WorldWideScience

Sample records for ciliary motility disorders

  1. PACRG, a protein linked to ciliary motility, mediates cellular signaling.

    OpenAIRE

    Loucks, Catrina M.; Bialas, Nathan J.; Dekkers, Martijn; Walker, Denise S.; Grundy, Laura J.; Li, Chunmei; Inglis, P. Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Michel R Leroux

    2016-01-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-a...

  2. PACRG, a protein linked to ciliary motility, mediates cellular signaling

    OpenAIRE

    Loucks, Catrina M.; Bialas, Nathan J.; Dekkers, Martijn P. J.; Walker, Denise S.; Grundy, Laura J.; Li, Chunmei; Inglis, P. Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Michel R Leroux

    2016-01-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-a...

  3. PACRG, a protein linked to ciliary motility, mediates cellular signaling.

    Science.gov (United States)

    Loucks, Catrina M; Bialas, Nathan J; Dekkers, Martijn P J; Walker, Denise S; Grundy, Laura J; Li, Chunmei; Inglis, P Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Leroux, Michel R

    2016-07-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon-associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan.

  4. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus.

    Directory of Open Access Journals (Sweden)

    Christine P Diggle

    2014-09-01

    Full Text Available Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD. Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.

  5. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs

    DEFF Research Database (Denmark)

    Merveille, Anne-Christine; Davis, Erica E; Becker-Heck, Anita

    2011-01-01

    Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory...

  6. Ciliary disorder of the skeleton.

    Science.gov (United States)

    Huber, Celine; Cormier-Daire, Valerie

    2012-08-15

    In the last 10 years, the primary cilia machinery has been implicated in more than a dozen disorders united as ciliopathies, including skeletal dysplasias, such as Jeune syndrome and short rib-polydactyly type III. Indeed, primary cilia play a vital role in transduction of signals in the hedgehog pathway that is especially important in skeletal development. In this review, we focus on skeletal conditions belonging to the ciliopathy group: the short rib-polydactyly group (SRPs) that includes Verma-Naumoff syndrome (SRP type III), Majewski syndrome (SRP type II), Jeune syndrome (ATD), as well as Ellis-van Creveld syndrome (EVC), the Sensenbrenner syndrome, and, finally, Weyers acrofacial dysostosis. Today, 10 different genes have been identified as responsible for seven "skeletal" ciliopathies. Mutations have been identified in dynein motor (DYNC2H1), in intraflagellar transport (IFT) complexes (IFT80, IFT122, IFT43, WDR35, WDR19, and TTC21B) as well as in genes responsible for the basal body (NEK1, EVC, and EVC2). The wide clinical variability observed for an individual ciliopathy gene supports the development of exome strategy specifically dedicated to cilia genes to identify mutations in this particularly heterogeneous group of disorders.

  7. MNS1 is essential for spermiogenesis and motile ciliary functions in mice.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available During spermiogenesis, haploid round spermatids undergo dramatic cell differentiation and morphogenesis to give rise to mature spermatozoa for fertilization, including nuclear elongation, chromatin remodeling, acrosome formation, and development of flagella. The molecular mechanisms underlining these fundamental processes remain poorly understood. Here, we report that MNS1, a coiled-coil protein of unknown function, is essential for spermiogenesis. We find that MNS1 is expressed in the germ cells in the testes and localizes to sperm flagella in a detergent-resistant manner, indicating that it is an integral component of flagella. MNS1-deficient males are sterile, as they exhibit a sharp reduction in sperm production and the remnant sperm are immotile with abnormal short tails. In MNS1-deficient sperm flagella, the characteristic arrangement of "9+2" microtubules and outer dense fibers are completely disrupted. In addition, MNS1-deficient mice display situs inversus and hydrocephalus. MNS1-deficient tracheal motile cilia lack some outer dynein arms in the axoneme. Moreover, MNS1 monomers interact with each other and are able to form polymers in cultured somatic cells. These results demonstrate that MNS1 is essential for spermiogenesis, the assembly of sperm flagella, and motile ciliary functions.

  8. Esophageal motility disorders; Motilitaetsstoerungen des Oesophagus

    Energy Technology Data Exchange (ETDEWEB)

    Hannig, C.; Rummeny, E. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer Roentgendiagnostik, Muenchen (Germany); Wuttge-Hannig, A. [Gemeinschaftspraxis fuer Radiologie, Nuklearmedizin und Strahlentherapie, Muenchen (Germany)

    2007-02-15

    For the better understanding of esophageal motility, the muscle texture and the distribution of skeletal and smooth muscle fibers in the esophagus are of crucial importance. Esophageal physiology will be shortly mentioned as far as necessary for a comprehensive understanding of peristaltic disturbances. Besides the pure depiction of morphologic criteria, a complete esophageal study has to include an analysis of the motility. New diagnostic tools with reduced radiation for dynamic imaging (digital fluoroscopy, videofluoroscopy) at 4-30 frames/s are available. Radiomanometry is a combination of a functional pressure measurement and a simultaneous dynamic morphologic analysis. Esophageal motility disorders are subdivided by radiologic and manometric criteria into primary, secondary, and nonclassifiable forms. Primary motility disorders of the esophagus are achalasia, diffuse esophageal spasm, nutcracker esophagus, and the hypertonic lower esophageal sphincter. The secondary motility disorders include pseudoachalasia, reflux-associated motility disorders, functionally caused impactions, Boerhaave's syndrome, Chagas' disease, scleroderma, and presbyesophagus. The nonclassificable motility disorders (NEMD) are a very heterogeneous collective. (orig.) [German] Zum Verstaendnis der Motilitaet des Oesophagus sind muskulaere Architektur und Verteilung der quergestreiften und glatten Muskelfasern von Bedeutung. Die Physiologie des Oesophagus wird in soweit kurz dargestellt, als sie fuer das Verstaendnis von peristaltischen Stoerungen notwendig ist. Neben der Erfassung rein morphologischer Kriterien ist bei der Untersuchung der Speiseroehre eine diagnostische Bewertung der Motilitaet erforderlich. Es stehen uns heute strahlungsarme dynamische Aufzeichnungsverfahren (digitale dynamische Aufzeichnung, Videofluoroskopie) mit Bildsequenzen von 4-30 Bildern/s zur Verfuegung. Die Kombination einer funktionellen Methode zur Darstellung der Morphologie und der

  9. Pediatric Gastrointestinal Motility Disorders: Challenges and a Clinical Update

    OpenAIRE

    Chumpitazi, Bruno; Nurko, Samuel

    2008-01-01

    Pediatric gastrointestinal motility disorders are common and can range from relatively benign conditions such as functional constipation to more serious disorders such as achalasia, Hirschsprung disease, and intestinal pseudoobstruction. Performing and interpreting motility evaluations in children presents unique challenges and is complicated by a dearth of control information, underlying gastrointestinal developmental maturation, technical challenges (eg, catheter size limitations), and pati...

  10. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome.

    Science.gov (United States)

    Leigh, Margaret W; Pittman, Jessica E; Carson, Johnny L; Ferkol, Thomas W; Dell, Sharon D; Davis, Stephanie D; Knowles, Michael R; Zariwala, Maimoona A

    2009-07-01

    Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (dynein axonemal heavy chain 5) or intermediate(dynein axonemal intermediate chain 1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for primary ciliary dyskinesia is available for the most common mutations. The respiratory manifestations of primary ciliary dyskinesia (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis, and chronic otitis media)reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of patients with primary ciliary dyskinesia have laterality defects (including situs inversus totalis and, less commonly, heterotaxy, and congenital heart disease),reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most patients with primary ciliary dyskinesia have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with primary ciliary dyskinesia.

  11. Abnormal ocular motility with brainstem and cerebellar disorders.

    Science.gov (United States)

    Carlow, T J; Bicknell, J M

    1978-01-01

    The disorders of ocular motility seen in association with brainstem or cerebellar disorders may point to rather specific anatomical or pathological correlations. Pontine gaze palsy reflects involvement of the pontine paramedian reticular formation. Internuclear ophthalmoplegia signifies a lesion in the medial longitudinal fasciculus. Skew deviation may result from a lesion anywhere in the posterior fossa. Ocular bobbing typically results from a pontine lesion. The Sylvian aqueduct syndrome is characteristic of involvement in the upper midbrain-pretectal region, usually a pinealoma. Cerebellar lesions may be manifested by gaze paresis, skew deviation, disturbances of saccadic or smooth pursuit movements, ocular myoclonus, or several characteristic forms of nystagmus. Familiarity with these disorders may be of great help to the physician dealing with a patient with a possible posterior fossa lesion.

  12. Digital radiography in the evaluation of oesophageal motility disorders

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Yehia A

    2000-07-01

    AIMS: To develop a simple technique for examination of the oesophagus by digital radiography and to assess its role in the evaluation of motility disorders of the oesophagus. MATERIALS AND METHODS: Forty-nine patients and 44 control subjects underwent manometry and digital examination of the oesophagus. The digital study consisted of two parts: firstly examination of the pharynx and cervical oesophagus using 15 ml of fluid barium in anterio-posterior (AP) and lateral views, with image acquisition of four frames/s for 2 s. Secondly, examination of the thoracic oesophagus and oesophagogastric junction using 25 ml of barium in two prone oblique and one supine AP series, with image acquisition of one frame/s for 20 s. Oesophageal transit time (OTT) was measured in each case. Abnormal or non-peristaltic contractions were described regarding their morphology, time of visualization and length. The presence or absence of hiatal hernia, reflux or any associated organic lesions was noted. RESULTS: Digital radiography diagnosed 14 cases of achalasia and 28 cases of non-specific oesophageal motility disorder (NOMD). Normal OTT was 11.95 {+-} 1.304 s. The OTT was prolonged (16 s or more) in all patients except five; four of these were cases of NOMD. Abnormal contractions were classified into circular and longitudinal types. The circular non-obliterating type was commoner. Achalasia was diagnosed in all cases, as failure of relaxation of the inferior oesophageal sphincter was always present and easily depicted by digital radiography. Abnormal contractions in the body of the oesophagus were elicited in 57% of cases of achalasia. The sensitivity of digital radiography in detecting oesophageal motility disorders was 85.7% based on the presence of abnormal contractions and 91.6% by eliciting a prolonged OTT. CONCLUSIONS: Examination of the oesophagus by digital radiography is simple, non-invasive, reproducible, rapid and without discomfort to patients. It allows the diagnosis of

  13. Primary ciliary dyskinesiatwo cases reports

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Rezaee1

    2009-01-01

    Full Text Available (Received 22 December, 2009 ; Accepted 10 March, 2010AbstractPrimary ciliary dyskinesia and Kartagener's syndrome are rare genetic disorders. There is a ciliary dysfunction in these disorders that cause recurrent infections in respiratory and sinus tracts associated with dextrocardia, chronic vasomotor rhinitis and dextrocardia. The aim of this paper is to report two rare cases of Primary ciliary dyskinesia, including one case of primary ciliary dyskinesia and Kartagener's syndrome for additional knowledge. J Mazand Univ Med Sci 2009; 19(73: 85-89 (Persian.

  14. Peroral Endoscopic Myotomy for Treating Achalasia and Esophageal Motility Disorders.

    Science.gov (United States)

    Youn, Young Hoon; Minami, Hitomi; Chiu, Philip Wai Yan; Park, Hyojin

    2016-01-31

    Peroral endoscopic myotomy (POEM) is the application of esophageal myotomy to the concept of natural orifice transluminal surgery (NOTES) by utilizing a submucosal tunneling method. Since the first case of POEM was performed for treating achalasia in Japan in 2008, this procedure is being more widely used by many skillful endosopists all over the world. Currently, POEM is a spotlighted, emerging treatment option for achalasia, and the indications for POEM are expanding to include long-standing, sigmoid shaped esophagus in achalasia, even previously failed endoscopic treatment or surgical myotomy, and other spastic esophageal motility disorders. Accumulating data about POEM demonstrate excellent short-term outcomes with minimal risk of major adverse events, and some existing long-term data show the efficacy of POEM to be long lasting. In this review article, we review the technical details and clinical outcomes of POEM, and discuss some considerations of POEM in special situations.

  15. Diagnosis of primary ciliary dyskinesia

    Directory of Open Access Journals (Sweden)

    Mary Anne Kowal Olm

    2015-06-01

    Full Text Available Primary ciliary dyskinesia (PCD is a genetic disorder of ciliary structure or function. It results in mucus accumulation and bacterial colonization of the respiratory tract which leads to chronic upper and lower airway infections, organ laterality defects, and fertility problems. We review the respiratory signs and symptoms of PCD, as well as the screening tests for and diagnostic investigation of the disease, together with details related to ciliary function, ciliary ultrastructure, and genetic studies. In addition, we describe the difficulties in diagnosing PCD by means of transmission electron microscopy, as well as describing patient follow-up procedures.

  16. Diagnosis of primary ciliary dyskinesia*

    Science.gov (United States)

    Olm, Mary Anne Kowal; Caldini, Elia Garcia; Mauad, Thais

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a genetic disorder of ciliary structure or function. It results in mucus accumulation and bacterial colonization of the respiratory tract which leads to chronic upper and lower airway infections, organ laterality defects, and fertility problems. We review the respiratory signs and symptoms of PCD, as well as the screening tests for and diagnostic investigation of the disease, together with details related to ciliary function, ciliary ultrastructure, and genetic studies. In addition, we describe the difficulties in diagnosing PCD by means of transmission electron microscopy, as well as describing patient follow-up procedures. PMID:26176524

  17. Strongyloides stercoralis hyperinfection associated with impaired intestinal motility disorder.

    Science.gov (United States)

    Figueira, Cláudia Frangioia; Gaspar, Márcio Teodoro da Costa; Cos, Lynda Dorene; Ussami, Edson Yassushi; Otoch, José Pinhata; Felipe-Silva, Aloisio

    2015-01-01

    Infection by Strongyloides stercoralis is a highly prevalent helminthiasis, which is mostly distributed in the tropical and subtropical regions of the world. Although a substantial number of cases are asymptomatic or paucisymtomatic, severe and life-threatening forms of this infection still occur and not infrequently is lately diagnosed. Gram-negative bacteria septicemia, which frequently accompanies the severe helminthiasis, contributes to the high mortality rate. Severe infection is invariably triggered by any imbalance in the host's immunity, favoring the auto-infective cycle, which increases the intraluminal parasite burden enormously. Clinical presentation of severe cases is varied, and diagnosis requires a high suspicion index. Acute abdomen has been reported in association with S. stercoralis infection, but intestinal necrosis is rarely found during the surgical approach. The authors report the case of a man who sought the emergency unit with recent onset abdominal pain. Clinical and imaging features were consistent with obstructive acute abdomen. Scattered adhesions and a necrotic ileal segment with a tiny perforation represented the surgical findings. The patient outcome was unfavorable and respiratory distress required an open lung biopsy. Both surgical specimens showed S. stercoralis infection. Unfortunately the patient underwent multiple organ failure and septicemia, and subsequently died. The authors call attention to the finding of intestinal necrosis and impaired intestinal motility disorder as possibilities for the diagnosis and risk factor, respectively, for a severe infection of S. stercoralis.

  18. Quantitative analysis of ciliary beating in primary ciliary dyskinesia: a pilot study

    Directory of Open Access Journals (Sweden)

    Papon Jean-François

    2012-10-01

    Full Text Available Abstract Background Primary ciliary dyskinesia (PCD is a rare congenital respiratory disorder characterized by abnormal ciliary motility leading to chronic airway infections. Qualitative evaluation of ciliary beat pattern based on digital high-speed videomicroscopy analysis has been proposed in the diagnosis process of PCD. Although this evaluation is easy in typical cases, it becomes difficult when ciliary beating is partially maintained. We postulated that a quantitative analysis of beat pattern would improve PCD diagnosis. We compared quantitative parameters with the qualitative evaluation of ciliary beat pattern in patients in whom the diagnosis of PCD was confirmed or excluded. Methods Nasal nitric oxide measurement, nasal brushings and biopsies were performed prospectively in 34 patients with suspected PCD. In combination with qualitative analysis, 12 quantitative parameters of ciliary beat pattern were determined on high-speed videomicroscopy recordings of beating ciliated edges. The combination of ciliary ultrastructural abnormalities on transmission electron microscopy analysis with low nasal nitric oxide levels was the “gold standard” used to establish the diagnosis of PCD. Results This “gold standard” excluded PCD in 15 patients (non-PCD patients, confirmed PCD in 10 patients (PCD patients and was inconclusive in 9 patients. Among the 12 parameters, the distance traveled by the cilium tip weighted by the percentage of beating ciliated edges presented 96% sensitivity and 95% specificity. Qualitative evaluation and quantitative analysis were concordant in non-PCD patients. In 9/10 PCD patients, quantitative analysis was concordant with the “gold standard”, while the qualitative evaluation was discordant with the “gold standard” in 3/10 cases. Among the patients with an inconclusive “gold standard”, the use of quantitative parameters supported PCD diagnosis in 4/9 patients (confirmed by the identification of disease

  19. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder.

    LENUS (Irish Health Repository)

    Casey, Jillian P

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterised by abnormal ciliary motion and impaired mucociliary clearance, leading to recurrent respiratory infections, sinusitis, otitis media and male infertility. Some patients also have laterality defects. We recently reported the identification of three disease-causing PCD genes in the Irish Traveller population; RSPH4A, DYX1C1 and CCNO. We have since assessed an additional Irish Traveller family with a complex phenotype involving PCD who did not have any of the previously identified PCD mutations.

  20. Control of ciliary motility by Ca sup 2+ : Integration of Ca sup 2+ -dependent functions and targets for Ca sup 2+ action

    Energy Technology Data Exchange (ETDEWEB)

    Evans, T.C.

    1988-01-01

    To identify functions that regulate Ca{sup 2+}-induced ciliary reversal in Paramecium, mutants defective in terminating depolarization-induced backward swimming were selected. Six independent recessive mutations (k-shy) comprising two complementation groups, k-shyA and k-shyB, were identified. All mutants exhibited prolonged backward swimming in depolarizing solutions. Voltage clamp studies revealed that mutant Ca{sup 2+} current amplitudes were reduced, but could be restored to wild type levels by EGTA injection. The recovery of the mutant Ca{sup 2+} current from Ca{sup 2+}-dependent inactivation, and the decay of the Ca{sup 2+}-dependent K{sup +} and Ca{sup 2+}-dependent Na{sup +} currents after depolarization were slow in k-shy compared to wild type. To identify protein targets of Ca{sup 2+} action, ciliary proteins that interact with calmodulin (CaM) were characterized. With a {sup 125}I-CaM blot assay, several CaM-binding proteins were identified including axonemal, soluble, and membrane-bound polypeptides. Competitive displacement studies with unlabeled Paramecium CaM, bovine CaM, and troponinC suggested that both protein types bind CaM with high affinity and specificity. To examine the presence of CaM-binding sites in intact axonemes, a filtration binding assay was developed.

  1. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms

    Science.gov (United States)

    Panizzi, Jennifer R.; Becker-Heck, Anita; Castleman, Victoria H.; Al-Mutairi, Dalal; Liu, Yan; Loges, Niki T.; Pathak, Narendra; Austin-Tse, Christina; Sheridan, Eamonn; Schmidts, Miriam; Olbrich, Heike; Werner, Claudius; Häffner, Karsten; Hellman, Nathan; Chodhari, Rahul; Gupta, Amar; Kramer-Zucker, Albrecht; Olale, Felix; Burdine, Rebecca D.; Schier, Alexander F.; O’Callaghan, Christopher; Chung, Eddie MK; Reinhardt, Richard; Mitchison, Hannah M.; King, Stephen M.; Omran, Heymut; Drummond, Iain A.

    2012-01-01

    Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation, and to establish laterality1. Cilia motility defects cause Primary Ciliary Dyskinesia (PCD, MIM 242650), a disorder affecting 1:15-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive cilia bending2. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD linked loci3. Here we show that the zebrafish cilia paralysis mutant schmalhanstn222 (smh) mutant encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a regulated gene. Screening 146 unrelated PCD families identified patients in six families with reduced outer dynein arms, carrying mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103 functions as a tightly bound, axoneme-associated protein. The results identify Ccdc103 as a novel dynein arm attachment factor that when mutated causes Primary Ciliary Dyskinesia. PMID:22581229

  2. Ciliary/Flagellar Protein Ubiquitination

    OpenAIRE

    Huan Long; Qiyu Wang; Kaiyao Huang

    2015-01-01

    Cilia/flagella are conserved eukaryotic organelles that play an important role in the control of cell motility and detection of environmental cues. However, the molecular mechanisms underlying ciliary/flagellar assembly, maintenance, disassembly, and signal transduction are not yet completely understood. Recent studies demonstrated that post-translational modifications (PTMs) such as phosphorylation, methylation, glutamylation, and ubiquitination are involved in these processes. In this mini ...

  3. A pictorial presentation of 3.0 Chicago Classification for esophageal motility disorders.

    Science.gov (United States)

    Herbella, Fernando Augusto; Armijo, Priscila Rodrigues; Patti, Marco Giuseppe

    2016-01-01

    High resolution manometry changed several esophageal motility paradigms. The 3.0 Chicago Classification defined manometric criteria for named esophageal motility disorders. We present a pictorial atlas of motility disorders. Achalasia types, esophagogastric junction obstruction, absent contractility, distal esophageal spasm, hypercontractile esophagus (jackhammer), ineffective esophageal motility, and fragmented peristalsis are depicted with high-resolution manometry plots. RESUMO A manometria de alta resolução mudou vários paradigmas da motilidade digestiva. A Classificação de Chicago, na versão 3.0, definiu critérios manométricos para as doenças da motilidade esofagiana. O presente artigo é um atlas das dismotilidades descritas. Tipos de acalásia, obstrução ao nível da junção esofagogástrica, contrações ausentes, espasmo esofagiano distal, esôfago hipercontrátil, motilidade esofagiana ineficaz e peristalse fragmentada são mostradas em traçados de manometria de alta resolução.

  4. Diagnosis of esophageal motility disorders: esophageal pressure topography versus conventional line tracing

    Science.gov (United States)

    Carlson, DA; Ravi, K; Kahrilas, PJ; Gyawali, CP; Bredenoord, AJ; Castell, DO; Spechler, SJ; Halland, M; Kanuri, N; Katzka, DA; Leggett, CL; Roman, S; Saenz, JB; Sayuk, GS; Wong, AC; Yadlapati, R; Ciolino, JD; Fox, MR; Pandolfino, JE

    2015-01-01

    Background Enhanced characterization of esophageal peristaltic and sphincter function provided by esophageal pressure topography (EPT) offers a potential diagnostic advantage over conventional line tracings (CLT). However, high-resolution manometry (HRM) and EPT require increased equipment costs over conventional systems and evidence demonstrating a significant diagnostic advantage of EPT over CLT is limited. Our aim was to investigate whether the inter-rater agreement and/or accuracy of esophageal motility diagnosis differed between EPT and CLT. Methods Forty previously-completed patient HRM studies were selected for analysis using a customized software program developed to perform blinded independent interpretation in either EPT or CLT (six pressure sensors) format. Six experienced gastroenterologists with a clinical focus in esophageal disease (attendings) and six gastroenterology trainees with minimal manometry experience (fellows) from three academic centers interpreted each of the 40 studies using both EPT and CLT formats. Rater diagnoses were assessed for inter-rater agreement and diagnostic accuracy, both for exact diagnosis and for correct identification of a major esophageal motility disorder. Results The total group agreement was moderate (κ = 0.57; 95% CI 0.56–0.59) for EPT and fair (κ = 0.32; 0.30–0.33) for CLT. Inter-rater agreement between attendings was good (κ = 0.68; 0.65–0.71) for EPT and moderate (κ = 0.46; 0.43–0.50) for CLT. Inter-rater agreement between fellows was moderate (κ = 0.48; 0.45–0.50) for EPT and poor to fair (κ = 0.20; 0.17–0.24) for CLT. Among all raters, the odds of an incorrect exact esophageal motility diagnosis were 3.3 times higher with CLT assessment than with EPT (OR 3.3; 95% CI 2.4–4.5; p<0.0001) and the odds of incorrect identification of a major motility disorder were 3.4 times higher with CLT than EPT (OR 3.4; 2.4–5.0; p<0.0001). Conclusions Superior inter-rater agreement and diagnostic accuracy

  5. The role of Heller myotomy and POEM for nonachalasia motility disorders.

    Science.gov (United States)

    Schlottmann, F; Shaheen, N J; Madanick, R D; Patti, M G

    2017-04-01

    The best-defined primary esophageal motor disorder is achalasia. However, symptoms such as dysphagia, regurgitation and chest pain can be caused by other esophageal motility disorders such as Diffuse Esophageal Spasm (DES), Nutcracker Esophagus (NE) and the Hypertensive Lower Esophageal Sphincter (HTN-LES). Most patients with DES and HTN-LES who complain of dysphagia improve after a myotomy. Patients with NE whose main complaint is chest pain, often do not have relief of the pain and can even develop dysphagia as a consequence of the myotomy. POEM is a relatively new procedure, and there are no studies with long-term follow-up and no prospective and randomized trials comparing it to surgical myotomy. Overall, the key to success is based on a complete evaluation and a careful patient selection. The best results, regardless of the technique, are in fact obtained in patients with outflow obstruction and impaired esophageal emptying, a picture similar to achalasia.

  6. [Primary ciliary dyskinesia: clinical and genetic aspects].

    Science.gov (United States)

    D'Auria, E; Palazzo, S; Argirò, S; El, Oksha S; Riva, E

    2012-01-01

    Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disease, characterized by ciliary disfunction and impaired mucociliary clearance, resulting in a range of clinical manifestations such as chronic bronchitis, bronchiectasis, chronic rhino-sinusitis, chronic otitis media, situs viscerum inversus in almost 40-50% of cases and male infertility. The triad situs viscerum inversus, bronchiectasis and sinusitis is known as Kartagener syndrome. Up to now little is known about genetic, diagnostic and therapeutic aspects of primary motile ciliary diseases in children: for this reason, diagnosis is generally delayed and almost all treatments for PCD are not based on randomized studies but extrapolated from cystic fibrosis guidelines. The aim of this review is to propose to pediatricians a summary of current clinical and diagnostic evidence to obtain better knoledwge of this condition. The earlier diagnosis and the right treatment are both crucial to improve the prognosis of PCD.

  7. Primary ciliary dyskinesia: clinical and genetic aspects

    Directory of Open Access Journals (Sweden)

    E. D’Auria

    2012-06-01

    Full Text Available Primary ciliary dyskinesia (PCD is a rare, genetically heterogeneous disease, characterized by ciliary disfunction and impaired mucociliary clearance, resulting in a range of clinical manifestations such as chronic bronchitis, bronchiectasis, chronic rhino-sinusitis, chronic otitis media, situs viscerum inversus in almost 40-50% of cases and male infertility. The triad situs viscerum inversus, bronchiectasis and sinusitis is known as Kartagener syndrome. Up to now little is known about genetic, diagnostic and therapeutic aspects of primary motile ciliary diseases in children: for this reason, diagnosis is generally delayed and almost all treatments for PCD are not based on randomized studies but extrapolated from cystic fibrosis guidelines. The aim of this review is to propose to pediatricians a summary of current clinical and diagnostic evidence to obtain better knoledwge of this condition. The earlier diagnosis and the right treatment are both crucial to improve the prognosis of PCD.

  8. Heterochromia of the irides and a motility disorder of the oesophagus: a coincidence or a defect during embryogenesis?

    Science.gov (United States)

    Goethals, S; Hoffman, I; Devriendt, K; Casteels, I

    2003-01-01

    We present an infant with heterochromia of the irides and a motility disorder of the oesophagus. The association between Hirschsprung's disease and heterochromia of the irides has been reported in the past and has been explained by the common origin during embryogenesis of the parasympathetic ganglion cells and the stroma of the iris.

  9. Pseudotumor of Ciliary Body

    Directory of Open Access Journals (Sweden)

    Mary Varghese

    2014-01-01

    Full Text Available Orbital pseudotumor is a benign disease involving the orbital structures. Pseudotumor of the ciliary body is rare. We present a case of a 27-year-old male who presented with gradual visual loss, pain, and redness in his left eye. On examination he was found to have a yellowish white mass at the periphery of anterior chamber in his left eye and ultrasound biomicroscopy (UBM revealed a ciliary body mass in the same eye. He was treated with systemic steroids, which was tapered over a period of 8 weeks. His symptoms improved and the ciliary body mass disappeared with no recurrence over the next 6 months. UBM is an important diagnostic tool for diagnosing ciliary body mass. Early diagnosis and prompt treatment with systemic steroids may help resolve pseudotumor of the ciliary body.

  10. DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia

    Science.gov (United States)

    Onuoha, Ezenwa Obi; Damerla, Rama Rao; Francis, Richard; Furutani, Yoshiyuki; Tariq, Muhammad; King, Stephen M.; Hendricks, Gregory; Cui, Cheng; Saydmohammed, Manush; Lee, Dong Min; Zahid, Maliha; Sami, Iman; Leatherbury, Linda; Pazour, Gregory J.; Ware, Stephanie M.; Nakanishi, Toshio; Goldmuntz, Elizabeth; Tsang, Michael; Lo, Cecilia W.

    2016-01-01

    Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer’s vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease

  11. DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia.

    Directory of Open Access Journals (Sweden)

    You Li

    2016-02-01

    Full Text Available Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD, a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer's vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an

  12. An international registry for primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Werner, Claudius; Lablans, Martin; Ataian, Maximilian

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder leading to chronic upper and lower airway disease. Fundamental data on epidemiology, clinical presentation, course and treatment strategies are lacking in PCD. We have established an international PCD registry to realise an u...

  13. Botulinum toxin injection for hypercontractile or spastic esophageal motility disorders: may high-resolution manometry help to select cases?

    Science.gov (United States)

    Marjoux, S; Brochard, C; Roman, S; Gincul, R; Pagenault, M; Ponchon, T; Ropert, A; Mion, F

    2015-01-01

    Endoscopic injections of botulinum toxin in the cardia or distal esophagus have been advocated to treat achalasia and spastic esophageal motility disorders. We conducted a retrospective study to evaluate whether manometric diagnosis using the Chicago classification in high-resolution manometry (HRM) would be predictive of the clinical response. Charts of patients with spastic and hypertensive motility disorders diagnosed with HRM and treated with botulinum toxin were retrospectively reviewed at two centers. HRM recordings were systematically reanalyzed, and a patient's phone survey was conducted. Forty-five patients treated between 2008 and 2013 were included. Most patients had achalasia type 3 (22 cases). Other diagnoses were jackhammer esophagus (8 cases), distal esophageal spasm (7 cases), esophagogastric junction outflow obstruction (5 cases), nutcracker esophagus (1 case), and 2 unclassified cases. Botulinum toxin injections were performed into the cardia only in 9 cases, into the wall of the distal esophagus in 19 cases, and in both locations (cardia and distal esophagus) in 17 cases. No complication occurred in 31 cases. Chest pain was noticed for less than 7 days in 13 cases. One death related to mediastinitis occurred 3 weeks after botulinum toxin injection. Efficacy was assessed in 42 patients: 71% were significantly improved 2 months after botulinum toxin, and 57% remained satisfied for more than 6 months. No clear difference was observed in terms of response according to manometric diagnosis; however, type 3 achalasia previously dilated and with normal integrated relaxation pressure (4s-integrated relaxation pressure botulinum toxin. Endoscopic injections of botulinum toxin may be effective in some patients with spastic or hypercontractile esophageal motility disorders. The manometric Chicago classification diagnosis does not seem to predict the results. Prospective randomized trials are required to identify patients most likely to benefit from

  14. Primary ciliary dyskinesia

    Directory of Open Access Journals (Sweden)

    Plavec Goran

    2004-01-01

    Full Text Available In patients with chronic respiratory diseases that last since the early childhood, primary ciliary dyskinesia (PCD needs to be considered. Four patients reviewed in this paper were with typical disease history and clinical picture, as well as clear ciliary axonema damage. Complete examination was performed in all the patients, including bronchoscopy with bronchography, and the examination of the biopsy samples of respiratory airways’ mucous membrane, obtained by transmission electron microscope (TEM. In two of the patients spermatozoa were also examined by TEM. Large anatomic deffects of airways were found in all the patients, but pulmonary function was normal (except in one case, representing one of PCD’s significant characteristics. First two cases fulfilled the criteria for Kartagener’s syndrome, which was initially sufficient for the diagnosis of PCD.

  15. Computational modelling elucidates the mechanism of ciliary regulation in health and disease

    Directory of Open Access Journals (Sweden)

    Hundhausen Christian

    2011-09-01

    Full Text Available Abstract Background Ciliary dysfunction leads to a number of human pathologies, including primary ciliary dyskinesia, nephronophthisis, situs inversus pathology or infertility. The mechanism of cilia beating regulation is complex and despite extensive experimental characterization remains poorly understood. We develop a detailed systems model for calcium, membrane potential and cyclic nucleotide-dependent ciliary motility regulation. Results The model describes the intimate relationship between calcium and potassium ionic concentrations inside and outside of cilia with membrane voltage and, for the first time, describes a novel type of ciliary excitability which plays the major role in ciliary movement regulation. Our model describes a mechanism that allows ciliary excitation to be robust over a wide physiological range of extracellular ionic concentrations. The model predicts the existence of several dynamic modes of ciliary regulation, such as the generation of intraciliary Ca2+ spike with amplitude proportional to the degree of membrane depolarization, the ability to maintain stable oscillations, monostable multivibrator regimes, all of which are initiated by variability in ionic concentrations that translate into altered membrane voltage. Conclusions Computational investigation of the model offers several new insights into the underlying molecular mechanisms of ciliary pathologies. According to our analysis, the reported dynamic regulatory modes can be a physiological reaction to alterations in the extracellular environment. However, modification of the dynamic modes, as a result of genetic mutations or environmental conditions, can cause a life threatening pathology.

  16. Diagnosis by ultrastructural study of primary ciliary dyskinesia

    Directory of Open Access Journals (Sweden)

    Melgarejo-Moreno P

    2015-01-01

    Full Text Available Introduction and objective: Primary ciliary dyskinesia (PCD, also known as ciliary immotility (SIC syndrome is an inherited disorder that includes a group of diseases in which respiratory cilia are immobile, ciliary movement is dyskinetic and ineffective or no cilia . The aim of this study is to determine the ciliary ultrastructure in patients with suspected DCP. Method: In 8 patients with suspected DCP nasal mucosa biopsy is performed with endoscopy at the inferior turbinate in the middle third by the ENT service under local anesthesia. Results: Of the 8 cases studied in 2 cases no ciliary ultrastructural level defects were found. In two cases with abnormal ciliary ultrastructure is present Kartagener syndrome. In a case no cilia were observed in the nasal mucosa. Discussion: The DCP and SIC are synonymous terms from clinical and pathogenetic view: immobility and dyskinesia lead to an absence of mucociliary transport, stasis of respiratory secretions with their consequences: chronic infections of lower respiratory tract and from birth . The most common ultrastructural defect is the total or partial absence of dynein. Conclusions: The ultrastructural study allows the diagnosis of PCD because genetic diagnosis is complicated and therefore get an early diagnosis of this condition which serves to improve the morbidity and mortality of these patients.

  17. A Supranuclear Disorder of Ocular Motility as a Rare Initial Presentation of Motor Neurone Disease.

    Science.gov (United States)

    Yu-Wai-Man, C; Petheram, K; Davidson, A W; Williams, T; Griffiths, P G

    2011-01-01

    A case is described of motor neurone disease presenting with an ocular motor disorder characterised by saccadic intrusions, impaired horizontal and vertical saccades, and apraxia of eyelid opening. The occurrence of eye movement abnormalities in motor neurone disease is discussed.

  18. The Progress in Clinical and Basic Research of the Effect ofAcupuncture in Treating Disorders of Gastrointestinal Motility

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Though the function of “spleen” in TCM refers to a lot of systems, it is mainly related to digestive system, reflecting changes of physiology and pathology of gastrointestinal tract. The deficiency of Spleen Qi is correlated to the disorders of gastrointestinal motility.(19) In recent years the research has been developed in adjustment of Spleen and Stomach function and the improvement of gastrointestinal motility by acupuncturing mainly Zusanli, which formed a theoretic base for acupuncture therapy of disorders of gastrointestinal motility.Effect of Acupuncture on Gastric Peristalsis  Observation by gastroendoscopy and B-ultrasonography showed that, acupuncture at Zusanli could decrease gastric tension and resolve spasm of cardia, gastric body and pylorus, and improve delayed opening of pylorus, so as to make gastric hyperperistalsis tend to go placid and normalize retarding. It is demonstrated that acupuncture at Zusanli could adjust the function of gastric peristalsis bi-directionally.(20,21) In healthy volunteers after acupuncture at Zusanli the frequency and the amplititude of gastric peristalsis both increased. In patients whose pylorus ring could not open during the operation of gastroscopy, acupuncture at Zusanli could relax and open it. Acupuncture at Neiguan could produce either opening or closing the bi-directional effect of pylorus.(22) In patients with disorders of gastrointestinal motility it was observed that the amplititude and frequency of constriction of sphincter pylori increased and the strength and frequency of stomach improved after acupuncture at Zusanli according to the measurement of gastroscopic manometry.(23) Acupuncture may accelerate or reduce the speed of gastric evacuation.(24,25) In addition, acupuncture can increase the volume of gastric antrum. Observed by B-ultrasonography, acupuncture Zusanli, Shangjuxu (ST37), Chongyang (ST42) and Neiting (ST44) in the lower extremity section of the Yangming meridian of the foot could

  19. Recent advances in primary ciliary dyskinesia.

    Science.gov (United States)

    Takeuchi, Kazuhiko; Kitano, Masako; Ishinaga, Hajime; Kobayashi, Masayoshi; Ogawa, Satoru; Nakatani, Kaname; Masuda, Sawako; Nagao, Mizuho; Fujisawa, Takao

    2016-06-01

    Primary ciliary dyskinesia (PCD) is a genetic disease inherited in an autosomal recessive manner. The prevalence of PCD is estimated to be 1 in 20,000 live births. Congenital abnormality of the primary cilia results in situs inversus in 50% of patients. Decreased function of motile cilia causes chronic rhinosinusitis, otitis media with effusion, bronchiectasis and infertility. Cases with situs inversus are considered to show "Kartagener's syndrome", and diagnosis is not difficult. However, in cases without situs inversus, the diagnosis is much more troublesome. PCD without situs inversus is thus probably underdiagnosed. Prolonged chronic cough represents an important symptom that is seen in most patients. The diagnosis of PCD requires the presence of the characteristic clinical phenotypes and either: (1) specific ciliary ultrastructural defects identified by transmission electron microscopy in biopsy samples of respiratory epithelium; or (2) identification of mutation in one of the genes known to be associated with PCD. Nasal nitric oxide concentration is extremely low in PCD, and this could be useful for screening of the disease. At present, no fundamental therapies are available for PCD. Diagnosis in the early stages is important to prevent progression of bronchiectasis and deterioration of lung function by guidance for daily life, immunization, cessation of smoking and prompt therapy at the time of respiratory tract infection. Since PCD is inherited in an autosomal-recessive manner, genetic counseling is necessary after definite diagnosis.

  20. Fungal Aflatoxins Reduce Respiratory Mucosal Ciliary Function

    Science.gov (United States)

    Lee, Robert J.; Workman, Alan D.; Carey, Ryan M.; Chen, Bei; Rosen, Phillip L.; Doghramji, Laurel; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Cohen, Noam A.

    2016-01-01

    Aflatoxins are mycotoxins secreted by Aspergillus flavus, which can colonize the respiratory tract and cause fungal rhinosinusitis or bronchopulmonary aspergillosis. A. flavus is the second leading cause of invasive aspergillosis worldwide. Because many respiratory pathogens secrete toxins to impair mucociliary immunity, we examined the effects of acute exposure to aflatoxins on airway cell physiology. Using air-liquid interface cultures of primary human sinonasal and bronchial cells, we imaged ciliary beat frequency (CBF), intracellular calcium, and nitric oxide (NO). Exposure to aflatoxins (0.1 to 10 μM; 5 to 10 minutes) reduced baseline (~6–12%) and agonist-stimulated CBF. Conditioned media (CM) from A. fumigatus, A. niger, and A. flavus cultures also reduced CBF by ~10% after 60 min exposure, but effects were blocked by an anti-aflatoxin antibody only with A. flavus CM. CBF reduction required protein kinase C but was not associated with changes in calcium or NO. However, AFB2 reduced NO production by ~50% during stimulation of the ciliary-localized T2R38 receptor. Using a fluorescent reporter construct expressed in A549 cells, we directly observed activation of PKC activity by AFB2. Aflatoxins secreted by respiratory A. flavus may impair motile and chemosensory functions of airway cilia, contributing to pathogenesis of fungal airway diseases. PMID:27623953

  1. Conservation of ciliary proteins in plants with no cilia

    Directory of Open Access Journals (Sweden)

    Hodges Matthew E

    2011-12-01

    Full Text Available Abstract Background Eukaryotic cilia are complex, highly conserved microtubule-based organelles with a broad phylogenetic distribution. Cilia were present in the last eukaryotic common ancestor and many proteins involved in cilia function have been conserved through eukaryotic diversification. However, cilia have also been lost multiple times in different lineages, with at least two losses occurring within the land plants. Whereas all non-seed plants produce cilia for motility of male gametes, some gymnosperms and all angiosperms lack cilia. During these evolutionary losses, proteins with ancestral ciliary functions may be lost or co-opted into different functions. Results Here we identify a core set of proteins with an inferred ciliary function that are conserved in ciliated eukaryotic species. We interrogate this genomic dataset to identify proteins with a predicted ancestral ciliary role that have been maintained in non-ciliated land plants. In support of our prediction, we demonstrate that several of these proteins have a flagellar localisation in protozoan trypanosomes. The phylogenetic distribution of these genes within the land plants indicates evolutionary scenarios of either sub- or neo-functionalisation and expression data analysis shows that these genes are highly expressed in Arabidopsis thaliana pollen cells. Conclusions A large number of proteins possess a phylogenetic ciliary profile indicative of ciliary function. Remarkably, many genes with an ancestral ciliary role are maintained in non-ciliated land plants. These proteins have been co-opted to perform novel functions, most likely before the loss of cilia, some of which appear related to the formation of the male gametes.

  2. Cellular Mechanisms of Ciliary Length Control

    Directory of Open Access Journals (Sweden)

    Jacob Keeling

    2016-01-01

    Full Text Available Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.

  3. Intestinal motility disorder induced by free radicals: a new model mimicking oxidative stress in gut.

    Science.gov (United States)

    Peluso, Ilaria; Campolongo, Patrizia; Valeri, Pacifico; Romanelli, Luca; Palmery, Maura

    2002-12-01

    Literature data suggest that the inflamed intestine may be subjected to a considerable oxidative stress. Therefore, the aim of the present study was to simulate the oxidative stress in the gastrointestinal tract and to explore its effect on intestinal motility. This was attained by treating isolated segments from the rabbit jejunum and from the guinea pig ileum with 2,2'-Azobis (2-amidinopropane) dihydrochloride (ABAP), which generates peroxyl radicals by thermal decomposition. Treatment of intestinal segments with ABAP reduced the muscarinic cholinergic response to acetylcholine in both preparations and induced a dose-dependent inhibition of the spontaneous contractions in the jejunum, also in the presence of tetrodotoxin. ABAP was found to inhibit the contractile response induced by BaCl(2) in guinea pig ileum preparations. This effect was not dose-dependent and it was reversed by Bay-K 8644, which activates voltage operated L-type calcium channels. The rapid and reversible effects of ABAP suggest that it might directly affect L-type calcium channels before lipoperoxidation induction. In conclusion, the results of the present study show that ABAP could be a useful tool to simulate early contractility dysfunctions mediated by oxidative stress.

  4. Primary ciliary dyskinesia diagnosed by electron microscopy in one case of Kartagener syndrome.

    Science.gov (United States)

    Rugină, Aniela Luminiţa; Dimitriu, Alexandru Grigore; Nistor, Nicolai; Mihăilă, Doina

    2014-01-01

    Primary ciliary dyskinesia (PCD) is associated with abnormalities in the structure of a function of motile cilia, causing impairment of muco-ciliary clearence, with bacterial overinfection of the upper and lower respiratory tract (chronic oto-sino-pulmonary disease), heterotaxia (situs abnormalities), with/without congenital heart disease, abnormal sperm motility with male infertility, higher frequency of ectopic pregnancy and female subfertility. The presence of recurrent respiratory tract infections in the pediatric age requires differentiation between primary immunodeficiency, diseases with abnormal mucus (e.g., cystic fibrosis) and abnormal ciliary diseases. This case was hospitalized for recurrent respiratory tract infections and total situs inversus at the age of five years, which has enabled the diagnosis of Kartagener syndrome. The PCD confirmation was performed by electron microscopy examination of nasal mucosa cells through which were confirmed dynein arms abnormalities. The diagnosis and early treatment of childhood PCD allows a positive development and a good prognosis, thus improving the quality of life.

  5. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6

    DEFF Research Database (Denmark)

    Zariwala, Maimoona A; Gee, Heon Yung; Kurkowiak, Małgorzata

    2013-01-01

    Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the ...

  6. Is there a role for dynamic swallowing MRI in the assessment of gastroesophageal reflux disease and oesophageal motility disorders?

    Energy Technology Data Exchange (ETDEWEB)

    Kulinna-Cosentini, Christiane; Koelblinger, C.; Ba-Ssalamah, A.; Weber, M.; Kleinhansl, P. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Schima, W. [Abteilung fuer Radiologie und bildgebende Diagnostik, KH Goettlicher Heiland, Vienna (Austria); Lenglinger, J.; Riegler, M.; Cosentini, E.P. [Medical University of Vienna, Department of Surgery, Vienna (Austria); Bischof, G. [Hospital St. Josef, Department of Surgery, Vienna (Austria)

    2012-02-15

    To evaluate the diagnostic value of dynamic MRI swallowing in patients with symptoms of Gastroesophageal Reflux Disease (GERD). Thirty-seven patients (17 m/20f) with typical signs of GERD underwent MR swallowing in the supine position at 1.5 T with a phased-array body coil. Using dynamic, gradient echo sequences (B-FFE) in the coronal, sagittal and axial planes, the bolus passages of buttermilk spiked with gadolinium chelate were tracked. MRI, pH-metry and manometry were performed within 31 days and results were compared. MRI results were concordant with pH-metry in 82% (23/28) of patients diagnosed with abnormal oesophageal acid exposure by pH-metry. Five patients demonstrated typical symptoms of GERD and had positive findings with pH monitoring, but false negative results with MRI. In four of six patients (67%), there was a correct diagnosis of oesophageal motility disorder, according to manometric criteria, on dynamic MRI. The overall accuracy of MRI diagnoses was 79% (27/34). A statistically significant difference was found between the size of hiatal hernia, grade of reflux in MRI, and abnormal acid exposure on pH-monitoring. MR fluoroscopy may be a promising radiation-free tool in assessing the functionality and morphology of the GE junction. (orig.)

  7. [Early complications of pneumatic dilatation in the treatment of primary motility disorders of the esophagus].

    Science.gov (United States)

    Sala, T; Ponce, J; Pertejo, V; Linares, M; Garrigues, V; Berenguer, J

    1990-04-01

    We analyze the incidence and evolution of the early complications of 96 consecutive patients with primary esophagus motor disorders, treated with pneumatic dilatation under endoscopic control (1.4 sessions per patient). In 4 (0.042/patient, 0.029/dilatation) patients the esophagus was perforated; the diagnosis was made in the first 24 hours; pneumomediastinum was a constant finding in the radiological exploration. In three cases the complication was suspected because of the apparition of sustained thoracic pain after the dilatation maneuver and in one case the presentation symptom was bleeding of cardial mucosa, larger than usual, at the end of the dilatation. The four patients evolved favorably with conservative treatment (avoidance of oral food intake, gastroesophageal aspiration, antibiotic therapy and parenteral nutrition).

  8. Ciliary genes are down-regulated in bronchial tissue of primary ciliary dyskinesia patients.

    Directory of Open Access Journals (Sweden)

    Maciej Geremek

    Full Text Available Primary ciliary dyskinesia (PCD is a rare, genetically heterogeneous disease characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis and male infertility. The pulmonary phenotype in PCD is caused by the impaired motility of cilia in the respiratory epithelium, due to ultrastructural defects of these organelles. We hypothesized that defects of multi-protein ciliary complexes should be reflected by gene expression changes in the respiratory epithelium. We have previously found that large group of genes functionally related to cilia share highly correlated expression pattern in PCD bronchial tissue. Here we performed an explorative analysis of differential gene expression in the bronchial tissue from six PCD patients and nine non-PCD controls, using Illumina HumanRef-12 Whole Genome BeadChips. We observed 1323 genes with at least 2-fold difference in the mean expression level between the two groups (t-test p-value <0.05. Annotation analysis showed that the genes down-regulated in PCD biopsies (602 were significantly enriched for terms related to cilia, whereas the up-regulated genes (721 were significantly enriched for terms related to cell cycle and mitosis. We assembled a list of human genes predicted to encode ciliary proteins, components of outer dynein arms, inner dynein arms, radial spokes, and intraflagellar transport proteins. A significant down-regulation of the expression of genes from all the four groups was observed in PCD, compared to non-PCD biopsies. Our data suggest that a coordinated down-regulation of the ciliome genes plays an important role in the molecular pathomechanism of PCD.

  9. [Primary ciliary dyskinesia, immotile cilia syndrome, and Kartagener syndrome: diagnostic criteria].

    Science.gov (United States)

    Dombi, V H; Walt, H

    1996-03-16

    Primary ciliary dyskinesia is the generic term for a heterogeneous group of inherited diseases in which ciliary ultrastructure is defective and as a consequence ciliary motility is disturbed. An international consensus on the diagnostic criteria has not yet been reached. This paper reviews some recent findings which are useful in the diagnosis of the disease and attempts to establish the best diagnostic criteria. The marker symptoms are chronic bronchitis, otitis, and sinusitis since childhood. Additionally, one or more of the following criteria must be present: Kartagener syndrome, a dextrocardia situation, markedly reduced frequency in ciliary motility, or an essential ultrastructure deviation in more than 20% of the square cuts (e.g. reduced number of dynein arms). Biopsy of the ciliated mucosa is usually required for the above criteria and is studied by vital microscopy and transmission electron microscopy. Primary and secondary ciliary dyskinesia can be distinguished by these methods and the rare case of PCD without ultrastructure deficiency ruled out. In special cases a cell culture is recommended for the diagnosis. Practical aspects of the sampling methods and diagnostic pitfalls are reviewed.

  10. Electrical Signaling in Motile and Primary Cilia

    OpenAIRE

    Steven J Kleene; Van Houten, Judith L.

    2014-01-01

    Cilia are highly conserved for their structure and also for their sensory functions. They serve as antennae for extracellular information. Whether the cilia are motile or not, they respond to environmental mechanical and chemical stimuli and signal to the cell body. The information from extracellular stimuli is commonly converted to electrical signals through the repertoire of ion-conducting channels in the ciliary membrane resulting in changes in concentrations of ions, esp...

  11. Axoneme Structure from Motile Cilia.

    Science.gov (United States)

    Ishikawa, Takashi

    2017-01-03

    The axoneme is the main extracellular part of cilia and flagella in eukaryotes. It consists of a microtubule cytoskeleton, which normally comprises nine doublets. In motile cilia, dynein ATPase motor proteins generate sliding motions between adjacent microtubules, which are integrated into a well-orchestrated beating or rotational motion. In primary cilia, there are a number of sensory proteins functioning on membranes surrounding the axoneme. In both cases, as the study of proteomics has elucidated, hundreds of proteins exist in this compartmentalized biomolecular system. In this article, we review the recent progress of structural studies of the axoneme and its components using electron microscopy and X-ray crystallography, mainly focusing on motile cilia. Structural biology presents snapshots (but not live imaging) of dynamic structural change and gives insights into the force generation mechanism of dynein, ciliary bending mechanism, ciliogenesis, and evolution of the axoneme.

  12. Genetics Home Reference: primary ciliary dyskinesia

    Science.gov (United States)

    ... inversus totalis, they are often said to have Kartagener syndrome. Approximately 12 percent of people with primary ... Registry: Ciliary dyskinesia, primary, 17 Genetic Testing Registry: Kartagener syndrome Genetic Testing Registry: Primary ciliary dyskinesia Other ...

  13. Primary ciliary dyskinesia: a report from ATS 2001, May 18–23, San Francisco

    OpenAIRE

    Noone Peadar G

    2001-01-01

    Abstract Primary ciliary dyskinesia (PCD) is a genetic disorder of abnormal ciliary structure and function that leads to defective mucociliary clearance, resulting in oto-sino-pulmonary disease, and infertility. The disease is currently under intense investigation by a number of research groups worldwide. At the recent American Thoracic Society meeting in San Francisco in May 2001, two sessions focused on PCD; a symposium session on May 21 with several featured expert speakers was followed by...

  14. Flagellar Motility of Trypanosoma cruzi Epimastigotes

    Directory of Open Access Journals (Sweden)

    G. Ballesteros-Rodea

    2012-01-01

    Full Text Available The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.

  15. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  16. Active transport and diffusion barriers restrict Joubert Syndrome-associated ARL13B/ARL-13 to an Inv-like ciliary membrane subdomain.

    Directory of Open Access Journals (Sweden)

    Sebiha Cevik

    Full Text Available Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. Cilia are comprised of distinct structural and functional subregions including the basal body, transition zone (TZ and inversin (Inv compartments, and defects in this organelle are associated with an expanding spectrum of inherited disorders including Bardet-Biedl syndrome (BBS, Meckel-Gruber Syndrome (MKS, Joubert Syndrome (JS and Nephronophthisis (NPHP. Despite major advances in understanding ciliary trafficking pathways such as intraflagellar transport (IFT, how proteins are transported to subciliary membranes remains poorly understood. Using Caenorhabditis elegans and mammalian cells, we investigated the transport mechanisms underlying compartmentalization of JS-associated ARL13B/ARL-13, which we previously found is restricted at proximal ciliary membranes. We now show evolutionary conservation of ARL13B/ARL-13 localisation to an Inv-like subciliary membrane compartment, excluding the TZ, in many C. elegans ciliated neurons and in a subset of mammalian ciliary subtypes. Compartmentalisation of C. elegans ARL-13 requires a C-terminal RVVP motif and membrane anchoring to prevent distal cilium and nuclear targeting, respectively. Quantitative imaging in more than 20 mutants revealed differential contributions for IFT and ciliopathy modules in defining the ARL-13 compartment; IFT-A/B, IFT-dynein and BBS genes prevent ARL-13 accumulation at periciliary membranes, whereas MKS/NPHP modules additionally inhibit ARL-13 association with TZ membranes. Furthermore, in vivo FRAP analyses revealed distinct roles for IFT and MKS/NPHP genes in regulating a TZ barrier to ARL-13 diffusion, and intraciliary ARL-13 diffusion. Finally, C. elegans ARL-13 undergoes IFT-like motility and quantitative protein complex analysis of human ARL13B identified functional associations with IFT-B complexes, mapped to IFT46 and IFT74

  17. 糖尿病胃动力障碍的症状流行病学调查分析%Epidemiological Survey of Gastric Motility Disorder of Diabetes

    Institute of Scientific and Technical Information of China (English)

    张万方; 黄伟文; 熊玉冰

    2009-01-01

    目的 通过调查分析糖尿病胃动力障碍症状流行病学调查中的诸因素与胃动力障碍发生的关系.方法 2003年3月至2004年1月从广州医学院附属第二医院糖尿病中心2万名门诊病人中随机选取符合入选条件的2 36)1名糖尿病患者作为调查对象.采用统一的流行病学调查表对患者进行问卷调查.根据调查结果将患者分为试验组与对照组.对糖尿病胃动力障碍的患病率及年龄、病史、消化道症状等与糖尿病胃动力障碍发生的关系进行分析.结果 (1)糖尿病胃动力障碍的患病率为53.65%;(2)试验组与对照组在胃纳不佳、早饱、嗳气、上腹痛、恶心、呕吐、餐后腹胀、便秘等症状方面均有显著性差异(P<0.01);(3)餐后腹胀这一因素对胃动力障碍发生的影响最大,其次为便秘、嗳气、胃纳不佳、旱饱、上腹痛,影响最小的是呕吐.结论 胃纳不佳、早饱、餐后腹胀、嗳气、上腹痛、恶心、呕吐、便秘这些症状与糖尿病胃动力障碍的发生密切相关,在排除消化道病史及酮症酸中毒的情况下,应考虑并重视胃动力障碍这一并发症.%Objective To study the relationship between gastric motility disorder and various factors through the epidemiological survey of diabetes with gastric motility disorder.Methods 236 diabetics consistent with the condition are selected randomly from 20 thousand outpatients in Diabetes center of Second hospital affiliated Guangzhou Medical College from March,2003 to January,2OO4.Adopting unified epidemiological questionnaire to survey the diabetics who are divided into test group and control group according to research outcome.Analysing the relationship between gastric motility disorder and various factors,such as incidence of the disease,age,history and gastrointestinal symptoms through the epidemiological study of gastric motility disorder of diabetes.Results (1)The incidence of gastric motility disorder of

  18. Beyond the mucus escalator: Complex ciliary hydrodynamics in disease and function

    Science.gov (United States)

    Nawroth, Janna; Guo, Hanliang; John, Dabiri; Kanso, Eva; McFall-Ngai, Margaret

    2015-11-01

    Cilia are microscopic, hair-like structures lining external and internal body surfaces where they interact with fluids. The main function of motile cilia is often described as that of a ``mucus escalator'', i.e., a homogeneous ciliary carpet moving along layer of mucus along the surface to transport food, germ cells, debris, or pathogens. Accordingly, the performance of ciliary systems is usually measured in terms of a single metric, transport velocity, or its presumed proxy, ciliary beat frequency. We challenge this simple view through the observation that both healthy and diseased biological systems exhibit a variety of cilia morphologies, beat patterns, and arrangements, resulting in complex flow patterns and transport phenomena that cannot be reduced to a single parameter. Here we present two case studies. In one system, the ciliated surface creates two distinct flow regimes for first trapping and then sheltering potential symbiont bacteria for further biochemical screening. In the other system, chronic disease induces a misalignment of ciliary beat, leading to a pathological transition from uniform mucus transport to a pattern of stagnation and circulation. These studies suggest that (a), we need to develop a wider range of metrics for describing ciliary transport in biological and clinical contexts, and (b), engineered ciliated systems exploiting a variety of design parameters could provide novel ways of manipulating fluids at the microscale.

  19. Primary ciliary dyskinesia: Kartagener syndrome in a family with a novel DNAH5 gene mutation and variable phenotypes

    OpenAIRE

    2015-01-01

    Background: Primary ciliary dyskinesia is a genetically heterogeneous autosomal recessive disorder with variable clinical manifestations, including chronic rhinosinusitis, otitis media, bronchitis, pneumonia, bronchiectasis, situs inversus totalis, reduced fertility in female patients and male infertility. The condition occurs as a result of abnormal ciliary structure and function. It is presented in early life with an estimated incidence of approximately 1/16,000–20,000. About 50% of the aff...

  20. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise;

    2015-01-01

    Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about...

  1. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    Science.gov (United States)

    Olcese, Chiara; Patel, Mitali P.; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J.; Vaughan, Cara K.; Hayward, Jane; Goldenberg, Alice; Emes, Richard D.; Munye, Mustafa M.; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean- François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R.; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M. K.; Antonarakis, Stylianos E.; Loebinger, Michael R.; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Beales, Philip L.; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Allan, Daly; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; McCarthy, Shane; Muddyman, Dawn; Muntoni, Francesco; Parker, Victoria; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter J.; Schmidts, Miriam; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M.

    2017-01-01

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins. PMID:28176794

  2. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects.

    Directory of Open Access Journals (Sweden)

    Amjad Horani

    Full Text Available Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6 that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His. LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects.

  3. Clinical spectrum of primary ciliary dyskinesia in childhood

    Science.gov (United States)

    Fretzayas, Andrew; Moustaki, Maria

    2016-01-01

    Although the triad of bronchiectasis, sinusitis and situs inversus was first described by Kartagener in 1933, the clinical spectrum of primary ciliary dyskinesia is still under investigation. Heterotaxy defects as well as upper and lower respiratory tract symptoms are the main manifestations in childhood. It is now recognized that situs inversus is encountered in only half of patients. The first lower respiratory symptoms may be present from infancy as neonatal respiratory distress. The most common lower airway manifestations are chronic wet cough, recurrent pneumonia and therapy resistant wheezing. Patients are at risk of developing bronchiectasis which may even be the presenting finding due to delayed diagnosis. Upper respiratory tract infections such as nasal congestion, nasal drainage and recurrent sinusitis as well as otologic manifestations such as otitis media or otorrhea with conductive hearing loss are also often encountered. It seems that the type of ciliary ultrastructure defects and the involved mutated genes are associated to some extent to the clinical profile. The disease, even in nowadays, is not recognized at an early age and the primary care clinician should have knowledge of its clinical spectrum in order to select appropriately the children who need further investigation for the diagnosis of this disorder. PMID:26862502

  4. Motility Evaluation in the Patient with Inflammatory Bowel Disease.

    Science.gov (United States)

    Abdalla, Sherine M; Kalra, Gorav; Moshiree, Baha

    2016-10-01

    Patients with inflammatory bowel disease (IBD) suffer frequently from functional bowel diseases (FBD) and motility disorders. Management of FBD and motility disorders in IBD combined with continued treatment of a patient's IBD symptoms will likely lead to better clinical outcomes and improve the patient's quality of life. The goals of this review were to summarize the most recent literature on motility disturbances in patients with IBD and to give a brief overview of the ranges of motility disturbances, from reflux disease to anorectal disorders, and discuss their diagnosis and specific management.

  5. The intraflagellar transport machinery in ciliary signaling

    DEFF Research Database (Denmark)

    Mourão, André; Christensen, Søren Tvorup; Lorentzen, Esben

    2016-01-01

    environmental cues necessary for organ development and maintenance of human health. Pathways reported to rely on the cilium organelle include Hedgehog, TGF-β, Wnt, PDGFRα, integrin and DNA damage repair signaling. An emerging theme in ciliary signaling is the requirement for active transport of signaling...

  6. A safe method of ciliary sulcus fixation of foldable intraocular lens using a ciliary sulcus guide.

    Science.gov (United States)

    Can, Ertuğrul; Gül, Adem; Birinci, Hakkı

    2016-08-01

    To describe a novel technique for implantation of intraocular lens in the absence of capsular support using a ciliary sulcus guide. Based on the anatomic knowledge of the ciliary sulcus and the sclera, a new instrument was developed to pierce the needle safely through the ciliary sulcus and sclera. While the foldable lens is stored inside the cartridge, the leading haptic is sutured with a cow-hitch knot. The needle is then inserted into the ciliary sulcus guide. The tip of the guide is inserted from the corneal incision and proceeded under the iris to touch and fit the ciliary sulcus. The needle is pushed from back side. The needle comes out at precise point at the sclera. Implantation of the lens was performed through a 2.8 mm clear cornea incision using the injector. The trailing haptic is tied after implantation, and then the same procedure is performed at the opposite side. We performed this technique to 15 aphakic eyes without sufficient capsular support. There was no bleeding or other intraoperative complication. All the points coming out the sclera were between 2 and 2.5 mm from the limbus. The ab interno technique for scleral fixation of IOL is quicker, easier and less traumatic then ab externo techniques. A new ciliary sulcus guide which is usable with both straight and curved needles eliminates the blind maneuvers of ab interno technique and makes this technique more safe and precise.

  7. Heteromerization of ciliary G protein-coupled receptors in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Jill A Green

    Full Text Available Nearly every cell type in the mammalian body projects from its cell surface a primary cilium that provides important sensory and signaling functions. Defects in the formation or function of primary cilia have been implicated in the pathogenesis of many human developmental disorders and diseases, collectively termed ciliopathies. Most neurons in the brain possess cilia that are enriched for signaling proteins such as G protein-coupled receptors and adenylyl cyclase type 3, suggesting neuronal cilia sense neuromodulators in the brain and contribute to non-synaptic signaling. Indeed, disruption of neuronal cilia or loss of neuronal ciliary signaling proteins is associated with obesity and learning and memory deficits. As the functions of primary cilia are defined by the signaling proteins that localize to the ciliary compartment, identifying the complement of signaling proteins in cilia can provide important insights into their physiological roles. Here we report for the first time that different GPCRs can colocalize within the same cilium. Specifically, we found the ciliary GPCRs, melanin-concentrating hormone receptor 1 (Mchr1 and somatostatin receptor 3 (Sstr3 colocalizing within cilia in multiple mouse brain regions. In addition, we have evidence suggesting Mchr1 and Sstr3 form heteromers. As GPCR heteromerization can affect ligand binding properties as well as downstream signaling, our findings add an additional layer of complexity to neuronal ciliary signaling.

  8. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome

    OpenAIRE

    Kayserili Karabey, Hülya; Oud, M.M.; Bonnard, C.; Mans, D.A.; Altunoğlu, U.; Tohari, S.; Ng, A.Y.J.; Eskin, A.; Lee, H.; Rupar, C.A.; Wagenaar, N.P.; Wu, K.M.; Lahiry, P.; Pazour, G.J.; Nelson, S.F.; Hegele, R.A.; Roepman, R; Venkatesh, B.; Siu, V.M.; Reversade, B.; Arts, H.H.

    2016-01-01

    Background: Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mu...

  9. Cytoskeleton and Cell Motility

    CERN Document Server

    Risler, Thomas

    2011-01-01

    The present article is an invited contribution to the Encyclopedia of Complexity and System Science, Robert A. Meyers Ed., Springer New York (2009). It is a review of the biophysical mechanisms that underly cell motility. It mainly focuses on the eukaryotic cytoskeleton and cell-motility mechanisms. Bacterial motility as well as the composition of the prokaryotic cytoskeleton is only briefly mentioned. The article is organized as follows. In Section III, I first present an overview of the diversity of cellular motility mechanisms, which might at first glance be categorized into two different types of behaviors, namely "swimming" and "crawling". Intracellular transport, mitosis - or cell division - as well as other extensions of cell motility that rely on the same essential machinery are briefly sketched. In Section IV, I introduce the molecular machinery that underlies cell motility - the cytoskeleton - as well as its interactions with the external environment of the cell and its main regulatory pathways. Sec...

  10. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia.

    Directory of Open Access Journals (Sweden)

    Amjad Horani

    Full Text Available BACKGROUND: Primary ciliary dyskinesia (PCD is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating. METHODS: Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion. RESULTS: A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells. CONCLUSION: Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and

  11. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    Science.gov (United States)

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  12. A complex of BBS1 and NPHP7 is required for cilia motility in zebrafish.

    Directory of Open Access Journals (Sweden)

    Yun Hee Kim

    Full Text Available Bardet-Biedl syndrome (BBS and nephronophthisis (NPH are hereditary autosomal recessive disorders, encoded by two families of diverse genes. BBS and NPH display several overlapping phenotypes including cystic kidney disease, retinitis pigmentosa, liver fibrosis, situs inversus and cerebellar defects. Since most of the BBS and NPH proteins localize to cilia and/or their appendages, BBS and NPH are considered ciliopathies. In this study, we characterized the function of the transcription factor Nphp7 in zebrafish, and addressed the molecular connection between BBS and NPH. The knockdown of zebrafish bbs1 and nphp7.2 caused similar phenotypic changes including convergent extension defects, curvature of the body axis, hydrocephalus, abnormal heart looping and cystic pronephros, all consistent with an altered ciliary function. Immunoprecipitation assays revealed a physical interaction between BBS1 and NPHP7, and the simultaneous knockdown of zbbs1 and znphp7.2 enhanced the cystic pronephros phenotype synergistically, suggesting a genetic interaction between zbbs1 and znphp7.2 in vivo. Deletion of zBbs1 or zNphp7.2 did not compromise cilia formation, but disrupted cilia motility. Although NPHP7 has been shown to act as transcriptional repressor, our studies suggest a crosstalk between BBS1 and NPHP7 in regulating normal function of the cilium.

  13. Genetic factors contributing to human primary ciliary dyskinesia and male infertility.

    Science.gov (United States)

    Ji, Zhi-Yong; Sha, Yan-Wei; Ding, Lu; Li, Ping

    2016-06-07

    Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from the loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. However, only 15 PCD-associated genes have been identified to cause male infertility to date. Owing to the genetic heterogeneity of PCD, comprehensive molecular genetic testing is not considered the standard of care. Here, we provide an update of the progress on the identification of genetic factors related to PCD associated with male infertility, summarizing the underlying molecular mechanisms, and discuss the clinical implications of these findings. Further research in this field will impact the diagnostic strategy for male infertility, enabling clinicians to provide patients with informed genetic counseling, and help to adopt the best course of treatment for developing directly targeted personalized medicine.

  14. Ghrelin family of peptides and gut motility.

    Science.gov (United States)

    Asakawa, Akihiro; Ataka, Koji; Fujino, Kazunori; Chen, Chih-Yen; Kato, Ikuo; Fujimiya, Mineko; Inui, Akio

    2011-04-01

    Acyl ghrelin, des-acyl ghrelin, and obestatin are three peptides isolated from the gastrointestinal tract and encoded by the same preproghrelin gene. Three ghrelin gene products participate in modulating appetite, adipogenesis, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. We have investigated the effects of ghrelin family of peptides on fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats by manometric method. Intracerebroventricular (ICV) and intravenous (IV) administration of acyl ghrelin induced fasted motor activity in the duodenum in fed rats. ICV and IV administration of des-acyl ghrelin disrupted fasted motor activity in the antrum. Changes in gastric motility induced by IV administration of des-acyl ghrelin were antagonized by ICV administration of a corticotropin-releasing factor (CRF) 2 receptor antagonist. IV administration of obestatin decreased the percentage motor index in the antrum and prolonged the time taken to return to fasted motility in the duodenum in fed rats. ICV administration of CRF 1 and 2 receptor antagonists prevented the effects of obestatin on gastroduodenal motility. Ghrelin gene products regulate feeding-associated gastroduodenal motility. Stomach may regulate various functions including gastrointestinal motility via acyl ghrelin, des-acyl ghrelin and obestatin as an endocrine organ. Increasing knowledge of the effects of ghrelin family of peptides on gastrointestinal motility could lead to innovative new therapies for functional gastrointestinal disorders.

  15. Artificial ciliary bundles with nano fiber tip links

    CERN Document Server

    Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2015-01-01

    Mechanosensory ciliary bundles in fishes are the inspiration for carefully engineered artificial flow sensors. We report the development of a new class of ultrasensitive MEMS flow sensors that mimic the intricate morphology of the ciliary bundles, including the stereocilia, tip links, and the cupula, and thereby achieve threshold detection limits that match the biological example. An artificial ciliary bundle is achieved by fabricating closely-spaced arrays of polymer micro-pillars with gradiating heights. Tip links that form the fundamental sensing elements are realized through electrospinning aligned PVDF piezoelectric nano-fibers that link the distal tips of the polymer cilia. An optimized synthesis of hyaluronic acid-methacrylic anhydride hydrogel that results in properties close to the biological cupula, together with drop-casting method are used to form the artificial cupula that encapsulates the ciliary bundle. In testing, fluid drag force causes the ciliary bundle to slide, stretching the flexible nan...

  16. Diagnostic and Therapeutic Strategies of Gastric Motility Disorder in Different Stages of Diabetes%不同阶段糖尿病胃运动障碍诊治对策

    Institute of Scientific and Technical Information of China (English)

    蓝宇; 路国涛

    2012-01-01

    Gastric motility disorder is common in patients with diabetes. The cardinal symptoms include bloating, early satiety, epigastric discomfort, nausea, vomiting and delayed gastric emptying. Delayed gastric emptying affects pharmacokinetics of hypoglycemic agents, causes mismatch of peak postprandial blood glucose level and peak concentration of insulin and oral hypoglycemic agents, thereby affects glycemic control. There are different patterns of gastric motility disorder in different stages of diabetes. The most commonly used diagnostic method for gastric emptying is scintigraphic measurement. Treatment of gastric motility disorder in diabetes includes dietary modifications and prokinetic agents to ameliorate symptoms and improve glycemic control. Therapeutic approaches of gastroparesis include gastric electrical stimulation, endoscopic pyloric injection of botulinum toxin A, endoscopic placement of nasal-jejunum nutrient feeding tube and percutaneous endoscopic gastrostomy/jejunostomy and surgical therapy.%糖尿病患者常见胃运动障碍,表现为上腹胀、早饱、上腹不适、恶心、呕吐等症状以及胃排空延迟,胃排空延迟影响降血糖药的药代动力学,造成餐后血糖升高与降血糖药或胰岛素的血浓度高峰不匹配,进而影响血糖的控制与稳定.糖尿病不同阶段胃运动障碍表现形式不同.核素法是最常用的胃排空诊断方法.糖尿病胃运动障碍的处理包括饮食调节、促动力药以减轻症状、控制血糖,针对胃轻瘫的治疗包括胃电刺激、内镜下幽门注射肉毒杆菌毒素A、内镜下放置鼻胃空肠营养管或经皮内镜下胃(空肠)造瘘、外科手术等.

  17. Rer1p maintains ciliary length and signaling by regulating γ-secretase activity and Foxj1a levels.

    Science.gov (United States)

    Jurisch-Yaksi, Nathalie; Rose, Applonia J; Lu, Huiqi; Raemaekers, Tim; Munck, Sebastian; Baatsen, Pieter; Baert, Veerle; Vermeire, Wendy; Scales, Suzie J; Verleyen, Daphne; Vandepoel, Roel; Tylzanowski, Przemko; Yaksi, Emre; de Ravel, Thomy; Yost, H Joseph; Froyen, Guy; Arrington, Cammon B; Annaert, Wim

    2013-03-18

    Cilia project from the surface of most vertebrate cells and are important for several physiological and developmental processes. Ciliary defects are linked to a variety of human diseases, named ciliopathies, underscoring the importance of understanding signaling pathways involved in cilia formation and maintenance. In this paper, we identified Rer1p as the first endoplasmic reticulum/cis-Golgi-localized membrane protein involved in ciliogenesis. Rer1p, a protein quality control receptor, was highly expressed in zebrafish ciliated organs and regulated ciliary structure and function. Both in zebrafish and mammalian cells, loss of Rer1p resulted in the shortening of cilium and impairment of its motile or sensory function, which was reflected by hearing, vision, and left-right asymmetry defects as well as decreased Hedgehog signaling. We further demonstrate that Rer1p depletion reduced ciliary length and function by increasing γ-secretase complex assembly and activity and, consequently, enhancing Notch signaling as well as reducing Foxj1a expression.

  18. Primary ciliary dyskinesia: a report from ATS 2001, May 18–23, San Francisco

    Directory of Open Access Journals (Sweden)

    Noone Peadar G

    2001-06-01

    Full Text Available Abstract Primary ciliary dyskinesia (PCD is a genetic disorder of abnormal ciliary structure and function that leads to defective mucociliary clearance, resulting in oto-sino-pulmonary disease, and infertility. The disease is currently under intense investigation by a number of research groups worldwide. At the recent American Thoracic Society meeting in San Francisco in May 2001, two sessions focused on PCD; a symposium session on May 21 with several featured expert speakers was followed by a mini-symposium on Tuesday May 22, with one featured speaker and presentation of nine abstracts covering a range of research topics. Mattias Salathe (University of Miami, USA and Stephen Brody (Washington University, St Louis, USA chaired the symposium session. Presentations focused on the clinical spectrum of PCD, the genetics of PCD, a proteomics approach to detail the structure of cilia, the role of cilia in the embryology of situs laterality, and airway epithelial cell biology. The mini-symposium was chaired by Peadar Noone (University of North Carolina, USA and Malcolm King (University of Alberta, USA and included presentations on the use of PCD as a human disease model, accurate definition of the phenotype using clinical and cell biologic markers, and molecular studies. The latter reports ranged from isolation of a protein involved in ciliary structure and function to genetic studies using linkage analysis and the candidate gene approach. Clinicians and scientists alike displayed considerable interest at both sessions, and there were several lively question–answer sessions.

  19. Ciliary extracellular vesicles: Txt msg orgnlls

    Science.gov (United States)

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  20. Diagnosing primary ciliary dyskinesia: an international patient perspective

    Science.gov (United States)

    Dunn Galvin, Audrey; Rubbo, Bruna; Masefield, Sarah; Copeland, Fiona; Manion, Michele; Rindlisbacher, Bernhard; Redfern, Beatrice; Lucas, Jane S.

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterised by progressive sino-pulmonary disease, with symptoms starting soon after birth. A European Respiratory Society (ERS) Task Force aims to address disparities in diagnostics across Europe by providing evidence-based clinical practice guidelines. We aimed to identify challenges faced by patients when referred for PCD diagnostic testing. A patient survey was developed by patient representatives and healthcare specialists to capture experience. Online versions of the survey were translated into nine languages and completed in 25 countries. Of the respondents (n=365), 74% were PCD-positive, 5% PCD-negative and 21% PCD-uncertain/inconclusive. We then interviewed 20 parents/patients. Transcripts were analysed thematically. 35% of respondents visited their doctor more than 40 times with PCD-related symptoms prior to diagnostic referral. Furthermore, the most prominent theme among interviewees was a lack of PCD awareness among medical practitioners and failure to take past history into account, leading to delayed diagnosis. Patients also highlighted the need for improved reporting of results and a solution to the “inconclusive” diagnostic status. These findings will be used to advise the ERS Task Force guidelines for diagnosing PCD, and should help stakeholders responsible for improving existing services and expanding provision for diagnosis of this rare disease. PMID:27492837

  1. Competency based medical education in gastrointestinal motility.

    Science.gov (United States)

    Yadlapati, R; Keswani, R N; Pandolfino, J E

    2016-10-01

    Traditional apprenticeship-based medical education methods focusing on subjective evaluations and case-volume requirements do not reliably produce clinicians that provide high-quality care in unsupervised practice. Consequently, training approaches are shifting towards competency based medical education, which incorporates robust assessment methods and credible standards of physician proficiency. However, current gastroenterology and hepatology training in the US continues to utilize procedural volume and global impressions without standardized criteria as markers of competence. In particular, efforts to optimize competency based training in gastrointestinal (GI) motility are not underway, even though GI motility disorders account for nearly half of outpatient gastroenterology visits. These deficiencies compromise the quality of patient care. Thus, there is a great need and opportunity to shift our focus in GI motility training towards a competency based approach. First, we need to clarify the variable rates of learning for individual diagnostic tests. We must develop integrated systems that standardize training and monitor physician competency for GI motility diagnostics. Finally, as a profession and society, we must create certification processes to credential competent physicians. These advances are critical to optimizing the quality of GI motility diagnostics in practice.

  2. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment...... to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  3. Identified Circadian Rhythm Genes of Ciliary Epithelium with Differential Display

    Institute of Scientific and Technical Information of China (English)

    Yanxia Li; Dongcheng Lu; Jian Ge; Yanna Li; Yehong Zhuo; Sears ML

    2001-01-01

    Purpose:To identify differential genes expressed in the rabbit ciliary epithelium duringthe circadian cycle of aqueous flow.Methods: Total RNA from ciliary epithelium of rabbits at 8AM (light on 1 hour) and8PM(light off 1 hour) were compared by differential display reverse transcription-polymerase chain reaetion(DD RT-PCR), using 6 % denaturing polyacrylamide electro-phoresis, choose differential display bands, cut and reamplify with the same primer, cloneand sequence. Search the database of Genbank, prolong them with 5' RACE and 3'RACE technique then clone, sequence and search database of Genbank.Results: 93 Significant differences gene expression were detected between light on andlight off in the rabbit ciliary epithelium.Conclusion: Differential display is a powerful tool to screen differentially expressedgenes in circadian rhythm of ciliary epithelium.

  4. Does Hypothyroidism Affect Gastrointestinal Motility?

    Directory of Open Access Journals (Sweden)

    Olga Yaylali

    2009-01-01

    Full Text Available Background. Gastrointestinal motility and serum thyroid hormone levels are closely related. Our aim was to analyze whether there is a disorder in esophagogastric motor functions as a result of hypothyroidism. Materials and Methods. The study group included 30 females (mean age ± SE 45.17 ± 2.07 years with primary hypothyroidism and 10 healthy females (mean age ± SE 39.40 ± 3.95 years. All cases underwent esophagogastric endoscopy and scintigraphy. For esophageal scintigraphy, dynamic imaging of esophagus motility protocol, and for gastric emptying scintigraphy, anterior static gastric images were acquired. Results. The mean esophageal transit time (52.56 ± 4.07 sec for patients; 24.30 ± 5.88 sec for controls; P=.02 and gastric emptying time (49.06 ± 4.29 min for the hypothyroid group; 30.4 ± 4.74 min for the control group; P=.01 were markedly increased in cases of hypothyroidism. Conclusion. Hypothyroidism prominently reduces esophageal and gastric motor activity and can cause gastrointestinal dysfunction.

  5. Mechanotaxis and cell motility

    CERN Document Server

    Recho, Pierre; Truskinovsky, Lev

    2013-01-01

    We propose a mechanism of cell motility which is based on contraction and does not require protrusion. The contraction driven translocation of a cell is due to internal flow of the cytoskeleton generated by molecular motors. Each motor contributes to the stress field and simultaneously undergoes biased random motion in the direction of a higher value of this stress. In this way active cross-linkers use passive actin network as a medium through which they interact and self-organize. The model exhibits motility initiation pattern similar to the one observed in experiments on keratocytes.

  6. The nexin link and B-tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme.

    Science.gov (United States)

    Alford, Lea M; Stoddard, Daniel; Li, Jennifer H; Hunter, Emily L; Tritschler, Douglas; Bower, Raqual; Nicastro, Daniela; Porter, Mary E; Sale, Winfield S

    2016-06-01

    We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models. ATP-induced reactivation failed in a subset of drc cell models, despite forward motility in live drc cells. Dark-field light microscopic observations of drc cell models revealed various degrees of axonemal splaying. In contrast, >98% of axonemes from wild-type reactivated cell models remained intact. The sup-pf4 and drc3 mutants, unlike other drc mutants, retain most of the N-DRC linker that interconnects outer doublet microtubules. Reactivated sup-pf4 and drc3 cell models displayed nearly wild-type levels of forward motility. Thus, the N-DRC linker is required for axonemal integrity. We also examined reactivated motility and axoneme integrity in mutants defective in tubulin polyglutamylation. ATP-induced reactivation resulted in forward swimming of >75% of tpg cell models. Analysis of double mutants defective in tubulin polyglutamylation and different regions of the N-DRC indicate B-tubule polyglutamylation and the distal lobe of the linker region are both important for axonemal integrity and normal N-DRC function. © 2016 Wiley Periodicals, Inc.

  7. Sperm Motility in Flow

    Science.gov (United States)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  8. Tektin 3 is required for progressive sperm motility in mice

    Science.gov (United States)

    Roy, Angshumoy; Lin, Yi-Nan; Agno, Julio E.; DeMayo, Francesco J.; Matzuk, Martin M.

    2008-01-01

    Tektins are evolutionarily-conserved flagellar (and ciliary) filamentous proteins present in the axoneme and peri-axonemal structures in diverse metazoan species. We have previously shown that tektin 3 (TEKT3) and tektin 4 (TEKT4) are male germ cell-enriched proteins, and that TEKT4 is essential for coordinated and progressive sperm motility in mice. Here we report that male mice null for TEKT3 produce sperm with reduced motility (47.2% motility) and forward progression, and increased flagellar structural bending defects. Male TEKT3-null mice however maintain normal fertility in two different genetic backgrounds tested, in contrast to TEKT4-null mice. Furthermore, male mice null for both TEKT3 and TEKT4 show subfertility on a mixed B6;129 genetic background, significantly different from either single knockouts, suggesting partial non-redundant roles for these two proteins in sperm physiology. Our results suggest that tektins are potential candidate genes for non-syndromic asthenozoospermia in humans. PMID:18951373

  9. Ciliary and non-ciliary expression and function of PACRG during vertebrate development

    Directory of Open Access Journals (Sweden)

    Thumberger Thomas

    2012-08-01

    Full Text Available Abstract Background Park2-co-regulated gene (PACRG is evolutionarily highly conserved from green algae to mammals. In Chlamydomonas and trypanosomes, the PACRG protein associates with flagella. Loss of PACRG results in shortened or absent flagella. In mouse the PACRG protein is required for spermatogenesis. The purpose of the present study was to analyze (1 the expression patterns of PACRG during vertebrate embryogenesis, and (2 whether the PACRG protein was required for left-right (LR axis specification through cilia-driven leftward flow in Xenopus laevis. Methods PACRG cDNAs were cloned and expression was analyzed during early embryonic development of Xenopus, mouse, rabbit and zebrafish. Antisense morpholino oligonucleotide (MO mediated gene knockdown was applied in Xenopus to investigate LR development at the level of tissue morphology, leftward flow and asymmetric marker gene expression, using timelapse videography, scanning electron microscopy (SEM and whole-mount in situ hybridization. Results were statistically evaluated using Wilcoxon paired and χ2 tests. Results PACRG mRNA expression was found in cells and tissues harboring cilia throughout the vertebrates. Highly localized expression was also detected in the brain. During early development, PACRG was specifically localized to epithelia where leftward flow arises, that is, the gastrocoel roof plate (GRP in Xenopus, the posterior notochord (PNC in mammals and Kupffer’s vesicle (KV in zebrafish. Besides its association with ciliary axonemes, subcellular localization of PACRG protein was found around the nucleus and in a spotty pattern in the cytoplasm. A green fluorescent protein (GFP fusion construct preferentially labeled cilia, rendering PACRG a versatile marker for live imaging. Loss-of-function in the frog resulted dose dependently in LR, neural tube closure and gastrulation defects, representing ciliary and non-ciliary functions of PACRG. Conclusions The PACRG protein is a novel

  10. NCAM regulates cell motility.

    Science.gov (United States)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna; Hartmann-Petersen, Rasmus; Kawa, Anna; Walmod, Peter S; Belman, Vadym; Gallagher, Helen C; Berezin, Vladimir; Bock, Elisabeth; Pedersen, Nina

    2002-01-15

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine inhibitor of NCAM-negative cell locomotion through a heterophilic interaction with a cell-surface receptor. As we showed that the two N-terminal immunoglobulin modules of NCAM, which are known to bind to heparin, were responsible for this inhibition, we presume that this receptor is a heparan sulfate proteoglycan. A model for the inhibitory effect of NCAM is proposed, which involves competition between NCAM and extracellular components for the binding to membrane-associated heparan sulfate proteoglycan.

  11. Esophageal motility abnormalities in gastroesophageal reflux disease.

    Science.gov (United States)

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-05-06

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett's esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted.

  12. 小茴香提取物对胃肠动力障碍小鼠胃肠运动的影响%Efects of fennel extracts on gastrointestinal movement of atropine-induced gastrointestinal motility disorder in mice

    Institute of Scientific and Technical Information of China (English)

    滕光寿; 秦明; 毛峰峰; 张琰; 刘兴友; 贺建荣; 杨鹏; 刘曼玲

    2011-01-01

    目的 观察小茴香精油及水提物(去油)对阿托品致胃肠动力障碍小鼠胃肠运动的影响.方法 选择昆明种小鼠随机分为空白对照组、阿托品模型组、小茴香水提物组、小茴香精油组、莫沙必利组.空白对照组、阿托品模型组均给予0.2 ml/10 g生理盐水灌胃;小茴香水提物组给予去油小茴香水提物(含小茴香75 mg/ml)0.2 ml/10 g灌胃;小茴香精油组以300 mg/kg精油灌胃,莫沙必利组给莫沙必利混悬液(含莫沙必利15 mg/ml)灌胃.连续3 d,禁食18 h后,于第4天空白对照组腹腔注射生理盐水,其他组腹腔注射硫酸阿托品注射液,以葡聚糖蓝(BD)2000为标记物,观察胃排空率和肠推进率.结果 小茴香精油组、莫沙必利组、小茴香水提物组处理后小鼠的胃排空率分别为(91.97±4.42)%、(90.26±5.81)%、(80.01±6.27)%、(72.88±9.13)%;肠推进率分别为(53.32±7.49)%、(53.02±9.13)%、(44.16±7.68)%、(37.52±6.19)%.小茴香精油组、莫沙必利组、小茴香水提物组对阿托品所致胃肠动力障碍小鼠的胃排空(P值分别为0.004、0.001、0.004)和肠推进(P值分别0.003、0.025、0.015)均有拮抗作用;小茴香精油组促进胃排空作用(P值分别为0.000、0.002)、肠推进作用优于小茴香水提物组(P值分别为0.001、0.001).结论 小茴香提取物可拮抗小鼠的胃肠动力障碍,小茴香精油是主要活性成分.%Objective To observe the effects of fennel essential oil and water extracts (distilled oil is not included) on gastrointestinal motility disorder caused by atropine in mice.Methods Kunming mice were randomly divided into blank control group, model group atropine, water extracts group, fennel essential oil group, mosapride group. Blank control group and model group atropine were orally administered with normal saline of 0.2 ml/10 g. Water extracts group was orally administered with Water extracts (75 mg/ml) of 0.2 ml/10 g. Fennel essential oil group was orally

  13. Molecular modulation of airway epithelial ciliary response to sneezing.

    Science.gov (United States)

    Zhao, Ke-Qing; Cowan, Andrew T; Lee, Robert J; Goldstein, Natalia; Droguett, Karla; Chen, Bei; Zheng, Chunquan; Villalon, Manuel; Palmer, James N; Kreindler, James L; Cohen, Noam A

    2012-08-01

    Our purpose was to evaluate the effect of the mechanical force of a sneeze on sinonasal cilia function and determine the molecular mechanism responsible for eliciting the ciliary response to a sneeze. A novel model was developed to deliver a stimulation simulating a sneeze (55 mmHg for 50 ms) at 26°C to the apical surface of mouse and human nasal epithelial cells. Ciliary beating was visualized, and changes in ciliary beat frequency (CBF) were determined. To interrogate the molecular cascades driving sneeze-induced changes of CBF, pharmacologic manipulation of intra- and extracellular calcium, purinergic, PKA, and nitric oxide (NO) signaling were performed. CBF rapidly increases by ≥150% in response to a sneeze, which is dependent on the release of adenosine triphosphate (ATP), calcium influx, and PKA activation. Furthermore, apical release of ATP is independent of calcium influx, but calcium influx and subsequent increase in CBF are dependent on the ATP release. Lastly, we observed a blunted ciliary response in surgical specimens derived from patients with chronic rhinosinusitis compared to control patients. Apical ATP release with subsequent calcium mobilization and PKA activation are involved in sinonasal ciliary response to sneezing, which is blunted in patients with upper-airway disease.

  14. RPGR-containing protein complexes in syndromic and non-syndromic retinal degeneration due to ciliary dysfunction

    Indian Academy of Sciences (India)

    Carlos A. Murga-Zamalloa; Anand Swaroop; Hemant Khanna

    2009-12-01

    Dysfunction of primary cilia due to mutations in cilia-centrosomal proteins is associated with pleiotropic disorders. The primary (or sensory) cilium of photoreceptors mediates polarized trafficking of proteins for efficient phototransduction. Retinitis pigmentosa GTPase regulator (RPGR) is a cilia-centrosomal protein mutated in >70% of X-linked RP cases and 10%–20% of simplex RP males. Accumulating evidence indicates that RPGR may facilitate the orchestration of multiple ciliary protein complexes. Disruption of these complexes due to mutations in component proteins is an underlying cause of associated photoreceptor degeneration. Here, we highlight the recent developments in understanding the mechanism of cilia-dependent photoreceptor degeneration due to mutations in RPGR and RPGR-interacting proteins in severe genetic diseases, including retinitis pigmentosa, Leber congenital amaurosis (LCA), Joubert syndrome, and Senior–Loken syndrome, and explore the physiological relevance of photoreceptor ciliary protein complexes.

  15. A ternary complex comprising transportin1, Rab8 and the ciliary targeting signal directs proteins to ciliary membranes

    Science.gov (United States)

    Madugula, Viswanadh

    2016-01-01

    ABSTRACT The sensory functions of cilia are dependent on the enrichment of cilium-resident proteins. Although it is known that ciliary targeting signals (CTSs) specifically target ciliary proteins to cilia, it is still unclear how CTSs facilitate the entry and retention of cilium-resident proteins at the molecular level. We found that non-ciliary membrane reporters can passively diffuse into cilia through the lateral transport pathway, and the translocation of membrane reporters through the ciliary diffusion barrier is facilitated by importin binding motifs and domains. Screening known CTSs of ciliary membrane residents uncovered that fibrocystin, photoreceptor retinol dehydrogenase, rhodopsin and retinitis pigmentosa 2 interact with transportin1 (TNPO1) through previously identified CTSs. We further discovered that a new ternary complex, comprising TNPO1, Rab8 and a CTS, can assemble or disassemble under the guanine nucleotide exchange activity of Rab8. Our study suggests a new mechanism in which the TNPO1–Rab8–CTS complex mediates selective entry into and retention of cargos within cilia. PMID:27633000

  16. Progressive hemifacial atrophy with ciliary body atrophy and ocular hypotony

    Directory of Open Access Journals (Sweden)

    T Ashwini Kini

    2015-01-01

    Full Text Available Progressive hemifacial atrophy (PHA is a disease of unknown etiology affecting one-half of the face. Ocular involvement is uncommon. Atrophy of iris is rare, with only a few cases of partial atrophy being reported in the literature. We report a case of total atrophy of iris and ciliary body with associated ocular hypotony in a 16-year-old girl with PHA. We believe this is the first reported case of complete atrophy of iris and ciliary body in PHA. Ocular hypotony in PHA was thought to be due to intra-ocular inflammation. However in our case it appears to be secondary to severe atrophy of the ciliary body.

  17. Angioleiomyoma of the Ciliary Body:A Case Report

    Institute of Scientific and Technical Information of China (English)

    Jianhua Yan; Zhongyao Wu; Yongping Li; Guanguang Feng; Hao Zhang

    2004-01-01

    Purpose: To report a rare case of angioleiomyoma of the ciliary body Methods :The clinical manifestation, imaging findings, histopathologic characteristics were analyzed in a 32-year-old male patient with angioleiomyoma of the ciliary body. Results:The tumor was removed intact with local resection. Histopathologic examination revealed that the tumor was full of vessels and it was composed of spindle cells with abundant cytoplasm. Immunohistochemical studies showed positive for SMA and Desmin and negative for S100 and HMB-45. Conclusions: Angioleiomyoma of the ciliary body is a rare tumor that can be successfully treated with local surgical resection in this area. It needs to be differentiated from other tumors, especially malignant melanoma. Eye Science 2004;20:19-22.

  18. Aging and intestinal motility: a review of factors that affect intestinal motility in the aged.

    LENUS (Irish Health Repository)

    O'Mahony, Denis

    2012-02-03

    Normal aging is associated with significant changes in the function of most organs and tissues. In this regard, the gastrointestinal tract is no exception. The purpose of this review is to detail the important age-related changes in motor function of the various parts of the gastrointestinal tract and to highlight some of the important motility changes that may occur, either in relation to common age-related disorders, or as a result of certain drugs commonly prescribed in the aged. A major confounding factor in the interpretation of motor phenomena throughout the gastrointestinal tract in this age group is the frequent coexistence of neurological, endocrinological and other disease states, which may be independently associated with dysmotility. Overall, current data are insufficient to implicate normal aging as a cause of dysmotility in the elderly. Normal aging is associated with various changes in gastrointestinal motility, but the clinical significance of such changes remains unclear. More important is the impact of various age-related diseases on gastrointestinal motility in the elderly: for example, long-standing diabetes mellitus may reduce gastric emptying in up to 50% of patients; depression significantly prolongs whole-gut transit time; hypothyroidism may prolong oro-caecal transit time; and chronic renal failure is associated with impaired gastric emptying. In addition, various, frequently used drugs in the elderly cause disordered gastrointestinal motility. These drugs include anticholinergics, especially antidepressants with an anticholinergic effect, opioid analgesics and calcium antagonists.

  19. The morphology, topography and cytoarchitectonics of the ciliary ganglion in the domestic turkey (Meleagris gallopavo domesticus).

    Science.gov (United States)

    Radzimirska, Małgorzata

    2003-11-01

    The ciliary ganglion of the domestic turkey (Meleagris gallopavo domesticus) is located between the posterior wall of the eyeball and the optic nerve. It is closely connected with the oculomotor nerve; in particular with its inferior branch. The ganglion has a cask-like shape and is adjacent to the inferior branch of the oculomotor nerve. From this ganglion postganglionic fibres emerge which are arranged in two fasciculi. These are termed the long ciliary nerves and the short ciliary nerves. A cross-section of the ciliary ganglion revealed two populations of cells: small ones - choroid cells and large ones - ciliary cells.

  20. Mechanics of motility initiation and motility arrest in crawling cells

    Science.gov (United States)

    Recho, Pierre; Putelat, Thibaut; Truskinovsky, Lev

    2015-11-01

    Motility initiation in crawling cells requires transformation of a symmetric state into a polarized state. In contrast, motility arrest is associated with re-symmetrization of the internal configuration of a cell. Experiments on keratocytes suggest that polarization is triggered by the increased contractility of motor proteins but the conditions of re-symmetrization remain unknown. In this paper we show that if adhesion with the extra-cellular substrate is sufficiently low, the progressive intensification of motor-induced contraction may be responsible for both transitions: from static (symmetric) to motile (polarized) at a lower contractility threshold and from motile (polarized) back to static (symmetric) at a higher contractility threshold. Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the direction of locomotion. In the interest of analytical transparency we also neglect active protrusion and view adhesion as passive. Despite the unavoidable oversimplifications associated with these assumptions, the model reproduces quantitatively the motility initiation pattern in fish keratocytes and reveals a crucial role played in cell motility by the nonlocal feedback between the mechanics and the transport of active agents. A prediction of the model that a crawling cell can stop and re-symmetrize when contractility increases sufficiently far beyond the motility initiation threshold still awaits experimental verification.

  1. Development of a ciliary muscle-driven accommodating intraocular lens

    NARCIS (Netherlands)

    Hermans, Erik A.; Terwee, Thom T.; Koopmans, Steven A.; Dubbelman, Michiel; van der Heijde, Rob G. L.; Heethaar, Rob M.

    2008-01-01

    PURPOSE: To develop a ciliary muscle-driven accommodating intraocular lens (IOL) that has a large and predictable range of variable power as a step toward spectacle independence. SETTING: Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands. METHODS:

  2. The accommodative ciliary muscle function is preserved in older humans

    Science.gov (United States)

    Tabernero, Juan; Chirre, Emmanuel; Hervella, Lucia; Prieto, Pedro; Artal, Pablo

    2016-05-01

    Presbyopia, the loss of the eye’s accommodation capability, affects all humans aged above 45–50 years old. The two main reasons for this to happen are a hardening of the crystalline lens and a reduction of the ciliary muscle functionality with age. While there seems to be at least some partial accommodating functionality of the ciliary muscle at early presbyopic ages, it is not yet clear whether the muscle is still active at more advanced ages. Previous techniques used to visualize the accommodation mechanism of the ciliary muscle are complicated to apply in the older subjects, as they typically require fixation stability during long measurement times and/or to have an ultrasound probe directly in contact with the eye. Instead, we used our own developed method based on high-speed recording of lens wobbling to study the ciliary muscle activity in a small group of pseudophakic subjects (around 80 years old). There was a significant activity of the muscle, clearly able to contract under binocular stimulation of accommodation. This supports a purely lenticular-based theory of presbyopia and it might stimulate the search for new solutions to presbyopia by making use of the remaining contraction force still presented in the aging eye.

  3. Structural and functional lung disease in primary ciliary dyskinesia

    NARCIS (Netherlands)

    F. Santamaria (Francesca); S. Montella (Silvia); H.A.W.M. Tiddens (Harm); G. Guidi (Guido); V. Casotti (Valeria); M. Maglione (Marco); P.A. de Jong (Pim)

    2008-01-01

    textabstractBackground: High-resolution CT (HRCT) scan data on primary ciliary dyskinesia (PCD) related lung disease are scarce. Study objectives: We evaluated the lung disease in children and adults with PCD by a modified Brody composite HRCT scan score to assess the prevalence of the structural ab

  4. Prostaglandin induces the expression of matrix metalloproteinase-1 In ciliary melanocytes

    Institute of Scientific and Technical Information of China (English)

    WANG Ning-li; LU Qing-jun; LI Jun-hong; WANG Ling

    2008-01-01

    Background Latanoprost,a prostaglandin F2a analog,has been shown to be an effective intraocular pressure lowering agent which acts by inducing ciliary muscle cells to synthesise matrix metalloproteinases.However,the response of ciliary melanocytes to latanoprost has never been reported.This research has investigated the ability of latanoprost to induce matrix metalloproteinase-1 expression in human ciliary melanocytes,and thereby advance the understanding of the mechanism of PGF2a in decreasing Intraocular pressure.Methods In vitro human ciliary melanocytes were treated for 48 hours with five different concentrations of latanoprost (100,150,200,500,and 1000 nmol/L).Ciliary melanocytes treated with 0.01% ethanel(vehicle)were used as a control.The expression of matrix metalloproteinase-1 in ciliary melanocytes was determined by Western blotting and immunofluorescent staining.Results Western blotting showed that the expression of matrix metalloproteinase-1 in ciliary melanocytes was induced by latanoprost,and the level of expression was dependent on the concentration of latanoprost in the culture medium.Immunofluorescent staining showed that matrix metalloproteinase-1 was confined to the ciliary melanocyte cytoplasm.Conclusions Latanoprost induced the expression of matrix metalloproteinase-1 in human ciliary melanocytes in a dose-dependent manner.Ciliary melanocytes,as well as ciliary muscle cells,may also play an important role in uveoscleral outflow modulation.

  5. Ciliary photoreceptors in the cerebral eyes of a protostome larva

    Directory of Open Access Journals (Sweden)

    Passamaneck Yale J

    2011-03-01

    Full Text Available Abstract Background Eyes in bilaterian metazoans have been described as being composed of either ciliary or rhabdomeric photoreceptors. Phylogenetic distribution, as well as distinct morphologies and characteristic deployment of different photopigments (ciliary vs. rhabdomeric opsins and transduction pathways argue for the co-existence of both of these two photoreceptor types in the last common bilaterian ancestor. Both receptor types exist throughout the Bilateria, but only vertebrates are thought to use ciliary photoreceptors for directional light detection in cerebral eyes, while all other invertebrate bilaterians studied utilize rhabdomeric photoreceptors for this purpose. In protostomes, ciliary photoreceptors that express c-opsin have been described only from a non-visual deep-brain photoreceptor. Their homology with vertebrate rods and cones of the human eye has been hypothesized to represent a unique functional transition from non-visual to visual roles in the vertebrate lineage. Results To test the hypothesis that protostome cerebral eyes employ exclusively rhabdomeric photoreceptors, we investigated the ultrastructure of the larval eyes in the brachiopod Terebratalia transversa. We show that these pigment-cup eyes consist of a lens cell and a shading pigment cell, both of which are putative photoreceptors, deploying a modified, enlarged cilium for light perception, and have axonal connections to the larval brain. Our investigation of the gene expression patterns of c-opsin, Pax6 and otx in these eyes confirms that the larval eye spots of brachiopods are cerebral eyes that deploy ciliary type photoreceptors for directional light detection. Interestingly, c-opsin is also expressed during early embryogenesis in all potential apical neural cells, becoming restricted to the anterior neuroectoderm, before expression is initiated in the photoreceptor cells of the eyes. Coincident with the expression of c-opsin in the presumptive neuroectoderm

  6. Esophageal motility impairment in Plummer-Vinson syndrome. Correction by iron treatment.

    Science.gov (United States)

    Dantas, R O; Villanova, M G

    1993-05-01

    We report the case of a 41-year-old woman with Plummer-Vinson syndrome and an esophageal motility disorder. She complained of dysphagia and odynophagia and had cheilitis, glossitis, and hypochromic anemia. An esophageal motility study showed low amplitude of contraction and high intrabolus pressure in the esophageal body. After iron replacement, the patient was free from symptoms, and a new motility study showed increased amplitude of contraction and decreased intrabolus pressure.

  7. The Dynamics of cellular motility

    OpenAIRE

    Murase, Masatoshi

    1992-01-01

    " This book presents new ideas and theories that account for oscillatory contraction in muscle and the various modes of flagellar and ciliary movements. Despite the great variety of dynamical behaviours, attempts have been made to model some of the specific modes, though not to account for the overall properties. I have tried to develop theoretical models and to interpret nearly all of the dynamical behaviours in terms of these models. This book is intended for students and specialists in bio...

  8. A Unified Taxonomy for Ciliary Dyneins

    Science.gov (United States)

    Hom, Erik F.Y.; Witman, George B.; Harris, Elizabeth H.; Dutcher, Susan K.; Kamiya, Ritsu; Mitchell, David R.; Pazour, Gregory J.; Porter, Mary E.; Sale, Winfield S.; Wirschell, Maureen; Yagi, Toshiki; King, Stephen M.

    2011-01-01

    The formation and function of eukaryotic cilia/flagella require the action of a large array of dynein microtubule motor complexes. Due to genetic, biochemical, and microscopic tractability, Chlamydomonas reinhardtii has become the premier model system in which to dissect the role of dyneins in flagellar assembly, motility, and signaling. Currently, fifty-four proteins have been described as components of various Chlamydomonas flagellar dyneins or as factors required for their assembly in the cytoplasm and/or transport into the flagellum; orthologues of nearly all these components are present in other ciliated organisms including humans. For historical reasons, the nomenclature of these diverse dynein components and their corresponding genes, mutant alleles and orthologues has become extraordinarily confusing. Here, we unify Chlamydomonas dynein gene nomenclature and establish a systematic classification scheme based on structural properties of the encoded proteins. Furthermore, we provide detailed tabulations of the various mutant alleles and protein aliases that have been used and explicitly define the correspondence with orthologous components in other model organisms and humans. PMID:21953912

  9. Esophageal motility abnormalities in gastroesophageal reflux disease

    Institute of Scientific and Technical Information of China (English)

    Irene; Martinucci; Nicola; de; Bortoli; Maria; Giacchino; Giorgia; Bodini; Elisa; Marabotto; Santino; Marchi; Vincenzo; Savarino; Edoardo; Savarino

    2014-01-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophagealmotility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from nonerosive reflux disease to erosive reflux disease and Barrett’s esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted.

  10. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates.

    Science.gov (United States)

    Ross, Alison J; May-Simera, Helen; Eichers, Erica R; Kai, Masatake; Hill, Josephine; Jagger, Daniel J; Leitch, Carmen C; Chapple, J Paul; Munro, Peter M; Fisher, Shannon; Tan, Perciliz L; Phillips, Helen M; Leroux, Michel R; Henderson, Deborah J; Murdoch, Jennifer N; Copp, Andrew J; Eliot, Marie-Madeleine; Lupski, James R; Kemp, David T; Dollfus, Hélène; Tada, Masazumi; Katsanis, Nicholas; Forge, Andrew; Beales, Philip L

    2005-10-01

    The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles. Furthermore, we identify genetic interactions between BBS genes and a PCP gene in both mouse (Ltap, also called Vangl2) and zebrafish (vangl2). In zebrafish, the augmented phenotype results from enhanced defective convergent extension movements. We also show that Vangl2 localizes to the basal body and axoneme of ciliated cells, a pattern reminiscent of that of the BBS proteins. These data suggest that cilia are intrinsically involved in PCP processes.

  11. Primary cilia in energy balance signaling and metabolic disorder.

    Science.gov (United States)

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-12-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.

  12. Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia

    Science.gov (United States)

    Austin-Tse, Christina; Halbritter, Jan; Zariwala, Maimoona A.; Gilberti, Renée M.; Gee, Heon Yung; Hellman, Nathan; Pathak, Narendra; Liu, Yan; Panizzi, Jennifer R.; Patel-King, Ramila S.; Tritschler, Douglas; Bower, Raqual; O’Toole, Eileen; Porath, Jonathan D.; Hurd, Toby W.; Chaki, Moumita; Diaz, Katrina A.; Kohl, Stefan; Lovric, Svjetlana; Hwang, Daw-Yang; Braun, Daniela A.; Schueler, Markus; Airik, Rannar; Otto, Edgar A.; Leigh, Margaret W.; Noone, Peadar G.; Carson, Johnny L.; Davis, Stephanie D.; Pittman, Jessica E.; Ferkol, Thomas W.; Atkinson, Jeffry J.; Olivier, Kenneth N.; Sagel, Scott D.; Dell, Sharon D.; Rosenfeld, Margaret; Milla, Carlos E.; Loges, Niki T.; Omran, Heymut; Porter, Mary E.; King, Stephen M.; Knowles, Michael R.; Drummond, Iain A.; Hildebrandt, Friedhelm

    2013-01-01

    Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65. PMID:24094744

  13. Opiate Modulation of Gastrointestinal Motility and the Actions of Trimebutine

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1991-01-01

    novel therapeutic approaches to the treatment of motility disorders, including postoperative ileus and pseudo-obstruction. Finally, the effect of the drug on the colon supports the use of trimcbutine in irritable bowel syndrome patients who have constipation due to colonic inertia.

  14. Motility initiation in active gels

    CERN Document Server

    Recho, Pierre; Truskinovsky, Lev

    2015-01-01

    Motility initiation in crawling cells requires a symmetry breaking mechanism which transforms a symmetric state into a polarized state. Experiments on keratocytes suggest that polarization is triggered by increased contractility of motor proteins. In this paper we argue that contraction can be responsible not only for the symmetry breaking transition but also for the incipient translocation of the segment of an active gel mimicking the crawling cell. Our model suggests that when the contractility increases sufficiently far beyond the motility initiation threshold, the cell can stop and re-symmetrizes. The proposed theory reproduces the motility initiation pattern in fish keratocytes and the behavior of keratocytes prior to cell division.

  15. The Pediatric Choroidal and Ciliary Body Melanoma Study

    DEFF Research Database (Denmark)

    Al-Jamal, Rana'a T; Cassoux, Nathalie; Desjardins, Laurence

    2016-01-01

    PURPOSE: To collect comprehensive data on choroidal and ciliary body melanoma (CCBM) in children and to validate hypotheses regarding pediatric CCBM: children younger than 18 years, males, and those without ciliary body involvement (CBI) have more favorable survival prognosis than young adults 18...... entered through a secure website and were reviewed centrally. Survival was analyzed using Kaplan-Meier analysis and Cox proportional hazards regression. MAIN OUTCOME MEASURES: Proportion of females, tumor-node-metastasis (TNM) stage, cell type, and melanoma-related mortality. RESULTS: Cumulative frequency...... type, known for 35% of tumors, and TNM stage (I in 22% and 21%, II in 49% and 52%, III in 30% and 28%, respectively) were comparable for children and young adults. Melanoma-related survival was 97% and 90% at 5 years and 92% and 80% at 10 years for children compared with young adults, respectively (P...

  16. [A rare case of primary ciliary dyskinesia with heterotaxy].

    Science.gov (United States)

    Quintela, Cátia; Meireles, Cláudia; Bettencourt, Maria João; Ribeirinho, Augusto; Bentes, Teresa

    2009-01-01

    Primary ciliary dyskinesia is an autosomal recessive disease with a clinical history of upper and lowers respiratory infections, rhinosinusitis and bronquitis associated with complete or partial situs inversus. The authors present a 78 -year -old male caucasian patient with rhinosinusitis, lower respiratory tract infection and dyspnea, chronic otitis with hearing deficit and infertility followed in Gastroenterology for dyspepsia and constipation. The radiological studies revealed agenesis of right frontal sinus; bronchial wall thickening; bronchiectasis; cecum and ascending colon located on the left and small bowel occupies right side of abdomen. He had no immunodeficiency, allergies, cystic fibrosis and others. We concluded primary ciliary dyskinesia with heterotaxy. For the rarity of this case we decided to present it.

  17. Connexins form functional hemichannels in porcine ciliary epithelium.

    Science.gov (United States)

    Shahidullah, Mohammad; Delamere, Nicholas A

    2014-01-01

    The expression of connexins in the ciliary epithelium is consistent with gap junctions between the pigmented (PE) and nonpigmented ciliary epithelium (NPE) that form when connexon hemichannels from adjacent cells pair to form a channel. Here we present evidence that suggests undocked connexons may form functional hemichannels that permit exchange of substances between NPE and the aqueous humor. Intact porcine eyes were perfused via the ciliary artery and propidium iodide (PI) (MW 668) was added to the aqueous humor compartment as a tracer. After calcium-free solution containing PI was introduced into the aqueous humor compartment for 30 min, fluorescence microscopy revealed PI in the NPE cell layer. PI entry into the NPE was inhibited by calcium and by the connexin antagonist 18α-glycyrrhetinic acid (18-AGA). Studies also were carried out with cultured porcine NPE. Under normal conditions, little PI entered the cultured cells but calcium-free medium stimulated PI accumulation and the entry was inhibited by 18-AGA. In cells loaded with calcein (MW 622), calcium-free solution stimulated calcein exit. 18-AGA partially suppressed calcein exit in calcium-free medium. Connexin 43 and connexin 50 proteins were detected by western blot analysis in both native and cultured NPE. In the intact eye, immunolocalization studies revealed connexin 50 at the basolateral, aqueous humor-facing, margin of the NPE. In contrast, connexin 43 was observed at the junction of the PE and NPE layer and on the basolateral membrane of PE. The results point to functional hemichannels at the NPE basolateral surface. It is feasible that hemichannels might contribute to the transfer of substances between the ciliary epithelium cytoplasm and aqueous humor.

  18. Meiotic chromosome behaviour in Cenchrus ciliaris

    Directory of Open Access Journals (Sweden)

    N. C. Visser

    1998-12-01

    Full Text Available A basic chromosome number of x = 9 has been confirmed for Cenchrus ciliaris L. Polyploidy is common and levels vary from tetraploid to hexaploid. Aneuploidv is reported for a single specimen, where two chromosomes of a single genome were lost. Various meiotic irregularities were observed. The highest incidence of meiotic abnormalities was observed in the pentaploid specimens. This was attributed to their uneven polyploid level All specimens varied from segmental alloploid to alloploid.

  19. Photosynthesis of Digitaria ciliaris during repeated soil drought and rewatering

    Institute of Scientific and Technical Information of China (English)

    YaYong Luo; XueYong Zhao; JingHui Zhang; YuLin Li; XiaoAn Zuo; DianChao Sun

    2015-01-01

    The ability of psammophyte photosynthesis to withstand and recover from severe droughts is crucial for vegetation sta-bility in semi-arid sandy lands. The responses of gas exchange and chlorophyll fluorescence of an annual grass, Digitaria ciliaris, were measured through three soil drought and rewatering cycles. Results showed that the net photosynthesis rate (Pn) decreased by 92%, 95%, and 63%at end of the three drought periods, respectively, water use efficiency (WUE) de-creased by 67%, 54%, and 48%, while the constant intercellular CO2 concentration (Ci) increased by 1.08, 0.88, and 0.45 times. During those three cycles, the trapping probability with no dark adaptation (Fv′/Fm′) decreased by 55%, 51%, and 9%, the electron transport per cross section (ET0′/CS0′) decreased by 63%, 42%, and 18%, and the dissipation per cross section (DI0′/CS0′) increased by 97%, 96%, and 21%. These results indicated that D. ciliaris was subjected to photoinhi-bition and some non-stomatal limitation of photosynthesis under drought. However, after four days of rewatering, its photosynthetic characteristics were restored to control values. This capability to recover from drought may contribute to making the plant's use of water as efficient as possible. Furthermore, the photosynthesis decreased more slowly in the subsequent drought cycles than in the first cycle, allowing D. ciliaris to enhance its future drought tolerance after drought hardening. Thus, it acclimatizes itself to repeated soil drought.

  20. Bacterial motility on abiotic surfaces

    OpenAIRE

    Gibiansky, Maxsim

    2013-01-01

    Bacterial biofilms are structured microbial communities which are widespread both in nature and in clinical settings. When organized into a biofilm, bacteria are extremely resistant to many forms of stress, including a greatly heightened antibiotic resistance. In the early stages of biofilm formation on an abiotic surface, many bacteria make use of their motility to explore the surface, finding areas of high nutrition or other bacteria to form microcolonies. They use motility appendages, incl...

  1. Elenoside increases intestinal motility

    Institute of Scientific and Technical Information of China (English)

    E Navarro; SJ Alonso; R Navarro; J Trujillo; E Jorge

    2006-01-01

    AIM: To study the effects of elenoside, an arylnaphthalene lignan from Justicia hyssopifolia, on gastrointestinal motility in vivo and in vitro in rats.METHODS: Routine in vivo experimental assessments were catharsis index, water percentage of boluses,intestinal transit, and codeine antagonism. The groups included were vehicle control (propylene glycol-ethanolplant oil-tween 80), elenoside (i.p. 25 and 50 mg/kg),cisapride (i.p. 10 mg/kg), and codeine phosphate (intragastric route, 50 mg/kg). In vitro approaches used isolated rat intestinal tissues (duodenum, jejunum, and ileum). The effects of elenoside at concentrations of 3.2× 10-4, 6.4 × 10-4 and 1.2 × 10-3 mol/L, and cisapride at 10-6 mol/L were investigated.RESULTS: Elenoside in vivo produced an increase in the catharsis index and water percentage of boluses and in the percentage of distance traveled by a suspension of activated charcoal. Codeine phosphate antagonized the effect of 25 mg/kg of elenoside. In vitro, elenoside in duodenum, jejunum and ileum produced an initial decrease in the contraction force followed by an increase.Elenoside resulted in decreased intestinal frequency in duodenum, jejunum, and ileum. The in vitro and in vivo effects of elenoside were similar to those produced by cisapride.CONCLUSION: Elenoside is a lignan with an action similar to that of purgative and prokinetics drugs.Elenoside, could be an alternative to cisapride in treatment of gastrointestinal diseases as well as a preventive therapy for the undesirable gastrointestinal effects produced by opioids used for mild to moderate pain.

  2. [THE STRUCTURE OF LYMPHATIC CAPILLARIES OF THE CILIARY BODY OF THE HUMAN EYE].

    Science.gov (United States)

    Borodin, Yu I; Bgatova, N P; Chernykh, V V; Trunov, A N; Pozhidayeva, A A; Konenkov, V I

    2015-01-01

    Using light microscopy, immunohistochemistry and electron microscopy, the structural organization of interstitial spaces and vessels of the ciliary body of the human eye (n = 5) were studied. The ciliary body was found to contain wide interstitial spaces--tissue clefts bound by collagen fibers and fibroblasts. Organ-specific lymphatic capillaries were also demonstrated in the ciliary body. According to the present findings and the lymphatic region concept, the first 2 elements of the lymphatic region of the eye were described: tissue clefts--prelymphatics and lymphatic capillaries of the ciliary body. The third element of the lymphatic region are the lymph nodes of the head and neck.

  3. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid.

    Directory of Open Access Journals (Sweden)

    Robert A Hirst

    Full Text Available BACKGROUND: The diagnosis of primary ciliary dyskinesia (PCD requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns. METHODS: We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n  111 was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture. RESULTS: Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced. CONCLUSIONS: The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia.

  4. Stochastic models of cell motility

    DEFF Research Database (Denmark)

    Gradinaru, Cristian

    2012-01-01

    Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...

  5. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  6. Small intestine motility development in newborn mammals.

    Science.gov (United States)

    Woliński, Jarosław; Słupecka-Ziemilska, Monika; Boryczka, Maria; Grzesiak, Paulina; Kwiatkowski, Jakub; Kotarba, Grzegorz

    2016-01-01

    Since the beginning of the 20th century, researchers have been working to improve the understanding of gastrointestinal motility. The first major discovery was the observation of a migrating myoelectric complex that turned out to be a universal occurrence among vertebrates. Further inquires resulted in a detailed description of its development during different stages of ontogeny. Some time before that, a cornerstone had been laid for a breakthrough that would come years later. That cornerstone came in the form of interstitial cells of Cajal whose true role could not be discerned until the discovery of a CD117 receptor - their main marker. With the ability to precisely mark interstitial cells of Cajal, a wave of subsequent new experiments and observations connected them to the occurrence of slow waves and allowed an understanding of the mechanism responsible for their generation. Some of these findings suggested that Cajal cells might have a role in the development of several motility disorders thus opening an avenue of research that requires the usage of both traditional and advanced diagnostic methods.

  7. Motility of Electric Cable Bacteria

    OpenAIRE

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner; Schramm, Andreas; Nielsen, Lars Peter

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s−1 (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed ...

  8. Does laparoscopic and endoscopic cooperative surgery for gastric submucosal tumors preserve residual gastric motility? Results of a retrospective single-center study.

    Directory of Open Access Journals (Sweden)

    Yohei Waseda

    Full Text Available Laparoscopic and endoscopic cooperative surgery (LECS is a minimally invasive surgical technique used to resect gastric submucosal tumors with intraluminal growth. Endoscopic submucosal dissection is used to determine the appropriate resection line from within the stomach lumen as it minimizes the stomach wall resection area and prevents postoperative stomach deformity. Although LECS is intended to preserve gastric function, few reports have evaluated postoperative residual gastric motility. Therefore, we conducted a retrospective analysis of patients who underwent LECS to determine the effects of LECS on residual gastric motility.Twenty-two patients underwent endoscopy 3 to 12 months after LECS. Patients were evaluated for endoscopic evidence of gastric motility disorder, namely food residue and occurrence/exacerbation of reflux esophagitis. We considered patients with new onset of gastric symptoms and endoscopic evidence of gastric motility disorder to have clinically relevant gastric motility disorder. We described patient characteristics, tumor location, and surgical findings.Two of 22 patients developed clinically relevant gastric motility disorder after LECS. In one of these patients, the symptoms were not severe; only one had reduced dietary intake and had lost weight. We identified clinically relevant gastric motility disorder in two patients with gastrointestinal stromal tumors located in the lesser curvature of the stomach. The major axis of these two tumors was 34 mm and 38 mm.Many patients did not have clinically relevant gastric motility disorder after LECS. Further investigation is required to identify predisposing factors for gastric motility disorder.

  9. Social motility in african trypanosomes.

    Directory of Open Access Journals (Sweden)

    Michael Oberholzer

    2010-01-01

    Full Text Available African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions.

  10. Cdc42 deficiency causes ciliary abnormalities and cystic kidneys.

    Science.gov (United States)

    Choi, Soo Young; Chacon-Heszele, Maria F; Huang, Liwei; McKenna, Sarah; Wilson, F Perry; Zuo, Xiaofeng; Lipschutz, Joshua H

    2013-09-01

    Ciliogenesis and cystogenesis require the exocyst, a conserved eight-protein trafficking complex that traffics ciliary proteins. In culture, the small GTPase Cdc42 co-localizes with the exocyst at primary cilia and interacts with the exocyst component Sec10. The role of Cdc42 in vivo, however, is not well understood. Here, knockdown of cdc42 in zebrafish produced a phenotype similar to sec10 knockdown, including tail curvature, glomerular expansion, and mitogen-activated protein kinase (MAPK) activation, suggesting that cdc42 and sec10 cooperate in ciliogenesis. In addition, cdc42 knockdown led to hydrocephalus and loss of photoreceptor cilia. Furthermore, there was a synergistic genetic interaction between zebrafish cdc42 and sec10, suggesting that cdc42 and sec10 function in the same pathway. Mice lacking Cdc42 specifically in kidney tubular epithelial cells died of renal failure within weeks of birth. Histology revealed cystogenesis in distal tubules and collecting ducts, decreased ciliogenesis in cyst cells, increased tubular cell proliferation, increased apoptosis, increased fibrosis, and led to MAPK activation, all of which are features of polycystic kidney disease, especially nephronophthisis. Taken together, these results suggest that Cdc42 localizes the exocyst to primary cilia, whereupon the exocyst targets and docks vesicles carrying ciliary proteins. Abnormalities in this pathway result in deranged ciliogenesis and polycystic kidney disease.

  11. Automatic analysis of ciliary beat frequency using optical flow

    Science.gov (United States)

    Figl, Michael; Lechner, Manuel; Werther, Tobias; Horak, Fritz; Hummel, Johann; Birkfellner, Wolfgang

    2012-02-01

    Ciliary beat frequency (CBF) can be a useful parameter for diagnosis of several diseases, as e.g. primary ciliary dyskinesia. (PCD). CBF computation is usually done using manual evaluation of high speed video sequences, a tedious, observer dependent, and not very accurate procedure. We used the OpenCV's pyramidal implementation of the Lukas-Kanade algorithm for optical flow computation and applied this to certain objects to follow the movements. The objects were chosen by their contrast applying the corner detection by Shi and Tomasi. Discrimination between background/noise and cilia by a frequency histogram allowed to compute the CBF. Frequency analysis was done using the Fourier transform in matlab. The correct number of Fourier summands was found by the slope in an approximation curve. The method showed to be usable to distinguish between healthy and diseased samples. However there remain difficulties in automatically identifying the cilia, and also in finding enough high contrast cilia in the image. Furthermore the some of the higher contrast cilia are lost (and sometimes found) by the method, an easy way to distinguish the correct sub-path of a point's path have yet to be found in the case where the slope methods doesn't work.

  12. Primary ciliary dyskinesia: considerations regarding six cases of Kartagener syndrome.

    Science.gov (United States)

    Ortega, Hugo Alejandro Vega; Vega, Nelson de Araujo; Santos, Bruno Quirino Dos; Maia, Guilherme Tavares da Silva

    2007-01-01

    Primary ciliary dyskinesia (PCD), previously known as immotile cilia syndrome, is an autosomal recessive hereditary disease that includes various patterns of ciliary ultrastructural defects. The most serious form is Kartagener syndrome (KS), which accounts for 50% of all cases of PCD. The incidence of PCD ranges from 1:20,000 to 1:60,000. Since PCD causes deficiency or even stasis of the transport of secretions throughout the respiratory tract, it favors the growth of viruses and bacteria. As a result, patients have lifelong chronic and recurrent infections, typically suffering from bronchitis, pneumonia, hemoptysis, sinusitis, and infertility. Bronchiectasis and other chronic conditions infections can be the end result of the irreversible bronchial alterations, leading to chronic cor pulmonale and its consequences. Only half of the patients affected by PDC present all of the symptoms, a condition designated complete KS, compared with incomplete KS, typically defined as cases in which situs inversus does not occur. The diagnosis is made clinically and confirmed through transmission electron microscopy. Since there is no specific therapy for PCD, it is recommended that, upon diagnosis, secondary infections be treated with potent antibiotics and prophylactic interventions be implemented. In this paper, we report six cases of PCD (five cases of complete KS and one case of KS) and review the related literature, focusing on the diagnostic, therapeutic and clinical aspects of this disease.

  13. Expression of nitric oxide synthase and guanylate cyclase in the human ciliary body and trabecular meshwork

    Institute of Scientific and Technical Information of China (English)

    WU Ren-yi; MA Ning

    2012-01-01

    Background The role played by the nitric oxide (NO) signaling pathway in the aqueous humor dynamics is still unclear.This study was designed to investigate the expression and distribution of NO synthase (NOS) isoforms and guanylate cyclase (GC) in human ciliary body,trabecular meshwork and the Schlemm's canal.Methods Twelve eyes after corneal transplantation were used.Expression of three NOS isoforms (i.e.neuronal NOS (nNOS),inducible NOS (iNOS) and endothelial NOS (eNOS)) and GC were assessed in 10 eyes by immunohistochemical staining using monoclonal or polyclonal antibody of NOS and GC.Ciliary bodies were dissected free and the total proteins were extracted.Western blotting was performed to confirm the protein expression of 3 NOS isoforms and GC.Results Expression of 3 NOS isoforms and GC were observed in the ciliary epithelium,ciliary muscle,trabecular meshwork and the endothelium of the Schlemm's canal.Immunoreactivity of nNOS was detected mainly along the apical cytoplasmic junction of the non-pigmented epithelium (NPE) and pigmented epithelial (PE) cells.Protein expressions of 3 NOS isoforms and GC were confirmed in isolated human ciliary body by Western blotting.Conclusions The expression of NOS isoforms and GC in human ciliary body suggest the possible involvement of NO and cyclic guanosine monophosphate (cyclic GMP,cGMP) signaling pathway in the ciliary body,and may play a role in both processes of aqueous humor formation and drainage.

  14. Physical models of cell motility

    CERN Document Server

    2016-01-01

    This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force ...

  15. Gender effects on esophageal motility

    Directory of Open Access Journals (Sweden)

    Dantas R.O.

    1998-01-01

    Full Text Available It has been suggested that there are no gender effects on esophageal motility. However, in previous studies the subjects did not perform multiple swallows and the quantitative features of esophageal contractions were not evaluated. In order to investigate the gender effects on esophageal motility we studied 40 healthy normal volunteers, 20 men aged 37 ± 15 years (mean ± SD, and 20 women aged 38 ± 14 years. We used the manometric method with an eight-lumen polyvinyl catheter and continuous perfusion. The upper and lower esophageal sphincter pressures were measured by the rapid pull-through method. With the catheter positioned with one lumen opening in the lower esophageal sphincter, and the others at 5, 10 and 15 cm above the sphincter, ten swallows of a 5-ml water bolus alternated with ten dry swallows were performed. Statistical analysis was done by the Student t-test and Mann-Whitney test. Gender differences (P<0.05 were observed for wet swallows in the duration of contractions 5 cm above the lower esophageal sphincter (men: 3.7 ± 0.2 s, women: 4.5 ± 0.3 s, mean ± SEM, and in the velocity of contractions from 15 to 10 cm above the lower esophageal sphincter (men: 4.7 ± 0.3 cm/s, women: 3.5 ± 0.2 cm/s. There was no difference (P>0.05 in sphincter pressure, duration and percentage of complete lower esophageal sphincter relaxation, amplitude of contractions, or in the number of failed, multipeaked and synchronous contractions. We conclude that gender may cause some differences in esophageal motility which, though of no clinical significance, should be taken into consideration when interpreting esophageal motility tests.

  16. Genotypic Variation for Salinity Tolerance in Cenchrus ciliaris L.

    Science.gov (United States)

    Al-Dakheel, Abdullah J; Hussain, M Iftikhar

    2016-01-01

    Scarcity of irrigation water and increasing soil salinization has threatened the sustainability of forage production in arid and semi-arid region around the globe. Introduction of salt-tolerant perennial species is a promising alternative to overcome forage deficit to meet future livestock needs in salt-affected areas. This study presents the results of a salinity tolerance screening trial which was carried out in plastic pots buried in the open field for 160 buffelgrass (Cenchrus ciliaris L.) accessions for three consecutive years (2003-2005). The plastic pots were filled with sand, organic, and peat moss mix and were irrigated with four different quality water (EC 0, 10, 15, and 20 dS m(-1)). The results indicate that the average annual dry weights (DW) were in the range from 122.5 to 148.9 g/pot in control; 96.4-133.8 g/pot at 10 dS m(-1); 65.6-80.4 g/pot at 15 dS m(-1), and 55.4-65.6 g/pot at 20 dS m(-1). The highest DW (148.9 g/pot) was found with accession 49 and the lowest with accession 23. Principle component analysis shows that PC-1 contributed 81.8% of the total variability, while PC-2 depicted 11.7% of the total variation among C. ciliaris accessions for DW. Hierarchical cluster analysis revealed that a number of accessions collected from diverse regions could be grouped into a single cluster. Accessions 3, 133, 159, 30, 23, 142, 141, 95, 49, 129, 124, and 127 were stable, salt tolerant, and produced good dry biomass yield. These accessions demonstrate sufficient salinity tolerance potential for promotion in marginal lands to enhance farm productivity and reduce rural poverty.

  17. Genotypic variation for salinity tolerance in Cenchrus ciliaris L

    Directory of Open Access Journals (Sweden)

    M. Iftikhar Hussain

    2016-07-01

    Full Text Available Scarcity of irrigation water and increasing soil salinization has threatened the sustainability of forage production in arid and semi-arid region around the globe. Introduction of salt-tolerant perennial species is a promising alternative to overcome forage deficit to meet future livestock needs in salt-affected areas. This study presents the results of a salinity tolerance screening trial which was carried out in plastic pots buried in the open field for 160 buffelgrass (Cenchrus ciliaris L. accessions for three consecutive years (2003-2005. The plastic pots were filled with sand, organic, and peat moss mix and were irrigated with four different quality water (EC 0, 10, 15, and 20 dS m-1. The results indicate that the average annual dry weights (DW were in the range from 122.5 – 148.9 g pot-1 in control; 96.4 – 133.8 g pot-1 at 10 dS m-1; 65.6 – 80.4 g pot-1 at 15 dS m-1, and 55.4- 65.6 g pot-1 at 20 dS m-1. The highest DW (148.9 g pot-1 was found with accession 49 and the lowest with accession 23. Principle component analysis shows that PC-1 contributed 81.8 % of the total variability, while PC-2 depicted 11.7% of the total variation among C. ciliaris accessions for DW. Hierarchical cluster analysis revealed that a number of accessions collected from diverse regions could be grouped into a single cluster. Accessions 3, 133, 159, 30, 23, 142, 141, 95, 49, 129, 124, and 127 were stable, salt tolerant, and produced good dry biomass yield. These accessions demonstrate sufficient salinity tolerance potential for promotion in marginal land and arid regions to enhance farm productivity and reduce rural poverty.

  18. Eye Motility Alterations in Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Raffaele Migliorini

    2015-01-01

    Full Text Available Purpose. We evaluated a sample of individuals with retinitis pigmentosa (RP with the aim of assessing the presence or absence of ocular motility (OM disorders. Materials and Methods. We included 23 out of the 25 individuals from the sample (9 females and 14 males with an average visual acuity of 6/10. Results. The cover test about the vertical deviation in near distance showed an r/l in 3.45% and an l/r in 6.9%. The assessment of OM showed that 39.1% of the sample had a severe hyperfunction of the IO of the right eye and a severe hyperfunction (34.5% of the SO of the left eye; 21.8% had a moderate hypofunction of right SO with a moderate percentage of hypofunction of 17.5% for the SO of the left eye; 30.5%, however, showed a serious hypofunction of the SR of both eyes; 21.7% of the sample showed a hyperfunction in both eyes of the IR. Conclusion. This alteration, however, is not attributable to either a high refractive defect (medium-low myopia: −1 diopter ±3 SD or to a severely impaired binocular vision (visual acuity, motor fusion, and stereopsis are normal or within a range of values commonly accepted. Therefore, the disorders of OM lead to a genetic origin.

  19. Eye Motility Alterations in Retinitis Pigmentosa.

    Science.gov (United States)

    Migliorini, Raffaele; Comberiati, Anna Maria; Galeoto, Giovanni; Fratipietro, Manuela; Arrico, Loredana

    2015-01-01

    Purpose. We evaluated a sample of individuals with retinitis pigmentosa (RP) with the aim of assessing the presence or absence of ocular motility (OM) disorders. Materials and Methods. We included 23 out of the 25 individuals from the sample (9 females and 14 males) with an average visual acuity of 6/10. Results. The cover test about the vertical deviation in near distance showed an r/l in 3.45% and an l/r in 6.9%. The assessment of OM showed that 39.1% of the sample had a severe hyperfunction of the IO of the right eye and a severe hyperfunction (34.5%) of the SO of the left eye; 21.8% had a moderate hypofunction of right SO with a moderate percentage of hypofunction of 17.5% for the SO of the left eye; 30.5%, however, showed a serious hypofunction of the SR of both eyes; 21.7% of the sample showed a hyperfunction in both eyes of the IR. Conclusion. This alteration, however, is not attributable to either a high refractive defect (medium-low myopia: -1 diopter ±3 SD) or to a severely impaired binocular vision (visual acuity, motor fusion, and stereopsis are normal or within a range of values commonly accepted). Therefore, the disorders of OM lead to a genetic origin.

  20. Simultaneous sinus and lung infections in patients with primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Alanin, Mikkel Christian; Johansen, Helle Krogh; Aanaes, Kasper

    2015-01-01

    Conclusion: The sinuses should be considered as a bacterial reservoir and a target for surgery and antibiotic treatment in patients with primary ciliary dyskinesia (PCD). The observed decrease in serum precipitating antibodies (precipitins) against Pseudomonas aeruginosa may indicate a beneficial...

  1. Adenoma of nonpigmented epithelium in ciliary body:literature review and case report

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Adenomas of the nonpigmented ciliary epithelium (NPCE) are often clinically indistinguishable from amelanotic malignant melanomas of the ciliary body or metastatic carcinomas. This paper reports a case study of a distinctive variant of adenoma of the NPCE, which clinically appears as epiretinal membrane in the macular region. Histopathologic studies have revealed this is an adenoma of the NPCE. Identification of this clinic feature is important because it will miss the diagnosis of the adenoma of the NPCE. In this case study, B-scan ultrasonography as well as computerized tomography (CT) has been used to provide help in diagnosing the ciliary body tumor. Because of their anterior location in the ciliary body, partial lamellar sclerouvectomy is an effective method of treatment.

  2. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    Science.gov (United States)

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  3. Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals.

    Science.gov (United States)

    Piasecki, Brian P; Burghoorn, Jan; Swoboda, Peter

    2010-07-20

    Cilia were present in the last eukaryotic common ancestor (LECA) and were retained by most organisms spanning all extant eukaryotic lineages, including organisms in the Unikonta (Amoebozoa, fungi, choanoflagellates, and animals), Archaeplastida, Excavata, Chromalveolata, and Rhizaria. In certain animals, including humans, ciliary gene regulation is mediated by Regulatory Factor X (RFX) transcription factors (TFs). RFX TFs bind X-box promoter motifs and thereby positively regulate >50 ciliary genes. Though RFX-mediated ciliary gene regulation has been studied in several bilaterian animals, little is known about the evolutionary conservation of ciliary gene regulation. Here, we explore the evolutionary relationships between RFX TFs and cilia. By sampling the genome sequences of >120 eukaryotic organisms, we show that RFX TFs are exclusively found in unikont organisms (whether ciliated or not), but are completely absent from the genome sequences of all nonunikont organisms (again, whether ciliated or not). Sampling the promoter sequences of 12 highly conserved ciliary genes from 23 diverse unikont and nonunikont organisms further revealed that phylogenetic footprints of X-box promoter motif sequences are found exclusively in ciliary genes of certain animals. Thus, there is no correlation between cilia/ciliary genes and the presence or absence of RFX TFs and X-box promoter motifs in nonanimal unikont and in nonunikont organisms. These data suggest that RFX TFs originated early in the unikont lineage, distinctly after cilia evolved. The evolutionary model that best explains these observations indicates that the transcriptional rewiring of many ciliary genes by RFX TFs occurred early in the animal lineage.

  4. Roles of paroxetine and corticosterone on adult mammalian ciliary body cell proliferation

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LAU Benson WM; YAU Suk-yu; LI Suk-yee; LEUNG Nelson; WANG Ning-li; TANG Siu-wa; LEE Tatia MC; SO Kwok-fai

    2010-01-01

    Background The neurogenesis in retina of adult mammals is generally abolished, and this renders the retina lack of regenerative capacity.Despite this, there is a small population of nestin-positive cells in the ciliary epithelium which retains neurogenic potential.The present study aimed at investigating the effect of two drugs, corticosterone and paroxetine, on the cell proliferation of the ciliary body.Methods Adult Sprague-Dawley rats were given vehicle, corticosterone, paroxetine, or both corticosterone and paroxetine treatment for 14 days.Cell proliferation in the ciliary body was quantified using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry.Co-labelling of BrdU and stem cell marker was used to phenotype the BrdU immunoreactive cells.Results Corticosterone treatment suppressed while paroxetine treatment increased the cell proliferation of the ciliary body.Co-labelling with cell markers revealed that the BrdU positive cells also showed nestin expression but not glial fibrillary acidic protein (GFAP).Conclusions The results illustrate that proliferation of retinal progenitor cells situated in ciliary body are subjected to regulation by selective serotonin reuptake inhibitors (SSRI) and corticosteroid, which is similar to our previous findings in neurogenic regions in central nervous system (CNS).Paroxetine treatment could reverse the suppressive effect of corticosterone on ciliary body cell proliferation.This provides information for future investigation of retinal stem cell biology and potential treatment of retinal degenerative diseases.

  5. Influence of endogenous ciliary neurotrophic factor on neural differentiation of adult rat hippocampal progenitors

    Institute of Scientific and Technical Information of China (English)

    Jun Ding; Zhili He; Juan Ruan; Ying Liu; Chengxin Gong; Shenggang Sun; Honghui Chen

    2013-01-01

    Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.

  6. [Specific features of centriole formation and ciliogenesis in ciliary epithelium cells of respiratory tracts in patients with Kartagener syndrome].

    Science.gov (United States)

    Domaratskiĭ, K E; Uvakina, E V; Volkov, I K; Onishchenko, G E

    2005-01-01

    An electron microscopic study of the ciliary epithelium of respiratory tracts was carried out in children (members of the same family) with Kartagener syndrome, which is a variant of ciliary dyskinesia. It was shown that in the case of both mobile cilia and ciliary dyskinesia in man, centrioles are formed during formation of the ciliary basal bodies predominantly de novo, involving deuterosomes. A wide spectrum of pathological changes was described in literature, such as the absence of dynein arms in the axoneme and disorganization of axoneme structure. In addition to these changes in the ciliary system, we found integration of several ciliary axonemes by the same plasma membrane, running of microtubules from the plasma membrane as bundles, different orientation of basal legs, etc.

  7. Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A

    Science.gov (United States)

    Wang, Doudou; Nitta, Ryo; Morikawa, Manatsu; Yajima, Hiroaki; Inoue, Shigeyuki; Shigematsu, Hideki; Kikkawa, Masahide; Hirokawa, Nobutaka

    2016-01-01

    The kinesin-8 motor, KIF19A, accumulates at cilia tips and controls cilium length. Defective KIF19A leads to hydrocephalus and female infertility because of abnormally elongated cilia. Uniquely among kinesins, KIF19A possesses the dual functions of motility along ciliary microtubules and depolymerization of microtubules. To elucidate the molecular mechanisms of these functions we solved the crystal structure of its motor domain and determined its cryo-electron microscopy structure complexed with a microtubule. The features of KIF19A that enable its dual function are clustered on its microtubule-binding side. Unexpectedly, a destabilized switch II coordinates with a destabilized L8 to enable KIF19A to adjust to both straight and curved microtubule protofilaments. The basic clusters of L2 and L12 tether the microtubule. The long L2 with a characteristic acidic-hydrophobic-basic sequence effectively stabilizes the curved conformation of microtubule ends. Hence, KIF19A utilizes multiple strategies to accomplish the dual functions of motility and microtubule depolymerization by ATP hydrolysis. DOI: http://dx.doi.org/10.7554/eLife.18101.001 PMID:27690357

  8. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a... esophageal motility monitor and tube, the gastrointestinal motility (electrical) system, and...

  9. Protective Effects of Ciliary Neurotrophic Factor on Denervated Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    黄仕龙; 王发斌; 洪光祥; 万圣祥; 康皓

    2002-01-01

    Summary: To study the effects of ciliary neurotrophic factor (CNTF) on denervated skeletal muscle atrophy and to find a new approach to ameliorate atrophy of denervated muscle, a model was estab lished by cutting the right sciatic nerve in 36 Wistar mice, with the left side serving as control. Then they were divided into two groups randomly. CNTF (1 U/ml) 0. 1 ml was injected into the right tib-ial muscle every day in experimental group, and saline was used into another group for comparison.The muscle wet weight, muscle total protein, Ca2+, physiological response and morphology were an alyzed on the 7th, 14th and 28th day after operation. Our results showed that compared to control group, there was a significant increase in muscle wet weight, total protein, Ca2+ , muscle fiber cross section area in CNTF group (P< 0. 05). CNTF could ameliorate the decrease of tetanic tension (PO), post-tetanic twitch potentiation (PTP), and the prolonged muscle relaxation time (RT)caused by denervation (P<0. 05). The motor end-plate areas 7 days and 14 days after denervation was similar (P>0. 05), but significantly larger 28 days after the denervation (P<0.05). Our re-sults suggest that CNTF exerts myotrophic effects by attenuating the morphological and functional changes associated with denervation of rat muscles and has protective effects on denervated muscle and motor end plate.

  10. Gaslike model of social motility

    CERN Document Server

    Parravano, A; 10.1103/PhysRevE.78.026120

    2009-01-01

    We propose a model to represent the motility of social elements. The model is completely deterministic, possesses a small number of parameters, and exhibits a series of properties that are reminiscent of the behavior of comunities in social-ecological competition; these are: (i) similar individuals attract each other; (ii) individuals can form stable groups; (iii) a group of similar individuals breaks into subgroups if it reaches a critical size; (iv) interaction between groups can modify the distribution of the elements as a result of fusion, fission, or pursuit; (v) individuals can change their internal state by interaction with their neighbors. The simplicity of the model and its richness of emergent behaviors, such as, for example, pursuit between groups, make it a useful toy model to explore a diversity of situations by changing the rule by which the internal state of individuals is modified by the interactions with the environment.

  11. 纤毛疾病和与之相关的基因%Ciliary Disease and the Related Genes

    Institute of Scientific and Technical Information of China (English)

    柳林; 纪伟

    2012-01-01

    Recently, Cilia has been added to a well-known causes of human diseases. Unlike other cellular organdies, cilia ate tiny hair-like organelles that attached to the cell surface, and are located on almost all polarized cell types of the human body. Cilia play a crucial role in regulating vertebrate development and tissue homeostasis. The various cellular functions of cilia explain why cilia-related disorders can affect many organ systems. Defects in ciliary genes cause lots of ciliary diseases, such as: Nephronophthisis, Joubert Syndrome, Meckel-Gruber Syndrome and Bardet Biedl Syndrome.%近年来,研究发现纤毛在生成或者形态的缺陷均能导致新生儿遗传性疾病.与其他细胞器不同的是,纤毛这一小的毛发状细胞器能在几乎所有的极性细胞表面上生成,而且功能非常多样化.纤毛在调节脊椎动物的发育和内环境的平衡起着相当重要的作用,而与纤毛相关基因的缺失则与一系列疾病相关,包括:Nephronophthisis、Joubert综合症、Meckel-Gruber综合症和Bardet Biedl综合症等.结合最近的研究,本文主要对四类主纤毛相关疾病的基因进行归类总结.

  12. Active Gel Model of Amoeboid Cell Motility

    CERN Document Server

    Callan-Jones, A C

    2013-01-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  13. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid.

    Science.gov (United States)

    Zhang, Pingbo; Kirby, David; Dufresne, Craig; Chen, Yan; Turner, Randi; Ferri, Sara; Edward, Deepak P; Van Eyk, Jennifer E; Semba, Richard D

    2016-04-01

    The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2959, 2867, and 2755 nonredundant proteins with peptide and protein false-positive rates of body, and RPE/choroid. Four "missing proteins" were identified in ciliary body based on ≥2 proteotypic peptides. The mass spectrometric proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001424 and PXD002194.

  14. Arf4 is required for Mammalian development but dispensable for ciliary assembly.

    Directory of Open Access Journals (Sweden)

    John A Follit

    2014-02-01

    Full Text Available The primary cilium is a sensory organelle, defects in which cause a wide range of human diseases including retinal degeneration, polycystic kidney disease and birth defects. The sensory functions of cilia require specific receptors to be targeted to the ciliary subdomain of the plasma membrane. Arf4 has been proposed to sort cargo destined for the cilium at the Golgi complex and deemed a key regulator of ciliary protein trafficking. In this work, we show that Arf4 binds to the ciliary targeting sequence (CTS of fibrocystin. Knockdown of Arf4 indicates that it is not absolutely required for trafficking of the fibrocystin CTS to cilia as steady-state CTS levels are unaffected. However, we did observe a delay in delivery of newly synthesized CTS from the Golgi complex to the cilium when Arf4 was reduced. Arf4 mutant mice are embryonic lethal and die at mid-gestation shortly after node formation. Nodal cilia appeared normal and functioned properly to break left-right symmetry in Arf4 mutant embryos. At this stage of development Arf4 expression is highest in the visceral endoderm but we did not detect cilia on these cells. In the visceral endoderm, the lack of Arf4 caused defects in cell structure and apical protein localization. This work suggests that while Arf4 is not required for ciliary assembly, it is important for the efficient transport of fibrocystin to cilia, and also plays critical roles in non-ciliary processes.

  15. Swimming speed of larval snail does not correlate with size and ciliary beat frequency.

    Science.gov (United States)

    Chan, Kit Yu Karen; Jiang, Houshuo; Padilla, Dianna K

    2013-01-01

    Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8-4 body lengths s(-1)) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton.

  16. Swimming speed of larval snail does not correlate with size and ciliary beat frequency.

    Directory of Open Access Journals (Sweden)

    Kit Yu Karen Chan

    Full Text Available Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8-4 body lengths s(-1 that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton.

  17. Ammonia excretion in mytilid mussels is facilitated by ciliary beating.

    Science.gov (United States)

    Thomsen, J; Himmerkus, N; Holland, N; Sartoris, F J; Bleich, M; Tresguerres, M

    2016-08-01

    The excretion of nitrogenous waste products in the form of ammonia (NH3) and ammonium (NH4 (+)) is a fundamental process in aquatic organisms. For mytilid bivalves, little is known about the mechanisms and sites of excretion. This study investigated the localization and the mechanisms of ammonia excretion in mytilid mussels. An Rh protein was found to be abundantly expressed in the apical cell membrane of the plicate organ, which was previously described as a solely respiratory organ. The Rh protein was also expressed in the gill, although at significantly lower concentrations, but was not detectable in mussel kidney. Furthermore, NH3/NH4 (+) was not enriched in the urine, suggesting that kidneys are not involved in active NH3/NH4 (+) excretion. Exposure to elevated seawater pH of 8.5 transiently reduced NH3/NH4 (+) excretion rates, but they returned to control values following 24 h acclimation. These mussels had increased abundance of V-type H(+)-ATPase in the apical membranes of plicate organ cells; however, NH3/NH4 (+) excretion rates were not affected by the V-type H(+)-ATPase specific inhibitor concanamycin A (100 nmol l(-1)). In contrast, inhibition of ciliary beating with dopamine and increased seawater viscosity significantly reduced NH3 excretion rates under control pH (8.0). These results suggest that NH3/NH4 (+) excretion in mytilid mussels takes place by passive NH3 diffusion across respiratory epithelia via the Rh protein, facilitated by the water current produced for filter feeding, which prevents accumulation of NH3 in the boundary layer. This mechanism would be energy efficient for sessile organisms, as they already generate water currents for filter feeding.

  18. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    Science.gov (United States)

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  19. Association of seminal plasma motility inhibitors/semenogelins with sperm in asthenozoospermia-infertile men.

    Science.gov (United States)

    Terai, K; Yoshida, K; Yoshiike, M; Fujime, M; Iwamoto, T

    2010-01-01

    Seminal plasma motility inhibitors (SPMIs) are proteinase-resistant fragments of semenogelin I and II (Sgs), which are the major proteins of semen coagulum. SPMIs inhibit the motility of spermatozoa, and Sgs are thought to be natural regulators of human sperm function. The mechanism underlying sperm motility regulation and its association with defective motility in infertile men remain unclear. The purpose of this study was to investigate the association between SPMIs and spermatozoa in infertile men with asthenozoospermia. Fifty-four semen samples from 37 asthenozoospermic patients and 17 samples from 9 normal healthy subjects were analyzed. Spermatozoa, washed by Percoll density gradients, were immunostained with anti-SPMI antibody and subjected to flow cytometric analysis. The proportion of spermatozoa labeled with the antibody and the average intensity of fluorescence labeling per spermatozoa were analyzed in relation to the parameters used for semen analysis. A significant negative correlation was found between sperm motility and the proportion (R = -0.68) and intensity (R = -0.38) of labeling. These results suggest that SPMIs remain on the sperm surface after liquefaction. This might account for some disorders of sperm motility observed in infertile men with asthenozoospermia.

  20. KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling

    DEFF Research Database (Denmark)

    Schou, Kenneth Bødtker; Mogensen, Johanne Bay; Morthorst, Stine Kjær

    2017-01-01

    Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation...

  1. Brachytherapy, A viable option of globe salvage in treatment of large ciliary body melanocytoma

    Directory of Open Access Journals (Sweden)

    Mahesh P Shanmugam

    2014-01-01

    Full Text Available We report a case of large histopathologically proven melanocytoma of the ciliary body in a 15-year-old male, presented with rapid extraocular growth following incisional biopsy with scleral patch graft. We chose brachytherapy with Ruthenium 106 plaque over enucleation as the later was refused by the parents. The initial apical height of the tumor was 14.2 mm on ultrasonography. Two weeks after brachytherapy, the mass regressed to a size of 8.1 mm and 1 year later to 6.7 mm. This is the first case report showing the response of brachytherapy to ciliary body melanocytoma, which results in ocular and visual acuity salvation with considerable decreased in size of the tumor. The authors conclude that brachytherapy is an option in the management of non-resectable melanocytoma of the ciliary body.

  2. Deterministic patterns in cell motility

    Science.gov (United States)

    Lavi, Ido; Piel, Matthieu; Lennon-Duménil, Ana-Maria; Voituriez, Raphaël; Gov, Nir S.

    2016-12-01

    Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.

  3. Identification of lymphatics in the ciliary body of the human eye: a novel "uveolymphatic" outflow pathway.

    Science.gov (United States)

    Yücel, Yeni H; Johnston, Miles G; Ly, Tina; Patel, Manoj; Drake, Brian; Gümüş, Ersin; Fraenkl, Stephan A; Moore, Sara; Tobbia, Dalia; Armstrong, Dianna; Horvath, Eva; Gupta, Neeru

    2009-11-01

    Impaired aqueous humor flow from the eye may lead to elevated intraocular pressure and glaucoma. Drainage of aqueous fluid from the eye occurs through established routes that include conventional outflow via the trabecular meshwork, and an unconventional or uveoscleral outflow pathway involving the ciliary body. Based on the assumption that the eye lacks a lymphatic circulation, the possible role of lymphatics in the less well defined uveoscleral pathway has been largely ignored. Advances in lymphatic research have identified specific lymphatic markers such as podoplanin, a transmembrane mucin-type glycoprotein, and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). Lymphatic channels were identified in the human ciliary body using immunofluorescence with D2-40 antibody for podoplanin, and LYVE-1 antibody. In keeping with the criteria for lymphatic vessels in conjunctiva used as positive control, D2-40 and LYVE-1-positive lymphatic channels in the ciliary body had a distinct lumen, were negative for blood vessel endothelial cell marker CD34, and were surrounded by either discontinuous or no collagen IV-positive basement membrane. Cryo-immunogold electron microscopy confirmed the presence D2-40-immunoreactivity in lymphatic endothelium in the human ciliary body. Fluorescent nanospheres injected into the anterior chamber of the sheep eye were detected in LYVE-1-positive channels of the ciliary body 15, 30, and 45 min following injection. Four hours following intracameral injection, Iodine-125 radio-labeled human serum albumin injected into the sheep eye (n = 5) was drained preferentially into cervical, retropharyngeal, submandibular and preauricular lymph nodes in the head and neck region compared to reference popliteal lymph nodes (P human ciliary body, and that fluid and solutes flow at least partially through this system. The discovery of a uveolymphatic pathway in the eye is novel and highly relevant to studies of glaucoma and other eye diseases.

  4. Nasal nitric oxide and nitric oxide synthase expression in primary ciliary dyskinesia.

    Science.gov (United States)

    Pifferi, M; Bush, A; Maggi, F; Michelucci, A; Ricci, V; Conidi, M E; Cangiotti, A M; Bodini, A; Simi, P; Macchia, P; Boner, A L

    2011-03-01

    No study has evaluated the correlation between different expression of nitric oxide synthase (NOS) isoforms in nasal epithelial cells and nasal NO (nNO) level in primary ciliary dyskinesia (PCD). Gene expression of endothelial (NOS3) and inducible NOS (NOS2) and their correlation with nNO level, ciliary function and morphology were studied in patients with PCD or secondary ciliary dyskinesia (SCD). NOS3 gene polymorphisms were studied in blood leukocytes. A total of 212 subjects were studied (48 with PCD, 161 with SCD and three normal subjects). nNO level correlated with mean ciliary beat frequency (p = 0.044; r = 0.174). The lower the nNO level the higher was the percentage of immotile cilia (p<0.001; r = -0.375). A significant positive correlation between NOS2 gene expression and nNO levels was demonstrated in all children (p = 0.001; r = 0.428), and this correlation was confirmed in patients with PCD (p = 0.019; r = 0.484). NOS2 gene expression was lower in PCD than in SCD (p = 0.04). The NOS3 isoform correlated with missing central microtubules (p = 0.048; r = 0.447). nNO levels were higher in PCD subjects with the NOS3 thymidine 894 mutation, and this was associated with a higher ciliary beat frequency (p = 0.045). These results demonstrate a relationship between nNO level, NOS mRNA expression and ciliary beat frequency.

  5. Towards a computer-aided diagnosis system for colon motility dysfunctions

    Science.gov (United States)

    Glocker, Ben; Buhmann, Sonja; Kirchhoff, Chlodwig; Mussack, Thomas; Reiser, Maximilian; Navab, Nassir

    2007-03-01

    Colon motility disorders are a very common problem. A precise diagnosis with current methods is almost unachievable. This makes it extremely difficult for the clinical experts to decide for the right intervention such as colon resection. The use of cine MRI for visualizing the colon motility is a very promising technique. In addition, if image segmentation and qualitative motion analysis provide the necessary tools, it could provide the appropriate diagnostic solution. In this work we defined necessary steps in the image processing workflow to gain valuable measurements for a computer aided diagnosis of colon motility disorders. For each step, we developed methods to deal with the dynamic image data. There is need for compensating the breathing motion since no respiratory gating could be used. We segment the colon using a graph cuts approach in 2D and 3D for further analysis and visualization. The analysis of the large bowel motility is done by tracking the extension of the colon during a propagating peristaltic wave. The main objective of this work is to extract a motion model to define a clinical index that can be used in diagnosis of large bowel motility dysfunction. We aim at the classification and localization of such pathologies.

  6. The Role of TSC Proteins in Regulating Cell Adhesion and Motility

    Science.gov (United States)

    2006-09-01

    regulate cell adhesion and motility as it relates to the genetic disorder tuberous sclerosis complex (TSC). The pathogenesis of TSC that develops due to the...from seizures, mental retardation, and autism . Thus, TSC represents a major cause of developmental disorders and epilepsy in the pediatric...insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther. 2:471–476. Kwiatkowski, D.J., H. Zhang, J.L. Bandura, K.M

  7. Pathophysiological aspects of diverticular disease of colon and role of large bowel motility

    Institute of Scientific and Technical Information of China (English)

    Gabrio Bassotti; Fabio Chistolini; Antonio Morelli

    2003-01-01

    Colonic diverticular disease (diverticulosis) is one of the most common gastrointestinal disorders in Western countries. This disorder is strictly related to aging and fibre intake, and still bears a discrete amount of morbidity. Numerous etiological co-factors have to date been implicated in the pathogenesis of the disease, yet the supporting evidence is still far from absolute. The present review considers the pathophysiology of colonic diverticular disease, with a special emphasis on factors related to abnormal colonic motility.

  8. Ciliary contact interactions dominate surface scattering of swimming eukaryotes

    CERN Document Server

    Kantsler, Vasily; Polin, Marco; Goldstein, Raymond E

    2013-01-01

    Interactions between swimming cells and surfaces are essential to many microbiological processes, from bacterial biofilm formation to human fertilization. However, in spite of their fundamental importance, relatively little is known about the physical mechanisms that govern the scattering of flagellated or ciliated cells from solid surfaces. A more detailed understanding of these interactions promises not only new biological insights into structure and dynamics of flagella and cilia, but may also lead to new microfluidic techniques for controlling cell motility and microbial locomotion, with potential applications ranging from diagnostic tools to therapeutic protein synthesis and photosynthetic biofuel production. Due to fundamental differences in physiology and swimming strategies, it is an open question whether microfluidic transport and rectification schemes that have recently been demonstrated for pusher-type microswimmers such as bacteria and sperm cells, can be transferred to puller-type algae and other...

  9. Mammalian Sperm Motility: Observation and Theory

    KAUST Repository

    Gaffney, E.A.

    2011-01-21

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics. © 2011 by Annual Reviews. All rights reserved.

  10. Fluoxetine causes decrease in intestinal motility

    Directory of Open Access Journals (Sweden)

    Ayesha Afzal

    2015-04-01

    Conclusion: Our study has indicated that fluoxetine on isolated ileal intestinal smooth muscle decrease the motility and this decrease in motility is possibly due to the inability of fluoxetine in vitro to enhance the serotonergic transmission and also because of the interaction of these agents with some of the other receptors, present in the intestinal smooth muscles. [Int J Basic Clin Pharmacol 2015; 4(2.000: 265-268

  11. Flagellar motility in eukaryotic human parasites.

    Science.gov (United States)

    Krüger, Timothy; Engstler, Markus

    2015-10-01

    A huge variety of protists rely on one or more motile flagella to either move themselves or move fluids and substances around them. Many of these flagellates have evolved a symbiotic or parasitic lifestyle. Several of the parasites have adapted to human hosts, and include agents of prevalent and serious diseases. These unicellular parasites have become specialised in colonising a wide range of biological niches within humans. They usually have diverse transmission cycles, and frequently manifest a variety of distinct morphological stages. The motility of the single or multiple flagella plays important but understudied roles in parasite transmission, host invasion, dispersal, survival, proliferation and pathology. In this review we provide an overview of the important human pathogens that possess a motile flagellum for at least part of their life cycle. We highlight recently published studies that aim to elucidate motility mechanisms, and their relevance for human disease. We then bring the physics of swimming at the microscale into context, emphasising the importance of interdisciplinary approaches for a full understanding of flagellate motility - especially in light of the parasites' microenvironments and population dynamics. Finally, we summarise some important technological aspects, describing challenges for the field and possibilities for motility analyses in the future.

  12. GABA maintains the proliferation of progenitors in the developing chick ciliary marginal zone and non-pigmented ciliary epithelium.

    Directory of Open Access Journals (Sweden)

    Henrik Ring

    Full Text Available GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABA(A receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to characterize the GABA(A receptor system. To quantify the effects on proliferation by GABA(A receptor agonists and antagonists, incorporation of thymidine analogues was used. The results showed that the NPE cells express functional extrasynaptic GABA(A receptors with tonic properties and that low concentration of GABA is required for a baseline level of proliferation. Antagonists of the GABA(A receptors decreased the proliferation of dissociated E12 NPE cells. Bicuculline also had effects on progenitor cell proliferation in intact E8 and E12 developing retina. The NPE cells had low levels of the Cl-transporter KCC2 compared to the mature retina, suggesting a depolarising role for the GABA(A receptors. Treatment with KCl, which is known to depolarise membranes, prevented some of the decreased proliferation caused by inhibition of the GABA(A receptors. This supported the depolarising role for the GABA(A receptors. Inhibition of L-type voltage-gated Ca(2+ channels (VGCCs reduced the proliferation in the same way as inhibition of the GABA(A receptors. Inhibition of the channels increased the expression of the cyclin-dependent kinase inhibitor p27(KIP1, along with the reduced proliferation. These results are consistent with that when the membrane potential indirectly regulates cell proliferation with hyperpolarisation of the membrane potential resulting in decreased cell division. The increased expression of p27(KIP1 after inhibition of either the GABA(A receptors or the L-type VGCCs suggests a link between the GABA(A receptors, membrane potential, and

  13. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis.

    NARCIS (Netherlands)

    Hollander, A.I. den; Koenekoop, R.K.; Mohamed, M.D.; Arts, H.H.; Boldt, K.; Towns, K.V.; Sedmak, T.; Beer, M. de; Nagel-Wolfrum, K.; McKibbin, M.; Dharmaraj, S.; Lopez, I.; Ivings, L.; Williams, G.A.; Springell, K.; Woods, C.G.; Jafri, H.; Rashid, Y.; Strom, T.M.; Zwaag, B. van der; Gosens, I.; Kersten, F.F.J.; Wijk, E. van; Veltman, J.A.; Zonneveld, M.N.; Beersum, S.E.C. van; Maumenee, I.H.; Wolfrum, U.; Cheetham, M.E.; Ueffing, M.; Cremers, F.P.M.; Inglehearn, C.F.; Roepman, R.

    2007-01-01

    Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We dete

  14. Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia

    NARCIS (Netherlands)

    S.F. Janssen (Sarah); T.G.M.F. Gorgels (Theo); K. Bossers (Koen); J.B. ten Brink (Jacoline); A.H.W. Essing (Anke); M.H. Nagtegaal (Marleen); P.J. van der Spek (Peter); N.M. Jansonius (Nomdo); A.A.B. Bergen (Arthur)

    2012-01-01

    textabstractPurpose: The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecu

  15. Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia

    NARCIS (Netherlands)

    Janssen, Sarah F.; Gorgels, Theo G. M. F.; Bossers, Koen; ten Brink, Jacoline B.; Essing, Anke H. W.; Nagtegaal, Martijn; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2012-01-01

    Purpose: The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatur

  16. Study and retina allotransplantation of porcine ciliary epithelium (CE)-derived cells

    NARCIS (Netherlands)

    Cogliati, Tiziana Paola

    2012-01-01

    This thesis reports the isolation, characterization and allotransplantation in porcine retina of ciliary epithelium (CE)-derived cells, also known as retinal stem cells (RSCs). The self-renewal capacity and differentiation potential of these cells in vitro and in vivo makes them candidate donors in

  17. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    C. Alanin, M.; G. Nielsen, K.; von Buchwald, C.

    2015-01-01

    In patients with primary ciliary dyskinesia (PCD), impaired mucociliary clearance leads to an accumulation of secretions in the airways and susceptibility to repeated bacterial infections. The primary aim of this study was to investigate the bacterial flora in non-chronic and chronic infections i...

  18. [Kartagener sindrome (primary ciliary dyskinesia). Report of a case and literature review].

    Science.gov (United States)

    Pino Rivero, V; Pardo Romero, G; Iglesias González, R J; Rodríguez Carmona, M; del Castillo Beneyto, F

    2007-01-01

    Kartagener syndrome (a clinical variant of primary ciliary dyskinesia) is a recessive autossomical disease characterized by the triad of chronic sinusitis, bronchiectasis and situs inversus with dextrocardia. We report one case described in a 8 years old boy who besides presented a seromucous otitis and bronchitis of repetition. Finally we performed a short bibliographic review at respect of this uncommon pathology.

  19. Choice of nasal nitric oxide technique as first-line test for primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Marthin, J K; Nielsen, K G

    2011-01-01

    Nasal nitric oxide (nNO) has a well-known potential as an indirect discriminative marker between patients with primary ciliary dyskinesia (PCD) and healthy subjects, but real-life experience and usefulness in young children is sparsely reported. Three nNO sampling methods were examined and compar...

  20. Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle;

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a surv...

  1. Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Maglione, Marco; Bush, Andrew; Nielsen, Kim G

    2014-01-01

    BACKGROUND: No studies longitudinally, simultaneously assessed body mass index (BMI) and spirometry in primary ciliary dyskinesia (PCD). METHODS: We determined BMI and spirometry in 158 PCD children and adolescents from London, UK (n = 75), Naples, Italy (n = 23) and Copenhagen, Denmark (n = 60) ...

  2. Statistical physical models of cellular motility

    Science.gov (United States)

    Banigan, Edward J.

    Cellular motility is required for a wide range of biological behaviors and functions, and the topic poses a number of interesting physical questions. In this work, we construct and analyze models of various aspects of cellular motility using tools and ideas from statistical physics. We begin with a Brownian dynamics model for actin-polymerization-driven motility, which is responsible for cell crawling and "rocketing" motility of pathogens. Within this model, we explore the robustness of self-diffusiophoresis, which is a general mechanism of motility. Using this mechanism, an object such as a cell catalyzes a reaction that generates a steady-state concentration gradient that propels the object in a particular direction. We then apply these ideas to a model for depolymerization-driven motility during bacterial chromosome segregation. We find that depolymerization and protein-protein binding interactions alone are sufficient to robustly pull a chromosome, even against large loads. Next, we investigate how forces and kinetics interact during eukaryotic mitosis with a many-microtubule model. Microtubules exert forces on chromosomes, but since individual microtubules grow and shrink in a force-dependent way, these forces lead to bistable collective microtubule dynamics, which provides a mechanism for chromosome oscillations and microtubule-based tension sensing. Finally, we explore kinematic aspects of cell motility in the context of the immune system. We develop quantitative methods for analyzing cell migration statistics collected during imaging experiments. We find that during chronic infection in the brain, T cells run and pause stochastically, following the statistics of a generalized Levy walk. These statistics may contribute to immune function by mimicking an evolutionarily conserved efficient search strategy. Additionally, we find that naive T cells migrating in lymph nodes also obey non-Gaussian statistics. Altogether, our work demonstrates how physical

  3. Growth of the crabgrass species Digitaria ciliaris and Digitaria nuda Crescimento das espécies de capim-colchão Digitaria ciliaris e Digitaria nuda

    Directory of Open Access Journals (Sweden)

    R.C. Souza

    2012-06-01

    Full Text Available The aim of this research paper was to compare the growth of D. ciliaris and D. nuda crabgrass species under non-competitive conditions. To this end, two experiments were conducted, one from March - July 2010 and the other from February - June 2011. The experimental design of both trials was completely randomized making a factorial (2 seasons x 2 species crabgrass x 12 evaluation periods with four replications. Assessments began at 15 days after sowing (DAS, and repeated weekly until 92 DAS. The variables evaluated were total dry matter (roots+leaves+stems, leaf area, leaf number and tiller. The results were submitted to analysis of variance and the absolute growth rate, relative growth rate and leaf area ratio were calculated using the means, which were adjusted regression models. The crabgrass species were significantly different in leaf area, leaf number, tiller number and dry matter per plant. D. ciliaris for all variables was statistically higher than D. nuda. Regarding the speed at which the growth of the species occurred, the absolute growth rate and relative growth rate of D. ciliaris was also greater than D. nuda. In addition, D. ciliaris also had a lower leaf area ratio indicating greater efficiency in converting light energy into carbohydrates. It can be concluded that D. ciliaris has a higher growth rate in conditions where there is no limitation of nutrients and water availability in relation to D. nuda, mainly due to D. ciliaris have greater leaf area, number of leaves and dry matter accumulation per plant.O objetivo da presente pesquisa foi comparar o crescimento das espécies de capim colchão D. ciliaris e D. nuda, em condições não-competitivas. Para isso, foram conduzidos dois experimentos, um de março a julho de 2010 e outro de fevereiro a junho de 2011. O delineamento experimental de ambos os ensaios foi inteiramente casualizado, perfazendo um esquema fatorial (2 épocas x 2 espécies de capim colchão x 12 períodos de

  4. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body.

    Science.gov (United States)

    Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D

    2011-12-02

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.

  5. Regulation of Anterior Chamber Drainage by Bicarbonate-sensitive Soluble Adenylyl Cyclase in the Ciliary Body*

    Science.gov (United States)

    Lee, Yong S.; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y.; Levin, Lonny R.; Buck, Jochen; Marmorstein, Alan D.

    2011-01-01

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (Ct). Modulation of “inflow” and “outflow” pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in Ct with no effect on inflow. In mice deficient in sAC IOP is elevated, and Ct is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or Ct in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate Ct and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure. PMID:21994938

  6. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy.

    Directory of Open Access Journals (Sweden)

    Brigitte Chhin

    2009-03-01

    Full Text Available Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1 gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1-deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT-PCR and western blot, respectively. Human airway epithelial cells that were DNAI1-deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease.

  7. Curvature regulation of the ciliary beat through axonemal twist

    Science.gov (United States)

    Sartori, Pablo; Geyer, Veikko F.; Howard, Jonathon; Jülicher, Frank

    2016-10-01

    Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving axoneme and feed back on dynein activity. However, which particular components of the stress regulate the motors to produce the observed waveforms of the many different types of flagella remains an open question. To address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which result in swimming trajectories such as twisted ribbons and helices, which agree with observations.

  8. Motility modes of the parasite Trypanosoma brucei

    Science.gov (United States)

    Temel, Fatma Zeynep; Qu, Zijie; McAllaster, Michael; de Graffenried, Christopher; Breuer, Kenneth

    2015-11-01

    The parasitic single-celled protozoan Trypanosoma brucei causes African Sleeping Sickness, which is a fatal disease in humans and animals that threatens more than 60 million people in 36 African countries. Cell motility plays a critical role in the developmental phases and dissemination of the parasite. Unlike many other motile cells such as bacteria Escherichia coli or Caulobacter crescentus, the flagellum of T. brucei is attached along the length of its awl-like body, producing a unique mode of motility that is not fully understood or characterized. Here, we report on the motility of T. brucei, which swims using its single flagellum employing both rotating and undulating propulsion modes. We tracked cells in real-time in three dimensions using fluorescent microscopy. Data obtained from experiments using both short-term tracking within the field of view and long-term tracking using a tracking microscope were analyzed. Motility modes and swimming speed were analyzed as functions of cell size, rotation rate and undulation pattern. Research supported by NSF.

  9. Role of vasoactive intestinal peptide and nitric oxide in the modulation of electroacupucture on gastric motility in stressed rats

    Institute of Scientific and Technical Information of China (English)

    Guo-Ming Shen; Mei-Qi Zhou; Guan-Sun Xu; Ying Xu; Gang Yin

    2006-01-01

    AIM: To investigate the effects and mechanisms of vasoactive intestinal peptide (VIP) and nitric oxide (NO)in the modulation of electroacupucture (EA) on gastric motility in restrained-cold stressed rats.METHODS: An animal model of gastric motility disorder was established by restrained-cold stress. Gastric myoelectric activities were recorded by electrogastroent erography (EGG). VIP and NO concentrations in plasma and gastric mucosal and bulb tissues were detected by radioimmunoassay (RIA). VIP expression in the gastric wails was assayed using avidin-biotin-peroxidase complex (ABC) and image analysis.RESULTS: In cold restrained stressed rats, EGG was disordered and irregular. The frequency and amplitude of gastric motility were higher than that in control group (P< 0.01). VIP and NO contents of plasma, gastric mucosal and bulb tissues were obviously decreased (P < 0.01).Following EA at "Zusanli" (ST36), the frequency and amplitude of gastric motility were obviously lowered (P <0.01), while the levels of VIP and NO in plasma, gastric mucosal and bulb tissues increased strikingly (P < 0.01,P < 0.05) and expression of VIP in antral smooth muscle was elevated significantly (P < 0.01) in comparison with those of model group.CONCLUSION: VIP and NO participate in the modulatory effect of EA on gastric motility. EA at "Zusanli"acupoint (ST36) can improve gastric motility of the stressed rats by increasing the levels of VIP and NO.

  10. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    Science.gov (United States)

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  11. Kartagener Syndrome: A Rare Genetic Disorder

    Directory of Open Access Journals (Sweden)

    Kunjan Shakya

    2009-01-01

    Full Text Available Kartagener Syndrome is a rare autosomal recessive disorder consisting of triad of sinusitis, bronchiectasis and situs inversus with dextrocardia. It is the subset of disorder called primary ciliary dyskinesia in which the cilia have abnormal structure and/or function resulting in multisystem diseases of various severity. Clinical manifestations include lifelong, chronic upper and lower respiratory tract diseases secondary to ineffective mucociliary clearance. Early diagnosis and management of chest infections can prevent irreversible damage to lungs and prevent potential lifelong complications. This case report is on a patient who presented with long standing history of sinusitis, bronchiectasis and on examination situs inversus with dextrocardia. Key Words:bronchiectasis, dextrocardia, kartagener syndrome, primary ciliary dyskinesia, situs inversus

  12. Effect of cAMP on short-circuit current in isolated human ciliary body

    Institute of Scientific and Technical Information of China (English)

    WU Ren-yi; MA Ning; HU Qian-qian

    2013-01-01

    Background Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current,Isc) across the ciliary processes in pigs.The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change.Methods In an Ussing-type chamber system,the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed.The involvement of Cl-component in the bath solution was investigated.The effect of Cl-channel (10 μmol/L niflumic acid and 1 mmol/L 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS)),K+ channel (10 mmol/L tetraethylammonium chloride (TEA)),or Na+ channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied.Results Dose-dependently,8-bromo-cAMP (10 nmol/L-30 μmol/L) or forskolin (10 nmol/L-3 μmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue.Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side.When the tissue was bathed in low Cl-solutions,the Isc increase was significantly inhibited.Finally,niflumic acid and DIDS,but not TEA or amiloride,significantly prevented the Isc increase induced by 8-bromo-cAMP.Conclusions cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes.Chloride is likely to be among the ions,the transportation of which across the tissue is triggered by cAMP,suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  13. The Masquerades of a Childhood Ciliary Body Medulloepithelioma: A Case of Chronic Uveitis, Cataract, and Secondary Glaucoma

    Directory of Open Access Journals (Sweden)

    Jocelyn Chua

    2012-01-01

    Full Text Available Ciliary body medulloepitheliomas in childhood often masquerade other intraocular conditions due to its insidious nature as well as its secondary effects on proximal intraocular tissues in the anterior chamber. We report a case where a ciliary body medulloepithelioma in a two-year-old boy presents with chronic uveitis, cataract, and an uncontrolled secondary glaucoma after an innocuous blunt ocular trauma. The diagnosis was only made after the occurrence of a ciliary body mass. We discuss the clinical features of ciliary body medulloepitheliomas, the implications of a delayed diagnosis and treatment as well as the concern of periorbital tumor seeding with the use of an aqueous shunt implant in this case.

  14. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    OpenAIRE

    Gian Carlo Demontis; Claudia Aruta; Antonella Comitato; Anna De Marzo; Valeria Marigo

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor...

  15. Voltage-gated potassium channel Kvl.3 in rabbit ciliary epithelium regulates the membrane potential via coupling intracellular calcium

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; ZHUO Ye-hong; BI Wei-na; BAI Yu-jing; LI Yan-na; WANG Zhi-jian

    2008-01-01

    Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance.Ion channels play an important role in these processes.The main aim of this study was to determine whether the well-characterized members of the Kvl family (Kv1.3) contribute to the Kv currents in ciliary epithelium.Methods New Zealand White rabbits were maintained in a 12 hours light/dark cycle.Ciliary epithelium samples were isolated from the rabbits.We used Western blotting and immunocytochemistry to identify the expression and location of a voltage-gated potassium channel Kvl.3 in ciliary body epithelium.Membrane potential change after adding of Kv1.3 inhibitor margatoxin (MgTX) was observed with a fluorescence method.Results Western blotting and immunocytochemical studies showed that the Kv1.3 protein expressed in pigment ciliary epithelium and nonpigment ciliary epithelium,however it seemed to express more in the apical membrane of the nonpigmented epithelial cells.One nmol/L margatoxin,a specific inhibitor of Kv1.3 channels caused depolarization of the cultured nonpigmented epithelium (NPE) membrane potential.The cytosotic calcium increased after NPE cell depolarization,this increase of cytosolic calcium was partially blocked by 12.5 μmol/L dantrolene and 10 μmol/L nifedipine.These observations suggest that Kv1.3 channels modulate ciliary epithelium potential and effect calcium dependent mechanisms.Conclusion Kv1.3 channels contribute to K+ efflux at the membrane of rabbit ciliary epithelium.

  16. LBP based detection of intestinal motility in WCE images

    Science.gov (United States)

    Gallo, Giovanni; Granata, Eliana

    2011-03-01

    In this research study, a system to support medical analysis of intestinal contractions by processing WCE images is presented. Small intestine contractions are among the motility patterns which reveal many gastrointestinal disorders, such as functional dyspepsia, paralytic ileus, irritable bowel syndrome, bacterial overgrowth. The images have been obtained using the Wireless Capsule Endoscopy (WCE) technique, a patented, video colorimaging disposable capsule. Manual annotation of contractions is an elaborating task, since the recording device of the capsule stores about 50,000 images and contractions might represent only the 1% of the whole video. In this paper we propose the use of Local Binary Pattern (LBP) combined with the powerful textons statistics to find the frames of the video related to contractions. We achieve a sensitivity of about 80% and a specificity of about 99%. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

  17. Directed Autonomic Flow : Functional Motility Fluidics

    NARCIS (Netherlands)

    Kuehn, Philipp T.; de Miranda, Barbara Santos; van Rijn, Patrick

    2015-01-01

    Unidirectional coherent motion of a self-moving droplet is achieved and combined in a functional motility fluidic chip for chemical reactions via a novel and straightforward approach. The droplet shows both increased movement speeds and displacement distances without any input of energy. Nanoparticl

  18. KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling

    Science.gov (United States)

    Schou, Kenneth B.; Mogensen, Johanne B.; Morthorst, Stine K.; Nielsen, Brian S.; Aleliunaite, Aiste; Serra-Marques, Andrea; Fürstenberg, Nicoline; Saunier, Sophie; Bizet, Albane A.; Veland, Iben R.; Akhmanova, Anna; Christensen, Søren T.; Pedersen, Lotte B.

    2017-01-01

    Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling. PMID:28134340

  19. Peroral Endoscopic Myotomy for Treating Achalasia and Esophageal Motility Disorders

    OpenAIRE

    Youn, Young Hoon; Minami, Hitomi; Chiu, Philip Wai Yan; Park, Hyojin

    2016-01-01

    Peroral endoscopic myotomy (POEM) is the application of esophageal myotomy to the concept of natural orifice transluminal surgery (NOTES) by utilizing a submucosal tunneling method. Since the first case of POEM was performed for treating achalasia in Japan in 2008, this procedure is being more widely used by many skillful endosopists all over the world. Currently, POEM is a spotlighted, emerging treatment option for achalasia, and the indications for POEM are expanding to include long-standin...

  20. Vortex arrays and ciliary tangles underlie the feeding-swimming tradeoff in starfish larvae

    CERN Document Server

    Gilpin, William; Prakash, Manu

    2016-01-01

    Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrates. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly-evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary "tangles" analogous to topological defects that break-up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modeling suggest that these vortices create a physical tradeoff between feeding and swimming, which manifests as distinct flow patterns or "eigenstrokes" representing each behavior---potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hyd...

  1. An animated model of reticulorumen motility.

    Science.gov (United States)

    Gookin, Jody L; Foster, Derek M; Harvey, Alice M; McWhorter, Dan

    2009-01-01

    Understanding reticulorumen motility is important to the assessment of ruminant health and optimal production, and in the recognition, diagnosis, and treatment of disease. Accordingly, the teaching of reticulorumen motility is a staple of all veterinary curricula. This teaching has historically been based on written descriptions, line drawings, or pressure tracings obtained during contraction sequences. We developed an animated model of reticulorumen motility and hypothesized that veterinary students would prefer use of the model over traditional instructional methods. First-year veterinary students were randomly allocated to one of two online learning exercises: with the animated model (Group A) or with text and line drawings (Group B) depicting reticulorumen motility. Learning was assessed with a multiple-choice quiz and feedback on the learning alternatives was obtained by survey. Seventy-four students participated in the study, including 38/42 in Group A and 36/36 in Group B. Sixty-four out of 72 students (89%) responded that they would prefer use of the animated model if only one of the two learning methods was available. A majority of students agreed or strongly agreed that the animated model was easy to understand and improved their knowledge and appreciation of the importance of reticulorumen motility, and would recommend the model to other veterinary students. Interestingly, students in Group B achieved higher scores on examination than students in Group A. This could be speculatively attributed to the inclusion of an itemized list of contraction sequences in the text provided to Group B and failure of Group A students to read the text associated with the animations.

  2. Cri du chat syndrome and primary ciliary dyskinesia: a common genetic cause on chromosome 5p.

    Science.gov (United States)

    Shapiro, Adam J; Weck, Karen E; Chao, Kay C; Rosenfeld, Margaret; Nygren, Anders O H; Knowles, Michael R; Leigh, Margaret W; Zariwala, Maimoona A

    2014-10-01

    Cri du chat syndrome (CdCS) and primary ciliary dyskinesia (PCD) are rare diseases that present with frequent respiratory symptoms. PCD can be caused by hemizygous DNAH5 mutation in combination with a 5p segmental deletion attributable to CdCS on the opposite chromosome. Chronic oto-sino-pulmonary symptoms or organ laterality defects in CdCS should prompt an evaluation for PCD.

  3. Impact of the Smoothened inhibitor, IPI-926, on smoothened ciliary localization and Hedgehog pathway activity.

    Directory of Open Access Journals (Sweden)

    Marisa O Peluso

    Full Text Available A requisite step for canonical Hedgehog (Hh pathway activation by Sonic Hedgehog (Shh ligand is accumulation of Smoothened (Smo to the primary cilium (PC. Activation of the Hh pathway has been implicated in a broad range of cancers, and several Smo antagonists are being assessed clinically, one of which is approved for the treatment of advanced basal cell carcinoma. Recent reports demonstrate that various Smo antagonists differentially impact Smo localization to the PC while still exerting inhibitory activity. In contrast to other synthetic small molecule Smo antagonists, the natural product cyclopamine binds to and promotes ciliary accumulation of Smo and "primes" cells for Hh pathway hyper-responsiveness after compound withdrawal. We compared the properties of IPI-926, a semi-synthetic cyclopamine analog, to cyclopamine with regard to potency, ciliary Smo accumulation, and Hh pathway activity after compound withdrawal. Like cyclopamine, IPI-926 promoted accumulation of Smo to the PC. However, in contrast to cyclopamine, IPI-926 treatment did not prime cells for hyper-responsiveness to Shh stimulation after compound withdrawal, but instead demonstrated continuous inhibition of signaling. By comparing the levels of drug-induced ciliary Smo accumulation with the degree of Hh pathway activity after compound withdrawal, we propose that a critical threshold of ciliary Smo is necessary for "priming" activity to occur. This "priming" appears achievable with cyclopamine, but not IPI-926, and is cell-line dependent. Additionally, IPI-926 activity was evaluated in a murine tumor xenograft model and a pharmacokinetic/pharmacodynamic relationship was examined to assess for in vivo evidence of Hh pathway hyper-responsiveness. Plasma concentrations of IPI-926 correlated with the degree and duration of Hh pathway suppression, and pathway activity did not exceed baseline levels out to 96 hours post dose. The overall findings suggest that IPI-926 possesses

  4. The Development of the Ciliary Epithelium in the Embryonic Chicken Eye

    Science.gov (United States)

    1989-08-04

    experiment was to test the role of I extraocular tissues in eye growth. The periocular mesoderm ! I I was stripped away from a small area on one surface...Eichhorn and Barany , 1985). The cells in the pigmented and nonpigmented layers of the ciliary epithelium begin to differentiate from the adjacent...Statistics: The data from the individual chicken embryos in each experimental group were compared to each other and then pooled. Student’s T- test

  5. Flow Field Analysis of Micromixer Powered by Ciliary Motion of Vorticella

    Science.gov (United States)

    Hayasaka, Yo; Nagai, Moeto; Matsumoto, Nobuyoshi; Kawashima, Takahiro; Shibata, Takayuki

    We demonstrate the observation of a flow field generated by ciliary motion of Vorticella in a microfluidic chamber. We applied the property that Vorticella vibrates its cilia and create a flow field to a micromixer. The stability and mixing performance of Vorticella were measured by PIV (Particle Image Velocimetry). One cell of Vorticella mixed the half area of the microchamber. We revealed that the flow field of a single cell in a chamber was more stable than that of multiple cells.

  6. Adenoma of the Nonpigmented Ciliary Body and Iris Epithelium in Mexican Mestizo Patients

    Science.gov (United States)

    Serna-Ojeda, Juan Carlos; Ariza-Camacho, Enrique; Collado-Solórzano, Alberto; Flores-Sánchez, Blanca C.; Rodríguez-Reyes, Abelardo A.; Fulda-Graue, Emiliano

    2015-01-01

    The adenoma of the nonpigmented ciliary epithelium is a benign rare tumor, which may present with different clinical characteristics and requires resection along with histopathologic analysis and the identification of specific immunohistochemical markers for an accurate diagnosis. Here, we report a case series of 4 patients in a Mexican mestizo population with this diagnosis, their clinical features, the ultrasound imaging characteristics and the histopathological and immunohistochemical findings. PMID:27171918

  7. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    Science.gov (United States)

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A

    2016-06-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  8. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Yanru Zhang; Hui Zhang; Kaka Katiella; Wenhua Huang

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune re-jection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regenera-tion. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anasto-mosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.

  9. Long-term clearance from small airways in subjects with ciliary dysfunction

    Directory of Open Access Journals (Sweden)

    Hjelte Lena

    2006-05-01

    Full Text Available Abstract The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD inhaled 111 Indium labelled Teflon particles of 4.2 μm geometric and 6.2 μm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasions up to 21 days after inhalation. Results were compared with data from ten healthy controls. For additional comparison three of the PCD subjects also inhaled the test particles with normal inhalation flow, 0.5 L/s, providing a more central deposition. The lung retention at 24 h in % of lung deposition (Ret24 was higher (p 24 with slow inhalation flow was 73.9 ± 1.9 % compared to 68.9 ± 7.5 % with normal inhalation flow in the three PCD subjects exposed twice. During day 7–21 the three PCD subjects exposed twice cleared 9 % with normal flow, probably representing predominantly alveolar clearance, compared to 19 % with slow inhalation flow, probably representing mainly small airway clearance. This study shows that despite ciliary dysfunction, clearance continues in the small airways beyond 24 h. There are apparently additional clearance mechanisms present in the small airways.

  10. Morphological, histochemical and immunohistochemical characterization of secretory production of the ciliary glands in the porcine eyelid

    Directory of Open Access Journals (Sweden)

    T Yasui

    2009-06-01

    Full Text Available In addition to performing general histology and cytology of the ciliary glands of the miniature pig, we studied the localization of glycoconjugates and b-defensins in these glands with the use of carbohydrate histochemical and immunohistochemical methods. The secretory cells of the glands were equipped with non-homogeneous secretory granules, a welldeveloped Golgi apparatus and rough endoplasmic reticulum. The secretory epithelium and luminal secretion of the glands contained large amounts of neutral and acidic glycoconjugates with various saccharide residues (a-L-Fuc, b-DGal, a-D-GalNAc and sialic acid. The sebaceous glands and tarsal glands also exhibited positive reactions to most of the histochemical methods. Additionally, the antimicrobial peptide group of b-defensins was demonstrated to be products of the ciliary glands, as well as the sebaceous glands and tarsal glands. The results obtained are discussed with regard to the specific function of the ciliary glandular secretions. These secretory products may be related to the moistening and general protection of the skin surface of the eyelid and ocular surface.

  11. Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential.

    Science.gov (United States)

    Alfahel, E; Korngreen, A; Parola, A H; Priel, Z

    1996-02-01

    To examine the role of membrane dynamics in transmembrane signal transduction, we studied changes in membrane fluidity in mucociliary tissues from frog palate and esophagus epithelia stimulated by extracellular ATP. Micromolar concentrations of ATP induced strong changes in fluorescence polarization, possibly indicating membrane fluidization. This effect was dosage dependent, reaching a maximum at 10-microM ATP. It was dependent on the presence of extracellular Ca2+ (or Mg2+), though it was insensitive to inhibitors of voltage-gated calcium channels. It was inhibited by thapsigargin and by ionomycin (at low extracellular Ca2+ concentration), both of which deplete Ca2+ stores. It was inhibited by the calcium-activated potassium channel inhibitors quinidine, charybdotoxin, and apamine and was reduced considerably by replacement of extracellular Na+ with K+. Hyperpolarization, or depolarization, of the mucociliary membrane induced membrane fluidization. The degree of membrane fluidization depended on the degree of hyperpolarization or depolarization of the ciliary membrane potential and was considerably lower than the effect induced by extracellular ATP. These results indicate that appreciable membrane fluidization induced by extracellular ATP depends both on an increase in intracellular Ca2+, mainly from its internal stores, and on hyperpolarization of the membrane. Calcium-dependent potassium channels couple the two effects. In light of recent results on the enhancement of ciliary beat frequency, it would appear that extracellular ATP-induced changes both in ciliary beat frequency and in membrane fluidity are triggered by similar signal transduction pathways.

  12. Nervous system and ciliary structures of Micrognathozoa (Gnathifera): evolutionary insight from an early branch in Spiralia

    Science.gov (United States)

    Worsaae, Katrine

    2016-01-01

    Recent studies show that Gnathifera, comprising Rotifera, Gnathostomulida and Micrognathozoa, constitute the sister group to the remaining Spiralia (containing, e.g. flatworms, segmented worms and molluscs). Therefore, a better understanding of Gnathifera is central for unravelling the evolution of the highly diverse Spiralia. Here, we describe the previously unstudied nervous system and ciliary structures of Micrognathozoa, using immunohistochemistry and confocal laser scanning microscopy. The nervous system is simple with a large brain, paired sub-esophageal ganglia, two trunk commissures, two pairs of ventral longitudinal nerves and peripheral nerves. The paired ventro-lateral nerve cords are confirmed to be a symplesiomorphy of Gnathifera (possibly even Spiralia), whereas the paired ventro-median nerves are not previously reported in Gnathifera. A pharyngeal ganglion is described for Micrognathozoa: a complex structure with two apical tufts of ciliary receptors, now shown to be shared by all Gnathifera. The ventral pattern of external ciliophores is re-described, and protonephridia with multi-ciliated collecting tubules similar to those of Rotifera are confirmed. A range of new details from a simple nervous system and complex set of ciliary structures in a microscopic metazoan are hereby unravelled. The many resemblances with Rotifera corroborate their close relationship, and shed more light on the evolution of Gnathifera. PMID:27853545

  13. MRI of the stomach: a pictorial review with a focus on oncological applications and gastric motility.

    Science.gov (United States)

    Sheybani, Arman; Menias, Christine O; Luna, Antonio; Fowler, Kathryn J; Hara, Amy Kiyo; Silva, Alvin C; Yano, Motoyo; Sandrasegaran, Kumar

    2015-04-01

    The purpose of this pictorial review is to demonstrate gastric pathology seen on magnetic resonance imaging (MRI) and discuss the essential MRI sequences for the evaluation of benign and malignant gastric pathologies. Common tumors of the stomach, polyposis syndromes, iatrogenic conditions, as well as other conditions of the stomach will be reviewed. The utility of MRI in the evaluation of patients with gastric malignancies and disorders of gastric motility will also be discussed.

  14. Soft micromachines with programmable motility and morphology

    Science.gov (United States)

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-07-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  15. Motility states in bidirectional cargo transport

    CERN Document Server

    Klein, Sarah; Santen, Ludger

    2015-01-01

    Intracellular cargos which are transported by molecular motors move stochastically along cytoskeleton filaments. In particular for bidirectionally transported cargos it is an open question whether the characteristics of their motion can result from pure stochastic fluctuations or whether some coordination of the motors is needed. The results of a mean-field model of cargo-motors dynamics, which was proposed by M\\"uller et al.[1] suggest the existence of high motility states which would result from a stochastic tug-of-war. Here we analyze a non-mean field extension of their model, that takes explicitly the position of each motor into account. We find that high motility states then disappear. We consider also a mutual motor-motor activation, as an explicit mechanism of motor coordination. We show that the results of the mean-field model are recovered only in case of a strong motor-motor activation in the limit of a high number of motors.

  16. New advances in gastrointestinal motility research

    CERN Document Server

    Pullan, A; Farrugia, G

    2013-01-01

    Research into gastrointestinal motility has received renewed interest in part due to recent advances in the techniques for measuring the structure and function of gastrointestinal cells, tissue and organs. The integration of this wealth of data into biophysically based computation models can aid in interpretation of experimental and clinical measurements and the refinement of measurement techniques. The contents of this book span multiple scales - from cell, tissue, organ, to whole body and is divided into four broad sections covering: i) gastrointestinal cellular activity and tissue structure; (ii) techniques for measuring, analyzing and visualizing high-resolution extra-cellular recordings; (iii) methods for sensing gastroelectrical activity using non-invasive bio-electro-magnetic fields and for modulating the underlying gastric electrical activity, and finally; (iv) methods for assessing manometric and videographic motility patterns and the application of these data for predicting the flow and mixing behav...

  17. BDNF及其受体TrkB在慢性应激大鼠结肠动力紊乱中的调节作用及其机制%Modulatory role and mechanism of BDNF and its receptor TrkB in colonic motility disorder in chronic stress rat

    Institute of Scientific and Technical Information of China (English)

    樊菡; 罗和生; 全晓静; 唐勤彩; 余光

    2015-01-01

    Objective To investigate the role and mechanism of BDNF and its receptor TrkB in the disorder of colonic motility in chronic stress rats.Methods A total of 20 male Wistar rats were randomly divided into two groups using to completely random method after weighed,with 10 rats in each group.Chronic water avoidance stress model was established.Then the fecal pellets of water avoidance stress (WAS) group and sham water avoidance stress (SWAS) group were recorded.Enzyme linked immunosorbent assay (ELISA),real time PCR,Western blot and immunohistochemistry were used to detect the expression of BDNF and TrkB in serum and colon muscle.The amplitudes of contractions of circular smooth muscle strips of each group were recorded after the treatment of TTX,BDNF and K252a.Results The number of fecal pellets had obviously increased in WAS group comparing with SWAS group (P < 0.05).The level of serum BDNF in WAS group was higher than that of SWAS group ((158.30 ± 9.82) vs (84.68 ± 7.80) pg/ml).And the expression of TrkB in the colon muscle in WAS group was higher than that in SWAS group (0.44 ± 0.03 vs 0.30 ± 0.02,P < 0.05).There was no significant difference between the two groups in expression of BDNF mRNA in colon muscle (P > 0.05).TrkB was mainly expressed in the cell nucleus of muscular layer neurons,and the expression of TrkB had obviously increased in WAS rats.The amplitudes of contractions of circular smooth muscle in WAS rats had significantly increased compared with SWAS rats ((0.35 ±0.02) vs(0.22 ±0.03) g,P <0.05).After adding TTX to block the function of enteric nervous,the difference was remaining ((0.89 ± 0.07) vs (0.53 ± 0.06) g,P < 0.05).BDNF was added to the bath and the R value at different time was recorded.The difference had statistically significant at 6 min and 12 min (both P < 0.05).BDNF could induced the contraction peak of the circular smooth muscle.The contraction peak induced by BDNF was delayed and reduced when K252a was added to the

  18. Swimming Motility Reduces Deposition to Silica Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Nanxi [Univ. of Illinois, Urbana-Champaign, IL (United States); Massoudieh, Arash [The Catholic Univ. of America, Washington, DC (United States); Liang, Xiaomeng [The Catholic Univ. of America, Washington, DC (United States); Hu, Dehong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kamai, Tamir [Agricultural Research Organization, Bet Dagan (Israel); Ginn, Timothy R. [Univ. of California, Davis, CA (United States); Zilles, Julie L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Nguyen, Thanh H. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-01-01

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation point flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.

  19. Effects of Seminal Plasma Relaxin on Human Sperm Motility

    Institute of Scientific and Technical Information of China (English)

    于宁妮; 陆欣; 徐胜; 冯京生; 吴明章

    1999-01-01

    To clarify the role of endogenous relaxin on sperm motility, relaxin in semen was neutraliged by anti-relaxin antibody in vitro.22 semen samples were collected from infertility clinic and tested with Hamilton-Thorn 2000 Motility Analyzer to detect spermmotility(%),progressive motility(%),path velocity (micro/sec) and velocity(0-4 grade) at the time of 0,15,30 and 60 min respectively.The results showed that sperm motility declined significantly after being incubated with anti-relaxin serum.Sperm progressive motility declined more obviously.This experiment revealed that endogenous relaxin could play an important role in the physiological process of maintaining sperm motility,especially progressive motility.

  20. Laryngeal motility alteration: A missing link between sleep apnea and vagus nerve stimulation for epilepsy.

    Science.gov (United States)

    Zambrelli, Elena; Saibene, Alberto M; Furia, Francesca; Chiesa, Valentina; Vignoli, Aglaia; Pipolo, Carlotta; Felisati, Giovanni; Canevini, Maria Paola

    2016-01-01

    This study aimed to evaluate the prevalence and the relationship of sleep breathing disorders (SBDs) and laryngeal motility alterations in patients with drug-resistant epilepsy after vagus nerve stimulator (VNS) implantation. Twenty-three consecutive patients with medically refractory epilepsy underwent out-of-center sleep testing before and after VNS implantation. Eighteen eligible subjects underwent endoscopic laryngeal examination post-VNS implantation. Statistical analysis was carried out to assess an association between laryngeal motility alterations and the onset/worsening of SBDs. After VNS implantation, 11 patients showed a new-onset mild/moderate SBD. Half of the patients already affected by obstructive sleep apnea (OSA) showed worsening of SBD. All of the patients with a new-onset OSA had a laryngeal pattern with left vocal cord adduction (LVCA) during VNS stimulation. The association between VNS-induced LVCA and SBD was statistically significant. This study suggests an association between VNS and SBD, hinting to a pivotal role of laryngeal motility alterations. The relationship between SBD and VNS-induced LVCA supports the need to routinely investigate sleep respiratory and laryngeal motility patterns before and after VNS implantation.

  1. Physics of protein motility and motor proteins

    Science.gov (United States)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  2. Development of the ciliary body: morphological changes in the distal portion of the optic cup in the human.

    Science.gov (United States)

    Peces-Peña, M D; de la Cuadra-Blanco, C; Vicente, A; Mérida-Velasco, J R

    2013-01-01

    This study seeks to determine the main events that occur in the development of the ciliary body (CB) in the 5-14th week of development. The CB develops from the distal portion of the optic cup (OC) and the neighboring mesenchyme. During the 5th week of development, 4 zones were observed in the distal portion of the OC: in zone 1, the epithelia of the outer and inner layers of the OC came into contact. This contact coincided with the appearance of mainly apical granule pigments. This zone corresponded to the anlage of the epithelial layers of the CB. In zone 2, the cells surrounded the marginal sinus and contained scarce pigment granules and nuclei in the basal position. This zone corresponded to the anlage of the iris. Zone 3 was triangular in shape and its vertex ran towards the marginal sinus and corresponded to common cell progenitors. Zone 4 corresponded to the retinal pigment epithelium anlage and the neural retina anlage. We determined the onset of the stroma and the ciliary muscle anlage at the end of the 7th week. In the 13-14th week, we observed the anlage of the orbicularis ciliaris (pars plana of the CB) and corona ciliaris (pars plicata of the CB), in addition to the anlage of the ciliary muscle. Our study, therefore, establishes a precise timetable of the development of the CB.

  3. VAMP7 modulates ciliary biogenesis in kidney cells.

    Directory of Open Access Journals (Sweden)

    Christina M Szalinski

    Full Text Available Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.

  4. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates ciliary neurotrophic factor in astrocytes and oligodendrocytes

    Science.gov (United States)

    Modi, Khushbu K.; Jana, Malabendu; Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis (EAE), an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders. PMID:26399250

  5. Optic nerve fast axonal transport abnormalities in primates. Occurrence after short posterior ciliary artery occlusion.

    Science.gov (United States)

    Radius, R L

    1980-11-01

    Fast axonal transport abnormalities in primate (Aotus trivirgatus) optic nerve were studied in ten eyes at various intervals after occlusion of the lateral short posterior ciliary circulation. Evidence of focal axonal ischemia, as indicated by swelling of mitochondria and dissolution of cytoplasmic detail, was noted as early as one hour after occlusion. Accumulation of mitochondria, microvesicles, and dense bodies, indicating focal interruption of axonal transport mechanisms, was noted in eyes examined at 2, 4, and 6 hours. This accumulation of organelles was limited to the region of the lamina cribrosa. Nerve head abnormalities were not seen in two eyes studied at two weeks.

  6. Kartagener syndrome: a rare genetic disorder.

    Science.gov (United States)

    Shakya, K

    2009-01-01

    Kartagener Syndrome is a rare autosomal recessive disorder consisting of triad of sinusitis, bronchiectasis and situs inversus with dextrocardia. It is the subset of disorder called primary ciliary dyskinesia in which the cilia have abnormal structure and/or function resulting in multisystem diseases of various severity. Clinical manifestations include lifelong, chronic upper and lower respiratory tract diseases secondary to ineffective mucociliary clearance. Early diagnosis and management of chest infections can prevent irreversible damage to lungs and prevent potential lifelong complications. This case report is on a patient who presented with long standing history of sinusitis, bronchiectasis and on examination situs inversus with dextrocardia.

  7. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  8. Swimming and swarming motility properties of peanut-nodulating rhizobia.

    Science.gov (United States)

    Vicario, Julio C; Dardanelli, Marta S; Giordano, Walter

    2015-01-01

    Motility allows populations of bacteria to rapidly reach and colonize new microniches or microhabitats. The motility of rhizobia (symbiotic nitrogen-fixing bacteria that nodulate legume roots) is an important factor determining their competitive success. We evaluated the effects of temperature, incubation time, and seed exudates on swimming and swarming motility of five strains of Bradyrhizobium sp. (peanut-nodulating rhizobia). Swimming motility was increased by exudate exposure for all strains except native Pc34. In contrast, swarming motility was increased by exudate exposure for native 15A but unchanged for the other four strains. All five strains displayed the ability to differentiate into swarm cells. Morphological examination by scanning electron microscopy showed that the length of the swarm cells was variable, but generally greater than that of vegetative cells. Our findings suggest the importance of differential motility properties of peanut-nodulating rhizobial strains during agricultural inoculation and early steps of symbiotic interaction with the host.

  9. High motility reduces grazing mortality of planktonic bacteria

    DEFF Research Database (Denmark)

    Matz, Carsten; Jurgens, K.

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated ......(3), >50 mum s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing....

  10. From a single whole exome read to notions of clinical screening: primary ciliary dyskinesia and RSPH9 p.Lys268del in the Arabian Peninsula.

    Science.gov (United States)

    Alsaadi, Muslim M; Gaunt, Tom R; Boustred, Christopher R; Guthrie, Philip A I; Liu, Xuan; Lenzi, Luca; Rainbow, Lucille; Hall, Neil; Alharbi, Khalid K; Day, Ian N M

    2012-05-01

    Primary ciliary dyskinesia (PCD) is a genetic disorder, usually autosomal recessive, causing early respiratory disease and later subfertility. Whole exome sequencing may enable efficient analysis for locus heterogeneous disorders such as PCD. We whole-exome-sequenced one consanguineous Saudi Arabian with clinically diagnosed PCD and normal laterality, to attempt ab initio molecular diagnosis. We reviewed 13 known PCD genes and potentially autozygous regions (extended homozygosity) for homozygous exon deletions, non-dbSNP codon, splice-site base variants or small indels. Homozygous non-dbSNP changes were also reviewed exome-wide. One single molecular read representing RSPH9 p.Lys268del was observed, with no wild-type reads, and a notable deficiency of mapped reads at this location. Among all observations, RSPH9 was the strongest candidate for causality. Searching unmapped reads revealed seven more mutant reads. Direct assay for p.Lys268del (MboII digest) confirmed homozygosity in the affected individual, then confirmed homozygosity in three siblings with bronchiectasis. Our finding in southwest Saudi Arabia indicates that p.Lys268del, previously observed in two Bedouin families (Israel, UAE), is geographically widespread in the Arabian Peninsula. Analogous with cystic fibrosis CFTR p.Phe508del, screening for RSPH9 p.Lys268del (which lacks sentinel dextrocardia) in those at risk would help in early diagnosis, tailored clinical management, genetic counselling and primary prevention.

  11. Mechanics and polarity in cell motility

    Science.gov (United States)

    Ambrosi, D.; Zanzottera, A.

    2016-09-01

    The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.

  12. Major regulatory mechanisms involved in sperm motility.

    Science.gov (United States)

    Pereira, Rute; Sá, Rosália; Barros, Alberto; Sousa, Mário

    2017-01-01

    The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.

  13. Epilepsy-induced motility of differentiated neurons.

    Science.gov (United States)

    Chai, Xuejun; Münzner, Gert; Zhao, Shanting; Tinnes, Stefanie; Kowalski, Janina; Häussler, Ute; Young, Christina; Haas, Carola A; Frotscher, Michael

    2014-08-01

    Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.

  14. Gastrointestinal motility and functional gastrointestinal diseases.

    Science.gov (United States)

    Kusano, Motoyasu; Hosaka, Hiroko; Kawada, Akiyo; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Zai, Hiroaki; Kawamura, Osamu; Yamada, Masanobu

    2014-01-01

    Digestive tract motility patterns are closely related to the pathophysiology of functional gastrointestinal diseases (FGID), and these patterns differ markedly between the interdigestive period and the postprandial period. The characteristic motility pattern in the interdigestive period is so-called interdigestive migrating contraction (IMC). IMCs have a housekeeping role in the intestinal tract, and could also be related to FGID. IMCs arising from the stomach are called gastrointestinal IMCs (GI-IMC), while IMCs arising from the duodenum without associated gastric contractions are called intestinal IMCs (I-IMC). It is thought that I-IMCs are abnormal in FGID. Transport of food residue to the duodenum via gastric emptying is one of the most important postprandial functions of the stomach. In patients with functional dyspepsia (FD), abnormal gastric emptying is a possible mechanism of gastric dysfunction. Accordingly, delayed gastric emptying has attracted attention, with prokinetic agents and herbal medicines often being administered in Japan to accelerate gastric emptying in patients who have anorexia associated with dyspepsia. Recently, we found that addition of monosodium L-glutamate (MSG) to a high-calorie liquid diet rich in casein promoted gastric emptying in healthy men. Therefore, another potential method of improving delayed gastric emptying could be activation of chemosensors that stimulate the autonomic nervous system of the gastrointestinal tract, suggesting a role for MSG in the management of delayed gastric emptying in patients with FD.

  15. Anatomical and histological data on the ciliary ganglion in the Egyptian spiny mouse (Acomys cahirinus Desmarest).

    Science.gov (United States)

    Nowak, Elzbieta; Kuder, Tadeusz; Szczurkowski, Aleksander; Kuchinka, Jacek

    2004-08-01

    The morphology and topography of the ciliary ganglion in the Egyptian spiny mouse were studied with use of histochemical and histological techniques. The ciliary ganglion of the Egyptian spiny mouse consisted of between 3 and 4 agglomerations of nerve cells. The largest was situated at the point where the ventral branch of the oculomotor nerve divides into two branches. The next two smaller aggregations were located on the superior and lateral surfaces of the optic nerve where it crossed the oculomotor nerve. From the main agglomerations of neurocytes arose between 3 and 4 intensively stained postganglionic cholinergic fibres. These followed the optic nerve to the eyeball. On the cross-sections of these bundles small agglomerations of neurocytes were observed. These decreased in size to only 2 or 3 cells towards the sclera. The ganglionic neurocytes in the largest ganglion varied from 15 to 30 microm in diameter. They were distributed uniformly over the whole surface of the sections. All the ganglia had connective capsules.

  16. Chemical constituents of Cenchrus ciliaris L. from the Cholistan desert, Pakistan

    Directory of Open Access Journals (Sweden)

    Ashraf Muhammad Aqeel

    2013-01-01

    Full Text Available The Cholistan Desert is an extension of the Great Indian Desert, covering an area of 26,330 km2. The desert can be divided into two main geomorphic regions: the northern region, known as Lesser Cholistan, constituting the desert margin and consisting of a series of saline alluvial flats alternating with low sand ridges/dunes; and the southern region, known as Greater Cholistan, a wind-resorted sandy desert comprised of a number of old Hakra River terraces with various forms of sand ridges and inter-ridge valleys. Cholistan Desert presents a complex pattern of alluvial and aeolian depositions. In the present study we evaluated the nutritive value of different accessions of the perennial range grass Cenchrus ciliaris collected from the Cholistan Desert, Pakistan. Standard method, Benedict’s quantitative reagent for carbohydrates, crude protein and nitrogen by the Kjeldahl method, mineral analysis by flame photometer and estimation of crude fiber by using acid base treatment, were utilized. The results suggest that Cenchrus ciliaris has medicinal and nutritional importance, and that it could be a good source of important nutrients for humans, helping to alleviate poverty in poor local communities.

  17. Vortex arrays and ciliary tangles underlie the feeding-swimming tradeoff in starfish larvae

    Science.gov (United States)

    Gilpin, William; Prakash, Vivek N.; Prakash, Manu

    2016-11-01

    Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrates. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly-evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary "tangles" analogous to topological defects that break-up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modeling demonstrate that these vortices create a physical tradeoff between feeding and swimming in heterogenous environments, which manifests as distinct flow patterns or "eigenstrokes" representing each behavior-potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function generalizes to other invertebrates, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.

  18. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  19. Contact transcleral ciliary body photodynamic therapy with verteporfin in pigmented rabbits: effect of repeated treatments.

    Science.gov (United States)

    Charisis, Spyridon K; Naoumidi, Irene I; Ginis, Harilaos S; Detorakis, Efstathios T; Tsilimbaris, Miltiadis K

    2010-01-01

    We studied the effect on the intraocular pressure (IOP) and the ciliary body (CB) morphology after four consecutive contact transcleral photodynamic treatments of the ciliary body (CB-PDT) with verteporfin in pigmented rabbits. Twenty-two pigmented rabbits underwent CB-PDT (study group), performed once (six rabbits) or repeated for up to four times (16 rabbits). Six additional rabbits received only laser treatment without photosensitizer administration (control group). CB-PDT was performed in one eye in rabbits of the study group, with the fellow eye serving as internal control. Verteporfin dosage was 1 mg kg(-1) as bolus injection and laser settings were 40 mW (600 microm core optical fiber) for 1.5 min per spot, for 10 spots. In repeated CB-PDT, treatments were performed in 4-day intervals. Daily IOP measurements were recorded. Histological studies were performed at selected time points. An IOP reduction, more sustained following repeated treatments, was detected in all treated eyes but not in fellow eyes or in the control group. On the average, the IOP was restored to pretreatment levels 4 days after the last treatment. No serious adverse events were observed and the CB architecture was intact at the end of the experiment. Repeated CB-PDT is safe and results in a short-term reduction of IOP. Induced CB alterations are reversible.

  20. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    Science.gov (United States)

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later.

  1. Diagnosis of primary ciliary dyskinesia: potential options for resource-limited countries

    Directory of Open Access Journals (Sweden)

    Nisreen Rumman

    2017-01-01

    Full Text Available Primary ciliary dyskinesia is a genetic disease of ciliary function leading to chronic upper and lower respiratory tract symptoms. The diagnosis is frequently overlooked because the symptoms are nonspecific and the knowledge about the disease in the primary care setting is poor. Additionally, none of the available tests is accurate enough to be used in isolation. These tests are expensive, and need sophisticated equipment and expertise to analyse and interpret results; diagnosis is therefore only available at highly specialised centres. The diagnosis is particularly challenging in countries with limited resources due to the lack of such costly equipment and expertise. In this review, we discuss the importance of early and accurate diagnosis especially for countries where the disease is clinically prevalent but diagnostic tests are lacking. We review the diagnostic tests available in specialised centres (nasal nitric oxide, high-speed video microscopy, transmission electron microscopy, immunofluorescence and genetics. We then consider modifications that might be considered in less well-resourced countries whilst maintaining acceptable accuracy.

  2. Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography

    Science.gov (United States)

    Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.

    2016-02-01

    Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.

  3. Circular flow patterns induced by ciliary activity in reconstituted human bronchial epithelium

    Science.gov (United States)

    Viallat, Annie; Khelloufi, Kamel; Gras, Delphine; Chanez, Pascal; Aix Marseille Univ., CNRS, CINaM, Marseille, France Team; Aix Marseille Univ., CNRS, Inserm, LAI, Marseille, France Team

    2016-11-01

    Mucociliary clearance is the transport at the surface of airways of a complex fluid layer, the mucus, moved by the beats of microscopic cilia present on epithelial ciliated cells. We explored the coupling between the spatial organisation and the activity of cilia and the transport of surface fluids on reconstituted cultures of human bronchial epithelium at air-liquid interface, obtained by human biopsies. We reveal the existence of stable local circular surface flow patterns of mucus or Newtonian fluid at the epithelium surface. We find a power law over more than 3 orders of magnitude showing that the average ciliated cell density controls the size of these flow patterns, and, therefore the distance over which mucus can be transported. We show that these circular flow patterns result from the radial linear increase of the local propelling forces (due to ciliary beats) on each flow domain. This linear increase of local forces is induced by a fine self-regulation of both cilia density and orientation of ciliary beats. Local flow domains grow and merge during ciliogenesis to provide macroscopic mucus transport. This is possible only when the viscoelastic mucus continuously exerts a shear stress on beating cilia, revealing a mechanosensitive function of cilia. M. K. Khelloufi thanks the society MedBioMed for financial support. This work was supported by the ANR MUCOCIL project, Grant ANR-13-BSV5-0015 of the French Agence Nationale de la Recherche.

  4. Tibetan herbal formula Padma Digestin modulates gastrointestinal motility in vitro

    Institute of Scientific and Technical Information of China (English)

    Bruno; M; Balsiger; Magali; Krayer; Andreas; Rickenbacher; Beatrice; Flogerzi; Cecile; Vennos; Juergen; M; Gschossmann

    2013-01-01

    AIM:To examine the effects of Padma Digestin on the smooth muscle motility of different gastrointestinal segments in vitro . METHODS:The effects of the ethanolic extract of Padma Digestin (at 8.16 mg/mL or 81.6mg/mL) on the contractility and susceptibility to acetylcholine (ACh) of muscle strips from the cardia, antrum, pylorus, duodenum, jejunum, ileum and colon of male Wistar rats were analyzed.RESULTS:Compared with the control treatment, the Padma Digestin extract had a procontractile effect on the antral smooth muscle strips. Padma Digestin decreased ACh sensitivity in cardia muscle strips and increased it in those from the antrum and pylorus. In the intestinal segments, spontaneous contractility was inhibited in both the duodenal and jejunal strips, whereas reactivity to ACh was inhibited in the jejunal strips only. In the colonic samples, Padma Digestin inhibited spontaneous and ACh-stimulated contractility at a low dose but seems to have increasing effects at a high dose. CONCLUSION:Padma Digestin extract has regionspecific effects on the contractility and excitability of gastrointestinal smooth muscle. Our results support the traditional use of Padma Digestin for maldigestion and functional gastrointestinal disorders.

  5. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  6. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals.

    Science.gov (United States)

    Jerber, Julie; Baas, Dominique; Soulavie, Fabien; Chhin, Brigitte; Cortier, Elisabeth; Vesque, Christine; Thomas, Joëlle; Durand, Bénédicte

    2014-02-01

    Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates.

  7. Presence of collagen IV in the ciliary zonules of the human eye : An immunohistochemical study by LM and TEM

    NARCIS (Netherlands)

    Los, LI; van der Worp, RJ; van Luyn, MJA; Hooymans, JMM

    2004-01-01

    The ciliary zonules of the eye are composed of fibrillar and non-fibrillar components. Fibrils provide tensile strength and elasticity, whereas non-fibrillar components serve as a coating surrounding the fibrils. This coating behaves as a barrier to macromolecules. The present light and transmission

  8. CCDC151 Mutations Cause Primary Ciliary Dyskinesia by Disruption of the Outer Dynein Arm Docking Complex Formation

    NARCIS (Netherlands)

    Hjeij, R.; Onoufriadis, A.; Watson, C.M.; Slagle, C.E.; Klena, N.T.; Dougherty, G.W.; Kurkowiak, M.; Loges, N.T.; Diggle, C.P.; Morante, N.F.; Gabriel, G.C.; Lemke, K.L.; Li, Y.; Pennekamp, P.; Menchen, T.; Konert, F.; Marthin, J.K.; Mans, D.A.; Letteboer, S.J.F.; Werner, C.; Burgoyne, T.; Westermann, C.; Rutman, A.; Carr, I.M.; O'Callaghan, C.; Moya, E.; Chung, E.M.; Consortium, U.K.; Sheridan, E.; Nielsen, K.G.; Roepman, R.; Bartscherer, K.; Burdine, R.D.; Lo, C.W.; Omran, H.; Mitchison, H.M.

    2014-01-01

    A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, p

  9. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation

    DEFF Research Database (Denmark)

    Hjeij, Rim; Onoufriadis, Alexandros; Watson, Christopher M

    2014-01-01

    A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes...

  10. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  11. Bacterial motility in the sea and its ecological implications

    DEFF Research Database (Denmark)

    Grossart, Hans-Peter; Riemann, Lasse; Azam, F.

    2001-01-01

    colonization of living and dead algal cells by bacteria. Filtering seawater through a 1 µm filter reduced % motile, again suggesting the importance of particulate loci. Enrichment with dissolved organic nutrients enhanced % motile only after 6 h but it rapidly (=1 h) increased the time individual bacteria were...

  12. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade.

    Science.gov (United States)

    Cousin, Fabien J; Lynch, Shónagh M; Harris, Hugh M B; McCann, Angela; Lynch, Denise B; Neville, B Anne; Irisawa, Tomohiro; Okada, Sanae; Endo, Akihito; O'Toole, Paul W

    2015-02-01

    Lactobacillus is the largest genus within the lactic acid bacteria (LAB), with almost 180 species currently identified. Motility has been reported for at least 13 Lactobacillus species, all belonging to the Lactobacillus salivarius clade. Motility in lactobacilli is poorly characterized. It probably confers competitive advantages, such as superior nutrient acquisition and niche colonization, but it could also play an important role in innate immune system activation through flagellin–Toll-like receptor 5 (TLR5) interaction. We now report strong evidence of motility in a species outside the L. salivarius clade, Lactobacillus curvatus (strain NRIC0822). The motility of L. curvatus NRIC 0822 was revealed by phase-contrast microscopy and soft-agar motility assays. Strain NRIC 0822 was motile at temperatures between 15 °C and 37 °C, with a range of different carbohydrates, and under varying atmospheric conditions. We sequenced the L. curvatus NRIC 0822 genome, which revealed that the motility genes are organized in a single operon and that the products are very similar (>98.5% amino acid similarity over >11,000 amino acids) to those encoded by the motility operon of Lactobacillus acidipiscis KCTC 13900 (shown for the first time to be motile also). Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. This study provides novel phenotypic, genetic, and phylogenetic insights into flagellum-mediated motility in lactobacilli.

  13. Thyroxin Is Useful to Improve Sperm Motility

    Directory of Open Access Journals (Sweden)

    Mendeluk Gabriela Ruth

    2016-07-01

    Full Text Available Background The aim of this study was to evaluate the non-genomic action of thyroxin on sperm kinetic and its probable use to improve sperm recovery after applying an en- richment method like “swim-up” in comparison with the available one, pentoxifylline. Materials and Methods This is an experimental study. A total of 50 patients were re- cruited, followed by infertility consultation. Conventional sperm assays were performed according to World Health Organization criteria-2010 (WHO-2010. A Computer Aided Semen Analysis System was employed to assess kinetic parameters and concentrations. Number of the motile sperm recovered after preparation technique was calculated. Results Addition of T4 (0.002 µg/ml to semen samples increased hypermotility at 20 minutes (control: 14.18 ± 5.1% vs. 17.66 ± 8.88%, P<0.03, data expressed as mean ± SD and remained unchanged after 40 minutes. Significant differences were found in the motile sperm recovered after swim-up (control: 8.93×106 ± 9.52× 06vs. 17.20×106 ± 21.16×106, P<0.03, achieving all of the tested samples a desirable threshold value for artificial insemination outcome, while adding pentoxifylline increased the number of recovered sperm after swim-up in 60% of the studied cases. No synergism between two treatments could be determined. Conclusion We propose a new physiological tool to artificially improve insemination. The discussion opens windows to investigate unknown pathways involved in sperm ca- pacitation and gives innovative arguments to better understand infertility mechanisms.

  14. Bacterial signaling and motility: Sure bets

    Energy Technology Data Exchange (ETDEWEB)

    Zhulin, Igor B [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2008-01-01

    The IX International Conference on Bacterial Locomotion and Signal Transduction (BLAST IX) was held from 14 to 19 January 2007 in Laughlin, NV, a town in the Mojave Desert on the Nevada-Arizona border near old Route 66 and along the banks of the Colorado River. This area is a home to rattlesnakes, sagebrush, abandoned gold mines, and compulsive gamblers. What better venue could scientists possibly dream of for a professional meeting? So there they were, about 190 scientists gathered in the Aquarius Casino Resort, the largest hotel and casino in Laughlin, discussing the latest advances in the field. Aside from a brief excursion to an abandoned gold mine and a dinner cruise on the Colorado River, the scientists focused on nothing but their data and hypotheses, in spirited arguments and rebuttals, and outlined their visions and future plans in a friendly and open environment. The BLAST IX program was dense, with nearly 50 talks and over 90 posters. For that reason, this meeting report will not attempt to be comprehensive; instead it will first provide general background information on the central topics of the meeting and then highlight only a few talks that were of special interest to us and hopefully to the wider scientific community. We will also attempt to articulate some of the future directions or perspectives to the best of our abilities. The best known and understood bacterial motility mechanism is swimming powered by flagella. The rotation of bacterial flagella drives this form of bacterial movement in an aqueous environment. A bacterial flagellum consists of a helical filament attached to the cell body through a complex structure known as the hook-basal body, which drives flagellar rotation. The essential components of the basal body are the MotA-MotB motor-stator proteins bound to the cytoplasmic membrane. These stator proteins interact with proteins that comprise the supramembrane and cytoplasmic rings, which are components of the motor imbedded in the

  15. Computational approaches to substrate-based cell motility

    Science.gov (United States)

    Ziebert, Falko; Aranson, Igor S.

    2016-07-01

    Substrate-based crawling motility of eukaryotic cells is essential for many biological functions, both in developing and mature organisms. Motility dysfunctions are involved in several life-threatening pathologies such as cancer and metastasis. Motile cells are also a natural realisation of active, self-propelled 'particles', a popular research topic in nonequilibrium physics. Finally, from the materials perspective, assemblies of motile cells and evolving tissues constitute a class of adaptive self-healing materials that respond to the topography, elasticity and surface chemistry of the environment and react to external stimuli. Although a comprehensive understanding of substrate-based cell motility remains elusive, progress has been achieved recently in its modelling on the whole-cell level. Here we survey the most recent advances in computational approaches to cell movement and demonstrate how these models improve our understanding of complex self-organised systems such as living cells.

  16. Evolutionary aspects of collective motility in pathogenic bacteria

    Science.gov (United States)

    Deforet, Maxime; Xavier, Joao

    Pseudomonas aeruginosa is a pathogenic bacteria that can use its single polar flagellum to swim through liquids. It can move collectively over semisolid surfaces, a behavior called swarming. It can also settle and form surface-attached communities called biofilms that protect them from antibiotics. The transition from single motility (swimming) to collective motility (swarming) is biologically relevant as it enables exploring environments that a single bacterium cannot explore on its own. It is also clinically relevant since swarming and biofilm formation are thought to be antagonistic. We investigate the mechanisms of bacterial collective motility using a multidisciplinary approach that combines mathematical modeling, quantitative experiments, and microbial genetics. We aim to identify how these mechanisms may evolve under the selective pressure of population expansion, and consequently reinforce or hinder collective motility. In particular, we clarify the role of growth rate and motility in invasive populations.

  17. Impact of thymol in thyme extracts on their antispasmodic action and ciliary clearance.

    Science.gov (United States)

    Begrow, Frank; Engelbertz, Jonas; Feistel, Björn; Lehnfeld, Romanus; Bauer, Katrin; Verspohl, Eugen J

    2010-03-01

    Thyme is a herb with broncholytic und secretomotoric effects. Its activity on beta (2) receptors as a possible mechanism of action was demonstrated. Major components are thymol and carvacrol which are claimed to be responsible for its effects and, therefore, used for standardization in the German pharmacopoeia (0.03 % phenols calculated as thymol). Our aim was to investigate the impact of thymol by using thyme extracts with either normal or extremely low thymol concentrations ( 0.038 %). The antispasmodic effect on smooth muscles of the trachea and the ileum and the effect on ciliary activity (respiratory clearance) were investigated. In addition, pure thymol and carvacrol were investigated separately and in spiking experiments. Thymol and carvacrol had a concentration-dependent antispasmodic effect in the rat trachea either being stimulated by acetylcholine, K (+) or Ba (++). The same result was observed with respect to the increase of mucociliary transport in mice. Extracts with very low thymol contents are effective in all models used except acetylcholine-induced rat ileum contraction. When thyme extracts with normal thymol contents or with very low thymol contents were compared, the extract with normal thymol contents was more effective, both as a relaxant (rat ileum) and as an antispasmodic compound (rat trachea contraction induced by either acetylcholine, Ba (++) or K (+)) and in ciliary transport experiments. Thyme extracts with very low thymol contents (practically free of volatile oil) were equally effective with respect to endothelin effects. When an extract with very low thymol contents is spiked with increasing concentrations of thymol, a concentration-dependent increase concerning the antispasmodic effect (Ba (++)-induced trachea contraction) is observed. In conclusion, the data show that in various models of antispasmodic effect (ileum and trachea) and by measuring ciliary activity, thymol (and carvacrol) is (are) active, although other not identified

  18. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications.

    Science.gov (United States)

    Du, Peng; Paskaranandavadivel, Niranchan; Angeli, Timothy R; Cheng, Leo K; O'Grady, Gregory

    2016-01-01

    The intestine comprises a long hollow muscular tube organized in anatomically and functionally discrete compartments, which digest and absorb nutrients and water from ingested food. The intestine also plays key roles in the elimination of waste and protection from infection. Critical to all of these functions is the intricate, highly coordinated motion of the intestinal tract, known as motility, which is coregulated by hormonal, neural, electrophysiological and other factors. The Virtual Intestine encapsulates a series of mathematical models of intestinal function in health and disease, with a current focus on motility, and particularly electrophysiology. The Virtual Intestine is being cohesively established across multiple physiological scales, from sub/cellular functions to whole organ levels, facilitating quantitative evaluations that present an integrative in silico framework. The models are also now finding broad physiological applications, including in evaluating hypotheses of slow wave pacemaker mechanisms, smooth muscle electrophysiology, structure-function relationships, and electromechanical coupling. Clinical applications are also beginning to follow, including in the pathophysiology of motility disorders, diagnosing intestinal ischemia, and visualizing colonic dysfunction. These advances illustrate the emerging potential of the Virtual Intestine to effectively address multiscale research challenges in interdisciplinary gastrointestinal sciences.

  19. Evaluation of the three-dimensional endoscope system for assessing the gastrointestinal motility

    Science.gov (United States)

    Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Takeda, Maki; Nishimura, Takahiro; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

    2014-02-01

    This paper described evaluation of the three-dimensional endoscope system for assessing the gastrointestinal motility. Gastrointestinal diseases are mainly based on the morphological or anatomical abnormity. However, sometimes the gastrointestinal symptoms are apparent without visible abnormalities. Such diseases are called functional gastrointestinal disorder, for example, functional dyspepsia, and irritable bowel syndrome. One of the major factors of these diseases is the gastrointestinal dysmotility. Assessment procedures for motor function are either invasive, or indirect. We thus propose a three-dimensional endoscope system for assessing the gastrointestinal motility. To assess the dynamic motility of the stomach, three-dimensional endoscopic imaging of stomach lining is performed. Propagating contraction waves are detected by subtracting estimated stomach geometry without contraction waves from one with contraction waves. After detecting constriction waves, their frequency, amplitude, and speed of propagation can be calculated. In this study, we evaluate the proposed system. First, we evaluate the developed three-dimensional endoscope system by a flat plane. This system can measure the geometry of the flat plane with an error of less than 10 percent of the distance between endoscope tip and the object. Then we confirm the validity of a prototype system by a wave simulated model. The detected wave is approximated by a Gaussian function. In the experiment, the amplitude and position of the wave can be measure with 1 mm accuracy. These results suggest that the proposed system can measure the speed and amplitude of contraction. In the future, we evaluate the proposed system in vivo experiments.

  20. Disturbances of motility and visceral hypersensitivity in irritable bowel syndrome: biological markers or epiphenomenon.

    LENUS (Irish Health Repository)

    Quigley, Eamonn M M

    2012-02-03

    Motility and visceral hypersentitivity are regarded as the primary mechanisms of symptom development in irritable bowel syndrome(IBS). While a variety of motor abnormalities have been described throughout the gastrointestinal tract in IBS, their specificity and relationship to symptoms remain unclear. Visceral hypersensitivity is ubiquitous in functional gastrointestinal disease and is especially common in IBS. Again, however, its specificity for IBS has been questioned. Many factors, including stress and psychopathology,complicate the interpretation of these phenomena and new re-search suggests that mucosal inflammation and luminal factors may be more fundamental to the etiology of this common disorder.

  1. IgG4-related intraocular inflammation masquerading as ciliary body melanoma in a young girl

    Directory of Open Access Journals (Sweden)

    Dipankar Das

    2016-01-01

    Full Text Available Immunoglobulin G4 (IgG4-related diseases affects various tissues and organs of the human body. Orbital, adnexal, and scleral inflammations were already reported in the medical literature. To the best of our knowledge, we report the first case of intraocular IgG4-associated inflammatory mass in the ciliary body mimicking as a melanoma in a 23-year-old female from Northeast India. Characteristic histopathology, immunohistochemistry in the tissue, protein chemistry, and raised serum IgG4 were supportive for the diagnosis. As this newly diagnosed disease has multi-organ affection and little is known about its pathogenesis particularly in eye and adnexa, the present case will open many challenges in clinico-pathological diagnosis and research in the future.

  2. Efficiency optimization and symmetry-breaking in a model of ciliary locomotion

    CERN Document Server

    Michelin, Sebastien

    2010-01-01

    A variety of swimming microorganisms, called ciliates, exploit the bending of a large number of small and densely-packed organelles, termed cilia, in order to propel themselves in a viscous fluid. We consider a spherical envelope model for such ciliary locomotion where the dynamics of the individual cilia are replaced by that of a continuous overlaying surface allowed to deform tangentially to itself. Employing a variational approach, we determine numerically the time-periodic deformation of such surface which leads to low-Reynolds locomotion with minimum rate of energy dissipation (maximum efficiency). Employing both Lagrangian and Eulerian points of views, we show that in the optimal swimming stroke, individual cilia display weak asymmetric beating, but that a significant symmetry-breaking occurs at the organism level, with the whole surface deforming in a wave-like fashion reminiscent of metachronal waves of biological cilia. This wave motion is analyzed using a formal modal decomposition, is found to occu...

  3. Aerobic fitness in children and young adults with primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Madsen, Astrid Hellerup; Green, Kent; Buchvald, Frederik

    2013-01-01

    patients. CONCLUSION: One-third of PCD patients exhibited substantially lower aerobic fitness than healthy subjects. Aerobic fitness correlated with FEV1, DLCO/VA and self-reported complaints of limitations in vigorous physical activity. These findings are most likely explained by PCD pulmonary disease...... and its impact on pulmonary function and physical ability. Considering fitness as an important outcome and including regular strenuous physical activity in PCD treatment would probably altogether increase pulmonary clearance, lung function, aerobic fitness, and quality of life, and prevent lifestyle......BACKGROUND: Although aerobic fitness is regarded as an overall prognostic measure of morbidity and mortality, its evaluation in the chronic progressive sinopulmonary disease primary ciliary dyskinesia (PCD) has been infrequently and inconsistently reported. Here we assessed peak oxygen uptake (VO2...

  4. Effects of histamine on ciliary beat frequency of ciliated cells from guinea pigs nasal mucosa.

    Science.gov (United States)

    An, Fengwei; Xing, Lijun; Zhang, Zhiqiang; Chen, Lei

    2015-10-01

    We aimed to investigate the effect of histamine on ciliary beat frequency (CBF) through combining high-speed digital microscopy and patch-clamp technology. Ciliated cells were obtained from septum and turbinate of 90-120-day-old healthy male guinea pigs. Tight seal was formed by applying negative pressure on the glass electrode after the drawing and pushing progress. Then, we enrolled high-speed digital microscopy to measure CBF before and after treatment with histamine of different concentrations ranging from 10(-6) to 10(-1) mol/L in Hank's solution and D-Hank's solution as well as after administrating adenosine triphosphate. One-way ANOVA, Student's t test or Kruskal-Wallis test was used for statistical comparisons. Glass electrode fix up ciliated cell is available at tip diameter of 2-5 μm and negative pressure of 10-20 cmH2O column. The baseline CBF in Hank's solution was higher than in D-Hank's solution. Treatment with 10(-6)-l0(-3) mol/L histamine of concentrations can stimulate a rise of CBF. Nevertheless, CBF in all groups decreased to baseline CBF within 20 min. Generally, 10(-2) mol/L histamine can stimulate a rise of CBF; meanwhile, the high concentration of histamine killed 50% ciliated cell. Histamine at 10(-1) mol/L killed all ciliated cells. Ciliary beating activity decreased in Ca(2+)-free solution. Moreover, adenosine triphosphate could increase CBF effectively after the stimulation effect of histamine. We construct an effective technology integrating patch-clamp technique with CBF measurements on ciliated cells. Extracellular histamine stimulation could increase CBF effectively.

  5. Cell migration in schizophrenia: Patient-derived cells do not regulate motility in response to extracellular matrix.

    Science.gov (United States)

    Tee, Jing Yang; Sutharsan, Ratneswary; Fan, Yongjun; Mackay-Sim, Alan

    2017-03-09

    Schizophrenia is a highly heritable psychiatric disorder linked to a large number of risk genes. The function of these genes in disease etiology is not fully understood but pathway analyses of genomic data suggest developmental dysregulation of cellular processes such as neuronal migration and axon guidance. Previous studies of patient-derived olfactory cells show them to be more motile than control-derived cells when grown on a fibronectin substrate, motility that is dependent on focal adhesion kinase signaling. The aim of this study was to investigate whether schizophrenia patient-derived cells are responsive to other extracellular matrix (ECM) proteins that bind integrin receptors. Olfactory neurosphere-derived cells from nine patients and nine matched controls were grown on ECM protein substrates at increasing concentrations and their movement was tracked for 24h using automated high-throughput imaging. Control-derived cells increased their motility as the ECM substrate concentration increased, whereas patient-derived cell motility was little affected by ECM proteins. Patient and control cells had appropriate integrin receptors for these ECM substrates and detected them as shown by increases in focal adhesion number and size in response to ECM proteins, which also induced changes in cell morphology and cytoskeleton. These observations indicate that patient cells failed to translate the detection of ECM proteins into appropriate changes in cell motility. In a sense, patient cells act like a moving car whose accelerator is jammed, moving at the same speed without regard to the external environment. This focuses attention on cell motility regulation rather than speed as key to impairment of neuronal migration in the developing brain in schizophrenia.

  6. Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover.

    Science.gov (United States)

    Larsen, Jakob Vejby; Kristensen, Anders Mejer; Pallesen, Lone Tjener; Bauer, Johannes; Vægter, Christian Bjerggaard; Nielsen, Morten Schallburg; Madsen, Peder; Petersen, Claus Munck

    2016-04-01

    Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ.

  7. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia

    Science.gov (United States)

    Obry, Antoine; Santin, Mathieu D.; Ben-Yacoub, Sirine; Pâques, Michel; Amsellem-Levera, Sabine; Bribian, Ana; Simonutti, Manuel; Augustin, Sébastien; Debeir, Thomas; Sahel, José Alain; Christ, Annabel; de Castro, Fernando; Lehéricy, Stéphane; Cosette, Pascal; Kozyraki, Renata

    2015-01-01

    Myopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM) is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene result in Donnai-Barrow (DBS) and Stickler syndromes, both characterized by HM. To clearly establish the link between Lrp2 and congenital HM we inactivated Lrp2 in the mouse forebrain including the neural retina and the retinal and ciliary pigment epithelia. High resolution in vivo MRI imaging and ophthalmological analyses showed that the adult Lrp2-deficient eyes were 40% longer than the control ones mainly due to an excessive elongation of the vitreal chamber. They had an apparently normal intraocular pressure and developed chorioretinal atrophy and posterior scleral staphyloma features reminiscent of human myopic retinopathy. Immunomorphological and ultrastructural analyses showed that increased eye lengthening was first observed by post-natal day 5 (P5) and that it was accompanied by a rapid decrease of the bipolar, photoreceptor and retinal ganglion cells, and eventually the optic nerve axons. It was followed by scleral thinning and collagen fiber disorganization, essentially in the posterior pole. We conclude that the function of LRP2 in the ocular tissues is necessary for normal eye growth and that the Lrp2-deficient eyes provide a unique tool to further study human HM. PMID:26107939

  8. Pattern formation mechanisms in motility mutants of Myxococcus xanthus

    CERN Document Server

    Starruss, Joern; Jakovljevic, Vladimir; Sogaard-Andersen, Lotte; Deutsch, Andreas; Baer, Markus

    2016-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of M. xanthus depends on two motility machineries: the S-engine and A-engine. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies depending on their nutritional status. To understand these two pattern formation processes and the contributions by the two motility machineries, as well as cell reversal, we analyze spatial self-organization in 3 strains: i) a mutant that moves unidirectionally without reversing by the A-motility system only, ii) a unidirectional mutant that is also equipped with the S-motility system, and iii) the wild-type that, in addition to the two motility systems, reverses its direction of movement. The mutant moving by the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria due to steric interactions of the rod-shaped cells, without the need of invoking any biochemica...

  9. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  10. Exopolysaccharide-independent social motility of Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Social motility (S motility, the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP and exopolysaccharides (EPS. Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that "S motility" is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS(- cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.

  11. Motility and peristaltic flow in maintaining microbiome populations

    Science.gov (United States)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2016-11-01

    Bacteria are an important component of the microbiome in the digestive tract, and must be able to maintain their population despite the fact that the contents of the intestines are constantly flowing towards evacuation. Many bacteria accomplish this by colonizing the surfaces of the intestines where flows diminish, but some species live in the lumen. We attempt to address whether swimming motility of these species plays an important role in maintaining bacterial population in the face of peristaltic pumping out of the intestine. Using a two-dimensional model of peristaltic flows induced by small-amplitude traveling waves we examine the Lagrangian trajectories of passive bacteria as well as motile bacteria, which are treated as Brownian particles undergoing enhanced diffusion due to the bacteria's run-and-tumble motility. We examine how the densities of growing populations of bacteria depend on the combination of motility and peristaltic flow.

  12. Motility of copepod nauplii and implications for food encounter

    DEFF Research Database (Denmark)

    Titelman, Josefin; Kiørboe, Thomas

    2003-01-01

    of tracks, speeds, durations and frequencies of events as well as time budgets. Motility mode often changes drastically during naupliar ontogeny. Crudely, nauplii can be divided into those moving with a jump-sink type of motility of various frequencies (1 min(-1) to 3 s(-1)) and those swimming...... with a smoother glide of varying continuity. We apply observed time budgets and behavior-specific speeds in simple models to examine mechanisms of food encounter. The motility of all nauplii may account for clearance rates reported in the literature, but through different mechanisms. Smoothly swimming nauphi...... cyclopoids is sufficient to prevent prey diffusion from reaching steady state rates, which are too low to account for observed clearance rates reported in the literature. Frequent jumpers (e.g. Acartia tonsa) jump at a frequency close to the optimum required to maximize the use of prey motility and to avoid...

  13. Clinical value of measurement of pulmonary radioaerosol mucociliary clearance in the work up of primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Munkholm, Mathias; Nielsen, Kim Gjerum; Mortensen, Jann

    2015-01-01

    BACKGROUND: We aimed to evaluate and define the general clinical applicability and impact of pulmonary radioaerosol mucociliary clearance (PRMC) on the work up of patients suspected of having primary ciliary dyskinesia (PCD). In addition, we wanted to evaluate the accuracy of the reference values...... primarily to results from nasal ciliary function testing, to electron microscopic (EM) examination of the ultrastructure of the cilia, and to the final clinical diagnosis. RESULTS: Of the 239 patients, 27 ended up with a final clinical diagnosis of definitive PCD. No patients with a PRMC test...... that was normal or otherwise not consistent with PCD ended up with PCD as final clinical diagnosis (though a minority of patients in this group ended up unresolved in regard to PCD). Forty percent of patients with an abnormal PRMC test ended up with PCD as final clinical diagnosis. Furthermore, the PRMC test had...

  14. COMPARATIVE PRIMARY PHYTO-PROFILE AND MICROCIDAL ACTIVITY OF CENCHRUS CILIARIS (ANJAN GRASS AND WITHANIA SOMNIFERA (WINTER CHERRY

    Directory of Open Access Journals (Sweden)

    Singariya P.

    2012-04-01

    Full Text Available Crude extracts of different parts (root, stem, leaf and seed of Cenchrus ciliaris (CAZRI-358 and (root, stem, leaf and flower of Withania somnifera (RUBL-20668 and were successively extracted with polar to non polar solvents (water, chloroform and benzene using soxhlet assembly. The extracts were then screened for their antimicrobial activity in-vitro against one gram positive bacteria (Bacillus subtilis, two gram negative bacteria (Pseudomonas aeruginosa and Enterobactor aerogens and one fungus (Aspergillus flavus by disc diffusion assay. Serial dilution method was used to determine minimum inhibitory concentration (MIC and minimum bactericidal/fungicidal concentration (MBC/MFC. Chloroform extract of leaves of both the plants showed highest activity, by W. somnifera (IZ-20.83±0.21 mm, AI- 1.389 and (IZ-20.67±0.24 mm, AI- 1.148 by C. ciliaris against B. subtilis and P. aeruginosa respectively.

  15. Cell motility as persistent random motion: Theories from experiments

    DEFF Research Database (Denmark)

    Selmeczi, D.; Mosler, S.; Hagedorn, P.H.

    2005-01-01

    Experimental time series for trajectories of motile cells may contain so much information that a systematic analysis will yield cell-type- specific motility models. Here we demonstrate how, using human keratinocytes and fibroblasts as examples. The two resulting models reflect the cells' different...... roles in the organism, it seems, and show that a cell has a memory of past velocities. They also suggest how to distinguish quantitatively between various surfaces' compatibility with the two cell types....

  16. Spontaneous motility of the pig oviduct in vitro.

    Science.gov (United States)

    Rodriguez-Martinez, H; Einarsson, S; Larsson, B; Akusu, M; Settergren, I

    1982-02-01

    The spontaneous motility of the pig oviductal isthmus and ampulla during the estrous cycle was recorded in vitro using an intraluminally located pressure microtransducer. A very high motility was recorded in the isthmic portion throughout the whole cycle, while the ampulla revealed an active pattern during the periovulatory period only. In proestrus the tubal pattern in both segments consisted of regular contractions of high frequency, increasing in amplitude when approaching estrus. During heat the motility changed abruptly, and was characterized by the presence of regular strong waves in the two tubal segments. This pattern might contribute to the transport of gametes to the fertilization site. After ovulation, during the time when ova are retained in the oviducts, the high preovulatory peaks disappeared. The isthmic pattern showed regular phasic contractions of high frequency and amplitude, while the ampullar motility was low. The ova are arrested at the level of the ampullar-isthmic junction (AIJ) during this period. During the short period when eggs are passing to the uterus, the ampullar motility remained low, while the isthmus showed a very active pattern with the presence of heavy contractions. This suggests the active participation of the isthmus in ovum descent. During the rest of the luteal phase, the ampulla maintained its stable low motility, while the isthmus showed an irregular although still active pattern characterized by heavy outbursts of increased activity superimposed on a consistent basal contractility.

  17. Helkesimastix marina n. sp. (Cercozoa: Sainouroidea superfam. n.) a gliding zooflagellate of novel ultrastructure and unusual ciliary behaviour.

    Science.gov (United States)

    Cavalier-Smith, Thomas; Lewis, Rhodri; Chao, Ema E; Oates, Brian; Bass, David

    2009-08-01

    Unlike Helkesimastix faecicola and H. major, Helkesimastix marina is marine, ingests bacteria, is probably also a cannibal, and differs in cell cycle ciliary behaviour. Daughter kinetids have mirror symmetry; pre-division cilia beat asymmetrically. We sequenced its 18S rDNA and studied its ultrastructure to clarify its taxonomy. Helkesimastix (Helkesimastigidae fam. n.) differs unexpectedly radically from cercomonads, lacking their complex microtubular ciliary roots, grouping not with them but with Sainouridae within Pansomonadida. Longitudinal cortical microtubules emanate from a dense apical centrosomal plate, where a striated rhizoplast attaches the nucleus, and two very short subparallel centrioles attach by dense fibres. The marginally more posterior centriole, attached to the centrosomal plate by a dense forked fibre, bears the long 9+2 gliding posterior cilium and a microtubular root; the left-side, nucleus-attached, left centriole bears an immotile ciliary stump with abnormal axoneme of nine disorganized mainly singlet microtubules, unlike the sainourid anterior papilla. Both transitional regions have a proximal lattice, the posterior centriole with slender hub. Sainouroidea superfam. n. (Sainouridae; Helkesimastigidae) have homologous cytoskeletal geometry. Dorsal Golgi dictyosome and posterior microbody are attached to the nuclear envelope, which has slender micro-invaginations and probably a cortical lattice. Bacteria are digested posteriorly in association with numerous mitochondria with flat cristae.

  18. Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened.

    Directory of Open Access Journals (Sweden)

    Yongbin Chen

    2011-06-01

    Full Text Available Hedgehog (Hh signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein Smoothened (Smo, but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence divergence between vertebrate and Drosophila Smo (dSmo and the involvement of primary cilia in vertebrate Hh signaling. Here we demonstrate that mammalian Smo (mSmo is activated through multi-site phosphorylation of its carboxyl-terminal tail by CK1α and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary accumulation. We demonstrate that graded Hh signals induce increasing levels of mSmo phosphorylation that fine-tune its ciliary localization, conformation, and activity. We show that mSmo phosphorylation is induced by its agonists and oncogenic mutations but is blocked by its antagonist cyclopamine, and efficient mSmo phosphorylation depends on the kinesin-II ciliary motor. Furthermore, we provide evidence that Hh signaling recruits CK1α to initiate mSmo phosphorylation, and phosphorylation further increases the binding of CK1α and GRK2 to mSmo, forming a positive feedback loop that amplifies and/or sustains mSmo phosphorylation. Hence, despite divergence in their primary sequences and their subcellular trafficking, mSmo and dSmo employ analogous mechanisms for their activation.

  19. Recent invasion of buffel grass (Cenchrus ciliaris of a natural protected area from the southern Sonoran Desert Invasión reciente de zacate buffel (Cenchrus ciliaris en un área natural protegida del desierto sonorense

    Directory of Open Access Journals (Sweden)

    Erick De la Barrera

    2008-12-01

    Full Text Available The Centro Ecológico de Sonora is a natural protected area where the natural vegetation remained undisturbed at least until 1997. Since then, Cenchrus ciliaris has become a prominent element of the vegetation because of disturbance. Climate, soil properties, population structure and biological activity for C. ciliaris were studied to gain understanding of the ecological mechanisms that favored the invasion by this exotic grass. Mean air temperature and annual rainfall were 24.8°C and 302 mm. The soil was a loamy-sand that was poor in most nutrients, but particularly rich in phosphorus. Pennisetum ciliare was the most abundant species at the Centro Ecológico, representing over one third of total plant ground cover. Basal area for individual plants ranged from less than 1 cm² to almost 1 m². Living leaves per plant increased with precipitation, peaking at 199 leaves in March 2005, and no living leaves were found after 103 days without rain. The environmental conditions prevalent at Centro Ecológico are very favorable for C. ciliaris, whose establishment was apparently triggered by a major disturbance caused by the development of housing projects.El Centro Ecológico de Sonora es un área natural protegida donde la vegetación autóctona permaneció sin disturbios por lo menos hasta 1997. Desde entonces, Cenchrus ciliaris se ha convertido en un elemento prominente de la vegetación. Se estudiaron el clima, las propiedades del suelo, la estructura de la población y la actividad biológica de C. ciliaris, como una aproximación al entendimiento de los mecanismos ecológicos que favorecieron la invasión por este pasto exótico. La temperatura media del aire y la precipitación anual fueron de 24.8 °C y 302 mm. El suelo fue una arena limosa pobre en minerales, pero particularmente rica en fósforo. Cenchrus ciliaris fue la especie herbácea más abundante en el Centro Ecológico, representando más de un tercio de la cobertura vegetal. El

  20. Computational and Modeling Strategies for Cell Motility

    Science.gov (United States)

    Wang, Qi; Yang, Xiaofeng; Adalsteinsson, David; Elston, Timothy C.; Jacobson, Ken; Kapustina, Maryna; Forest, M. Gregory

    A predictive simulation of the dynamics of a living cell remains a fundamental modeling and computational challenge. The challenge does not even make sense unless one specifies the level of detail and the phenomena of interest, whether the focus is on near-equilibrium or strongly nonequilibrium behavior, and on localized, subcellular, or global cell behavior. Therefore, choices have to be made clear at the outset, ranging from distinguishing between prokaryotic and eukaryotic cells, specificity within each of these types, whether the cell is "normal," whether one wants to model mitosis, blebs, migration, division, deformation due to confined flow as with red blood cells, and the level of microscopic detail for any of these processes. The review article by Hoffman and Crocker [48] is both an excellent overview of cell mechanics and an inspiration for our approach. One might be interested, for example, in duplicating the intricate experimental details reported in [43]: "actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process," or to duplicate experimental evidence of traveling waves in cells recovering from actin depolymerization [42, 35]. Modeling studies of lamellipodial structure, protrusion, and retraction behavior range from early mechanistic models [84] to more recent deterministic [112, 97] and stochastic [51] approaches with significant biochemical and structural detail. Recent microscopic-macroscopic models and algorithms for cell blebbing have been developed by Young and Mitran [116], which update cytoskeletal microstructure via statistical sampling techniques together with fluid variables. Alternatively, whole cell compartment models (without spatial details) of oscillations in spreading cells have been proposed [35, 92, 109] which show positive and negative feedback

  1. Analysis of ependymal ciliary beat pattern and beat frequency using high speed imaging: comparison with the photomultiplier and photodiode methods

    Directory of Open Access Journals (Sweden)

    O'Callaghan Chris

    2012-06-01

    Full Text Available Abstract Background The aim of this study was to compare beat frequency measurements of ependymal cilia made by digital high speed imaging to those obtained using the photomultiplier and modified photodiode techniques. Using high speed video analysis the relationship of the power and recover strokes was also determined. Methods Ciliated strips of ependyma attached to slices from the brain of Wistar rats were incubated at 30°C and observed using a ×50 water immersion lens. Ciliary beat frequency was measured using each of the three techniques: the high speed video, photodiode and photomultiplier. Readings were repeated after 30 minutes incubation at 37°C. Ependymal cilia were observed in slow motion and the precise movement of cilia during the recovery stroke relative to the path travelled during the power stroke was measured. Results The mean (95% confidence intervals beat frequencies determined by the high speed video, photomultiplier and photodiode at 30°C were 27.7 (26.6 to 28.8, 25.5 (24.4 to 26.6 and 20.8 (20.4 to 21.3 Hz, respectively. The mean (95% confidence intervals beat frequencies determined by the high speed video, photomultiplier and photodiode at 37°C were 36.4 (34 to 39.5, 38.4 (36.8 to 39.9 and 18.8 (16.9 to 20.5 Hz. The inter and intra observer reliability for measurement of ciliary beat frequency was 3.8% and 1%, respectively. Ependymal cilia were observed to move in a planar fashion during the power and recovery strokes with a maximum deviation to the right of the midline of 12.1(11.8 to 13.0° during the power stroke and 12.6(11.6 to 13.6° to the left of the midline during the recovery stroke. Conclusion The photodiode technique greatly underestimates ciliary beat frequency and should not be used to measure ependymal ciliary beat frequency at the temperatures studied. Ciliary beat frequency from the high speed video and photomultiplier techniques cannot be used interchangeably. Ependymal cilia had minimal deviation to

  2. The anti-motility signaling mechanism of TGFβ3 that controls cell traffic during skin wound healing

    Directory of Open Access Journals (Sweden)

    Arum Han

    2012-09-01

    When skin is wounded, migration of epidermal keratinocytes at the wound edge initiates within hours, whereas migration of dermal fibroblasts toward the wounded area remains undetectable until several days later. This “cell type traffic” regulation ensures proper healing of the wound, as disruptions of the regulation could either cause delay of wound healing or result in hypertrophic scars. TGFβ3 is the critical traffic controller that selectively halts migration of the dermal, but not epidermal, cells to ensure completion of wound re-epithelialization prior to wound remodeling. However, the mechanism of TGFβ3's anti-motility signaling has never been investigated. We report here that activated TβRII transmits the anti-motility signal of TGFβ3 in full to TβRI, since expression of the constitutively activated TβRI-TD mutant was sufficient to replace TGFβ3 to block PDGF-bb-induced dermal fibroblast migration. Second, the three components of R-Smad complex are all required. Individual downregulation of Smad2, Smad3 or Smad4 prevented TGFβ3 from inhibiting dermal fibroblast migration. Third, Protein Kinase Array allowed us to identify the protein kinase A (PKA as a specific downstream effector of R-Smads in dermal fibroblasts. Activation of PKA alone blocked PDGF-bb-induced dermal fibroblast migration, just like TGFβ3. Downregulation of PKA's catalytic subunit nullified the anti-motility signaling of TGFβ3. This is the first report on anti-motility signaling mechanism by TGFβ family cytokines. Significance of this finding is not only limited to wound healing but also to other human disorders, such as heart attack and cancer, where the diseased cells have often managed to avoid the anti-motility effect of TGFβ.

  3. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    Science.gov (United States)

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  4. Preservation and Observation of Amterior Ciliary Vessels in Rectus Muscles during Strabismus Surgery

    Institute of Scientific and Technical Information of China (English)

    GuanghuanMai; JianhuaYan

    1995-01-01

    Purpose:To observe the form and number of the anterior ciliary vessels(ACV)in rectus muscles.To train technician in preservation an d obsevation of ACV,so preservation can be done in caes with a rish of anterior segment ischemia(ASI).Methods:Curved foreign knife,iris hook,plastic rubber band and standard operat-ing loupes(3x)or microscope were used in the surgery on 34cases of comitant strabismus and 18cases of paralytic strabismus.Results:The ACVs per muscle in medial,lateral,superior,inferior rectus were3.08,3.26,3.50and3.50respectively in 89muscles of 52surgical strabismus cas-es.All ACVs in 16rectus muscles and 90out of 220ACVs in 73rectus muscles were too small ortoo short to be dissected.The sucess rate of ACV preservation was91.5%(119/130).105out of 130vessels were saved using loupe magnifica-tion and 14pit pf130vessels were saved under operating microscope.Conclusions:The number of ACVinrectus muscles are more than 2in our obser-vation cases.The ACVpreservation has the clinical value of allowing us toper-form muscle sugery on three or more rectus muscles simultaneously and get fonal surgical results more earlier after acv in each muscle are dissected and preserved otherwinse staged surgery are needed.The each strabismus surgeon must knov this technique.

  5. Expression of ciliary neurotrophic factor after induction of ocular hypertension in the retina of rats

    Institute of Scientific and Technical Information of China (English)

    WU Qiang; ZHANG Min; SONG Bei-wen; LU Bin; HU Ping

    2007-01-01

    Background Glaucoma is mainly characterized by the loss of retinal ganglion cells. Ciliary neurotrophic factor (CNTF) is believed to stimulate the regeneration of axons of retinal ganglion cells. The objective of our study was to detect the expression of CNTF in the retina of a rat glaucoma model with increased intraocular pressure (lOP).Methods The rat glaucoma model was set up by electrocoagulating at least three episcleral and limbal veins. The location and the expression level of CNTF were detected at 1, 3, 7, 14, and 28 days post-surgery by immunohistochemistry, semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), and Western blot analysis.Results The rat glaucoma model with chronic, moderately elevated lOP was successfully produced. A minimum expression of CNTF was found in the ganglion cell layer of the retinas of the control group, and temporally increased expression and intensity of CNTF were found in the experimental retinas.Conclusion The expression of endogenous CNTF in the rat retina was found altered after the induction of ocular hypertension.

  6. Brain Ciliary Neurotrophic Factor (CNTF and hypothalamic control of energy homeostasis

    Directory of Open Access Journals (Sweden)

    Vacher Claire-Marie

    2011-09-01

    Full Text Available Cytokines play an important role in energy-balance regulation. Notably leptin, an adipocyte-secreted cytokine, regulates the activity of hypothalamic neurons that are involved in the modulation of appetite. Leptin decreases appetite and stimulates weight loss in rodents. Unfortunately, numerous forms of obesity in humans seem to be resistant to leptin action. The ciliary neurotrophic factor (CNTF is a neurocytokine that belongs to the same family as leptin and that was originally characterized as a neurotrophic factor that promotes the survival of a broad spectrum of neuronal cell types and that enhances neurogenesis in adult rodents. It presents the advantage of stimulating weight loss in humans, despite the leptin resistance. Moreover, the weight loss persists several weeks after the cessation of treatment. Hence, CNTF has been considered as a promising therapeutic tool for the treatment of obesity and has prompted intense research aimed at identifying the cellular and molecular mechanisms underlying its potent anorexigenic properties. It has been found that CNTF shares signaling pathways with leptin and is expressed in the arcuate nucleus (ARC, a key hypothalamic region controlling food intake. Endogenous CNTF may also participate in the control of energy balance. Indeed, its expression in the ARC is inversely correlated to body weight in rats fed a high-sucrose diet. Thus hypothalamic CNTF may act, in some individuals, as a protective factor against weight gain during hypercaloric diet and could account for individual differences in the susceptibility to obesity.

  7. Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina.

    Science.gov (United States)

    Xue, Xiao Yan; Harris, William A

    2012-04-01

    The ciliary marginal zone (CMZ) of fish and frog retinas contains cells that proliferate throughout postembryonic development as the retina grows with increasing body size, indicating the presence of stem cells in this region. However, neither the location nor the molecular identity of retinal stem cells has been identified. Here, we show in Xenopus that c-myc and n-myc are sequentially expressed both during development and in the post-embryonic retina. The c-myc+/n-myc- cells near the extreme periphery of the CMZ cycle more slowly and preferentially retain DNA label compared to their more central cmyc+/n-myc+ neighbors which cycle rapidly and preferentially dilute DNA label. During retinal development c-myc is functionally required earlier than n-myc, and n-myc expression depends on earlier c-myc expression. The expression of c-myc but not n-myc in the CMZ depends on growth factor signaling. Our results suggest that c-myc+/n-myc- cells in the far peripheral CMZ are candidates for a niche-dependent population of retinal stem cells that give rise to more centrally located and rapidly dividing n-myc+ progenitors of more limited proliferative potential. Analysis of homologues of these genes in the zebrafish CMZ suggests that the transition from c-myc to n-myc expression might be conserved in other lower vertebrates whose retinas growth throughout life.

  8. Physiological Flow of Jeffrey Six Constant Fluid Model due to Ciliary Motion

    Science.gov (United States)

    Shaheen, A.; Hussain, S.; Nadeem, S.

    2016-12-01

    The main purpose of this article is to present a mathematical model of ciliary motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey six constant fluid is observed in an annulus with ciliated tips in the presence of heat and mass transfer. The effects of viscous dissipation are also considered. The flow equations of non-Newtonian fluid for the two-dimensional tube in cylindrical coordinates are simplified using the low Reynolds number and long wave-length approximations. The main equations for Jeffrey six constant fluid are considered in cylindrical coordinates system. The resulting nonlinear problem is solved using the regular perturbation technique in terms of a variant of small dimensionless parameter α. The results of the solutions for velocity, temperature and concentration field are presented graphically. Bk is Brinkman number, ST is soret number, and SH is the Schmidth number. Outcome for the longitudinal velocity, pressure rise, pressure gradient and stream lines are represented through graphs. in the history, the viscous-dissipation effect is usually represented by the Brinkman number.

  9. The ciliary margin zone of the mammalian retina generates retinal ganglion cells

    Science.gov (United States)

    Marcucci, Florencia; Murcia-Belmonte, Veronica; Coca, Yaiza; Ferreiro-Galve, Susana; Wang, Qing; Kuwajima, Takaaki; Khalid, Sania; Ross, M. Elizabeth; Herrera, Eloisa; Mason, Carol

    2016-01-01

    Summary The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live-imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. As Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2−/− mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity. PMID:28009286

  10. The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results

    Science.gov (United States)

    Goutaki, Myrofora; Maurer, Elisabeth; Halbeisen, Florian S.; Amirav, Israel; Barbato, Angelo; Behan, Laura; Boon, Mieke; Casaulta, Carmen; Clement, Annick; Crowley, Suzanne; Haarman, Eric; Hogg, Claire; Karadag, Bulent; Koerner-Rettberg, Cordula; Leigh, Margaret W.; Loebinger, Michael R.; Mazurek, Henryk; Morgan, Lucy; Nielsen, Kim G.; Omran, Heymut; Schwerk, Nicolaus; Scigliano, Sergio; Werner, Claudius; Yiallouros, Panayiotis; Zivkovic, Zorica; Lucas, Jane S.

    2017-01-01

    Data on primary ciliary dyskinesia (PCD) epidemiology is scarce and published studies are characterised by low numbers. In the framework of the European Union project BESTCILIA we aimed to combine all available datasets in a retrospective international PCD cohort (iPCD Cohort). We identified eligible datasets by performing a systematic review of published studies containing clinical information on PCD, and by contacting members of past and current European Respiratory Society Task Forces on PCD. We compared the contents of the datasets, clarified definitions and pooled them in a standardised format. As of April 2016 the iPCD Cohort includes data on 3013 patients from 18 countries. It includes data on diagnostic evaluations, symptoms, lung function, growth and treatments. Longitudinal data are currently available for 542 patients. The extent of clinical details per patient varies between centres. More than 50% of patients have a definite PCD diagnosis based on recent guidelines. Children aged 10–19 years are the largest age group, followed by younger children (≤9 years) and young adults (20–29 years). This is the largest observational PCD dataset available to date. It will allow us to answer pertinent questions on clinical phenotype, disease severity, prognosis and effect of treatments, and to investigate genotype–phenotype correlations. PMID:28052956

  11. Bidirectional motility of the fission yeast kinesin-5, Cut7

    Energy Technology Data Exchange (ETDEWEB)

    Edamatsu, Masaki, E-mail: cedam@mail.ecc.u-tokyo.ac.jp

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  12. Rac and Rho GTPases in cancer cell motility control

    Directory of Open Access Journals (Sweden)

    Parri Matteo

    2010-09-01

    Full Text Available Abstract Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.

  13. Multi-scale motility amplitude associated with suicidal thoughts in major depression.

    Directory of Open Access Journals (Sweden)

    Premananda Indic

    Full Text Available Major depression occurs at high prevalence in the general population, often starts in juvenile years, recurs over a lifetime, and is strongly associated with disability and suicide. Searches for biological markers in depression may have been hindered by assuming that depression is a unitary and relatively homogeneous disorder, mainly of mood, rather than addressing particular, clinically crucial features or diagnostic subtypes. Many studies have implicated quantitative alterations of motility rhythms in depressed human subjects. Since a candidate feature of great public-health significance is the unusually high risk of suicidal behavior in depressive disorders, we studied correlations between a measure (vulnerability index [VI] derived from multi-scale characteristics of daily-motility rhythms in depressed subjects (n = 36 monitored with noninvasive, wrist-worn, electronic actigraphs and their self-assessed level of suicidal thinking operationalized as a wish to die. Patient-subjects had a stable clinical diagnosis of bipolar-I, bipolar-II, or unipolar major depression (n = 12 of each type. VI was associated inversely with suicidal thinking (r = -0.61 with all subjects and r = -0.73 with bipolar disorder subjects; both p<0.0001 and distinguished patients with bipolar versus unipolar major depression with a sensitivity of 91.7% and a specificity of 79.2%. VI may be a useful biomarker of characteristic features of major depression, contribute to differentiating bipolar and unipolar depression, and help to detect risk of suicide. An objective biomarker of suicide-risk could be advantageous when patients are unwilling or unable to share suicidal thinking with clinicians.

  14. Normal aspects of colorectal motility and abnormalities in slow transit constipation

    Institute of Scientific and Technical Information of China (English)

    Gabrio Bassotti; Giuseppe de Roberto; Danilo Castellani; Luca Sediari; Antonio Morelli

    2005-01-01

    Human colonic motility is a relatively difficult topic to investigate. However, the refinement of manometric techniques in recent years enabled us to study both the proximal and distal segments of the viscus. The present paper reviews our knowledge about normal aspects of colorectal motility in man and the abnormalities found in slow transit constipation (STC), one of the most frequent and difficult to treat subtypes of constipation. An internetbased search strategy of the Medline and Science Citation Index was performed using the keywords colon, colonic,colorectal, constipation, slow transit, motility, recal, rectum in various combinations with the Boolean operators AND, OR and NOT. Only articles related to human studies were used, and manual cross-referencing was also performed.Most of colonic motor activity is represented by single nonpropagated contractions, rarely organized in bursts; this activity is maximal during the day, especially after waking and following meals. In addition, a specialized propagated activity with propulsive features is detectable, represented by high- and low-amplitude propagated contractions. In the severe form of constipation represented by the slow transit type, the above motor activity is completely deranged. In fact, both basal segmental activity (especially in response to meals) and propagated activity (especially that of high amplitude) are usually decreased, and this may represent a physiologic marker of this disorder. Human colonic motor activity is quite a complex issue, still only partly understood and investigated, due to anatomic and physiological difficulties. In recent years, however, some more data have been obtained, even in proximal segments. These data have helped in elucidating, althoughonly in part, some pathophysiological mechanisms of chronic constipation, and especially of the STC subtype.

  15. Reading networks in children with dyslexia compared to children with ocular motility disturbances revealed by fMRI

    Directory of Open Access Journals (Sweden)

    Ibone eSaralegui

    2014-11-01

    Full Text Available Developmental dyslexia is a neurological disorder whose underlying biological and cognitive causes are still being investigated, a key point of great significance, because it will determine the best therapeutic approach to use.Using functional magnetic resonance imaging, we studied the brain activation pattern while reading in the most eloquent cortical areas from the two reading routes, phonological and orthographic, and the strength of their association with reading scores in 66 Spanish children aged 9-12 years divided into three groups: typically developing readers (controls, dyslexic readers and readers with monocular vision due to ocular motility disorders but with a normal reading development, to assess whether (or not the neuronal network for reading in children with dyslexia has similarities with that in children with impaired binocular vision due to ocular motility disorders.We found that Spanish-speaking children with dyslexia have a brain circuit for reading that differs from that in children with monocular vision. Individuals with dyslexia tend to hypoactivate some of the more eloquent areas in the left hemisphere engaged by the phonological route, especially the visual word form area and left Wernicke´s area, and try to compensate this deficit by activating eloquent areas related to the orthographic route, such as the anterior part of the visual word form area and the posterior regions of both middle temporal gyri. That is, they seem to compensate for impairment in the phonological route through orthographic routes of both hemispheres.Our results suggest that ocular motility disturbances do not play a causal role in dyslexia. Dyslexia seems to be a neurological disorder that requires early recognition and evidence-based assessments and treatment to achieve the best possible outcome.

  16. Role of purinergic signaling mediated by ATP in Alzheimer’ s disease-as-sociated colonic motility disorder%ATP介导的嘌呤能信号在阿尔茨海默病相关结肠运动障碍中的作用

    Institute of Scientific and Technical Information of China (English)

    林旭红; 刘建林; 王慧超; 郭俊玲; 房晓鹏; 张俊士; 郭俊楠; 李玉霞; 杨瑞林; 李铁军

    2016-01-01

    .01),VIP无明显变化,AD小鼠结肠表达ATP合酶的水平明显上调(P<0.05),但ChAT、VIP和NOS无明显改变,同时P2Y受体表达水平升高(P<0.01)。体外实验表明,α,β-MeATP呈浓度依赖性抑制对照组和AD组小鼠结肠平滑肌自发性收缩( P<0.05或P<0.01),且这种抑制作用可被Na+通道阻断剂河豚毒素(tetrodotoxin,TTX)逆转(P<0.05或P<0.01),α,β-MeATP在100μmol/L时对AD小鼠自发性收缩的抑制作用更明显(P<0.05),AD小鼠与正常小鼠比较,TTX对100μmol/L的α,β-MeATP的拮抗作用差异也有统计学显著性( P<0.05)。在10 Hz电刺激诱导的结肠平滑肌收缩中,α,β-MeATP抑制正常小鼠和AD组小鼠的收缩(P<0.05或P<0.01),且40μmol/L和100μmol/L时对AD小鼠的抑制作用比正常小鼠明显(P<0.05或P<0.01)。平滑肌细胞膜电位实验显示,α,β-MeATP不影响结肠平滑肌膜电位(P>0.05)。结论:AD患者和AD小鼠血浆中促进胃肠运动的激素MTL和CCK水平降低,抑制胃肠运动的激素NO水平升高,胃肠总体运动功能被抑制;AD小鼠血浆ATP水平升高,同时ATP嘌呤能神经元增加,P2Y受体表达上调;在AD发病中,ATP介导的嘌呤能信号可能通过抑制结肠平滑肌收缩,从而导致结肠运动功能障碍。%AIM: To explore the role of purinergic signaling mediated by ATP in the Alzheimer ’ s disease (AD)-related colon motility disorder and its related molecular mechanisms .METHODS:(1)Clinical trials:AD patients in our hospital were collected and studied .Radioimmunoassay was used for the determination of plasma motilin (MTL), cholecystokinin (CCK), vasoactive intestinal peptide (VIP) and nitric oxide (NO), and high-performance liquid chroma-tography ( HPLC) was applied to test the level of adenosine triphosphate ( ATP) .The patients were assessed by neuropsy-chology and scored accordingly .( 2 ) In

  17. Active Hair-Bundle Motility by the Vertebrate Hair Cell

    Science.gov (United States)

    Tinevez, J.-Y.; Martin, P.; Jülicher, F.

    2009-02-01

    The hair bundle is both a mechano-sensory antenna and a force generator that might help the vertebrate hair cell from the inner ear to amplify its responsiveness to small stimuli. To study active hair-bundle motility, we combined calcium iontophoresis with mechanical stimulation of single hair bundles from the bullfrog's sacculus. A hair bundle could oscillate spontaneously, or be quiescent but display non-monotonic movements in response to abrupt force steps. Extracellular calcium changes or static biases to the bundle's position at rest could affect the kinetics of bundle motion and evoke transitions between the different classes of motility. The calcium-dependent location of a bundle's operating point within its nonlinear force-displacement relation controlled the type of movements observed. A unified theoretical description, in which mechanical activity stems from myosin-based adaptation and electro-mechanical feedback by Ca2+, could account for the fast and slow manifestations of active hair-bundle motility.

  18. Assessment of gastrointestinal motility using three different assays in vitro.

    Science.gov (United States)

    Pozzoli, Cristina; Poli, Enzo

    2010-11-01

    The protocols detailed in this unit are designed to assess the motor activity of different gastric and intestinal muscle preparations in vitro and the effects of drugs that modulate gastrointestinal motility. The preparations described are characterized by different contractile behaviors, consisting of spontaneous (duodenum), neurogenic (ileum), and drug-stimulated (fundus, ileum) motility; these reproduce motility patterns occurring in the gut wall in vivo. These protocols document the variety of factors that can influence the responses of isolated tissues and describe how such tissues can be used for testing substances that affect gut movements. These preparations allow evaluation of direct interactions with the processes that control contractile machinery, as well as indirect effects resulting from the modification of neurotransmitter release from myenteric neurons. These models can be exploited to assay novel compounds undergoing preclinical development or to evaluate the functional toxicity exerted by environmental or alimentary pollutants, like xenobiotics and naturally occurring toxins, as well as the mechanisms underlying these effects.

  19. Model for self-polarization and motility of keratocyte fragments

    KAUST Repository

    Ziebert, F.

    2011-10-19

    Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments.

  20. Activation of Drosophila hemocyte motility by the ecdysone hormone

    Directory of Open Access Journals (Sweden)

    Christopher J. Sampson

    2013-11-01

    Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton.

  1. Single cell motility and trail formation in populations of microglia

    Science.gov (United States)

    Lee, Kyoung Jin

    2009-03-01

    Microglia are a special type of glia cell in brain that has immune responses. They constitute about 20 % of the total glia population within the brain. Compared to other glia cells, microglia are very motile, constantly moving to destroy pathogens and to remove dead neurons. While doing so, they exhibit interesting body shapes, have cell-to-cell communications, and have chemotatic responses to each other. Interestingly, our recent in vitro studies show that their unusual motile behaviors can self-organize to form trails, similar to those in populations of ants. We have studied the changes in the physical properties of these trails by varying the cell population density and by changing the degree of spatial inhomogeneities (``pathogens''). Our experimental observations can be quite faithfully reproduced by a simple mathematical model involving many motile cells whose mechanical motion are driven by actin polymerization and depolymerization process within the individual cell body and by external chemical gradients.

  2. Bacteria rolling: motilities of rosette colonies in Caulobacter crescentus

    Science.gov (United States)

    Zeng, Yu; Liu, Bin

    2016-11-01

    The aquatic bacterium Caulobacter crescentus has two life cycle stages with distinct motilities: freely swimming swarmer cells and immotile stalked cells. Here, we show a new type of movement performed by freely suspended rosettes, spontaneous aggregates of stalked cells aligned radially relative to each other. Reproductive rosette members generate predivisional daughter cells with flagella, inducing rotations of the rosette as a whole. Such rotations exhibit dynamic angular velocities and lead to intermittent linear movements along liquid-solid interfaces, resembling rolling movements. We reconstructed the translational and rotational dynamics of the rosette movements from high-speed filming and long-term tracking. A mechanical model was developed to explain the hydrodynamic mechanism underlying such motilities. Our study illustrated a nontrivial mechanism for clustered bacteria to achieve motilities and sheds light on the adaptive significance of the collective behaviors of microorganisms in complex fluid environments.

  3. TUTORIAL: An introduction to cell motility for the physical scientist

    Science.gov (United States)

    Fletcher, Daniel A.; Theriot, Julie A.

    2004-03-01

    Directed, purposeful movement is one of the qualities that we most closely associate with living organisms, and essentially all known forms of life on this planet exhibit some type of self-generated movement or motility. Even organisms that remain sessile most of the time, like flowering plants and trees, are quite busy at the cellular level, with large organelles, including chloroplasts, constantly racing around within cellular boundaries. Directed biological movement requires that the cell be able to convert its abundant stores of chemical energy into mechanical energy. Understanding how this mechanochemical energy transduction takes place and understanding how small biological forces generated at the molecular level are marshaled and organized for large-scale cellular or organismal movements are the focus of the field of cell motility. This tutorial, aimed at readers with a background in physical sciences, surveys the state of current knowledge and recent advances in modeling cell motility.

  4. Enhancement of mouse sperm motility by trophinin-binding peptide

    Directory of Open Access Journals (Sweden)

    Park Seong

    2012-11-01

    Full Text Available Abstract Background Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine peptide enhanced motility of human sperm. Methods Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA. Results Anti-trophinin antibody stained the principal (central piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. Conclusions Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.

  5. Neural mechanism of acupuncture-modulated gastric motility

    Institute of Scientific and Technical Information of China (English)

    Yu-Qing Li; Bing Zhu; Pei-Jing Rong; Hui Ben; Yan-Hua Li

    2007-01-01

    AIM: To investigate the acupuncture-modulated gastric motility and its underlying neural mechanism.METHODS: Intragastric pressure and/or waves of gastric contraction in rats were recorded by intrapyloric balloon and changes of gastric motility induced by acupuncture stimulation were compared with the background activity before any stimulation. Gastrovagal or splanchnic-sympathetic nerves were recorded or cut respectively for investigating the involvement of autonomic nerve pathways. Spinalization experiment was also performed.RESULTS: Acupuncture-stimulation by exciting Aδ and/or C afferent fibers, could only modulate gastric motility.Acupuncture-stimulation on fore- and hind-limbs evoked a moderate gastric motility followed by increased vagus discharges with unchanged sympathetic activity, while the same stimulus to the acupoints in abdomen resulted in reversed effects on gastric motility and autonomic nervous activities. The inhibitory gastric response was completely abolished by splanchnic denervation, but the facilitative gastric response to stimulation of acupoints in limbs was not influenced, which was opposite to the effect when vagotomy was performed. The similar depressive effects were produced by the stimulation at the acupoints homo-segmental to the gastric innervation in the animals with or without spinalization. However, the facilitation induced by the stimulation at the acupoints heteto-segmental to the gastric innervation was not observed in the spinalized animals.CONCLUSION: Facilitative effects of stimulating hetero-segmental acupoints are involved in the intact preparation of vagal nerves and spinal cord, while the inhibitory response induced by stimulating homosegmental acupoints is involved in the intact preparation of sympathetic nerves. Only the acupuncture-stimulation with intensity over the threshold of Aδ and/or C afferent fibers can markedly modulate gastrointestinal motility.

  6. Lung disease assessment in primary ciliary dyskinesia: a comparison between chest high-field magnetic resonance imaging and high-resolution computed tomography findings

    Directory of Open Access Journals (Sweden)

    Iacotucci Paola

    2009-08-01

    Full Text Available Abstract Background Primary ciliary dyskinesia (PCD is associated with pulmonary involvement that requires periodical assessment. Chest high-resolution computed tomography (HRCT has become the method of choice to evaluate chronic lung disease, but entails exposure to ionizing radiation. Magnetic resonance imaging (MRI has been proposed as a potential radiation-free technique in several chest disorders. Aim of our study is to evaluate whether high-field MRI is as effective as HRCT in identifying PCD pulmonary abnormalities. We also analyzed the relationships between the severity and extension of lung disease, and functional data. Methods Thirteen PCD patients (8 children/5 adults; median age, 15.2 yrs underwent chest HRCT and high-field 3T MRI, spirometry, and deep throat or sputum culture. Images were scored using a modified version of the Helbich system. Results HRCT and MRI total scores were 12 (range, 6–20 and 12 (range, 5–17, respectively. Agreement between HRCT and MRI scores was good or excellent (r > 0.8. HRCT and MRI total scores were significantly related to forced vital capacity (r = -0.5, p = 0.05; and r = -0.7, p = 0.009, respectively and forced expiratory volume at 1 second (r = -0.6, p = 0.03; and r = -0.7, p = 0.009, respectively. Conclusion Chest high-field 3T MRI appears to be as effective as HRCT in assessing the extent and severity of lung abnormalities in PCD. MRI scores might be used for longitudinal assessment and be an outcome surrogate in future studies.

  7. Microtubules are Essential for Mitochondrial Dynamics-Fission, Fusion, and Motility- in Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Laken C. Woods

    2016-03-01

    Full Text Available Mitochondrial function is dependent upon mitochondrial structure which is in turn dependent upon mitochondrial dynamics, including fission, fusion, and motility. Here we examined the relationship between mitochondrial dynamics and the cytoskeleton in Dictyostelium discoideum. Using time-lapse analysis, we quantified mitochondrial fission, fusion, and motility in the presence of cytoskeleton disrupting pharmaceuticals and the absence of the potential mitochondria-cytoskeleton linker protein, CluA. Our results indicate that microtubules are essential for mitochondrial movement, as well as fission and fusion; actin plays a less significant role, perhaps selecting the mitochondria for transport. We also suggest that CluA is not a linker protein but plays an unidentified role in mitochondrial fission and fusion. The significance of our work is to gain further insight into the role the cytoskeleton plays in mitochondrial dynamics and function. By better understanding these processes we can better appreciate the underlying mitochondrial contributions to many neurological disorders characterized by altered mitochondrial dynamics, structure, and/or function.

  8. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Directory of Open Access Journals (Sweden)

    Ali Riazi

    Full Text Available Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  9. Can balneotherapy improve the bowel motility in chronically constipated middle-aged and elderly patients?

    Science.gov (United States)

    Dandinoglu, Taner; Dandin, Ozgur; Ergin, Tuncer; Tihan, Deniz; Akpak, Yasam Kemal; Aydın, Oguz Ugur; Teomete, Uygar

    2016-12-01

    Balneotherapy or spa therapy is usually known for different application forms of medicinal waters and its effects on the human body. Our purpose is to demonstrate the effect of balneotherapy on gastrointestinal motility. A total of 35 patients who were treated for osteoarthritis with balneotherapy from November 2013 through March 2015 at our hospital had a consultation at the general surgery for constipation and defecation disorders. Patients followed by constipation scores, short-form health survey (SF-12), and a colonic transit time (CTT) study before and after balneotherapy were included in this study, and the data of the patients were analyzed retrospectively. The constipation score, SF-12 score, and CTT were found statistically significant after balneotherapy (p < 0.05). The results of our study confirm the clinical finding that a 15-day course of balneotherapy with mineral water from a thermal spring (Bursa, Turkey) improves gastrointestinal motility and reduces laxative consumption in the management of constipation in middle-aged and elderly patients, and it is our belief that treatment with thermal mineral water could considerably improve the quality of life of these patients.

  10. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Science.gov (United States)

    Riazi, Ali; Strong, Philippa C R; Coleman, Russell; Chen, Wangxue; Hirama, Tomoko; van Faassen, Henk; Henry, Matthew; Logan, Susan M; Szymanski, Christine M; Mackenzie, Roger; Ghahroudi, Mehdi Arbabi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  11. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells.

    Science.gov (United States)

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F; He, Rong-Qiao

    2016-03-31

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation.

  12. Nociceptin effect on intestinal motility depends on opioidreceptor like-1 receptors and nitric oxide synthase colocalization

    Institute of Scientific and Technical Information of China (English)

    Andrei; Sibaev; Jakub; Fichna; Dieter; Saur; Birol; Yuece; Jean-Pierre; Timmermans; Martin; Storr

    2015-01-01

    AIM: To study the effect of the opioid-receptor like-1(ORL1) agonist nociceptin on gastrointestinal(GI)myenteric neurotransmission and motility. METHODS: Reverse transcriptase- polymerase chain reaction and immunohistochemistry were used to localize nociceptin and ORL1 in mouse tissues. Intracellular electrophysiological recordings of excitatory and inhibitory junction potentials(EJP, IJP) were made in a chambered organ bath. Intestinal motility was measured in vivo. RESULTS: Nociceptin accelerated whole and upper GI transit, but slowed colonic expulsion in vivo in an ORL1-dependent manner, as shown using [Nphe1]NOC and AS ODN pretreatment. ORL1 and nociceptin immunoreactivity were found on enteric neurons. Nociceptin reduced the EJP and the nitric oxide-sensitive slow IJP in an ORL1-dependent manner, whereas the fast IJP was unchanged. Nociceptin further reduced the spatial spreading of the EJP up to 2 cm. CONCLUSION: Compounds acting at ORL1 are good candidates for the future treatment of disorders associated with increased colonic transit, such as diarrhea or diarrhea-predominant irritable bowel syndrome.

  13. Discinesia ciliar primária: quando o pediatra deve suspeitar e como diagnosticar? Primary ciliary dyskinesia: when the pediatrician must suspect and how to do the diagnosis?

    Directory of Open Access Journals (Sweden)

    Mary Anne K. Olm

    2007-12-01

    from secondary ciliary defects and to describe the clinical features, screening and diagnostic laboratorial tests, and the clinical management of this disorder. DATA SOURCES: A bibliographical search was obtained from Medline, Lilacs and SciELO databases, from 1980 to 2007. DATA SYNTHESIS: PCD is an autossomic recessive disorder with abnormal structure and/or function of the cilia, leading to reduced mucociliary clearance. The clinical manifestations include upper and lower respiratory tracts, with recurrent ear, sinus and lung infections that may progress to bronchiectasis. Situs inversus and male infertility are other clinical features of this disorder. PCD should be suspected by pediatricians in the following clinical situations: full term neonates with respiratory distress without apparent causes, presence of dextrocardia, infants with chronic cough and/or recurrent upper airways infections in the absence of immunodeficiency and cystic fibrosis, children with atypical asthma and bronchiectasis without a definitive cause. The diagnostic screening tests are the saccharine and nasal nitric oxide tests. Functional and ultrastructural evaluations demand an electronic microscopic analysis and the observation of the frequency and the pattern of the ciliary movement. CONCLUSIONS: Although the prevalence of PCD is low, the difficulties in establishing the diagnosis due to the complex investigations demanded and the unfamiliarity of the disease by physicians lead to underdiagnosis. Early diagnosis and treatment of PCD are essential to reduce the morbidity and to avoid complications.

  14. Experimental Study on the Prevention of Anterior Segment Ischemia by Preservation of Anterior Ciliary Vessels

    Institute of Scientific and Technical Information of China (English)

    Yanna Li; Guanghuan Mai; Zhijian Wang; Xinping Yu; Huanyun Yu; Yan Guo; Xiaoming Lin; Daming Deng; Ying Kang

    2003-01-01

    Purpose: To observe the effect of preserving anterior ciliary vessels (ACVs) on anteriorsegments of rabbit eyes undergoing tenotomy of extraocular muscles.Methods: Thirty-two adult New Zealand white rabbits were divided into four groups.Same procedures were done in both eyes in each group except that left eyes underwentpreservation of ACVs. In the first group medial and lateral recti, in the second group,superior and inferior recti, in the third group, medial, lateral and superior or inferior rectiand in the fourth group, all four recti, underwent tenotomy. Slit-lamp examination,intraocular pressure (IOP) measurement, total protein and lactic acid quantification inaqueous humor were done in all eyes pre- and post-operatively. By four weeks afteroperation, the eyes were enucleated for histological examination and electron microscopy.All data were analyzed using SPSS version 10.Results: In the left eyes of both group 1 and group 2, no inflammatory response wasobserved. In the left eyes of group 3 and 4, we observed mild inflammatory response withslit-lamp examination, which disappeared in one wk. However, we did not findsignificant changes in IOP, total protein and lactic acid of aqueous humor, histology andelectron microscopic examination in these groups. In the right eyes in group 2, 3 and 4,we observed moderate to severe inflammatory changes, a few even developed anteriorsegment ischemia, appeared as decreased IOP, increased total protein and lactic acid inaqueous humor, along with pathological and electron-microscopic changes.Conclusion: Simultaneous tenotomy of three or four recti or two vertical recti on one eyemay decrease anterior segment blood flow even lead to ischemia. ACVs preservation mayprotect the blood circulation in anterior segment. Our study suggests that ACVspreservation in strabismus surgeries especially those involving multi-recti tenotomies mayprevent potential anterior segment ischemia.

  15. Gene expression and functional annotation of the human ciliary body epithelia.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available PURPOSE: The ciliary body (CB of the human eye consists of the non-pigmented (NPE and pigmented (PE neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma. METHODS: We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity. RESULTS: The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (NPE of 35 genes previously implicated in molecular mechanisms related to glaucoma. CONCLUSION: Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma.

  16. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis.

    Science.gov (United States)

    Collins, Samuel A; Gove, Kerry; Walker, Woolf; Lucas, Jane S A

    2014-12-01

    Nasal nitric oxide (nNO) concentrations are low in patients with primary ciliary dyskinesia (PCD) providing a noninvasive screening test. We conducted a systematic review of the literature to examine the utility of nNO in screening for PCD, in particular 1) different respiratory manoeuvres during sampling (velum closure, tidal breathing, etc.), 2) accuracy in screening young/uncooperative children, 3) stationary versus portable analysers, and 4) nNO in "atypical" PCD. 96 papers were assessed according to modified PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria and 22 were included in this review. Meta-analysis of 11 studies comparing nNO during a velum closure breath hold gave a mean±SD nNO of 19.4±18.6 nL·min(-1) in PCD (n = 478) and 265.0±118.9 nL·min(-1) in healthy controls (n = 338). Weighted mean difference for PCD versus healthy controls was 231.1 nL·min(-1) (95% CI 193.3-268.9; n = 338) and 114.1 nL·min(-1) (95% CI 101.5-126.8; n = 415) for PCD versus cystic fibrosis. Five studies of nNO measurement during tidal breathing demonstrated that this is an acceptable manoeuvre in young children where velum closure is not possible, but the discriminatory value was reduced. Four small studies of portable NO analysers suggest these are reliable tools for screening for PCD. However, nNO must be interpreted alongside clinical suspicion. Future studies should focus on standardising sampling techniques and reporting.

  17. Study of pentoxifylline effects on motility and viability of spermatozoa from infertile asthenozoospermic males

    Directory of Open Access Journals (Sweden)

    Aliye Ghasemzadeh

    2016-01-01

    Full Text Available Background: The quality of semen is one of the major parameters in male infertility. Pentoxifylline, a methylxanthine derivative, is an agent primarily used in the treatment of intermittent claudication and other vascular disorders. Studies have shown that pentoxifylline enhances the quality and quantity of sperms. In this study, we have investigated the in vitro effects of pentoxifylline on viability and motility of spermatozoa in samples of infertile oligoasthenozoospermic males. Materials and Methods: In this observer-blinded clinical trial, semen samples of 25 infertile oligoasthenozoospermic males were collected in Alzahra Educational Medical Center of Tabriz University of Medical Sciences from August 2010 to August 2012. After the isolation of spermatozoa by the swim-up method, they were randomized into four groups in ISM1 environment: The controls treated normally: Group 1 treated by pentoxifylline at a dose of 50 ΅g/ml, Group 2 treated by pentoxifylline at a dose of 100 ΅g/ml, and Group 3 treated by pentoxifylline at a dose of 200 ΅g/ml. Sperm viability and motility were compared among the groups on 45 min, 24 h, 36 h, and 48 h intervals. Results: Mean percentages of live sperms were 98.40%, 51.40%, 20.60%, and 6.00% in control group and 98.40%, 69.20%, 38.60%, and 14.60% in Group 3 on the mentioned intervals, respectively. This mean percentage decrease of live sperms was significantly lower in Group 3 comparing with that of other groups (P = 0.01. Mean percentages of motile sperms were 54%, 8.40%, 2.80%, and 0% in control group; and 54%, 16%, 4.80%, and 1.40% in Group 3 on the mentioned intervals, respectively. There was not a significant difference between the four groups in this regard (P = 0.19. Conclusion: Pentoxifylline can enhance the viability of sperm of infertile oligoasthenozoospermic males with no significant effect on its motility.

  18. Study of pentoxifylline effects on motility and viability of spermatozoa from infertile asthenozoospermic males

    Science.gov (United States)

    Ghasemzadeh, Aliye; Karkon-Shayan, Farid; Yousefzadeh, Solmaz; Naghavi-Behzad, Mohammad; Hamdi, Kobra

    2016-01-01

    Background: The quality of semen is one of the major parameters in male infertility. Pentoxifylline, a methylxanthine derivative, is an agent primarily used in the treatment of intermittent claudication and other vascular disorders. Studies have shown that pentoxifylline enhances the quality and quantity of sperms. In this study, we have investigated the in vitro effects of pentoxifylline on viability and motility of spermatozoa in samples of infertile oligoasthenozoospermic males. Materials and Methods: In this observer-blinded clinical trial, semen samples of 25 infertile oligoasthenozoospermic males were collected in Alzahra Educational Medical Center of Tabriz University of Medical Sciences from August 2010 to August 2012. After the isolation of spermatozoa by the swim-up method, they were randomized into four groups in ISM1 environment: The controls treated normally: Group 1 treated by pentoxifylline at a dose of 50 μg/ml, Group 2 treated by pentoxifylline at a dose of 100 μg/ml, and Group 3 treated by pentoxifylline at a dose of 200 μg/ml. Sperm viability and motility were compared among the groups on 45 min, 24 h, 36 h, and 48 h intervals. Results: Mean percentages of live sperms were 98.40%, 51.40%, 20.60%, and 6.00% in control group and 98.40%, 69.20%, 38.60%, and 14.60% in Group 3 on the mentioned intervals, respectively. This mean percentage decrease of live sperms was significantly lower in Group 3 comparing with that of other groups (P = 0.01). Mean percentages of motile sperms were 54%, 8.40%, 2.80%, and 0% in control group; and 54%, 16%, 4.80%, and 1.40% in Group 3 on the mentioned intervals, respectively. There was not a significant difference between the four groups in this regard (P = 0.19). Conclusion: Pentoxifylline can enhance the viability of sperm of infertile oligoasthenozoospermic males with no significant effect on its motility. PMID:27942099

  19. Effects of psychological stress on small intestinal motility and bacteria and mucosa in mice

    Institute of Scientific and Technical Information of China (English)

    Shao-Xuan Wang; Wan-Chun Wu

    2005-01-01

    to the small intestinal motility disorder and dysbacteriosis and the damage of mucosa probably caused by psychological stress.

  20. The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Romani, Sveva; Illi, Barbara; De Mori, Roberta; Savino, Mauro; Gleeson, Joseph G; Valente, Enza Maria

    2014-01-01

    The dysfunction of the primary cilium, a complex, evolutionarily conserved, organelle playing an important role in sensing and transducing cell signals, is the unifying pathogenetic mechanism of a growing number of diseases collectively termed "ciliopathies", typically characterized by multiorgan involvement. Developmental defects of the central nervous system (CNS) characterize a subset of ciliopathies showing clinical and genetic overlap, such as Joubert syndrome (JS) and Meckel syndrome (MS). Although several knock-out mice lacking a variety of ciliary proteins have shown the importance of primary cilia in the development of the brain and CNS-derived structures, developmental in vitro studies, extremely useful to unravel the role of primary cilia along the course of neural differentiation, are still missing. Mouse embryonic stem cells (mESCs) have been recently proven to mimic brain development, giving the unique opportunity to dissect the CNS differentiation process along its sequential steps. In the present study we show that mESCs express the ciliary proteins Meckelin and Jouberin in a developmentally-regulated manner, and that these proteins co-localize with acetylated tubulin labeled cilia located at the outer embryonic layer. Further, mESCs differentiating along the neuronal lineage activate the cilia-dependent sonic hedgehog signaling machinery, which is impaired in Meckelin knock-out cells but results unaffected in Jouberin-deficient mESCs. However, both lose the ability to acquire a neuronal phenotype. Altogether, these results demonstrate a pivotal role of Meckelin and Jouberin during embryonic neural specification and indicate mESCs as a suitable tool to investigate the developmental impact of ciliary proteins dysfunction.

  1. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations.

    Science.gov (United States)

    Freedman, Benjamin S; Lam, Albert Q; Sundsbak, Jamie L; Iatrino, Rossella; Su, Xuefeng; Koon, Sarah J; Wu, Maoqing; Daheron, Laurence; Harris, Peter C; Zhou, Jing; Bonventre, Joseph V

    2013-10-01

    Heterozygous mutations in PKD1 or PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause autosomal dominant PKD (ADPKD), whereas mutations in PKHD1, which encodes fibrocystin/polyductin (FPC), cause autosomal recessive PKD (ARPKD). However, the relationship between these proteins and the pathogenesis of PKD remains unclear. To model PKD in human cells, we established induced pluripotent stem (iPS) cell lines from fibroblasts of three ADPKD and two ARPKD patients. Genetic sequencing revealed unique heterozygous mutations in PKD1 of the parental ADPKD fibroblasts but no pathogenic mutations in PKD2. Undifferentiated PKD iPS cells, control iPS cells, and embryonic stem cells elaborated primary cilia and expressed PC1, PC2, and FPC at similar levels, and PKD and control iPS cells exhibited comparable rates of proliferation, apoptosis, and ciliogenesis. However, ADPKD iPS cells as well as somatic epithelial cells and hepatoblasts/biliary precursors differentiated from these cells expressed lower levels of PC2 at the cilium. Additional sequencing confirmed the retention of PKD1 heterozygous mutations in iPS cell lines from two patients but identified possible loss of heterozygosity in iPS cell lines from one patient. Furthermore, ectopic expression of wild-type PC1 in ADPKD iPS-derived hepatoblasts rescued ciliary PC2 protein expression levels, and overexpression of PC1 but not a carboxy-terminal truncation mutant increased ciliary PC2 expression levels in mouse kidney cells. Taken together, these results suggest that PC1 regulates ciliary PC2 protein expression levels and support the use of PKD iPS cells for investigating disease pathophysiology.

  2. Sinus surgery can improve quality of life, lung infections, and lung function in patients with primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Alanin, Mikkel Christian; Aanaes, Kasper; Høiby, Niels;

    2016-01-01

    BACKGROUND: Chronic rhinosinusitis (CRS) and bacterial sinusitis are ubiquitous in patients with primary ciliary dyskinesia (PCD). From the sinuses, Pseudomonas aeruginosa can infect the lungs. METHODS: We studied the effect of endoscopic sinus surgery (ESS) on symptoms of CRS and lower airway...... patients (62%). Four patients with preoperative P. aeruginosa lung colonization (25%) had no regrowth during follow-up; 2 of these had P. aeruginosa sinusitis. Sinonasal symptoms were improved 12 months after ESS and we observed a trend toward better lung function after ESS. CONCLUSION: We demonstrated...

  3. Rrespuesta fisiológica del pasto buffel (cenchrus ciliaris l.) a diferentes alturas de defoliación

    OpenAIRE

    Sergio Beltrán López; Jorge Pérez Pérez; Alfonso Hernández Garay; Edmundo García Moya; José G. Herrera Haro

    2002-01-01

    El conocimiento de la capacidad de las especies forrajeras para recuperarse después de una defoliación, es esencial para un mejor manejo. El objetivo de este estudio fue evaluar la respuesta del pasto buffel (Cenchrus ciliaris L.) a cuatro alturas de defoliación: 5, 10 y 20 cm y un testigo (sin corte) en invernadero. Se utilizó un diseño completamente al azar con cinco repeticiones. Las variables evaluadas fueron: rendimiento acumulado de materia seca (MS), densidad de tallos, crecimiento fol...

  4. Kruger strict morphology and post-thaw progressive motility in cryopreserved human spermatozoa.

    Science.gov (United States)

    Lee, C-Y; Lee, C-T; Wu, C-H; Hsu, C-S; Hsu, M-I

    2012-05-01

    The purpose of this prospective study was to evaluate Kruger strict morphology and conventional semen analysis in predicting cryosurvival and the progressive motility recovery rate of frozen spermatozoa. Our study included 56 semen samples with >10 million spermatozoa per ejaculate. The main outcome measures were conventional semen analysis, strict morphology analysis by the Kruger method, cryosurvival rate and post-thaw sperm motility. A significant reduction in sperm motility after cryopreservation was demonstrated. The freeze-thawing process caused a 66% reduction in rapid progressive motile spermatozoa, a 45% reduction in slow progressive motile spermatozoa and a 2% reduction in nonprogressive motile spermatozoa. The cryosurvival and progressive motility recovery rates were not correlated with parameters of conventional semen analysis, such as sperm concentration, motility, WHO morphology and total motile count, but the progressive motility recovery rate was significantly correlated with the percentage of spermatozoa exhibiting Kruger normal morphology (P = 0.028). The recovery rate of rapidly progressive motility was profoundly decreased compared with slow progressive motility following the frozen-thaw procedure of semen. Kruger strict morphology assessment was a better predictor of the progressive motility recovery rate following the freezing-thaw procedure than parameters of conventional semen analysis.

  5. Diabetes-related dysfunction of the small intestine and the colon: focus on motility.

    Science.gov (United States)

    Horváth, Viktor József; Putz, Zsuzsanna; Izbéki, Ferenc; Körei, Anna Erzsébet; Gerő, László; Lengyel, Csaba; Kempler, Péter; Várkonyi, Tamás

    2015-11-01

    In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article.

  6. Localization of a Robotic Capsule for GI Motility Inspection with a Portable Ultrasonic System

    Institute of Scientific and Technical Information of China (English)

    姜萍萍; 颜国正

    2004-01-01

    The micro-systems used for in vivo physical inspection have many advantages over traditional methods. In order to aid diagnosis of gastrointestinal (GI) motility disorders, a capsule is developed for GI pressure and pH inspection. Localization of the capsule in GI tract with time is a necessary condition for subsequent data analysis and medical diagnosis. It is also a common problem facing all in vivo mobile micro-systems. An approach of segment localization by utilizing some key points along GI tract is proposed. A portable ultrasonic detecting device was designed for this purpose. Experiments under conditions similar to GI tract were carried out and the results proved the effectiveness and reliability of this method and the device.

  7. Bacterial growth and motility in sub-micron constrictions

    NARCIS (Netherlands)

    Männik, J.; Driessen, R.; Galajda, P.; Keymer, J.E.; Dekker, C.

    2009-01-01

    In many naturally occurring habitats, bacteria live in micrometer-size confined spaces. Although bacterial growth and motility in such constrictions is of great interest to fields as varied as soil microbiology, water purification, and biomedical research, quantitative studies of the effects of conf

  8. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Science.gov (United States)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  9. Impedance planimetric description of normal rectoanal motility in humans

    DEFF Research Database (Denmark)

    Andersen, Inge S; Michelsen, Hanne B; Krogh, Klaus

    2007-01-01

    pressures and multiple rectal luminal cross-sectional areas. This study was designed to study normal human rectoanal motility by means of impedance planimetry with multiple rectal cross-sectional areas and rectal and anal pressure. METHODS: Twelve healthy volunteers (10 females), aged 24 to 53 years, were...

  10. Morphological characteristics of motile plants for dynamic motion

    Science.gov (United States)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  11. Spermometer: electrical characterization of single boar sperm motility

    NARCIS (Netherlands)

    Wagenaar, de Bjorn; Geijs, Daan J.; Boer, de Hans; Bomer, Johan G.; Olthuis, Wouter; Berg, van den Albert; Segerink, Loes I.

    2016-01-01

    Objective: To study single sperm boar motility using electrical impedance measurements in a microfluidic system. Design: Comparison of the optical data and electrical impedance data. Setting: Research laboratory at a university. Animal(s): Boar semen sample were used. Intervention(s): A micr

  12. Surfactin restores and enhances swarming motility under heavy metal stress.

    Science.gov (United States)

    Singh, Anil Kumar; Dhanjal, Soniya; Cameotra, Swaranjit Singh

    2014-04-01

    The present work reports the importance of lipopeptide biosurfactant on swarming motility of multi-metal resistant (MMR) bacterium under heavy metal stress. The MMR bacteria strain CM100B, identified as Bacillus cereus, was isolated from the coal mine sample. The strain was able to grow and reduce several metals namely Cd(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Pb(2+) ions which are common environmental pollutants. Presence of toxic heavy metal ions in the swarming medium significantly altered the motility of CM100B. Presence of Cd(2+) and Pb(2+) ions inhibited development of peritrichous flagella, thus inhibiting swarming motility. However, the addition of anionic biosurfactant surfactin restored (in case of Cd(2+) and Pb(2+) ions) or enhanced (in case of Co(2+), Cu(2+), Ni(2+) and Mn(2+)) the swarming ability of CM100B. Zeta potential studies for determining bacterial cell surface charge indicated that surfactin provided a suitable swarming environment to bacteria even under metal stress by chelating to cationic metal ions. Non-ionic surfactant Triton X-100 was unable to restore swarming under Cd(2+) and Pb(2+) ion stress. Thus, suggesting that surfactin can aid in motility not only by reducing the surface tension of swarming medium but also by binding to metal ions in the presence of metal ions stress.

  13. Helical motion of the cell body enhances Caulobacter crescentus motility.

    Science.gov (United States)

    Liu, Bin; Gulino, Marco; Morse, Michael; Tang, Jay X; Powers, Thomas R; Breuer, Kenneth S

    2014-08-01

    We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In the forward mode, when the flagellum pushes the cell, the cell body is tilted with respect to the direction of motion, and it precesses, tracing out a helical trajectory. In the reverse mode, when the flagellum pulls the cell, the precession is smaller and the cell has a lower translation distance per rotation period and thus a lower motility. Using resistive force theory, we show how the helical motion of the cell body generates thrust and can explain the direction-dependent changes in swimming motility. The source of the cell body precession is believed to be associated with the flexibility of the hook that connects the flagellum to the cell body.

  14. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Szabo, Zalan; Sani, Musa; Groeneveld, Maarten; Zolghadr, Benham; Schelert, James; Albers, Sonja-Verena; Blum, Paul; Boekema, Egbert J.; Driessen, Arnold J. M.

    2007-01-01

    Flagellation in archaea is widespread and is involved in swimming motility. Here, we demonstrate that the structural flagellin gene from the crenarchaeaon Suffolobus soffiataricus is highly expressed in stationary-phase-grown cells and under unfavorable nutritional conditions. A mutant in a flagella

  15. A computational model of gastro-intestinal motility

    Science.gov (United States)

    Wilson, K. F.; Goossens, D. J.

    2001-12-01

    A simulated neural network model of a section of enteric nervous system is presented. The network is a layered feed-forward network consisting of integrate and fire units. The network shows the basic form of intestinal motility; a descending wave of relaxation followed by a wave of contraction. It also shows interesting (but not biologically realistic) spontaneous behaviours when no stimulus is present.

  16. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wickramasinghe, Caroline M [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); MRC Laboratory of Molecular Biology, Addenbrooke' s Hospital Cambridge, CB2 0QH (United Kingdom); Domaschenz, Renae [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 ONN (United Kingdom); Amagase, Yoko [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women' s College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395 (Japan); Williamson, Daniel [Molecular Cytogenetics, The Institute of Cancer Research, Sutton SM2 5NG (United Kingdom); Northern Institute for Cancer Research, Paul O' Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH (United Kingdom); Missiaglia, Edoardo; Shipley, Janet [Molecular Cytogenetics, The Institute of Cancer Research, Sutton SM2 5NG (United Kingdom); Murai, Kasumi [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom); Jones, Philip H, E-mail: phj20@cam.ac.uk [MRC Cancer Cell Unit, Hutchison-MRC Research centre, Addenbrooke' s Hospital Cambridge, CB2 0XZ (United Kingdom)

    2013-01-01

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  17. Gastrointestinal motility during cardiopulmonary bypass : A sonomicrometric study

    NARCIS (Netherlands)

    Gu, YJ; de Kroon, TL; Elstrodt, JM; Rakhorst, G

    2006-01-01

    Cardiopulmonary bypass (CPB) is known to impair the integrity of the gastrointestinal tract. However, little is known about the movement behavior of the gastrointestinal tract during CPB. This study was aimed to assess the gastrointestinal motility with sonomicrometry, a distance measurement using u

  18. Effects of fractionated abdominal irradiation on small intestinal motility. Studies in a novel in vitro animal model

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.; Frisby, C.; Horowitz, M. [Royal Adelaide Hospital (Australia). Dept. of Medicine; Schirmer, M.; Yeoh, E. [Royal Adelaide Hospital (Australia). Dept. of Radiation Oncology; Blackshaw, A. [Royal Adelaide Hospital (Australia). Dept. of Gastrointestinal Medicine; Langman, J.; Rowland, R. [Division of Tissue Pathology, Inst. of Medical and Veterinary Science, Adelaide (Australia)

    1997-12-31

    Disordered small intestinal motility occurs frequently during acute radiation enteritis. However, the characteristics and time course of the motor dysfunction are poorly defined. These parameters were assessed in a novel animal model of radiation enteritis. Ileal pressures were recorded in vitro with perfused microanometric catheter using an arterially perfused ileal loop in 22 ferrets following fractionated abdominal irradiation (9 doses 2.50 Gz thrice weekly for 3 weeks). Tissue damage was graded histologically. Studies were performed 3 to 29 days after irradiation. Tissue from 7 control animals was also studied. All treated animals developed diarrhoea. Histology showed changes consistent with mild to moderate radiation enteritis. Following irradiation, there was an initial increase in frequency followed by a non-significant reduction in the frequency, but not the amplitude of ileal pressure waves. The frequency of pressure waves showed an inverse relationship with time after radiation (r=-0.634, p<0.002). There was no relationship between motility and histology. We conclude that abdominal irradiation is associated with a time-dependent reduction in ileal motility which does not correlate with light microscopic changes. (orig.).

  19. Sperm motility of externally fertilizing fish and amphibians.

    Science.gov (United States)

    Browne, R K; Kaurova, S A; Uteshev, V K; Shishova, N V; McGinnity, D; Figiel, C R; Mansour, N; Agney, D; Wu, M; Gakhova, E N; Dzyuba, B; Cosson, J

    2015-01-01

    We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility. Hypo-osmolarity of the aquatic medium activates the motility of freshwater fish and amphibian sperm and hyperosmolarity activates the motility of marine fish sperm. The average longevity of the motility of marine fish sperm (~550 seconds) was significantly (P fish sperm (~150 seconds), with the longevities of both marine and freshwater fish being significantly (P fish (140 μm/s) or freshwater fish (135 μm/s) sperm. The longevity of the sperm of giant salamanders (Cryptobranchoidea) of approximately 600 seconds was greater than that of freshwater fish sperm but much lower than anuran sperm. Our research and information from the literature showed that higher osmolarities promote greater longevity in anuran sperm, and some freshwater fish sperm, and that anuran and cryptobranchid sperm maintained membrane integrity long after the cessation of motility, demonstrating a preferential sharing of energy reserves toward the maintenance of membrane integrity. The maintenance of the membrane integrity of anuran sperm in fresh water for up to 6 hours showed an extremely high osmotic tolerance relative to fish sperm. The very high longevity and osmotic tolerance of anuran sperm and high longevity of cryptobranchid sperm, relative to those of freshwater fish, may reflect the complex fertilization history of amphibian sperm in general and anurans reversion from internal to external fertilization. Our findings provide a greater understanding of the reproductive biology of externally fertilizing fish and amphibians, and a

  20. Tongue Disorders

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  1. Mental Disorders

    Science.gov (United States)

    Mental disorders include a wide range of problems, including Anxiety disorders, including panic disorder, obsessive-compulsive disorder, post- ... disorders, including schizophrenia There are many causes of mental disorders. Your genes and family history may play a ...

  2. Ciliary intraflagellar transport protein 80 balances canonical versus non-canonical hedgehog signaling for osteoblast differentiation

    Science.gov (United States)

    Mutation of different IFT proteins cause numerous different clinical bone disorders accompanied with or without the disruption of cilia formation. Currently, there is no any effective treatment for these disorders due to lack of understanding in the function and mechanism of these proteins. IFT80 is...

  3. [Endoscopically controlled optimization of trans-scleral suture fixation of posterior chamber lenses in the ciliary sulcus].

    Science.gov (United States)

    Althaus, C; Sundmacher, R

    1993-08-01

    Two technical difficulties have to be overcome in transscleral suture fixation of posterior chamber intraocular lenses (PCL) in the ciliary sulcus: first, exact needle penetration through the sulcus, and second, exact positioning of the PCL haptics in the sulcus. Incongruence of the two may lead to long-term complications by compression or even strangulation of ciliary processes. Intraocular endoscopy was used intraoperatively to visualize the site of needle penetration and the final location of the haptics in patients. It turned out that with our previously described standard techniques the precision was far less than anticipated. Thus, new technical ways had to be sought to improve the precision of positioning. In secondary implantation without perforating keratoplasty we achieved the best results when the needle was passed ab externo before opening the eye and before anterior vitrectomy, taking advantage of a precisely prepared sclerocorneal zone. Passing the needle ab externo in an already hypotonic eyeball gives much less precise results. In combination with perforating keratoplasty with an open-sky approach, needle penetration ab interno is reliable. Correct positioning of the PCL haptics is at least as difficult as correct needle penetration, a fact which up to now has mostly been ignored. In 33 consecutively operated eyes the technique of implantation and PCL design was varied under endoscopical control.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin.

    Science.gov (United States)

    Otto, Edgar A; Loeys, Bart; Khanna, Hemant; Hellemans, Jan; Sudbrak, Ralf; Fan, Shuling; Muerb, Ulla; O'Toole, John F; Helou, Juliana; Attanasio, Massimo; Utsch, Boris; Sayer, John A; Lillo, Concepcion; Jimeno, David; Coucke, Paul; De Paepe, Anne; Reinhardt, Richard; Klages, Sven; Tsuda, Motoyuki; Kawakami, Isao; Kusakabe, Takehiro; Omran, Heymut; Imm, Anita; Tippens, Melissa; Raymond, Pamela A; Hill, Jo; Beales, Phil; He, Shirley; Kispert, Andreas; Margolis, Benjamin; Williams, David S; Swaroop, Anand; Hildebrandt, Friedhelm

    2005-03-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.

  5. Functional and Molecular Characterization of Rod-like Cells from Retinal Stem Cells Derived from the Adult Ciliary Epithelium

    Science.gov (United States)

    Demontis, Gian Carlo; Aruta, Claudia; Comitato, Antonella; De Marzo, Anna; Marigo, Valeria

    2012-01-01

    In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells. PMID:22432014

  6. Functional and molecular characterization of rod-like cells from retinal stem cells derived from the adult ciliary epithelium.

    Directory of Open Access Journals (Sweden)

    Gian Carlo Demontis

    Full Text Available In vitro generation of photoreceptors from stem cells is of great interest for the development of regenerative medicine approaches for patients affected by retinal degeneration and for high throughput drug screens for these diseases. In this study, we show unprecedented high percentages of rod-fated cells from retinal stem cells of the adult ciliary epithelium. Molecular characterization of rod-like cells demonstrates that they lose ciliary epithelial characteristics but acquire photoreceptor features. Rod maturation was evaluated at two levels: gene expression and electrophysiological functionality. Here we present a strong correlation between phototransduction protein expression and functionality of the cells in vitro. We demonstrate that in vitro generated rod-like cells express cGMP-gated channels that are gated by endogenous cGMP. We also identified voltage-gated channels necessary for rod maturation and viability. This level of analysis for the first time provides evidence that adult retinal stem cells can generate highly homogeneous rod-fated cells.

  7. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome).

    Science.gov (United States)

    Guichard, C; Harricane, M C; Lafitte, J J; Godard, P; Zaegel, M; Tack, V; Lalau, G; Bouvagnet, P

    2001-04-01

    Kartagener syndrome (KS) is a trilogy of symptoms (nasal polyps, bronchiectasis, and situs inversus totalis) that is associated with ultrastructural anomalies of cilia of epithelial cells covering the upper and lower respiratory tracts and spermatozoa flagellae. The axonemal dynein intermediate-chain gene 1 (DNAI1), which has been demonstrated to be responsible for a case of primary ciliary dyskinesia (PCD) without situs inversus, was screened for mutation in a series of 34 patients with KS. We identified compound heterozygous DNAI1 gene defects in three independent patients and in two of their siblings who presented with PCD and situs solitus (i.e., normal position of inner organs). Strikingly, these five patients share one mutant allele (splice defect), which is identical to one of the mutant DNAI1 alleles found in the patient with PCD, reported elsewhere. Finally, this study demonstrates a link between ciliary function and situs determination, since compound mutation heterozygosity in DNAI1 results in PCD with situs solitus or situs inversus (KS).

  8. Recent advances of diagnostic approaches in primary ciliary dyskinesia%原发性纤毛不动综合征诊断方法研究进展

    Institute of Scientific and Technical Information of China (English)

    刘娇(综述); 刘恩梅; 邓昱(审校)

    2016-01-01

    Primary ciliary dyskinesia (PCD) is an autosomal recessive or x-linked disorder of cilia structure and (or) function, with a morbidity of 1:10 000–1:50 000 from foreign reports, while epidemic data of PCD in China is not available yet. PCD is due to cilia biallelic gene mutations leading to impaired tissue structure and organ function. Clinical phenotypes include chronic infections of the respiratory tract, fertility problems, disorders of organ laterality, etc, and the percent age of Kartagener syndrome is about 50%. The frequently used diagnostic methods are nasal NO examination, high-speed video microscopy, electron microscopy, genetic tests, chest high-resolution computed tomography and spirometry at present. Each method has its highlights and disadvantages, meanwhile, effective diagnostic algorithm and therapeutic protocols are needed for further research.%原发性纤毛不动综合征是一种常染色体隐性遗传或X染色体相关的遗传疾病,国外发病率为1∶50000~1∶10000,国内尚无相关流行病学资料。该病发生机制为纤毛的双等位基因突变,导致组织器官的结构和/或功能改变,从而引起一系列相关临床表现,其中约50%为Kartagener综合征。目前常用的检查方法有鼻呼出气一氧化氮检测、透射电镜法、免疫荧光分析法、高频数字视频成像和基因诊断,但每种检查方法均有其优点及弊端。同时,统一的诊断思路及确切有效的治疗方案也处于探索研究阶段。

  9. Effect of primary iris and ciliary body cyst on anterior chamber angle in patients with shallow anterior chamber

    Institute of Scientific and Technical Information of China (English)

    Bing-hong WANG; Yu-feng YAO

    2012-01-01

    Objective:To evaluate the prevalence of primary iris and/or ciliary body cysts in eyes with shallow anterior chamber and their effect on the narrowing of the anterior chamber angle.Methods:Among the general physical check-up population,subjects with shallow anterior chambers,as judged by van Herick technique,were recruited for further investigation.Ultrasound biomicroscope (UBM) was used to detect and measure the cysts located in the iris and/or ciliary body,the anterior chamber depth (ACD),the angle opening distance at 500 μm (AOD500),and the trabecular-iris angle (TIA).A-scan ultrasonography was used to measure the ocular biometry,including lens thickness,axial length,lens/axial length factor (LAF),and relative lens position (RLP).The effect of the cyst on narrowing the corresponding anterior chamber angle and the entire angle was evaluated by the UBM images,ocular biometry,and gonioscopic grading.The eye with unilateral cyst was compared with the eye without the cyst for further analysis.Results:Among the 727 subjects with shallow anterior chamber,primary iris and ciliary body cysts were detected in 250 (34.4%) patients; among them 96 (38.4%) patients showed unilateral single cyst,21 (8.4%) patients had unilateral double cysts,and 42 (16.8%) patients manifested unilateral multiple and multi-quadrants cysts.Plateau iris configuration was found in 140 of 361 (38.8%) eyes with cysts.The mean size of total cysts was (0.6547±0.2319) mm.In evaluation of the effect of the cyst size and location on narrowing the corresponding angle to their position,the proportion of the cysts causing corresponding angle narrowing or closure among the cysts larger than 0.8 mm (113/121,93.4%) was found to be significantly higher than that of the cysts smaller than 0.8 mm (373/801,46.6%),and a significant higher proportion was also found in the cysts located at iridociliary sulcus (354/437,81.0%) than in that at the pars plicata (131/484,27.1%).In evaluating the effect

  10. Effects of new cannabis preparations O-1602 and cannabidiol on LPS-induced intestinal motility disorder in rodents%新型大麻制剂O-1602和大麻二酚对LPS导致的啮齿动物小肠运动紊乱的影响

    Institute of Scientific and Technical Information of China (English)

    林旭红; 李永渝; 冯雅静; 曹明华; 徐菁; 李琨; 冯佳燕; 余良英

    2012-01-01

    AIM; To invesligale the therapeulic effecls and relaled mechanisms of Lwo new cannabis prepara-lions, 0 - 1602 and cannabidiol ( CBD) , on lipopolysaccharide ( LPS) - induced rodenl models of inleslinal molilily disorder in vivo and in vilro. METHODS: The animal model of inleslinal molilily disorder was induced by inlraperiloneal injec-lion of LPS in mice. The gaslroinleslinal Iransil was measured by gavaging charcoal marker. Weslern blolling was applied lo evaluate the prolein expression of G - prolein - coupled receplor 55 ( GPR55 ). Meanwhile, the levels of lumor necrosis faclor a (TNF - α) and inlerleukin 6 (IL - 6) were lesled by ELISA lo assess the inflammatory degree. Smoolh muscle slrips from the ral and mouse ileum were incubaled with LPS in vilro lo establish molilily disorder, and bolh the sponlaneous contraction and electrically - evoked contraction were recorded using the organ balh technique. The traditional inlracellular microeleclrode technique was used lo record the changes of membrane potential of smooth muscle cells. The melhod of determining phosphorus conlenl was applied lo assay the Ca + - ATPase activity in smooth muscle lissues. RESULTS; In vivo , LPS resulted in significant inflammation and the disorder of gut movemenl (P < 0. 01). Pretrealmenl with CBD decreased both the level of IL - 6 ( P < 0. 01) and the expression of GPR55 ( P < 0. 01) , and furlher improved the molilily of gul movemenl ( P < 0. 05 ) . O - 1602 and CBD selectively normalized LPS - induced sponlaneous and electrically - evoked contraction disorder of inleslinal smoolh muscle slrips of rals and mice in vilro ( P < 0. 05 or P < 0. 01) , but they had no effect on the membrane potenlial of the smoolh muscle cells both in normal and palhophysiological stales. CBD also decreased the elevaled Ca + - ATPase activity in smooth muscle lissues induced by LPS ( P < 0. 05 ). CONCLUSION;In vivo, CBD shows proleclive effecl on LPS - induced inleslinal molilily disorder by reducing

  11. Hand-held tidal breathing nasal nitric oxide measurement--a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Nielsen, Kim Gjerum

    2013-01-01

    BACKGROUND: Nasal nitric oxide (nNO) measurement is an established first line test in the work-up for primary ciliary dyskinesia (PCD). Tidal breathing nNO (TB-nNO) measurements require minimal cooperation and are potentially useful even in young children. Hand-held NO devices are becoming increa...

  12. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Moore, Daniel J; Onoufriadis, Alexandros; Shoemark, Amelia

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequ...

  13. Le tecnologie mobili dell’apprendimento permanente, il progetto MOTILL

    Directory of Open Access Journals (Sweden)

    Marco Arrigo

    2013-03-01

    Full Text Available In questo articolo vengono presentati alcuni dei risultati del progetto MOTILL. MOTILL, ovvero «Le Tecnologie Mobili nell’apprendimento permanente: buone pratiche», è un progetto finanziato dalla Comunità Europea, nell’ambito del National Lifelong Learning Strategies (NLLS. Il progetto, durato un anno e terminato a Marzo 2010, si è focalizzato sull’uso delle tecnologie mobili in contesti di lifelong learning (LLL. L’articolo sarà dedicato a una breve introduzione del progetto, dei suoi obiettivi e delle azioni portate avanti, e a un rapido riassunto dei principali risultati ottenuti, i quali sono stati resi disponibili online alla comunità scientifica e diffusi ai policy makers impegnati nei programmi di apprendimento permanente.

  14. Voltage- and calcium-dependent motility of saccular hair bundles

    Science.gov (United States)

    Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2015-12-01

    Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.

  15. Particle-based simulations of self-motile suspensions

    CERN Document Server

    Hinz, Denis F; Kim, Tae-Yeon; Fried, Eliot

    2013-01-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent con...

  16. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    Science.gov (United States)

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern.

  17. Microbial Morphology and Motility as Biosignatures for Outer Planet Missions

    Science.gov (United States)

    Nadeau, Jay; Lindensmith, Chris; Deming, Jody W.; Fernandez, Vicente I.; Stocker, Roman

    2016-10-01

    Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies.

  18. Persistence-driven durotaxis: Generic, directed motility in rigidity gradients

    CERN Document Server

    Novikova, Elizaveta A; Discher, Dennis E; Storm, Cornelis

    2015-01-01

    Cells move differently on substrates with different elasticities. In particular, the persistence time of their motion is higher on stiffer substrates. We show that this behavior will result in a net transport of cells directed up a soft-to-stiff gradient. Using simple random walk models with controlled persistence and stochastic simulations, we characterize this propensity to move in terms of the durotactic index measured in experiments. A one-dimensional model captures the essential features of this motion and highlights the competition between diffusive spreading and linear, wavelike propagation. Since the directed motion is rooted in a non-directional change in the behavior of individual cells, the motility is a kinesis rather than a taxis. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

  19. Physical models of collective cell motility: from cell to tissue

    Science.gov (United States)

    Camley, B. A.; Rappel, W.-J.

    2017-03-01

    In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell’s shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell–cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.

  20. Curvature-guided motility of microalgae in geometric confinement

    CERN Document Server

    Ostapenko, Tanya; Böddeker, Thomas; Kreis, Christian; Cammann, Jan; Mazza, Marco G; Bäumchen, Oliver

    2016-01-01

    Microorganisms often live in microhabitats that consist of a liquid phase and a plethora of typically curved interfaces. The ways in which motile cells possessing propulsive appendages sense and interact with the physical nature of their environment remains unclear today. For pusher-type microswimmers with rear-mounted flagella, such as bacteria and spermatozoa, cell trapping at a wall was attributed to contrasting microscopic mechanisms, namely hydrodynamic and contact interactions. Here, we demonstrate that, in confined spaces, the geometry of the habitat controls the motility of microalgae that propel themselves by the beating of two anterior flagella. Brownian dynamics simulations and analytical theory both quantitatively match the experimental data and capture a characteristic curvature scaling observed in the experiments. This curvature-guided navigation of the microalgae originates from only two essential ingredients: excluded volume resulting in predominantly ballistic swimming in confinement and the ...

  1. Dopaminergic and beta-adrenergic effects on gastric antral motility

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P; Gottrup, F

    1984-01-01

    of bethanechol or pentagastrin inducing motor activity patterns as in the phase III of the MMC and the digestive state respectively. The stimulated antral motility was dose-dependently inhibited by dopamine. The effect was significantly blocked by specifically acting dopaminergic blockers, while alpha- and beta......-adrenergic blockers were without any significant effects. Dose-response experiments with bethanechol and dopamine showed inhibition of a non-competitive type. Isoprenaline was used alone and in conjunction with selective blockade of beta 1- and beta 2-receptors during infusion of bethanechol which induces a pattern...... similar to phase III in the migrating myoelectric complex. The stimulated antral motility was dose-dependently inhibited by isoprenaline. The effect could be significantly blocked by propranolol (beta 1 + beta 2-adrenoceptor blocker) and by using in conjunction the beta 1-adrenoceptor blocker practolol...

  2. Gastrointestinal transit times and motility in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Hedsund, Caroline; Gregersen, Tine; Jønsson, Iben;

    2012-01-01

    OBJECTIVE: Patients with cystic fibrosis (CF) often suffer from gastrointestinal (GI) dysfunction including obstructive symptoms, malabsorption and pain, but the underlying pathophysiology remains obscure. AIM: To compare GI motility and transit times in CF patients and healthy controls. MATERIAL...... AND METHODS: Ten CF patients (five women, median age 23) with pancreatic insufficiency were studied. Total gastrointestinal transit time (GITT) and segmental colonic transit times (SCTT) were assessed by radiopaque markers. Gastric emptying and small intestinal transit were evaluated using the magnet......-based motility tracking system (MTS-1). With each method patients were compared with 16 healthy controls. RESULTS: Basic contraction frequencies of the stomach and small intestine were normal, but the pill reached the cecum after 7 h in only 20% of CF patients while in 88% of controls (p = 0.001). Paradoxically...

  3. Motility-driven glass and jamming transitions in biological tissues

    CERN Document Server

    Bi, Dapeng; Marchetti, M Cristina; Manning, M Lisa

    2015-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrat...

  4. Motility precedes egress of malaria parasites from oocysts

    Science.gov (United States)

    Klug, Dennis; Frischknecht, Friedrich

    2017-01-01

    Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI: http://dx.doi.org/10.7554/eLife.19157.001 PMID:28115054

  5. Effect of mepacrine on gastric motility in the rat.

    Science.gov (United States)

    Minker, E; Matejka, Z

    1979-01-01

    Mepacrine given orally to rats inhibits gastric motility; its blocking effect is comparable to that of chloroquine, papaverine, and drotaverine, but less expressed than that of bencyclane. Similarly as the delayed gastric emptying induced by chloroquine, the effect of mepacrine is antagonized by acetyl-beta-methylcholine in a dose-related fashion, while that of papaverine, drotaverine, and bencyclane remains unchanged after treatment with the cholinomimetic drug.

  6. Effect of preoperative suggestion on postoperative gastrointestinal motility.

    OpenAIRE

    Disbrow, E A; Bennett, H L; Owings, J T

    1993-01-01

    Autonomic behavior is subject to direct suggestion. We found that patients undergoing major operations benefit more from instruction than from information and reassurance. We compared the return of intestinal function after intra-abdominal operations in 2 groups of patients: the suggestion group received specific instructions for the early return of gastrointestinal motility, and the control group received an equal-length interview offering reassurance and nonspecific instructions. The sugges...

  7. Non-motile tetraploid spermatozoa of Misgurnus loach hybrids

    OpenAIRE

    Zhao, Yan; Fujimoto, Takafumi; Psenicka, Martin; Saito, Taiju; Arai, Katsutoshi

    2016-01-01

    We have compared various properties of spermatozoa from the wild diploid male pond loach Misgurnus anguillicaudatus to those from the interspecific male hybrid of the cross between a female M. anguillicaudatus and a male mud loach M. mizolepis. Our results show that spermatozoa from this interspecific hybrid had poor motility, low viability, abnormal morphology, a larger volume of mitochondrial mass per cell and higher ATP content of spermatozoa with tetraploid DNA content, and they were pres...

  8. Stathmin activity influences sarcoma cell shape, motility, and metastatic potential.

    OpenAIRE

    Belletti, B; Nicoloso, M S; Schiappacassi, M; Berton, S; Lovat, F.; Wolf, K.; Canzonieri, V; D'Andrea, S.; Zucchetto, A; Friedl, P.H.A.; Colombatti, A; Baldassarre, G.

    2008-01-01

    The balanced activity of microtubule-stabilizing and -destabilizing proteins determines the extent of microtubule dynamics, which is implicated in many cellular processes, including adhesion, migration, and morphology. Among the destabilizing proteins, stathmin is overexpressed in different human malignancies and has been recently linked to the regulation of cell motility. The observation that stathmin was overexpressed in human recurrent and metastatic sarcomas prompted us to investigate sta...

  9. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  10. Effect of pre-freezing conditions on the progressive motility recovery rate of human frozen spermatozoa.

    Science.gov (United States)

    Zhang, X; Zhou, Y; Xia, W; Wu, H; Yao, K; Liu, H; Xiong, C

    2012-10-01

    We evaluated the effects of sperm concentration, progressive motility, sperm morphology, duration of abstinence and collection season on the progressive motility recovery rate of human frozen spermatozoa to identify characteristics that predict the progressive motility recovery rate of human frozen spermatozoa and improve the protocol for sperm collecting in sperm banks. A total of 14 190 semen samples donated at Zhejiang human sperm bank of China between September 2006 and June 2011 were collected from 1624 donors. Semen was evaluated according to WHO standard procedures for sperm concentration. Progressive motility, sperm morphology, ejaculate collection season and abstinence time were recorded. After freezing and thawing, the progressive motility was assessed. Results showed that sperm concentration, progressive motility and normal morphology were significantly associated with the progressive motility recovery rate of human frozen spermatozoa. In addition, the abstinence time and collection season also significantly affected progressive motility recovery rate. Our results indicated that sperm concentration, progressive motility and normal morphology could be valuable in predicting the progressive motility recovery rate of human frozen spermatozoa. As such, progressive motility recovery may be improved by donating semen when abstinent for 3-5 days and during seasons other than summer.

  11. Impact of external factors on sperm motility of Sepiella maindroni

    Institute of Scientific and Technical Information of China (English)

    WANG Jia; JIANG Xiamin; FENG Xiandong

    2011-01-01

    Sperm motility is important in reproductive biology. To understand the physiological ecology characteristics of sperm of Sepiella maindroni, we studied the activation rate, active time, and lifespan of sperm to evaluate the influence of external factors, including temperature, salinity, pH, glucose, NaC1, KC1, MgCl2, CaCl2, EDTA-2Na and artificial seawater on sperm motility. The results show that the appropriate activation and motility condition for sperm were: temperature 20-30掳C (optimum 25掳C), salinity 10.6-30.6 (optimum 15.9) and pH 8.0-8.6 (optimum 8.0-8.4). Sperm activity varied in different concentrations of glucose, NaCl, K.C1, MgCl2 and CaCl2. None of the selected concentrations of EDTA-2Na solution could activate the sperm. The activation rate in artificial seawater devoid of Ca+2, Mg+2 or HCO-3 was low. The results should help further studies on the preservation and activation of squid sperm.

  12. Reduced Protein Synthesis Fidelity Inhibits Flagellar Biosynthesis and Motility.

    Science.gov (United States)

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2016-07-29

    Accurate translation of the genetic information from DNA to protein is maintained by multiple quality control steps from bacteria to mammals. Genetic and environmental alterations have been shown to compromise translational quality control and reduce fidelity during protein synthesis. The physiological impact of increased translational errors is not fully understood. While generally considered harmful, translational errors have recently been shown to benefit cells under certain stress conditions. In this work, we describe a novel regulatory pathway in which reduced translational fidelity downregulates expression of flagellar genes and suppresses bacterial motility. Electron microscopy imaging shows that the error-prone Escherichia coli strain lacks mature flagella. Further genetic analyses reveal that translational errors upregulate expression of a small RNA DsrA through enhancing its transcription, and deleting DsrA from the error-prone strain restores motility. DsrA regulates expression of H-NS and RpoS, both of which regulate flagellar genes. We demonstrate that an increased level of DsrA in the error-prone strain suppresses motility through the H-NS pathway. Our work suggests that bacteria are capable of switching on and off the flagellar system by altering translational fidelity, which may serve as a previously unknown mechanism to improve fitness in response to environmental cues.

  13. Actin-based motility propelled by molecular motors

    Science.gov (United States)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  14. Accuracy and repeatability of direct ciliary sulcus diameter measurements by full-scale 50-megahertz ultrasound biomicroscopy

    Institute of Scientific and Technical Information of China (English)

    LI De-jiao; WANG Ning-li; CHEN Shu; LI Shu-ning; MU Da-peng; WANG Tao

    2009-01-01

    Background Phakic intraocular lens (pIOL) implantation has been a popular means for the treatment of high ametropia. Measurements of ciliary sulcus diameter is important for pIOL size determining. But till now, no perfect system can directly measure it. The present study was to evaluate the accuracy, repeatability and reproducibility of direct sulcus diameter measurements obtained by a full-scale 50-megahertz (MHz) ultrasound biomicroscopy (UBM).Methods A fresh cadaver human eye with a scale marker inserted through the posterior chamber plane from 3 o'clock to 9 o'clock meridian and 30 randomly selected eyes from 30 normal subjects were scanned by full-scale 50-MHz UBM in horizontal meridional scan plane. The distance between the scales and the whole length of the marker inside the cadaver eye were measured by the same observer using the "built-in" measurement tools and the indicating error of instrument was calculated. Reproducibility of the measurement was evaluated in 30 eyes by 2 operators using Blander and Altman plot test. Repeatability was evaluated from 10 successive eyes randomly selected from the 30 eyes by one operator.Results On a scale of 1 mm, the greatest indicating error was 40 μm; the mean largest indicating error of 1 mm scale from the 10 images was (26±14) μm; on a scale of 11 mm, the greatest indicating error was 70 μo; the error rate was 0.64%. The mean length of the needle inside the eye of the 10 images was 11.05 mm, with the mean indicating error of 47 μm, the average error rate was 0.43%. For ciliary sulcus diameter measurements in vivo, the coefficient of variation was 0.38%; the coefficients of repeatability for intra-observer and inter-observer measurements were 1.99% and 2.55%, respectively. The limits of agreement for intra-observer and inter-observer measurement were-0.41 mm to 0.48 mm and -0.59 mm to 0.58 ram, respectively.Conclusion The full-scale 50-MHz UBM can be a high accuracy and good repeatability means for direct

  15. Sperm motility-initiating substance in newt egg-jelly induces differential initiation of sperm motility based on sperm intracellular calcium levels.

    Science.gov (United States)

    Watanabe, Akihiko; Takayama-Watanabe, Eriko; Vines, Carol A; Cherr, Gary N

    2011-01-01

    Sperm motility-initiating substance (SMIS), a novel motility inducer from newt egg-jelly, is activated by the release from associated jelly substances at the beginning of internal fertilization and affects female-stored sperm. We examined motility initiation kinetics of newt sperm in response to SMIS by monitoring the changes of sperm intracellular calcium ([Ca²(+)](i)). In quiescent non-motile sperm loaded with the Ca²(+) indicator Fluo-4, intracellular free Ca²(+) was observed around mitochondria using confocal scanning laser microscopy. A slight increase in [Ca²(+)](i) occurred simultaneously and transiently at motility initiation in sperm treated with either heated jelly extract (hJE) containing activated SMIS, or a low osmotic solution, which naturally initiates motility in externally-fertilizing amphibians and can initiate motility in urodele sperm. When the increase of [Ca²(+)](i) at motility-initiation was monitored using spectrofluorometry, large increases in [Ca²(+)](i) occurred immediately in the low osmotic solution and within 1.5 min in the hJE. In the intact jelly extract (no heating), small increases of [Ca²(+)](i) irregularly occurred from around 1 min and for about 4 min, during which motility was differentially initiated among sperm. These results indicate that the SMIS induces differential initiation of sperm motility depending on the activational states of the SMIS and its overall activity. The motility initiation in the jelly extract was delayed in sperm whose intracellular Ca²(+) had been chelated with BAPTA-AM. The relative levels of [Ca²(+)](i) were variable with a mean of 414 ± 256 nmol/L among resting sperm, suggesting that the level of [Ca²(+)](i) in the resting sperm modulates the responsiveness to the SMIS.

  16. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections

    DEFF Research Database (Denmark)

    Joensen, Odin; Paff, Tamara; Haarman, Eric G;

    2014-01-01

    The current diagnostic work-up and monitoring of pulmonary infections may be perceived as invasive, is time consuming and expensive. In this explorative study, we investigated whether or not a non-invasive exhaled breath analysis using an electronic nose would discriminate between cystic fibrosis...... (CF) and primary ciliary dyskinesia (PCD) with or without various well characterized chronic pulmonary infections. We recruited 64 patients with CF and 21 with PCD based on known chronic infection status. 21 healthy volunteers served as controls. An electronic nose was employed to analyze exhaled......, this method significantly discriminates CF patients suffering from a chronic pulmonary P. aeruginosa (PA) infection from CF patients without a chronic pulmonary infection. Further studies are needed for verification and to investigate the role of electronic nose technology in the very early diagnostic workup...

  17. COMPARATIVE THERAPEUTIC EFFECTS OF VARIOUS MORPHOLOGICAL FORMS OF NASYA (NASAL ROUTE OF DRUG DELIVERY IN PRATISHYAYA (RHINOSINUSITIS WITH REFERENCE TO NASAL MUCO-CILIARY FUNCTION

    Directory of Open Access Journals (Sweden)

    Bhardwaj Atul

    2012-10-01

    Full Text Available Different morphological forms of Nasyas (Nasal route of drug administration in Ayurveda like Taila and Ghrita (lipid based nasal drops, churna (dry fine powder and Avpeeda nasya (Aqueous based medicated decoction nasal drops are commonly used as nasal drugs for the management of rhinological disorders in Ayurveda and they distinctly behave differently in the nasal cavity when introduced. This present study explores how these different morphological forms of Nasyas effects the nasal health and mucociliary mechanism in the patients of Pratishyaya i.e. Rhinosinusitis with the help of Goldman’s saccharin test which is carried out at various stages of this study. Clinically, endoscopically and radiologically diagnosed patients of Pratishyaya i.e. rhinosinusitis, satisfying the inclusion criteria were divided randomly by table method into four groups. A total of 40 patients were subjected in this trial after ramification into four trial groups with 10 patients in each group. Anu taila nasya, Shadbindu ghrita nasya, Katphala churna nasya and Pippali Avapeeda nasya respectively were selected for the present study in trial groups I – IV as they are the most frequently prescribed drugs in Ayurveda (Indian system of medicine for the management of the disease Pratishyaya i.e. Rhinosinusitis. These selected drugs subtly represent medicated oils/lipids, powder insufflations (errhines and medicated aqueous base decoction form of nasal drug administration when visualized in morphological appearance and modern perspective. Goldman’s saccharin test, which is used for the present study is a gold standard test for the evaluation of nasal mucociliary function and is directly related to nasal health. Powder form of nasal administered drug i.e. Katphala Churna nasya (powder form was found to be most effective in improvement of endoscopic and radiological parameters of rhinosinusitis. Mucoadhesive properties of Anu Taila nasya and Shadbindu ghrita nasya (both

  18. The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida: heterochrony in polychaetes

    Directory of Open Access Journals (Sweden)

    Shimeld Sebastian M

    2006-10-01

    Full Text Available Abstract Background To understand the evolution of animals it is essential to have taxon sampling across a representative spread of the animal kingdom. With the recent rearrangement of most of the Bilateria into three major clades (Ecdysozoa, Lophotrochozoa and Deuterostomia it has become clear that the Lophotrochozoa are relatively poorly represented in our knowledge of animal development, compared to the Ecdysozoa and Deuterostomia. We aim to contribute towards redressing this balance with data on the development of the muscular, nervous and ciliary systems of the annelid Pomatoceros lamarckii (Serpulidae. We compare our data with other lophotrochozoans. Results P. lamarckii develops locomotory and feeding structures that enable it to become a swimming, planktotrophic larva within 24 hours. Formation of the trochophore includes development of a prototroch, metatroch and neurotroch, development of apical and posterior nervous elements at similar times, and development of musculature around the ciliary bands and digestive tract prior to development of any body wall muscles. The adult nervous and muscular systems are essentially preformed in the late larva. Interestingly, the muscular systems of the larvae and juvenile worms do not include the circular muscles of the body wall, which are considered to be plesiomorphic for annelids, although the possibility that circular muscles develop after these stages cannot be ruled out at this point. Conclusion A comparison between polychaetes shows variability in the timing (heterochrony of development of body wall muscles and elements of the nervous system. These heterochronies are one route for evolution of different life history strategies, such as adaptations to feeding requirements.

  19. The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking.

    Science.gov (United States)

    Viswanadha, Rasagnya; Hunter, Emily L; Yamamoto, Ryosuke; Wirschell, Maureen; Alford, Lea M; Dutcher, Susan K; Sale, Winfield S

    2014-10-01

    To determine mechanisms of assembly of ciliary dyneins, we focused on the Chlamydomonas inner dynein arm, I1 dynein, also known as dynein f. I1 dynein assembles in the cytoplasm as a 20S complex similar to the 20S I1 dynein complex isolated from the axoneme. The intermediate chain subunit, IC140 (IDA7), and heavy chains (IDA1, IDA2) are required for 20S I1 dynein preassembly in the cytoplasm. Unlike I1 dynein derived from the axoneme, the cytoplasmic 20S I1 complex will not rebind I1-deficient axonemes in vitro. To test the hypothesis that I1 dynein is transported to the distal tip of the cilia for assembly in the axoneme, we performed cytoplasmic complementation in dikaryons formed between wild-type and I1 dynein mutant cells. Rescue of I1 dynein assembly in mutant cilia occurred first at the distal tip and then proceeded toward the proximal axoneme. Notably, in contrast to other combinations, I1 dynein assembly was significantly delayed in dikaryons formed between ida7 and ida3. Furthermore, rescue of I1 dynein assembly required new protein synthesis in the ida7 × ida3 dikaryons. On the basis of the additional observations, we postulate that IDA3 is required for 20S I1 dynein transport. Cytoplasmic complementation in dikaryons using the conditional kinesin-2 mutant, fla10-1 revealed that transport of I1 dynein is dependent on kinesin-2 activity. Thus, I1 dynein complex assembly depends upon IFT for transport to the ciliary distal tip prior to docking in the axoneme.

  20. Cross-talk between ciliary epithelium and trabecular meshwork cells in-vitro: a new insight into glaucoma.

    Directory of Open Access Journals (Sweden)

    Natalie Lerner

    Full Text Available PURPOSE: It is assumed that the non-pigmented ciliary epithelium plays a role in regulating intraocular pressure via its neuroendocrine activities. To test this hypothesis, we investigated the effect on a human trabecular meshwork (TM cell line (NTM of co-culture with a human non-pigmented ciliary epithelium cell line (ODM-2. METHODS: The cellular cross-talk between ODM-2 and NTM cells was studied in a co-culture system in which the two cell types were co-cultured for 5 to 60 min or 2, 4 and 8h and then removed from the co-culture and analyzed. Analyses of the ERK and p38 mitogen-activated protein kinase (MAPK pathways and of the activity of TM phosphatases and matrix metalloproteins (MMPs were performed. Acid and alkaline phosphatase activity was determined by the DiFMUP (6, 8-difluoro-4-methylumbelliferyl phosphate assay. MMP levels were determined by gelatin zymography. RESULTS: Exposure of NTM cells to ODM-2 cells led to the activation of the MAPK signal transduction pathways in NTM cells within 5 min of co-culture. Phosphorylation of ERK1/ERK2 and p38 peaked at 10 and 15 min and then decreased over time. Interaction between ODM-2 and NTM cells promoted the expression of MMP-9 in the NTM cells after 4h of co-culture. CONCLUSIONS: Our findings provide support for the hypothesis that crosstalk does indeed take place between ODM-2 and NTM cells. Future studies should be designed to determine the relationship between the MMP system, MAPK kinases and phosphatases. Manipulation of these signaling molecules and the related NTM signal transduction pathways may provide targets for developing improved treatments for glaucoma.

  1. Effect of the herbal medicine dai-kenchu-to on gastrointestinal motility in patients with megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) and chronic idiopathic intestinal pseudo-obstruction (CIIP): report of two cases.

    Science.gov (United States)

    Hirakawa, Hitoshi; Ueno, Shigeru; Matuda, Hiromitu; Hinoki, Tomoya; Kato, Yuko

    2009-04-20

    Dai-kenchu-to (DKT), a traditional Japanese herbal medicine (Kampo medicine), composed of zanthoxylum fruit, ginseng root, dried ginger rhizome and malt sugar, is clinically effective for postoperative ileus and chronic constipation. MMIHS and CIIP are severe motility disorder associated with high morbidity. The aim of this study was to evaluate the effect of DKT on functional intestinal obstruction. DKT was clinically effective for gastrointestinal motility in a case with MMIHS, but not effective in one with CIIP. MMIHS and CIIP are speculated to have different pathogenesis regarding gastrointestinal pseudo-obstruction based upon the effect of this drug.

  2. [On the significance of Solcoseryl on fertility. 1. The effect of Solcoseryl on sperm motility in vitro].

    Science.gov (United States)

    Mattheus, A; Heise, H; Hofmann, R

    1980-01-01

    The effect of different Solcoseryl (Solco, Basel, Switzerland) concentrations on the motility of human sperm were tested on 37 ejaculates taken from two subject groups. Altogether 111 motility studies were performed using the eosine vitality test. In view of the considerable variations associated with motility tests, Solcoseryl appeared to have no effect on sperm motility in the majority of cases in group 1. The observed improvement in motility (20%) was countered by still greater motility losses (27%). The results, obtained by studies on selected asthenospermia (group 2) are different, however: the 26% increase in motility was opposed to a motility loss of only 17%. A Solcoseryl concentration of 50% was found to have the best effects on motility. A general rise in sperm motility by means of Solcoseryl cannot be considered, although tests would appear advisable in isolated instances. Solcoseryl may be a valuable protective resuspension agent for insemination purposes.

  3. Effects of Environment Factors on Initiation of Sperm Motility in Sea Cucumber Apostichopusjaponicus (Selenka)

    Institute of Scientific and Technical Information of China (English)

    YU Li; SHAO Mingyu; BAO Zhenmin; HU Jingjie; ZHANG Zhifeng

    2011-01-01

    Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCI solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1 The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCI and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCI, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax,. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NsC1 solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCI solution indicate that external ions may also regulate sperm motility.

  4. Genetic Studies of Strabismus, Congenital Cranial Dysinnervation Disorders (CCDDs), and Their Associated Anomalies

    Science.gov (United States)

    2017-02-16

    Congenital Fibrosis of Extraocular Muscles; Duane Retraction Syndrome; Duane Radial Ray Syndrome; Mobius Syndrome; Brown Syndrome; Marcus Gunn Syndrome; Strabismus Congenital; Horizontal Gaze Palsy; Horizontal Gaze Palsy With Progressive Scoliosis; Facial Palsy; Facial Paresis, Hereditary, Congenital; Third Nerve Palsy; Fourth Nerve Palsy; Sixth Nerve Palsy; Synkinesis; Ocular Motility Disorders; Levator-Medial Rectus Synkinesis; Athabaskan Brainstem Dysgenesis; Tongue Paralysis; Ninth Nerve Disorder; Fifth Nerve Palsy; Seventh Nerve Palsy; Eleventh Nerve Disorder; Twelfth Nerve Disorder; Vagus Nerve Paralysis; Moebius Sequence

  5. Extending the molecular clutch beyond actin-based cell motility

    Science.gov (United States)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  6. Small doses of melatonin increase intestinal motility in rats.

    Science.gov (United States)

    Drago, Filippo; Macauda, Silvia; Salehi, Soudabeh

    2002-09-01

    Since melatonin receptors are present in the intestines, the possibility that this hormone may affect intestinal motility has been studied in the rat. Sprague-Dawley male rats were given a carmine cochineal powder meal and were injected intraperitoneally with 1, 10, 100, or 1000 microg/kg melatonin. Sixty minutes after treatment, intestinal transit was found to be faster in animals treated with small doses of melatonin (1 or 10 microg/kg) than in saline-injected controls. This effect, however, appear to be clearly reversed with 100 or 1000 microg/kg melatonin. In fact, these doses of the hormone reduced intestinal transit in rats. The nonselective melatonin receptor antagonist, luzindole (administered intraperitoneally in a dose of 0.25 mg/kg, 15 min prior to melatonin injection) totally prevented the accelerating effect of melatonin (10 microg/kg) on intestinal transit. Luzindole per se failed to affect gut motility. Injection of the reversible acetylcholinesterase inhibitor and cholinergic agent, neostigmine, accelerated intestinal transit but failed to influence melatonin effect on this parameter. In contrast, intraperitoneal injection of the muscarinic receptor antagonist atropine delayed intestinal transit per se but did not reduce the stimulating effect of melatonin on this parameter. Intestinal myoelectrical recording revealed that intestinal myoelectrical activity was increased by intraperitoneal injection of melatonin (10 microg/kg). Administration of luzindole totally prevented melatonin-induced increase of intestinal myoelectrical activity. These results indicate that melatonin may affect intestinal motility in rats when administered in small doses. This effect might be mediated by melatonin receptors in the intestines, although the involvement of central receptors for the hormone is also possible.

  7. SirA orthologs affect both motility and virulence.

    Science.gov (United States)

    Goodier, R I; Ahmer, B M

    2001-04-01

    The sirA gene of Salmonella enterica serovar Typhimurium encodes a two-component response regulator of the FixJ family that has a positive regulatory influence on the expression of type III secretion genes involved with epithelial cell invasion and the elicitation of bovine gastroenteritis. SirA orthologs in Pseudomonas, Vibrio, and Erwinia control the expression of distinct virulence genes in these genera, but an evolutionarily conserved target of SirA regulation has never been identified. In this study we tested the hypothesis that sirA may be an ancient member of the flagellar regulon. We examined the effect of a sirA mutation on transcriptional fusions to flagellar promoters (flhD, fliE, fliF, flgA, flgB, fliC, fliD, motA, and fliA) while using fusions to the virulence gene sopB as a positive control. SirA had only small regulatory effects on all fusions in liquid medium (less than fivefold). However, in various types of motility agar plates, sirA was able to activate a sopB fusion by up to 63-fold while repressing flagellar fusions by values exceeding 100-fold. Mutations in the sirA orthologs of Escherichia coli, Vibrio cholerae, Pseudomonas fluorescens, and Pseudomonas aeruginosa result in defects in either motility or motility gene regulation, suggesting that control of flagellar regulons may be an evolutionarily conserved function of sirA orthologs. The implications for our understanding of virulence gene regulation in the gamma Proteobacteria are discussed.

  8. Study protocol, rationale and recruitment in a European multi-centre randomized controlled trial to determine the efficacy and safety of azithromycin maintenance therapy for 6 months in primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Kobbernagel, Helene E; Buchvald, Frederik F; Haarman, Eric G

    2016-01-01

    BACKGROUND: Clinical management of primary ciliary dyskinesia (PCD) respiratory disease is currently based on improving mucociliary clearance and controlling respiratory infections, through the administration of antibiotics. Treatment practices in PCD are largely extrapolated from more common chr...

  9. Influence of electromagnetic SHF-waves on motility of tubifex

    Directory of Open Access Journals (Sweden)

    I. K. Smolyarenko

    2005-02-01

    Full Text Available We investigated influence of electromagnetic superhigh frequency (SHF waves (10 hHz on mechanical parameters of motility of bunch tubifex (1300 - 1500 units at a different load and sequence of its mechanical stimulation. Is shown, that after a пот-thermal waveirradiation (1 MVt/sm2 latency and forward front of mechanograms is increased on 5 - 10 %, amplitude and duration of the answers simultaneously decreases. The maximal mass, which can lift single unit tubifex is decreased. The capacity of single unit is reduced on the average about 80 %. The authors make conclusion about temporary negative influence SHF-waves on simple biological systems.

  10. Motility of small nematodes in wet granular media

    CERN Document Server

    Juarez, G; Sznitman, J; Arratia, P E

    2010-01-01

    The motility behavior of the \\textit{Caenorhabditis elegans} is investigated in wet granular medium as a function of area density ($\\phi$) and dispersity. Surprisingly, the locomotion speed increases in granular media compared to free swimming. The surrounding structure of the medium leads to enhanced undulatory propulsion due to its ability to sustain a finite shear stress and convert lateral force into forward motion. For $\\phi > 0.55$, the nematode is observed to change its gate from swimming to crawling in polydisperse media \\textit{only}. This highlights the subtle difference in local structure between media.

  11. A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility

    Science.gov (United States)

    Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.

    2014-12-01

    New microscopic techniques have revolutionized cell biology over the past two decades. However, there are still biological processes whose details elude us, especially those involving motility: e.g. feeding behavior of microorganisms in the ocean, or migration of cancer cells to form metastases. Imaging prokaryotes, which range in size from several hundred nm to a few microns, is especially challenging. An emerging technique to address these issues is Digital Holographic Microscopy (DHM). DHM is an imaging technique that uses the interference of light to record and reproduce three-dimensional magnified images of objects. This approach has several advantages over ordinary brightfield microscopy for fieldwork: a larger depth of field, hands-off operation, robustness regarding environmental conditions, and large sampling volumes with quantitative 3D records of motility behavior. Despite these promising features, real-time DHM was thought to be impractical for technological and computational reasons until recently, and there has so far been very limited application of DHM to biology. Most existing instruments are limited in performance by their particular (e.g. in-line, lens-less, phase-shifting) approach to holography. These limitations can be mitigated with an off-axis dual-path configuration. Here we describe the design and implementation of a design for a Mach-Zehnder-type holographic microscope with diffraction-limited lateral resolution, with intended applications in environmental microbiology. We have achieved sub-micron resolution and three-dimensional tracking of prokaryotic and eukaryotic test strains designed to represent different modes and speeds of microbial motility. Prokaryotes are Escherichia coli, Vibrio alginolyticus, and Bacillus subtilis. Each shows a characteristic motility pattern, as we illustrate in holographic videos in sample chambers 0.6 mm in depth. The ability to establish gradients of attractants with bacterial taxis towards the

  12. Transient state model of actin-based motility

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of th...

  13. Rectal motility after sacral nerve stimulation for faecal incontinence

    DEFF Research Database (Denmark)

    Michelsen, H B; Worsøe, J; Krogh, K;

    2010-01-01

    Sacral nerve stimulation (SNS) is effective against faecal incontinence, but the mode of action is obscure. The aim of this study was to describe the effects of SNS on fasting and postprandial rectal motility. Sixteen patients, 14 women age 33-73 (mean 58), with faecal incontinence of various...... contractions, total time with cyclic rectal contractions, the number of aborally and orally propagating contractions, the number of anal sampling reflexes or rectal wall tension during contractions. Postprandial changes in rectal tone were significantly reduced during SNS (P

  14. Hydration-controlled bacterial motility and dispersal on surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze;

    2010-01-01

    hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using...... an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to −2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly...

  15. Cryopreservation of human spermatozoa. III. The effect of cryoprotectants on motility.

    Science.gov (United States)

    Critser, J K; Huse-Benda, A R; Aaker, D V; Arneson, B W; Ball, G D

    1988-08-01

    A series of experiments was conducted to examine potential toxic effects of cryoprotectants on motility of human spermatozoa. The data indicated that exposure of spermatozoa to cryoprotectant medium for as little as 15 minutes at room temperature caused a reduction in motility. This reduction in motility was caused by glycerol. Lowering glycerol concentrations from 7.5% to 5.0% improved sperm motility at 24 hours post-thaw. Sperm motility was not affected by either slow or abrupt cooling rates above -5 degrees C. Motility was greater in cryopreserved sperm at 24 hours post-thaw when glycerol was added at -5 degrees C rather than at room temperature. These data suggest that avoiding glycerol toxicity either by reducing the concentration used or by adding glycerol at a lower temperature, or both, may improve human sperm cryosurvival rates.

  16. Influences of dibutyryl cyclic adenosine monophosphate and forskolin on human sperm motility in vitro

    Institute of Scientific and Technical Information of China (English)

    Ji-HongLIU; YangLI; Zheng-GuoCAO; Zhang-QunYE

    2003-01-01

    Aim: To study the influences of dibutyryl cyclic adenosine monophosphate (dbcAMP) and forskolin on human sperm motility in vitro. Methods: Semen samples, aseptically obtained by masturbation and prepared by swim-up technique from 20 fertile men, were incubated with different concenlrations of dbcAMP and forskolin at 37℃. Measurements were carried out after l0 min, 20 min, 30 min and 60 min incubation. Motility parameters were estimated by using an automatic analyzing system. Results: Treatment with dbcAMP or forskolin resulted in a significant increase in sperm motility and progressive motility. The larger the concenlrations of dbcAMP or forskolin,the greater the effect appeared. The straight linear velocity and curvilinear velocity were not affected by both agents.Conclusion: dbcAMP and forskolin increase the motility and progressive motility of human sperm in vitro. ( Asian J Androl 2003 Jun; 5: 113-115)

  17. Management of Irritable Bowel Syndrome: Novel Approaches to the Pharmacology of Gut Motility

    Directory of Open Access Journals (Sweden)

    Carmelo Scarpignato

    1999-01-01

    Full Text Available Although it is unclear to what extent irritable bowel syndrome (IBS symptoms represent a normal perception of abnormal function or an abnormal perception of normal function, many believe that IBS constitutes the clinical expression of an underlying motility disorder, affecting primarily the mid- and lower gut. Indeed, transit and contractile abnormalities have been demonstrated with sophisticated techniques in a subset of patients with IBS. As a consequence, drugs affecting gastrointestinal (GI motility have been widely employed with the aim of correcting the major IBS manifestations, ie, pain and altered bowel function. Unfortunately, no single drug has proven to be effective in treating IBS symptom complex. In addition, the use of some medications has often been associated with unpleasant side effects. Therefore, the search for a truly effective and safe drug to control motility disturbances in IBS continues. Several classes of drugs look promising and are under evaluation. Among the motor- inhibiting drugs, gut selective muscarinic antagonists (such as zamifenacin and darifenacin, neurokinin2 antagonists (such as MEN-10627 and MEN-11420, beta3-adrenoreceptor agonists (eg, SR-58611A and GI-selective calcium channel blockers (eg, pinaverium bromide and octylonium are able to decrease painful contractile activity in the gut (antispasmodic effect, without significantly affecting other body functions. Novel mechanisms to stimulate GI motility and transit include blockade of cholecystokinin (CCKA receptors and stimulation of motilin receptors. Loxiglumide (and its dextroisomer, dexloxiglumide is the only CCKA receptor antagonist that is being evaluated clinically. This drug accelerates gastric emptying and colonic transit, thereby increasing the number of bowel movements in patients with chronic constipation. It is also able to reduce visceral perception. Erythromycin and related 14-member macrolide compounds inhibit the binding of motilin to its

  18. Lensectomy, vitrectomy, and transvitreal ciliary body photocoagulation as primary treatment for glaucoma in microspherophakia.

    Science.gov (United States)

    Goel, Neha; Sharma, Ravi; Sawhney, Amrita; Mandal, Madhullika; Choudhry, Reena M

    2015-08-01

    Microspherophakia is a rare, bilateral developmental anomaly of the crystalline lens. It can occur in isolation or as a component of a familial disorder. It has been associated with the Weill-Marchesani syndrome and Marfan syndrome. Angle clousure glaucoma can occur in microspherophakia and is the primary cause of visual loss. We describe the management of 2 sisters with bilateral microspherophakia and advanced angle closure glaucoma.

  19. Conduct disorder

    Science.gov (United States)

    ... Conduct disorder is often linked to attention-deficit disorder . Conduct disorder also can be an early sign of ... child or teen has a history of conduct disorder behaviors. A physical examination and blood tests can help ...

  20. Conversion Disorder

    Science.gov (United States)

    ... Recent significant stress or emotional trauma Being female — women are much more likely to develop conversion disorder Having a mental health condition, such as mood or anxiety disorders, dissociative disorder or certain personality disorders Having ...

  1. Psychotic Disorders

    Science.gov (United States)

    Psychotic disorders are severe mental disorders that cause abnormal thinking and perceptions. People with psychoses lose touch ... is not there. Schizophrenia is one type of psychotic disorder. People with bipolar disorder may also have ...

  2. Sperm motility initiation by egg jelly of the anuran, Discoglossus pictus may be mediated by sperm motility-initiating substance of the internally-fertilizing newt, Cynops pyrrhogaster.

    Science.gov (United States)

    Takayama-Watanabe, Eriko; Campanella, Chiara; Kubo, Hideo; Watanabe, Akihiko

    2012-11-01

    The egg jelly of Discoglossus pictus contains sperm motility-activating activity, the molecular basis of which has not been studied. Discoglossus pictus sperm initiated motility immediately after immersion in egg-jelly extract, as well as after immersion in hyposmotic solution, which initiates sperm motility in the external fertilization of anuran amphibians. Sequential treatment of the D. pictus sperm with these two solutions revealed the predominant effect of hyposmolality in initiation of motility. The motility initiation induced by jelly extract was suppressed by a monoclonal antibody (mAb) that is specific for the 34 kDa sperm motility-initiating substance (SMIS) in the egg jelly of the newt, Cynops pyrrhogaster. Immunoblotting using the anti-SMIS mAb revealed several antigenic proteins that included major ones with sizes of 18- and 34-kDa in D. pictus jelly extract. Scanning electron microscopic observation revealed that granules of jelly matrix, in which SMIS localizes and which have a critical role in the internal fertilization of C. pyrrhogaster, were not observed near the surface of the D. pictus egg jelly. These results suggest that sperm motility-activating activity in egg jelly of D. pictus may be mediated by SMIS homologous proteins that act through a mechanism that is partially different from that of C. pyrrhogaster.

  3. 76 FR 19692 - Revised Medical Criteria for Evaluating Endocrine Disorders

    Science.gov (United States)

    2011-04-08

    ... comment letters. For example, we evaluate diabetic nephropathy under our genitourinary listings (6.00 and... motility under 5.00; diabetic nephropathy under 6.00; poorly healing bacterial and fungal skin infections... advances in detecting endocrine disorders at earlier stages and newer treatments have resulted in...

  4. Thermodynamics of the motility-induced phase separation

    Science.gov (United States)

    Solon, Alexandre; Stenhammar, Joachim; Cates, Michael; Tailleur, Julien

    Self-propelled particles are known to accumulate in regions of space where their velocity is lowered. In addition, if their velocity diminishes when the local density increases (for example due to crowding effects), a positive feedback loop leads to the now well-established motility-induced phase separation (MIPS) between a dense immotile phase and a dilute motile phase. Understanding the phase equilibrium of MIPS is still a matter of debate. Although, depending on the models used to study the transition, a chemical potential or a pressure can be defined, these quantities do not play their usual thermodynamic role. In particular, the usual common tangent or equal-area constructions fail in these systems. Indeed, we will show that describing the phase equilibrium of MIPS necessitates generalized thermodynamics that include non-equilibrium contributions. This approach allows us to predict correctly the phase diagram of MIPS and to gain insight into the thermodynamics of active systems. It also sheds light on the (in)equivalence of statistical ensembles for these systems, paving the way for more efficient computational studies.

  5. Realizing the Physics of Motile Cilia Synchronization with Driven Colloids

    Science.gov (United States)

    Bruot, Nicolas; Cicuta, Pietro

    2016-03-01

    Cilia and flagella in biological systems often show large scale cooperative behaviors such as the synchronization of their beats in "metachronal waves." These are beautiful examples of emergent dynamics in biology, and are essential for life, allowing diverse processes from the motility of eukaryotic microorganisms, to nutrient transport and clearance of pathogens from mammalian airways. How these collective states arise is not fully understood, but it is clear that individual cilia interact mechanically, and that a strong and long-ranged component of the coupling is mediated by the viscous fluid. We review here the work by ourselves and others aimed at understanding the behavior of hydrodynamically coupled systems, and particularly a set of results that have been obtained both experimentally and theoretically by studying actively driven colloidal systems. In these controlled scenarios, it is possible to selectively test aspects of living motile cilia, such as the geometrical arrangement, the effects of the driving profile and the distance to no-slip boundaries. We outline and give examples of how it is possible to link model systems to observations on living systems, which can be made on microorganisms, on cell cultures or on tissue sections. This area of research has clear clinical application in the long term, as severe pathologies are associated with compromised cilia function in humans.

  6. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  7. Particle-based simulations of self-motile suspensions

    Science.gov (United States)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  8. The influence of electric field and confinement on cell motility.

    Science.gov (United States)

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  9. The influence of electric field and confinement on cell motility.

    Directory of Open Access Journals (Sweden)

    Yu-Ja Huang

    Full Text Available The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  10. Studies on the ovarian motility of small laboratory rodents.

    Science.gov (United States)

    Gimeno, M F; Gimeno, A L

    1975-01-01

    Guinea pig ovaries were isolated and immersed in Krebs-Ringer bicarbonate solution, gassed with carbogen and added with glucose as the substrate. The experiments were carried out at 37 degrees C and the preparations were subjected to a basal tension of 500 mg. The spontaneous motility (contractile tension and frequency) of guinea pig ovaries obtained in late proestrus was significantly greater than that of the estrus or early proestrus. The influence of oxytocin on ovarian motility was significantly more marked in late proestrus than in estrus or early proestrus. Both the spontaneous and induced mortility of guinea pig ovaries are augmented in the immediate prevoulatory moment. In isolated rat ovaries, the isometric contractile tension and the frequency of contractions increased as the estral cycle progressed. During late proestrus, left ovaries had a contractile activity of greater intensity and frequency than the right ones, whereas during early proestrus the magnitudes were comparable. Oxytocin elicited greater responses in left than right ovaries of the late proestrus, the effect becoming similar in estrus and early proestrus. Rat ovaries obtained immediately before ovulation are specifically sensitized to the influence of oxytocin and not to other smooth muscle stimulants.

  11. Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion.

    Science.gov (United States)

    Malet-Engra, Gema; Yu, Weimiao; Oldani, Amanda; Rey-Barroso, Javier; Gov, Nir S; Scita, Giorgio; Dupré, Loïc

    2015-01-19

    Collective cell migration is a widespread biological phenomenon, whereby groups of highly coordinated, adherent cells move in a polarized fashion. This migration mode is a hallmark of tissue morphogenesis during development and repair and of solid tumor dissemination. In addition to circulating as solitary cells, lymphoid malignancies can assemble into tissues as multicellular aggregates. Whether malignant lymphocytes are capable of coordinating their motility in the context of chemokine gradients is, however, unknown. Here, we show that, upon exposure to CCL19 or CXCL12 gradients, malignant B and T lymphocytes assemble into clusters that migrate directionally and display a wider chemotactic sensitivity than individual cells. Physical modeling recapitulates cluster motility statistics and shows that intracluster cell cohesion results in noise reduction and enhanced directionality. Quantitative image analysis reveals that cluster migration runs are periodically interrupted by transitory rotation and random phases that favor leader cell turnover. Additionally, internalization of CCR7 in leader cells is accompanied by protrusion retraction, loss of polarity, and the ensuing replacement by new leader cells. These mechanisms ensure sustained forward migration and resistance to chemorepulsion, a behavior of individual cells exposed to steep CCL19 gradients that depends on CCR7 endocytosis. Thus, coordinated cluster dynamics confer distinct chemotactic properties, highlighting unexpected features of lymphoid cell migration.

  12. Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise

    Science.gov (United States)

    Wakabayashi, Ken-ichi; King, Stephen M.

    2006-01-01

    Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility. PMID:16754958

  13. Fascin promotes the motility and invasiveness of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Feng Xu; Shuang-Ni Yu; Zhao-Hui Lu; Jian-Ping Liu; Jie Chen

    2011-01-01

    AIM: To explore the role of actin-bundling protein, fascin during the progression of pancreatic cancer. METHODS: The plasmid expressing human fascin-1 was stably transfected into the pancreatic cancer cell line MIA PaCa-2. The proliferation, cell cycle, motility, scattering, invasiveness and organization of the actin filament system in fascin-transfected MIA PaCa-2 cells and control non-transfected cells were determined. RESULTS: Heterogeneous overexpression of fascin markedly enhanced the motility, scattering, and invasiveness of MIA PaCa-2 cells. However, overexpression of fascin had minimal effect on MIA PaCa-2 cell proliferation and cell cycle. In addition, cell morphology and organization of the actin filament system were distinctly altered in fascin overexpressed cells. When transplanted into BALB/c-nu mice, fascin-transfected pancreatic cancer cells developed solid tumors at a slightly slower rate, but these tumors displayed more aggressive behavior in comparison with control tumors. CONCLUSION: Fascin promotes pancreatic cancer cell migration, invasion and scattering, thus contributes to the aggressive behavior of pancreatic cancer cells.

  14. We do, therefore we think: time, motility, and consciousness.

    Science.gov (United States)

    Goodrich, Barbara Gwenn

    2010-01-01

    This article is a philosopher's expanded review of two recent books on neurophysiology: Rodolfo Llinás's I of the Vortex and György Buszáki's Rhythms of the Brain. Researchers such as these are converging on a view of consciousness as originating in motility and as inherently temporal due to the brainwave oscillations that underlay it. Most current discussions of consciousness include implicit philosophical presuppositions inherited from the canon of Plato, Aristotle, Descartes, and Kant, e.g. that consciousness is self-reflective, passive, and timeless. Because of this, Llinás's and Buszáki's insights may not be fully appreciated. Western philosophy, however, also includes what might be described as a counter-tradition--and one that is more compatible with empirical biological science than the usual canon. Heraclitus, Spinoza, Schopenhauer, Nietzsche, and especially the 20th century French philosopher and psychologist, Merleau-Ponty, all anticipated aspects of Llinás's and Buszáki's approaches. Their alternative conceptual vocabularies are useful for strengthening Llinás's and Buszáki's approaches, sketching out a notion of consciousness emerging from motility, and generating new hypotheses for neurophysiological research.

  15. Trajectories of Listeria-type motility in two dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  16. Molecular mechanism of fluoroquinolones modulation on corneal fibroblast motility.

    Science.gov (United States)

    Chen, Tsan-Chi; Tsai, Tzu-Yun; Chang, Shu-Wen

    2016-04-01

    Topical fluoroquinolones are widely used to prevent ocular infections after ophthalmic surgery. However, they have been shown to affect the corneal cell motility, whose mechanism remains indefinite. The purpose of this study was to investigate how fluoroquinolones affect corneal stromal cell motility. Human corneal fibroblasts (HCFs) were incubated in ciprofloxacin (CIP), levofloxacin (LEV), or moxifloxacin (MOX) at 0, 10, 50, and 100 μg/ml for up to 3 days. Effect of CIP, LEV, or MOX on HCF migration was monitored using migration assay. HCF viability was determined by WST-1 assay. Expression of focal adhesion kinase (FAK), paxillin (PXN), and their phosphorylated forms were analyzed by immunoblotting. Binding affinity between FAK and PXN was determined by co-immunoprecipitation. Our results revealed that CIP and MOX, but not LEV, noticeably retarded HCF migration. HCF proliferation was significantly reduced by CIP (38.2%), LEV (29.5%), and MOX (21.3%), respectively (p = 0.002). CIP and MOX suppressed the phosphorylation of PXN at tyrosines (10.2 ± 4.3%, p MOX diminished the binding affinity between FAK and PXN (8.2 ± 1.8%, p MOX, but not LEV, might delay corneal fibroblast migration via interfering with recruitment of PXN to focal adhesions and dephosphorylation of PXN at the tyrosines.

  17. Is ineffective esophageal motility associated with gastropharyngeal reflux disease?

    Institute of Scientific and Technical Information of China (English)

    Kyung Yup Kim; Gwang Ha Kim; Dong Uk Kim; Soo Geun Wang; Byung Joo Lee; Jin Choon Lee; Do Youn Park; Geun Am Song

    2008-01-01

    AIM: To evaluate the association between IEM and gastropharyngeal reflux disease (GPRD) in patients who underwent ambulatory 24-h dual-probe pH monitoring for the evaluation of supraesophageal symptoms.METHODS: A total of 632 patients who underwent endoscopy, esophageal manometry and ambulatory 24-h dual-pH monitoring due to supraesophageal symptoms (e.g. globus, hoarseness, or cough) were enrolled. Of them, we selected the patients who had normal esophageal motility and IEM. The endoscopy and ambulatory pH monitoring findings were compared between the two groups.RESULTS: A total of 264 patients with normal esophageal motility and 195 patients with the diagnosis of IEM were included in this study. There was no difference in the frequency of reflux esophagitis and hiatal hernia between the two groups. All the variables showing gastroesophageal reflux and gastropharyngeal reflux were not different between the two groups. The frequency of GERD and GPRD, as defined by ambulatory pH monitoring, was not different between the two groups.CONCLUSION: There was no association between IEM and GPRD as well as between IEM and GERD. IEM alone cannot be considered as a definitive marker for reflux disease.

  18. Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning.

    Science.gov (United States)

    Serluca, Fabrizio C; Xu, Bo; Okabe, Noriko; Baker, Kari; Lin, Shin-Yi; Sullivan-Brown, Jessica; Konieczkowski, David J; Jaffe, Kimberly M; Bradner, Joshua M; Fishman, Mark C; Burdine, Rebecca D

    2009-05-01

    Cilia defects have been implicated in a variety of human diseases and genetic disorders, but how cilia motility contributes to these phenotypes is still unknown. To further our understanding of how cilia function in development, we have cloned and characterized two alleles of seahorse, a zebrafish mutation that results in pronephric cysts. seahorse encodes Lrrc6l, a leucine-rich repeat-containing protein that is highly conserved in organisms that have motile cilia. seahorse is expressed in zebrafish tissues known to contain motile cilia. Although mutants do not affect cilia structure and retain the ability to interact with Disheveled, both alleles of seahorse strongly affect cilia motility in the zebrafish pronephros and neural tube. Intriguingly, although seahorse mutations variably affect fluid flow in Kupffer's vesicle, they can have very weak effects on left-right patterning. Combined with recently published results, our alleles suggest that the function of seahorse in cilia motility is separable from its function in other cilia-related phenotypes.

  19. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity.

    Science.gov (United States)

    Umberger, Nicole L; Caspary, Tamara

    2015-01-15

    Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

  20. Effects of Resistance Training on Muscle Strength, Endurance, and Motor Unit According to Ciliary Neurotrophic Factor Polymorphism in Male College Students

    OpenAIRE

    Ae-Rim Hong, Sang-Min Hong, Yun-A Shin

    2014-01-01

    Changes in muscle mass and strength across the adult age span are variable and related to the ciliary neurotrophic factor (CNTF) genotype. In particular, a single CNTF haplotype (1357 G→A) is important for neuronal and muscular developments and may be associated with muscle strength response to resistance training. We examined whether CNTF genotype differentially influences the effect of resistance training on neuromuscular improvement in male college students. Resistance training of the uppe...

  1. Analysis of reproductive isolation between pearl millet (Pennisetum glaucum (L.) R.Br.) and P. ramosum, P. schweinfurthii, P. squamulatum, Cenchrus ciliaris

    OpenAIRE

    Marchais, Louis; TOSTAIN, Serge

    1997-01-01

    Crosses between pearl millet lines and #Pennisetum ramosum$, #P. schweinfurthii$, #P. squamulatum$ or #Cenchrus ciliaris$ were observed for the frequency and development of zygotes, the possibility of embryo rescue, and the fertility of F1 hybrids obtained. Eight per cent of the ovules from diploid millet x #P. ramosum$ crosses showed small embryos which could not be rescued. However, 59% of the ovules from tetraploid millet x #P. ramosum$ crosses showed well-developed embryos that were easy ...

  2. Evaluation of residual functional lung volume on Tc-99m DTPA aerosol ventilation and Tc-99m MAA perfusion scintigraphy in primary ciliary dyskinesia (Kartagener syndrome).

    Science.gov (United States)

    Chen, Yu-Wen; Chang, Chin-Chuan; Lai, Yung-Chuang; Lu, Chia-Ying; Dai, Zen-Kong

    2008-12-01

    Kartagener syndrome is diagnosed as sinusitis, bronchitis (bronchiectasis), and situs inversus by the clinical features. It is a subclass of primary ciliary dyskinesia (PCD) disease. A 12-year-old girl who had frequent upper and lower airway infections since birth, which was confirmed as Kartagener syndrome by HRCT imaging. We present the residual functional lung volume and mucociliary clearance findings seen on Tc-99m DTPA aerosol ventilation and Tc-99m MAA perfusion scintigraphy.

  3. Pathogenesis of Congenital Rubella Virus Infection in Human Fetuses: Viral Infection in the Ciliary Body Could Play an Important Role in Cataractogenesis

    Directory of Open Access Journals (Sweden)

    Thong Van Nguyen

    2015-01-01

    Interpretation: Our study based on the pathological examination demonstrated that the rubella virus infection occurred via systemic organs of human fetuses. This fact was confirmed by immunohistochemistry and direct detection of viral RNA in multiple organs. To the best of our knowledge, this study is the first report demonstrating that the rubella virus infection occurred via systemic organs of the human body. Importantly, virus infection of the ciliary body could play an important role in cataractogenesis.

  4. In vitro studies of antimicrobial activity of crude extracts of the Indian grasses Dhaman (Cenchrus ciliaris and Kala-Dhaman (Cenchrus setigerus

    Directory of Open Access Journals (Sweden)

    Premlata Singariya

    2012-01-01

    Full Text Available The aim of present study was to investigate the antimicrobial activity of Cenchrus ciliaris and Cenchrus setigerus extracts in order to use it as a possible source for new antimicrobial substances against important human pathogens. Crude extracts of the stem of Cenchrus ciliaris and Cenchrus setigerus were evaluated against some medically important pathogens viz. Escherichia coli, Raoultella planticola, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Enterobacter aerogenes, Candida albicans and Aspergillus flavus. The dried and powdered stems were successively extracted with hexane, toluene, isopropyl alcohol, acetone and ethanol using soxhlet assembly. The antimicrobial activity assay was done by both disc diffusion and serial dilution methods. Isopropyl alcohol extract of Cenchrus setigerus showed highest activity against Escherichia coli. The test pathogens were more sensitive to the isopropyl alcohol, acetone and ethanol extracts than to the hexane and toluene extracts except against Bacillus subtilis. Result reveals that the most bioactive compound was cycloleucolenol-9,19-cycloergost-24 (28-en-3-ol, 4, 14-dimethyl acetate in both the species of Cenchrus grass, (19.15% in isopropanol extract of Cenchrus setigerus whereas, (14.03% in acetone extract of Cenchrus ciliaris.

  5. In silico reconstitution of actin-based symmetry breaking and motility.

    Directory of Open Access Journals (Sweden)

    Mark J Dayel

    2009-09-01

    Full Text Available Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.

  6. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters.

    Science.gov (United States)

    Boryshpolets, S; Kowalski, R K; Dietrich, G J; Dzyuba, B; Ciereszko, A

    2013-10-15

    In this study, we examined different computer-assisted sperm analysis (CASA) systems (CRISMAS, Hobson Sperm Tracker, and Image J CASA) on the exact same video recordings to evaluate the differences in sperm motility parameters related to the specific CASA used. To cover a wide range of sperm motility parameters, we chose 12-second video recordings at 25 and 50 Hz frame rates after sperm motility activation using three taxonomically distinct fish species (sterlet: Acipenser ruthenus L.; common carp: Cyprinus carpio L.; and rainbow trout: Oncorhynchus mykiss Walbaum) that are characterized by essential differences in sperm behavior during motility. Systematically higher values of velocity and beat cross frequency (BCF) were observed in video recordings obtained at 50 Hz frame frequency compared with 25 Hz for all three systems. Motility parameters were affected by the CASA and species used for analyses. Image J and CRISMAS calculated higher curvilinear velocity (VCL) values for rainbow trout and common carp at 25 Hz frequency compared with the Hobson Sperm Tracker, whereas at 50 Hz, a significant difference was observed only for rainbow trout sperm recordings. No significant difference was observed between the CASA systems for sterlet sperm motility at 25 and 50 Hz. Additional analysis of 1-second segments taken at three time points (1, 6, and 12 seconds of the recording) revealed a dramatic decrease in common carp and rainbow trout sperm speed. The motility parameters of sterlet spermatozoa did not change significantly during the 12-second motility period and should be considered as a suitable model for longer motility analyses. Our results indicated that the CASA used can affect motility results even when the same motility recordings are used. These results could be critically altered by the recording quality, time of analysis, and frame rate of camera, and could result in erroneous conclusions.

  7. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Julia Andrea Deditius

    Full Text Available Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.

  8. Alternativas de manejo químico da planta daninha Digitaria ciliaris resistente aos herbicidas inibidores da ACCase na cultura de soja Chemical management alternatives of the weed Digitaria ciliaris resistant to ACCASE inhibiting herbicides in soybean crop

    Directory of Open Access Journals (Sweden)

    R.F. López-Ovejero

    2006-06-01

    Full Text Available Com o objetivo de avaliar a eficácia dos herbicidas inibidores da ACCase sobre uma população de capim-colchão (Digitaria ciliaris com histórico de falha de controle, bem como propor herbicidas alternativos a serem aplicados em condições de pré e pós-emergência na cultura de soja, foram conduzidos dois experimentos a campo no município de Palmeira-PR, durante o ano agrícola 2003/2004. No primeiro experimento, foi avaliada a eficácia dos tratamentos envolvendo herbicidas com mecanismo de ação de inibição da ACCase (g ha-1: sethoxydim (230, clethodim (108, butroxydim (75, tepraloxydim (100, fluazifop-p-butil (187,5, haloxyfop-r (60, propaquizafop (125, cyhalofop-butyl (225, fenoxaprop-p-ethyl + clethodim (50 + 50, além de testemunha sem herbicidas. No segundo experimento, os tratamentos constaram de herbicidas com mecanismos de ação alternativos, visando também o teste de eficácia de controle da planta daninha (g ha-1: trifluralina (2.700, clomazone (1.000, smetolachlor (1.920, sulfentrazone (600, trifluralina + sulfentrazone (2.100 + 400, clomazone + sulfentrazone (600 + 400, S-metolachlor + sulfentrazone (768 + 400 aplicados em condições de pré-emergência da planta daninha e da cultura e testemunha sem controle de plantas daninhas; os tratamentos apresentavam-se com ou sem complementação de controle através do herbicida imazethapyr (100, aplicado em condições de pós-emergência, com as plantas daninhas no estádio de duas a quatro folhas. Os resultados sugerem que a população estudada é resistente aos herbicidas inibidores da ACCase; os melhores resultados de eficácia de controle com os inibidores da ACCase foram obtidos com os herbicidas tepraloxydim, clethodim e butroxydim; os tratamentos com sulfentrazone isoladamente ou em mistura e os tratamentos com trifluralina, clomazone e S-metolachlor, em complementação com imazethapyr e imazethapyr isolado, foram eficazes no controle do biótipo resistente de

  9. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility.

    Science.gov (United States)

    Du, Peng; O'Grady, Gregory; Gao, Jerry; Sathar, Shameer; Cheng, Leo K

    2013-01-01

    Experimental progress in investigating normal and disordered gastric motility is increasingly being complimented by sophisticated multiscale modeling studies. Mathematical modeling has become a valuable tool in this effort, as there is an ever-increasing need to gain an integrative and quantitative understanding of how physiological mechanisms achieve coordinated functions across multiple biophysical scales. These interdisciplinary efforts have been particularly notable in the area of gastric electrophysiology, where they are beginning to yield a comprehensive and integrated in silico organ modeling framework, or 'virtual stomach'. At the cellular level, a number of biophysically based mathematical cell models have been developed, and these are now being applied in areas including investigations of gastric electrical pacemaker mechanisms, smooth muscle electrophysiology, and electromechanical coupling. At the tissue level, micro-structural models are being creatively developed and employed to investigate clinically significant questions, such as the functional effects of ICC degradation on gastrointestinal (GI) electrical activation. At the organ level, high-resolution electrical mapping and modeling studies are combined to provide improved insights into normal and dysrhythmic gastric electrical activation. These efforts are also enabling detailed forward and inverse modeling studies at the 'whole body' level, with implications for diagnostic techniques for gastric dysrhythmias. These recent advances, together with several others highlighted in this review, collectively demonstrate a powerful trend toward applying mathematical models to effectively investigate structure-function relationships and overcome multiscale challenges in basic and clinical GI research.

  10. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation.

    Science.gov (United States)

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-04-01

    To mediate the degradation of biomacromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca(2+) channel TRPML1 cause lysosomal storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca(2+)-dependent centripetal movement of lysosomes towards the perinuclear region (where autophagosomes accumulate) following autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca(2+) sensor that associates physically with the minus-end-directed dynactin-dynein motor, while PtdIns(3,5)P(2), a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PtdIns(3,5)P(2)-TRPML1-ALG-2-dynein signalling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely to be caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Ca(2+) release from lysosomes thus provides an on-demand mechanism regulating lysosome motility, positioning and tubulation.

  11. Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis

    Institute of Scientific and Technical Information of China (English)

    Jun-Ho La; Tae-Wan Kim; Tae-Sik Sung; Jeoung-Woo Kang; Kyun-Ju Kim; Il-Suk Yang

    2003-01-01

    AIM: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by visceral hypersensitivity and altered bowel motility. There is increasing evidence suggesting the role of inflammation in the pathogenesis of IBS, which addresses the possibility that formerly established rat model of colitis could be used as an TBS model after the inflammation subsided.METHODS: Colitis was induced by intracolonic instillation of 4 % acetic acid in male Sprague-Dawley rats. The extent of inflammation was assessed by histological examination and myeloperoxidase (MPO) activity assay. After subsidence of colitis, the rats were subjected to rectal distension and restraint stress, then the abdominal withdrawal reflex and the number of stress-induced fecal output were measured,respectively.RESULTS: At 2 days post-induction of colitis, the colon showed characteristic inflammatory changes in histology and 8-fold increase in MPO activity. At 7 days post-induction of colitis, the histological features and MPO activity returned to normal. The rats at 7 days post-induction of colitis showed hypersensitive response to rectal distension without an accompaning change in rectal compliance, and defecated more stools than control animals when under stress.CONCLUSION: These results concur largely with the characteristic features of IBS, visceral hypersensitivity and altered defecation pattern in the absence of detectable disease, suggesting that this animal model is a methodologically convenient and useful model for studying a subset of IBS.

  12. Effect of enterokinetic prucalopride on intestinal motility in fast rats

    Institute of Scientific and Technical Information of China (English)

    Hui-Bin Qi; Jin-Yan Luo; Xin Liu

    2003-01-01

    AIM: To evaluate the effects of prucalopride on intestinal prokinetic activity in fast rats and to provide experimental basis for clinical treatrnent of gastrointestinal motility diseases.METHODS: Gastrointestinal propulsion rate was measured by the migration rate of activated charcoal, which reflexes gastrointestinal motility function. 120 Spraque-Dawley rats were randomly divided into four groups and received an intravenous injection of physiological saline (served as control), prucalopdde 1 mg/kg, prucalopride 2 mg/kg and cisapride 1 mg/kg,respectively. The gastrointestinal propulsion rate was measured 1, 2 or 4 hours after intravenous injection of the drugs.RESULTS: Significant accelerations of gastrointestinal propulsion rate in prucalopride 1 mg/kg and 2 mg/kg groups were found compared with control group at 2 and 4 hours (83.2%±5.5%, 81.7%±8.5% vs70.5%±9.2%, P<0.01;91.2%±2.2%, 91.3%±3.9% vs86.8%±2.6%, P<0.01).The gastrointestinal propulsion rates at 1, 2 or 4 hours were faster in prucalopride 1 mg/kg and 2 mg/kg groups than in cisapride group (84.0%±11.7%, 77.1%±11.9% vs 66.3%±13.6%, P<0.01, P<0.05; 83.2%±5.5%, 81.7%±8.5% vs75.4%±5.9 %, P<0.01, P<0.05; 91.2%±2.2%,91.3%±3.9% vs 88.6%±3.5%,P<0.05, P<0.05). No difference of gastrointestinal propulsion rate was found between prucalopride 1 mg/kg group and prucalopride 2 mg/kg group (P>0.05).CONCLUSION: Prucalopride accelerates intestinal motility in fast rats, and has no dose dependent effect.

  13. Bacteria: a new player in gastrointestinal motility disorders--infections, bacterial overgrowth, and probiotics.

    LENUS (Irish Health Repository)

    Quigley, Eamonn M M

    2012-02-03

    Irritable bowel syndrome (IBS) may result from a dysfunctional interaction between the indigenous flora and the intestinal mucosa, which in turn leads to immune activation in the colonic mucosa. Some propose that bacterial overgrowth is a common causative factor in the pathogenesis of symptoms in IBS; others point to evidence suggesting that the cause stems from more subtle qualitative changes in the colonic flora. Bacterial overgrowth will probably prove not to be a major factor in what will eventually be defined as IBS. Nevertheless, short-term therapy with either antibiotics or probiotics seems to reduce symptoms among IBS patients. However, in the long term, safety issues will favor the probiotic approach; results of long-term studies with these agents are eagerly awaited.

  14. Oesophageal motility disorders in type 1 diabetes mellitus and their relation to cardiovascular autonomic neuropathy.

    Science.gov (United States)

    Ascaso, J F; Herreros, B; Sanchiz, V; Lluch, I; Real, J T; Minguez, M; Mora, F; Benages, A

    2006-09-01

    The relationship between cardiovascular autonomic neuropathy (CVAN) and oesophageal dysfunction in diabetes mellitus has not been well established because reports are contradictory. The aim of this study was to assess oesophageal function and its correlation with CVAN in type 1 diabetic patients without oesophageal symptoms. Forty-six type 1 diabetic patients without oesophageal symptoms (DG) and 34 healthy volunteers (CG) were studied. Both groups underwent CVAN tests and oesophageal manometry and pH-metry. Differences between groups regarding results of cardiovascular autonomic tests and oesophageal studies were statistically analysed. Compared with the CG, the DG group showed insufficient lower oesophageal sphincter (LOS) relaxation and a higher percentage of simultaneous waves (P 10%), and the prevalence of simultaneous waves related to the degree of autonomic neuropathy was: 9% of patients without CVAN, 7% of those suspected to have it and 50% of patients with CVAN (P 10%) were the presence of CVAN and duration of diabetes (P < 0.05, logistic regression analysis). Increase in simultaneous waves and impaired relaxation of LOS are more frequent in diabetic patients with CVAN.

  15. Diagnosis of esophageal motility disorders: esophageal pressure topography vs. conventional line tracing

    OpenAIRE

    2015-01-01

    OBJECTIVES: Enhanced characterization of esophageal peristaltic and sphincter function provided by esophageal pressure topography (EPT) offers a potential diagnostic advantage over conventional line tracings (CLT). However, high-resolution manometry (HRM) and EPT require increased equipment costs over conventional systems and evidence demonstrating a significant diagnostic advantage of EPT over CLT is limited. Our aim was to investigate whether the inter-rater agreement and/or accuracy of eso...

  16. Therapy-refractory gastrointestinal motility disorder in a child with c-kit mutations

    Institute of Scientific and Technical Information of China (English)

    Christian; Breuer; Jun; Oh; Gerhard; J; Molderings; Michael; Schemann; Birgit; Kuch; Ertan; Mayatepek; Rüdiger; Adam

    2010-01-01

    Constipation and fecal impaction are frequent and distressing complaints in pediatric gastroenterology. Especially in neurologically handicapped children, treatment of severe forms of slow-transit constipation (STC) can be difficult. In the majority of cases, STC is of unknown etiology. However, in recent years, there is growing evidence that interstitial cells of Cajal (ICCs), which serve as electrical pacemakers and generate spontaneous electrical slow waves in the gastrointestinal tract, might play an im...

  17. Distribution of Müller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye.

    Science.gov (United States)

    Bhatia, Bhairavi; Singhal, Shweta; Lawrence, Jean M; Khaw, Peng T; Limb, G Astrid

    2009-09-01

    Much interest has been generated by the identification of neural stem cells in the human neural retina and ciliary body. However, it is not clear whether stem cells identified in these ocular compartments are of the same origin or whether they ontogenically derive from different cell populations. This study examined the in situ anatomical distribution of these cells within the neural retina and ciliary body, as well as their ability to proliferate in response to EGF. Human retinae and ciliary body were examined for co-expression of Nestin, cellular retinaldehyde binding (CRALBP) or Vimentin, and the stem cell markers SOX2, CHX10, NOTCH1 and SHH. Retinal explants were cultured with epidermal growth factor (EGF) to assess retinal cell proliferation. Intense Nestin and CRALBP staining was observed in the neural retinal margin, where cells formed bundles of spindle cells (resembling glial cells) that lacked lamination and co-stained for SOX2, CHX10 and SHH. This staining differentiated the neural retina from the ciliary epithelium, which expressed SOX2, CHX10 and NOTCH1 but not Nestin or CRALBP. Nestin and CRALBP expression decreased towards the posterior retina, where it anatomically identified a population of Müller glia. All Vimentin positive Müller glia co-stained for SOX2, but only few Vimentin positive cells expressed Nestin and SOX2. Cells of the retinal margin and the inner nuclear layer (INL), where the soma of Müller glia predominate, re-entered the cell cycle upon retinal explant culture with EGF. Lack of lamination and abundance of Müller glia expressing stem cell markers in the marginal region of the adult human retina resemble the ciliary marginal zone (CMZ) of fish and amphibians. The findings that cells in this CM-like zone, as well in the inner nuclear layer proliferate in response to EGF suggest that the adult human retina has regenerative potential. Identification of factors that may promote retinal regeneration in the adult human eye would

  18. Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients

    Science.gov (United States)

    Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis

    2017-02-01

    Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

  19. [Radiotelemetric studies of uterine motility in cows with acute endometritis].

    Science.gov (United States)

    Kostov, I

    1980-01-01

    Thirty two cows with postpartum complication were radiotelemetrically studied to register uterine motility. The results were compared with those of the control group of 42 cows with normal calving and no complications. Enhanced uterine reactivity to oxytocin and other agents was established in all cows with complications in the postpartum period. It is manifested in the spring also by intensified motor activity of the uterus. Motor activity of the uterus is hardly registered during to summer months in cows with normal peurperium and complications following day 2 of calving. No essential difference was found in estradiol-17 beta content in the blood plasma of both groups of cows. Body temperature rises in cows with postpartum complications.

  20. Effect of short abstinence time on sperm motility parameters

    DEFF Research Database (Denmark)

    Alipour, Hiva; Dardmeh, Fereshteh; Van Der Horst, Gerhard

    2015-01-01

    Semen preparation medium have an important role in assisted reproduction techniques and their composition influences sperm binding and motility. Some studies have assessed the influence of pH on sperm kinetics. However, no study to date has assessed the effect of environmental pH on subtle...... differences in the details of the sperm movement (kinematics) of human sperm provided by computerized sperm analysis systems. This study was designed to assess the effect of two different media pH levels on kinematic parameters of the human sperm. Samples were prepared using the 40%/80% Pureception (Sage, USA......) density gradient and resuspended in customized sperm culture media with pH levels of 7.9 and 8.3 (Origio, Denmark). Kinematic parameters of the sperm in both groups were analyzed using the Sperm Class Analyzer (Microptic S.L., Spain) at 0, 6 and 24 hours following the addition of media. Results...

  1. Bacillus subtilis Hfq: A role in chemotaxis and motility

    Indian Academy of Sciences (India)

    CHANDRAKANT B JAGTAP; PRADEEP KUMAR; K KRISHNAMURTHY RAO

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and therebyregulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria.However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria.Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibilityof Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis isregulated by the stress sigma factor, σB, in addition to the stationary phase sigma factor, σH. We further demonstratethat Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis andmotility, thus assigning a new function for Hfq in B. subtilis.

  2. Accumulation of motile elongated micro-organisms in turbulence

    CERN Document Server

    Zhan, Caijuan; Lushi, Enkeleida; Brandt, Luca

    2013-01-01

    We study the effect of turbulence on marine life by performing numerical simulations of motile microorganisms, modelled as prolate spheroids, in isotropic homogeneous turbulence. We show that the clustering and patchiness observed in laminar flows, linear shear and vortex flows, are significantly reduced in a three-dimensional turbulent flow mainly because of the complex topology; elongated micro-orgamisms show some level of clustering in the case of swimmers without any preferential alignment whereas spherical swimmers remain uniformly distributed. Micro-organisms with one preferential swimming direction (e.g. gyrotaxis) still show significant clustering if spherical in shape, whereas prolate swimmers remain more uniformly distributed. Due to their large sensitivity to the local shear, these elongated swimmers react slower to the action of vorticity and gravity and therefore do not have time to accumulate in a turbulent flow. These results show how purely hydrodynamic effects can alter the ecology of microor...

  3. Effect of sennosides on colon motility in cats.

    Science.gov (United States)

    Wienbeck, M; Kortenhaus, E; Wallenfels, M; Karaus, M

    1988-01-01

    The actions of sennosides on colonic motility are incompletely understood. We therefore studied the effects of sennosides A + B on colonic myoelectric activity and transit of a radio-opaque meal in 7 conscious cats. Intraduodenal application of sennosides (2 mg/kg body weight) accelerated the half colon transit time from 60 +/- 10 (SEM) to 43 +/- 7 min. At the same time the ratio of long-spike bursts to short-spike bursts was changed from 0.22 to 10.1. Loperamide, an antidiarrheal agent, had the opposite effect. The overall spike activity was not altered by sennosides, but increased by loperamide. It is concluded that the propulsive action of sennosides in the colon is reflected by myoelectric patterns and not by the total number of spikes.

  4. Motility of a model bristle-bot: A theoretical analysis

    Science.gov (United States)

    Cicconofri, Giancarlo; DeSimone, Antonio

    2015-11-01

    Bristle-bots are legged robots that can be easily made out of a toothbrush head and a small vibrating engine. Despite their simple appearance, the mechanism enabling them to propel themselves by exploiting friction with the substrate is far from trivial. Numerical experiments on a model bristle-bot have been able to reproduce such a mechanism revealing, in addition, the ability to switch direction of motion by varying the vibration frequency. This paper provides a detailed account of these phenomena through a fully analytical treatment of the model. The equations of motion are solved through an expansion in terms of a properly chosen small parameter. The convergence of the expansion is rigorously proven. In addition, the analysis delivers formulas for the average velocity of the robot and for the frequency at which the direction switch takes place. A quantitative description of the mechanism for the friction modulation underlying the motility of the bristle-bot is also provided.

  5. Endoplasmic motility spectral characteristics in plasmodium of Physarum polycephalum

    Science.gov (United States)

    Avsievich, T. I.; Ghaleb, K. E. S.; Frolov, S. V.; Proskurin, S. G.

    2015-03-01

    Spectral Fourier analysis of experimentally acquired velocity time dependencies, V(t), of shuttle endoplasmic motility in an isolated strand of plasmodium of slime mold Physarum Polycephalum has been realized. V(t) registration was performed in normal conditions and after the treatment by respiration inhibitors, which lead to a complete cessation of endoplasmic motion in the strand. Spectral analysis of the velocity time dependences of the endoplasm allows obtaining two distinct harmonic components in the spectra. Their ratio appeared to be constant in all cases, ν2/ν1=1.97±0.17. After the inhibitors are washed out respiratory system becomes normal, gradually restoring the activity of both harmonic oscillatory sources with time. Simulated velocity time dependences correspond to experimental data with good accuracy.

  6. Determination of motility forces on isolated chromosomes with laser tweezers.

    Science.gov (United States)

    Khatibzadeh, Nima; Stilgoe, Alexander B; Bui, Ann A M; Rocha, Yesenia; Cruz, Gladys M; Loke, Vince; Shi, Linda Z; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Berns, Michael W

    2014-10-31

    Quantitative determination of the motility forces of chromosomes during cell division is fundamental to understanding a process that is universal among eukaryotic organisms. Using an optical tweezers system, isolated mammalian chromosomes were held in a 1064 nm laser trap. The minimum force required to move a single chromosome was determined to be ≈ 0.8-5 pN. The maximum transverse trapping efficiency of the isolated chromosomes was calculated as ≈ 0.01-0.02. These results confirm theoretical force calculations of ≈ 0.1-12 pN to move a chromosome on the mitotic or meiotic spindle. The verification of these results was carried out by calibration of the optical tweezers when trapping microspheres with a diameter of 4.5-15 µm in media with 1-7 cP viscosity. The results of the chromosome and microsphere trapping experiments agree with optical models developed to simulate trapping of cylindrical and spherical specimens.

  7. Membrane tension feedback on shape and motility of eukaryotic cells

    Science.gov (United States)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  8. Accumulation of motile elongated micro-organisms in turbulence

    Science.gov (United States)

    Zhan, Caijuan; Sardina, Gaetano; Lushi, Enkeleida; Brandt, Luca

    2014-01-01

    We study the effect of turbulence on marine life by performing numerical simulations of motile microorganisms, modelled as prolate spheroids, in isotropic homogeneous turbulence. We show that the clustering and patchiness observed in laminar flows, linear shear and vortex flows, are significantly reduced in a three-dimensional turbulent flow mainly because of the complex topology; elongated micro-orgamisms show some level of clustering in the case of swimmers without any preferential alignment whereas spherical swimmers remain uniformly distributed. Micro-organisms with one preferential swimming direction (e.g. gyrotaxis) still show significant clustering if spherical in shape, whereas prolate swimmers remain more uniformly distributed. Due to their large sensitivity to the local shear, these elongated swimmers react slower to the action of vorticity and gravity and therefore do not have time to accumulate in a turbulent flow. These results show how purely hydrodynamic effects can alter the ecology of microorganisms that can vary their shape and their preferential orientation.

  9. Photoacclimation state determines the photobehaviour of motile microalgae

    DEFF Research Database (Denmark)

    Ezequiel, João; Laviale, Martin; Frankenbach, Silja

    2015-01-01

    High productivity in intertidal microphytobenthic communities is achieved despite exposure to extreme and dynamic conditions (e.g. light, salinity, temperature). As an adaptation to this hostile environment, most of the microalgae species inhabiting fine-sediment habitats are motile, being able...... in both cases, cells avoided extreme low and high light levels, maximum cell accumulation was reached at markedly different light intensities depending on growth light conditions and resulting photoacclimation state: 72 and 104μmolquantam-2s-1 for the low and high light-acclimated cells, respectively...... to migrate vertically within the uppermost layers of the sediment and actively regulating their exposure to light. In this work we tested the hypothesis that the migratory photobehaviour of benthic diatoms, the dominant group in microphytobenthic assemblages, is conditioned by their photophysiological state...

  10. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Science.gov (United States)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  11. Curved trajectories of actin-based motility in two dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-05-01

    Recent experiments have reported fascinating geometrical trajectories for actin-based motility of bacteria Listeria monocytogenes and functionalized beads. To understand the physical mechanism for these trajectories, we constructed a phenomenological model to study the motion of an actin-propelled disk in two dimensions. In our model, the force and actin density on the surface of the disk are influenced by the translation and rotation of the disk, which in turn is induced by the asymmetric distributions of those densities. We show that this feedback can destabilize a straight trajectory, leading to circular, S-shape and other geometrical trajectories observed in the experiments through bifurcations in the distributions of the force and actin density. The relation between our model and the models for self-propelled deformable particles is emphasized and discussed.

  12. Regulation of gastroduodenal motility: acyl ghrelin, des-acyl ghrelin and obestatin and hypothalamic peptides.

    Science.gov (United States)

    Fujimiya, Mineko; Ataka, Koji; Asakawa, Akihiro; Chen, Chih-Yen; Kato, Ikuo; Inui, Akio

    2012-01-01

    Real-time measurements for gut motility in conscious rats or mice combined with intracerebroventricular or intravenous injection of peptide agonists or antagonists allow us to understand the regulatory mechanism of gastrointestinal motility. Neuropeptide Y (NPY) in the arcuate nucleus in the hypothalamus stimulates the fasted motility in the duodenum, while urocortin in the paraventricular nucleus inhibits fed and fasted motility in the antrum and duodenum. Acyl ghrelin exerts stimulatory effects on the motility of the antrum and duodenum in both the fed and fasted state of animals. NPY Y2 and Y4 receptors in the brain may mediate the action of acyl ghrelin, and vagal afferent pathways might be involved in this mechanism. Des-acyl ghrelin exerts inhibitory effects on the motility of the antrum but not on the motility of the duodenum in the fasted state of animals. CRF type 2 receptor in the brain may mediate the action of des-acyl ghrelin, and vagal afferent pathways might not be involved in this mechanism. Obestatin exerts inhibitory effects on the motility of the antrum and duodenum in the fed state but not in the fasted state of animals. CRF type 1 and type 2 receptors in the brain may mediate the action of obestatin, and vagal afferent pathways might be partially involved in this mechanism.

  13. Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens

    DEFF Research Database (Denmark)

    Givskov, Michael Christian; Eberl, Leo; Molin, Søren

    1997-01-01

    Serratia liquefaciens secretes a broad spectrum of hydrolytic enzymes to the surrounding medium and possesses the ability to differentiate into specialized swarmer cells capable of rapid surface motility. Control of exoenzyme production and swarming motility is governed by similar regulatory comp...... components, including a quorum-sensing mechanism and the flagellar master operon flhDC....

  14. Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways

    Science.gov (United States)

    Zhao, Yong; Zhang, Wei-Dong; Liu, Xin-Qi; Zhang, Peng-Fei; Hao, Ya-Nan; Li, Lan; Chen, Liang; Shen, Wei; Tang, Xiang-Fang; Min, Ling-Jiang; Meng, Qing-Shi; Wang, Shu-Kun; Yi, Bao; Zhang, Hong-Fu

    2016-11-01

    A number of emerging studies suggest that air pollutants such as hydrogen sulfide (H2S) and ammonia (NH3) may cause a decline in spermatozoa motility. The impact and underlying mechanisms are currently unknown. Boar spermatozoa (in vitro) and peripubertal male mice (in vivo) were exposed to H2S and/or NH3 to evaluate the impact on spermatozoa motility. Na2S and/or NH4Cl reduced the motility of boar spermatozoa in vitro. Na2S and/or NH4Cl disrupted multiple signaling pathways including decreasing Na+/K+ ATPase activity and protein kinase B (AKT) levels, activating Adenosine 5‧-monophosphate (AMP)-activated protein kinase (AMPK) and phosphatase and tensin homolog deleted on chromosome ten (PTEN), and increasing reactive oxygen species (ROS) to diminish boar spermatozoa motility. The increase in ROS might have activated PTEN, which in turn diminished AKT activation. The ATP deficiency (indicated by reduction in Na+/K+ ATPase activity), transforming growth factor (TGFβ) activated kinase-1 (TAK1) activation, and AKT deactivation stimulated AMPK, which caused a decline in boar spermatozoa motility. Simultaneously, the deactivation of AKT might play some role in the reduction of boar spermatozoa motility. Furthermore, Na2S and/or NH4Cl declined the motility of mouse spermatozoa without affecting mouse body weight gain in vivo. Findings of the present study suggest that H2S and/or NH3 are adversely associated with spermatozoa motility.

  15. Effect of dopamine on bethanechol-stimulated gastric antral motility in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P

    1982-01-01

    The purpose of the present study was to evaluate the effect of dopamine on gastric antral motility in conscious dogs with gastric fistula, using intraluminal strain-gauge transducers. Infusion of bethanechol increased the motility with regard to both frequency and strength. Dopamine, an endogenous...

  16. Effect of isoprenaline on bethanechol-stimulated gastric antral motility in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P

    1982-01-01

    The purpose of the present study was to evaluate the effect of isoprenaline on gastric antral motility in conscious dogs with gastric fistula, using intraluminal strain-gauge transducers. Infusion of bethanechol increased the motility for both frequency and strength. Isoprenaline, a beta 1...

  17. Scintigraphic evaluation of gastric emptying and motility; Nuklearmedizinische Diagnostik der Magenmotilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinik und Poliklinik fuer Nuklearmedizin, Ludwig-Maximilians-Univ. Muenchen (Germany)

    2003-06-01

    The stomach consists of two functionally distinct parts. The fundus and upper corpus mainly serve as a reservoir and exert primarily a tonic activity, which presses ingesta towards the antrum and duodenum. The phasic contractility of the lower corpus and antrum cause mechanical breakdown and mixing of the food particels. A complex regulation of these mechanisms provides a regular gastric emptying. Various disorders such as diabetes mellitus, mixed connective tissue diseases, gastritis, tumors, dyspeptic disorders but also drugs and gastric surgery may influence or impair gastric function and may cause typical symptoms such as upper abdominal discomfort, bloating, nausea and vomiting. However, the interpretation of gastrointestinal symptoms often is difficult. Radionuclide studies of gastric emptying and motility are the most physiologic tools available for studying gastric motor function. Gastric scintigraphy is non-invasive, uses physiologic meal and is quantitative. Emptying curves generated from the gastric ROI offer information whether a disorder is accompanied by a regular, fast or slow gastric emptying. Data on gastric contractions (amplitude and frequency) provide additional information to results obtained by conventional emptying studies. Depending on the underlying disorder, gastric emptying and peristalsis showed both corresponding and discrepant findings. Therefore, both parameters should be routinely assessed to further improve characterisation of gastric dysfunction by scintigraphy. (orig.) [German] Proximaler und distaler Magen haben funktionell unterschiedliche Aufgaben. Waehrend der proximale Magen die Nahrung voruebergehend speichert und ueber die Generierung eines gastroduodenalen Druckgefaelles eine fraktionierte Entleerung in den Duenndarm bewirkt, dient die Peristaltik des distalen Magens der Durchmischung und Zerkleinerung des Speisebreis. Eine komplexe hormonelle, humorale und nervale Regulation dieser ineinandergreifenden Funktionen

  18. Enhancement of flagellated bacterial motility in polymer solutions

    Science.gov (United States)

    Zhang, Wenyu; Sha, Sha; Pelcovits, Robert; Tang, Jay

    2015-11-01

    Measurements of the swimming speed of many species of flagellated bacteria in polymer solutions have shown that with the addition of high molecular weight polymers, the speed initially increases as a function of the kinematic viscosity. It peaks at around 1.5-2 cP with typically 10-30% higher values than in cell media without added polymers (~ 1 cP). Past the peak, the average speed gradually decreases as the solution becomes more viscous. Swimming motility persists until solution viscosity reaches 5-10 cP. Models have been proposed to account for this behavior, and the magnitude of the peak becomes a crucial test of theoretical predictions. The status of the field is complicated in light of a recent report (Martinez et al., PNAS, 2014), stressing that low-molecular weight impurities account for the peaked speed-viscosity curves in some cases. We measured the swimming speed of a uni-flagellated bacterium, caulobacter crescentus, in solutions of a number of polymers of several different sizes. Our findings confirm the peaked speed-viscosity curve, only as the molecular weight of the flexible polymers used surpassed ~ 50,000 da. The threshold molecular weight required to augment swimming speed varies somewhat with the polymer species, but it generally corresponds to radius of gyration over tens of nanometers. This general feature is consistent with the model of Powers et al. (Physics of Fluid, 2009), predicting that nonlinear viscoelasticity of the fluid enhances swimming motility. Work Supported by the NSF Fluid Physics Program (Award number CBET 1438033).

  19. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  20. The cytokine ciliary neurotrophic factor (CNTF activates hypothalamic urocortin-expressing neurons both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Matthew J Purser

    Full Text Available Ciliary neurotrophic factor (CNTF induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.

  1. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor.

    Science.gov (United States)

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  2. The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue.

    Science.gov (United States)

    Wan, Yinan; Almeida, Alexandra D; Rulands, Steffen; Chalour, Naima; Muresan, Leila; Wu, Yunmin; Simons, Benjamin D; He, Jie; Harris, William A

    2016-04-01

    Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime.

  3. The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2012-02-01

    Self-renewing, multipotential retinal stem cells (RSCs reside in the pigmented ciliary epithelium of the peripheral retina in adult mammals. RSCs can give rise to rhodopsin positive-cells, which can integrate into early postnatal retina, and represent a potentially useful option for cellular therapy. The ability to purify a stem cell population and direct the differentiation toward a particular cell lineage is a challenge facing the application of stem cells in regenerative medicine. Here we use cell sorting to prospectively enrich mouse RSCs based on size, granularity and low expression of P-cadherin and demonstrate that only rare cells with defined properties proliferate to form colonies. We show that clonally-derived mouse and human RSC progeny are multipotent and can differentiate into mature rhodopsin-positive cells with high efficiency using combinations of exogenous culture additives known to influence neural retinal development, including taurine and retinoic acid. This directed RSC differentiation follows the temporal sequence of photoreceptor differentiation in vivo, and the cells exhibit morphology, protein and gene expression consistent with primary cultures of rods in vitro. These results demonstrate that the RSC, an adult stem cell, can be enriched and directed to produce photoreceptors as a first step toward a targeted cell replacement strategy to treat retinal degenerative disease.

  4. The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue

    Science.gov (United States)

    Wan, Yinan; Almeida, Alexandra D.; Rulands, Steffen; Chalour, Naima; Muresan, Leila; Wu, Yunmin; Simons, Benjamin D.; He, Jie; Harris, William A.

    2016-01-01

    Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime. PMID:26893352

  5. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom STED microscope

    Science.gov (United States)

    Meyer, Stephanie A.; Ozbay, Baris; Restrepo, Diego; Gibson, Emily A.

    2014-03-01

    We performed super-resolution imaging of isolated olfactory sensory neurons (OSNs) using a custom-built Stimulated Emission Depletion (STED) microscope. The design for the STED microscope is based on the system developed in the laboratory of Dr. Stefan Hell1. Our system is capable of imaging with sub-diffraction limited resolution simultaneously in two color channels (at Atto 590/Atto 647N wavelengths). A single, pulsed laser source (ALP; Fianium, Inc.) generates all four laser beams, two excitation and two STED. The two STED beams are coupled into one polarization maintaining (PM) fiber and the two excitation beams into another. They are then collimated and both STED beams pass through a vortex phase plate (RPC Photonics) to allow shaping into a donut at the focus of the objective lens. The beams are then combined and sent into an inverted research microscope (IX-71; Olympus Inc.) allowing widefield epifluorescence, brightfield and DIC imaging on the same field of view as STED imaging. A fast piezo stage scans the sample during STED and confocal imaging. The fluorescent signals from the two color channels are detected with two avalanche photodiodes (APD) after appropriate spectral filtering. The resolution of the system was characterized by imaging 40 nm fluorescent beads as ~60 nm (Atto 590) and ~50 nm (Atto 647N). We performed STED imaging on immunolabeled isolated OSNs tagged at the CNGA2 and ANO2 proteins. The STED microscope allows us to resolve ciliary CNGA2 microdomains of ~54 nm that were blurred in confocal.

  6. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics.

    Science.gov (United States)

    Son, Kwangmin; Brumley, Douglas R; Stocker, Roman

    2015-12-01

    Motility is one of the most dynamic features of the microbial world. The ability to swim or crawl frequently governs how microorganisms interact with their physical and chemical environments, and underpins a myriad of microbial processes. The ability to resolve temporal dynamics through time-lapse video microscopy and the precise control of the physicochemical microenvironment afforded by microfluidics offer powerful new opportunities to study the many motility adaptations of microorganisms and thereby further our understanding of their ecology. In this Review, we outline recent insights into the motility strategies of microorganisms brought about by these techniques, including the hydrodynamic signature of microorganisms, their locomotion mechanics, chemotaxis, their motility near and on surfaces, swimming in moving fluids and motility in dense microbial suspensions.

  7. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading.

    Directory of Open Access Journals (Sweden)

    Benjamin J Dubin-Thaler

    Full Text Available Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments -- spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1 During early spreading, cells form initial contacts with the surface. 2 The middle spreading phase exhibits rapidly increasing attachment area. 3 Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters -- a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules

  8. Schizoaffective disorder

    Science.gov (United States)

    ... cause of schizoaffective disorder is unknown. Changes in genes and chemicals in the brain (neurotransmitters) may play a role. Schizoaffective disorder is thought to be less common than schizophrenia and mood disorders. Women may have the condition ...

  9. Genetic Disorders

    Science.gov (United States)

    ... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

  10. Gastrointestinal symptoms and disorders in patients with eating disorders.

    Science.gov (United States)

    Sato, Yasuhiro; Fukudo, Shin

    2015-10-01

    The two most clinically serious eating disorders are anorexia nervosa and bulimia nervosa. A drive for thinness and fear of fatness lead patients with anorexia nervosa either to restrict their food intake or binge-eat then purge (through self-induced vomiting and/or laxative abuse) to reduce their body weight to much less than the normal range. A drive for thinness leads patients with bulimia nervosa to binge-eat then purge but fail to reduce their body weight. Patients with eating disorders present with various gastrointestinal disturbances such as postprandial fullness, abdominal distention, abdominal pain, gastric distension, and early satiety, with altered esophageal motility sometimes seen in patients with anorexia nervosa. Other common conditions noted in patients with eating disorders are postprandial distress syndrome, superior mesenteric artery syndrome, irritable bowel syndrome, and functional constipation. Binge eating may cause acute gastric dilatation and gastric perforation, while self-induced vomiting can lead to dental caries, salivary gland enlargement, gastroesophageal reflux disease, and electrolyte imbalance. Laxative abuse can cause dehydration and electrolyte imbalance. Vomiting and/or laxative abuse can cause hypokalemia, which carries a risk of fatal arrhythmia. Careful assessment and intensive treatment of patients with eating disorders is needed because gastrointestinal symptoms/disorders can progress to a critical condition.

  11. C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae.

    Science.gov (United States)

    Jones, Christopher J; Utada, Andrew; Davis, Kimberly R; Thongsomboon, Wiriya; Zamorano Sanchez, David; Banakar, Vinita; Cegelski, Lynette; Wong, Gerard C L; Yildiz, Fitnat H

    2015-10-01

    In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase.

  12. Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus.

    Science.gov (United States)

    Youderian, Philip; Hartzell, Patricia L

    2006-03-01

    Myxococcus xanthus has two different mechanisms of motility, adventurous (A) motility, which permits individual cells to glide over solid surfaces, and social (S) motility, which permits groups of cells to glide. To identify the genes involved in S-gliding motility, we mutagenized a delta aglU (A-) strain with the defective transposon, magellan-4, and screened for S- mutants that form nonmotile colonies. Sequence analysis of the sites of the magellan-4 insertions in these mutants and the alignment of these sites with the M. xanthus genome sequence show that two-thirds of these insertions lie within 27 of the 37 nonessential genes known to be required for social motility, including those necessary for the biogenesis of type IV pili, exopolysaccharide, and lipopolysaccharide. The remaining insertions also identify 31 new, nonessential genes predicted to encode both structural and regulatory determinants of S motility. These include three tetratricopeptide repeat proteins, several regulators of transcription that may control the expression of genes involved in pilus extension and retraction, and additional enzymes involved in polysaccharide metabolism. Three insertions that abolish S motility lie within genes predicted to encode glycolytic enzymes, suggesting that the signal for pilus retraction may be a simple product of exopolysaccharide catabolism.

  13. Kit signaling is required for development of coordinated motility patterns in zebrafish gastrointestinal tract.

    Science.gov (United States)

    Rich, Adam; Gordon, Scott; Brown, Chris; Gibbons, Simon J; Schaefer, Katherine; Hennig, Grant; Farrugia, Gianrico

    2013-06-01

    Interstitial cells of Cajal (ICC) provide a pacemaker signal for coordinated motility patterns in the mammalian gastrointestinal (GI) tract. Kit signaling is required for development and maintenance of ICC, and these cells can be identified by Kit-like immunoreactivity. The zebrafish GI tract has two distinct ICC networks similar to mammals, suggesting a similar role in the generation of GI motility; however, a functional role for Kit-positive cells in zebrafish has not been determined. Analysis of GI motility in intact zebrafish larvae was performed during development and after disruption of Kit signaling. Development of coordinated motility patterns occurred after 5 days post-fertilization (dpf) and correlated with appearance of Kit-positive cells. Disruptions of Kit signaling using the Kit antagonist imatinib mesylate, and in Sparse, a null kita mutant, also disrupted development of coordinated motility patterns. These data suggest that Kit signaling is necessary for development of coordinated motility patterns and that Kit-positive cells in zebrafish are necessary for coordinated motility patterns.

  14. Effect of 655 nm laser different powers on dog sperm motility parameters

    Science.gov (United States)

    Corral-Baqués, M. I.; Rigau, T.; Rivera, M. M.; Rodríguez-Gil, J. E.; Rigau, J.

    2006-04-01

    Introduction: One of the most appreciated features of the sperm is its motility, which depends on a big energy consumption despite differences among species. Laser acts direct or indirectly on mitochondria increasing ATP production. Material and method: By means of a Computer Aided Sperm Analysis (CASA) we have studied the effects of a 655 nm continuous wave diode laser irradiation at different power outputs with a dose of 3.3418 J on sperm motility. After an eosine-nigrosine stain to establish its quality, the second fraction of fresh beagle dog sperm was divided into 5 groups, 1 control and four to be irradiated respectively with an average output power of 6.84 mW, 15.43 mW, 33.05 mW and 49.66 mW. At times 0 and 45 minutes from irradiation pictures were taken and analysed with the Sperm class Analyzer SCA2002 programme. The motility parameters of 4987 spermatozoa studied were: curvilinear velocity (VCL), progressive velocity (VSL), straightness (STR), wobble (WOB), average path velocity (VAP), linearity (LIN), mean amplitude of lateral head displacement (ALHmed), beat cross frequency (BCF) and the total motility (MT). At time 15 minutes after irradiation a hypoosmotic swelling test (HOST) was done. Results: Several motility parameters that affect the overall motile sperm subpopulation structure have been changed by different output powers of a 655 nm diode laser irradiation, and prevents the decrease of the sperm motility properties along time.

  15. Investigation of motility and biofilm formation by intestinal Campylobacter concisus strains

    Directory of Open Access Journals (Sweden)

    Lavrencic Peter

    2012-12-01

    Full Text Available Abstract Motility helps many pathogens swim through the highly viscous intestinal mucus. Given the differing outcomes of Campylobacter concisus infection, the motility of eight C. concisus strains isolated from patients with Crohn’s disease (n=3, acute (n=3 and chronic (n=1 gastroenteritis and a healthy control (n=1 were compared. Following growth on solid or liquid media the eight strains formed two groups; however, the type of growth medium did not affect motility. In contrast, following growth in viscous liquid medium seven of the eight strains demonstrated significantly decreased motility. In media of increasing viscosities the motility of C. concisus UNSWCD had two marked increases at viscosities of 20.0 and 74.7 centipoises. Determination of the ability of UNSWCD to swim through a viscous medium, adhere to and invade intestinal epithelial cells showed that while adherence levels significantly decreased with increasing viscosity, invasion levels did not significantly change. In contrast, adherence to and invasion of UNSWCD to mucus-producing intestinal cells increased upon accumulation of mucus, as did bacterial aggregation. Given this aggregation, we determined the ability of the eight C. concisus strains to form biofilms, and showed that all strains formed biofilms. In conclusion, the finding that C. concisus strains could be differentiated into two groups based on their motility may suggest that strains with high motility have an increased ability to swim through the intestinal mucus and reach the epithelial layer.

  16. Holographic microscopy for in situ studies of microorganism motility

    Science.gov (United States)

    Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.

    2011-12-01

    Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are

  17. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility

    Institute of Scientific and Technical Information of China (English)

    Wolf-BernhardSchill; KerstinDefosse; Hans-HilhelmKoyro; NorbertWeissmann

    2003-01-01

    Aim:To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility.Methods:In washed spermatozoa from 67 ejaculates,the oxygen consumption was determined.Following calculation of the total oxygen consumed by the Ideal Gas Law,the energy consumption of spermatozoa was calculated.In addition,the zinc content of the sperm was determined using an atomic absorption spectrometer.The resulting data were correlated to the vitality and motility.Results:The oxygen consumption averaged 0.24μmol/106 sperm×24h,0.28μmol/106 live sperm×24h and 0.85μmol/106 live & motile sperm×24h.Further calculations revealed that sperm motility was the most energy consuming process(164.31mJ/106 motile spermatozoa×24h),while the oxygen consumption of the total spermatozoa was 46.06mJ/106 spermatozoa ×24h.The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations(r=-0.759;P<0.0001 and r=-0.441;P<0.0001,respectively).However,when correlating sperm energy consumption with the zinc content,a significant positive relation(r=0.323;P=0.01)was observed.Conclusion:Poorly motile sperm are actually wasting the available energy.Moreover,our data clearly support the “Geometric Clutch Model”of the oneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility,especially progressive motility.

  18. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy.

    Directory of Open Access Journals (Sweden)

    Masahito Asada

    Full Text Available BACKGROUND: Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed "gliding motility". However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs, and gliding motility has so far not been observed in the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. CONCLUSIONS/SIGNIFICANCE: This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding.

  19. Purification and characterization of a sperm motility inhibiting factor from caprine epididymal plasma.

    Directory of Open Access Journals (Sweden)

    Sujoy Das

    Full Text Available Several studies have been reported on the occurrence of sperm motility inhibiting factors in the male reproductive fluids of different mammalian species, but these proteins have not been adequately purified and characterized. A novel sperm motility inhibiting factor (MIF-II has been purified from caprine epididymal plasma (EP by Hydroxylapatite gel adsorption chromatography, DEAE-Cellulose ion-exchange chromatography and chromatofocusing. The MIF-II has been purified to apparent homogeneity and the molecular weight estimated by Sephacryl S-300 gel filtration is 160 kDa. MIF-II is a dimeric protein, made up of two subunits each having a molecular mass of 80 kDa as shown by SDS-PAGE. The isoelectric point of MIF-II is 5.1 as determined by chromatofocusing and isoelectric focusing. It is a heat labile protein and maximal active at the pH 6.9 to 7.5. The sperm motility inhibiting protein factor at 2 microg/ml (12.5 nM level showed maximal motility-inhibiting activity. The observation that the epididymal plasma factor lowered the intracellular cAMP level of spermatozoa in a concentration-dependent manner suggests that it may block the motility of caprine cauda spermatozoa by interfering the cAMP dependent motility function. The results revealed that the purified protein factor has the potential of sperm motility inhibition and may serve as a vaginal contraceptive. The antibody raised against the MIF-II has the potential for enhancement of forward motility of cauda-spermatozoa. This antibody may thus be useful for solving some of the problems of male infertility due to low sperm motility.

  20. N-Glycosylation of the archaellum filament is not important for archaella assembly and motility, although N-Glycosylation is essential for motility in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Meyer, Benjamin H; Birich, Anton; Albers, Sonja-Verena

    2015-11-01

    N-Glycosylation is one of the predominant posttranslational modifications, which is found in all three domains of life. N-Glycosylation has been shown to influence many biological aspects of proteins, like protein folding, stability or activity. In this study we demonstrate that the archaellum filament subunit FlaB of Sulfolobus acidocaldarius is N-glycosylated. Each of the six predicted N-Glycosylation sites within FlaB are modified with the attachment of an N-glycan. Although, it has been previously shown that N-Glycosylation is essential for motility in S. acidocaldarius, as defects in the N-Glycosylation process resulted in none or reduced motile cells, strains lacking one to all six N-Glycosylation sites within FlaB still remained motile. Deletion of the first five N-Glycosylation sites in FlaB did not significantly affect the motility, whereas removal of all six N-Glycosylation sites reduced motility by about 40%. Transmission electron microscopy analyses of non glycosylated and glycosylated archaellum filament revealed no structural change in length. Therefore N-Glycosylation does not appear to be important for the stability and assembly of the archaellum filament itself, but plays a role in other parts of the archaellum assembly.

  1. A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain.

    Science.gov (United States)

    Moe, Morten C; Kolberg, Rebecca S; Sandberg, Cecilie; Vik-Mo, Einar; Olstorn, Havard; Varghese, Mercy; Langmoen, Iver A; Nicolaissen, Bjørn

    2009-01-01

    Cells isolated from the ciliary body (CB) of the adult human eye possess properties of retinal stem/progenitor cells and can be propagated as spheres in culture. As these cells are isolated from a non-neural epithelium which has neuroepithelial origin, they may have both epithelial and neural lineages. Since it is the properties of neural progenitor cells that are sought after in a future scenario of autotransplantation, we wanted to directly compare human CB spheres with neurospheres derived from the human subventricular zone (SVZ), which is the best characterized neural stem cell niche in the CNS of adults. The CB epithelium was dissected from donor eyes (n = 8). Biopsies from the ventricular wall were harvested during neurosurgery due to epilepsy (n = 7). CB and SVZ tissue were also isolated from Brown Norwegian rats. Dissociated single cells were cultivated in a sphere-promoting medium and passaged every 10-30 days. Fixed spheres were studied by immunohistochemistry, quantitative RT-PCR and scanning/transmission electron microscopy. We found that both CB and SVZ spheres contained a mixed population of cells embedded in extracellular matrix. CB spheres, in contrast to SVZ neurospheres, contained pigmented cells with epithelial morphology that stained for cytokeratins (3/12 + 19), were connected through desmosomes and tight-junctions and produced PEDF. Markers of neural progenitors (nestin, Sox-2, GFAP) were significantly lower expressed in human CB compared to SVZ spheres, and nestin positive cells in the CB spheres also contained pigment. There was higher expression of EGF and TGF-beta receptors in human CB spheres, and a comparative greater activation of the canonical Wnt pathway. These results indicate that adult human CB spheres contain progenitor cells with epithelial properties and limited expression of neural progenitor markers compared to CNS neurospheres. Further studies mapping the regulation between epithelial and neural properties in the adult human

  2. Melanoma de corpo ciliar e coróide: relato de caso Choroidal and ciliary body melanoma: case report

    Directory of Open Access Journals (Sweden)

    Aline Amaral Fulgêncio da Cunha

    2010-04-01

    Full Text Available Melanomas oculares correspondem a 5% de todos os melanomas e 85% deles têm origem no trato uveal. Melanoma uveal é o tumor maligno intraocular primário mais comum no adulto. Relatamos neste artigo um caso de melanoma uveal em paciente, sexo feminino, 31 anos, com quadro de fotopsia, hiperemia e baixa da acuidade visual no olho esquerdo com evolução de quatro meses. Apresentava ao exame oftalmológico acuidade visual menor que 20/400, grande massa tumoral na região nasal retroiriana, com deslocamento anterior do cristalino, estreitamento da câmara anterior e descolamento seroso da retina. A ecografia sugeriu tratar-se de grande massa tumoral suspeita de melanoma de coróide com invasão do corpo ciliar. A confirmação diagnóstica foi possível por meio do exame anatomopatológico.Ocular melanomas correspond to 5% of all melanomas and 85% of them have its origin in the uveal tract. Uveal melanoma is the most commom primary intraocular malignant tumor in the adult. In this article, a case of uveal melanoma in a 31 year-old female patient, with photopsia, hyperemia and low visual acuity in the left eye with evolution of 4 months is presented. In the ophthalmologic examination, visual acuity was lower than 20/400, a large tumoral mass was noted at the nasal region behind the iris with anterior lens displacement, anterior chamber narrowing and serous retinal detachment. The ocular echography suggested a large tumoral mass as a choroidal melanoma extending to the ciliary body. The confirmation diagnosis was possible through the histopathologic examination.

  3. Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones.

    Science.gov (United States)

    Pattillo, J M; Artim, D E; Simples, J E; Meriney, S D

    1999-02-01

    1. The voltage dependence and kinetic properties of stage 40 ciliary ganglion calcium currents were determined using short (10 ms) voltage steps. These properties aided the interpretation of the action potential-evoked calcium current described below, and the comparison of our data with those observed in other preparations. 2. Three different natural action potential waveforms were modelled by a series of ramps to generate voltage clamp commands. Calcium currents evoked by these model action potentials were compared before and after alterations in the repolarization phase of each action potential. 3. Abrupt step repolarizations from various time points were used to estimate the time course of calcium current activation during each action potential. Calcium current evoked by fast action potentials (duration at half-amplitude, 0.5 or 1.0 ms) did not reach maximal activation until the action potential had repolarized by 40-50 %. In contrast, calcium current evoked by a slow action potential (duration at half-amplitude, 2.2 ms) was maximally activated near the peak of the action potential. 4. Slowing the rate of repolarization of the action potential (broadening) from different times was used to examine effects on peak and total calcium influx. With all three waveforms tested, broadening consistently increased total calcium influx (integral). However, peak calcium current was either increased or decreased depending on the duration of the control action potential tested and the specific timing of the initiation of broadening the repolarization phase. 5. The opposite effects on peak calcium current observed with action potential broadening beginning at different time points in repolarization may provide a mechanism for the variable effects of potassium channel blockers on transmitter release magnitude.

  4. Enhanced diffusion of non-swimmers in a 3D bath of motile bacteria

    CERN Document Server

    Jepson, A; Schwarz-Linek, J; Morozov, A; Poon, W C K

    2013-01-01

    We show using differential dynamic microscopy that the diffusive motion of non-motile cells in a three-dimensional population of motile E. coli is enhanced by an amount that is strictly proportional to the active cell flux. While non-motile mutants without flagella and mutants with paralysed flagella have quite different thermal diffusivities and therefore hydrodynamic radii, their diffusivities are enhanced to the same extent by swimmers in the regime of cell densities explored here. Integrating the motion of non-swimmers caused by swimmers with finite persistence-length trajectories predicts quantitatively the observed linear dependence of enhanced diffusivity and active cell flux.

  5. RELATIONSHIP BETWEEN MOTILITY AND VIABILITY PARAMETERS OF FROZEN-THAWED BULL SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Eliška Špaleková

    2013-02-01

    Full Text Available The aim of this study was to determine relationship between parameters of spermatozoa motility (total motility - TM and progressive movement - PM and viability of bull frozen-thawed spermatozoa (dead spermatozoa ratio, apoptotic spermatozoa ratio and plasma membrane integrity. Motility parameters were evaluated using computer-assisted semen analysis (CASA. Parameters of spermatozoa viability were analysed using fluorescent dyes PNA-FITC (plasma membrane, Yo-Pro-1 and propidium iodide (PI. All bulls (n=6 were divided into two groups. First group (n=3 A – better bulls with total motility after thawing over 40% and the second group (n=3 B – with total motility lower than 40%. It was observed significantly (P<0.001 higher TM and PM in group A. No significant differences in velocity parameters and ALH between the group A and B were detected. Occurrence of spermatozoa with disrupted membranes, dead/necrotic spermatozoa and apoptotic spermatozoa was significantly lower in the group A. Bulls in the group A showed significantly higher cleavage rate of embryos. These motility and viability characteristics are associated with a higher embryo cleavage rate in in vitro fertilizatioThe aim of this study was to determine relationship between parameters of spermatozoa motility (total motility - TM and progressive movement - PM and viability of bull frozen-thawed spermatozoa (dead spermatozoa ratio, apoptotic spermatozoa ratio and plasma membrane integrity. Motility parameters were evaluated using computer-assisted semen analysis (CASA. Parameters of spermatozoa viability were analysed using fluorescent dyes PNA-FITC (plasma membrane, Yo-Pro-1 and propidium iodide (PI. All bulls (n=6 were divided into two groups. First group (n=3 A – better bulls with total motility after thawing over 40% and the second group (n=3 B – with total motility lower than 40%. It was observed significantly (P<0.001 higher TM and PM in group A. No significant differences in

  6. Gastric antrectomy with selective gastric vagotomy does not influence gallbladder motility during interdigestive and postprandial periods

    DEFF Research Database (Denmark)

    Qvist, N; Oster-Jørgensen, E; Pedersen, S A;

    1996-01-01

    Fasting gastrointestinal motility and gallbladder motility during the interdigestive state and in the postprandial period was studied in eight patients who were operated for ulcer disease with an antrectomy and selective gastric vagotomy. Nocturnal motility recording revealed all three phases.......77%/min (0.33-0.86%/min). The values in the control group were 0 min (-9 to 13.5 min) and 0.76%/min (0.54-2.25%/min), respectively. These differences between the patients and controls were not significant. In conclusion, antrectomy and selective gastric vagotomy do not influence fasting gastrointestinal...

  7. Individual cell motility studied by time-lapse video recording: influence of experimental conditions

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Walmod, P S; Berezin, A

    2000-01-01

    BACKGROUND: Eukaryotic cell motility plays a key role during development, wound healing, and tumour invasion. Computer-assisted image analysis now makes it a realistic task to quantify individual cell motility of a large number of cells. However, the influence of culture conditions before...... line. Cellular morphology and organization of filamentous actin were assessed by means of phase-contrast and confocal laser scanning microscopy and compared to the corresponding motility data. RESULTS: Cell dissociation procedure, seeding density, time of cultivation, and substrate concentration were...

  8. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility.

    Science.gov (United States)

    Tooley, Aaron J; Gilden, Julia; Jacobelli, Jordan; Beemiller, Peter; Trimble, William S; Kinoshita, Makoto; Krummel, Matthew F

    2009-01-01

    The systems that refine actomyosin forces during motility remain poorly understood. Septins assemble on the T-cell cortex and are enriched at the mid-zone in filaments. Septin knockdown causes membrane blebbing, excess leading-edge protrusions and lengthening of the trailing-edge uropod. The associated loss of rigidity permits motility, but cells become uncoordinated and poorly persistent. This also relieves a previously unrecognized restriction to migration through small pores. Pharmacologically rigidifying cells counteracts this effect, and relieving cytoskeletal rigidity synergizes with septin depletion. These data suggest that septins tune actomyosin forces during motility and probably regulate lymphocyte trafficking in confined tissues.

  9. Actin-based motility of Listeria: Right-handed helical trajectories

    Science.gov (United States)

    Rangarajan, Murali

    2012-06-01

    Bacteria such as Listeria monocytogenes recruit cellular machinery to move in and between cells. Understanding the mechanism of motility, including force and torque generation and the resultant displacements, holds keys to numerous applications in medicine and biosensing. In this work, a simple back-of-the-envelope calculation is presented to illustrate that a biomechanical model of actin-based motility of a rigid surface through persistently attached filaments propelled by affinity-modulated molecular motors can produce a right-handed helical trajectory consistent with experimental observations. The implications of the mechanism to bacterial motility are discussed.

  10. Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Gradinaru, Cristian; Wierzbicki, Rafal;

    2012-01-01

    viability and proliferation show little dependence on substrate type. We conclude that motility analysis can show a wide range of cell responses e. g. over a factor of two in cell speed to different nano-topographies, where standard assays, such as viability or proliferation, in the tested cases show much...... standard measurements of cell viability, proliferation, and morphology on various surfaces. We also analyzed the motility of cells on the same surfaces, as recorded in time lapse movies of sparsely populated cell cultures. We find that motility and morphology vary strongly with nano-patterns, while...

  11. 金荞麦对家鸽气管纤毛运动和豚鼠离体气管平滑肌舒张的影响%Effect of Jinqiaomai on the columba livia domestica trachea ciliary movement and the guinea pig in vitro tracheal smooth muscle

    Institute of Scientific and Technical Information of China (English)

    高世乐; 汪春彦; 江勤; 张志芬; 董六一

    2011-01-01

    目的 研究金荞麦对家鸽纤毛运动和豚鼠离体气管平滑肌舒张的影响.方法 气管纤毛运动试验观察不同剂量金荞麦(6,3,1.5 g生药/kg)对家鸽纤毛运动的影响;制备新鲜的豚鼠离体气管片,在K-H缓冲液中观察不同剂量的金荞麦(累积浓度为15,30,60,120 g生药/L)对气管片收缩的影响;制备新鲜的豚鼠离体气管螺旋条,在K-H缓冲液加入组胺,使豚鼠气管螺旋条收缩达高峰后观察不同剂量的金荞麦(15,30,60,120g生药/L)对组胺致气管片收缩的影响.结果 金荞麦三个剂量组均能加快家鸽气管内纤毛运动速度(P<0.01或P<0.05);金荞麦60~120 g生药/ L溶液能明显松弛正常豚鼠离体气管平滑肌(P<0.01或P<0.05);金荞麦15~120 g生药/ L溶液对组胺致豚鼠离体气管平滑肌收缩有明显解痉作用(P<0.01).结论 金荞麦可明显加快家鸽气管纤毛运动;金荞麦可明显松弛豚鼠离体气管平滑肌,并具有一定的浓度依赖性;并对组织胺致豚鼠离体气管平滑肌收缩有明显解痉作用,并呈现一定的浓度依赖性.%Aim To study the effect of Jinqiaomai(JQM) on the columba livia domestica trachea ciliary movement and the relaxation of the guinea pig in vitro tracheal smooth muscle. Methods The tracheal ciliary movement experiment was made to observe the effect of different dosages of JQM ( 6, 3, 1.5 g dried medicinal herb /kg) on the columba livia domestica trachea ciliary motility. The fresh piece of guinea pig trachea was prepared to, observe the effect of different dosages of JQM (cumulative concentration of 15 g dried me dicinal herb/L, 30g dried medicinal herb/L, 60 g dried medicinal herb/L, 120 g dried medicinal herb/L) on the fresh piece of guinea pig trachea in K-H buffer solution. Fresh tracheal spiral strips of guinea pig were prepared to observe the effect of different dosages of JQM (cumulative concentration of 15g dried medicinal herb/L, 30 g dried medicinal herb/L, 60 g dried

  12. Smooth Muscle Hgs Deficiency Leads to Impaired Esophageal Motility

    Science.gov (United States)

    Chen, Jicheng; Hou, Ning; Zhang, Chong; Teng, Yan; Cheng, Xuan; Li, Zhenhua; Ren, Jie; Zeng, Jian; Li, Rui; Wang, Wei; Yang, Xiao; Lan, Yu

    2015-01-01

    As a master component of endosomal sorting complex required for transport proteins, hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs) participates multiple cellular behaviors. However, the physiological role of Hgs in smooth muscle cells (SMCs) is by far unknown. Here we explored the in vivo function of Hgs in SMCs by using a conditional gene knockout strategy. Hgs deficiency in SMCs uniquely led to a progressive dilatation of esophagus with a remarkable thinning muscle layer. Of note, the mutant esophagus showed a decreased contractile responsiveness to potassium chloride and acetylcholine stimulation. Furthermore, an increase in the inhibitory neurites along with an intense infiltration of T lymphocytes in the mucosa and muscle layer were observed. Consistently, Hgs deficiency in SMCs resulted in a disturbed expression of a set of genes involved in neurotrophin and inflammation, suggesting that defective SMC might be a novel source for excessive production of cytokines and chemokines which may trigger the neuronal dysplasia and ultimately contribute to the compromised esophageal motility. The data suggest potential implications in the pathogenesis of related diseases such as gastroesophageal reflux disease. PMID:26078721

  13. Exosome secretion affects social motility in Trypanosoma brucei

    Science.gov (United States)

    Shaked, Hadassa; Arvatz, Gil; Tkacz, Itai Dov; Binder, Lior; Waldman Ben-Asher, Hiba; Okalang, Uthman; Chikne, Vaibhav; Cohen-Chalamish, Smadar; Michaeli, Shulamit

    2017-01-01

    Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. PMID:28257521

  14. Ursodeoxycholic acid improves gastrointestinal motility defects in gallstone patients

    Institute of Scientific and Technical Information of China (English)

    A Colecchia; G Mazzella; L Sandri; F Azzaroli; M Magliuolo; P Simoni; ML Bacchi-Reggiani; E Roda; D Festi

    2006-01-01

    AIM: To simultaneously evaluate the presence of defects in gallbladder and gastric emptying, as well as in intestinal transit in gallstone patients (GS) and the effect of chronic ursodeoxycholic acid (UDCA) administration on these parameters and on serum bile acids and clinical outcome in GS and controls (CTR).METHODS: After a standard liquid test meal, gallbladder and gastric emptying (by ultrasound), oroileal transit time (OI∏) (by an immunoenzymatic technique)and serum bile acids (by HPLC) were evaluated before and after 3 mo of UDCA (12 mg/kg bw/d) or placebo administration in 10 symptomatic GS and 10 matched healthy CTR.RESULTS: OI∏ was longer in GS than in CTR (P <0.0001); UDCA significantly reduced OI∏ in GS (P <0.0001), but not in CTR. GS had longer gastric halfemptying time (t1/2) than CTR (P < 0.0044) at baseline;after UDCA, t1/2 significantly decreased (P < 0.006) in GS but not in CTR. Placebo administration had no effect on gastric emptying and intestinal transit in both GS and CTR.CONCLUSION: The gallstone patient has simultaneous multiple impairments of gallbladder and gastric emptying, as well as of intestinal transit. UDCA administration restores these defects in GS, without any effect in CTR. These results confirm the pathogenetic role of gastrointestinal motility in gallstone disease and suggest an additional mechanism of action for UDCA in reducing bile cholesterol supersaturation.

  15. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    Science.gov (United States)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  16. Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior.

    Science.gov (United States)

    Berleman, James E; Zemla, Marcin; Remis, Jonathan P; Liu, Hong; Davis, Annie E; Worth, Alexandra N; West, Zachary; Zhang, Angela; Park, Hanwool; Bosneaga, Elena; van Leer, Brandon; Tsai, Wenting; Zusman, David R; Auer, Manfred

    2016-11-01

    The myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels. Cells are highly organized within the three-dimensional structure of EPS microchannels that are required for cell alignment and advancement on surfaces. Mutants lacking EPS showed a lack of cell orientation and poor colony migration. Purified, cell-free EPS retains a channel-like structure, and can complement EPS(-) mutant motility defects. In addition, EPS provides the cooperative structure for fruiting body formation in both the simple mounds of M. xanthus and the complex, tree-like structures of Chondromyces crocatus. We furthermore investigated the possibility that EPS impacts community structure as a shared resource facilitating cooperative migration among closely related isolates of M. xanthus.

  17. Evidence for the function of hyperactivated motility in sperm.

    Science.gov (United States)

    Suarez, S S; Katz, D F; Owen, D H; Andrew, J B; Powell, R L

    1991-02-01

    After insemination, mammalian sperm undergo a striking change in flagellar beat pattern, termed hyperactivation. In low-viscosity culture medium, nonhyperactivated sperm flagella generate relatively symmetrical, low-amplitude waves, while hyperactivated sperm flagella generate an asymetrical beating pattern that results in nonprogressive movement. Since sperm encounter highly viscous and viscoelastic fluids in the female reproductive tract, the progress of hyperactivated sperm was compared with that of nonhyperactivated and transitional sperm in media of increasing viscosity. Hamster sperm obtained from the caudal epididymis were incubated in a medium that promotes capacitation. After 0, 3, and 4 h of incubation, the majority of the sperm exhibited, respectively, activated, transitional, and hyperactivated motility. At each of these time points, aliquots of sperm were removed from incubation and added to solutions of 0, 5%, 10%, 20%, and 30% Ficoll in medium. Samples containing mostly hyperactivated sperm (4 h) maintained higher swimming and flagellar velocities and were able to generate greater forces in response to increased viscous loading than activated sperm (0 h). Transitional sperm (3 h) showed an intermediate response. The paths of hyperactivated sperm through solutions of 20% and 30% Ficoll were considerably straighter than those made through medium alone. This is the first demonstration that hyperactivation can confer a mechanical advantage upon sperm in the oviduct where they may encounter viscous oviductal fluid and a viscoelastic cumulus matrix.

  18. The interplay between cell motility and tissue architecture

    Science.gov (United States)

    Tanner, Kandice

    2013-03-01

    Glandular tissue form arboreal networks comprised of acini and tubes. Loss of structure is concomitant with the in vivo pathologic state. In vitro models have been shown to recapitulate the functional units of the mammary gland and other organs. Despite our much improved understanding gleaned from both in vitro and in vivo interrogation, the mechanisms by which cells are able to achieve the correct tissue organization remain elusive. How do single mammary epithelial cells form polarized acini when cultured in a surrogate basement membrane gel but not on 2D surfaces? Simply put, how does a cell know which way is up? Why do malignant breast cells show a differential response in that they form non-polarized aggregates? Recently, it was determined that non-malignant cells undergo multiple rotations to establish acini while tumor cells are randomly motile during tumor formation. Can it be that a tumor cell has simply lost its way. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.

  19. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    Science.gov (United States)

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  20. 人工晶体睫状沟缝合固定术临床观察%Clinical observation of intraocular lens ciliary sulcus suture fixation

    Institute of Scientific and Technical Information of China (English)

    沙英虹; 史要武

    2015-01-01

    Objective To investigate clinical application of intraocular lens ciliary sulcus suture fixation.Methods Posterior chamber intraocular lens ciliary sulcus suture fixation was applied for 15 patients with traumatic lens subluxation, posterior capsule injury, posterior capsule injury after senile cataract ultrasonic emulsification, and non-lens after vitrectomy. Their clinical effects were observed.Results Follow-up for 6 months showed postoperative visual acuity in 15 cases were all better than best corrected visual acuity before operation.Conclusion Implement of intraocular lens ciliary sulcus suture fixation is a safe and effective method for non-lens capsule, lens posterior capsular rupture, or wide acantholysis of lens suspensory ligament.%目的 探讨人工晶状体睫状沟缝合固定术的临床应用.方法 对15例外伤性晶体半脱位,后囊破损,老年性白内障超声乳化后囊破损,玻璃体切割术后无晶体眼患者施行后房型人工晶体(IOL)缝线固定术,观察临床效果.结果 随诊6个月,15例患者术后视力均高于术前最佳矫正视力.结论 对无晶体囊膜及晶体后囊膜破裂或晶体悬韧带大范围松解施行人工晶状体睫状沟固定术是一种安全有效的方法.