behavior of the joints. An undermatched joint design is shown to be capable of achieving a joint strength that matches the strength of the base alloy.

  7. Effect of Different Parameters on Mechanical and Erosion Wear Behavior of Bamboo Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Anu Gupta

    2011-01-01

    Full Text Available The application of natural fibers as reinforcement in polymer composites has been continuously growing during the last few decades. These composites find diverse applications in hostile environment where they are exposed to external attacks such as solid particle erosion. Also, in many respects, the mechanical properties of different polymer composites are their most important characteristics. Therefore, improvement of the erosion resistance and mechanical behavior of polymer composites are the prime requirements in their applications. Bamboo fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for reinforcement in polymers. To this end, an attempt has been made in this paper not only to study the utilization potential of bamboo fiber in polymer composites but also to study the effect of various parameters on mechanical and erosion wear performance of bamboo fiber reinforced epoxy composites.

  8. Effect of mechanical treatment on properties of zeolites with chabazite structure

    Science.gov (United States)

    Buzimov, A. Y.; Kulkov, S. N.; Eckl, W.; Pappert, S.; Gömze, L. A.; Kurovics, E.; Kocserha, I.; Géber, R.

    2017-01-01

    Zeolites are a valuable material having a wide variety of applications. We have examined the effect of mechanical activation on physical-chemical properties of commercial brands zeolite SAPO-34 and SCT-323. It has been shown that the amount of amorphous phase and the specific surface area depends on mechanical treatment. Specific surface area of the zeolites decreases strongly during the grinding process in mills. With the increase of milling time the particles size of zeolites decreased. An increase in amorphisation was observed. Specific surface area of zeolites after mechanical activation in a tumbling ball during 96 hours and annealing up to 800°C with an isothermal holding time of 1 hour does not lead to marked changes and decreases strongly after annealing at 1000°C/h. It has been shown that the milling time of ball milling is a powerful method to obtain the necessary specific surface.

  9. Effect of heat treatments on failure mechanism of SiCp/2124 Al composite

    Institute of Scientific and Technical Information of China (English)

    M.Murato(g)lu

    2005-01-01

    The mechanical response of a 17% (volume fraction) silicon carbide particles reinforced 2124 Al composite prepared by powder metallurgy techniques was studied by altering the matrix strength with different heat treatments. The fracture mechanisms and the deformation microstructure were examined by scanning electron microscopy. The results show that matrix strength appears to play an important role in influcing the behaviour of the composite under hardness and tensile loading conditions and also fracture mechanisms. The high matrix strength results in a larger decrease in yield strength due to the increasing damage probability. The tensile yield strength values decrease under peak aged and overaged condition whereas under the solutinized condition the opposite effect can be seen.

  10. The effect of mechanical deformation to the magnetic properties of stainless steel 304

    Science.gov (United States)

    Mubarok, N.; Notonegoro, H. A.; Zaini Thosin, K. A.; Manaf, A.

    2016-11-01

    A study of a non-magnetic 304 austenitic stainless steel alloy through mechanical deformation has been done. These specimens are pipe usually used to deliver gas which contains corrosive oil fields. The metallographic observation of a 20% deformation shows the increase in the value of the magnetization, as compensation for the formation of martensite phase as a result of a mechanical treatment. Martensitic phase formed due to a shift in the structure of the z-axis due to the effects of pressure and shear from the cold rolled. The existence of martensite phase and magnetic properties conducted through x-ray diffraction and permagraf investigation. An identified x-ray diffraction pattern shows the presence of a new peak between 10°-30° angle indicate the mechanical deformation in crystallite structure. Furthermore, at in 20% distortion, the value of magnetization is increased above 0.2 T in small coercivity value and caused decreased the ability of corrosion resistant.

  11. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    T. Alomayri

    2014-09-01

    Full Text Available Cotton fabric (CF reinforced geopolymer composites are fabricated with fibre loadings of 4.5, 6.2 and 8.3 wt%. Results show that flexural strength, flexural modulus, impact strength, hardness and fracture toughness are increased as the fibre content increased. The ultimate mechanical properties were achieved with a fibre content of 8.3 wt%. The effect of water absorption on mechanical and physical properties of CF reinforced geopolymer composites is also investigated. The magnitude of maximum water uptake and diffusion coefficient is increased with an increase in fibre content. Flexural strength, modulus, impact strength, hardness and fracture toughness values are decreased as a result of water absorption. Scanning electron microscopy (SEM is used to characterise the microstructure and failure mechanisms of dry and wet cotton fibre reinforced geopolymer composites.

  12. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    Science.gov (United States)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  13. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  14. Effects of induction heat treatment on mechanical properties of TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    彭超群; 黄伯云; 贺跃辉

    2002-01-01

    The effects of rapid heating cyclic heat treatment on mechanical properties of a TiAl-based alloy (Ti-33Al-3Cr) were studied by means of an induction heating machine. The results show that: 1) fine fully-lamellar microstructure with colony size of about 50 μm and lamellar spacing of about 0.12 μm can be obtained; 2) the compression mechanical properties can be improved to a large extent and the best comprehensive compression mechanical properties can reach the yield stress 745 MPa, the large flow stress 1 672 MPa and the compression ratio 19.4%; and 3) the compression fracture at room temperature after induction heat treatment and aging is still typical cleavage fracture.

  15. EFFECTS OF HIGH-IMPACT MECHANICAL LOADING ON SYNOVIAL CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Hui Bin Sun

    2004-03-01

    Full Text Available Cartilage metabolism in response to mechanical loading is an important subject in sports science and medicine. In animal studies high-impact exercise is known to stimulate bone adaptation and increase bone mass. However, mechanical impacts potentially induce tissue swelling and occasionally degradation of connective tissues in synovium and articular cartilage. These detrimental outcomes should be properly evaluated clinically and biochemically. Using two synovial cell cultures derived from normal and rheumatic tissues, we examined the biochemical effects of impulsive mechanical loads on expression and activities of influential proteolytic enzymes in joints, matrix metalloproteinases (MMPs, and their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs. The molecular analysis demonstrates that an impact factor (Im, the ratio of the maximum force to weight, served as a good indicator for assessment of the inflammatory responses. The results showed that high impact above Im = 40 to 80 elevated not only expression but also enzymatic activities of MMPs

  16. The effects of glycosaminoglycan degradation on the mechanical behavior of the posterior porcine sclera.

    Science.gov (United States)

    Murienne, Barbara J; Jefferys, Joan L; Quigley, Harry A; Nguyen, Thao D

    2015-01-01

    Pathological changes in scleral glycosaminoglycan (GAG) content and in scleral mechanical properties have been observed in eyes with glaucoma and myopia. The purpose of this study is to investigate the effect of GAG removal on the scleral mechanical properties to better understand the impact of GAG content variations in the pathophysiology of glaucoma and myopia. We measured how the removal of sulphated GAG (s-GAG) affected the hydration, thickness and mechanical properties of the posterior sclera in enucleated eyes of 6-9 month-old pigs. Measurements were made in 4 regions centered on the optic nerve head (ONH) and evaluated under 3 conditions: no treatment (control), after treatment in buffer solution alone, and after treatment in buffer containing chondroitinase ABC (ChABC) to remove s-GAGs. The specimens were mechanically tested by pressure-controlled inflation with full-field deformation mapping using digital image correlation (DIC). The mechanical outcomes described the tissue tensile and viscoelastic behavior. Treatment with buffer alone increased the hydration of the posterior sclera compared to controls, while s-GAG removal caused a further increase in hydration compared to buffer-treated scleras. Buffer-treatment significantly changed the scleral mechanical behavior compared to the control condition, in a manner consistent with an increase in hydration. Specifically, buffer-treatment led to an increase in low-pressure stiffness, hysteresis, and creep rate, and a decrease in high-pressure stiffness. ChABC-treatment on buffer-treated scleras had opposite mechanical effects than buffer-treatment on controls, leading to a decrease in low-pressure stiffness, hysteresis, and creep rate, and an increase in high-pressure stiffness and transition strain. Furthermore, s-GAG digestion dramatically reduced the differences in the mechanical behavior among the 4 quadrants surrounding the ONH as well as the differences between the circumferential and meridional

  17. Effect of Spinal Manipulation Thrust Magnitude on Trunk Mechanical Thresholds of Lateral Thalamic Neurons

    Science.gov (United States)

    Reed, William R.; Pickar, Joel G.; Sozio, Randall S.; Long, Cynthia R.

    2014-01-01

    Objectives High velocity low amplitude spinal manipulation (HVLA-SM), as performed by manual therapists (eg, doctors of chiropractic and osteopathy) results in mechanical hypoalgesia in clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral and/or central pain processing. The objective of this study was to determine whether thrust magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons. Methods Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar rats. Lateral thalamic neurons having receptive fields which included the lumbar dorsal-lateral trunk were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic von Frey (rigid tip) mechanical trunk stimuli were determined in three directions (dorsal-ventral, 45°caudalward, and 45°cranialward) prior to and immediately following the dorsal-ventral delivery of a 100ms HVLA-SM at three thrust magnitudes (control, 55%, 85% body weight; (BW)). Results There was a significant difference in mechanical threshold between 85% BW manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (p=.01). No changes were found in WDR neurons at either HVLA-SM thrust magnitude. Conclusions This study is the first to investigate the effect of HVLA-SM thrust magnitude on WDR and NS lateral thalamic mechanical response threshold. Our data suggest that at the single lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude required to elicit an increase in trunk mechanical response thresholds. PMID:24928636

  18. Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiuzhuo; He, Guofu; Xu, Yatong [Department of Environmental Science, East China Normal University, 3663 North Zhongshan Road, Putuo District, Shanghai 200062 (China); Wang, Juan [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); Cai, Weimin [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-11-15

    Rhamnolipid biosurfactant, as an addition to rice straw hydrolysis bioprocess, could not only stimulate the hydrolysis rate, but also reduce the requirement for large amount of cellulases and promote its recycling process. In this article, through the observation of the changes of cellulases, microorganism, substrate and their mutual functions, the mechanisms of the stimulatory effect of rhamnolipid on rice straw hydrolysis were investigated. The study found that the addition of rhamnolipid increases the activity of {beta}-glucosidase but stabilizes Cel7A activity. The observed results might be the main mechanisms triggering the stimulatory effect of adding biosurfactants on rice straw hydrolysis. Meanwhile, zeta potential of the substrate increased, which could make the resistance of the cell attached to the substrate weaker. This in turn could facilitate easy adhesion and better retention of the microbial cell in the media. Moreover, we discovered that lignin content played an important role in the stimulatory effect of adding rhamnolipid. The adsorption of rhamnolipid biosurfactant prevented unproductive binding of enzymes to lignin. This could be another important mechanism responsible for the stimulatory effects of adding rhamnolipid on rice straw hydrolysis. (author)

  19. Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length

    Directory of Open Access Journals (Sweden)

    Jang Jyegal

    2015-06-01

    Full Text Available Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.

  20. Cost-Effectiveness Analysis of Heat and Moisture Exchangers in Mechanically Ventilated Critically Ill Patients

    Science.gov (United States)

    Menegueti, Mayra Goncalves; Auxiliadora-Martins, Maria; Nunes, Altacilio Aparecido

    2016-01-01

    Background Moisturizing, heating and filtering gases inspired via the mechanical ventilation (MV) circuits help to reduce the adverse effects of MV. However, there is still no consensus regarding whether these measures improve patient prognosis, shorten MV duration, decrease airway secretion and lower the incidence of ventilator associated pneumonia (VAP) and other complications. Objectives The aim of this study was to study the incremental cost-effectiveness ratio associated with the use of heat and moisture exchangers (HME) filter to prevent VAP compared with the heated humidifiers (HH) presently adopted by intensive care unit (ICU) services within the Brazilian Healthcare Unified System. Patients and Methods This study was a cost-effectiveness analysis (CEA) comparing HME and HH in preventing VAP (outcome) in mechanically ventilated adult patients admitted to an ICU of a public university hospital. Results The analysis considered a period of 12 months; MV duration of 11 and 12 days for patients in HH and HME groups, respectively and a daily cost of R$ 16.46 and R$ 13.42 for HH and HME, respectively. HME was more attractive; costs ranged from R$ 21,000.00 to R$ 22,000.00 and effectiveness was close to 0.71, compared with a cost of R$ 30,000.00 and effectiveness between 0.69 and 0.70 for HH. HME and HH differed significantly for incremental effectiveness. Even after an effectiveness gain of 1.5% in favor of HH, and despite the wide variation in the VAP rate, the HME effectiveness remained stable. The mean HME cost-effectiveness was lower than the mean HH cost-effectiveness, being the HME value close to R$ 44,000.00. Conclusions Our findings revealed that HH and HME differ very little regarding effectiveness, which makes interpretation of the results in the context of clinical practice difficult. Nonetheless, there is no doubt that HME is advantageous. This technology incurs lower direct cost. PMID:27843770

  1. The effect of water on the mechanical properties of soluble and insoluble ceramic cements.

    Science.gov (United States)

    Koh, Ilsoo; López, Alejandro; Pinar, Ana B; Helgason, Benedikt; Ferguson, Stephen J

    2015-11-01

    Ceramic cements are good candidates for the stabilization of fractured bone due to their potential ease of application and biological advantages. New formulations of ceramic cements have been tested for their mechanical properties, including strength, stiffness, toughness and durability. The changes in the mechanical properties of a soluble cement (calcium sulfate) upon water-saturation (saturation) was reported in our previous study, highlighting the need to test ceramic cements using saturated samples. It is not clear if the changes in the mechanical properties of ceramic cements are exclusive to soluble cements. Therefore the aim of the present study was to observe the changes in the mechanical properties of soluble and insoluble ceramic cements upon saturation. A cement with high solubility (calcium sulfate dihydrate, CSD) and a cement with low solubility (dicalcium phosphate dihydrate, DCPD) were tested. Three-point bending tests were performed on four different groups of: saturated CSD, non-saturated CSD, saturated DCPD, and non-saturated DCPD samples. X-ray diffraction analysis and scanning electron microscopy were also performed on a sample from each group. Flexural strength, effective flexural modulus and flexural strain at maximum stress, lattice volume, and crystal sizes and shape were compared, independently, between saturated and non-saturated groups of CSD and DCPD. Although material dissolution did not occur in all cases, all calculated mechanical properties decreased significantly in both CSD and DCPD upon saturation. The results indicate that the reductions in the mechanical properties of saturated ceramic cements are not dependent on the solubility of a ceramic cement. The outcome raised the importance of testing any implantable ceramic cements in saturated condition to estimate its in vivo mechanical properties.

  2. Effect of Isomorphous Substitution on the Thermal Decomposition Mechanism of Hydrotalcites

    Directory of Open Access Journals (Sweden)

    Sergio Crosby

    2014-10-01

    Full Text Available Hydrotalcites have many important applications in catalysis, wastewater treatment, gene delivery and polymer stabilization, all depending on preparation history and treatment scenarios. In catalysis and polymer stabilization, thermal decomposition is of great importance. Hydrotalcites form easily with atmospheric carbon dioxide and often interfere with the study of other anion containing systems, particularly if formed at room temperature. The dehydroxylation and decomposition of carbonate occurs simultaneously, making it difficult to distinguish the dehydroxylation mechanisms directly. To date, the majority of work on understanding the decomposition mechanism has utilized hydrotalcite precipitated at room temperature. In this study, evolved gas analysis combined with thermal analysis has been used to show that CO2 contamination is problematic in materials being formed at RT that are poorly crystalline. This has led to some dispute as to the nature of the dehydroxylation mechanism. In this paper, data for the thermal decomposition of the chloride form of hydrotalcite are reported. In addition, carbonate-free hydrotalcites have been synthesized with different charge densities and at different growth temperatures. This combination of parameters has allowed a better understanding of the mechanism of dehydroxylation and the role that isomorphous substitution plays in these mechanisms to be delineated. In addition, the effect of anion type on thermal stability is also reported. A stepwise dehydroxylation model is proposed that is mediated by the level of aluminum substitution.

  3. Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites

    Indian Academy of Sciences (India)

    B Stanly Jones Retnam; M Sivapragash; P Pradeep

    2014-08-01

    The usage of natural fibre as reinforcement in polymer composites have widely increased because of its enhanced properties. The usage of plant fibre cannot alone satisfy all the needs of the composites. Hence, introduction of hybrid plays a vital role in enhancing the mechanical properties of the FRP composites. Fibre orientation contributes significant role in improving the mechanical properties of the FRP composites. In this proposal, hybrid bamboo/glass fibre woven in different orientations such as 0°/90° and ± 45° was used and its effect on mechanical properties were studied. Composites containing hybrid fibres found to possess better mechanical properties, when compared to pure bamboo. In order to justify this, the following mechanical properties such as tensile, flexural, impact and hardness were investigated. SEM analysis shows the bonding between the matrix and reinforcement. All the above test results indicate that the introduction of natural bamboo fibre in glass reduces the overall cost of the composites with no compromise in strength and also attracted several studies covering green technologies.

  4. The Evaluation and the Comparison of the Effect of Mechanical Weeding Systems on Rice Weed

    Directory of Open Access Journals (Sweden)

    Fazlollah Eskandari Cherati

    2012-08-01

    Full Text Available In order to study the influence of different methods of controlling weeds such as mechanical weeding and mechanical weeder efficiency analysis in mechanical cultivation conditions, in farming year of 2011 an experiment was done in a farm in coupling and development of technology center in Haraz, Iran. The treatments consisted of (I control treatment: where no weeding was done, (II use of mechanical weeding without engine and (III power mechanical weeding. Results showed that experimental treatments had significantly different effects (p = 0.05 on yield traits and number of filled grains per panicle, while treatments had the significant effects on grain weight and dry weight of weeds in the first, second and third weeding methods at 1% of confidence level. Treatment (II had its most significant effect on number of filled grains per panicle and yield performance standpoint, which was 3705.97 kg/ha in its highest peak. Treatment (III was ranked as second influential with 3559.8 kg/ha. In addition, under (I treatments, 2364.73 kg/ha of yield produced. The minimum dry weights of weeds in all weeding methods were related to the treatment (II, (III and (I, respectively. The correlation coefficient analysis showed that total yield had a significant positive correlation with the panicle grain yield per plant (r = 0.55* and the number of grains/panicle (r = 0.57* and the number of filled grains (r = 0.63*. Total rice yield also had negative correlation of r = -0.64* with weed dry weight at second weed sampling time (17 DAT. The weed dry weight at third and fourth sampling times (24 and 40 DAT had negative correlations of -0.65** and r = -0.61* with rice yield, respectively.

  5. Effect of LED-LCU light irradiance distribution on mechanical properties of resin based materials

    Energy Technology Data Exchange (ETDEWEB)

    Magalhães Filho, T.R.; Weig, K.M. [Faculdade de Odontologia, Universidade Federal Fluminense, Rua São Paulo 28, CEP 24020-150 Niterói (Brazil); Engenharia Metalúrgica e de Materiais (COPPE), Universidade Federal do Rio de Janeiro, CP 68505, CEP: 21941-972 Rio de Janeiro (Brazil); Costa, M.F. [Engenharia Metalúrgica e de Materiais (COPPE), Universidade Federal do Rio de Janeiro, CP 68505, CEP: 21941-972 Rio de Janeiro (Brazil); Werneck, M.M. [Engenharia Elétrica (COPPE), Universidade Federal do Rio de Janeiro, CP 68504, CEP: 21941-972 Rio de Janeiro (Brazil); Barthem, R.B. [Instituto de Física, Universidade Federal do Rio de Janeiro, CP 68528, CEP: 21941-972 Rio de Janeiro (Brazil); Costa Neto, C.A., E-mail: celio@metalmat.ufrj.br [Engenharia Metalúrgica e de Materiais (COPPE), Universidade Federal do Rio de Janeiro, CP 68505, CEP: 21941-972 Rio de Janeiro (Brazil)

    2016-06-01

    The objective of this study is to analyze the light power distribution along the tip end of the light guide of three LED-LCUs (Light Curing Units) and to evaluate its effect on the mechanical properties of a polymer based dental composite. Firstly, the light power distribution over the whole area of LED-LCU light guide surface was analyzed by three methods: visual projection observation, spectral measurement and optical spectral analysis (OSA). The light power distribution and the total irradiance were different for the three LEDs used, but the wavelength was within the camphorquinone absorption spectrum. The use of a blank sheet was quite on hand to make a qualitative analysis of a beam, and it is costless. Secondly, specimens of a hybrid composite with approximately 8 mm diameter and 2 mm thickness were produced and polymerized by 20 s exposition time to each LED-LCU. Thirdly, the elastic modulus (E) and hardness (HV) were measured throughout the irradiated area by instrumented micro-indentation test (IIT), allowing to correlate localized power and mechanical properties. Both E and HV showed to be very sensitive to local power and wavelength dependent, but they followed the beam power profile. It was also shown that the mechanical properties could be directly correlated to the curing process. Very steep differences in mechanical properties over very short distances may impair the material performance, since residual stresses can easily be built over it. - Highlights: • A resin based composite (RBC) was polymerized by three different Light Emitting Diodes. • Each LED had its beam profile visually, wavelength and power analyzed. • The effective polymerization power (EPP) varied from 28% to 52% of the total beam power. • Wavelength seems to be as relevant as power in the light curing process. • Mechanical properties depend on the simultaneous effect of wavelength and power.

  6. Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat

    Directory of Open Access Journals (Sweden)

    Lingan eKong

    2014-12-01

    Full Text Available It is well established that a high external NH4+ concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH4+ are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m-2 and high (30 g N m-2 supplies of NH4+ in the presence or absence of additional K+ (6 g K2O m-2 to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N remobilization and the grain-filling rate. The results indicated that an excessive supply of NH4+ significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE and the grain-filling rate compared with a moderate level of NH4+. The additional provision of K+ considerably alleviated these negative effects of high NH4+, resulting in a 19.41%-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET showed that the net rate of transmembrane K+ influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K+ content decreased by 36.13% in wheat plants subjected to high NH4+. This study indicates that the effects of high NH4+ on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K+ uptake in wheat.

  7. EFFECT OF MONTMORILLONITE ADDITION ON MECHANICAL CHARACTERIZATIONS OF POLYIMIDE NANOCOMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Wang Xishu; Zhang Yihe; Fu Shaoyun; Feng Xiqiao

    2005-01-01

    Tensile deformation and fracture characteristics of polyimide/montmorillonite nanocomposite films are investigated to enhance the particular mechanical properties and understand the effective factors in dominating the mechanical properties of nanocomposites, such as the nanolayer, matrix and nanolayer/matrix interface. How to contribute to the mechanical properties of nanocomposite film is a very complex problem. In this paper, these factors are analyzed based on the addition amount and fracture mechanics. The results indicate that the specimen at 20 wt% MMT breaks prematurely with a fracture strength (σb=78 MPa) much lower than that (σb = 128 MPa) at the 1wt% MMT. However, the Young's modulus (3.2 GPa) of the former is higher than that (1.9 GPa) of the latter. Fractography also indicates that the brittle cracking formed in high content addition is the main cause of failure but microscopically ductile fracture morphology still exists locally. And for the trace element addition, the smaller threading slipping veins are evenly distributed on the entire fracture section of these films. Therefore, these characteristics would presumably be associated with both the concentration effects of size of nanocomposite sheets and the increasing deformation harmony in nanolayers.

  8. Effects of Mechanical Properties on Tumor Invasion: Insights from a Cellular Model

    KAUST Repository

    Li, YZ

    2014-08-01

    Understanding the regulating mechanism of tumor invasion is of crucial importance for both fundamental cancer research and clinical applications. Previous in vivo experiments have shown that invasive cancer cells dissociate from the primary tumor and invade into the stroma, forming an irregular invasive morphology. Although cell movements involved in tumor invasion are ultimately driven by mechanical forces of cell-cell interactions and tumor-host interactions, how these mechanical properties affect tumor invasion is still poorly understood. In this study, we use a recently developed two-dimensional cellular model to study the effects of mechanical properties on tumor invasion. We study the effects of cell-cell adhesions as well as the degree of degradation and stiffness of extracellular matrix (ECM). Our simulation results show that cell-cell adhesion relationship must be satisfied for tumor invasion. Increased adhesion to ECM and decreased adhesion among tumor cells result in invasive tumor behaviors. When this invasive behavior occurs, ECM plays an important role for both tumor morphology and the shape of invasive cancer cells. Increased stiffness and stronger degree of degradation of ECM promote tumor invasion, generating more aggressive tumor invasive morphologies. It can also generate irregular shape of invasive cancer cells, protruding towards ECM. The capability of our model suggests it a useful tool to study tumor invasion and might be used to propose optimal treatment in clinical applications.

  9. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2016-01-01

    Full Text Available Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies.

  10. Effect of Sb-Modification on the Microstructure and Mechanical Properties of Secondary Alloy 319

    Directory of Open Access Journals (Sweden)

    Medlen D.

    2016-06-01

    Full Text Available 319 alloy has been selected for the study in the present work due to its wide use in many applications. 319 alloy is used in automotive and aerospace industry for the complicated castings which must comply high strength requirements. In practice, the most common elements with the modifying effect are strontium, sodium and antimony. The addition of these elements leads to a change in the shape of eutectic silicon, resulting in an increase of the mechanical characteristics and the microstructure. An experimental program has been undertaken to explore the effect of antimony on chosen mechanical properties and the microstructure of investigated alloy. An analysis of the results of these experimental works is made in order to determine an optimum Sb (Al-10% Sb addition to produce material exhibiting desirable properties. Experimental works have showed that the addition of the Al-10% Sb results in similar or even higher mechanical properties than the conventional 319 alloy. Based on the carried out experiments the best combination of mechanical properties has been achieved by the addition of 2 000 ppm Al-10% Sb.

  11. The Effects of Weathering on Mechanical Properties of Glass Fiber Reinforced Plastics (Grp Materials

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2012-08-01

    Full Text Available Glass fiber reinforced plastics composite is extensively used as a structural material for pools, oil pipes and tanks because it has good corrosion resistance properties.  The effects of weathering on the mechanical properties of glass fiber reinforced plastics (GRP in the Sultanate of Oman have been studied.  The tensile and three point bend specimens were exposed to outdoor conditions (open atmosphere in sunlight and tested for various intervals of time.  It was observed that as the exposure time to sunlight, ultraviolet radiation and dust increases the mechanical properties of GRP materials decrease.  The effects of relative humidity (%RH on the mechanical properties were also studied. It was found that as the relative humidity increased in the atmosphere during the exposure time, the tensile strength, flexural strength and modulus of elasticity are lowered. This work has revealed that the decrease in the mechanical properties of GRP under weathering conditions is subjected to atmospheric conditions such as humidity, temperature, ultraviolet radiation and pollutant.Key Words: Weathering, Glass-Fiber Reinforced Plastics, Degradation

  12. Mechanism of low-level microwave radiation effect on nervous system.

    Science.gov (United States)

    Hinrikus, Hiie; Bachmann, Maie; Karai, Denis; Lass, Jaanus

    2017-01-01

    The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm(2). A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.

  13. To find effects of GMAW parameters on Mechanical Properties of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Chandan Kaushal

    2014-11-01

    Full Text Available The present research aims to investigate the effects of Gas Metal Arc Welding (GMAW on the mechanical properties of different grades of aluminum alloys. GMAW is the most common method of joining aluminum alloys used in various industrial processes. It replaces the Tungsten Inert Gas (TIG method of providing equally high quality of joints with a much higher performance. Aluminum alloys under consideration for this experiment will be from 6XXX series, consisting of Silicon and Magnesium as main alloying elements. Weld joints Will be produced with the help of a Gas Metal Arc Welding (GMAW process. The Hardness, Tensile strength, yield stresses and elongation will be the mechanical properties to be obtained. As aluminum alloys show large micro structural changes after welding it is necessary to know about the effect of welding parameters on the mechanical properties of weldements as too high welding current and too high welding speed will result in high heat input and weakening of weld profile so a balance is need to be struck between welding parameters and mechanical properties. Scattering Electron Microscopy (SEM technique will be used to analyze micro structural changes.

  14. Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic

    Science.gov (United States)

    Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.

    2011-01-01

    The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.

  15. Effect of Subcritical Annealing Temperature on Microstructure and Mechanical Properties of SCM435 Steel

    Institute of Scientific and Technical Information of China (English)

    Cheng JI; Lei WANG; Miao-yong ZHU

    2015-01-01

    The effect of subcritical annealing temperature on microstructure and mechanical properties of SCM435 steel was inves-tigated through changing the heating and soaking temperature as 660 °C, 680 °C, 700 °C, 720 °C and 745 °C. The microstructure and mechanical properties of intercritically annealed specimens were analyzed. With increasing the subcritical annealing tempera-ture from 660 °C to 720 °C, the spheroidization ratio gradually increased, and the mechanical properties, formability and Vickers hardness were improved. According to the comprehensive comparison of mechanical properties and formability, the subcritical process at soaking temperature of 680−720 °C could achieve similar annealing effect as that of intercritical process. Therefore, the subcritical annealing temperature could be set as 700 °C in practice, with theAc1 temperature lfuctuation within ±20 °C, and the applicability and stability of subcritical annealing were guaranteed in industrial application. The plant results of the cold heading showed that the subcritical annealing could replace original intercritical annealing successfully with signiifcantly saving time and energy.

  16. Higgs mechanism in three-dimensional topological superconductors and anomalous Hall effect in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Flavio; Eremin, Ilya [Theoretische Physik III, Ruhr-Universitaet Bochum (Germany)

    2015-07-01

    We discuss the peculiar nature of Higgs mechanism in an effective field theory for three-dimensional topological superconductors. The effective theory features two order parameters associated to the two chiral fermion species in the system. The resulting electrodynamics of such a topological superconductor exhibits a topological magnetoelectric effect with an axion field given by the phase difference of the order parameters. As consequence, the London regime is highly non-linear and anomalous Hall effect in the absence of an external magnetic field occurs. In this anomalous Hall effect the generated current transverse to an applied electric field changes sign with the temperature. We also discuss the scaling behavior of the penetration depth near the transition temperature, which is also shown to exhibit a scaling exponent that is crucially influenced by the axion term, varying continuously as function of the average phase difference.

  17. [Effect and mechanism of traditional Chinese medicine and their active constituents in postmenopausal osteoporosis].

    Science.gov (United States)

    Zhao, Piwen; Niu, Jianzhao; David, Yue-Wei Lee; Wang, Jifeng; Sun, Yanling; Li, Yadong

    2012-06-01

    Postmenopausal osteoporosis is one of the commonest systemic bone metabolism diseases among menopausal women, mainly caused by lowering internal estrogen. Although Hormone Replacement Therapy (HRT) is an effective method in clinical practice for years, it shows side-effect in increasing gynecological carcinoma. It has already been proved by clinical tests that multiple traditional Chinese medicine formulas and their monomer ingredients and phytoestrogen-like active constituents contained in traditional Chinese medicines are effective on treating osteoporosis with relatively less side-effects comparing with HRT. They show protective and therapeutic effects by acting on estrogen receptors of targeted tissues and targeted cells and then affecting expressions of bone metabolism-related regulatory proteins and factors in downstream signal conduct paths. Recent studies on estrogen related receptor (ERR) provide new possibilities and pathways for mechanism of traditional Chinese medicine and their active constituents in osteoporosis.

  18. Mechanisms Involved in the Pro-Apoptotic Effect of Melatonin in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Isaac Antolín

    2013-03-01

    Full Text Available It is well established that melatonin exerts antitumoral effects in many cancer types, mostly decreasing cell proliferation at low concentrations. On the other hand, induction of apoptosis by melatonin has been described in the last few years in some particular cancer types. The cytotoxic effect occurs after its administration at high concentrations, and the molecular pathways involved have been only partially determined. Moreover, a synergistic effect has been found in several cancer types when it is administered in combination with chemotherapeutic agents. In the present review, we will summarize published work on the pro-apoptotic effect of melatonin in cancer cells and the reported mechanisms involved in such action. We will also construct a hypothesis on how different cell signaling pathways may relate each other on account for such effect.

  19. Protein conformational modulation by photons: a mechanism for laser treatment effects.

    Science.gov (United States)

    Liebert, Ann D; Bicknell, Brian T; Adams, Roger D

    2014-03-01

    Responsiveness to low-level laser treatment (LLTT) at a wavelength of 450-910 nm has established it as an effective treatment of medical, veterinary and dental chronic pain, chronic inflammation conditions (arthritis and macular degeneration), wound repair, and lymphoedema, yet the mechanisms underlying the effectiveness of LLLT remain unclear. However, there is now sufficient evidence from recent research to propose an integrated model of LLLT action. The hypothesis presented in this paper is that external applications of photons (through laser at an appropriate dose) modulates the nervous system through an integrated mechanism. This stimulated mechanism involves protein-to-protein interaction, where two or more proteins bind together to facilitate molecular processes, including modification of proteins by members of SUMO (small ubiquitin-related modifier proteins) and also protein phosphorylation and tyrosination. SUMO has been shown to have a role in multiple nuclear and perinuclear targets, including ion channels, and in the maintenance of telomeres and the post-translational modification of genes. The consequence of laser application in treatment, therefore, can be seen as influencing the transmission of neural information via an integrated and rapid modulation of ion channels, achieved through both direct action on photo-acceptors (such as cytochrome c-oxidase) and through indirect modulation via enzymes, including tyrosine hydroxylase (TH), tyrosine kinases and tyrosine kinase receptors. This exogenous action then facilitates an existing photonic biomodulation mechanism within the body, and initiates ion channel modulation both in the periphery and the central nervous system (CNS). Evidence indicates that the ion channel modulation functions predominately through the potassium channels, including two pore leak channels (K2P), which act as signal integrators from the periphery to the cortex. Photonic action also transforms SUMOylation processes at the cell

  20. Social carry-over effects on non-social behavioral variation: mechanisms and consequences

    Directory of Open Access Journals (Sweden)

    Petri Toivo Niemelä

    2015-05-01

    Full Text Available The field of animal personality is interested in decomposing behaviors into different levels of variation, with its present focus on the ecological and evolutionary causes and consequences of expressed variation. Recently the role of the social environment, i.e. social partners, has been suggested to affect behavioral variation and induce selection on animal personality. Social partner effects exist because characters of social partners (e.g. size, behavior, affect the behavioral expression of a focal individual. Here, we 1 first review the proximate mechanisms underlying the social partner effects on behavioral expression and the timescales at which such effects might take place. We then 2 discuss how within- and among-individual variation in single behaviors and covariation between multiple behaviors, caused by social partners, can carry-over to non-social behaviors expressed outside the social context. Finally, we 3 highlight evolutionary consequences of social carry-over effects to non-social behaviors and 4 suggest study designs and statistical approaches which can be applied to study the nature and evolutionary consequences of social carry-over effects on non-social behaviors. Understanding the proximate mechanisms underpinning the social partner effects is important since it opens a door for deeper understanding of how social environments can affect behavioral variation and covariation at multiple levels, and the evolution of non-social behaviors (i.e. exploration, activity, boldness that are affected by social interactions.

  1. Biological effects of mechanically and chemically dispersed oil on the Icelandic scallop (Chlamys islandica).

    Science.gov (United States)

    Frantzen, Marianne; Regoli, Francesco; Ambrose, William G; Nahrgang, Jasmine; Geraudie, Perrine; Benedetti, Maura; Locke, William L; Camus, Lionel

    2016-05-01

    This study aimed to simulate conditions in which dispersant (Dasic NS) might be used to combat an oil spill in coastal sub-Arctic water of limited depth and water exchange in order to produce input data for Net Environmental Benefit Analysis (NEBA) of Arctic and sub-Arctic coastal areas. Concentration dependent differences in acute responses and long-term effects of a 48h acute exposure to dispersed oil, with and without the application of a chemical dispersant, were assessed on the Arctic filter feeding bivalve Chlamys islandica. Icelandic scallops were exposed for 48h to a range of spiked concentrations of mechanically and chemically dispersed oil. Short-term effects were assessed in terms of lysosomal membrane stability, superoxide dismutase, catalase, gluthatione S-transferases, glutathione peroxidases, glutathione reductase, glutathione, total oxyradical scavenging capacity, lipid peroxidation and peroxisomal proliferation. Post-exposure survival, growth and reproductive investment were followed for 2 months to evaluate any long-term consequence. Generally, similar effects were observed in scallops exposed to mechanically and chemically dispersed oil. Limited short-term effects were observed after 48h, suggesting that a different timing would be required for measuring the possible onset of such effects. There was a concentration dependent increase in cumulative post-exposure mortality, but long-term effects on gonadosomatic index, somatic growth/condition factor did not differ among treatments.

  2. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics

    Science.gov (United States)

    Duarte, Julio D; Cooper-DeHoff, Rhonda M

    2010-01-01

    Thiazide and thiazide-like diuretics are among the most commonly used antihypertensives and have been available for over 50 years. However, the mechanism by which these drugs chronically lower blood pressure is poorly understood. Possible mechanisms include direct endothelial- or vascular smooth muscle-mediated vasodilation and indirect compensation to acute decreases in cardiac output. In addition, thiazides are associated with adverse metabolic effects, particularly hyperglycemia, and the mechanistic underpinnings of these effects are also poorly understood. Thiazide-induced hypokalemia, as well as other theories to explain these metabolic disturbances, including increased visceral adiposity, hyperuricemia, decreased glucose metabolism and pancreatic β-cell hyperpolarization, may play a role. Understanding genetic variants with differential responses to thiazides could reveal new mechanistic candidates for future research to provide a more complete understanding of the blood pressure and metabolic response to thiazide diuretics. PMID:20528637

  3. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    Science.gov (United States)

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  4. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries

    Science.gov (United States)

    Hendricks, Christopher; Williard, Nick; Mathew, Sony; Pecht, Michael

    2015-11-01

    Lithium-ion batteries are popular energy storage devices for a wide variety of applications. As batteries have transitioned from being used in portable electronics to being used in longer lifetime and more safety-critical applications, such as electric vehicles (EVs) and aircraft, the cost of failure has become more significant both in terms of liability as well as the cost of replacement. Failure modes, mechanisms, and effects analysis (FMMEA) provides a rigorous framework to define the ways in which lithium-ion batteries can fail, how failures can be detected, what processes cause the failures, and how to model failures for failure prediction. This enables a physics-of-failure (PoF) approach to battery life prediction that takes into account life cycle conditions, multiple failure mechanisms, and their effects on battery health and safety. This paper presents an FMMEA of battery failure and describes how this process enables improved battery failure mitigation control strategies.

  5. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan

    2015-06-11

    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  6. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory

    Science.gov (United States)

    Hu, Cong; Wang, Qi; Bai, Shuai; Xu, Min; He, Deyan; Lyu, Deyuan; Qi, Jing

    2017-02-01

    Oxygen vacancy (Vo) is believed to control the switching mechanism of metal oxide resistive switching memory. However, an accurate and quantitative theory to prove this point of view remains absent. In this letter, we propose a model combining the Poole-Frenkel effect, space charge limited current, and the modification of Vo density to simulate the current-voltage curves. The calculated results show reasonable agreements with the experimental data, which indicates that resistive switching between high resistance state and low resistance state in the devices of Al/ZnO/p+-Si is led by the density change of Vo. Furthermore, the essence of this leading effect of Vo density is explained by electrons capture and emission via oxygen vacancies. This research demonstrates the significance of Vo in theory and gives an insight into the switching mechanism.

  7. The Effect of Mechanical Load on the Thermal Conductivity of Building Materials

    Directory of Open Access Journals (Sweden)

    J. Toman

    2000-01-01

    Full Text Available The effect of mechanical load on the thermal conductivity of building materials in the design of envelope parts of building structures is studied. A typical building material is chosen in the practical investigation of this effect, namely the cement mortar. It is concluded that in the range of hygroscopic moisture content, lower levels of mechanical load, typically up to 90 % of compressive strength (CS, are not dangerous from the point of view of worsening the designed thermal properties, but in the overhygroscopic region, the load as low as 57 % of CS may be dangerous. The higher levels of loading are found to be always significant because they lead to marked increase of thermal conductivity which is always a negative information for a building designer.

  8. DEPENDENCY OF OSTEOGENIC EFFECTS ON CHARACTERISTICS OF MECHANICAL LOAD APPLIED TO OSSEOUS STRUCTURES

    Directory of Open Access Journals (Sweden)

    A. S. Avrunin

    2016-01-01

    Full Text Available Purpose of the study: to evaluate osteogenic rate of various characteristics of mechanical loading based on the authors’ data as well as literature analysis.Literature analysis proved that clinical outcome of physical training can be achieved not only by increasing the mechanical load but also by altering number of load iterations, rate of load acceleration, frequency of cyclic load, rest interval, distribution of load across the skeleton. Presented data provides a reasonable basis to apply alterations of all above-mentioned load characteristics to obtain clinical effect and customize every single baseline exercise plan to gain a maximum treatment and preventive effect in individuals with high risk of osteoporotic fractures.

  9. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms

    Directory of Open Access Journals (Sweden)

    Yonggang eLiu

    2015-05-01

    Full Text Available EExposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation.

  10. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms.

    Science.gov (United States)

    Liu, Yonggang; Goodson, Jamie M; Zhang, Bo; Chin, Michael T

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation.

  11. Influence of air pressure on mechanical effect of laser plasma shock wave

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu-Zhu; Wang Guang-An; Zhu Jin-Rong; Shen Zhong-Hua; Ni Xiao-Wu; Lu Jian

    2007-01-01

    The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 103 to 1.01×105pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.

  12. The effect of graphitization on the mechanical properties of twodimensional carbon-carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Sedghi, A. [Iran Univ. of Sci. and Technol., Teheran (Iran, Islamic Republic of). Dept. of Mater. Eng.; Golestani Fard, F. [Iran Univ. of Sci. and Technol., Teheran (Iran, Islamic Republic of). Dept. of Mater. Eng.

    1997-05-01

    In this article the effect of graphitization in twodimensional c-c composite bodies prepared by impregnation of novalak resin is reported. Mechanical properties were determined by bending tests and microstructural features were studied by SEM and XRD. It was found that primary graphitization at 2300 C followed by graphitization at 2500 C improves the mechanical strength remarkably. Repeated graphitization and long - term treatment at 2500 C, however, found to have an adverse effect. Microstructural observations revealed that the level of strength is mainly controlled by a sheath developed around the fibre during graphitization. Applying an improper thermal regime affects the matrix - fibre adherence and may cause the destruction of the fibres. This enhances the crack propagation and causes early failure of composite body under loading. (orig.)

  13. Studies on Immunological Effect and Immunological Mechanism Avian Encephalomyelitis Oil Emulsion Inactivated Vaccine

    Institute of Scientific and Technical Information of China (English)

    CHENG Zi-qiang; ZHAO Zhen-hua; RI Mudema

    2002-01-01

    Oil emulsion inactivated vaccine was prepared by susceptible embryos, with different strains of AEV. Four groups of normal chickens of 2 - 7 days of age were given injections for immunization, respectively. Another group was used as control. This study was expected to evaluate the immunological effect and discuss the immunological mechanism by means of five different experiments, i.e. the agar-gel precipitin test,the isolation of lymphokine, the isolation, purification and analysis of blood serum IgG, embryo-susceptibility test, and clinical and pathological examination. The results of these experiments indicated that oil emulsion inactivated vaccine is safe and effective. The chickens were normal when inoculated with AE strong virus after immunity at 4 and 37 weeks. Immunological mechanism is that the humoral immunity played an important role and celluar immunity exists, but it is not important in the process of the resistance to AEV.

  14. Effect of modification on the mechanical properties of IN-713C alloy

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2010-01-01

    Full Text Available The results of studies on the effect of modification on macrostructure and mechanical properties (hardness, R02, Rm, elongation A5 and reduction of area Z of IN-713C nickel alloy, examined on “carrot”- type specimens(1 were presented. One surface-volume modified melt and two volume-modified melts were made. As a reference, the results obtained on non-modified castings were used. A very beneficial effect of the combined surface-volume modification on alloy macrostructure (equiaxial crystals and mechanical properties was reported. Volume modification produces mixed structure of columnar and equiaxial crystals. The efficiency of modification was additionally enhanced by application of filters made according to the authors’ genuine design. The inoculant used in these filters was cobalt aluminate CoAl2O4 .

  15. Effect of thermo-mechanical properties of PIM feedstock on compacts shape retention during debinding process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The removal of the binder from the powder compacts (debinding) can be a slow step and a source of problems. To improve the debinding process of powder injection molding operation, it's necessary to understand the thermal and mechanical properties of powder injection molding feedstocks and to find the major causes responsible for molding difficulties and compacts shape retention during debinding process. The effects of thermo-mechanical properties of the PIM feedstock on the compacts shape retention during debinding process were discussed and explained from practical point of view. The results indicate that the heat of fusion affects the cooling time. The binder component with high heat of fusion and high-decomposed temperature is more effective as the second binder component for the compact to retain its shape during debinding.

  16. Advanced paternal age effects in neurodevelopmental disorders—review of potential underlying mechanisms

    Science.gov (United States)

    Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C

    2017-01-01

    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders. PMID:28140401

  17. Effect of interface structure on mechanical properties of advanced composite materials.

    Science.gov (United States)

    Gan, Yong X

    2009-11-25

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown.

  18. Heat generation and thermo-mechanical effect modeling in longitudinally diode-pumped solid state lasers

    Science.gov (United States)

    Lakhdari, Fouad; Osmani, Ismahen; Tabet, Saida

    2015-09-01

    Thermal management in solid state laser is a challenge to the high power laser industry's ability to provide continued improvements in device and system performance. In this work an investigation of heat generation and thermo-mechanical effect in a high-power Nd:YAG and Yb:YAG cylindrical-type solid state laser pumped longitudinally with different power by fibre coupled laser diode is carried out by numerical simulation based on the finite element method (FEM). Impact of the dopant concentration on the power conversion efficiency is included in the simulation. The distribution of the temperature inside the lasing material is resolute according to the thermal conductivity. The thermo-mechanical effect is explored as a function of pump power in order to determine the maximum pumping power allowed to prevent the crystal's fracture. The presented simulations are in broad agreement with analytical solutions; provided that the boundary condition of the pump induced heat generation is accurately modelled.

  19. The stress response to surgery: release mechanisms and the modifying effect of pain relief

    DEFF Research Database (Denmark)

    Kehlet, H

    1989-01-01

    This short review updates information on the release mechanisms of the systemic response to surgical injury and the modifying effect of pain relief. Initiation of the response is primarily due to afferent nerve impulses combined with release of humoral substances (such as prostaglandins, kinins...... in releasing the classical endocrine catabolic response, while humoral factors are important for the hyperthermic response, changes in coagulation and fibrinolysis immunofunction, and capillary permeability. The modifying effect of pain relief on the surgical stress response is dependent upon the technique...... on the stress response. In summary, pain alleviation itself may not necessarily lead to an important modification of the stress response, and a combined approach with inhibition of the neural and humoral release mechanisms is necessary for a pronounced inhibition or prevention of the response to surgical injury....

  20. Effects of added ZnTCP on mechanical and biological properties of apatite cement

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, K.; Suzuki, K. [Okayama Univ. Dental School (Japan). Dept. of Biomaterials; Miyamoto, Y.; Toh, T.; Yuasa, T.; Nagayama, M. [Tokushima Univ. (Japan). First Dept. of Oral and Maxillofacial Surgery; Ito, A. [National Inst. for Advanced Interdisciplinary Research, MITT, Ibaragi (Japan)

    2001-07-01

    Effects of added Zn doped {beta}-tricalcium phosphate (ZnTCP) on mechanical and biological properties of apatite cement (AC) was studied. Powder X-ray diffractometer revealed that ZnTCP shows no reactivity with AC. The mechanical strength of AC decreased increasing amounts of added ZnTCP. We observed no effect on the setting time of AC when the amount of ZnTCP was 10% or less. Proliferation of the osteoblastic cells was significantly increased on the surface of AC containing 5% ZnTCP when compared with that containing no ZnTCP. In contrast, proliferation of the cells decreased on the surface of AC containing 10% ZnTCP when compared with that free from ZnTCP; indicating cytotoxity. We concluded therefore, that addition of ZnTCP to AC might be useful to enhance the osteoconductivity of AC when release of Zn{sup 2+} can be carefully regulated. (orig.)

  1. Development of nanocomposites from polymer blends: Effect of organoclay on the morphology and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mélo, Tomás J.A., E-mail: tomas@dema.ufcg.edu.br; Araújo, Edcleide M., E-mail: edcleide@dema.ufcg.edu.br; Brito, Gustavo F., E-mail: gustavo_brito_@hotmail.com; Agrawal, Pankaj, E-mail: pankaj@ig.com.br

    2014-12-05

    Highlights: • We investigated the effect the clay content on the properties of PLA/EMA-GMA blend. • The impact strength of the blend increased with the addition of 2.5 (wt%) of clay. • The presence of the clay decreased the EMA-GMA domains size. • The nanocomposite with the lowest clay content presented better clay dispersion. - Abstract: In this work the effect of 2.5% and 5% (wt) of organoclay on the mechanical properties and morphology of PLA/EMA-GMA blend was investigated. The nanocomposites were prepared by extrusion followed by injection molding and characterized by X-ray diffraction (XRD), mechanical properties and Scanning Electron Microscopy (SEM). The results showed that better impact strength was achieved when 2.5% (wt) of clay was added to the PLA/EMA–GMA blend. XRD results indicated that this nanocomposite presented a partially exfoliated structure.

  2. The effect of mechanical alloying on microstructure and mechanical properties of MoSi{sub 2} prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kermani, Milad, E-mail: miladkermani.mk@gmail.com; Razavi, Mansour; Rahimipour, Mohammad Reza; Zakeri, Mohammad

    2014-04-01

    Highlights: • Powders of Mo and Si according to MoSi{sub 2} stoichiometry were mechanically alloyed. • The as milled powder mixture was sintered using spark plasma sintering. • We investigated the microstructure and mechanical properties of samples. - Abstract: In this research the effect of mechanical alloying on the in situ synthesis–sintering behavior and mechanical properties of MoSi{sub 2} has been investigated. The Mo and Si powders according to MoSi{sub 2} stoichiometric composition were mechanically alloyed at different times. Then, the powders were subjected to spark plasma sintering process for preparing monolithic MoSi{sub 2}. X-ray diffraction pattern of the sintered samples showed that by increasing the mechanical alloying time, Mo{sub 5}Si{sub 3} has been formed. It seems that the formation of Mo{sub 5}Si{sub 3} is due to the effect of mechanical alloying on microstructure and thermodynamic condition of the reaction.

  3. Abnormal grain growth effects on the mechanical behavior of Ni electrodeposits

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, O. [LMT-Cachan, ENS Cachan/CNRS-UMR 8535/Univ. Paris VI, Cachan (France); Lab. de Mecanique et Genie Civil, Univ. Montpellier II, Montpellier (France); Hubert, O.; Hild, F. [LMT-Cachan, ENS Cachan/CNRS-UMR 8535/Univ. Paris VI, Cachan (France)

    2004-07-01

    The study deals with the long-term reliability of a high precision pressure sensor using bellows. They are mainly made of electroplated Ni whose thermal stability is investigated by DSC. EBSD measurements and SEM observations give some evidence for an abnormal grain growth mechanism whose effects on the elasto-plastic properties of the Ni deposit are experimentally investigated. Abnormal grain growth leads to an increase in the elastic modulus and a strong decrease in the yield strength. (orig.)

  4. Effects of bituminous layer as backfill material on mechanical behavior in tunnel model

    OpenAIRE

    Moriyoshi, Akihiro; Takano, Shin-ei; Urata, Hiroyuki; Suzuki, Tetsuya; Yoshida, Takaki

    2001-01-01

    This paper describes the effects of bituminous material as a backfill material on mechanical behavior in model tunnel in laboratory. It is known that load spreading and relaxation of bituminous material are good properties. Then if we use bituminous material as a backfill material of tunnel, the tunnel will have waterproof, good load spreading property. We used new bituminous material (Aquaphalt) which can solidify in water. We conducted relaxation test in tension for new bituminous mat...

  5. Effects of PVP on the preparation and growth mechanism of monodispersed Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Monodispersed Ni nanoparticles were successfully prepared by chemical reduction with hydrazine hydrate in ethylene glycol.The effect of the amount of polyvinylpyrrolidone (PVP-K30) on the preparation of Ni nanoparticles was investigated.X-ray diffraction (XRD),transmission electron microscopy (TEM),and high resolution transmission electron microscopy (HRTEM) were employed to characterize the nickel particles are spherical in shape and are not agglomerated.A possible extensive mechanism of nickel nanoparticle formation has been suggested.

  6. Do congenital prosopagnosia and the other-race effect affect the same face recognition mechanisms?

    OpenAIRE

    Janina eEsins; Johannes eSchultz; Christian eWallraven; Isabelle eBülthoff

    2014-01-01

    Congenital prosopagnosia, an innate impairment in recognizing faces, as well as the other-race effect, a disadvantage in recognizing faces of foreign races, both affect face recognition abilities. Are the same face processing mechanisms affected in both situations? To investigate this question, we tested three groups of 21 participants: German congenital prosopagnosics, South Korean participants and German controls in three different tasks involving faces and objects. First we tested all part...

  7. Do congenital prosopagnosia and the other-race effect affect the same face recognition mechanisms?

    OpenAIRE

    Esins, Janina; Schultz, Johannes; Wallraven, Christian; Bülthoff, Isabelle

    2014-01-01

    Congenital prosopagnosia (CP), an innate impairment in recognizing faces, as well as the other-race effect (ORE), a disadvantage in recognizing faces of foreign races, both affect face recognition abilities. Are the same face processing mechanisms affected in both situations? To investigate this question, we tested three groups of 21 participants: German congenital prosopagnosics, South Korean participants and German controls on three different tasks involving faces and objects. First we test...

  8. Assessment of cytotoxic effect mechanisms of gas-discharge plasma radiation

    OpenAIRE

    Ivanova I.P.; Trofimova S.V.; Vedunova М.V.; Zhabereva А.S.; Bugrova M.L.; Piskaryov I.M.; Karpel Vel Leitner N.

    2014-01-01

    The aim of the investigation was to assess the mechanisms of cytotoxic effect of gas-discharge plasma radiation on lymphosarcoma and breast cancer cells. Materials and Methods. The experiment was carried out on the strains of rat lymphosarcoma (LSR) and breast cancer (RMK1) cells. 4 ml of cell suspension at (4–6)·106/ml concentration was exposed to gas-discharge plasma radiation in various time modes. Plasma radiation was generated by impulse device with the following set characteristics:...

  9. The Effects of Weathering on Mechanical Properties of Glass Fiber Reinforced Plastics (Grp) Materials

    OpenAIRE

    Abdullah, H.; S. Al Araimi and R. A. Siddiqui

    2012-01-01

    Glass fiber reinforced plastics composite is extensively used as a structural material for pools, oil pipes and tanks because it has good corrosion resistance properties.  The effects of weathering on the mechanical properties of glass fiber reinforced plastics (GRP) in the Sultanate of Oman have been studied.  The tensile and three point bend specimens were exposed to outdoor conditions (open atmosphere) in sunlight and tested for various intervals of time.  It was observed th...

  10. Effect of homocysteine on intestinal permeability in rats with experimental colitis, and its mechanism

    OpenAIRE

    Ding, Hao; Mei, Qiao; GAN, HUI-ZHONG; Cao, Li-Yu; Liu, Xiao-Chang; Xu, Jian-Ming

    2014-01-01

    Objective: To investigate the effect of homocysteine (Hcy) on intestinal permeability in rats with TNBS/ethanol-induced colitis and elucidate its mechanism. Methods: Sprague-Dawley rats were divided into four groups: normal, normal + Hcy injection, TNBS model, and TNBS model + Hcy injection. Experimental colitis was induced by trinitrobenzene sulfonic acid (TNBS) in 50% ethanol; rats were injected subcutaneously with Hcy from the first day after the induction of experimental colitis on 30 con...

  11. Effects of hand massage and acupressure therapy for mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Şebnem Çınar Yücel

    2015-10-01

    Results: According to the research findings, it wasn’t found significant as clinical which is the statistically significant difference in the physiological indicators of anxiety, perceived anxiety and dyspnoea except from oxygen saturation. Conclusion: In conclusion, our results suggest that hand massage and acupressure therapy might effectively relieve perceived dyspnoea and anxiety and reduce physiological indicators of anxiety in patients having mechanical ventilation support. The study provides a research-based intervention model for clinicians caring for MVP.

  12. Effects of voids on thermal-mechanical reliability of lead-free solder joints

    Directory of Open Access Journals (Sweden)

    Benabou Lahouari

    2014-06-01

    Full Text Available Reliability of electronic packages has become a major issue, particularly in systems used in electrical or hybrid cars where severe operating conditions must be met. Many studies have shown that solder interconnects are critical elements since many failure mechanisms originate from their typical response under thermal cycles. In this study, effects of voids in solder interconnects on the electronic assembly lifetime are estimated based on finite element simulations.

  13. Mechanism of the flame ionization detector. II. Isotope effects and heteroatom effects

    DEFF Research Database (Denmark)

    Holm, Torkil

    1997-01-01

    The relative molar flame ionization detecton (FID) response (RMR) for a hydrocarbon does not change when deuterium is substituted for hydrogen. The exception is methane for which an inverse deuterium effect of 3..5% is observed for tetradeuteriomethane. [13C]Methane shows an inverse isotope effect...... of 2%. The reason for the small or non-existent isotope effects is that H/2H exchange takes place in the pre-combustion hydrogenolysis in the flame. This was shown by taking samples from the lower part of the flame by means of a fused silica capillary probe. By the same technique the hydrogenolytic...... reactions in the hydrogen flame of compounds added to the hydrogen gas in low concentrations were followed. Alcohols, ethers, ketones, and esters all produced methane and carbon monoxide, while amines produced methane and hydrogen cyanide, halogen compounds methane and hydrogen halide, etc. The FID response...

  14. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  15. Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks.

    Science.gov (United States)

    Gyoneva, Lazarina; Segal, Yoav; Dorfman, Kevin D; Barocas, Victor H

    2015-07-01

    Collagen IV networks in the glomerular basement membrane (GBM) are essential for the maintenance and regulation of blood filtration in the kidneys. The GBM contains two different types of collagen IV networks: [α1(IV)]2α2(IV) and α3(IV)α4(IV)α5(IV), the latter of which has a higher number of supercoils (two or more collagens coiling around each other). To investigate the effects of supercoiling on the mechanical and permeability properties of collagen IV networks, we generated model collagen IV networks in the GBM and reconnected them to create different levels of supercoiling. We found that supercoiling greatly increases the stiffness of collagen IV networks but only minimally decreases the permeability. Also, doubling the amount of supercoils in a network had a bigger effect than doubling the stiffness of the supercoils. Our results suggest that the formation of supercoils is a specialized mechanism by the GBM that provides with a network stiff and strong enough to withstand the high hydrostatic pressures of filtration, yet porous enough that filtration is not hindered. Clinically, understanding the effects of supercoiling gives us insight into the mechanisms of GBM failure in some disease states where the normal collagen IV structure is disrupted.

  16. Effect of Chemical Corrosion on the Mechanical Characteristics of Parent Rocks for Nuclear Waste Storage

    Directory of Open Access Journals (Sweden)

    Tielin Han

    2016-01-01

    Full Text Available Long-term immersion was adopted to explore the damage deterioration and mechanical properties of granite under different chemical solutions. Here, granite was selected as the candidate of parent rocks for nuclear waste storage. The physical and mechanical properties of variation regularity immersed in various chemical solutions were analyzed. Meanwhile, the damage variable based on the variation in porosity was used in the quantitative analysis of chemical damage deterioration degree. Experimental results show that granite has a significant weakening tendency after chemical corrosion. The fracture toughness KIC, splitting tensile strength, and compressive strength all demonstrate the same deteriorating trend with chemical corrosion time. However, a difference exists in the deterioration degree of the mechanical parameters; that is, the deterioration degree of fracture toughness KIC is the greatest followed by those of splitting tensile strength and compressive strength, which are relatively smaller. Strong acid solutions may aggravate chemical damage deterioration in granite. By contrast, strong alkaline solutions have a certain inhibiting effect on chemical damage deterioration. The chemical solutions that feature various compositions may have different effects on chemical damage degree; that is, SO42- ions have a greater effect on the chemical damage in granite than HCO3- ions.

  17. Effects and possible mechanisms of simulated-microgravity on zebrafish embryonic cell

    Science.gov (United States)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Wang, Ruonan

    2016-07-01

    Cellular level studies are helpful for revealing the underlying mechanisms of microgravity effects on living organisms. Many cell types, ranging from bacteria to mammalian cells, are sensitive to the microgravity environment. In this study, zebrafish embryonic cells (ZF4) were exposed to simulated-microgravity (SMG) for different times to investigate the effects and possible mechanisms of microgravity on fibroblasts. A significant arrest in G2/M phase was detected in ZF4 cells after 24 or 48 hour of SMG exposure, respectively. The mRNA levels of G2/M phase regulators cyclinB1 and cdc2 were significantly decreased, while wee1 was significantly increased. Additionally, CEP135, a core centrosome protein throughout the cell cycle, seems to play a key role in modulating this effect. Quantitative analysis showed that cep135 expression was significantly increased, while CEP135 protein expression level was significantly decreased two times after SMG. Further investigation demonstrated the transfection of dre-miR-22a, a miRNA for targeting cep135, also induced G2/M arrest in ZF4 cells. These results suggest that SMG induced G2/M arrest in ZF4 cells may due to the regulation of dre-miR-22a and its target cep135. Key Words: Simulated-microgravity; zebrafish embryonic cell; G2/M arrest; molecular mechanism

  18. Effects of particle size on the mechanical properties of particle-reinforced Sn-Ag composite solder joint

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Particulate size has significant influenced on the mechanical properties of particle-reinforced composite solder joints. In this current research, Cu or Ni reinforcement particles were mechanically added to the Sn-3.5Ag eutectic solder, and the effects of the particle size on the mechanical properties of particle-reinforced composite solder joint were systematically studied. This investigation touched on how mechanical properties of the solder joints are affected by particles size. A quantitative formula was set up to correlate the mechanical property of the solder joint with particle size in different processing conditions. Besides, the fracture mechanism of the composite solder joint was analyzed.

  19. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    Science.gov (United States)

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  20. Advances in research on mechanisms of the effect of negative pressure wound treatment in wound healing

    Directory of Open Access Journals (Sweden)

    Lei LI

    2014-10-01

    Full Text Available Negative pressure wound treatment (NPWT refers to apply a highly porous material between the wound and a semipermeable membrane, and it is then connected to a suction apparatus, leading to a minimal deformation of wound, resulting in promoting cell proliferation and wound repair. These devices may significantly expedite wound healing, facilitate the formation of granulation tissue, and reduce the complexity of subsequent reconstructive operations. In recent years, along with wide clinical use, the therapeutic effect of NPWT has been recognized, but the mechanism of its clinical effect still needs further research. DOI: 10.11855/j.issn.0577-7402.2014.08.15

  1. The Aharonov-Casher effect for spin-1 particles in non-commutative quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dulat, S. [Xinjiang University, School of Physics Science and Technology, Urumqi (China); The Abdus Salam International Center for Theoretical Physics, Trieste (Italy); Li, Kang [Hangzhou Normal University, Department of Physics, Hangzhou (China); The Abdus Salam International Center for Theoretical Physics, Trieste (Italy)

    2008-03-15

    By using a generalized Bopp's shift formulation, instead of the star product method, we investigate the Aharonov-Casher (AC) effect for a spin-1 neutral particle in non-commutative (NC) quantum mechanics. After solving the Kemmer equations both on a non-commutative space and a non-commutative phase space, we obtain the corrections to the topological phase of the AC effect for a spin-1 neutral particle both on a NC space and a NC phase space. (orig.)

  2. Aging effect evolution during ferroelectric-ferroelectric phase transition: A mechanism study

    Directory of Open Access Journals (Sweden)

    Zuyong Feng

    2013-06-01

    Full Text Available Aging can significantly modify the dielectric, piezoelectric, and ferroelectric performance of ferroelectrics. However, little attention has been paid to the aging effect during ferroelectric-ferroelectric phase transitions that is essentially correlated with real applications. In this letter, the authors report the aging effect evolution between two ferroelectric phases in an acceptor-doped piezoceramics. The results show that aging-induced double hysteresis loops were exhibited in different ferroelectric phases, but disappeared during ferroelectric-ferroelectric phase transitions, suggesting the mechanism that the intrinsic restoring force for the reversible switching of domains caused by the alignment of defect dipoles was weakened due to ferroelectric dipole reorientation.

  3. Unravelling mechanisms of dietary flavonoid-mediated health effects: effects on lipid metabolism and genotoxicity

    NARCIS (Netherlands)

    Hoek-van den Hil, E.F.

    2015-01-01

    Summary Consumption of foods containing flavonoids is associated with a reduced risk of cardiovascular diseases (CVD), possibly by lipid-lowering effects. On the other hand, for one of these flavonoids, quercetin, also genotoxicity was shown especially in in vitro bioassays. Therefo

  4. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action.

    Science.gov (United States)

    Mangprayool, Thitiya; Kupittayanant, Sajeera; Chudapongse, Nuannoi

    2013-09-01

    The extract of ginger, the rhizomes of Zingiber officinale Roscoe (Zingiberaceae), has been reported to possess anti-hyperactivity and anti-inflammation on airway. The present study described brochodilatory activity of ginger oil and identified its active compound. Ginger oil was extracted by hydro-distillation. The compositions of ginger oil were analyzed by gas chromatography and mass spectrometer. Citral, eucalyptol and camphene were found to be the major components. Ginger oil and citral, but not camphene, suppressed rat tracheal contraction induced by carbachol (CCh). Consistent with previous report, eucalyptol showed a relaxing effect on rat airway. Since the content of eucalyptol in ginger oil was relatively low, the contribution of eucalyptol to the bronchodilatory effect of ginger oil was small. To elucidate the mechanisms responsible for the myorelaxing effect, propranolol (a β-adrenergic receptor antagonist), indomethacin (a COX inhibitor) and L-NAME (a NOS inhibitor) were used to block the inhibitory effects of ginger oil and citral. It was found that propranolol, but not indomethacin and L-NAME, reversed bronchodilatory effects of both ginger oil and citral, suggesting that a possible mechanism involved β-adrenergic receptor. This study provides the pharmacological basis supporting the therapeutic potential of Z. officinale rhizomes as a bronchodilator.

  5. The Effects of Puerarin on Rat Ventricular Myocytes and the Potential Mechanism

    Science.gov (United States)

    Xu, Hao; Zhao, Manxi; Liang, Shenghui; Huang, Quanshu; Xiao, Yunchuan; Ye, Liang; Wang, Qinyi; He, Longmei; Ma, Lanxiang; Zhang, Hua; Zhang, Li; Jiang, Hui; Ke, Xiao; Gu, Yuchun

    2016-01-01

    Puerarin, a known isoflavone, is commonly found as a Chinese herb medicine. It is widely used in China to treat cardiac diseases such as angina, cardiac infarction and arrhythmia. However, its cardioprotective mechanism remains unclear. In this study, puerarin significantly prolonged ventricular action potential duration (APD) with a dosage dependent manner in the micromolar range on isolated rat ventricular myocytes. However, submicromolar puerarin had no effect on resting membrane potential (RMP), action potential amplitude (APA) and maximal velocity of depolarization (Vmax) of action potential. Only above the concentration of 10 mM, puerarin exhibited more aggressive effect on action potential, and shifted RMP to the positive direction. Millimolar concentrations of puerarin significantly inhibited inward rectified K+ channels in a dosage dependent manner, and exhibited bigger effects upon Kir2.1 vs Kir2.3 in transfected HEK293 cells. As low as micromolar range concentrations of puerarin significantly inhibited Kv7.1 and IKs. These inhibitory effects may due to the direct inhibition of puerarin upon channels not via the PKA-dependent pathway. These results provided direct preclinical evidence that puerarin prolonged APD via its inhibitory effect upon Kv7.1 and IKs, contributing to a better understanding the mechanism of puerarin cardioprotection in the treatment of cardiovascular diseases. PMID:27762288

  6. On the mechanism of the relaxing adrenaline effect on cat jejunum.

    Science.gov (United States)

    Petkov, V; Radomirov, R

    1975-01-01

    The effect of propranolol, phentolamine, papaverine, theophyline and Ca++, administered in different combinations of their threshold doses, on the relaxing effect of adrenaline was studied on an isolated segment of proximal jejunum of male cats. It was established that phentolamine weakened the relaxing effect of adrenaline, while propranolol had no effect on it. Papaverine potentiated the relaxinf effects of adrenaline both when administered alone and in combination with propranolol or with phentolamine. Theophylline weakened the relaxing effect of adfrenaline and of the combination phentolamine-adrenaline. Ca++ increased the smooth-muscle tone. The interpretation of the results obtained leads to the fundamental conclusions that the relaxing effect of adrenaline on cat jejunum is more alpha- than beta-adrenergically determined and that the system of the cyclic AMP participates in its realization. At the smae time, however, the possibility of participation of other mechanisms is not excluded. The smooth-muscle effect of papaverine and theophylline is not determined only by their inhibitory effect on phosphodiesterase.

  7. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    Science.gov (United States)

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  8. Basic mechanisms of radiation effects in the natural space radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, J.R.

    1994-06-01

    Four general topics are covered in respect to the natural space radiation environment: (1) particles trapped by the earth`s magnetic field, (2) cosmic rays, (3) radiation environment inside a spacecraft, (4) laboratory radiation sources. The interaction of radiation with materials is described by ionization effects and displacement effects. Total-dose effects on MOS devices is discussed with respect to: measurement techniques, electron-hole yield, hole transport, oxide traps, interface traps, border traps, device properties, case studies and special concerns for commercial devices. Other device types considered for total-dose effects are SOI devices and nitrided oxide devices. Lastly, single event phenomena are discussed with respect to charge collection mechanisms and hard errors. (GHH)

  9. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms.

    Science.gov (United States)

    Wang, Cai-Feng; Tian, Ying

    2015-11-01

    Triclosan has been used as a broad-spectrum antibacterial agent for over 40 years worldwide. Increasing reports indicate frequent detection and broad exposure to triclosan in the natural environment and the human body. Current laboratory studies in various species provide strong evidence for its disrupting effects on the endocrine system, especially reproductive hormones. Multiple modes of action have been suggested, including disrupting hormone metabolism, displacing hormones from hormone receptors and disrupting steroidogenic enzyme activity. Although epidemiological studies on its effects in humans are mostly negative but conflicting, which is typical of much of the early evidence on the toxicity of EDCs, overall, the evidence suggests that triclosan is an EDC. This article reviews human exposure to triclosan, describes the current evidence regarding its reproductive endocrine-disrupting effects, and discusses potential mechanisms to provide insights for further study on its endocrine-disrupting effects in humans.

  10. Raloxifene: Mechanism of Action, Effects on Bone Tissue, and Applicability in Clinical Traumatology Practice

    Science.gov (United States)

    Rey, Jose R. Caeiro; Cervino, Eduardo Vaquero; Rentero, Maria Luz; Crespo, Emilio Calvo; Álvaro, Angel Oteo; Casillas, Marta

    2009-01-01

    Raloxifene, a member of the class of selective estrogen receptor modulators (SERM), reproduces the beneficial effects of estrogens on the skeletal systems, without the negative effects estrogens on breast and endometrium. This is a review article summarizing its mechanism, effects on bone and its applicability in traumatology clinical practice. In postmenopausal osteoporosis, this drug has been proven to decrease accelerated bone turnover, increase bone mineral density (BMD), and to structurally recover bone, decreasing the risk of vertebral fractures and the risk of non-vertebral fractures in patients with previous, severe vertebral fractures. Moreover, raloxifene appears to lower the risk of invasive breast cancer. Raloxifene would be efficacious in the prevention and treatment of postmenopausal osteoporosis. We can therefore conclude that raloxifene would be efficacious in the prevention and treatment of postmenopausal osteoporosis, while reducing the risk of breast cancer when used at the indicated dose of 60 mg/day and with a low incidence of side effects. PMID:19516920

  11. Effects of an intervention on infant growth and development: evidence for different mechanisms at work.

    Science.gov (United States)

    Prado, Elizabeth L; Abbeddou, Souheila; Yakes Jimenez, Elizabeth; Somé, Jérôme W; Dewey, Kathryn G; Brown, Kenneth H; Hess, Sonja Y

    2016-05-04

    Millions of children in low-income and middle-income countries falter in linear growth and neurobehavioral development early in life. This faltering may be caused by risk factors that are associated with both growth and development, such as insufficient dietary intake and infection in infancy. Alternatively, these risk factors may be indicative of an environment that constrains both linear growth and development through different mechanisms. In a cluster-randomized trial in Burkina Faso, we previously found that provision of lipid-based nutrient supplements plus malaria and diarrhoea treatment from age 9 to 18 months resulted in positive effects of ~0.3 standard deviation on length-for-age z-score (LAZ) and of ~0.3 standard deviation on motor, language and personal-social development scores at age 18 months. In this paper, we examined whether the effect of the intervention on developmental scores was mediated by the effect on LAZ, or, alternatively, whether the intervention had independent effects on growth and development. For motor, language, and personal-social z-scores, the effect of the intervention decreased from 0.32 to 0.21, from 0.33 to 0.27 and from 0.35 to 0.29, respectively, when controlling for change in LAZ from 9 to 18 months. All effects remained significant. These results indicate that the intervention had independent positive effects on linear growth and development, suggesting that these effects occurred through different mechanisms. © 2016 John Wiley & Sons Ltd.

  12. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.

    Directory of Open Access Journals (Sweden)

    Janet E Kübler

    Full Text Available Seaweeds that lack carbon-concentrating mechanisms are potentially inorganic carbon-limited under current air equilibrium conditions. To estimate effects of increased atmospheric carbon dioxide concentration and ocean acidification on photosynthetic rates, we modeled rates of photosynthesis in response to pCO2, temperature, and their interaction under limiting and saturating photon flux densities. We synthesized the available data for photosynthetic responses of red seaweeds lacking carbon-concentrating mechanisms to light and temperature. The model was parameterized with published data and known carbonate system dynamics. The model predicts that direction and magnitude of response to pCO2 and temperature, depend on photon flux density. At sub-saturating light intensities, photosynthetic rates are predicted to be low and respond positively to increasing pCO2, and negatively to increasing temperature. Consequently, pCO2 and temperature are predicted to interact antagonistically to influence photosynthetic rates at low PFD. The model predicts that pCO2 will have a much larger effect than temperature at sub-saturating light intensities. However, photosynthetic rates under low light will not increase proportionately as pCO2 in seawater continues to rise. In the range of light saturation (Ik, both CO2 and temperature have positive effects on photosynthetic rate and correspondingly strong predicted synergistic effects. At saturating light intensities, the response of photosynthetic rates to increasing pCO2 approaches linearity, but the model also predicts increased importance of thermal over pCO2 effects, with effects acting additively. Increasing boundary layer thickness decreased the effect of added pCO2 and, for very thick boundary layers, overwhelmed the effect of temperature on photosynthetic rates. The maximum photosynthetic rates of strictly CO2-using algae are low, so even large percentage increases in rates with climate change will not

  13. The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Aryaei, Ashkan [Department of Mechanical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Orthopaedic Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 (United States)

    2015-07-01

    The aim of this paper is to investigate the effect of the magnitude and duration of oscillatory mechanical stimulation on osteoblast attachment and proliferation as well as the time gap between seeding and applying the stimulation. Cells were exposed to three levels of speed at two different conditions. For the first group, mechanical shear stress was applied after 20 min of cell seeding. For the second group there was no time gap between cell seeding and applying mechanical stimulation. The total area subjected to shear stress was divided into three parts and for each part a comparative study was conducted at defined time points. Our results showed that both shear stress magnitude and the time gap between cell seeding and applying shear stress, are important in further cell proliferation and attachment. The effect of shear stress was not significant at lower speeds for both groups at earlier time points. However, a higher percentage of area was covered by cells at later time points under shear stress. In addition, the time gap can also improve osteoblast attachment. For the best rate of cell attachment and proliferation, the magnitude of shear stress and time gap should be optimized. The results of this paper can be utilized to improve cell attachment and proliferation in bioreactors. - Highlights: • The effect of oscillatory mechanical stimulation on osteoblast functions was studied. • Cells were exposed at three levels of speed to attach cells. • Shear stress magnitude and time gap are important for cell functions. • Cells start developing extracellular components at the early stage of seeding.

  14. The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking is ex-amined by using a mixed-mode model. The results show that the positive feedback process of the ef-fects of the seasonal variation of the upwelling mean on the Kelvin wave is the mechanism of the locking of the event mature phase to the end of the calendar year. The memory of the Rossby waves for the sign-shifting of the sea surface temperature anomaly from positive to negative 6 months before the cold peak time is the other mechanism of the locking of the La Nia event mature phase to the end of the calendar year. The results here are different from previous ones which suggest that the balance between cold and warm trends of sea surface temperature anomaly is the mechanism involved. The cold trend is caused by the upwelling Kelvin wave from upwelling Rossby wave reflected at the western boundary, excited by the westerly anomaly stress over the central Pacific and amplified by the seasonal variation of the coupled strength in its way propagating westward. The warm trend is caused by the Kelvin wave forced by the western wind stress over the middle and eastern equatorial Pacific. The cause of the differences is due to the opposite phase of the seasonal variation of the upwelling mean to that in the observation and an improper parameterization scheme for the effects of the seasonal varia-tion of the upwelling mean on the ENSO cycle in previous studies.

  15. The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking

    Institute of Scientific and Technical Information of China (English)

    YAN BangLiang

    2007-01-01

    The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking is examined by using a mixed-mode model. The results show that the positive feedback process of the effects of the seasonal variation of the upwelling mean on the Kelvin wave is the mechanism of the locking of the event mature phase to the end of the calendar year. The memory of the Rossby waves for the sign-shifting of the sea surface temperature anomaly from positive to negative 6 months before the cold peak time is the other mechanism of the locking of the La Ni(n)a event mature phase to the end of the calendar year. The results here are different from previous ones which suggest that the balance between cold and warm trends of sea surface temperature anomaly is the mechanism involved. The cold trend is caused by the upwelling Kelvin wave from upwelling Rossby wave reflected at the western boundary, excited by the westerly anomaly stress over the central Pacific and amplified by the seasonal variation of the coupled strength in its way propagating westward. The warm trend is caused by the Kelvin wave forced by the western wind stress over the middle and eastern equatorial Pacific. The cause of the differences is due to the opposite phase of the seasonal variation of the upwelling mean to that in the observation and an improper parameterization scheme for the effects of the seasonal variation of the upwelling mean on the ENSO cycle in previous studies.

  16. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J.Ahmadi; M.Monirvaghefi; M.Salehi; B.Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism an three-body abrasion of fully pearlitic low ahoy steel. Furthermore. the effect of pearlite interlamellar spacing on wear behavior was investigated, For this purpase, the samples were subjected to the different heat treating to artainthg different interlamellar spacing. Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated. Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus. Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy. The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear realstance, so it may be due to subsurface work hardening and interlamellar spacing and cernentite in fine and/or coarse pearlite, thai influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed front ploughing to cuttthg mode.

  17. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J. Ahmadi; M. Monirvaghefi; M. Salehi; B. Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism on three-body abrasion of fully pearlitic low alloy steel. Furthermore, the effect of pearlite interlamellar spacing on wear behavior was investigated.For this purpose, the samples were subjected to the different heat treating to attaining different interlamellar spacing.Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated.Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus.Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy.The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear resistance, so it may be due to subsurface work hardening and interlamellar spacing and cementite in fine and/or coarse pearlite, that influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed from ploughing to cutting mode.

  18. Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging.

    Science.gov (United States)

    Gregorova, Adriana; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-03-01

    The PVP-CMC hydrogel film is biodegradable, transparent, flexible, hygroscopic and breathable material which can be used as a food packaging material. The hygroscopic character of CMC and PVP plays a big role in the changing of their mechanical properties where load carrying capacity is one of important criteria for packaging materials. This paper reports about the hydrothermal effect on the mechanical and viscoelastic properties of neat CMC, and PVP-CMC (20:80) hydrogel films under the conditions of combined multiple stress factors such as temperature, time, load, frequency and humidity. The dry films were studied by transient and dynamic oscillatory experiments using dynamic mechanical analyser combined with relative humidity chamber (DMA-RH). The mechanical properties of PVP-CMC hydrogel film at room temperature (25 °C), in the range of 0-30%RH remain steady. The 20 wt% of PVP in PVP-CMC hydrogel increases the stiffness of CMC from 2940 to 3260 MPa at 25 °C and 10%RH.

  19. Effect of the particle interactions on the structuration and mechanical strength of particulate materials

    Science.gov (United States)

    Sibrant, A. L. R.; Pauchard, L.

    2016-11-01

    We investigate the effect of the particles interaction on the mechanical strength of particulate materials. Starting from a dispersion of charged particles, the interparticle force can be modulated by the addition of ionic species. The structuration of the medium is then governed by the competition between drying and gelation processes. Rheological measurements show that addition of ionic species boosts the aggregation dynamics into a solid state and changes the structural properties of the final material. This last point is highlighted by precise measurements of i) the mechanical properties of particulate materials through crack pattern quantification, supported by indentation testing, and ii) the permeation properties during the drying process in a controlled geometry. In particular, these results show a decrease of the drained elastic modulus and an increase in the pore size when the ionic species content in the particulate material is increased. Hence, we show that the solid structure behaves mechanically as a network whose pore size increases when the electrostatic repulsion between particles is decreased. These results are consistent with the fact that the way particulate materials are structured determines their mechanical properties.

  20. Few active mechanisms of the neutrinoless double beta-decay and effective mass of Majorana neutrinos

    CERN Document Server

    Simkovic, Fedor; Faessler, Amand

    2010-01-01

    It is well known that there exist many mechanisms that may contribute to neutrinoless double beta decay (0nbb-decay). By exploiting the fact that the associated nuclear matrix elements are target dependent we show that, given definite experimental results on a sufficient number of targets, one can determine or sufficiently constrain all lepton violating parameters including the mass term. As a specific example we show that, assuming the observation of the 0nbb-decay in three different nuclei, e.g., 76Ge, 100Mo and 130Te, and just three lepton number violating mechanisms (light and heavy neutrino mass mechanisms as well as R-parity breaking SUSY mechanism) being active, there are only four different solutions for the lepton violating parameters, provided that they are relatively real. In particular, assuming evidence of the 0nbb-decay of 76Ge, the effective neutrino Majorana mass |m_bb| can be almost uniquely extracted by utilizing other existing constraints (cosmological observations and tritium beta-decay ex...

  1. Effect of Firing Temperature on Mechanical Properties of Fired Masonry Bricks Produced from Ipetumodu Clay

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2012-12-01

    Full Text Available The effect of varied firing temperature on the mechanical properties of fired masonry bricks samples produced from Ipetumodu clay was investigated. The clay sample was characterized using scanning electron microscopy (SEM for the evaluation of the morphology of the sample using secondary electron imaging; and the phases/compositions of the samples using energy-dispersive X-ray (EDX analysis, X-ray diffractometer (XRD, X-ray fluorescence (XRF and atomic absorption spectroscopy (AAS. The brick samples of standard dimensions were prepared from the clay slurry. The prepared samples were sun dried for 72 hours and then fired at varied temperature (held for an hour and then allowed to cool to room temperature in the furnace. The mechanical properties (compression strength, shear strength, modulus of rupture, density and hardness of the samples were then investigated. It was observed that the mechanical properties of the fired brick samples varied with varying firing temperature due to phase changes/chemical reaction between the phases in the clay sample. It was concluded that the optimum mechanical property for brick samples within the temperature range considered is obtained at 950oC.

  2. Effects of Water Intrusion on Mechanical Properties of and Crack Propagation in Coal

    Science.gov (United States)

    Yao, Qiangling; Chen, Tian; Ju, Minghe; Liang, Shun; Liu, Yapeng; Li, Xuehua

    2016-12-01

    Studying the mechanical properties of and crack propagation in coal after water intrusion is necessary to tackle a number of geological engineering problems such as those associated with underground water storage in collieries and support for underground roadways in coal mines. To study the mechanical properties and crack development, 12 coal samples with moisture contents of 0, 2.37, 3.78 and 5.29 % were prepared for acoustic emission tests under uniaxial compression. Over about 6 days, the coal samples absorbed moisture from a humidifier in three different phases. In this period, uniaxial tests show that the peak stress, elastic modulus, strain softening modulus and post-peak modulus decreased with rising moisture content in the samples while the peak strain increased. It was further found that, by analysing the relationship between the stiffness and stress and the accumulated acoustic emission counts, all the phases of crack development can be evaluated. This is useful for studying the effect of water intrusion on crack propagation and for calculating the mechanical properties of the coal such as the elastic modulus. This investigation also quantifies the percentage of the stress thresholds for crack closure, crack initiation, and crack damage that constitutes the peak stress. These stress thresholds do not change with moisture content. Our results are of great significance for water storage in coal mines, for determination of pillar dimensions in coal mines, and for expanding the knowledge base of the mechanical properties of coal and the characteristics of crack propagation.

  3. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xingxun Liu

    2014-01-01

    Full Text Available Addition of filler to polylactic acid (PLA may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC, scanning electron microscope (SEM, instron tensile tester, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and dynamic mechanical analysis (DMA. It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  4. Effect of twin-screw extrusion parameters on mechanical hardness of direct-expanded extrudates

    Indian Academy of Sciences (India)

    M Brnčić; B Tripalo; D Ježek; D Semenski; N Drvar; M Ukrainczyk

    2006-10-01

    Mechanical properties of cereal (starch-based) extrudates are perceived by the final consumer as criteria of quality. We investigate one of the important characteristics of extrudates, mechanical hardness, which is one of the main texture parameters. Texture quality has an influence on taste sensory evaluation, and thus on the acceptability of the product. Characteristics that have great influence on acceptability are crispness, elasticity, hardness and softness. These attributes are narrowly related to, and affected by, the process parameters. A 2-level–4-factor factorial experimental design was used to investigate the influence of temperature of expansion, screw speed, feed moisture content and feed rate, and their interactions, on the mechanical hardness of extrudates. Feed moisture content, screw speed and temperature are found to influence, while feed rate does not have significant effect on extrudate hardness. Mechanical properties of specimens were measured by means of compression testing, based on the concept of nominal stress, using a universal testing machine and special grips that were constructed for this purpose.

  5. The Effects of Guided Imagery on Patients Being Weaned from Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    LeeAnna Spiva

    2015-01-01

    Full Text Available The study purpose was to assess the effects of guided imagery on sedation levels, sedative and analgesic volume consumption, and physiological responses of patients being weaned from mechanical ventilation. Forty-two patients were selected from two community acute care hospitals. One hospital served as the comparison group and provided routine care (no intervention while the other hospital provided the guided imagery intervention. The intervention included two sessions, each lasting 60 minutes, offered during morning weaning trials from mechanical ventilation. Measurements were recorded in groups at baseline and 30- and 60-minute intervals and included vital signs and Richmond Agitation-Sedation Scale (RASS score. Sedative and analgesic medication volume consumption were recorded 24 hours prior to and after the intervention. The guided imagery group had significantly improved RASS scores and reduced sedative and analgesic volume consumption. During the second session, oxygen saturation levels significantly improved compared to the comparison group. Guided imagery group had 4.88 less days requiring mechanical ventilation and 1.4 reduction in hospital length of stay compared to the comparison group. Guided imagery may be complementary and alternative medicine (CAM intervention to provide during mechanical ventilation weaning trials.

  6. Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics.

    Science.gov (United States)

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    Objective- To evaluate the effects of tibial tuberosity advancement (TTA) on femorotibial contact mechanics and 3-dimensional kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. Study Design- In vitro biomechanical study. Animals- Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Methods- Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees . Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TTA-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (Pcontact mechanic parameters were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and internal tibial rotation in the CrCL-deficient stifle. No significant differences in any contact mechanic and kinematic parameters were detected between normal and TTA-treated stifles. Conclusion- TTA eliminates craniocaudal stifle instability during simulated weight-bearing and concurrently restores femorotibial contact mechanics to normal. Clinical Relevance- TTA may mitigate the progression of stifle osteoarthritis in dogs afflicted with CrCL insufficiency by eliminating cranial tibial thrust while preserving the normal orientation of the proximal tibial articulating surface.

  7. Effects of Thermal Treatment on the Dynamic Mechanical Properties of Coal Measures Sandstone

    Science.gov (United States)

    Li, Ming; Mao, Xianbiao; Cao, Lili; Pu, Hai; Mao, Rongrong; Lu, Aihong

    2016-09-01

    Many projects such as the underground gasification of coal seams and coal-bed methane mining (exploitation) widely involve the dynamic problems of coal measures sandstone achieved via thermal treatment. This study examines the dynamic mechanical properties of coal measures sandstone after thermal treatment by means of an MTS653 high-temperature furnace and Split Hopkinson pressure bar test system. Experimental results indicate that 500 °C is a transition point for the dynamic mechanical parameters of coal measures sandstone. The dynamic elastic modulus and peak strength increase linearly from 25 to 500 °C while the dynamic peak strain decreases linearly over the same temperature range. The dynamic elastic modulus and peak strength drop quickly from 500 to 800 °C, with a significant increase in the dynamic peak strain over the same temperature range. The rock mechanics are closely linked to material composition and mesoscopic structure. Analysis by X-ray diffraction and scanning electron microscopy indicate that the molecules inside the sandstone increase in density due to the thermal expansion of the material particles, which effectively improves the deformation resistance and carrying capacity of the sandstone and reduces the likelihood of axial deformation. With heat treatment that exceeds 500 °C, the dynamic mechanical properties rapidly weaken due to the decomposition of kaolinite; additionally, hot cracking of the mineral particles within the materials arises from coal sandstone internal porosity, and other defects gradually appear.

  8. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  9. The Mechanical Analysis and Experimental Study of Shock Wave Effect of Electrical Discharge under Water In Filth Cleaning

    Institute of Scientific and Technical Information of China (English)

    Deng Qilin; Zhang Lei; Zhou Jinjin

    2004-01-01

    Filth adhering to metal pipes can be cleaned by shock wave generated by electrical discharge under water. The mechanism of shock wave effect of electrical discharge under water on filth cleaning is analyzed by building a mechanical model. A metal pipe coated with cement to simulate real filth is cleaned by using electrical discharge under water. The experimental results confirm the mechanical analysis and also show the technology of electrical discharge under water is an very effective method for filth cleaning.

  10. Synergetic Effects of Mechanical Properties on Graphene Nanoplatelet and Multiwalled Carbon Nanotube Hybrids Reinforced Epoxy/Carbon Fiber Composites

    OpenAIRE

    Pin-Ning Wang; Tsung-Han Hsieh; Chin-Lung Chiang; Ming-Yuan Shen

    2015-01-01

    Graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, an outstanding synergetic effect on the grapheme nanoplatelets (GNPs) and multiwalled carbon nanotubes (CNTs) hybrids were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical propertie...

  11. Effect of extensional cyclic strain on the mechanical and physico-mechanical properties of PVC-NBR/graphite composites

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available The variation of electrical resistivity as will as the mechanical properties of PVC (polyvinylchloride-NBR (acrylonitrile butadiene rubber based conductive composites filled with different concentrations of graphite were studied. These samples were studied as function of the constant deformation fatigue test. When the specimen was subjected to a large number of rapidly repeating strain cycles, and different strain amplitudes, the conductivity, σ(T, shows an initial rapid fall followed by dynamic equilibrium. Increasing the number of cycles and strain amplitudes, the conductivity remains almost constant over the temperature range 30–140°C. The equilibrium state between destruction and reconstruction of graphite particles has been detected for all strains of certain values of strain cycles (1000, 2000, 3000, and 4000 cycles for 30% strain amplitude. A preliminary study was done to optimize the possibility to use Conductive Polymer Composites (CPC as a strain sensor and to evaluate its performance by an intrinsic physico-mechanical modification measurement. The electromechanical characterization was performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. The coefficient of strain sensitivity (K was measured for 50 phr graphite/PVCNBR vulcanized at 3000 number of strain cycles and 30% strain amplitude. There was a broad maximum of K, with a peak value of 82, which was much higher, compared to conventional wire resistors. A slight hysteresis was observed at unloading due to plasticity of the matrix. A good correlation exists between mechanical and electrical response to the strain sensitivity. Mechanical reinforcement was in accordance with the Quemada equation [1] and Guth model [2] attested to good particle-matrix adhesion. It was found that the viscous component of deformation gradually disappeared and the hardening occurred with increasing strain cycles. The modulus, fracture

  12. Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants

    Directory of Open Access Journals (Sweden)

    Caroline Ann Browne

    2013-12-01

    Full Text Available Newer antidepressants are needed for the many individuals with major depressive disorder that do not respond adequately to treatment and because of a delay of weeks before the emergence of therapeutic effects. Recent evidence from clinical trials shows that the NMDA antagonist ketamine is a revolutionary novel antidepressant because it acts rapidly and is effective for treatment-resistant patients. A single infusion of ketamine alleviates depressive symptoms in treatment-resistant depressed patients within hours and these effects may be sustained for up to 2 weeks. Although the discovery of ketamine’s effects has reshaped drug discovery for antidepressants, the psychotomimetic properties of this compound limit the use of this therapy to the most severely ill patients. In order to develop additional antidepressants like ketamine, adequate preclinical behavioral screening paradigms for fast-acting antidepressants need to be established and used to identify the underlying neural mechanisms. This review examines the preclinical literature attempting to model the antidepressant-like effects of ketamine. Acute administration of ketamine has produced effects in behavioral screens for antidepressants like the forced swim test, novelty suppression of feeding and in rodent models for depression. Protracted behavioral effects of ketamine have been reported to appear after a single treatment that last for days. This temporal pattern is similar to its clinical effects and may serve as a new animal paradigm for rapid antidepressant effects in humans. In addition, protracted changes in molecules mediating synaptic plasticity have been implicated in mediating the antidepressant-like behavioral effects of ketamine. Current preclinical studies are examining compounds with more specific pharmacological effects at glutamate receptors and synapses in order to develop additional rapidly acting antidepressants without the hallucinogenic side effects or abuse

  13. Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti–36Nb–5Zr alloy

    Directory of Open Access Journals (Sweden)

    Qingkun Meng

    2015-06-01

    Full Text Available The evolutions of phase constitutions and mechanical properties of a β-phaseTi–36Nb–5Zr (wt% alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual (β+α″ phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength (833 MPa and low modulus (46 GPa was obtained. The high strength can be attributed to high density of dislocations, nanosized α phase and grain refinement. On the other hand, the low Young׳s modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young׳s modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young׳s modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.

  14. Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti-36Nb-5Zr alloy

    Institute of Scientific and Technical Information of China (English)

    Qingkun Meng; Qing Liu; Shun Guo; Yongqi Zhu; Xinqing Zhao

    2015-01-01

    The evolutions of phase constitutions and mechanical properties of aβ-phaseTi–36Nb–5Zr (wt%) alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual (βþα″) phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength (833 MPa) and low modulus (46 GPa) was obtained. The high strength can be attributed to high density of dislocations, nanosizedαphase and grain refinement. On the other hand, the low Young's modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young's modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young's modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.

  15. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    Science.gov (United States)

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented.

  16. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release†

    Science.gov (United States)

    Lee, Soah; Tong, Xinming

    2016-01-01

    Poly(ethylene glycol) (PEG) hydrogels are widely used to deliver therapeutic biomolecules, due to high hydrophilicity, tunable physicochemical properties, and anti-fouling properties. Although different hydrogel crosslinking mechanisms are known to result in distinct network structures, it is still unknown how these various mechanisms influence biomolecule release. Here we compared the effects of chain-growth and step-growth polymerization for hydrogel crosslinking on the efficiency of protein release and diffusivity. For chain-growth-polymerized PEG hydrogels, while decreasing PEG concentration increased both the protein release efficiency and diffusivity, it was unexpected to find out that increasing PEG molecular weight did not significantly change either parameter. In contrast, for step-growth-polymerized PEG hydrogels, both decreasing PEG concentration and increasing PEG molecular weight resulted in an increase in the protein release efficiency and diffusivity. For step-growth-polymerized hydrogels, the protein release efficiency and diffusivity were further decreased by increasing crosslink functionality (4-arm to 8-arm) of the chosen monomer. Altogether, our results demonstrate that the crosslinking mechanism has a differential effect on controlling protein release, and this study provides valuable information for the rational design of hydrogels for sophisticated drug delivery. PMID:26539660

  17. Effect of confinement on the collapsing mechanism of a flexible polymer chain.

    Science.gov (United States)

    Das, Siddhartha; Chakraborty, Suman

    2010-11-07

    In this paper, Brownian dynamics simulation (BDS) studies are executed to demonstrate the distinctive influences of the extent of confinement on the collapsing mechanism and kinetics of a flexible hydrophobic polymer chain in a poor solvent. The collapsing behavior is quantified by the time of collapse, which below a critical dimension of the confinement (h(c)), encounters a drastic reduction with a further strengthening in the degree of confinement. For dimensions greater than this critical one, the collapse occurs through the well-known hydrodynamic interaction (HI) controlled multiple-globule-mediated mechanisms. However, for channel dimensions less than this critical one, the collapse mechanism is drastically altered. Under such circumstances, the collapse gets predominantly controlled by the confinement effects (with negligible contribution of the HIs) and occurs via the formation of a single central globule. This central globule rapidly engulfs the noncondensed polymer segments, and in the process largely hastens up the collapsing event. Under such circumstances, the collapse time is found to decrease linearly with decrements in the channel height. On the contrary, for channel heights greater than h(c), the multiple-globule-mediated collapse is characterized by a collapse time that shows an exponential dependence on the channel height, rapidly attaining a state in which the confinement effect becomes inconsequential and HIs dictate the entire collapsing behavior. We further propose detailed arguments based on physical reasoning as well as free energy estimations to conclusively support the qualitative and quantitative nature of influences of the confinement on the polymer collapse.

  18. Effect of Overageing Conditions on Microstructure and Mechanical Properties in Al–Si–Mg Alloy

    Directory of Open Access Journals (Sweden)

    Sujoy Saha

    2016-11-01

    Full Text Available Al-Si alloys have occupied significant position in the field of automobile applications. They are mainly used in engine parts where the alloys have to withstand high temperature for considerable length of time i.e ageing effect. This research work has been carried out to investigate the overageing effect on a series of heat treateble Al-Si-Mg alloy (A355 alloy. The alloys were heat treated at 175C for different length of time and microstructure and mechanical properties were studied. Considerable changes in miocrostructure were observed by SEM. Microstructure of moderately aged (1, 2 & 5 hours alloys showd small precipitated particles, where overaged (1000, 10000 & 100000 hours alloys showed coarse precipitated particles in grain boundary. Composition of the matrix and precipitated phase were ensured by EDS. These changes in microstructure signeficantly changed mechanical properties of the alloys over different ageing time. Initially the yield strength and hardness of the alloys increased up to a certain length of heat treatment and then it started to decrease with increasing heating time. Total elongation before fracture reduced initially and then increased with increasing heating time. Initially the dispersed second phase particles increased the mechanical strength. But eventually these properties decreased due to the coarsening of the particles. The study leads to the conclusion that the optimum aged was achieved between 3 to 5 hours of ageing time.

  19. Thermal effects in a mechanical model for pseudoelastic behavior of NiTi wires

    Directory of Open Access Journals (Sweden)

    Hugo Soul

    2007-12-01

    Full Text Available A mechanical model for pseudoelastic behavior of NiTi wires is proposed with the aim to predict the behavior of Shape Memory Alloys(SMA damping wire elements in model structures. We have considered at first a simple linearwise stress-strain relationship to describe the basic isothermal behavior of the SMA members. Then, this basic model is modified in order to include the effect of the strain rate. The model is based on detailed experimental characterization performed on a Ni rich NiTi superelastic wire which included the study of the localized character of the deformation and the local heat generation associated with the stress induced martensitic transformation occurring in these alloys. Heat conduction along the wire and heat interaction with the surroundings was also considered. In that way, the resulting local temperature field around the transformation front is assessed and its effect on the progression of the transformation is evaluated. It is shown how the simple mechanical model reproduces the global mechanical behavior, including the existence of a maximum in the damping capacity with the transformation rate.

  20. Gum Tragacanth Fibers from Astragalus gummifer Species: Effects of Influencing Factors on Mechanical Properties of Fibers

    Science.gov (United States)

    Khajavi, Ramin; Mossavi Pourgharbi, Seyed Hossein; Kiumarsi, Amir; Rashidi, Abosayeed

    Gum Tragacanth (GT) is one of the most widely used natural gum across the globe and it is shown that GT from Asteragalus gummifer can be processed into fiber via alkaline treatment. In this study a complementary description of GT fibers is provided and the effects of influencing factors on properties of GT fibers investigated. Spinning Dope (SD) prepared by adding ribbon type GT of Astragalus gummifer species to alkaline solutions and fibers produced by solution spinning method. The effects of some processing factors including: draft ratio, residence time in coagulation bath, GT concentration in SD, ripening time of SD, kind of coagulant agent and the pH of washing bath on some mechanical properties of GT fibers studied. It was concluded that with increasing the coagulant concentration the mechanical properties of fibers improved, but it caused formation of sheet core structure. ZnCl2 as coagulant agent improved mechanical properties and applying glycerol caused more flexibility in GT fibers, even though their tenacity reduced.

  1. The effect of clay incorporation on the mechanical properties of fluoroelastomer

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto; Oliveira, Jonathan Pereira de; Lugao, Ademar Benevolo, E-mail: helozen@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In this work was studied the effect of clay incorporation in the mechanical properties of fluoroelastomer (FKM). The polymer matrix that was used is a compound of the commercial terpolymer of hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, with 70% of fluor content. This type of polymer is known for its resistance to high temperature and chemical products; it has low fuel permeation which allowing be used as sealant and especially as o-ring product. The incorporation of clay was carried to avoid excessive swelling and to observe the effect in the mechanical properties, for this application was used commercial clay, Cloisite® at 1 and 2% in weigh. The incorporation of clay into the FKM was carried out in a two roll cylinder. After that, the samples with and without clay loading were submitted to gamma radiation at 20 kGy in order to observe the changes in the polymer matrix. The characterization techniques used were: mechanical testes (stress - strain), rheometric properties and degree of swelling. After radiation process, was observed an increase in the swelling degree for the irradiated samples in relation to the pristine one. The incorporated samples with 1 and 2% of clay showed an increase in the elongation which can indicate a decrease in hardness of the polymer matrix. (author)

  2. Effects of strain rates on mechanical properties of limestone under high temperature

    Institute of Scientific and Technical Information of China (English)

    Tang Furong; Mao Xianbiao; Zhang Lianying; Yin Huiguang; Li Yan

    2011-01-01

    The experimental tests for limestone specimens at 700 ℃ in uniaxial compression were carried out to investigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servocontrolled testing system considering the loading rate as a variable.The mechanical properties of limestone such as the stress-strain curve,variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 × 10-s to 1.1 × 10-1 s-1.(1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 × 10-5 to 1.1 × 10 4 s-1 at 700 C as well as a downward trend was shown from 1.1 × 10 4 to 1.1 × 10-1 s-1with the rise of the strain rate.(2) The peak strain increased from 1.1 × 10-5 to 1.1 × 10-4 s-1,however,there was no obvious changes shown for the peak strain of limestone from 1.1 × 10-4 to 1.1 × 10-1 s-1.These results can nrovide valuable references for the rock blasting effect and design of mine.

  3. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites

    Directory of Open Access Journals (Sweden)

    E. Muñoz

    2015-01-01

    Full Text Available In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focuses on eco-friendly and sustainable green composites manufacturing using resin transfer moulding (RTM process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55 wt% were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated; the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment.

  4. Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men.

    Science.gov (United States)

    Dominelli, Paolo B; Sheel, A William; Foster, Glen E

    2012-06-01

    Weighted backpacks are used extensively in recreational and occupational settings, yet their effects on lung mechanics during acute exercise is poorly understood. The purpose of this study was to determine the effects of different backpack weights on lung mechanics and breathing patterns during treadmill walking. Subjects (n = 7, age = 28 ± 6 years), completed two 2.5-min exercise stages for each backpack condition [no backpack (NP), an un-weighted backpack (NW) or a backpack weighing 15, 25 or 35 kg]. A maximal expiratory flow volume curve was generated for each backpack condition and an oesophageal balloon catheter was used to estimate pleural pressure. The 15, 25 and 35 kg backpacks caused a 3, 5 and 8% (P ventilation, end-expiratory lung volume decreased as backpack weight increased. As backpack weight increased, there was a concomitant decline in calculated maximal ventilation, a rise in minute ventilation, and a resultant greater utilization of maximal available ventilation. In conclusion, wearing a weighted backpack during an acute bout of exercise altered operational lung volumes; however, adaptive changes in breathing mechanics may have minimized changes in the required POB such that at an iso-ventilation, wearing a backpack weighing up to 35 kg does not increase the POB requirement.

  5. Establish the Long-effective Mechanism of Food Security in China

    Institute of Scientific and Technical Information of China (English)

    Wang Yapeng; Fang Lingli

    2008-01-01

    In despite of fluctuation in recent years,the grain yield in China has been increasing,which relieves the conflict between supply and demand and turns the situation of food security good.However,because of the rapid increase in food consumption,the conflicts of food quality and structure in the supply and demand equilibrium has become more and more obvious and the long-effective mechanism of food security has not been established yet.It is found that the factors affecting food security in China include the scarcity and dissipation of resources,farmers'low enthusiasm in planting grain crops and the inappropriateness of the emphasis and measures of macro-economic regulation and control.Therefore,the authors advance to optimize resources allocation,strengthen macro-economic regulation and control and policy stimulation and establish the mechanism of allocating grain production cost,to set up the long-effective mechanism of China food security and keep it stable in the long term.

  6. Mechanically unfolding proteins: The effect of unfolding history and the supramolecular scaffold

    Science.gov (United States)

    Zinober, Rebecca C.; Brockwell, David J.; Beddard, Godfrey S.; Blake, Anthony W.; Olmsted, Peter D.; Radford, Sheena E.; Smith, D. Alastair

    2002-01-01

    The mechanical resistance of a folded domain in a polyprotein of five mutant I27 domains (C47S, C63S I27)5is shown to depend on the unfolding history of the protein. This observation can be understood on the basis of competition between two effects, that of the changing number of domains attempting to unfold, and the progressive increase in the compliance of the polyprotein as domains unfold. We present Monte Carlo simulations that show the effect and experimental data that verify these observations. The results are confirmed using an analytical model based on transition state theory. The model and simulations also predict that the mechanical resistance of a domain depends on the stiffness of the surrounding scaffold that holds the domain in vivo, and on the length of the unfolded domain. Together, these additional factors that influence the mechanical resistance of proteins have important consequences for our understanding of natural proteins that have evolved to withstand force. PMID:12441375

  7. A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings

    Science.gov (United States)

    Rajabi, H.; Rezasefat, M.; Darvizeh, A.; Dirks, J.-H.; Eshghi, Sh.; Shafiei, A.; Mostofi, T. Mirzababaie; Gorb, S. N.

    2016-01-01

    Although wings of insects show a large variation in morphology, they are all made from a network of irregular veins interconnected through membranous areas. Depending on their shape, size, and position, wing veins are usually divided into three different groups: longitudinal veins, cross-veins and ambient veins. The veins together with the membrane and some other elements such as spines, nodus and pterostigma can be considered as the wing's "constructional elements". In spite of rather extensive literature on dragonfly wing structure, the role of each of these elements in determining the wing's function remains mostly unknown. As this question is difficult to answer in vivo using biomechanical experiments on actual wings, this study was undertaken to reveal the effects of the constructional elements on the mechanical behaviour of dragonfly wings by applying numerical simulations. An image processing technique was used to develop 12 finite element models of the insect wings with different constructional elements. The mechanical behaviour of these models was then simulated under normal and shear stresses due to tension, bending and torsion. A free vibration analysis was also performed to determine the resonant frequencies and the mode shapes of the models. For the first time, a quantitative comparison was carried out between the mechanical effects selectively caused by different elements. Our results suggest that the complex interactions of veins, membranes and corrugations may considerably affect the dynamic deformation of the insect wings during flight.

  8. A Quantitative Model for the Thermocouple Effect Using Statistical and Quantum Mechanics

    Science.gov (United States)

    Bramley, Paul; Clark, Stewart

    2003-09-01

    This paper employs statistical and quantum mechanics to develop a model for the mechanism underlying the Seebeck effect. The conventional view of the equilibrium criterion for valence electrons in a material is that the Fermi Energy should be constant throughout the system. However, this criterion is an approximation and it is shown to be inadequate for thermocouple systems. An improved equilibrium criterion is developed by applying statistical and quantum mechanics to determine the total flow of electrons across an arbitrary boundary within a system. Dynamic equilibrium is then considered to be the situation where the Fermi Energy either side of the boundary is such that the flow of electrons in each direction is the same. This equilibrium criterion is then applied to the conditions along the thermocouple wires and at the junctions in order to generate a model for the Seebeck effect. The equations involved for calculating the electronic structure of a material cannot be solved analytically, so a solution is achieved using numeric models employing CASTEP code running on a Sun Beowulf cluster and iterative algorithms written in the Excel™ VBA language on a PC. The model is used to calculate the EMF versus temperature function for the gold versus platinum thermocouple, which is then compared with established experimental data.

  9. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    Science.gov (United States)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  10. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    Science.gov (United States)

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  11. Effect of tooth bleaching agents on protein content and mechanical properties of dental enamel.

    Science.gov (United States)

    Elfallah, Hunida M; Bertassoni, Luiz E; Charadram, Nattida; Rathsam, Catherine; Swain, Michael V

    2015-07-01

    This study investigated the effect of two bleaching agents, 16% carbamide peroxide (CP) and 35% hydrogen peroxide (HP), on the mechanical properties and protein content of human enamel from freshly extracted teeth. The protein components of control and treated enamel were extracted and examined on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Marked reduction of the protein matrix and random fragmentation of the enamel proteins after bleaching treatments was found. The mechanical properties were analyzed with Vickers indentations to characterize fracture toughness, and nanoindentation to establish enamel hardness, elastic modulus and creep deformation. Results indicate that the hardness and elastic modulus of enamel were significantly reduced after treatment with CP and HP. After bleaching, the creep deformation at maximum load increased and the recovery upon unloading reduced. Crack lengths of CP and HP treated enamel were increased, while fracture toughness decreased. Additionally, the microstructures of fractured and indented samples were examined with field emission gun scanning electron microscopy (FEG-SEM) showing distinct differences in the fracture surface morphology between pre- and post-bleached enamel. In conclusion, tooth bleaching agents can produce detrimental effects on the mechanical properties of enamel, possibly as a consequence of damaging or denaturing of its protein components.

  12. Effect of Titanium on the Mechanical Properties and Microstructure of Gray Cast Iron for Automotive Applications

    Science.gov (United States)

    Gelfi, M.; Gorini, D.; Pola, A.; La Vecchia, G. M.

    2016-09-01

    Lamellar gray cast iron, with a mainly pearlitic microstructure, is widely used in the automotive industry, mostly in the manufacturing of brake disks. This work analyzes in depth the effects of small variations of titanium content on the microstructure and mechanical properties of cast iron brake disks. For this purpose, eight different heats of EN-GJL-250 cast iron were selected, with a similar chemical composition but with different titanium contents, varying from 0.013 to 0.031%. The drops in mechanical strength and hardness values measured on the high-Ti samples were correlated to microstructural variations quantitatively observed by means of optical and scanning electron microscope. It was found that titanium combines to form titanium nitrides, suppressing the beneficial microstructural effects of nitrogen at solidification. Residual nitrogen, if present in sufficient quantity, promotes the nucleation of primary austenite from the liquid and the formation of a fine microstructure, with small eutectic cells and lower graphite content. Such a microstructure provides brake disks with better mechanical properties. The interpretation of results was further supported by thermal analysis and thermodynamic calculations.

  13. Effect of jute yarn on the mechanical behavior of concrete composites.

    Science.gov (United States)

    Zakaria, Mohammad; Ahmed, Mashud; Hoque, Md Mozammel; Hannan, Abdul

    2015-01-01

    The objective of the study is to investigate the effect of introducing jute yarn on the mechanical properties of concrete. Jute fibre is produced abundantly in Bangladesh and hence, very cheap. The investigation on the enhancement of mechanical properties of concrete with jute yarn as reinforcement, if enhanced, will not only explore a way to improve the properties of concrete, it will also explore the use of jute and restrict the utilization of polymer which is environmentally detrimental. To accomplish the objective, an experimental investigation of the compressive, flexural and tensile strengths of Jute Yarn Reinforced Concrete composites (JYRCC) has been conducted. Cylinders, prisms and cubes of standard dimensions have been made to introducing jute yarn varying the mix ratio of the ingredients in concrete, water cement ratio, length and volume of yarn to know the effect of parameters as mentioned. Compressive, flexural and tensile strength tests had been conducted on the prepared samples by appropriate testing apparatus following Standards of tests. Mechanical properties of JYRCC were observed to be enhanced for a particular range of lengths of cut (10, 15, 20 and 25 mm) and volume content of jute yarn (0.1, 0.25, 0.5 and 0.75 %). The maximum increment of compressive, flexural and tensile strengths observed in the investigation are 33, 23 and 38 %, respectively with respect to concrete without jute yarn.

  14. Immunomodulatory effects and mechanisms of plant alkaloid tetrandrine in autoimmune diseases

    Institute of Scientific and Technical Information of China (English)

    LAI Jenn-Haung

    2002-01-01

    Autoimmune diseases characterized by activation of immune effector cells and damage of target organs are currently treated with a combination of several disease-modifying antirheumatic drugs (DMARDs) that preserve different immunomodulatory mechanisms. Such a combination treatment strategy not only provides synergistic effects but also reduces side effects from individual drug. Tetrandrine (Tet), purified from a creeper Stephania tetrandra S Moore, is a bis-benzylisoquinoline alkaloid and has been used to treat patients with silicosis, autoimmune disorders, and hypertension in Mainland China for decades. The accumulated studies both in vitro and in vivo reveal that Tet preserves a wide variety of immunosuppressive effects. Importantly, the Tet-mediated immunosuppressive mechanisms are evidently different from some known DMARDs. The synergistic effects have also been demonstrated between Tet and other DMARDs like FK506 and cyclosporin. These results highlight Tet a very potential candidate to be considered as one of DMARDs in the treatment of autoimmune diseases, especially rheumatoid arthritis. This review summarizes evidence-based in vivo and in vitro studies on this potential Chinese immunosuppressive herb.

  15. Effect of RE on molybdenum partitioning and resultant mechanical and microstructuralbehaviorofaduplexstainlesssteelduringhotworkingcondition

    Institute of Scientific and Technical Information of China (English)

    陈雷; 马筱聪; 王明家; 薛红燕

    2015-01-01

    The effect of rare earth (RE) on Mo partitioning and resultant mechanical and microstructural behavior of a duplex stainless steel during hot working condition was investigated. It was found that RE effect was sensitive to temperature. At the high temperature, the development of dynamic recovery (DRV) inαphase was slowed down while the dynamic recrystallization (DRX) process inγphase was accelerated by RE, whereby both work hardening rate (at low strain) and dynamic softening rate (at high strain) increased and moreover, the discrepancy on the hardness of the both phase reduced. Whereas at the low temperature, the effect of RE was opposite as compared with those in the high temperature. Mo partitioning analysis by EPMA indicated that RE enhanced the par-titioning of Mo inαphase while reduced Mo concentration inγphase at higher temperature whereby the mismatch between two phases could be improved indicated by the elimination of voids and cracks atα/γinterface, but it was contrary to that at the low tem-perature. Mo partitioning was believed to be an important cause for the RE effect on the differences of mechanical and microstruc-tural behavior. Also this result provided a reasonable evidence for micro-alloying of RE in DSSs.

  16. Effects of Local-Lag Mechanism on Task Performance in a Desktop CVE System

    Institute of Scientific and Technical Information of China (English)

    Hong Chen; Ling Chen; Gen-Cai Chen

    2005-01-01

    Consistency maintenance is a kernel problem in Collaborative Virtual Environment (CVE) research. The approaches used in Networked Virtual Environments (e.g., DR algorithm) could not be used in CVEs, for they could not prevent short-term inconsistency. Therefore, local-lag mechanism has been proposed to eliminate short-term inconsistency in CVEs. Choosing a proper lag value is a key problem in local-lag mechanism. This paper studied the effects of lag value (0ms-900ms) on task performance in a desktop CVE system. Experimental results indicate that the effect of lag value on task performance is not linear. The effect could be separated into four segments by three dividing points: 150ms, 300ms and 600ms. Lag has no effect on task performance while ranging from 0ms to 150ms. From 150ms to 300ms, lag slightly affects task performance. Lag deteriorates task performance seriously while ranging from 300ms to 600ms. When lag is longer than 600ms, the task cannot be accomplished sometimes.

  17. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability

    Science.gov (United States)

    Ngo, Thuy T. M.; Yoo, Jejoong; Dai, Qing; Zhang, Qiucen; He, Chuan; Aksimentiev, Aleksei; Ha, Taekjip

    2016-02-01

    Cytosine can undergo modifications, forming 5-methylcytosine (5-mC) and its oxidized products 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). Despite their importance as epigenetic markers and as central players in cellular processes, it is not well understood how these modifications influence physical properties of DNA and chromatin. Here we report a comprehensive survey of the effect of cytosine modifications on DNA flexibility. We find that even a single copy of 5-fC increases DNA flexibility markedly. 5-mC reduces and 5-hmC enhances flexibility, and 5-caC does not have a measurable effect. Molecular dynamics simulations show that these modifications promote or dampen structural fluctuations, likely through competing effects of base polarity and steric hindrance, without changing the average structure. The increase in DNA flexibility increases the mechanical stability of the nucleosome and vice versa, suggesting a gene regulation mechanism where cytosine modifications change the accessibility of nucleosomal DNA through their effects on DNA flexibility.

  18. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  19. Effects of oral administration of type Ⅱ collagen on adjuvant arthritis in rat sand its mechanisms

    Institute of Scientific and Technical Information of China (English)

    胡永秀; 赵文明; 钱娴娟; 张力平

    2003-01-01

    Objective To investigate the effects of oral administration of type Ⅱ collagen (CⅡ) on a djuvant arthritis (AA) in rats and its mechanisms, and to compare the effects of CⅡ with those of the Chinese traditional medicine Tripterygium Polyglycoside a dministered similarly.Methods Arthritis was induced in rats by immunization using Freund's complete adjuvant (FCA). After feeding rats either soluble CⅡ or Tripterygium Polyglycoside, chan ges in degree of articular swelling and articular histological findings were observed in AA rats. Some correlative immunological indexes were measured, includi ng delayed type hypersensitivity (DTH) reaction, anti-collagen and anti-Mycoba cterium tuberculosis (MT) antibody in serum, and levels of IFN-γ and TNF-α i n articular steep in rats.Results Oral administration of CⅡ was able to alleviate both distinctly articular and general symptoms in AA rats, suppress synovium hyperplasia and inflammatory cells infiltration in arthrosis capsule. The effects brought about by CⅡ were stronger than those by Tripterygium Polyglycoside. Oral administration of CⅡ inhibi ted antigen-specific immune response, such as DTH and antibody reaction to CⅡ . In addition, the expression of IFN-γ and TNF-α in joints were locally dow nregulated. Conclusions The therapeutic effect of oral administration of CⅡ is obvious on adjuvant art hritis in rats. Its remedial mechanisms are likely related to the downregulation of both IFN-γ and TNF-α, and the suppression of cell immunity.

  20. The antineoplastic effect of Naja Naja atra venom on S180 bearing mice and its mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM:To observe the antineoplastic effect of Naja Naja atra venom (NNAV) on S180 bearing mice and to study the possible antineoplastic mechanism. METHODS:We observed the effect of NNAV on tumor weight、plasma nitric oxide content、plasma endothelin content and spleen index in S180 bearing mice with different concentration and different period by means of injecting into abdomen. RESULTS:Treatment with NNAV solution of different concentration could markedly inhibit S180 growth (especially in the low concentration group and by long period) and rate of inhibiting ranged from 21 63% to 49.25%; the plasma nitric oxide content, the plasma endothelin content and NO/ET ratio in tumor bearing mice were obviously higher than those of the normal control group, while after treatment with NNAV solution, the plasma nitric oxide level, the plasma endothelin level and NO/ET ratio could be reduced markedly, and it was noticed that NO/ET ratio in the group with highest inhibiting rate was most close to that of the normal control group. The spleen index was obviously increased after treatment with NNAV solution.CONCLUSION:The antineoplastic effect of NNAV on S180 bearing mice is best in long period by means of injecting into abdomen with low concentration. The mechanism of the antineoplastic effect of NNAV may be related to lowering the plasma nitric oxide and endothelin level, regulating the NO/ET ratio and enhancing the immune response.

  1. Cinnamon effects on metabolic syndrome: a review based on its mechanisms

    Science.gov (United States)

    Mollazadeh, Hamid; Hosseinzadeh, Hossein

    2016-01-01

    Objective(s): Nowadays, cardiovascular diseases (CVDs) are the major risk factors of death globally. One of the most undeniable reasons of CVDs is metabolic syndrome (MetS). MetS is defined as a complex of diseases including insulin resistance, hyperglycemia, obesity, high blood pressure and dyslipidemia. The use of complementary medicine such as traditional herbal species can be effective in treatment of MetS’s complications. Cinnamomum verum (family Lauraceae) is a medicinal global plant which has been used daily by people all over the world. Positive effects of cinnamon in reducing blood pressure, plasma glucose, obesity and ameliorating dyslipidemia which represented in traditional medicine introduced it as probable decreasing MetS’s complications agent. The aim of this review was to investigate the mechanisms of C. verum in reducing the MetS’s complications and CVDs risk factors. Materials and Methods: Various databases such as PubMed, Science Direct, Scopus, Web of Science, Google Scholar and Persian Websites such as www.sid.ir with keywords search of cinnamon, cinnamomum, cinnamaldehyde, atherogenic, hypertension, hyperglycemia, insulin resistance, obesity and dyslipidemia have been included in this search. Results: Clinical data and mechanisms of action of C. verum and its active ingredients that have been shown in this review indicated that cinnamon has protective effects against MetS’s aspects in various ways. Conclusion: The use of this plant can be effective in reducing MetS’s complications and its morbidity and mortality. PMID:28096957

  2. Studying the effect of kinematical pattern on the mechanical performance of paraplegic gait with reciprocating orthosis.

    Science.gov (United States)

    Nakhaee, Koorosh; Farahmand, Farzam; Salarieh, Hassan

    2012-08-01

    Paraplegic users of mechanical walking orthoses, e.g. advanced reciprocating gait orthosis (ARGO), often face high energy expenditure and extreme upper body loading during locomotion. We studied the effect of kinematical pattern on the mechanical performance of paraplegic locomotion, in search for an improved gait pattern that leads to lower muscular efforts. A three-dimensional, four segment, six-degrees-of-freedom skeletal model of the advanced reciprocating gait orthosis-assisted paraplegic locomotion was developed based on the data acquired from an experimental study on a single subject. The effect of muscles was represented by ideal joint torque generators. A response surface analysis was performed on the model to determine the impact of the kinematical parameters on the resulting muscular efforts, characterized by net joint torques. Results indicated that a lateral bending manoeuvre at the trunk would facilitate the foot clearance by reducing the torque requirement of the whole body lateral tilting. For swing leg advancement, the trunk posterior bending manoeuvre was found to be more effective and efficient than the whole body axial rotation, owing to the coupled reciprocal action of the advanced reciprocating gait orthosis. It was hypothesized that a modified gait pattern, with larger trunk movements and no axial rotation, could improve the energy expenditure and upper body loading during advanced reciprocating gait orthosis-assisted locomotion. More detailed modelling and experimental studies are needed to verify this hypothesis and evaluate its potential effects on the soft tissue strains.

  3. Development of test protocols for effectiveness testing and working mechanisms for shoreline cleaning agents

    Energy Technology Data Exchange (ETDEWEB)

    Ramstad, S.; Hansen, B.H.; Daling, P.; Frenzel, M.; Oksenvag, J.H.C. [SINTEF Marine Environmental Technology, Trondheim (Norway); Merlin, F. [Cedre, Brest Cedex (France)

    2009-07-01

    One major spill and smaller accidental spills have occurred off the Norwegian Coast since the petroleum industry began operation in the area over 50 years ago. To date, no oil from these offshore spills has reached the coastal area, but with the expansion of the oil industry on the Norwegian continental shelf, there is a need for an effective shoreline cleanup response contingency. In general, shoreline cleanup operations are performed over a very long time period with rather low efficacy and generation of large quantities of waste materials. For these reasons, there is a need to develop and implement new and more cost-effective shore line protection, cleanup techniques and strategies. The primary purpose of this work was to develop test protocols for effectiveness quantification of shoreline cleaning agents (SCAs) to better understand their working mechanisms and effectiveness in treating oil-contaminated shorelines. A stepwise test regime was recommended to the Norwegian Climate and Pollution Agency. The test regime considers product ecotoxicology along with dispersibility and effectiveness. Its aim is to contribute to a better understanding for tactical use of these products in different spill scenarios. The paper reviewed non-mechanical in-situ shoreline cleanup techniques; shoreline washing and dispersing agents; bioremediation agents; ecotoxicity testing; dispersibility testing of SCAs; Warren Spring Laboratory (WSL) test of shoreline dispersants; wash-out effectiveness testing of shoreline dispersants on oil-contaminated bedrock using the simulated shoreline system (SSS); wave energy; oil type and soak time; and exposure period. Guidelines for the effective use of the proposed products were recommended based on data from these studies. 9 refs., 13 figs.

  4. Mechanism and environmental effects on MEOR induced by the alpha process

    Energy Technology Data Exchange (ETDEWEB)

    Hiebert, F.K.; Zumberge, J.; Rouse, B.; Cowes, A.; Lake, L.W.

    1993-04-01

    This project was an interdisciplinary investigation of the enhanced oil recovery effects of a commercial microbial enhanced oil recovery (MEOR) system. The purpose was to investigate in parallel laboratory and field studies the response of a portion of the Shannon Sandstone reservoir to two single-well treatments with a commercial MEOR system, to investigate basic bacteria/rock interactions, and to investigate mechanisms of oil release. The MEOR system consisted of a mixed culture of hydrocarbon-utilizing bacteria, inorganic nutrients, and other growth factors. Parallel field and laboratory investigations into the effect and mechanisms of the treatment were carried out by independent principal investigators. The Shannon Sandstone at the Naval Petroleum Reserve [number sign]3 (NPR [number sign]3), Teapot Dome Field, Wyoming, was the location of the pilot field treatment. The treated and adjacent observation wells showed production and microbiological perturbations that are attributed to the effects of treatment during the first four post-treatment months. Effects of treatment declined to background levels within four months of inoculation. No production response was recorded in control wells unaffected by microbial stimulation. Laboratory research resulted in descriptions of colonization patterns of hydrocarbon-utilizing bacteria in the reservoir rock environment. Core-flooding research utilizing various components of the MEOR system did not result in the isolation of an oilrelease mechanism or measure incremental oil recovery from cores at residual oil saturation to waterflood. Chemical analysis of pre- and post-treatment produced oil identified large organic acid molecules concentrated in the asphaltenic fraction of posttreatment oil, but not in the oil from untreated control wells. No significant changes were measured in the overall quality of the oil produced from MEOR treated wells.

  5. Mechanism and environmental effects on MEOR induced by the alpha process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hiebert, F.K.; Zumberge, J.; Rouse, B.; Cowes, A.; Lake, L.W.

    1993-04-01

    This project was an interdisciplinary investigation of the enhanced oil recovery effects of a commercial microbial enhanced oil recovery (MEOR) system. The purpose was to investigate in parallel laboratory and field studies the response of a portion of the Shannon Sandstone reservoir to two single-well treatments with a commercial MEOR system, to investigate basic bacteria/rock interactions, and to investigate mechanisms of oil release. The MEOR system consisted of a mixed culture of hydrocarbon-utilizing bacteria, inorganic nutrients, and other growth factors. Parallel field and laboratory investigations into the effect and mechanisms of the treatment were carried out by independent principal investigators. The Shannon Sandstone at the Naval Petroleum Reserve {number_sign}3 (NPR {number_sign}3), Teapot Dome Field, Wyoming, was the location of the pilot field treatment. The treated and adjacent observation wells showed production and microbiological perturbations that are attributed to the effects of treatment during the first four post-treatment months. Effects of treatment declined to background levels within four months of inoculation. No production response was recorded in control wells unaffected by microbial stimulation. Laboratory research resulted in descriptions of colonization patterns of hydrocarbon-utilizing bacteria in the reservoir rock environment. Core-flooding research utilizing various components of the MEOR system did not result in the isolation of an oilrelease mechanism or measure incremental oil recovery from cores at residual oil saturation to waterflood. Chemical analysis of pre- and post-treatment produced oil identified large organic acid molecules concentrated in the asphaltenic fraction of posttreatment oil, but not in the oil from untreated control wells. No significant changes were measured in the overall quality of the oil produced from MEOR treated wells.

  6. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  7. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.

    Science.gov (United States)

    Li, Hui; Gordon, Mark S

    2007-03-28

    A method that combines quantum mechanics (QM), typically a solute, the effective fragment potential (EFP) discrete solvent model, and the polarizable continuum model is described. The EFP induced dipoles and polarizable continuum model (PCM) induced surface charges are determined in a self-consistent fashion. The gradients of these two energies with respect to molecular coordinate changes are derived and implemented. In general, the gradients can be formulated as simple electrostatic forces and torques among the QM nuclei, electrons, EFP static multipoles, induced dipoles, and PCM induced charges. Molecular geometry optimizations can be performed efficiently with these gradients. The formulas derived for EFPPCM can be generally applied to other combined molecular mechanics and continuum methods that employ induced dipoles and charges.

  8. Effect of thermal processing on microstructure and mechanical properties of AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influences of deformation temperature and deformation degree on the mierostructure and mechanical properties of AZ80 magnesium alloy were investigated by the adoption of isothermal plain strain compression experiment. The results show that thermal compression processing can refine the grain size and the tensile strength of all the deformed AZ80 magnesium alloys is increased to the maximum of 320 MPa. With the increasing of deformation temperature, the tensile strength decreases; with the increasing of the deformation degree, the tensile strength increases significantly in the temperature range of 200-300 ℃ and becomes stable at temperature higher than 300 ℃. During the compression processing of AZ80 magnesium alloys, at lower temperature(300 ℃), dynamic reerystallization is complete and refined grainstrengthening is dominant, leading to little effect of deformation degree on mechanical properties.

  9. Effect of Rare Earths on Mechanical Properties and Microstructures of Si3N4-based Ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of Y2O3, La2O3 and Nd2O3 on the mechanical properties and microstructures of Si3N4-based ceramics were studied. It shows that a significant improvement in mechanical properties can be obtained by adding rare earths oxides in Si3N4. The fracture toughness and the flexural strength of Si3N4 added with both Y2O3 and La2O3 are 7.8 MPa.m1/2 and 962 MPa, respectively. The main reason is that adding rare earths in Si3N4 can improve the microstructure of the material and increase the aspect ratio of β-Si3N4 grain.

  10. NSR&D FY15 Final Report. Modeling Mechanical, Thermal, and Chemical Effects of Impact

    Energy Technology Data Exchange (ETDEWEB)

    Long, Christopher Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ma, Xia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Duan Zhong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-02

    The main goal of this project is to develop a computer model that explains and predicts coupled mechanical, thermal and chemical responses of HE under impact and friction insults. The modeling effort is based on the LANL-developed CartaBlanca code, which is implemented with the dual domain material point (DDMP) method to calculate complex and coupled thermal, chemical and mechanical effects among fluids, solids and the transitions between the states. In FY 15, we have implemented the TEPLA material model for metal and performed preliminary can penetration simulation and begun to link with experiment. Currently, we are working on implementing a shock to detonation transition (SDT) model (SURF) and JWL equation of state.

  11. The effect of natural whey proteins on mechanisms of blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Halina Car

    2014-02-01

    Full Text Available Whey is a rich natural source of peptides and amino acids. It has been reported in numerous studies that biological active peptides isolated from cow’s milk whey may affect blood pressure regulation. Studies on animals and humans have shown that α-lactalbumin and β-lactoglobulin obtained from enzymatically hydrolysed whey inhibit angiotensin converting enzyme (ACE, while lactorphins lower blood pressure by normalizing endothelial function or by opioid receptors dependent mechanism. Whey proteins or their bioactive fragments decrease total cholesterol, LDL fraction and triglycerides, thus reducing the risk factors of cardiovascular diseases. The aim of this review is to discuss the effects of whey proteins on the mechanisms of blood pressure regulation.

  12. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    Directory of Open Access Journals (Sweden)

    Juan J. Soto-Bernal

    2015-01-01

    Full Text Available This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount and morphology of CSH gel; the amount of CSH is larger and its morphology becomes denser and less porous with higher magnetostatic induction strengths; it also shows the evidence of changes in the mineralogical composition of the hydrated cement pastes. The temperature increasing has no negative effects over the cement paste compressive strength since the magnetostatic field affects the process of hydration through a molecular restructuring process, which makes cement pastes improve microstructurally, with a reduced porosity and a higher mechanical strength.

  13. Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films.

    Science.gov (United States)

    Aguirre-Loredo, Rocío Yaneli; Rodríguez-Hernández, Adriana Inés; Morales-Sánchez, Eduardo; Gómez-Aldapa, Carlos Alberto; Velazquez, Gonzalo

    2016-04-01

    Water molecules modify the properties of biodegradable films obtained from hydrophilic materials. Most studies dealing with thermal, mechanical and barrier properties of hydrophilic films are carried out under one relative humidity (RH) condition. The objective of this work was to evaluate the effect of the moisture content on the thermal, mechanical and barrier properties of chitosan films under several RH conditions. Microclimates, obtained with saturated salt solutions were used for conditioning samples and the properties of the films were evaluated under each RH condition. Chitosan films absorbed up to 40% of moisture at the higher RH studied. The percentage of elongation and the water vapour permeability increased while tensile strength, Young's modulus and glass transition temperature decreased, when the moisture content increased. The results suggest that the water molecules plasticized the polymer matrix, changing the properties when the films were in contact with high RH environments.

  14. Effects of Delaminations on the Damped Dynamic Characteristics of Composite Laminates: Mechanics and Experiments

    Science.gov (United States)

    Saravanos, D. A.; Hopkins, D. A.

    1995-01-01

    Analytical and experimental work is presented on the damped free-vibration of delaminated laminates and beams. A laminate theory is developed where the unknown kinematic perturbations induced by a delamination crack are treated as additional degrees of freedom. The generalized stiffness, inertia and damping matrices of the laminate are formulated. An analytical solution is developed for the prediction of natural frequencies, modes and modal damping in composite beams with delamination cracks. Evaluations of the mechanics on various cantilever beams with a central delamination are performed. Experimental results for the modal frequencies and damping of composite beams with a single delamination are also presented and correlations between analytical predictions and measured data are shown. The effects of delamination vary based on crack size, laminate configuration, and mode order. The implications of the mechanics in developing delamination detection techniques are also discussed.

  15. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  16. Contamination of dental zirconia before final firing: effects on mechanical properties.

    Science.gov (United States)

    Ban, Seiji; Okuda, Yuji; Noda, Makoto; Tsuruki, Jiro; Kawai, Tatsushi; Kono, Hiroshi

    2013-01-01

    Plate-like specimens were prepared, using a diamond saw, from Cercon -a pre-sintered yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) block. These specimens were treated with 10 kinds of dental materials which acted as contaminants, and then sintered at 1,350°C or 1,450°C. After the final firing, specimens were subjected to a three-point flexural test and Vickers hardness test. Their surfaces were also characterized by scanning electron microscopy and X-ray diffractometry. Phosphorus-containing contaminants reduced the three-point flexural strength and hardness of final sintered zirconia due to the formation of YPO4 and phase transformation from tetragonal to monoclinic zirconia. Gypsum also reduced both mechanical properties due to the formation of CaZrO3 and phase transformation from tetragonal to cubic zirconia. Other contaminants showed no adverse effects on the mechanical properties of final sintered zirconia.

  17. Effect of Mn content on microstructure and mechanical properties of modified ZA-27 alloy

    Institute of Scientific and Technical Information of China (English)

    李元元; 龙雁; 陈维平; 张大童; 邵明

    2002-01-01

    ZA-27 alloys reinforced by Mn-containing intermetallic compounds were prepared and the effect of Mn content on their mechanical properties were examined. By adding Mn, rare earth elements(RE) and Ti into ZA-27, experimental alloys were fabricated by sand casting. The volume fraction, grain size and morphology of the Mn-containing intermetallic compound phases vary with the changing of Mn content. Mechanical properties of the reinforced ZA-27 alloys at elevated temperatures were measured. The results show that the hardness, compressive strength and compressibility of experimental alloys increase with increasing Mn content until they reach a maximum at 0.5% Mn. Excessive and coarse hard phases would act as crack origins instead of dispersion strengthening particles. Best tensile properties of these alloys at elevated temperature can be achieved at a Mn content of 0.18 %.

  18. Effect of Hydration Aging and Water Binder Ratio on Microstructure and Mechanical Properties of Sprayed Concrete

    Institute of Scientific and Technical Information of China (English)

    NIU Ditao; WANG Jiabin; WANG Yan

    2015-01-01

    In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more signiifcant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was signiifcantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.

  19. Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings

    Science.gov (United States)

    Zou, Chunjiang; Wong, Louis Ngai Yuen

    2016-05-01

    The effects of specimen size and geometry on the dynamic mechanical properties of Carrara marble including compressive strength, failure strain and elastic modulus are investigated in this research. Four different groups of specimens of different sizes and cross-sectional geometries are loaded under a wide range of strain rates by the split Hopkinson pressure bar setup. The experimental results indicate that all these mechanical properties are significantly influenced by the specimen size and geometry to different extent, hence highlighting the importance of taking into account of the specimen size and geometry in dynamic tests on rock materials. In addition, the transmission coefficient and the determination of strain rate under dynamic tests are discussed in detail.

  20. Effect of internal oxidation on the microstructure and mechanical properties of C-103 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, M., E-mail: msankar_iitk@yahoo.co.in [Defence Metallurgical Research Laboratory, Hyderabad-500058, Andhra Pradesh (India); Baligidad, R.G.; Satyanarayana, D.V.V.; Gokhale, A.A. [Defence Metallurgical Research Laboratory, Hyderabad-500058, Andhra Pradesh (India)

    2013-07-01

    The effect of internal oxidation on the microstructure and mechanical properties of niobium alloy, C-103 has been investigated. Tensile specimens and test coupons of alloy containing different levels of oxygen (100–2500 ppm) were characterized with respect to microstructure and mechanical properties. It has been observed that for oxygen contents in the range ∼400–1000 ppm, hafnium oxide precipitated exclusively along the grain boundaries, while for oxygen content of ∼2500 ppm, precipitates formed both at the grain boundaries and within the grains near surface region of the alloy. The internal oxidation has resulted in embrittlement of the alloy resulting in considerable lowering of strength as well as ductility. Further, the strength and ductility are found to decrease progressively with the increase in average oxygen content of the alloy.