WorldWideScience

Sample records for cigs based solar

  1. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a combinatio

  2. All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.

    Science.gov (United States)

    Wang, Mingqing; Choy, Kwang-Leong

    2016-07-01

    With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer. PMID:27299854

  3. Design, development and manufacture of high-efficiency low-cost solar modules based on CIGS PVICs

    Science.gov (United States)

    Eldada, Louay

    2010-02-01

    We describe the design, development and manufacture of solar power panels based on photovoltaic integrated circuits (PVICs) with high-quality high-uniformity Copper Indium Gallium Selenide (CIGS) thin films produced with the unique combination of low-cost ink-based and physical vapor deposition (PVD) based nanoengineered precursor thin films and a reactive transfer printing method. Reactive transfer is a two-stage process relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an electrostatic field while heat is applied. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. High quality CIGS with large grains on the order of several microns, and of preferred crystallographic orientation, are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% have been achieved using this method. When atmospheric pressure deposition of inks is utilized for the precursor films, the approach additionally provides lower energy consumption, higher throughput, and further reduced capital equipment cost with higher uptime.

  4. Degradation of CIGS solar cells

    OpenAIRE

    Theelen, M.J.

    2015-01-01

    Large scale commercial introduction of CIGS photovoltaics (PV) requires modules with low costs, high efficiencies and long and predictable lifetimes. Unfortunately,knowledge about the lifetime of CIGS PV is limited, which is reflected in the results of field studies: degradation rates varying from 0% to about 4% per year have been observed. Since warrantees are given out that the modules will still yield 80% of their initial power after 20 years of field exposure, degradation rates are often ...

  5. Monolithic DSSC/CIGS tandem solar cell fabricated by a solution process

    OpenAIRE

    Moon, Sung Hwan; Park, Se Jin; Kim, Sang Hoon; Lee, Min Woo; Han, Jisu; Kim, Jin Young; Kim, Honggon; Hwang, Yun Jeong; Lee, Doh-Kwon; Min, Byoung Koun

    2015-01-01

    Tandem architecture between organic (dye-sensitized solar cell, DSSC) and inorganic (CuInGaSe2 thin film solar cell, CIGS) single-junction solar cells was constructed particularly based on a solution process. Arc-plasma deposition was employed for the Pt interfacial layer to minimize the damage to the layers of the CIGS bottom cell. Solar cell efficiency of 13% was achieved, which is significant progress from individual single-junction solar cells (e.g., 7.25 and 6.2% for DSSC and CIGS, respe...

  6. Thin film solar cells based on CdTe and Cu(In,Ga)Se{sub 2} (CIGS) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gladyshev, P P [International University of Nature, Society and Man ' Dubna' , Dubna (Russian Federation); Filin, S V; Puzynin, A I; Tanachev, I A; Rybakova, A V; Tuzova, V V; Kozlovskiy, S A [Center of High Technologies of FSUE ' Applied Acoustics Research Institute' , Dubna (Russian Federation); Gremenok, V F; Mudryi, A V; Zaretskaya, E P [State Scientific and Production Association ' Scientific-Practical Materials, Researcher Center of National Academy of Sciences of Belarus' , Minsk (Belarus); Zalesskiy, V B; Kravchenko, V M; Leonova, U R; Khodin, A A; Pilipovich, V A; Polikanin, A M [Institute of Physics of National Academy of Sciences of Belarus, Minsk (Belarus); Khrypunov, G S; Chernyh, E P; Kovtun, N A [National Technical University ' Kharkov Politechnical Institute' , Kharkov (Ukraine); Belonogov, E K, E-mail: pavel.gladyshev@niipa.ru [Voronej State Technical University, Voronej (Russian Federation)

    2011-04-01

    We are publishing recent results in chalcogenide photoelectric convertors fabrication, which are efforts of many scientific teams from Russia, Belarus, Ukraine, and Kazakhstan. Competitively high efficiency of photoelectric convertors (11.4% for CdTe and 11% for CIGS) was achieved in the process of our work. Furthermore, luminescent filters for improvement of spectral response of such chalcogenide solar cells in a short wavelengths region were also developed and investigated here.

  7. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    Science.gov (United States)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  8. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Deelen, J. van; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIG

  9. Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to Light-Enhanced Reverse Breakdown: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xingshu; Alam, Muhammad Ashraful; Raguse, John; Garris, Rebekah; Deline, Chris; Silverman, Timothy

    2015-10-15

    In this paper, we develop a physics-based compact model for copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) heterojunction solar cells that attributes the failure of superposition to voltage-dependent carrier collection in the absorber layer, and interprets light-enhanced reverse breakdown as a consequence of tunneling-assisted Poole-Frenkel conduction. The temperature dependence of the model is validated against both simulation and experimental data for the entire range of bias conditions. The model can be used to characterize device parameters, optimize new designs, and most importantly, predict performance and reliability of solar panels including the effects of self-heating and reverse breakdown due to partial-shading degradation.

  10. Mechanochemically Synthesized CIGS Nanocrystalline Powder for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Bharati Rehani

    2013-05-01

    Full Text Available Copper Indium Gallium Diselenide (CIGS is a compound semiconductor material from the group of I-III-VI. The material is a solid solution of copper, indium and selenium (CIS and copper, gallium and selenium with an empirical formula of CuIn(1 – xGaxSe2, where 0  x  1. CIGS has an exceptionally high absorption coefficient of more than 105 cm – 1 for 1.5 eV. Solar cells prepared from absorber layers of CIGS materials have shown an efficiency higher than 20 %. CuIn(1 – xGaxSe2 (x  0.3 nanocrystalline compound was mechanochemically synthesized by high-energy milling in a planetary ball mill. The phase identification and crystallite size of milled powders at different time intervals were carried out by X-ray diffraction (XRD. The XRD analysis indicates chalcopyrite structure and the crystallite size of about 10 nm of high-energy milled CIGS powder after two and half hours of milling. An attempt for preparing the thin film from CIGS nanocrystalline powder was carried out using the flash evaporation technique. Scanning electron microscopy (SEM reveals uniform distribution of CIGS particles in thin film.

  11. Simulation of CIGS Thin Film Solar Cells Using AMPS-1D

    Directory of Open Access Journals (Sweden)

    J.R. Ray

    2011-01-01

    Full Text Available The solar cell structure based on copper indium gallium diselenide (CIGS as the absorber layer, cadmium sulfide (CdS as a buffer layer un-doped (i and Aluminium (Al doped zinc oxide (ZnO as a window layer was simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D. In the simulation, the thickness of CIGS layer was varied from 300 to 3000 nm. The rest of layer’s thicknesses were kept constant, viz. 60 nm for CdS, and 80 nm and 500 nm for i- and Al-ZnO, respectively. By varying thickness of CIGS layer the simulated device performance was demonstrate in the form of current-voltage (I-V characteristics and quantum efficiency (QE.

  12. Design and long-term monitoring of DSC/CIGS tandem solar module

    Science.gov (United States)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  13. Highly Efficient CIGS Based Devices for Solar Hydrogen Production and Size Dependent Properties of ZnO Quantum Dots

    OpenAIRE

    Jacobsson, T. Jesper

    2014-01-01

    Materials and device concepts for renewable solar hydrogen production, and size dependent properties of ZnO quantum dots are the two main themes of this thesis. ZnO particles with diameters less than 10 nm, which are small enough for electronic quantum confinement, were synthesized by hydrolysis in alkaline zinc acetate solutions. Properties investigated include: the band gap - particle size relation, phonon quantum confinement, visible and UV-fluorescence as well as photocatalytic performanc...

  14. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    Science.gov (United States)

    Sunkoju, Sravan Kumar

    Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent

  15. Characterizing the effects of silver alloying in chalcopyrite CIGS solar cells with junction capacitance methods

    Energy Technology Data Exchange (ETDEWEB)

    Erslev, Peter T.; Hanket, Gregory M.; Shafarman, William N.; Cohen, J. David

    2009-04-01

    A variety of junction capacitance-based characterization methods were used to investigate alloys of Ag into Cu(In1-xGax)Se2 photovoltaic solar cells over a broad range of compositions. These alloys show encouraging trends of increasing VOC with increasing Ag content, opening the possibility of wide-gap cells for use in tandem device applications. Drive level capacitance profiling (DLCP) has shown very low free carrier concentrations for all Ag-alloyed devices, in some cases less than 1014 cm-3, which is roughly an order of magnitude lower than that of CIGS devices. Transient photocapacitance spectroscopy has revealed very steep Urbach edges, with energies between 10 meV and 20 meV, in the Ag-alloyed samples. This is in general lower than the Urbach edges measured for standard CIGS samples and suggests a significantly lower degree of structural disorder.

  16. An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation

    Science.gov (United States)

    Farhadi, Bita; Naseri, Mosayeb

    2016-08-01

    The photovoltaic performance of an efficient double junction InGaN/CIGS solar cell including a CdS antireflector top cover layer is studied using Silvaco ATLAS software. In this study, to gain a desired structure, the different design parameters, including the CIGS various band gaps, the doping concentration and the thickness of CdS layer are optimized. The simulation indicates that under current matching condition, an optimum efficiency of 40.42% is achieved.

  17. Development of CIGS2 thin film solar cells

    International Nuclear Information System (INIS)

    Research and development of CuIn1-xGa xSe2-yS y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H2S. Presently large (15 cm x 10 cm) CuIn1-xGa xS2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H2S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  18. CIGS absorber layer with double grading Ga profile for highly efficient solar cells

    Science.gov (United States)

    Saadat, M.; Moradi, M.; Zahedifar, M.

    2016-04-01

    It is well-known that the band gap grading in CIGS solar cells is crucial for achieving highly efficient solar cells. We stimulate a CIGS solar cell and investigate the effects of the band gap grading on performance of the CIGS solar cell, where Ga/(Ga + In) ratio (GGI) at back (Cb) and front (Cf) of the absorber layer are considered constant. Our simulations show that by increasing the GGI at middle of CIGS absorber layer (Cm), the JSC decreases and VOC increases independent of the distance of the Cm from the back contact (Xm). For Cm lower than Cf, JSC increases and VOC decreases when the Xm shifts to the front of the CIGS layer. The behavior of JSC and VOC became reverse for the case of Cm greater than Cf. Almost in all of the structures, efficiency and FF have same behaviors. Our simulations show that the highest efficiency is obtained at Cm = 0.8 and Xm = 200 nm.

  19. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  20. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    International Nuclear Information System (INIS)

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application

  1. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, Amol C.; Dhage, Sanjay R., E-mail: dhage@arci.res.in; Joshi, Shrikant V.

    2015-08-31

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application.

  2. Recycling of high purity selenium from CIGS solar cell waste materials

    International Nuclear Information System (INIS)

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS

  3. The impact of atmospheric species on the degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.; Foster, C.; Steijvers, H.; Barreau, N.; Vroon, Z.; Zeman, M.

    2015-01-01

    CIGS solar cells were exposed to liquid water purged with the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N2) and air in order to investigate their chemical degradation behavior. The samples were analyzed by electrical, compositional and optical me

  4. Molybdenum Back-Contact Optimization for CIGS Thin Film Solar Cell

    Directory of Open Access Journals (Sweden)

    J.R. Ray

    2011-01-01

    Full Text Available Molybdenum (Mo thin films are most widely used as an ohmic back-contact in the copper indium diselenide (CIS and its alloy copper indium gallium diselenide (CIGS based thin film solar cell. Radio frequency (RF magnetron sputtering system used to deposit Mo thin films on soda lime glass substrate. The deposition was carried out using argon (Ar gas at different Ar controlled (working pressures (1 mTorr to 10 mTorr and at different RF powers (60 W to 100 W. The influence of both the working pressure and the RF power on the Mo thin films was studied by investigating its structural, morphological, electrical, and optical measurements. The results reveal that a stress-free, low-sheet-resistance (~1 Ω/cm2, and reflecting (~ 55 % Mo thin film was observed at 1 mTorr working pressure and 100 W RF power.

  5. Simulation approach for studying the performances of original superstrate CIGS thin films solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bouchama, I., E-mail: bouchama_idris@yahoo.fr [Laboratoire Procedes Materiaux et Energie solaire PROMES-CNRS, Rambla de la Thermodynamique, Technosud, 66100 Perpignan (France); Laboratoire L.I.S., Universite Ferhat Abbas de Setif (Algeria); Djessas, K. [Laboratoire Procedes Materiaux et Energie solaire PROMES-CNRS, Rambla de la Thermodynamique, Technosud, 66100 Perpignan (France); Djahli, F. [Laboratoire L.I.S., Universite Ferhat Abbas de Setif (Algeria); Bouloufa, A. [Laboratoires C.C.N.S. et E. M., Universite Ferhat Abbas de Setif (Algeria)

    2011-08-31

    In this work, we report on the performances of superstrate Cu(In,Ga)Se{sub 2} (CIGS) thin film solar cells with an alternative SLG/SnO{sub 2}:F/CIGS/In{sub 2}Se{sub 3}/Zn structure using AMPS-1D (Analysis of Microelectronic and Photonic structures) device simulator. An inverted surface layer, n-type CIGS layer, is inserted between the In{sub 2}Se{sub 3} buffer and CIGS absorber layers and the SnO{sub 2}:F layer is just a transparent conducting oxide (TCO). The simulation has been carried out by lighting through SnO{sub 2}:F. The obtained results show that the existence of so-called 'ordered defect compound' (ODC) layer in such a structure is the critical factor responsible for the optimization of the performances. Photovoltaic parameters were determined using the current density-voltage (J-V) curve. An optimal absorber and ODC layer thickness has been estimated, that improve significantly the devices efficiency exceeding 15% AM1.5 G. The variation of carrier density in In{sub 2}Se{sub 3} layer has an influence on the superstrate CIGS cells performances. Moreover, the quantum efficiency (Q.E.) characteristics display a maximum value of about 80% in the visible range.

  6. Simulation approach for studying the performances of original superstrate CIGS thin films solar cells

    International Nuclear Information System (INIS)

    In this work, we report on the performances of superstrate Cu(In,Ga)Se2 (CIGS) thin film solar cells with an alternative SLG/SnO2:F/CIGS/In2Se3/Zn structure using AMPS-1D (Analysis of Microelectronic and Photonic structures) device simulator. An inverted surface layer, n-type CIGS layer, is inserted between the In2Se3 buffer and CIGS absorber layers and the SnO2:F layer is just a transparent conducting oxide (TCO). The simulation has been carried out by lighting through SnO2:F. The obtained results show that the existence of so-called 'ordered defect compound' (ODC) layer in such a structure is the critical factor responsible for the optimization of the performances. Photovoltaic parameters were determined using the current density-voltage (J-V) curve. An optimal absorber and ODC layer thickness has been estimated, that improve significantly the devices efficiency exceeding 15% AM1.5 G. The variation of carrier density in In2Se3 layer has an influence on the superstrate CIGS cells performances. Moreover, the quantum efficiency (Q.E.) characteristics display a maximum value of about 80% in the visible range.

  7. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2015-10-01

    Full Text Available This work studies the use of gold (Au and silver (Ag nanoparticles in multicrystalline silicon (mc-Si and copper-indium-gallium-diselenide (CIGS solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  8. Impacts of electron irradiation on the optical and electrical properties of CIGS thin films and solar cells

    International Nuclear Information System (INIS)

    Full text : A thin film solar cell composed of polycrystalline Cu(In,Ga)Se2 (CIGS) is essentially light-weight and shows high conversion efficiency and excellent radiation tolerance. These characteristics lead to CIGS solar cells very attractive for space applications. However, only a few irradiation studies have been carried out on CIGS thin films and entire solar cell structure, resulting in limited knowledge on the mechanisms responsible for the irradiation-induced damage. In addition, the cell performance is known to change due to the damp heat and/or light soaking effects. Accordingly, understanding the degradation mechanisms of CIGS, ZnO, a buffer, Mo, and even glass components is necessary for not only space use but also commercial use. In this presentation, electron irradiation effects will be discussed for CIGS solar cells and each layer that composed the CIGS solar cell structure such as CIGS, CdS, undoped ZnO, and Ga- or Al-doped ZnO films. Electron irradiation experiments were carried out using the DYNAMITRON electron accelerator. The electron energy was fixed at 2 MeV and the fluence was varied between 1 * 1013 and 1 * 1018 cm-2. All the irradiated CIGS films exhibited common PL peaks originating from donor to acceptor transitions. PL peak intensity due to Cu-related point defects, which did not affect solar cell performance significantly, increased in CIGS thin films with increasing electron irradiation. Conversely, transmittance spectra of all the irradiated ZnO and ZnO:Al films did not change by the electron irradiation up to 6 * 1017 cm-2. The normalized performance parameters of the irradiated CIGS solar cell such as Voc, Jsc, and η are shown in article as a function of irradiation fluence. η tended to decrease in comparison with Voc and Jsc for large irradiation fluence. Shunt resistance and series resistance of the CIGS solar cells degraded even though the resistivity of each layer did not change after electron irradiation. The result

  9. Characterization of carrier concentration in CIGS solar cells by scanning capacitance microscopy

    International Nuclear Information System (INIS)

    Thin films of copper indium gallium selenide (CIGS) designed for highly efficient solar cell material were investigated to characterize the two-dimensional carrier distribution using scanning capacitance microscopy (SCM). We optimized a preparation method of the cross-section samples and concluded that bevel polishing by 25° to 30° was effective for crumbly polycrystalline materials such as CIGS, so as to provide not the surface property of cracked crystalline grains but the cross-section property of individual cut grains. Because of improvement in this preparation procedure, changes in carrier distribution have been observed directly in the active CIGS layer before and after turning on a 100 W halogen lamp irradiation. A calibration curve between carrier concentration N and SCM's dC/dV signals was applied for qualitatively calculating relative values of N in CIGS. Increased carrier concentration peaks on the grains were estimated to become about three times as high as those with the light on. (paper)

  10. Alternative back contact for CIGS solar cells built on sodium-free substrates

    OpenAIRE

    Söderström, Wilhelm

    2011-01-01

    It is widely known that the element sodium plays a vital role in providing highefficiency CIGS solar cells and that when cells are built on sodium free substrates theyneed an alternative (a substitute) sodium source. In this study a molybdenum-sodiumcompound has been deposited, investigated and evaluated as an alternative backcontact layer containing sodium. The compound had a 5 at % sodium concentrationand it was manufactured by an Austrian company called Plansee. The aim of the studywas to ...

  11. Effect of 250 keV electron irradiation on properties of CIGS thin-film solar cells

    International Nuclear Information System (INIS)

    Electrons with energy of 250 keV introduce copper-related defects. The cells were irradiated with the electrons at below 150 K because the radiation defects could be recovered with a thermal annealing effect. The carrier density increased with increasing electron fluence. The electrons can generate Cu-related Frenkel-pairs. Copper vacancy could result in increased carrier density since the shallow acceptor level VCu is assumed to be the main defect in the CIGS absorbing layer. In contrast, a drop in the carrier density of CIGS solar cells irradiated with 1 MeV electrons has been reported. In addition, activation energies of defects induced by 250 keV electrons with thermal annealing differ from those by 1 MeV electrons. These results indicates that copper-related defects in CIGS induced by radiation do not degrade the CIGS solar cells. (author)

  12. Simulation of the Efficiency of CdS/CIGS Tandem Multi-Junction Solar Cells Using AMPS-1D

    CERN Document Server

    Mirkamali, Ashrafalsadat S

    2016-01-01

    In this paper we conduct numerical simulation of CdS/CIGS solar cells by use of the AMPS-1D software aiming to formulate the optimal design of the new multi-junction tandem solar cell providing its most efficient operation. We start with the numerical simulation of single-junction CdS/CIGS solar cells, which shows that its highest efficiency of 17.3% could be achieved by the thickness of CIGS p-layer of 200 nm. This result is in a good agreement with experimental data where the highest efficiency was 17.1% with the solar cell thickness of 1 micron. By use of the results of the numerical simulation of the single-junction solar cells we developed the design and conducted optimization of the new multi-junction tandem CdS/CIGS solar cell structure. Numerical simulation shows that the maximum efficiency of this solar cell is equal to 48.3%, which could be obtained with the thickness of the CIGS p-layer of 600 nm at a standard illumination of AM 1.5.

  13. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS) Based Photovoltaic Thermal

    OpenAIRE

    Zulkepli Afzam; Yong Lim Wei; Taib Mohd Yusof; Azran Zafri; Basrawi Firdaus

    2016-01-01

    This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS) Photovoltaic (PV) and also solar thermal collector. Photovoltaic thermal (PV/T) can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which...

  14. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.

    2015-01-01

    © 2015 The Royal Society of Chemistry. A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  15. High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Noufi, R.; Zweibel, K.

    2006-05-01

    Thin-film photovoltaic (PV) modules of CdTe and Cu(In,Ga)Se2 (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices.

  16. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S., E-mail: psvasekar@yahoo.co [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States); Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States)

    2010-01-31

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of {approx} 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 {mu}m absorber prepared under similar conditions as that of a 2.7 {mu}m thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10{sup -10} mA/cm{sup 2} to 1.78 x 10{sup -8} mA/cm{sup 2}. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  17. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    International Nuclear Information System (INIS)

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of ∼ 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 μm CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 μm absorber prepared under similar conditions as that of a 2.7 μm thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10-10 mA/cm2 to 1.78 x 10-8 mA/cm2. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  18. Hydrazine-based deposition route for device-quality CIGS films

    International Nuclear Information System (INIS)

    A simple solution-based approach for depositing CIGS (Cu-In-Ga-Se/S) absorber layers is discussed, with an emphasis on film characterization, interfacial properties and integration into photovoltaic devices. The process involves incorporating all metal and chalcogenide components into a single hydrazine-based solution, spin coating a precursor film, and heat treating in an inert atmosphere, to form the desired CIGS film with up to micron-scaled film thickness and grain size. PV devices (glass/Mo/CIGS/CdS/i-ZnO/ITO) employing the spin-coated CIGS and using processing temperatures below 500 deg. C have yielded power conversion efficiencies of up to 10% (AM 1.5 illumination), without the need for a post-CIGS-deposition treatment in a gaseous Se source or a cyanide-based bath etch. Short-duration low-temperature (T < 200 deg. C ) oxygen treatment of completed devices is shown to have a positive impact on the performance of initially underperforming cells, thereby enabling better performance in devices prepared at temperatures below 500 deg. C

  19. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. PMID:26615488

  20. Design and Stability of Cu(In,Ga)Se2-Based Solar Cell Modules

    OpenAIRE

    Wennerberg, Johan

    2002-01-01

    Cu(In,Ga)Se2 (CIGS) is one of the most promising semiconductor compounds for large-scale production of efficient, low-cost thin film solar cells, and several research institutes have announced their plans for CIGS production lines. But for the CIGS technology to become a commercial success, a number of issues concerning manufacturability, product definition, and long-term stability require further attention. Several studies indicate that CIGS-based modules are stable over many years in field ...

  1. Trajectory-Oriented and Fault-Tolerant-Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing; Final Technical Report, 13 May 2002--30 May 2005

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, L.; Britt, J.; Birkmire, R.; Vincent, T.

    2005-10-01

    ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.

  2. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  3. Simulation Study of Effects, Operating Temperature and Layer Thickness on Thin Film CIGS Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    A.D. Pogrebnjak

    2011-01-01

    Full Text Available SCAPS- program is designed basically for the simulation and studying the properties of photonic devices. We explored the important controllable design parameters affecting the performance of the hetero junction solar cells, as operating temperature that we noticed increasing in J-V characteristics by increasing T, the effect of thickness of each layer on the performance of the cell was studied, an increasing of J-V characteristics with increasing p-layer , In the numerical example, 3 μm absorber layer and CdS layer 0.05 μm, ZnO layer 0.1 μm, works the best for given doping density, if we change the optimum value , the efficiency can reach to 17.72 % with FF 83.88 %, Voc = 0.725 Volt, Jsc = 29.07 mA/cm2 at 300 K, in this case, we have come out the optimum parameters to achieve the best performance of this type of cell, and then to made comparison with practical CIGS cell.

  4. The Effect of Sputtering Parameters on the Film Properties of Molybdenum Back Contact for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    Peng-cheng Huang

    2013-01-01

    Full Text Available Molybdenum (Mo thin films are widely used as a back contact for CIGS-based solar cells. This paper determines the optimal settings for the sputtering parameters for an Mo thin film prepared on soda lime glass substrates, using direct current (dc magnetron sputtering, with a metal Mo target, in an argon gas environment. A Taguchi method with an L9 orthogonal array, the signal-to-noise ratio, and an analysis of variances is used to determine the performance characteristics of the coating operation. The main sputtering parameters, such as working pressure (mTorr, dc power (W, and substrate temperature (°C, are optimized with respect to the structural features, surface morphology, and electrical properties of the Mo films. An adhesive tape test is performed on each film to determine the adhesion strength of the films. The experimental results show that the working pressure has the dominant effect on electrical resistivity and reflectance. The intensity of the main peak (110 for the Mo film increases and the full width at half maximum decreases gradually as the sputtering power is increased. Additionally, the application of an Mo bilayer demonstrates good adherence and low resistivity.

  5. High power impulse magnetron sputtering of CIGS thin films for high efficiency thin film solar cells

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Hubička, Zdeněk; Kohout, Michal; Kšírová, Petra; Kment, Štěpán; Brunclíková, Michaela; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 135-137. ISSN 2336-2626 R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HiPIMS * emission spectroscopy * thin films * magnetron sputtering Subject RIV: BL - Plasma and Gas Discharge Physics http://fyzika.feld.cvut.cz/misc/ppt/articles/2014/olejnicek.pdf

  6. In-situ growth of a CdS window layer by vacuum thermal evaporation for CIGS thin film solar cell applications

    International Nuclear Information System (INIS)

    Highly crystalline and transparent CdS films are grown by utilizing the vacuum thermal evaporation (VTE) method. The structural, surface morphological, and optical properties of the films are studied and compared with those prepared by chemical bath deposition (CBD). It is found that the films deposited at a high substrate temperature (200 °C) have a preferential orientation along (002) which is consistent with CBD-grown films. Absorption spectra reveal that the films are highly transparent and the optical band gap values are found to be in a range of 2.44 eV–2.56 eV. CuIn1−xGaxSe2 (CIGS) solar cells with in-situ VTE-grown CdS films exhibit higher values of Voc together with smaller values of Jsc than those from CBD. Eventually the conversion efficiency and fill factor become slightly better than those from the CBD method. Our work suggests that the in-situ thermal evaporation method can be a competitive alternative to the CBD method, particularly in the physical- and vacuum-based CIGS technology. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Effect of deposition pressure on the properties of magnetron-sputter-deposited molybdenum back contacts for CIGS solar cells

    Science.gov (United States)

    Li, Weimin; Yan, Xia; Aberle, Armin G.; Venkataraj, Selvaraj

    2015-08-01

    Molybdenum (Mo) thin films were deposited onto soda-lime glass substrates by DC magnetron sputtering of a Mo target at various chamber pressures ranging from 1.5 × 10-3 to 7.5 × 10-3 mbar. The film properties were analysed with regards to their application as back electrode in copper indium gallium diselenide (CIGS) solar cells. It is observed that the resulting film morphology and microstructure were strongly affected by deposition pressure. Mo films deposited at a low pressure possess a high density and a low sheet resistance. These films also have a compact microstructure and a compressive strain, which lead to poor adhesion. The adhesion can be improved by increasing the chamber pressure, which has negative effects on the sheet resistance, optical reflection and porosity of the films. On the basis of these results, a method has been established to fabricate low-resistivity Mo films on soda-lime glass with very good adhesion for CIGS solar cell applications.

  8. Process Development for CIGS-Based Thin-Film Photovoltaic Modules; Phase I Technical Report, 5 February 1998--4 February 1999

    Energy Technology Data Exchange (ETDEWEB)

    Britt, J., Wiedeman, S.; Wendt, R.; Albright, S.

    1999-09-13

    This report describes work performed by Global Solar Energy (GSE) under Phase I of this subcontract. GSE has initiated an extensive and systematic plan to accelerate the commercialization of thin-film photovoltaics (PV) on copper indium gallium diselenide (CIGS). GSE is developing the technology to deposit and monolithically integrate CIGS photovoltaics on a flexible substrate. CIGS-deposited on flexible substrates can be fabricated into either flexible or rigid modules. Low-cost, rigid PV panels for remote power, bulk/utility, telecommunications, and rooftop applications will be produced by affixing the flexible CIGS to an expensive rigid panel by lamination or adhesive. In the GSE approach, long (up to 700 m) continuous rolls of substrate are processed, as opposed to individual small glass plates. In combination with roll-to-roll processing, GSE is developing evaporation deposition operations that enable low-cost and high-efficiency CIGS modules. Efforts are under way to transition the CIGS deposition process into manufacturing at GSE. CIGS process development is focused on synchronizing the operation of the effusion sources, the Se delivery profile, substrate temperature, and a host of other parameters. GSE has selected an interconnect scheme and procured, installed, and tested the equipment necessary to implement the cell interconnection for thin-film CIGS modules on a polyimide substrate.

  9. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  10. Improving the efficiency of copper indium gallium (Di-selenide (CIGS solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Directory of Open Access Journals (Sweden)

    M. Burghoorn

    2014-12-01

    Full Text Available Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-selenide (CIGS solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%. No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  11. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Xu, M. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Delft University of Technology, Optics Group, Van der Waalsweg 8, 2628 CH, Delft (Netherlands); Vroon, Z. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Zuyd Hogeschool, Nieuw Eyckholt 300, 6419 DJ, Heerlen (Netherlands); Belt, R. van de [Kriya Materials BV, Urmonderbaan 22, 6167 RD, Geleen (Netherlands); Buskens, P., E-mail: pascal.buskens@tno.nl, E-mail: buskens@dwi.rwth-aachen.de [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); DWI – Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen (Germany)

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  12. High-temperature stability of molybdenum (Mo) back contacts for CIGS solar cells: a route towards more robust back contacts

    International Nuclear Information System (INIS)

    The thermal stability of Mo thin films is indispensable to Cu(In,Ga)Se2 (CIGS) solar cells: CIGS films are deposited above 500 deg. C. The thermal stabilities of Mo thin films with dense to porous Mo microstructures, which are varied by controlling the sputtering pressure, are investigated. Interface failures are found to occur in buckling mode in denser Mo films, whereas cracking arises in less dense films. The failure modes are apparently dependent on the sign of the residual stress: the former is due to compressive stress, whereas the latter is due to tensile stress. Interestingly, the softening of soda-lime glass at high temperatures reconfigures the film stresses to be more compressive after annealing, which in turn triggers buckling even in films that are tensile-stressed in the as-deposited states. We conclude that the appropriate processing conditions for thermally stable back contacts cannot be obtained with the simple single layer approach. On the basis of this relationship between microstructure, residual stress and the failure modes, it is shown that improvements in film adhesion can widen the processing window for the preparation of robust back contacts, i.e. with a conventional bilayer approach and substrate roughening. Since the bilayer approach employed more compliant porous structures in the bottom layer, back contacts that are better suited to higher stress and temperature can be produced. Furthermore, substrate roughening might make the back contact more conductive as well as more stable because adhesion can be enhanced without the use of an electrically resistive buffer layer.

  13. Ultrathin CIGS solar cells from controlled chemical etching of state of the art co-evaporated absorbers

    International Nuclear Information System (INIS)

    Full text : This presentation will present the influence of reducing the CIGSe absorber layer thickness by highly controlled bromine etching on the electrical and optical solar cell properties. When going from the standard 2.5 micron thickness to 500 nm films we observe a decrease in efficiency which is mainly caused by a reduced short circuit current. Even without deliberate light trapping or anti-reflection coating, an efficiency of 10.3% has been obtained for a 0.5 micron thick CIGSe absorber. A smoothing of the absorber surface was observed during the etching, its influence on the cell parameters will be discussed. Furthermore we monitored the increase of the surface band-gap, induced by the etching, which causes a slight increase of the open circuit voltage for thin absorber layers. Besides fundamental interest, ultrathin CIGS layers represents a key option to reduce the consumption of indium for large scale development. Acknowlegements : This study is carried out with the ULTRACIS project supported by the French National Research Agency

  14. Low holographic concentration effects on CIGS

    Science.gov (United States)

    Castillo, Jose E.; Russo, Juan M.; Zhang, Deming; Kostuk, Raymond K.; Rosenberg, Glenn A.

    2010-08-01

    We present the results of combining copper indium gallium (di)selenide (CIGS) photovoltaic cells with holographic planar concentrating film over a broad range of illumination levels. The film, originally designed for silicon bifacial solar applications worked well with the CIGS cells. The Voc, cell efficiency and fill factor reached full operating values at lower light levels; with a significant boost in performance being recorded. The holographic regions of the concentrator act as extended heat transfer surfaces, allowing the CIGS cells to operate at lower operational temperatures than they normally would in a traditional PV application.

  15. The Effect Of Doping And The Thickness Of The Layers On Cigs Solar Cell Efficiency

    OpenAIRE

    HASHEMI NASSAB, Seyed Mohammad Sadegh; IMANIEH, Mohsen; KAMALY, Abbas

    2015-01-01

    Abstract .The main  problems  with the use of fossil fuels is the restrictions on their access and the detrimental consequences of their use which causes a threat to human health and quality of  life. Consequently, the use of other energy sources has become necessary. Renewable Energy as a permanent and clean energy source is an answer to this problem. One such energy source includes photovoltaic solar energy that is widely available as a reliable energy source[1].Research and Development of ...

  16. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells

    Science.gov (United States)

    Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Li, Ying-Tse; Huang, Shi-Da; Yu, Hau-Wei; Pu, Nen-Wen; Liang, Shih-Chang

    2015-11-01

    In this study, Ti-doped indium tin oxide (ITO:Ti) thin films were fabricated using a DC-magnetron sputtering deposition method. The thin films were grown without introducing oxygen or heating the substrate, and no post-growth annealing was performed after fabrication. The thickness of the ITO:Ti thin films (350 nm) was controlled while increasing the sputtering power from 50 to 150 W. According to the results, the optimal optoelectronic properties were observed in ITO:Ti thin films grown at a sputtering power of 100 W, yielding a reduced resistivity of 3.2 × 10-4 Ω-cm and a mean high transmittance of 83% at wavelengths ranging from 400 to 800 nm. The optimal ITO:Ti thin films were used to fabricate a Cu(In,Ga)Se2 solar cell that exhibited a photoelectric conversion efficiency of 11.3%, a short-circuit current density of 33.1 mA/cm2, an open-circuit voltage of 0.54 V, and a fill factor of 0.64.

  17. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    Science.gov (United States)

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C. PMID:25180569

  18. Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst

    International Nuclear Information System (INIS)

    This paper presents the development of photoelectrochemical (PEC) cell for water splitting setup using multiple band gap combination of CuIn1-xGa xS2 (CIGS2) thin-film photovoltaic (PV) cell and ruthenium oxide (RuO2) photocatalyst. FSEC PV Materials Lab has developed a PEC setup consisting of two illuminated CIGS2 cells, a ruthenium oxide (RuO2) anode deposited on titanium sheet for oxygen evolution and a platinum foil cathode for hydrogen evolution. With this combination, a PEC efficiency of 4.29% has been achieved. This paper also presents the research aimed at further improvements in the PEC efficiency by employing highly efficient photoanode that can be illuminated by photons not absorbed at the PV cell and by increasing the concentration of electrolyte solution (pH 10). The former will be achieved by employing a p-type transparent and conducting layer at the back of PV cell to transmit the unabsorbed photons, and the latter will reduce the resistance offered by the electrolyte. Concentration of the electrolyte was increased by five times, and the I-V characteristics of both RuO2 and RuS2 were measured with and without illumination. The results indicate that PEC efficiencies of over 9% can be achieved using RuS2 with illumination and five times concentrated pH 10 solution instead of pH 10 with normal concentration

  19. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, Daniel A.; Yu, Mengjing; Lam, Carl W. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Ogunseitan, Oladele A. [University of California, Irvine, Irvine, CA 92697 (United States); Schoenung, Julie M., E-mail: jmschoenung@ucdavis.edu [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States)

    2013-09-15

    Highlights: • Comparative alternatives assessment of thin film manufacturing technologies. • Development of chemical alternatives assessment in a life cycle context. • Screening of manufacturing and solar cell hazardous substances simultaneously. -- Abstract: Copper–indium–gallium–selenium–sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals™ and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS{sub 2} p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane.

  20. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    International Nuclear Information System (INIS)

    Highlights: • Comparative alternatives assessment of thin film manufacturing technologies. • Development of chemical alternatives assessment in a life cycle context. • Screening of manufacturing and solar cell hazardous substances simultaneously. -- Abstract: Copper–indium–gallium–selenium–sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals™ and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS2 p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane

  1. Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: Role of window layers

    International Nuclear Information System (INIS)

    It is currently possible to prepare Cd-free Cu(In,Ga)Se2-based solar cells with efficiencies similar or higher than their CdS references. In these cells, higher efficiencies are generally obtained from soft chemical-based techniques giving conformal depositions such as chemical bath deposition (CBD), ion layer gas reaction (ILGAR) or atomic layer deposition (ALD). However most of these devices are characterized by their pronounced transient behaviour. The aim of this paper is to compare these different chemical-based methods (CBD, ALD, ILGAR...) and to try to provide evidence for the dominant influence of the interface between the Cd-free buffer layer and the window layer on the performance and on the metastable electronic behaviour of these solar cells.

  2. Cu(In,Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers

    International Nuclear Information System (INIS)

    Our group studied the effects of conduction band offset of window/Cu(In,Ga)Se2 (CIGS) layers on CIGS-based solar cell performance. To control the conduction band offset, we considered the use of a window layer of Zn1-xMgxO thin film with a controllable band gap as an alternative to the conventional window layer using CdS film. From the measurement of valence band offset between Zn1-xMgxO/CIGS layers and the band gap of each layer, we confirmed that the conduction band offset of Zn1-xMgxO/CIGS layers could be controlled by changing the Mg content of the Zn1-xMgxO film. The CIGS-based solar cells prepared for this study consisted of an ITO/Zn1-xMgxO/CIGS/Mo/soda-lime glass structure. When the conduction band minimum of Zn1-xMgxO was higher than that of CIGS, the performance of CIGS-based solar cells with a Zn1-xMgxO window layer was equivalent to that of CIGS-based solar cells with CdS window layers. We confirmed that the control of the conduction band offset of the window/CIGS layers decreases the majority carrier recombination via the Zn1-xMgxO/CIGS interface defects. [copyright] 2001 American Institute of Physics

  3. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell

    Science.gov (United States)

    Wang, Mang; Yi, Jie; Yang, Sui; Cao, Zhou; Huang, Xiaopan; Li, Yuanhong; Li, Hongxing; Zhong, Jianxin

    2016-09-01

    Mg doped ZnO (ZMO) film with the tunable bandgap can adjust the conduction band offset of the window/chalcopyrite absorber heterointerface to positive to reduce the interface recombination and resulting in an increasement of chalcopyrite based solar cell efficiency. A systematic study of the effect of the electrodeposition potential on morphology, crystalline structure, crystallographic orientation and optical properties of ZMO films was investigated. It is interestingly found that the prepared doped samples undergo a significant morphological change induced by the deposition potential. With negative shift of deposition potential, an obvious morphology evolution from nanorod structrue to particle covered films was observed. A possible growth mechanism for explaining the morphological change is proposed and briefly discussed. The combined optical techniques including absorption, transmission and photoluminescence were used to study the obtained ZMO films deposited at different potential. The sample deposited at -0.9 V with the hexagonal nanorods morphology shows the highest optical transparency of 92%. The photoluminescence spectra reveal that the crystallization of the hexagonal nanorod ZMO thin film deoposited at -0.9 V is much better than the particles covered ZMO thin film. Combining the structural and optical properties analysis, the obtained normal hexagonal nanorod ZMO thin film could potentially be useful in nanostructured chalcopyrite solar cells to improve the device performance.

  4. Non-Stoichiometric Amorphous Indium Selenide Thin Films as a Buffer Layer for CIGS Solar Cells with Various Temperatures in Rapid Thermal Annealing.

    Science.gov (United States)

    Yoo, Myoung Han; Kim, Nam-Hoon

    2016-05-01

    The conventional structure of most of copper indium gallium diselenide (Culn(1-x)Ga(x)Se2, CIGS) solar cells includes a CdS thin film as a buffer layer. Cd-free buffer layers have attracted great interest for use in photovoltaic applications to avoid the use of hazardous and toxic materials. The RF magnetron sputtering method was used with an InSe2 compound target to prepare the indium selenide precursor. Rapid thermal annealing (RTA) was conducted in ambient N2 gas to control the concentration of volatile Se from the precursor with a change in temperature. The nature of the RTA-treated indium selenide thin films remained amorphous under annealing temperatures of ≤ 700 degrees C. The Se concentration of the RTA-treated specimens demonstrated an opposite trend to the annealing temperature. The optical transmittance and band gap energies were 75.33% and 2.451-3.085 eV, respectively, and thus were suitable for the buffer layer. As the annealing temperature increased, the resistivity decreased by an order-of-magnitude from 10(4) to 10(1) Ω-cm. At lower Se concentrations, the conductivity abruptly changed from p-type to n-type without crystallite formation in the amorphous phase, with the carrier concentration in the order of 10(17) cm(-3). PMID:27483873

  5. Research Progress on Buffer Layer Materials of CIGS Thin Film Solar Cell%CIGS薄膜太阳能电池缓冲层材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    王卫兵; 刘平; 李伟; 马凤仓; 刘新宽; 陈小红

    2012-01-01

    CIGS薄膜太阳能电池的缓冲层为低带隙CIGS吸收层与高带隙ZnO窗口层之间形成过渡,减少两者带隙的晶格失配和带隙失调,并可防止溅射ZnO窗口层时给CIGS吸收层带来损害等,对提高CIGS薄膜太阳能电池效率起了重要作用.介绍了CIGS薄膜太阳能电池缓冲层材料的分类和制备工艺,主要阐述了CdS、ZnS及In2S3薄膜缓冲层材料及化学水浴法、原子层化学气相沉积法、金属化合物化学气相沉积法等制备工艺的研究现状,最后指出CIGS太阳能电池缓冲层在制备工艺、环境保护及大规模工业化生产中遇到的问题,并展望了其发展方向.%The buffer layers of CTGS thin film solar cells can form transition layers between low band gap CIGS absorber layers and high band gap of ZnO window layers, which reduces the lattice matching and band gap difference, and prevents damage of CIGS absorber layer from sputtering ZnO window layer, and therefore plays an important role in improving efficiency of CIGS thin film solar cells. Classification and preparation technology of CIGS thim film solar cells material are discussed, including the research progress of CdS,ZnS and In2S3 thin film buffer layer materials, and chemical bath deposition (CBD), atomic layer chemical vapor deposition (ALCVD), metal organic chemical vapor deposition (MOCVD) and other preparation technologies. The problems and development directions of buffer layer materials of CIGS thin film solar cells in preparation process, environment protection and large-scale industrial production are finally prospected.

  6. Zn1-xMgxO用于CIGS太阳电池的研究进展%Developments of CIGS Solar Cells with Zn1-xMgxO Films

    Institute of Scientific and Technical Information of China (English)

    江秋怡; 王卿璞; 王汉斌; 王丹丹; 武丽伟; 李福杰

    2013-01-01

    Zn1-xMgxO透过率高、带隙可调,且与CIGS太阳电池在晶格和能带结构上匹配良好,可用作CIGS太阳电池缓冲层、窗口层,因此制备高质量的Zn1-xMgxO薄膜是提高太阳电池性能的关键.文章介绍了Zn1-xMgxO薄膜的结构特性、光学特性及制备方法;从Mg含量、Zn1-xMgxO膜厚及Zn1-xMgxO/CIGS界面处缺陷密度等方面概述了Zn1-xMgxO用于CIGS太阳电池的研究进展,并比较了Zn1-xMgxO与In2S3,ZnS,CdS等其他材料作缓冲层的CIGS太阳电池性能的差别.%With high transparency,adjustable band gap and good match with CIGS in lattice and energy band structure,Zn1-xMgxO is regarded as the suitable material for the buffer layer and window layer of CIGS solar cells,so the fabrication of high quality Zn1-xMgxO films becomes to be the key problem for improving the efficiency of CIGS solar cells.In this paper,the preparation methods and structural and optical characteristics of Zn1-xMgxO films are introduced;and also the effects of concentration of Mg,the film thickness and the defect density on solar cells are summarized.As well it is compared the performance of solar cells with Zn1-xMgxO buffer layer with those applying other buffer layer materials.

  7. Bulk measurement of copper and sodium content in CuIn(0.7)Ga(0.3)Se(2) (CIGS) solar cells with nanosecond pulse length laser induced breakdown spectroscopy (LIBS)

    CERN Document Server

    Kowalczyk, Jeremy M D; DeAngelis, Alexander; Kaneshiro, Jess; Mallory, Stewart A; Chang, Yuancheng; Gaillard, Nicolas

    2013-01-01

    In this work, we show that laser induced breakdown spectroscopy (LIBS) with a nanosecond pulse laser can be used to measure the copper and sodium content of CuIn(0.7)Ga(0.3)Se(2) (CIGS) thin film solar cells on molybdenum. This method has four significant advantages over methods currently being employed: the method is inexpensive, measurements can be taken in times on the order of one second, without high vacuum, and at distances up to 5 meters or more. The final two points allow for in-line monitoring of device fabrication in laboratory or industrial environments. Specifically, we report a linear relationship between the copper and sodium spectral lines from LIBS and the atomic fraction of copper and sodium measured via secondary ion mass spectroscopy (SIMS), discuss the ablation process of this material with a nanosecond pulse laser compared to shorter pulse duration lasers, and examine the depth resolution of nanosecond pulse LIBS.

  8. Alternative Window Schemes for CuInSe2-Based Solar Cells Final Report: 3 November 1995-December 1997; FINAL

    International Nuclear Information System (INIS)

    This work demonstrated high-efficiency CIGS cells based on highly resistive ZnO buffer layers grown by MOCVD. One cell based on NREL CIGS and a ZnO buffer layer exhibited an active-area efficiency of nearly 14%. This result is one of the best efficiencies reported for a ''direct'' ZnO/CIGS cell made with a vacuum process

  9. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  10. Barrier effect of AlN film in flexible Cu(In,Ga)Se2 solar cells on stainless steel foil and solar cell

    International Nuclear Information System (INIS)

    Highlights: • The adhension between AlN film and Mo are verygood. • AlN film can be effectively used as the barrier of flexible CIGS solar cell on SS substrate. • AlN film is suitable as the insulation barrier of flexible CIGS solar cell on SS substrate. - Abstract: The AlN film deposited by DC magnetron sputtering on stainless steel (SS) foils was used as the barrier in flexible Cu(In,Ga)Se2 (CIGS) solar cells on stainless steel foil and characterized comprehensively by X-ray diffraction (XRD), scanning electron microscopy (SEM), I–V, and QE measurements study. The study of AlN as insulation barrier in the flexible CIGS solar cell showed that the adhesion strength between the SS foil and the deposited AlN film was very strong even after annealing at high temperature at 530 °C. More importantly, a high resistance of over 10 MΩ was remained with the film with thickness of around 200 nm after annealing. This indicates that the AlN film is suitable as an effective insulation barrier in flexible CIGS solar cells based on SS foil. In addition, the XRD and SEM results showed that the AlN film did not influence the crystal structure of the Mo film which was deposited upon the AlN layer and used as the electrical contact in CIGS solar cells. It was found that the AlN film contributed to an improved crystallinity of the Mo contact layer compared to the bare SS foil. The combined results of secondary ion mass spectrometry, I–V and EQE measurements of the corresponding flexible CIGS solar cells confirmed that 1 μm-thick AlN film could be used as an efficient barrier layer in CIGS solar cells on SS foil

  11. Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.; von Roedern, B.

    2007-09-01

    We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

  12. Interaction of ultra-short laser pulses with CIGS and CZTSe thin films

    Science.gov (United States)

    Gečys, P.; Markauskas, E.; Dudutis, J.; Račiukaitis, G.

    2014-01-01

    The thin-film solar cell technologies based on complex quaternary chalcopyrite and kesterite materials are becoming more attractive due to their potential for low production costs and optimal spectral performance. As in all thin-film technologies, high efficiency of small cells might be maintained with the transition to larger areas when small segments are interconnected in series to reduce photocurrent and related ohmic losses in thin films. Interconnect formation is based on the three scribing steps, and the use of a laser is here crucial for performance of the device. We present our simulation and experimental results on the ablation process investigations in complex CuIn1- x Ga x Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSe) cell's films using ultra-short pulsed infrared (~1 μm) lasers which can be applied to the damage-free front-side scribing processes. Two types of processes were investigated—direct laser ablation of ZnO:Al/CIGS films with a variable pulse duration of a femtosecond laser and the laser-induced material removal with a picosecond laser in the ZnO:Al/CZTSe structure. It has been found that the pulse energy and the number of laser pulses have a significantly stronger effect on the ablation quality in ZnO:Al/CIGS thin films rather than the laser pulse duration. For the thin-film scribing applications, it is very important to carefully select the processing parameters and use of ultra-short femtosecond pulses does not have a significant advantage compared to picosecond laser pulses. Investigations with the ZnO:Al/CZTSe thin films showed that process of the absorber layer removal was triggered by a micro-explosive effect induced by high pressure of sublimated material due to a rapid temperature increase at the molybdenum-CZTSe interface.

  13. Effect of Rapid Thermal Annealing of CIGS Thin Film as an Absorber Layer

    Directory of Open Access Journals (Sweden)

    J.R. Ray

    2013-05-01

    Full Text Available The influence of rapid post-deposition thermal annealing (500 °C for 2 minutes on the CIGS thin films of different thicknesses (0.4 to 1.0 m has been investigated. The deposition of CIGS is carried out using the flash evaporation at the substrate temperature of 250 °C. The as-grown and annealed CIGS is characterized by XRD, SEM, EDS, TEM, optical transmission, reflection, and electrical measurements. Lowering the thickness of CIGS absorber shows the remarkable influence on crystal structure, surface morphology, and composition of the overall film. Further improvement was observed by the rapid annealing process. Cu-rich composition was observed for annealed CIGS thin film having a thickness below 0.6 μm, while for 1.0 m thickness the composition is slightly Cu-poor and the compactly packed faceted grains observed. Optical band gap near to 1.05 eV and the electrical resistivity in the order of 104 Ωcm shows its future use as an absorber layer for CIGS solar cell. Furthermore, an attempt of making CIGS / CdS hetero-structure shows ideal behavior of the Schottky hetero-structure with the ideality factor of 1.5.

  14. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    OpenAIRE

    Hongxia Wang

    2011-01-01

    The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,Ga)Se2 (CIGS) in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS) semiconductor material has emerged as one of the most promising candidates for this aim and h...

  15. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, J.R.; Berens, T.A.; Keane, J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  16. Characteristics of Cu(In,Ga)Se{sub 2} (CIGS) thin films deposited by a direct solution coating process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myoung Guk [Photovoltaic Center, Korea Institute of Energy Research, 71-2 JangDong, YuseongGu, DaeJeon 305-343 (Korea, Republic of); Ahn, Se Jin, E-mail: swisstel@kier.re.kr [Photovoltaic Center, Korea Institute of Energy Research, 71-2 JangDong, YuseongGu, DaeJeon 305-343 (Korea, Republic of); Yun, Jae Ho; Gwak, Jihye; Cho, Ara; Ahn, Seoung Kyu; Shin, Keeshik [Photovoltaic Center, Korea Institute of Energy Research, 71-2 JangDong, YuseongGu, DaeJeon 305-343 (Korea, Republic of); Nam, Dahyun; Cheong, Hyeonsik [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of); Yoon, Kyunghoon [Photovoltaic Center, Korea Institute of Energy Research, 71-2 JangDong, YuseongGu, DaeJeon 305-343 (Korea, Republic of)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Double layered CIGS/carbon films prepared by a direct solution coating. Black-Right-Pointing-Pointer Controllability of compositions of the CIGS layer. Black-Right-Pointing-Pointer Effects of Cu and Ga contents on properties of the CIGS layer. Black-Right-Pointing-Pointer Structure of the bottom carbon layer. - Abstract: Cu(In,Ga)Se{sub 2} (CIGS) thin films were formed by a direct non-vacuum coating and a subsequent selenization of low cost precursor solutions, and their compositional, structural and optical properties were characterized. Selenized films showed a double-layered structure with an upper layer of chalcopyrite CIGS and an amorphous bottom layer mainly composed of carbon. For the upper CIGS layer, good compositional controllability for Cu and Ga was confirmed by linear relationship between metal ratios of the precursor solution and those of the selenized films. Effects of Cu and Ga contents on structural and optical properties of the films were also characterized by X-ray diffraction (XRD), Raman and photoluminescence (PL) analyses, and the results were interpreted by defect supercluster formation (V{sub Cu}-In{sub Cu}) in Cu-deficient films and mass and size difference between In and Ga, respectively. Further, the bottom layer was found to be mostly composed of conductive amorphous carbon, which is the main current flow path in the completed solar cells.

  17. Impacts of proton irradiation on optical and electrical properties of Cu(In,Ga)Se2 thin films and solar cells

    International Nuclear Information System (INIS)

    The optical and electrical properties of proton irradiated Cu(In,Ga)Se2 (CIGS) solar cells and the thin films that compose the CIGS solar cell structure were investigated. The transmittance and resistivity of transparent conducting oxide window layers remained constant for a fluence of up to 3 × 1015 cm-2. For CIGS thin films, the number of non-radiative recombination center increases under proton irradiation. In CIGS solar cells, decreasing JSC reflected the degradation of the depletion layer of the CdS/CIGS interface. These results constitute the first step in clarifying the degradation mechanism of CIGS solar cells. (author)

  18. ZnMgO by APCVD Enabling High-Performance Mid-bandgap CIGS on Polyimide Modules: October 2009--October 2010

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.

    2011-04-01

    This Pre-Incubator project was designed to increase the 'real world' CIGS based photovoltaic module performance and decrease the Levelized Cost of Energy (LCOE) of systems utilizing those modules compared to our traditional CIGS based photovoltaic modules. This was enabled by a) increasing the CIGS bandgap and b) developing better matched device finishing layers to the mid-bandgap CIGS based photovoltaics; including window and buffer layers (and eventually the TCO). Incremental progress in the novel device performance was demonstrated throughout the program, and ultimately achieved performance results that exceeded the milestones ahead of schedule. Metal-oxide buffer layer devices with mid-bandgap CIGS alloys on polyimide substrates were produced with efficiencies of over 12%. Corresponding mid-bandgap devices with CdS buffers produced over 13% efficient devices. Furthermore, no obvious degradation in the device performance has been observed to date, after proper storage ambient of the different types of unencapsulated devices were identified.

  19. CuIn{sub 1-x}Ga{sub x}Se{sub 2}-based solar cells prepared from low-cost precursors

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M.E; Sebastian, P. J; M, Pattabi; Mathew, X; McClure, J. C [CIE-UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    We report the characterization results obtained for the one step electrodeposited CuInSe{sub 2} (CIS) thin films and photovoltaic structures based on CIS and CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS). CIS thin films were deposited on Mo coated glass substrates, varying the deposition conditions. During the initial stages of deposition process the chemical concentration of the CIS films is rich in Cu an Se. But, after a few minutes, the concentration profile becomes constant through out the rest of the deposition process and at the end of the deposition process the film becomes In rich. The samples were analyzed using the ICP (Inductive Coupled Plasma), EDAX (Energy Dispersive Analysis by X-rays), AES (Auger Electron Spectroscopy), XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy) techniques. The photovoltaic structures based on electrodeposited CIS and CIGS did the solar conversion with efficiency of the order of 10%. [Spanish] Informamos sobre los resultados de caracterizacion obtenidos de electrodeposicion en un solo paso de peliculas delgadas de CuInSe{sub 2} (CIS) y estructuras fotovoltaicas basadas en CIS y CuInxGal-xSe2(CIGS). Las peliculas delgadas de CIS se depositaron sobre substratos de vidrio recubiertos de Mo, variando las condiciones de deposicion. Durante las etapas iniciales del proceso de deposicion la concentracion de las peliculas de CIS es rica en Cu y Se pero despues de unos cuantos minutos el perfil de concentracion se vuelve constante a durante todo el resto de proceso de deposicion y al final del proceso de deposicion la pelicula se convierte rica en In. Las muestras se analizaron ICP (plasma acoplado inductivo) EDAX (analisis de dispersion de energia por rayos X) AES (espectroscopia electronica Auger) XRD (difraccion de rayos X) y SEM (microscopia de barrido electronico). Las estructuras fotovoltaicas basados en CIS electrodepositado y CIGS hicieron la conversion solar con eficiencias de alrededor del 10%.

  20. Characteristics of CIGS photovoltaic devices co-evaporated with various Se flux rates at low temperatures

    Science.gov (United States)

    Huang, Chia-Hua; Lin, Chun-Ping; Jan, Yueh-Lin

    2016-08-01

    Cu(In,Ga)Se2 (CIGS) films were prepared by a single-stage co-evaporation process at Se flux rates of 10 Å s‑1, 20 Å s‑1, and 30 Å s‑1 and substrate temperatures ranging from 400 °C to 500 °C. The flux rates of the Cu, In, Ga, and Se were kept constant throughout each deposition of the films. The grain sizes, surface morphologies, and crystallinity of the CIGS films improved with increasing substrate temperatures or Se flux rates. The causes of the formation of voids on the surface of CIGS films deposited with a low Se flux rate of 10 Å s‑1 at substrate temperatures of 475 °C and 500 °C were addressed. The higher Se flux rates of 20 Å s‑1 and 30 Å s‑1 repressed the formation of voids for the CIGS films deposited at the relatively higher substrate temperatures of 475 °C and 500 °C. The conversion efficiencies of CIGS solar cells were significantly improved by increasing the substrate temperatures or the Se flux rates, largely contributed from the enhancement of the open-circuit voltage and fill factor because of the restraint of the carrier recombination. The short-circuit current densities were slightly enhanced by the increment of the substrate temperatures or the Se flux rates, resulting from the improved crystalline quality of the CIGS films. Moreover, the EQE results suggest that the effective carrier-diffusion lengths of the films deposited at the relatively high substrate temperatures were increased, leading to the enhancement of the short-circuit current density. The efficiencies of CIGS solar cells prepared with a Se flux rate of 10 Å s‑1 improved from 10% to 12.4% when the substrate temperatures increased from 400 °C to 500 °C. The efficiencies of cells deposited at the substrate temperature of 500 °C improved to 15.4% as the Se flux rates increased from 10 Å s‑1 to 30 Å s‑1.

  1. Fabrication of solution processed 3D nanostructured CuInGaS2 thin film solar cells

    International Nuclear Information System (INIS)

    In this study we demonstrate the fabrication of CuInGaS2 (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions. (paper)

  2. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed

    2014-06-01

    Cu(In, Ga)Se2 (CIGS) ink was formulated from CIGS powder, polyvinyl butyral PVB, terpineol and polyester/polyamine co-polymeric dispersant KD-1. Thin films with different thicknesses were deposited on PET substrate using screen-printing followed by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying at 200 °C, which is well below the decomposition temperature of the PET substrate. It was observed by SEM that 20 pulses of 532nm and 60 mJ/cm2 Nd:YAG laser annealing causes atomic diffusion on the near surface area. Furthermore, FIB cross section images were utilized to monitor the effect of laser annealing in the depth of the layer. Laser annealing effects were compared to as deposited layer using XRD in reference to CIGS powder. The measurement shows that crystallinity of deposited CIGS is retained while EDS quantification and atomic ratio result in gradual loss of selenium as laser energy increases. The laser parameters were tuned in an effort to utilize laser annealing of screen-printed CIGS layer as a layer annealing method for solar cell fabrication process.

  3. Solar batteries based on nanostructures

    International Nuclear Information System (INIS)

    Currently, 90 percent of the solar cells based on silicon are single batteries. The main factors preventing the photoenergetics extensive operation can be applied as follows: 1) the high cost of silicon production for solar cells, which is the main material; 2) the production of solar cells requires increased financial charges; 3) the relatively low efficiency of silicon solar cells (12-18 percent) and finally the last reason - there is no enough effective investment mechanism to solve the problem in most countries. One of the most promising ways to reduce the cost of solar electrical power is the creation of a new generation of solar cells based on semiconductor nanostructures. There are huge amount of research works being done in the field of constant theoretical and practical consequences of implementation of nanostructures

  4. Estimation of defect activation energy around pn interfaces of Cu(In,Ga)Se2 solar cells using impedance spectroscopy

    Science.gov (United States)

    Sakakura, Hidenori; Itagaki, Masayuki; Sugiyama, Mutsumi

    2016-01-01

    We investigate the defect activation energy around the pn interface of Cu(In,Ga)Se2 (CIGS)-based solar cells using a simple electrochemical impedance spectroscopy. By applying AC and DC voltages to the solar cells, we observed an “inductive” element around the pn interface, which is ignored in conventional deep-level transient spectroscopy or admittance spectroscopy. A defect model is evaluated by proposing an equivalent circuit that includes a positive/negative constant phase element (CPE) to represent the area around the CdS/CIGS interface. By fitting the impedance data, the CPE index and CPE constant show a relationship with the defect activation energy or defect concentration. This result is significant because it may help reveal the defect properties of CIGS solar cells or any other semiconductor devices.

  5. Preparation of CIGS thin films by HiPIMS or DC sputtering and various selenization processes

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Hubička, Zdeněk; Kšírová, Petra; Kment, Štěpán; Brunclíková, Michaela; Kohout, Michal; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    2013-01-01

    Roč. 16, č. 2 (2013), s. 314-319. ISSN 1203-8407 R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HIPIMS * selenization * nanocrystals * solar energy * sputtering * thin films Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.106, year: 2013 http://www.ingentaconnect.com/content/stn/jaots/2013/00000016/00000002/art00015

  6. A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se2 thin-film solar cells on arbitrary substrates

    Science.gov (United States)

    Tseng, Kuan-Chun; Yen, Yu-Ting; Thomas, Stuart R.; Tsai, Hung-Wei; Hsu, Cheng-Hung; Tsai, Wen-Chi; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Zhiming M.; Chueh, Yu-Lun

    2016-02-01

    The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide variety of flexible substrates, suitable for use in the large scale CIGS photovoltaic industry.The fabrication of Cu(In,Ga)Se2 (CIGS) solar cells on flexible substrates is a non-trivial task due to thermal and ion diffusion related issues. In order to circumvent these issues, we have developed a chemical-mechanical polishing lift-off (CMPL) transfer process, enabling the direct transfer of CIGS solar cells from conventional soda-lime glass (SLG) onto arbitrary flexible substrates up to 4 cm2 in size. The structural and compositional nature of the pre- and post-transferred films is examined using electron microscopy, X-ray diffraction analysis, Raman and photoluminescence spectroscopy. We demonstrate the fabrication of solar cells on a range of flexible substrates while being able to maintain 75% cell efficiency (η) when compared to pre-transferred solar cells. The results obtained in this work suggest that our transfer process offers a highly promising approach toward large scale fabrication of CIGS-based solar cells on a wide

  7. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  8. Dynamics of the isolated galaxy CIG 0314

    CERN Document Server

    Verley, S; Repetto, P; Gabbasov, R; Verdes-Montenegro, L; Bergond, G; Fuentes-Carrera, I; Durbala, A

    2009-01-01

    In the context of the AMIGA project, we used Fabry-Perot observations in order to study the dynamics of the ionised gas in the isolated galaxy CIG 0314. From the Halpha observations, we could obtain the velocity field and rotation curve of the galaxy. A detail analysis of the velocity field is done in order to understand the kinematics of the gas to gather clues on the mechanisms which favour or inhibit star formation, in particular along the bar. The visible and dark matter content can be reached, as well as an estimation of the mass of the galaxy.

  9. Dynamics of the isolated galaxy CIG 0314

    OpenAIRE

    Verley, S.; Rosado, M.; Repetto, P.; Gabbasov, R.; Verdes-Montenegro, L.; Bergond, G.; Fuentes-Carrera, I.; Durbala, A.

    2009-01-01

    In the context of the AMIGA project, we used Fabry-Perot observations in order to study the dynamics of the ionised gas in the isolated galaxy CIG 0314. From the Halpha observations, we could obtain the velocity field and rotation curve of the galaxy. A detail analysis of the velocity field is done in order to understand the kinematics of the gas to gather clues on the mechanisms which favour or inhibit star formation, in particular along the bar. The visible and dark matter content can be re...

  10. Influence of encapsulated electron active molecules of single walled-carbon nanotubes on superstrate-type Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    Chemical functionalization of carbon nanotubes (CNTs) can strongly affect the efficiency of solar cells due to change of three factors viz. electronic energy structures, interfacial resistance, and electrical field. Therefore, it is worthwhile to investigate the influence of these three factors on the solar cells based on the functionalization of various active molecules in CNTs. In the present study, we investigate the influence of the three factors in the efficiency of superstrate-type Cu(In,Ga)Se2 (CIGS) solar cells [i.e. F-doped SnO2/CNTs/CdS/CIGS/Au] by encapsulation of electron withdrawing and donating organic molecules inside CNTs. The CIGS solar cell was characterized using the electronic diagram, electrochemical impendence spectroscopy, reverse field emission currents, and currents–voltages curves. - Highlights: • We investigated the three effects of CNTs in superstrate-type CIGS solar cells. • Chemical functionalization of CNTs strongly affect the efficiency of solar cells. • The electrical field of solar cell was characterized using the reverse FE-currents

  11. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  12. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    2002-01-01

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  13. Antimony assisted low-temperature processing of CuIn1-xGaxSe2-ySy solar cells

    International Nuclear Information System (INIS)

    Application of the Sb-doping method to low-temperature (≤ 400 oC) processing of CuIn1-xGaxSe2-ySy (CIGS) solar cells is explored, using a hydrazine-based approach to deposit the absorber films. Power conversion efficiencies of 10.5% and 8.4% have been achieved for CIGS devices (0.45 cm2 device area) processed at 400 oC and 360 oC, respectively, with an Sb-incorporation level at 1.2 mol % (relative to the moles of CIGS). Significant Sb-induced grain size enhancement was confirmed for these low processing temperatures using cross-sectional scanning electron microscopy, and an average 2-3% absolute efficiency improvement was achieved in Sb-doped samples compared to their Sb-free sister samples. With Sb inclusion, the CIGS film grain growth temperature is lowered to well below 450 oC, a range compatible with flexible polymer substrate materials such as polyimide. This method opens up access to opportunities in low-temperature processing of CIGS solar cells, an area that is being actively pursued using both traditional vacuum-based as well as other solution-based deposition techniques.

  14. Web based Measurement System for Solar Radiation

    OpenAIRE

    Shachi Awasthi; Dr. P. Mor

    2012-01-01

    We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measure...

  15. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  16. Electrodeposition of CuIn1-xGaxSe2 Materials for Solar Cells:

    International Nuclear Information System (INIS)

    This report describes our scientific understanding of the CIGS materials system, solar cells, and processes. Through DOE support, the investigators developed much of the technology and device fabrication infrastructure applied to electrodeposited (ED) materials. The electrodeposition process is simple and fast, and can synthesize multinary precursors for subsequent processing into CuInxGa1-xSe2 (CIGS) thin-film absorbers for solar cells. The device fabricated by using electrodeposited CIGS precursor layers resulted in total-area conversion efficiencies up to 15.4%. As-deposited precursors are Cu-rich CIGS. Additional In, Ga, and Se (up to 50%) are added to the precursor films by physical vapor deposition (PVD) to adjust the final semiconductor film composition to about Cu0.95In0.75Ga0.25Se2. The ED device parameters are compared with those of an 18.8% PVD device. The tools used for comparison are current-voltage, capacitance-voltage, and spectral response characteristics. The individual parameters of the device prepared from ED precursor films showed no significant deterioration from those of the PVD CIGS cells. We also developed a buffer-based electrodeposition bath. Using the buffer solution enhances the stability of the electrodeposition process, and no metal oxides or hydroxides precipitate out of the solution. The buffer-based bath also deposits more gallium in the precursor films. As-deposited precursors are stoichiometric or slightly Cu-rich CIGS. Only a minimal amount (5%-10% of total materials) of indium was added to the ED precursor films by PVD to obtain a 9.4%-efficient device. In general, the films and devices have been characterized by inductively coupled plasma spectrometry, Auger electron spectroscopy, X-ray diffraction, electron-probe microanalysis, current-voltage, capacitance-voltage, and spectral response

  17. Investigation of Non-Vacuum Deposition Techniques in Fabrication of Chalcogenide-Based Solar Cell Absorbers

    KAUST Repository

    Alsaggaf, Ahmed

    2015-07-01

    The environmental challenges are increasing, and so is the need for renewable energy. For photovoltaic applications, thin film Cu(In,Ga)(S,Se)2 (CIGS) and CuIn(S,Se)2 (CIS) solar cells are attractive with conversion efficiencies of more than 20%. However, the high-efficiency cells are fabricated using vacuum technologies such as sputtering or thermal co-evaporation, which are very costly and unfeasible at industrial level. The fabrication involves the uses of highly toxic gases such as H2Se, adding complexity to the fabrication process. The work described here focused on non-vacuum deposition methods such as printing. Special attention has been given to printing designed in a moving Roll-to-Roll (R2R) fashion. The results show potential of such technology to replace the vacuum processes. Conversion efficiencies for such non-vacuum deposition of Cu(In,Ga)(S,Se)2 solar cells have exceeded 15% using hazardous chemicals such as hydrazine, which is unsuitable for industrial scale up. In an effort to simplify the process, non-toxic suspensions of Cu(In,Ga)S2 molecular-based precursors achieved efficiencies of ~7-15%. Attempts to further simplify the selenization step, deposition of CuIn(S,Se)2 particulate solutions without the Ga doping and non-toxic suspensions of Cu(In,Ga)Se2 quaternary precursors achieved efficiencies (~1-8%). The contribution of this research was to provide a new method to monitor printed structures through spectral-domain optical coherence tomography SD-OCT in a moving fashion simulating R2R process design at speeds up to 1.05 m/min. The research clarified morphological and compositional impacts of Nd:YAG laser heat-treatment on Cu(In,Ga)Se2 absorber layer to simplify the annealing step in non-vacuum environment compatible to R2R. Finally, the research further simplified development methods for CIGS solar cells based on suspensions of quaternary Cu(In,Ga)Se2 precursors and ternary CuInS2 precursors. The methods consisted of post deposition reactive

  18. Are E-Cigs Slowing Teen Anti-Smoking Push?

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159809.html Are E-Cigs Slowing Teen Anti-Smoking Push? Researchers blame ... a new study contends. "We found evidence that e-cigarettes are recruiting at least some youth who ...

  19. E-Cigs May Damage Cells in Mouth

    Science.gov (United States)

    ... 159657.html E-Cigs May Damage Cells in Mouth Findings suggest a possible increase in the risk ... The oral cavity is the portion of the mouth behind the teeth and gums. The researchers believe ...

  20. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  1. Degradation of Cu(In, Ga)Se{sub 2} thin-film solar cells due to the ionization effect of low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Shirou, E-mail: kawakita.shirou@jaxa.jp [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Imaizumi, Mitsuru [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Okuda, Shuichi [Osaka Prefecture University (OPU), Sakai, Osaka 599-8570 (Japan); Kusawake, Hiroaki [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan)

    2015-05-01

    Cu (In, Ga)Se{sub 2} (CIGS) solar cells were irradiated with 100 keV electrons to reveal the characteristics of created radiation defects. 100 keV electrons cannot produce any displacement defects in CIGS. Low-fluence electrons improve the electrical performance of the CIGS solar cells due to the change in the conductive type of donor to acceptor in a metastable defect, which is equivalent to the light-soaking effect. However, high fluence electrons cause the cell performance to decline. From analysis based on changes in carrier density and electroluminescence, defects causing the decline in performance include donor- and non-radiative types. In addition, red-on-bias experiments showed an increase in III{sub Cu} defects due to electron irradiation. Based on these results, the degradation in the electrical performance of the CIGS solar cells irradiated with high electron fluence would be attributable to a change in the conductive type of III{sub Cu} defects. - Highlights: • Cu(In,Ga)Se2 Solar cells were irradiated with 100 and 250 keV electrons at low temperature. • These electrons degraded the electrical performance of Cu(In,Ga)Se2 sola cells. • The electrons induced ⅢCu defects in Cu(In,Ga)Se2.

  2. Degradation of Cu(In, Ga)Se2 thin-film solar cells due to the ionization effect of low-energy electrons

    International Nuclear Information System (INIS)

    Cu (In, Ga)Se2 (CIGS) solar cells were irradiated with 100 keV electrons to reveal the characteristics of created radiation defects. 100 keV electrons cannot produce any displacement defects in CIGS. Low-fluence electrons improve the electrical performance of the CIGS solar cells due to the change in the conductive type of donor to acceptor in a metastable defect, which is equivalent to the light-soaking effect. However, high fluence electrons cause the cell performance to decline. From analysis based on changes in carrier density and electroluminescence, defects causing the decline in performance include donor- and non-radiative types. In addition, red-on-bias experiments showed an increase in IIICu defects due to electron irradiation. Based on these results, the degradation in the electrical performance of the CIGS solar cells irradiated with high electron fluence would be attributable to a change in the conductive type of IIICu defects. - Highlights: • Cu(In,Ga)Se2 Solar cells were irradiated with 100 and 250 keV electrons at low temperature. • These electrons degraded the electrical performance of Cu(In,Ga)Se2 sola cells. • The electrons induced ⅢCu defects in Cu(In,Ga)Se2

  3. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    Science.gov (United States)

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  4. Nanowire-based All Oxide Solar Cells

    OpenAIRE

    Yang, Peidong

    2009-01-01

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is ...

  5. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2011-01-01

    Full Text Available The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,GaSe2 (CIGS in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS semiconductor material has emerged as one of the most promising candidates for this aim and has attracted considerable interest recently. Significant progress in this relatively new research area has been achieved in the last three years. Over 130 papers on CZTS have been published since 2007, and the majority of them are on the preparation of CZTS thin films by different methods. This paper, will review the wide range of techniques that have been used to deposit CZTS semiconductor thin films. The performance of the thin film solar cells using the CZTS material will also be discussed.

  6. Buffer layer selection for CuIn1 − xGa xSe2 based thin film solar cells

    International Nuclear Information System (INIS)

    In this work, device modeling and simulation studies have been carried out with a variety of buffer layers over CIGS absorption layer. The band diagram, electric field variation and I/V curves are analyzed and device performance parameters i.e. efficiency, open circuit voltage, short circuit current, quantum efficiency are calculated. The efficiency of CIGS solar cell with ZnSe buffer layer is found comparable with that of CdS layer. The highest short circuit current is found for solar cell with ZnSe buffer layer, whereas the ZnS/CIGS heterojunction provides the highest quantum efficiency in the structures considered. The device physics is discussed and the effect of thickness of buffer layers and absorption layer is studied in order to find a more efficient and stable solar cell. (papers)

  7. Peeled-off flexible Cu(In,Ga)Se2 solar cells and Na diffusion effects on cell performances

    Science.gov (United States)

    Sadono, Adiyudha; Ogihara, Tomohiro; Hino, Masashi; Yamamoto, Kenji; Yamada, Akira

    2016-07-01

    Na diffusion on Cu(In,Ga)Se2 (CIGS) solar cells fabricated on top of polyimide-coated soda-lime glass (SLG) substrate were investigated. Polyimide-coated SLG that can be used as substrate for fabricating flexible solar cells by peeled-off process, shown to have the same efficiency with SLG reference which is around 12%, indicating diffusion of almost same amount of Na from the substrates into the CIGS. Additional Na incorporation by NaF post-deposition treatment (PDT) were applied to CIGS deposited on substrates with different Na quantity to understand the Na diffusion effect prior and post CIGS deposition. Improvement of cells performance were observed for CIGS deposited on both substrates with or without Na diffusion. Final conversion efficiency of 15% was achieved after PDT for CIGS deposited on Na-contained substrates suggesting that PDT can be used even for CIGS with Na diffusion from the substrate. [Figure not available: see fulltext.

  8. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  9. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy

    Science.gov (United States)

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  10. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Conservation Innovation Grants (CIG). 1466.27 Section 1466.27 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS ENVIRONMENTAL QUALITY INCENTIVES PROGRAM Contracts and Payments §...

  11. Lessons learned from NMSG-085 CIG Land Operation demonstration

    NARCIS (Netherlands)

    Gautreau, B.; Remmersmann, T.; Henderson, H.C.; Reus, N.M. de; Khimeche, L.; Pedersen, E.; Lillesoe, J.; Liberg, D.

    2013-01-01

    This paper presents the experience gained during demonstrations carried out between Denmark, France, Germany, the Netherlands and Spain under the umbrella of the NMSG-085 / CIG Land Operation group. The demonstration, also presented in this paper, focuses on command post exercise training. It highli

  12. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  13. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  14. Microstructural revolution of CIGS thin film using CuInGa ternary target during sputtering process

    International Nuclear Information System (INIS)

    Highlights: ► CuInGa (CIG) ternary targets were prepared by vacuum arc remelting. ► The sputtering energy has a great influence on microstructure of CIG films. ► Increase in sputtering energy resulted in phase transformation and indium loss. ► The surface roughness of CIGS films is determined by the morphology of precursors. ► Rough surface enriched in In lead to poor crystalline CIGS containing InSe phases. - Abstract: CuInGa (CIG) ternary targets were prepared by vacuum arc remelting and used to deposit CIG thin films through direct current (DC) sputtering. We adjusted the sputtering energy (1–2 kWh) by tuning both the sputtering power and the accumulative sputtering time. The impact of the varying sputtering energy on the microstructure of CIG targets and thin films was subsequently investigated. The experimental results indicated that the compositional uniformity of CIG targets is strongly influenced by this parameter. CIG thin films with a flat topography, low porosity, and dense grain boundaries were obtained when targets were accumulatively sputtered at 1 kWh. These films showed good compositional uniformity while the CIG targets were found to maintain their microstructural characteristics as compared to their as-melted counterparts. On the other hand, Cu(In,Ga)Se2 (CIGS) thin films, obtained by a selenization process, exhibited large faceted grains composed of a single chalcopyrite phase with a preferred orientation along the (1 1 2) plane. Accumulative sputtering of CIG targets at higher energies (e.g., 2 kWh) resulted in phase transformation and loss of In material as a result of an excess of residual heat budget on the surface generated by Ar ions bombardment. The CIG thin films thus showed an In-rich composition ratio, thereby potentially leading to In-rich CIGS thin films containing traces of an InSe compound.

  15. CuIn1-xGaxSe2 photovoltaic devices for tandem solar cell application

    International Nuclear Information System (INIS)

    CuIn1-xGaxSe2 (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm-2 to 13 mA cm-2 depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 deg. C ). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented

  16. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  17. Fabricating Cu(In,Ga)Se2 solar cells on flexible substrates by a new roll-to-roll deposition system suitable for industrial applications

    International Nuclear Information System (INIS)

    In this work, a new hybrid sputtering–evaporation system providing a scalable process for deposition of Cu(In,Ga)Se2 (CIGS) layers is presented. The growth apparatus has been designed and realized to fit a size suitable for direct industrial transfer. In this process the metal precursors are first of all sputtered on rotating transfer devices, then evaporated on the substrate by local heating in a Se atmosphere. The desired thickness and composition of the CIGS film are obtained by repeated sputtering–evaporation cycles. The cylindrical geometry of the deposition chamber has been designed to accommodate different types of flexible substrates with a maximum size of 20 × 120 cm2 in a roll-to-roll configuration. Several techniques, including secondary ion mass spectrometry, Raman and photoluminescence spectroscopies, x-ray diffraction, scanning electron microscopy, external quantum efficiency, and I–V under 1 Sun illumination, have been used to test both the as-grown CIGS layers and the solar cell devices based on them. A significant performance and good control of Ga grading and Na content were obtained for solar cells grown at 450 °C on polyimide substrates with high deposition rates. In spite of the fact that the present efficiency record for CIGS solar cells on polyimide substrates is 20.4%, the 10.1% obtained using the hybrid method presented in this work is significant because the growth apparatus meets the requirements for direct industrial transfer. In fact, this process is being transferred in a 1 MW production line, where standard CIGS layers are deposited at low temperature on flexible substrates in a single-step process with a 1 mm sec−1 substrate velocity. (paper)

  18. Vaping cannabis (marijuana): parallel concerns to e-cigs?

    Science.gov (United States)

    Budney, Alan J; Sargent, James D; Lee, Dustin C

    2015-11-01

    The proliferation of vaporization ('vaping') as a method for administering cannabis raises many of the same public health issues being debated and investigated in relation to e-cigarettes (e-cigs). Good epidemiological data on the prevalence of vaping cannabis are not yet available, but with current trends towards societal approval of medicinal and recreational use of cannabis, the pros and cons of vaping cannabis warrant study. As with e-cigs, vaping cannabis portends putative health benefits by reducing harm from ingesting toxic smoke. Indeed, vaping is perceived and being sold as a safer way to use cannabis, despite the lack of data on the health effects of chronic vaping. Other perceived benefits include better taste, more efficient and intense effects and greater discretion which allows for use in more places. Unfortunately, these aspects of vaping could prompt an increased likelihood of trying cannabis, earlier age of onset, more positive initial experiences, and more frequent use, thereby increasing the probability of problematic use or addiction. Sales and marketing of vaping devices with no regulatory guidelines, especially related to advertising or product development targeting youth, parallels concerns under debate related to e-cigs and youth. Thus, the quandary of whether or not to promote vaping as a safer method of cannabis administration for those wishing to use cannabis, and how to regulate vaping and vaping devices, necessitates substantial investigation and discussion. Addressing these issues in concert with efforts directed towards e-cigs may save time and energy and result in a more comprehensive and effective public health policy on vaping. PMID:26264448

  19. An analysis of glass–glass CIGS manufacturing costs

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A. W.; Fu, Ran; Woodhouse, Michael

    2016-09-01

    This article examines current cost drivers and potential avenues to reduced cost for monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules by constructing a comprehensive bottom-up cost model. For a reference case where sputtering plus batch sulfurization after selenization (SAS) is employed, we compute a manufacturing cost of $69/m2 if the modules are made in the United States at a 1 GW/year production volume. At 14% module efficiency, this corresponds to a manufacturing cost of $0.49/WDC and a minimum sustainable price (MSP) of $0.67/WDC. We estimate that MSP could vary within +/-20% of this value given the range of quoted input prices, and existing variations in module design, manufacturing processes, and manufacturing location. Potential for reduction in manufacturing costs to below $0.40/WDC may be possible if average production module efficiencies can be increased above 17% without increasing $/m2 costs; even lower costs could be achieved if $/m2 costs could be reduced, particularly via innovations in the CIGS deposition process or balance-of-module elements. We present the impact on cost of regional factors, CIGS deposition method, device design, and price fluctuations. One metric of competitiveness-levelized cost of energy (LCOE) -- is also assessed for several U.S. locations and compared to that of standard multi-crystalline silicon (m(c-Si)) and cadmium telluride (CdTe).

  20. Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    Al2O3 rear surface passivated ultra-thin Cu(In,Ga)Se2 (CIGS) solar cells with Mo nano-particles (NPs) as local rear contacts are developed to demonstrate their potential to improve optical confinement in ultra-thin CIGS solar cells. The CIGS absorber layer is 380 nm thick and the Mo NPs are deposited uniformly by an up-scalable technique and have typical diameters of 150 to 200 nm. The Al2O3 layer passivates the CIGS rear surface between the Mo NPs, while the rear CIGS interface in contact with the Mo NP is passivated by [Ga]/([Ga] + [In]) (GGI) grading. It is shown that photon scattering due to the Mo NP contributes to an absolute increase in short circuit current density of 3.4 mA/cm2; as compared to equivalent CIGS solar cells with a standard back contact. - Highlights: • Proof-of-principle ultra-thin CIGS solar cells have been fabricated. • The cells have Mo nano-particles (NPs) as local rear contacts. • An Al2O3 film passivates the CIGS rear surface between these nano-particles. • [Ga]/([Ga] + [In]) grading is used to reduce Mo-NP/CIGS interface recombination

  1. Amorphous silicon based solar cells

    OpenAIRE

    Al Tarabsheh, Anas

    2007-01-01

    This thesis focuses on the deposition of hydrogenated amorphous silicon (a-Si:H) films bymeans of plasma enhanced chemical vapour deposition (PECVD). This technique allows the growth of device quality a-Si:H at relatively low deposition temperatures, below 140 °C and, therefore, enables the use of low-cost substrates, e.g. plastic foils. The maximum efficiencies of a-Si:H solar cells in this work are η= 6.8 % at a deposition temperature Tdep = 180 °C and η = 4.9 % at a deposition ...

  2. Developing Market Opportunities for Flexible Rooftop Applications of PV Using Flexible CIGS Technology: Market Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Sabnani, L.; Skumanich, A.; Ryabova, E.; Noufi, R.

    2011-01-01

    There has been a recent upsurge in developments for building-integrated phototovoltaics (BiPV) roof top materials based on CIGS. Several new companies have increased their presence and are looking to bring products to market for this application in 2011. For roof-top application, there are significant key requirements beyond just having good conversion efficiency. Other attributes include lightweight, as well as moisture-proof, and fully functionally reliable. The companies bringing these new BIPV/BAPV products need to ensure functionality with a rigorous series of tests, and have an extensive set of 'torture' tests to validate the capability. There is a convergence of form, aesthetics, and physics to ensure that the CIGS BiPV deliver on their promises. This article will cover the developments in this segment of the BiPV market and delve into the specific tests and measurements needed to characterize the products. The potential market sizes are evaluated and the technical considerations developed.

  3. Assessing Rare Metal Availability Challenges for Solar Energy Technologies

    Directory of Open Access Journals (Sweden)

    Leena Grandell

    2015-08-01

    Full Text Available Solar energy is commonly seen as a future energy source with significant potential. Ruthenium, gallium, indium and several other rare elements are common and vital components of many solar energy technologies, including dye-sensitized solar cells, CIGS cells and various artificial photosynthesis approaches. This study surveys solar energy technologies and their reliance on rare metals such as indium, gallium, and ruthenium. Several of these rare materials do not occur as primary ores, and are found as byproducts associated with primary base metal ores. This will have an impact on future production trends and the availability for various applications. In addition, the geological reserves of many vital metals are scarce and severely limit the potential of certain solar energy technologies. It is the conclusion of this study that certain solar energy concepts are unrealistic in terms of achieving TW scales.

  4. Electronic effect of Na on Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Cho, Dae-Hyung; Lee, Kyu-Seok; Chung, Yong-Duck; Kim, Ju-Hee; Park, Soo-Jeong; Kim, Jeha

    2012-07-01

    We report the effect of Na on the electronic properties of Cu(In,Ga)Se2 (CIGS) thin-film solar cells with a structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/SiOx/soda-lime glass (SLG). The diffusion of Na from the SLG into the CIGS layer was systematically controlled by varying the thickness of SiOx. As the Na content increased, the hole concentration of CIGS was enhanced, while the band-gap was nearly constant, which led to a lower Fermi level in the CIGS towards its valence-band edge. The Na-induced increment in the built-in potential (Vbi) across the n-(ITO/i-ZnO/CdS)/p-CIGS junction yielded an increment of open-circuit voltage that well agreed with the calculated Vbi.

  5. PIC BASED SOLAR CHARGING CONTROLLER FOR BATTERY

    Directory of Open Access Journals (Sweden)

    Mrs Jaya N. Ingole

    2012-02-01

    Full Text Available Solar resource is unlimited the government is trying to implement the use of Solar panels as an energy source in rural and sub urban areas for lighting the street lights, but the battery used to store the power gets affected due to overcharge & discharges. This paper presents the use of PIC16F72 based solar charger controller for controlling the overcharging and discharging of a solar cell. It works by continuously optimizing the interface between the solar array and battery. First, the variable supply is fixed at 12.8V dc—the voltage of a fully charged battery— and linked to the battery point of the circuit. Cut Off of battery from load voltage is 10.8 volt. A PIC16F72 for small size and inbuilt analog inputs is used to determine voltage level of battery and solar panel..It also describes how the disadvantages of analog circuit are overcome by this controller. The flow chart is also provided.

  6. Manufacturing technology development for CuInGaSe2 solar cell modules

    Science.gov (United States)

    Stanbery, B. J.

    1991-11-01

    The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large area CuIn(1-x)Ga(x)Se2 (CIGS)/Cd(1-y)Zn(y)S/ZnO monolithically integrated thin film solar cell modules will enable 15 pct. median efficiencies to be achieved in high volume manufacturing. We do not believe that CuInSe2 (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x greater than or = 0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30 year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large area integrated thin film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

  7. Manufacturing technology development for CuInGaSe sub 2 solar cell modules

    Energy Technology Data Exchange (ETDEWEB)

    Stanbery, B.J. (Boeing Aerospace and Electronics Co., Seattle, WA (United States))

    1991-11-01

    The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{ge}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

  8. Solar cells on the base of organic semiconductors

    International Nuclear Information System (INIS)

    The parameters of organic solar cells on the base of different organic semiconductors as poly epoxypropyl carbazole, copper phthalocyanine and bordeaux perylene are considered. Moreover the properties of solar cells on the base of n-GaAs and copper phthalocyanine heterostructure are described. The new technologies in the field of organic solar cells as bulk heterostructure solar cells are discussed. (author)

  9. Beneficial Effect of Post-Deposition Treatment in High-Efficiency Cu(In,Ga)Se2 Solar Cells through Reduced Potential Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Soren A.; Glynn, Stephen; Kanevce, Ana; Dippo, Pat; Li, Jian V.; Levi, Dean H.; Kuciauskas, Darius

    2016-08-14

    World-record power conversion efficiencies for Cu(In,Ga)Se2 (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ~40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in the electronic potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ~10 um, which is ~4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.

  10. Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se2 solar cells through reduced potential fluctuations

    Science.gov (United States)

    Jensen, S. A.; Glynn, S.; Kanevce, A.; Dippo, P.; Li, J. V.; Levi, D. H.; Kuciauskas, D.

    2016-08-01

    World-record power conversion efficiencies for Cu(In,Ga)Se2 (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ˜40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in the electronic potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ˜10 μm, which is ˜4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.

  11. A review of cermet-based spectrally selective solar absorbers

    OpenAIRE

    Cao, Feng; McEnaney, Kenneth; Chen, Gang; Ren, Zhifeng

    2013-01-01

    Spectrally selective solar absorbers harvest solar energy in the form of heat. Solar absorbers using cermet-based coatings demonstrate a high absorptance of the solar spectrum and a low emittance in the infrared (IR) regime. Extensive work has been done to optimize cermet-based solar absorbers to achieve high performance by exploring different cermet (ceramic–metal composite) materials and film configurations through different preparation techniques such as electrodeposition, sputtering, puls...

  12. Evaluation of solar thermal storage for base load electricity generation

    OpenAIRE

    Adinberg R.

    2012-01-01

    In order to stabilize solar electric power production during the day and prolong the daily operating cycle for several hours in the nighttime, solar thermal power plants have the options of using either or both solar thermal storage and fossil fuel hybridization. The share of solar energy in the annual electricity production capacity of hybrid solar-fossil power plants without energy storage is only about 20%. As it follows from the computer simulations performed for base load electricity dem...

  13. Elemental depth profiling in Cu(In, Ga)Se 2 solar cells using micro-PIXE on a bevelled section

    Science.gov (United States)

    Spemann, D.; Otte, K.; Lorenz, M.; Butz, T.

    2005-04-01

    Cu(In, Ga)Se2 (CIGS) solar cells deposited on polyimide foils by the Solarion company in a web-coater based process using sputter and evaporation techniques were investigated in the ion beam laboratory LIPSION of the University of Leipzig by means of Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) using a 2.25 MeV proton microbeam. From these measurements the composition of the absorber as well as the lateral homogeneity and the film thicknesses of the individual layers of the solar cell could be determined under some reasonable assumptions. Quantitative depth profiling of the individual elements was performed by micro-PIXE measurements on a bevelled section of a CIGS solar cell prepared by ion beam etching. It revealed small concentration-depth-gradients for Cu, In, Ga and Se within the CIGS absorber layer. Furthermore, a remarkable amount of Cd from the overlying CdS buffer layer was found to be present in the absorber layer. Secondary Neutral Mass Spectrometry (SNMS) measurements were applied on the same samples for comparison.

  14. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey; Woodhouse, Michael

    2015-06-17

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  15. Study of Emergency Power Based on Solar Battery Charging

    OpenAIRE

    Wang Lei; Zhu Mengfu; Chen Ping; Deng Cheng; Liu Zhimeng; Wang Yanan

    2016-01-01

    To study an emergency power based on solar battery charging. Based on the electric-generation principle of solar panel, solar energy is changed into electrical energy. Through voltage conversion circuit and filter circuit, electrical energy is stored in the energy storage battery. The emergency power realizes the conversion from solar energy to electrical energy. The battery control unit has the function of PWM (Pulse-Width Modulation) charging, overcharging protection, over-discharging prote...

  16. Advanced Processing of CdTe- and CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2}-Based Solar Cells; Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Morel, D.L.; Ferekides, C.S.

    2000-09-05

    The main tasks of the cadmium telluride portion of this project include the development of simplified processing for fabricating high-efficiency CdTe solar cells, studies on the long-term stability of CdTe devices, and the development of alternative transparent conducting oxides, window layers, and back contacts. The second portion of this project focused on CIGS solar cells. The main tasks include the development of a manufacturable process for CIGS devices and the development of high-band-gap alloys for use in tandem cell structures. Additional objectives include development of improved junction formation processing and contributing to the overall understanding of these materials and devices. Because the processing is manufacturing-driven, the authors use an all solid-state, simplified two-step process that relaxes the level of deposition control required.

  17. Manufacturing technology development for CuInGaSe{sub 2} solar cell modules. Final subcontract report, 9 January 1991--14 April 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stanbery, B.J. [Boeing Aerospace and Electronics Co., Seattle, WA (US)

    1991-11-01

    The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{>=}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

  18. Comparison of Artificial Neural Networks and GIS Based Solar Analysis for Solar Potential Estimation

    Science.gov (United States)

    Konakoǧlu, Berkant; Usta, Ziya; Cömert, Çetin; Gökalp, Ertan

    2016-04-01

    Nowadays, estimation of solar potential plays an important role in planning process for sustainable cities. The use of solar panels, which produces electricity directly from the sun, has become popular in accordance with developing technologies. Since the use of solar panels enables the users to decrease costs and increase yields, the use of solar panels will be more popular in the future. Production of electricity is not convenient for all circumstances. Shading effects, massive clouds and rainy weather are some factors that directly affect the production of electricity from solar energy. Hence, before the installation of solar panels, it is crucial to conduct spatial analysis and estimate the solar potential of the place that the solar panel will be installed. There are several approaches to determine the solar potential. Examination of the applications in the literature reveals that the applications conducted for determining the solar potential are divided into two main categories. Solar potential is estimated either by using artificial neural network approach in which statistical parameters such as the duration of sun shine, number of clear days, solar radiation etc. are used, or by spatial analysis conducted in GIS approaches in which spatial parameters such as, latitude, longitude, slope, aspect etc. are used. In the literature, there are several studies that use both approaches but the literature lacks of a study related to the comparison of these approaches. In this study, Karadeniz Technical University campus has been selected as study area. Monthly average values of the number of clear sky days, air temperature, atmospheric pressure, relative humidity, sunshine duration and solar radiation parameters obtained for the years between 2005 and 2015 will be used to perform artificial neural network analysis to estimate the solar potential of the study area. The solar potential will also be estimated by using GIS-based solar analysis modules. The results of

  19. Characterization of Damp-Heat Degradation of CuInGaSe2 Solar Cell Components and Devices by (Electrochemical) Impedance Spectroscopy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J. J.; Noufi, R.

    2011-09-01

    This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.

  20. Effect of rear-surface buffer layer on performance of lift-off Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Aoyagi, Kenta; Tamura, Akihiro; Takakura, Hideyuki; Minemoto, Takashi

    2014-01-01

    The effect of an Au and MoOx rear-surface buffer layer inserted between Cu(In,Ga)Se2 (CIGS) and ZnO:Al on solar cell performances was examined. The lift-off CIGS solar cell without a rear-surface buffer layer showed particular characteristics of two series-connected diodes in the reverse direction, and its short-circuit current density was almost zero. In contrast, the Au or MoOx rear-surface buffer layer improved these characteristics. Although the lift-off CIGS solar cell with the Au rear-surface buffer layer showed shunt characteristics and low efficiency, the efficiency of the lift-off CIGS solar cell with the MoOx rear-surface buffer layer was approximately 50% of that of substrate-type CIGS solar cells. Diode parameters of lift-off CIGS solar cells were determined by fitting analysis of current density-voltage curves using a proposed new equivalent circuit model for lift-off CIGS solar cells.

  1. Fundamental Materials Research and Advanced Process Development for Thin-Film CIS-Based Photovoltaics: Final Technical Report, 2 October 2001 - 30 September 2005

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T. J.; Li, S. S.; Crisalle, O. D.; Craciun, V.

    2006-09-01

    The objectives for this thin-film copper-indium-diselenide (CIS) solar cell project cover the following areas: Develop and characterize buffer layers for CIS-based solar cell; grow and characterize chemical-bath deposition of Znx Cd1-xS buffer layers grown on CIGS absorbers; study effects of buffer-layer processing on CIGS thin films characterized by the dual-beam optical modulation technique; grow epitaxial CuInSe2 at high temperature; study the defect structure of CGS by photoluminescence spectroscopy; investigate deep-level defects in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy; conduct thermodynamic modeling of the isothermal 500 C section of the Cu-In-Se system using a defect model; form alpha-CuInSe2 by rapid thermal processing of a stacked binary compound bilayer; investigate pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells; and conduct device modeling and simulation of CIGS solar cells.

  2. Economic Study of Solar Thermal Plant based on Gas Turbines

    OpenAIRE

    Cabané Fernández, Albert

    2012-01-01

    The goal of this thesis is to carry out an economic analysis of solar thermal plant based on gas turbines. Throughout the project , there is a brief overview of different technologies used today in CSP without going into greater depth in most of them, but emphasizing solar tower technology with solar hybrid gas turbines. Having explained the reason why this technology has been chosen, possible configurations currently found in the solar panorama will be considered. Then, ...

  3. Impact of Cu-rich growth on the Cu2ZnSnSe4 surface morphology and related solar cells behavior

    Science.gov (United States)

    Ding, Sun; Yang, Ge; Li, Zhang; Shengzhi, Xu; Ze, Chen; Ning, Wang; Xuejiao, Liang; Changchun, Wei; Ying, Zhao; Xiaodan, Zhang

    2016-01-01

    In order to study the influence of Cu-rich growth on the performance of the Cu2ZnSnSe4 (CZTSe) thin film solar cells, a multi-stage co-evaporation process is applied. The CZTSe films are grown at a lower substrate temperature to reduce the existence time of Cux Sey at the first period caused by the volatility of SnSex. This study examines the surface morphology and device performance in Cu-rich growth and close-to-stoichiometric growth. Although the grain size of Cu-rich growth film increases a little, the difference was not dramatic as the results of CIGS reported previously. A model based on the grain boundary migration theory is proposed to explain the experimental results. The mechanisms of Cu-rich growth between CZTSe and CIGS might be different. Project supported by the Specialized Research Fund for the PhD Program of Higher Education (No. 20120031110039).

  4. Key techniques for space-based solar pumped semiconductor lasers

    Science.gov (United States)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  5. Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films

    International Nuclear Information System (INIS)

    Highlights: ► Secondary phase exist in the RF sputtered CIGS films as it deposited at 150 °C and 500 °C. ► CIGS films deposited beyond 350 °C show (1 1 2) prefer orientation. ► Eg of the CIGS films increased with the increase of substrate temperature. ► Conductivity of the films is affected by “variable range hopping” mechanism. - Abstract: This work studied the effect of substrate temperature on the phase structure, optical and electrical properties of the one-step radio frequency sputtered Cu(In,Ga)Se2 (CIGS) thin films. X-ray diffraction (XRD) analysis revealed that all the deposited CIGS films are chalcopyrite phase with polycrystalline structure. The films deposited beyond the substrate temperature of 350 °C show (1 1 2) prefer orientation. Raman spectra reveal that the 150 °C deposited CIGS film coexists with Cu2−xSe phase and the 500 °C deposited film contains ordered defect compound (ODC) phase. With the increase of substrate temperature, energy band gap of the CIGS film increase from 0.99 to 1.27 eV. Films deposited at higher temperature exhibit larger electrical conductivity. Conductivity of the CIGS films is dominated by “variable range hopping” mechanism. The disorder in our CIGS the films is associated with the formation of intrinsic defects such as VSe and InCu for their low formation energy.

  6. Optical Amplifier Based Space Solar Power

    Science.gov (United States)

    Fork, Richard L.

    2001-01-01

    The objective was to design a safe optical power beaming system for use in space. Research was focused on identification of strategies and structures that would enable achievement near diffraction limited optical beam quality, highly efficient electrical to optical conversion, and high average power in combination in a single system. Efforts centered on producing high efficiency, low mass of the overall system, low operating temperature, precision pointing and tracking capability, compatibility with useful satellite orbits, component and system reliability, and long component and system life in space. A system based on increasing the power handled by each individual module to an optimum and the number of modules in the complete structure was planned. We were concerned with identifying the most economical and rapid path to commercially viable safe space solar power.

  7. AMIGA project: Quantification of the isolation of 950 CIG galaxies

    CERN Document Server

    Verley, S; Verdes-Montenegro, L; Combes, F; Sabater, J; Sulentic, J; Bergond, G; Espada, D; Lisenfeld, U; Odewahn, S C

    2009-01-01

    The role of the environment on galaxy evolution is still not fully understood. In order to quantify and set limits on the role of nurture one must identify and study a sample of isolated galaxies. The AMIGA project "Analysis of the Interstellar Medium of Isolated GAlaxies" is doing a multi-wavelength study of a large sample of isolated galaxies in order to examine their interstellar medium and star formation activity. We processed data for 950 galaxies from the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) and evaluated their isolation using an automated star-galaxy classification procedure (down to M_B ~17.5) on large digitised POSS-I fields surrounding each isolated galaxy (within a projected radius of at least 0.5 Mpc). We defined, compared and discussed various criteria to quantify the degree of isolation for these galaxies: e.g. Karachentseva's revised criterion, local surface density computations, estimation of the external tidal force affecting each isolated galaxy. We found galaxies violati...

  8. Investigation of the effects of rear surface recombination on the Cu(In,Ga)Se2 solar cell performances

    Science.gov (United States)

    Umehara, Takeshi; Iinuma, Shohei; Yamada, Akira

    2016-07-01

    This study investigated the band profile design of Cu(In,Ga)Se2 (CIGS) solar cells by considering the rear surface recombination. We compared the structures assuming the back surface field (BSF), passivation and graded band profile by using device simulator. As a result, it was found that the band structure of a combination of a flat-band and a single-graded profile is the suitable structure for CIGS solar cells with the absorber thickness of around 1.0 μm. In addition, the back passivation technique is unnecessary in the case of CIGS solar cells with a band profiling technique. We proposed that the band structure of a combination of a flat-band and a single-graded profile is the most practical and effective way for CIGS solar cells. [Figure not available: see fulltext.

  9. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    OpenAIRE

    Spataru, Sergiu; Sera, Dezso; KEREKES, Tamas; Teodorescu, Remus; Cotfas, Petru Adrian; Cotfas, Daniel Tudor

    2014-01-01

    Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform which is a laboratory teaching tool developed at Transylvania University of Brasov. Using this platform, solar cells can be characterized under various illumination, temperature and angle of light inci...

  10. Heat Storage for oil based solar concentrators

    OpenAIRE

    Herdlevær, Rune

    2012-01-01

    As the world’s energy demand increases, more and more focus is directed towards different solar energy solutions. In many African countries, a great share of the population cook their food with firewood as the energy source. Since the use of firewood leads to deforestation and bad indoor climate, it is of interest to implement solar cookers in countries where the sun radiation is sufficiently strong. Most commercialized solar cookers are direct systems, meaning the cooking has to take place w...

  11. Scientific Approach to Renewable Energy Through Solar Cells

    Science.gov (United States)

    Rao, M. C.

    Renewable energy is increasingly viewed as critically important globally. Solar cells convert the energy of the sun into electricity. The method of converting solar energy to electricity is pollution free, and appears a good practical solution to the global energy problems. Energy policies have pushed for different technologies to decrease pollutant emissions and reduce global climate change. Photovoltaic technology, which utilizes sunlight to generate energy, is an attractive alternate energy source because it is renewable, harmless and domestically secure. Transparent conducting metal oxides, being n-type were used extensively in the production of heterojunction cells using p-type Cu2O. The long held consensus is that the best approach to improve cell efficiency in Cu2O-based photovoltaic devices is to achieve both p- and n-type Cu2O and thus p-n homojunction of Cu2O solar cells. Silicon, which, next to oxygen, is the most represented element in the earth's crust, is used for the production of monocrystalline silicon solar cells. Silicon is easily obtained and processed and it is not toxic and does not form compounds that would be environmentally harmful. In contemporary electronic industry silicon is the main semiconducting element. Thin-film cadmium telluride (CdTe) solar cells are the basis of a significant technology with major commercial impact on solar energy production. Polycrystalline thin-film solar cells such as CuInSe2 (CIS), Cu (In, Ga) Se2 (CIGS) and CdTe compound semiconductors are important for terrestrial applications because of their high efficiency, long-term stable performance and potential for low-cost production. Highest record efficiencies of 19.2% for CIGS and 16.5% for CdTe have been achieved.

  12. Investigation of the effect of potassium on Cu(In,Ga)Se2 layers and solar cells

    International Nuclear Information System (INIS)

    We investigate the influence of potassium (K) on the Cu(In,Ga)Se2 (CIGS) growth kinetics on alkali-free alumina substrates and the electrical parameters of the CIGS solar cell by intentional K doping of the CIGS layer by a KF-precursor layer and KF-post deposition treatment (PDT). Secondary ion mass spectroscopy measurements revealed that K can be incorporated into the CIGS layer by both processes. The CIGS composition of the KF-precursor sample shows a stronger [Ga]/([Ga] + [In]) (GGI) profile. By analysing the samples with scanning electron microscopy we observed smaller CIGS grains for the KF-precursor sample compared to the K-free reference and KF-PDT sample. jV-measurements of the KF-PDT and the KF-precursor sample show an increase in the cell efficiency η from 10.7% to 13.6% and 13.7%, respectively, compared to the K-free reference sample. The external quantum efficiency measurements of the KF-precursor sample show an increased absorption in the infrared region. Capacitance-voltage measurements reveal an increase in the net doping concentration of both samples treated with K. We assume that the enhancement is caused by passivation of grain boundaries and donor-like defects by K, as previously demonstrated for Na. - Highlights: • K-doped Cu(In,Ga)Se2 (CIGS) layers from KF-precursor and KF-post deposition treatment • Separation of the K-effect from the Na-effect by using alkali-free substrates • Interdiffusion of CIGS elements during CIGS growth is hindered by K • KF-precursor leads to smaller CIGS grains and a stronger Cu depletion at the CIGS surface. • K leads to an increase in the conversion efficiency

  13. Investigation of the effect of potassium on Cu(In,Ga)Se{sub 2} layers and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Laemmle, A., E-mail: anke.laemmle@zsw-bw.de; Wuerz, R.; Powalla, M.

    2015-05-01

    We investigate the influence of potassium (K) on the Cu(In,Ga)Se{sub 2} (CIGS) growth kinetics on alkali-free alumina substrates and the electrical parameters of the CIGS solar cell by intentional K doping of the CIGS layer by a KF-precursor layer and KF-post deposition treatment (PDT). Secondary ion mass spectroscopy measurements revealed that K can be incorporated into the CIGS layer by both processes. The CIGS composition of the KF-precursor sample shows a stronger [Ga]/([Ga] + [In]) (GGI) profile. By analysing the samples with scanning electron microscopy we observed smaller CIGS grains for the KF-precursor sample compared to the K-free reference and KF-PDT sample. jV-measurements of the KF-PDT and the KF-precursor sample show an increase in the cell efficiency η from 10.7% to 13.6% and 13.7%, respectively, compared to the K-free reference sample. The external quantum efficiency measurements of the KF-precursor sample show an increased absorption in the infrared region. Capacitance-voltage measurements reveal an increase in the net doping concentration of both samples treated with K. We assume that the enhancement is caused by passivation of grain boundaries and donor-like defects by K, as previously demonstrated for Na. - Highlights: • K-doped Cu(In,Ga)Se{sub 2} (CIGS) layers from KF-precursor and KF-post deposition treatment • Separation of the K-effect from the Na-effect by using alkali-free substrates • Interdiffusion of CIGS elements during CIGS growth is hindered by K • KF-precursor leads to smaller CIGS grains and a stronger Cu depletion at the CIGS surface. • K leads to an increase in the conversion efficiency.

  14. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas;

    2014-01-01

    interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department......Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...... which is a laboratory teaching tool developed at Transylvania University of Brasov. Using this platform, solar cells can be characterized under various illumination, temperature and angle of light incidence. Additionally, the SolarLab platform includes guided exercises and intuitive graphical user...

  15. Polyimide based amorphous silicon solar modules

    Science.gov (United States)

    Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max

    1993-01-01

    Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.

  16. Microcontroller Based Solar Charge Controller for Power Application

    Directory of Open Access Journals (Sweden)

    Mr. Vikas Khare

    2012-01-01

    Full Text Available Photovoltaic cell converts solar energy directly into electricity. This paper describes a design of microcontroller based solar charge controller for power application.[2] The work of the Paper is to charge a 12 volt battery by using a 50 watt solar panel with maximum power. This circuit regulates the charging of battery in a solar system by monitoring battery voltage and switching the solar or other power source off when the battery reached a preset value.[1] The microprocessor based charge control technique presented in this paper shows the assurance for charging the battery with the maximum power. Though the voltage of photovoltaic cell and the voltage of battery are different, the maximum power can be attained during battery charging from the photovoltaic cell through this technique. The voltages of the solar panel are different in different time and days.

  17. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    Microscopy and as solar cells in a blend with PCBM. It was concluded that these particles did not show a potential large enough for continuous work due to a high material loss and low efficiency when applied in solar cells. The second method to achieve was preparation of pre-arranged morphology organic......The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need to be...... nanoparticles consisting of a blend of donor and acceptor in an aqueous dispersion, thereby addressing two of the issues remaining in the field of organic solar cells. This approach was used on six different polymers, which all had the ability to prepare aqueous nanoparticle inks. The morphology of the...

  18. A Physics-based Analytical Model for Perovskite Solar Cells

    OpenAIRE

    Sun, Xingshu; Asadpour, Reza; Nie, Wanyi; Mohite, Aditya D.; Alam, Muhammad A.

    2015-01-01

    Perovskites are promising next-generation absorber materials for low-cost and high-efficiency solar cells. Although perovskite cells are configured similar to the classical solar cells, their operation is unique and requires development of a new physical model for characterization, optimization of the cells, and prediction of the panel performance. In this paper, we develop such a physics-based analytical model to describe the operation of different types of perovskite solar cells, explicitly...

  19. Fabrication of CIGS thin films by using spray pyrolysis and post-selenization

    International Nuclear Information System (INIS)

    We fabricated Cu(In1-xGax)Se2 (x: 0 ∼ 0.4) thin films by using ultrasonic spray pyrolysis and post-selenization. First, we made Cu(In1-xGax)S2 (x: 0 ∼ 0.4) films by ultrasonic spray pyrolysis under an air environment. Then, we converted as-sprayed Cu(In1-xGax)S2 (CIGS) films to Cu(In1-xGax)Se2 (CIGSe) films through post-selenization. For all Ga fractions, the sprayed CIGS films were well recrystallized into poly-crystalline CIGSe films with a dominant (112) texture, which was confirmed by X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analyses. This result indicates that CIGSe films with any amount of Ga substitution can be made by converting sprayed CIGS to CIGSe with post-selenization.

  20. Photoelectrochemical Solar Cells Based on Chitosan Electroylte

    Institute of Scientific and Technical Information of China (English)

    M.H.A.Buraidah; A.K.Arof

    2007-01-01

    1 Results ITO-ZnTe/Chitosan-NH4I-I2/ITO photoelectrochemical solar cells have been fabricated and characterized by current-voltage characteristics.In this work,the ZnTe thin film was prepared by electrodeposition on indium-tin-oxide coated glass.The chitosan electrolyte consists of NH4I salt and iodine.Iodine was added to provide the I3-/I- redox couple.The PEC solar cell was fabricated by sandwiching an electrolyte film between the ZnTe semiconductor and ITO conducting glass.The area of the solar cell...

  1. Forbush Decrease Prediction Based on the Remote Solar Observations

    CERN Document Server

    Dumbovic, Mateja; Calogovic, Jasa

    2015-01-01

    We employ remote observations of coronal mass ejections (CMEs) and the associated solar flares to forecast the CME-related Forbush decreases, i.e., short-term depressions in the galactic cosmic-ray flux. The relationship between the Forbush effect at the Earth and remote observations of CMEs and associated solar flares is studied via a statistical analysis. Relationships between Forbush decrease magnitude and several CME/flare parameters was found, namely the initial CME speed, apparent width, source position, associated solar-flare class and the effect of successive-CME occurrence. Based on the statistical analysis, remote solar observations are employed for a Forbush-decrease forecast. For that purpose, an empirical probabilistic model is constructed that uses selected remote solar observations of CME and associated solar flare as an input, and gives expected Forbush-decrease magnitude range as an output. The forecast method is evaluated using several verification measures, indicating that as the forecast t...

  2. Nanocrystalline silicon based thin film solar cells

    Science.gov (United States)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  3. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals

    Science.gov (United States)

    Bernechea, María; Miller, Nichole Cates; Xercavins, Guillem; So, David; Stavrinadis, Alexandros; Konstantatos, Gerasimos

    2016-08-01

    Solution-processed inorganic solar cells are a promising low-cost alternative to first-generation solar cells. Solution processing at low temperatures combined with the use of non-toxic and abundant elements can help minimize fabrication costs and facilitate regulatory acceptance. However, at present, there is no material that exhibits all these features while demonstrating promising efficiencies. Many of the candidates being explored contain toxic elements such as lead or cadmium (perovskites, PbS, CdTe and CdS(Se)) or scarce elements such as tellurium or indium (CdTe and CIGS(Se)/CIS). Others require high-temperature processes such as selenization or sintering, or rely on vacuum deposition techniques (Sb2S(Se)3, SnS and CZTS(Se)). Here, we present AgBiS2 nanocrystals as a non-toxic, earth-abundant material for high-performance, solution-processed solar cells fabricated under ambient conditions at low temperatures (≤100 °C). We demonstrate devices with a certified power conversion efficiency of 6.3%, with no hysteresis and a short-circuit current density of ∼22 mA cm‑2 for an active layer thickness of only ∼35 nm.

  4. Effects of defect states on the performance of CuInGaSe2 solar cells

    International Nuclear Information System (INIS)

    Device modeling has been carried out to investigate the effects of defect states on the performance of ideal CuInGaSe2 (CIGS) thin film solar cells theoretically. The varieties of defect states (location in the band gap and densities) in absorption layer CIGS and in buffer layer CdS were examined. The performance parameters: open-circuit voltage, short-circuit current, fill factor, and photoelectric conversion efficiency for different defect states were quantitatively analyzed. We found that defect states always harm the performance of CIGS solar cells, but when defect state density is less than 1014 cm−3 in CIGS or less than 1018 cm−3 in CdS, defect states have little effect on the performances. When defect states are located in the middle of the band gap, they are more harmful. The effects of temperature and thickness are also considered. We found that CIGS solar cells have optimal performance at about 170 K and 2 μm of CIGS is enough for solar light absorption. (semiconductor devices)

  5. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.

    Science.gov (United States)

    Tsai, Hung-Wei; Thomas, Stuart R; Chen, Chia-Wei; Wang, Yi-Chung; Tsai, Hsu-Sheng; Yen, Yu-Ting; Hsu, Cheng-Hung; Tsai, Wen-Chi; Wang, Zhiming M; Chueh, Yu-Lun

    2016-03-30

    Defect control in Cu(In,Ga)Se2 (CIGS) materials, no matter what the defect type or density, is a significant issue, correlating directly to PV performance. These defects act as recombination centers and can be briefly categorized into interface recombination and Shockley-Read-Hall (SRH) recombination, both of which can lead to reduced PV performance. Here, we introduce an electrochemical passivation treatment for CIGS films that can lower the oxygen concentration at the CIGS surface as observed by X-ray photoelectron spectrometer analysis. Temperature-dependent J-V characteristics of CIGS solar cells reveal that interface recombination is suppressed and an improved rollover condition can be achieved following our electrochemical treatment. As a result, the surface defects are passivated, and the power conversion efficiency performance of the solar cell devices can be enhanced from 4.73 to 7.75%. PMID:26815164

  6. Field of solar physics: Review and recommendations for ground-based solar research. Final report

    International Nuclear Information System (INIS)

    The report surveys the present vitality, quality, and directions of solar research. The study included a determination of the present and future needs for ground-based observational facilities and instrumentation, and for related analysis and theory, in terms of the priority needs of the solar community. The study identifies broad institutional issues and recommends possible institutional changes to help overcome problems. The survey covers the science opportunities in the field of solar physics; the demographic composition and views of solar physicists; requirements for instrumentation, observations, theory, analysis, and data availability; and identifies a number of critical problem areas, prominent among which is that the university role in solar physics is inadequate to sustain a vital science

  7. Characteristics of Ga-Rich Cu(In, Ga)Se2 Solar Cells Grown on Ga-Doped ZnO Back Contact.

    Science.gov (United States)

    Sun, Qian; Kim, Kyoung-Bo; Jeon, Chan-Wook

    2016-05-01

    Wide bandgap Cu(In,Ga)Se2 (CIGS) thin films were deposited on Ga-rich Ga:ZnO (GZO) or MoN/GZO by single-stage co-evaporation. CIGS/TCO interface phases, such as resistive n-type Ga2O3, which are likely to have formed during the high temperature growth of Ga-rich CIGS, can deteriorate the solar cell performance. Although some Ga accumulation was observed in both of the CIGS/GZO and CIGS/MoN/GZO interfaces formed at 520 degrees C, the Ga oxide layer was absent. On the other hand, their current-voltage characteristics showed strong roll-over behavior regardless of the MoN diffusion barrier. The strong Schottky barrier formation at the CLGS/GZO junction due to the low work function of GZO, was attributed to current blocking at a high forward bias. PMID:27483870

  8. CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies

    Directory of Open Access Journals (Sweden)

    Furue Motoki

    2010-07-01

    Full Text Available Abstract Background Immunoglobulin (IG or antibody and the T-cell receptor (TR are pivotal proteins in the immune system of higher organisms. In cancer immunotherapy, the immune responses mediated by tumor-epitope-binding IG or TR play important roles in anticancer effects. Although there are public databases specific for immunological genes, their contents have not been associated with clinical studies. Therefore, we developed an integrated database of IG/TR data reported in cancer studies (the Cancer-related Immunological Gene Database [CIG-DB]. Description This database is designed as a platform to explore public human and murine IG/TR genes sequenced in cancer studies. A total of 38,308 annotation entries for IG/TR proteins were collected from GenBank/DDBJ/EMBL and the Protein Data Bank, and 2,740 non-redundant corresponding MEDLINE references were appended. Next, we filtered the MEDLINE texts by MeSH terms, titles, and abstracts containing keywords related to cancer. After we performed a manual check, we classified the protein entries into two groups: 611 on cancer therapy (Group I and 1,470 on hematological tumors (Group II. Thus, a total of 2,081 cancer-related IG and TR entries were tabularized. To effectively classify future entries, we developed a computational method based on text mining and canonical discriminant analysis by parsing MeSH/title/abstract words. We performed a leave-one-out cross validation for the method, which showed high accuracy rates: 94.6% for IG references and 94.7% for TR references. We also collected 920 epitope sequences bound with IG/TR. The CIG-DB is equipped with search engines for amino acid sequences and MEDLINE references, sequence analysis tools, and a 3D viewer. This database is accessible without charge or registration at http://www.scchr-cigdb.jp/, and the search results are freely downloadable. Conclusions The CIG-DB serves as a bridge between immunological gene data and cancer studies, presenting

  9. Flexible Cu(In,Ga)Se2 thin-film solar cells%柔性铜铟镓硒薄膜太阳电池

    Institute of Scientific and Technical Information of China (English)

    闫礼; 乔在祥

    2011-01-01

    The general structure and researching status of flexible Cu (In,Ga)Se2 (CIGS) thin-film solar cells was described.The crucial technologies and challenges in the development of flexible CIGS solar cells were also involved.%介绍了柔性铜铟镓硒薄膜太阳电池的基本结构、研究现况、关键技术,同时指出了未来面临的挑战.

  10. Solar combi system based on a mantle tank

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2007-01-01

    thermal performance of the solar combisystem is compared to the thermal performance of a solar domestic hot water system based on a mantle tank. In the experimental study, tank temperatures and the heat transfer coefficient for the top mantle for a discharge test is determined. The investigations showed......A solar combisystem based on a mantle tank is investigated numerically and experimentally. Three different houses with four different radiator systems are considered for the simulations. The needed temperature for the auxiliary heater is determined for different houses and radiator systems. The...

  11. MICROCONTROLLER BASED SOLAR-TRACKING SYSTEM AND ITS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Okan BİNGÖL

    2006-02-01

    Full Text Available In this paper, a new micro-controller based solar-tracking system is proposed, implemented and tested. The scheme presented here can be operated as independent of the geographical location of the site of setting up. The system checks the position of the sun and controls the movement of a solar panel so that radiation of the sun comes normally to the surface of the solar panel. The developed-tracking system tracks the sun both in the azimuth as well as in the elevation plane. PC based system monitoring facility is also included in the design.

  12. Solar concentration by curved-base Fresnel lenses

    Science.gov (United States)

    Cosby, R. M.

    1977-01-01

    The solar concentration performance of idealized curved base line focusing Fresnel lenses is analyzed. A simple optical model was introduced to study the effects of base curvature and lens f-number. Thin lens ray tracing and the laws of reflection and refraction are used to develop expression for lens transmittance and image plane intensity profiles. The intensity distribution over the solar spectrum, lens dispersion effects, and absorption by the lens material are included in the analysis. Model capabilities include assessment of lens performance in the presence of small transverse tracking errors and the sensitivity of solar image characteristics to focusing.

  13. Solar combi system based on a mantle tank

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2007-01-01

    A solar combisystem based on a mantle tank is investigated numerically and experimentally. Three different houses with four different radiator systems are considered for the simulations. The needed temperature for the auxiliary heater is determined for different houses and radiator systems. The...... thermal performance of the solar combisystem is compared to the thermal performance of a solar domestic hot water system based on a mantle tank. In the experimental study, tank temperatures and the heat transfer coefficient for the top mantle for a discharge test is determined. The investigations showed...

  14. Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records

    CERN Document Server

    Schrijver, C J; Baltensperger, U; Cliver, E W; Guedel, M; Hudson, H S; McCracken, K G; Osten, R A; Peter, Th; Soderblom, D R; Usoskin, I G; Wolff, E W

    2012-01-01

    The most powerful explosions on the Sun [...] drive the most severe space-weather storms. Proxy records of flare energies based on SEPs in principle may offer the longest time base to study infrequent large events. We conclude that one suggested proxy, nitrate concentrations in polar ice cores, does not map reliably to SEP events. Concentrations of select radionuclides measured in natural archives may prove useful in extending the time interval of direct observations up to ten millennia, but as their calibration to solar flare fluences depends on multiple poorly known properties and processes, these proxies cannot presently be used to help determine the flare energy frequency distribution. Being thus limited to the use of direct flare observations, we evaluate the probabilities of large-energy solar explosions by combining solar flare observations with an ensemble of stellar flare observations. We conclude that solar flare energies form a relatively smooth distribution from small events to large flares, while...

  15. Solar flare forecasting based on sequential sunspot data

    International Nuclear Information System (INIS)

    It is widely believed that the evolution of solar active regions leads to solar flares. However, information about the evolution of solar active regions is not employed in most existing solar flare forecasting models. In the current work, a short-term solar flare forecasting model is proposed, in which sequential sunspot data, including three days of information about evolution from active regions, are taken as one of the basic predictors. The sunspot area, the McIntosh classification, the magnetic classification and the radio flux are extracted and converted to a numerical format that is suitable for the current forecasting model. Based on these parameters, the sliding-window method is used to form the sequential data by adding three days of information about evolution. Then, multi-layer perceptron and learning vector quantization are employed to predict the flare level within 48h. Experimental results indicate that the performance of the proposed flare forecasting model works better than previous models

  16. Optical emission spectroscopy of High Power Impulse Magnetron Sputtering (HiPIMS) of CIGS thin films

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Hubička, Zdeněk; Kohout, Michal; Kšírová, Petra; Brunclíková, Michaela; Kment, Štěpán; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    New York: IEEE, 2014, s. 1666-1669. ISBN 9781479943982. [IEEE Photovoltaic Specialist Conference (PVSC 2014) /40./. Denver (US), 08.06.2014-13.06.2014] R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HiPIMS * emission spectroscopy * magnetron sputtering * thin films Subject RIV: BL - Plasma and Gas Discharge Physics

  17. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  18. Fabrication of large-scale single-crystal Cu(In,Ga)Se2 nanotip arrays solar cell by one-step ion milling processes

    International Nuclear Information System (INIS)

    Template-free, one step formation of Cu(In, Ga)Se2 (CIGS) nanotip arrays (NTRs) to enhance device efficiency were discussed. Through Ar+ ion milling process, the CIGS NTRs could be formed directly on the CIGS layer. The angles and lengths of CIGS NTRs could be precisely controlled by incident angle of Ar+ beam and milling time, respectively. Mechanisms were proposed to be a self-masking effect by Cu segregation formed at early stage confirmed by Transmission Electron Microscopy, Grazing Incidence X-ray Diffraction, Energy Dispersive Spectroscopy, and Auger Electron Spectroscopy. Measurements of devices on various KCN washing time and thickness of CdS buffer layer were reported to achieve the highest efficiency of CIGS NTRs devices. This approach provides one-step fast process without templates, easy integration with in-line sputtering process, and no post-selenizatoin process for the formation of CIGS nanostructure, which can stimulate great attention not only in academic investigations but also in industrial side for practical applications. - Highlights: • Formation of Cu(In,Ga)Se2 nanotip arrays by one step Ar+ milling process. • Adjustable length of CIGS NTRs with incident angles and milling time. • Solar efficiency can be enhanced from 3 to 5.2% after formation of CIGS NTRs

  19. Thin film CIGS photovoltaic modules: monolithic integration and advanced packaging for high performance, high reliability and low cost

    Science.gov (United States)

    Eldada, Louay

    2011-01-01

    In recent years, thin-film photovoltaic companies started realizing their low manufacturing cost potential, and have been grabbing an increasingly larger market share. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, and a fast high-quality CIGS reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable cover plates in the first stage, while in the second stage the CIGS layer is formed by rapid heating with Se confinement. HelioVolt also developed best-in-class packaging technologies that provide unparalleled environmental stability. High quality CIGS films with large grains were fabricated on the production line, and high-performance highreliability monolithic modules with a form factor of 120 cm × 60 cm are being produced at high yield and low cost. With conversion efficiency levels around 14% for cells and 12% for modules, HelioVolt is commercializing the process on its first production line with 20 MW capacity, and is planning its next GW-scale factory.

  20. CuIn{sub 1-x}Ga{sub x}Se{sub 2} photovoltaic devices for tandem solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Seyrling, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland)], E-mail: seyrling@phys.ethz.ch; Calnan, S. [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Buecheler, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Huepkes, J. [Institut fuer Energieforschung, Photovoltaik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Wenger, S. [Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPF Lausanne, 1015 Lausanne (Switzerland); Bremaud, D.; Zogg, H. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Tiwari, A.N. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2009-02-02

    CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm{sup -2} to 13 mA cm{sup -2} depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 deg. C ). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.

  1. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  2. Trap-assisted recombination for ohmic-like contact at p-type Cu(In,Ga)Se2/back n-type TCO interface in superstrate-type solar cell

    Science.gov (United States)

    Chantana, Jakapan; Arai, Hiroyuki; Minemoto, Takashi

    2016-07-01

    Cu(In,Ga)Se2 (CIGS) solar cells with superstrate-type structure of soda-lime glass (SLG)/epoxy/Al/ZnO:Al (AZO)/ZnO/CdS/CIGS/back n-type transparent conductive oxide (TCO) electrode/Al are fabricated by lift-off process. AZO or In2O3:Sn (ITO) is used as the back n-type TCO electrode. Ohmic-like contact between p-type CIGS and n-type D-TCO (damage-TCO), namely, D-AZO or D-ITO, is formed through the trap-assisted recombination. The D-TCO, meaning TCO with high sputtering damage on the CIGS surface, is prepared under the optimization of its deposition condition, namely, the power density of 2.4 W/cm2 for D-AZO or 3.3 W/cm2 for D-ITO, for high defect density on the CIGS surface to promote the trap-assisted recombination. Ultimately, the superstrate-type CIGS solar cell with a bi-layer of D-AZO/AZO as back n-type TCO electrode with conversion efficiency (η) of 9.2% is achieved, which is 70% of η of the substrate-type CIGS solar cell before lift-off process. The bi-layer of D-AZO/AZO is utilized owing to high resistivity of D-AZO (about 0.1 Ω cm). On the other hand, the superstrate-type CIGS solar cell with D-ITO as the back n-type TCO electrode with η of 10.4% is attained, which is 93.7% of η of the substrate-type CIGS solar cell, where the resistivity of the D-ITO layer is low at about 5.0 × 10-3 Ω cm.

  3. A self-calibrating led-based solar test platform

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Sylvester-Hvid, Kristian O.; Jørgensen, Mikkel

    2011-01-01

    A compact platform for testing solar cells is presented. The light source comprises a multi-wavelength high-power LED (light emitting diode) array allowing the homogenous illumination of small laboratory solar cell devices (substrate size 50 × 25 mm) within the 390–940 nm wavelength range......, it is possible to perform all the commonly employed measurements on the solar cell at very high speed without moving the sample. In particular, the LED-based illumination system provides an alternative to light-biased incident photon-to-current efficiency measurement to be performed which we demonstrate. Both...... top and bottom contact is possible and the atmosphere can be controlled around the sample during measurements. The setup was developed for the field of polymer and organic solar cells with particular emphasis on enabling different laboratories to perform measurements in the same manner and obtain...

  4. 20th Century Solar Spectral Irradiance Modeling Based on Solar Cycle 22 and 23 Measurements

    Science.gov (United States)

    Morrill, J.; McMullin, D.; Floyd, L.; Newmark, J.

    2008-12-01

    Our long term solar spectral irradiance model under development will include EUV, UV, Visible, and IR spectral irradiance estimates. This model is based, in part, on Ca II K images collected from various observatories. For example, images from the Mt. Wilson Observatory supplemented with Greenwhich Sunspot data are used in the model to produce irradiance estimates for the time period before space-based spectral irradiance observations. The Mt. Wilson Ca II K film archive extending back to 1915 has been recently digitized. We expect to generate estimated spectra back to the start of this data set. We discuss the development details of the various spectral component derived from various spectra and proxies measured during Solar Cycle 22 and 23. Measured and estimated spectra will be compared in time series of various spectral bands as well as in spectra for days with specific solar surface configurations. This work is supported by the NASA LWS program.

  5. Efficiency improvement of silicon nanostructure-based solar cells

    Science.gov (United States)

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-01

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ∼181.1% and a decrease in reflectivity of ∼144.3%. The performance of the SNS-based solar cells was found to be optimized (∼11.86%) in an SNS with a length of ∼300 nm, an aspect ratio of ∼5, surface coverage of ∼84.9% and a reflectivity of ∼6.1%. The ∼16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  6. Efficiency improvement of silicon nanostructure-based solar cells

    International Nuclear Information System (INIS)

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ∼181.1% and a decrease in reflectivity of ∼144.3%. The performance of the SNS-based solar cells was found to be optimized (∼11.86%) in an SNS with a length of ∼300 nm, an aspect ratio of ∼5, surface coverage of ∼84.9% and a reflectivity of ∼6.1%. The ∼16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production. (paper)

  7. Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Jäger, Timo; Romanyuk, Yaroslav E.; Nishiwaki, Shiro; Bissig, Benjamin; Pianezzi, Fabian; Fuchs, Peter; Gretener, Christina; Döbeli, Max; Tiwari, Ayodhya N.

    2015-05-01

    High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se2 (CIGS) solar cells. Hydrogen doping of In2O3 thin films is achieved by injection of H2O water vapor or H2 gas during the sputter process. As-deposited amorphous In2O3:H films exhibit a high electron mobility of ˜50 cm2/Vs at room temperature. A bulk hydrogen concentration of ˜4 at. % was measured for both optimized H2O and H2-processed films, although the H2O-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage (VOC) of ˜20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the H2O case or slightly decrease for H2. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (H2O) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices.

  8. Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se2 (CIGS) solar cells. Hydrogen doping of In2O3 thin films is achieved by injection of H2O water vapor or H2 gas during the sputter process. As-deposited amorphous In2O3:H films exhibit a high electron mobility of ∼50 cm2/Vs at room temperature. A bulk hydrogen concentration of ∼4 at. % was measured for both optimized H2O and H2-processed films, although the H2O-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage (VOC) of ∼20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the H2O case or slightly decrease for H2. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (H2O) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices

  9. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  10. Degradation mechanism of Cu(In,Ga)Se2 solar cells induced by exposure to air

    Science.gov (United States)

    Nishinaga, Jiro; Kamikawa, Yukiko; Koida, Takashi; Shibata, Hajime; Niki, Shigeru

    2016-07-01

    The degradation mechanism of unencapsulated Cu(In,Ga)Se2 (CIGS) solar cells upon exposure to air has been investigated. Exposure to air at room temperature slightly reduces the conversion efficiency of CIGS solar cells. However, this conversion efficiency decreases significantly under damp heat testing at 85 °C and a relative humidity of 85% for 15 h. The shunt resistance and conversion efficiency are completely recovered after removing the side edges of the CIGS solar cells by mechanical scribing. This result suggests that low-resistive layers are formed on the sidewalls of the solar cells during damp heat testing. In addition, alkaline solution etching has been confirmed to be an effective way of removing the low-resistive layers. The low-resistive layers on the sidewalls are identified to be molybdenum oxides and sodium molybdate by Auger electron spectroscopy. After etching the oxides on the sidewalls, the saturation current density and ideality factor are confirmed to be improved.

  11. Manipulation of MoSe2 Films on CuIn(GaSe2 Solar Cells during Rapid Thermal Process

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lin

    2014-01-01

    Full Text Available In this study, the CuIn(GaSe2 (CIGS crystalline quality and MoSe2 thickness of films produced by the rapid thermal selenization process under various selenization pressures were investigated. When the selenization pressure increased from 48 Pa to 1.45 × 104 Pa, the CIGS films were smooth and uniform with large crystals of varying sizes. However, the MoSe2 thicknesses increased from 50 nm to 2,109 nm, which created increased contact resistivity for the CIGS/MoSe2/Mo structures. The efficiency of CIGS solar cells could be increased from 1.43% to 4.62% due to improvement in the CIGS crystalline quality with increasing selenization pressure from 48 Pa to 1.02 × 103 Pa. In addition, the CIGS crystalline quality and MoSe2 thickness were modified by the pressure released valve (PRV selenization process method. The crystalline qualities of the CIGS films were similarly affected by the selenization pressure at 1.02 × 103 Pa in the PRV selenization method and the MoSe2 thicknesses were reduced from 1,219 nm to 703 nm. A higher efficiency of 5.2% was achieved with the thinner MoSe2 obtained by using the PRV selenization method.

  12. Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study

    Science.gov (United States)

    Diyatmika, Wahyu; Xue, Lingjun; Lin, Tai-Nan; Chang, Chia-wen; Chu, Jinn P.

    2016-08-01

    The feasibility of using Zr53.5Cu29.1Al6.5Ni10.9 thin-film metallic glass (TFMG) as a diffusion barrier for copper indium gallium selenide (CIGS) solar cells on stainless steel (SS) is investigated. The detrimental Fe diffusion from SS into CIGS is found to be effectively hindered by the introduction of a 70-nm-thick TFMG barrier; the cell performance is thus improved. Compared with the 2.73% of CIGS on bare SS, a higher efficiency of 5.25% is obtained for the cell with the Zr52Cu32Al9Ni7 TFMG barrier.

  13. Forbush Decrease Prediction Based on Remote Solar Observations

    Science.gov (United States)

    Dumbović, M.; Vršnak, B.; Čalogović, J.

    2016-01-01

    We employ remote observations of coronal mass ejections (CMEs) and the associated solar flares to forecast the CME-related Forbush decreases, i.e. short-term depressions in the galactic cosmic-ray flux. The relation between the Forbush effect at Earth and remote observations of CMEs and associated solar flares is studied via a statistical analysis. Relations between Forbush decrease magnitude and several CME/flare parameters were found: the initial CME speed, apparent width, source position, associated solar-flare class, and the effect of successive-CME occurrence. Based on the statistical analysis, remote solar observations are employed to forecast a Forbush-decrease. For this purpose, an empirical probabilistic model is constructed that uses selected remote solar observations of the CME and associated solar flare as input and gives the expected Forbush-decrease magnitude range as output. The forecast method is evaluated using several verification measures, indicating that as the forecast tends to be more specific, it is less reliable, which is its main drawback. However, the advantages of the method are that it provides an early prediction and that the input does not necessarily depend on using a spacecraft.

  14. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  15. Film quality improvement of CIGS thin film grown by mechanochemical process

    International Nuclear Information System (INIS)

    We have demonstrated a selenium treatment to enhance the film quality of CIGS films prepared by a mechanochemical process (MCP). It was confirmed that the selenium treatment was useful process in order to improve the film quality by enhancing the sintering and the grain growth. Although the film quality was improved, a selenium layer was deposited on CIGS surface during the selenium treatment. Consequently we developed a selenium removal technique using a Hot Filament Melting (HFM) process, and we succeeded in removing the remained selenium layer on the surface. These results suggested that the selenium treatment followed by the HFM process was useful to improve the film quality grown by the MCP. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Control over the preferred orientation of CIGS films deposited by magnetron sputtering using a wetting layer

    Science.gov (United States)

    Yan, Yong; Jiang, Fan; Liu, Lian; Yu, Zhou; Zhang, Yong; Zhao, Yong

    2016-01-01

    A growth method is presented to control the preferred orientation in chalcopyrite CuIn x Ga1- x Se2 (CIGS) thin films grown by magnetron sputtering. Films with (220/204) and (112) preferred orientation as well as randomly oriented films were prepared. The effects of an In2Se3 wetting layer and the working pressure on the texture transition phenomena were examined. A large-grained CIGS film with (220/204) texture was formed at 400°C with the inclusion of a thin (80 nm) In2Se3 layer and liquid phase (excess copper selenide phase) formation, and the reaction mechanism is proposed. The device deposited at 2.0 Pa on an In2Se3 layer exhibited the optimal electrical properties. [Figure not available: see fulltext.

  17. Dye-sensitized solar cells based on bisindolylmaleimide derivatives

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Zhijun NING; Hongcui PEI; Wenjun WU

    2009-01-01

    Three organic dyes based on bisindolylmaleimide derivatives (11, 12 and 13) were synthesized and investigated as sensitizers for the application in nanocrystalline TiO2 solar cells. The indole group,maleimide group and carboxylic group functioned as electron donor, acceptor and anchoring group, respec-tively. Solar-to-electrical energy conversion efficiencies under simulated amplitude-modulated 1.5 irradiation based on 12 and of 1.87% and 1.50% for 13 and 11,respectively. The open circuit voltage Voc was demon-strated to be enhanced by the introduction of dodecyl or benzyl moieties on the indole groups. The nonplanar structure of bisindolylmaleimide was proven to be effective in aggregation resistance. This work suggests that organic sensitizers with maleimide as electron acceptor are promising candidates as organic sensiti-zers in dye-sensitized solar cells.

  18. Metallicity calibration for solar type stars based on red spectra

    Institute of Scientific and Technical Information of China (English)

    Jing-Kun Zhao; Gang Zhao; Yu-Qin Chen; A-Li Luo

    2011-01-01

    Based on a high resolution and high signal-to-noise ratio (S/N) spectral analysis of 90 solar-type stars, we have established several new metallicity calibrations in the Teff range [5600, 6500] K based on red spectra with the wavelength range of 560-880 nm. The new metallicity calibrations are applied to determine the metallicity of solar analogs selected from Sloan Digital Sky Survey (SDSS) spectra. There is a good consistent result with the adopted value presented in SDSS-DR7 and a small scatter of 0.26 dex for stars with S/N > 50 being obtained. This study provides a new reliable way to derive the metallicity for solar-like stars with low resolution spectra.In particular, our calibrations are useful for finding metal-rich stars, which are missing in the SEGUE Stellar Parameter Pipeline.

  19. An Accurate ANFIS-based MPPT for Solar PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Bin-Halabi

    2014-06-01

    Full Text Available It has been found from the literature review that the ANFIS-based maximum power point tracking (MPPT techniques are very fast and accurate in tracking the MPP at any weather conditions, and they have smaller power losses if trained well. Unfortunately, this is true in simulation, but in practice they do not work very well because they do not take aging of solar cells as well as the effect of dust and shading into account. In other words, the solar irradiance measured by solar irradiance sensor is not always the same irradiance that influences the PV module. The main objective of this work is to design and practically implement an MPPT system for solar PV with high speed, high efficiency, and relatively easy implementation in order to improve the efficiency of solar energy conversion. This MPPT system is based on ANFIS technique. The contribution of this research is eliminating the need of irradiance sensor while having the same adequate performance obtained by the ANFIS with irradiance sensor, both, in simulation as well as in experimental implementation. The proposed technique has been validated by comparing the practical results of the implemented setup to simulations. Experimental results have showed good agreement with simulation results.

  20. DEGRADATION OF SOLAR CELLS PARAMETERS FABRICATED ON THE BASIS OF Cu(In,GaSe2 SEMICONDUCTOR SOLID SOLUTIONS UNDER ELECTRON IRRADIATION

    Directory of Open Access Journals (Sweden)

    A. V. Mudryi

    2014-01-01

    Full Text Available Polycrystalline Cu(In,GaSe2 (CIGS thin films were grown on molybdenum-coated soda-lime glass substrates by co-evaporation of the elements Cu, In, Ga and Se from independent sources. The effect of electron irradiation on the electrical and optical properties of CIGS thin films and solar cells with the structure ZnO:Al/i-ZnO/CdS/CIGS/Mo/glass was studied. It was found that the degradation of the electrical parameters of solar cells (open-circuit voltage, short-circuit current density and efficiency took place due to the formation of radiation defects (recombination centers with deep energy levels in the bandgap of CIGS. It was revealed that after electron irradiation intensity of near band-edge luminescence band at about 1,1 eV decreased considerably and bands of luminescence with maxima at 0,93 and 0,75 eV appeared.

  1. MCU-Based Solar Powered Chicken Feeder

    Directory of Open Access Journals (Sweden)

    Elenor M. Reyes

    2015-12-01

    Full Text Available Poultry is a great potential industry particularly in Batangas Province. The method of feeding chicken needs to be considered as chicken must be fed regularly to be more productive. The conventional method of feeding chicken is the need to continuously provide the food, be alert and conscious on the food remaining in cages and to feed the chickens in a correct period of time to avoid the decline of the production. Growers also find it difficult to manage their businesses effectively because they need to be around the cages every now and then to monitor the poultry. Timing and exactness are the key to provide a uniform time in feeding the chickens. This will benefit the owner of the business in terms of time and effort. Another advantage of this project is in terms of savings to the owner of the poultry business. This technology was designed to automatically feed chickens at a given period of time and to give alarm when the feeds are running out of supply. The power to be supplied to this prototype will be drawn from the sun by means of solar panels and will be stored in typical car battery. The feeds will be stored in a container and evenly distributed by using a conveyor to the feeding basin of the poultry. It will be more efficient than manual conventional way of feeding because less effort will be needed in feeding the chickens and less feeds will be wasted. In addition to that, the stored power can also be used for lighting purposes for the growers to save energy and energy bills.

  2. Solar Energy Based Automated Irrigation System

    Directory of Open Access Journals (Sweden)

    Prof. Lodhi A. K.

    2013-09-01

    Full Text Available In the field of agriculture, use of proper method of irrigation is important because the main reason is the lack of rains {&} scarcity of land reservoir water. The continuous extraction of water from earth is reducing the water level due to which lot of land is coming slowly in the zones of un-irrigated land. Another very important reason of this is due to unplanned use of water due to which a significant amount of water goes waste. For this purpose; we use this automatic plant irrigation system. In this project we use solar energy which is used to operate the irrigation pump. The circuit comprises of sensor parts built using op-amp IC LM358. Op-amp are configured here as a comparator. Two stiff copper wires are inserted in the soil to sense whether the soil is wet or dry. The Microcontroller is used to control the whole system by monitoring the sensors and when sensors sense the dry condition then the microcontroller will send command to relay driver IC the contacts of which are used to switch on the motor and it will switch off the motor when all the sensors are in wet condition. The microcontroller does the above job as it receives the signal from the sensors through the output of the comparator, and these signals operate under the control of software which is stored in ROM of the Microcontroller. The condition of the pump i.e., ON/OFF is displayed on a 16X2 LCD

  3. The ground-based solar observations database BASS 2000

    OpenAIRE

    Paletou, F; Lafon, M.; Maeght, P.; Grimaud, F.; Louge, T.; Aboudarham, J.

    2007-01-01

    BASS 2000 is the French solar database for ground-based instruments. We describe hereafter our organization, our tasks and the products we can deliver to the international community. Our prospects cover data mining into the THeMIS archive, a participation to the EST endeavour and the creation and curation of the ESPaDOnS/NARVAL stellar spectra database.

  4. Photo electrochemical and organic-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.S. [California Institute of Technology, Pasadena, CA (United States); Kamat, P. [Univ. of Notre Dame, IN (United States); Spitler, M. [Boston Univ., MA (United States)

    1996-09-01

    Research in solar photoconversion has resulted in significant advances in the fields of photoelectrochemistry and dye-sensitized solar cells. Progress is also evident in the understanding of solid state organic systems for energy transduction. It is evident, however, that the examination in this report of the accomplishments in these areas serves to highlight the great extent of research that is necessary to establish a technology base sufficient for practical application. Recommendations are made in this report on the directions that this research should take.

  5. Natural Pigment-Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    A.R. Hernández-Martínez

    2012-03-01

    Full Text Available The performance of dye-sensitized solar cells (DSSC based on natural dyes extracted from five different sources is reported. These are inexpensive, have no nutritional use, and are easy to find in Mexico. The solar cells were assembled using a thin film and a TiO2 mesoporous film on ITO-coated glass; these films were characterized by FTIR. The extracts were characterized using UV–Vis and typical I-V curves were obtained for the cells. The best performance was for Punica Granatum with a solar energy conversion efficiency of 1.86%, with a current density Jsc of 3.341 mA/cm2using an incident irradiation of 100 mW/cm2 at 25 ºC.

  6. The solar map as a knowledge base for solar energy use

    OpenAIRE

    Kanters, Jouri; Wall, Maria; Kjellsson, Elisabeth

    2014-01-01

    Our existing urban environment has a significant potential to increase the use of renewable energy, mainly by using solar irradiation for heat and electricity. Quantification of the solar potential by means of a solar map is the first step in the acceleration process for using more solar energy in our urban environments. A solar map is a GIS system providing the annual solar irradiation on building surfaces, mostly accompanied by information of the output of solar thermal or photovoltaic syst...

  7. Effects of Bi Incorporation on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    Science.gov (United States)

    Nakakoba, Hiroya; Yatsushiro, Yuta; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of bismuth (Bi) incorporation into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Bi thin layers were deposited onto Mo-coated soda-lime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency was improved by the Bi incorporation when the SLG substrates were used. However, little effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that the Bi incorporation is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  8. Effects of Antimony Doping on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    Science.gov (United States)

    Yatsushiro, Yuta; Nakakoba, Hiroya; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of antimony (Sb) doping into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Sb thin layers were deposited onto Mo-coated sodalime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency improved with the Sb doping when the SLG substrates were used. However, little or no effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that Sb doping is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  9. CIGS nanostructure: preparation and study using liquid phase method

    Science.gov (United States)

    Jakhmola, P.; Jha, P. K.; Bhatnagar, S. P.

    2016-06-01

    Present study is motivated by interesting attainment obtained for copper indium gallium diselenide compound as a light absorbing material for thin-film solar cell. Formation of copper indium gallium diselenide nanostructures via solvothermal method using starting precursors of copper, indium, gallium salts, and selenium powder is represented. Preparation is done by varying x (0.1 and 0.3) in CuIn1- x Ga x Se2 compound at a constant temperature and using ethanolamine as a solvent. Characterization of nanostructures is done using powder X-ray diffraction, scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. It is found that grown chalcopyrite structure at different x, possess agglomeration in nanostructures. Results indicate that presence of 10 % gallium in copper indium gallium diselenide compound leads to the single-phase growth, prepare at the temperature of 190 °C for 19 h.

  10. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    . Originality/value - Many different Solar Combisystem designs have been commercialized over the years. In the IEA-SHC Task 26, twenty one solar combisystems have been described and analyzed. Maybe the mantle tank approach also for solar combisystems can be used with advantage? This might be possible if the...... solar heating system is based on a so called bikini tank. Therefore the new developed solar combisystems based on bikini tanks is compared to the tank-in-tank solar combisystems to elucidate which one is suitable for three different houses with low energy heating demand, medium and high heating demand.......Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...

  11. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  12. Thin-Film CIGS Photovoltaic Technology: Annual Technical Report-Phase II, 16 April 1999-15 April 2000; ANNUAL

    International Nuclear Information System (INIS)

    A summary of Energy Photovoltaics' Phase II work includes the following: (1) EPV has demonstrated that it can sputter a Mo back-contact capable of supporting very high efficiency cell processing. Using EPV Mo, NREL has deposited a 17.1% CIGS cell (no AR coating). EPV believes it can identify the signature of''good'' Mo. The Mo was produced on EPV's 0.43 m(sup 2) pilot-line equipment; (2) EPV has performed compound synthesis for several classes of materials, namely non-Cu precursor materials, Cu-containing materials, and ternary buffer materials. Using a ternary compound synthesized at EPV (ZIS) as an evaporation source material for the buffer layer, a Cd-free CIGS device has been produced having an efficiency of 11.5% (560 mV, 32.1 mA/cm(sup 2), FF 64.3%). The ZIS films are photoconductive, and the devices exhibit no dark-light crossover or light soaking effects; (3) EPV initiated the interest of the University of Oregon in capacitance spectroscopy of CIGS devices. An Urbach tail with characteristic energy E0 and lt; 20meV was identified by transient photocapacitance spectroscopy; (4) Small-area CIGS devices were produced in the pilot-line system with an efficiency of 12.0% (581 mV, 30.1 mA/cm(sup 2), FF 68.7%), and in an R and D-scale system with 13.3% efficiency (569 mV, 34.1 mA/cm(sup 2), FF 68.1%); (5) An improved linear evaporation source for Cu delivery has been developed and was used for CIGS formation in the pilot-line system. The deposition width is 45 cm. This technological''tour de force'' allows EPV to build large-area CIGS systems possessing considerable flexibility. In particular, both EPV's FORNAX process and NREL's 3-stage process have been implemented on the pilot line. A CIGS thickness uniformity of 7% over a 40 cm width has been achieved; (6) A 4-head linear source assembly was designed, constructed, and is in use. Flux monitoring is practiced; (7) Large-area CIGS modules were produced with Voc's up to 36.3 V; (8) EPV has started to construct an

  13. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    Science.gov (United States)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  14. Distortions to current-voltage curves of cigs cells with sputtered Zinc(Oxygen,Sulfur) buffer layers

    Science.gov (United States)

    Song, Tao

    Sputtered-deposited Zn(O,S) is an attractive alternative to CdS for Cu(In,Ga)Se 2 (CIGS) thin-film solar cells' buffer layer. It has a higher band gap and thus allows greater blue photon collection to achieve higher photon current. The primary goal of the thesis is to investigate the effects of the secondary barrier at the buffer-absorber interface on the distortions to current-voltage (J-V) curves of sputtered-Zn(O,S)/CIGS solar cells. A straightforward photodiode model is employed in the numerical simulation to explain the physical mechanisms of the experimental J-V distortions including J-V crossover and red kink. It is shown that the secondary barrier is influenced by both the internal material properties, such as the conduction-band offset (CBO) and the doping density of Zn(O,S), and the external conditions, such as the light intensity and operating temperature. A key parameter for the sputter deposition of Zn(O,S) has been the oxygen fraction in the argon beam. It is found that the CBO varies with the oxygen fraction in the argon beam at a fixed temperature. With a greater CBO (DeltaEC>0.3 eV), the resulting energy barrier limits the electron current flowing across the interface and thus leads to the J-V distortion. Two different ZnS targets, non-indium and indium-doped one, were used to deposit the Zn(O,S) buffer layer. At the same oxygen fraction in argon beam, a non-In-doped Zn(O,S) buffer with a smaller amount of doping forms a greater secondary barrier to limit the electron current due to the compensation of the Zn(O,S) buffer layer. In addition, the temperature-dependent J-V crossover can be explained by the temperature-dependent impact of the secondary barrier - at lower temperature in the dark, the maximum distortion-free barrier is reduced and results in a more serious current limitation, indicating a greater J-V crossover. It is also found that, under low-intensity illumination, there is a lower doping density of Zn(O,S) due to a smaller amount of

  15. Azobenzene-based Polymers for Solar Thermal Batteries

    Science.gov (United States)

    Venkataraman, Dhandapani

    Azobenzene exists as two isomers, a higher energy cis-isomer and a lower energy trans-isomer. The isomers interconvert under light or heat. Recently, there is a renewed interest in capturing the difference in the energies of the isomers and using azobenzene-based molecules as active layers for solar thermal batteries. My research group has been exploring azobenzene-based polymers as candidates for solar thermal batteries. In this talk, I will show that the azo-benzene moieties can be converted to the cis-form using light and converted back to the trans form using mechanical force. I will provide some of our recent results that indicate that high energy densities can be achieved in these polymers.

  16. Dynamic electrical behavior of halide perovskite based solar cells

    OpenAIRE

    Nemnes, George Alexandru; Besleaga, Cristina; Tomulescu, Andrei Gabriel; Pintilie, Ioana; Pintilie, Lucian; Torfason, Kristinn; Manolescu, Andrei

    2016-01-01

    A dynamic electrical model is introduced to investigate the hysteretic effects in the I-V characteristics of perovskite based solar cells. By making a simple ansatz for the polarization relaxation, our model is able to reproduce qualitatively and quantitatively detailed features of measured I-V characteristics. Pre-poling effects are discussed, pointing out the differences between initially over- and under-polarized samples. In particular, the presence of the current over-shoot observed in th...

  17. Solar PV based rural electrification in Rema rural village

    OpenAIRE

    Admasu, Alemshet Ayele

    2011-01-01

    Energy is a basic need for the overall growth and improvements of people’s living standard.But around 2 to 3 billion people in the world have no access to electric lighting. Like otherdeveloping countries the rural electrification in Ethiopia is very low and government takessome actions to promote the investment in these areas but due to economic constraints andlow level of technological advancement the growth is very low.This study focuses on solar PV based rural electrification, its impact ...

  18. A Novel Solar Tracker Based on Omnidirectional Computer Vision

    OpenAIRE

    Zakaria El Kadmiri; Omar El Kadmiri; Lhoussaine Masmoudi; Mohammed Najib Bargach

    2015-01-01

    This paper presents a novel solar tracker system based on omnidirectional vision technology. The analysis of acquired images with a catadioptric camera allows extracting accurate information about the sun position toward both elevation and azimuth. The main advantages of this system are its wide field of tracking of 360° horizontally and 200° vertically. The system has the ability to track the sun in real time independently of the spatiotemporal coordinates of the site. The extracted informat...

  19. Thermodynamic Analysis of an Integrated Solar-based Chemical Reactor System for Hydrogen Production

    OpenAIRE

    YÜKSEL, Yunus Emre; Murat ÖZTÜRK

    2015-01-01

    The biggest advantage of the renewable energy based systems is that these energy systems are environmentally friendly, since they emit very few pollutants. The solar parabolic trough collector systems generate thermal energy by using solar radiation. These renewable energy systems are the most deployed type of the solar concentrating collectors. Especially, they are very suitable for middle-temperature solar power system applications. Storing of the solar energy is not a suitable way due to t...

  20. Mathematical Modeling of a developed Central Receiver Based on Evacuated Solar Tubes

    OpenAIRE

    Ali Basil. H.; Gilani S. I.; Al-Kayiem Hussain H.

    2016-01-01

    Solar central receiver plays a considerable role in the plant output power; it is one of the most important synthesis in the solar power tower plants. Its performance directly affects the efficiency of the entire solar power generation system. In this study, a new designed receiver model based on evacuated solar tube was proposed, and the dynamic characteristics of the developed receiver were investigated. In order to optimise and evaluate the dynamic characteristics of solar power plant comp...

  1. Hybrid solar cells based on colloidal nanocrystals and conjugated polymers

    International Nuclear Information System (INIS)

    In this study, monodispersed colloidal titanium dioxide (TiO2) was synthesized and applied with poly(3-octylthiophene-2,5-diyl) (P3OT), phenyl-C61-butyric acid methyl ester (PCBM), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(styrenesulfonate (PSS) to fabricate an aluminum/calcium/P3OT:PCBM:TiO2/PEDOT:PSS/indium tin oxide hybrid solar cell using spin coating and evaporation deposition. The effects of the TiO2 content and annealing temperature on cell performances were investigated. The results showed that optimization of the TiO2 content (15 wt.%) and annealing temperature (150 °C) effectively enhanced the performance of the hybrid solar cells. The PCBM and TiO2 absorbed more light photons in the P3OT:PCBM:TiO2 active layer. The charge transfer in the P3OT:PCBM:TiO2 active layer was more efficient, increasing the amount of photoluminescence quenching. The increased active layer surface roughness reduced the charge-transport distance and enhanced the internal light scattering and light absorption. The best values for the open circuit voltage, short-circuit current density, fill factor, and efficiency for the prepared hybrid solar cell were 0.61 V, 9.50 mA/cm2, 34.46%, and 2.09%, respectively. - Highlights: • Solar cell based on titania and conjugated polymer was fabricated. • Optimal titania content and annealing temperature were investigated. • Solar cell with 2.09% efficiency was obtained

  2. Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures.

    Science.gov (United States)

    Parisi, A V; Downs, N; Turner, J; Amar, A

    2016-09-01

    A set of online activities for children and the community that are based on an integrated real-time solar UV and cloud measurement system are described. These activities use the functionality of the internet to provide an educative tool for school children and the public on the influence of cloud and the angle of the sun above the horizon on the global erythemal UV or sunburning UV, the diffuse erythemal UV, the global UVA (320-400nm) and the vitamin D effective UV. Additionally, the units of UV exposure and UV irradiance are investigated, along with the meaning and calculation of the UV index (UVI). This research will help ensure that children and the general public are better informed about sun safety by improving their personal understanding of the daily and the atmospheric factors that influence solar UV radiation and the solar UV exposures of the various wavebands in the natural environment. The activities may correct common misconceptions of children and the public about UV irradiances and exposure, utilising the widespread reach of the internet to increase the public's awareness of the factors influencing UV irradiances and exposures in order to provide clear information for minimizing UV exposure, while maintaining healthy, outdoor lifestyles. PMID:27450297

  3. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  4. A Novel Solar Tracker Based on Omnidirectional Computer Vision

    Directory of Open Access Journals (Sweden)

    Zakaria El Kadmiri

    2015-01-01

    Full Text Available This paper presents a novel solar tracker system based on omnidirectional vision technology. The analysis of acquired images with a catadioptric camera allows extracting accurate information about the sun position toward both elevation and azimuth. The main advantages of this system are its wide field of tracking of 360° horizontally and 200° vertically. The system has the ability to track the sun in real time independently of the spatiotemporal coordinates of the site. The extracted information is used to control the two DC motors of the dual-axis mechanism to achieve the optimal orientation of the photovoltaic panels with the aim of increasing the power generation. Several experimental studies have been conducted and the obtained results confirm the power generation efficiency of the proposed solar tracker.

  5. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    Directory of Open Access Journals (Sweden)

    Olaf Mühling

    2010-12-01

    Full Text Available The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field.

  6. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  7. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: gerard@chimie.uvsq.fr [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)

    2011-08-31

    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  8. Investigation of sputtered Mo layers on soda-lime glass substrates for CIGS solar cells

    International Nuclear Information System (INIS)

    The influences of deposition parameters on the structural, electrical and mechanical properties of the molybdenum films deposited on the soda-lime glass substrates by dc magnetron sputtering were investigated. The results revealed that there was a significant impact of working pressure on the properties of as-deposited Mo films. The surface morphology of films varied from dense to porous microstructure as working pressure was increased. Under low working pressure, the films possessed low resistivity but poor adhesion. In contrast, the films deposited at high working pressure exhibited good adhesion but high resistivity. Moreover, the high sputtering power and the low sputtering voltage reduced the resistivity and enhanced the adhesion of Mo films, respectively. In order to improve the resistivity and adhesion of Mo films, a bi-layer structure deposited under different conditions was studied. Under the given deposition conditions, both low resistivity of 9.71 µΩ cm and good adhesion have been achieved for the Mo films with a bi-layer structure. (paper)

  9. Advantages of using amorphous indium zinc oxide films for window layer in Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    The advantages of using indium zinc oxide (IZO) films instead of conventional Ga-doped zinc oxide (ZnO:Ga) films for Cu(In,Ga)Se2 (CIGS) solar cells are described. The electrical properties of IZO are independent of film thickness. IZO films have higher mobility (30–40 cm2/Vs) and lower resistivity (4–5 × 10−4 Ω cm) compared to ZnO:Ga films deposited without intentional heating, because the number of grain boundaries in amorphous IZO films is small. The properties of a CIGS solar cell using IZO at the window layer were better than those obtained using a conventional ZnO:Ga at the window layer; moreover, the properties tended to be independent of thickness. These results indicate that use of IZO as a transparent conducting oxide layer is expected to increase the efficiency of CIGS solar cells.

  10. Optimizing operation of a solar-aided coal-fired power system based on the solar contribution evaluation method

    International Nuclear Information System (INIS)

    Highlights: • The solar contribution of the solar-aided coal-fired power plant was calculated. • Adjusting heat transfer fluid flow rate to improve the performance of the system. • The generation revenue function was proposed to evaluate the system. - Abstract: A solar-aided coal-fired power system (SACFPS) model with five load conditions (100%, 85%, 75%, 50%, and 40%) was built based on thermodynamic and thermoeconomic theories. SACFPS is a combination of a parabolic trough solar power system and a 660 MW coal-fired generation plant. The solar contribution evaluation method was introduced into the model to calculate the generation share of the solar power system. Results show that solar contribution decreases after an initial increase as effective solar normal irradiation increases. Optimization strategies, adjusting heat transfer fluid flow rate, have been proposed to maintain solar contribution at a high level. Thus, SACFPS with five load conditions has been optimized. This study also establishes a generation revenue function to evaluate the economics of SACFPS. Income generation of SACFPS after optimization is significantly higher than that without optimization

  11. Wet-chemistry based selective coatings for concentrating solar power

    Science.gov (United States)

    Maimon, Eran; Kribus, Abraham; Flitsanov, Yuri; Shkolnik, Oleg; Feuermann, Daniel; Zwicker, Camille; Larush, Liraz; Mandler, Daniel; Magdassi, Shlomo

    2013-09-01

    Spectrally selective coatings are common in low and medium temperature solar applications from solar water heating collectors to parabolic trough absorber tubes. They are also an essential element for high efficiency in higher temperature Concentrating Solar Power (CSP) systems. Selective coatings for CSP are usually prepared using advanced expensive methods such as sputtering and vapor deposition. In this work, coatings were prepared using low-cost wet-chemistry methods. Solutions based on Alumina and Silica sol gel were prepared and then dispersed with black spinel pigments. The black dispersions were applied by spray/roll coating methods on stainless steel plates. The spectral emissivity of sample coatings was measured in the temperature range between 200 and 500°C, while the spectral absorptivity was measured at room temperature and 500°C. Emissivity at wavelengths of 0.4-1.7 μm was evaluated indirectly using multiple measurements of directional reflectivity. Emissivity at wavelengths 2-14 μm was measured directly using a broadband IR camera that acquires the radiation emitted from the sample, and a range of spectral filters. Emissivity measurement results for a range of coated samples will be presented, and the impact of coating thickness, pigment loading, and surface preparation will be discussed.

  12. Satellite-advection based solar forecasting: lessons learned and progress towards probabalistic solar forecasting

    Science.gov (United States)

    Rogers, M. A.

    2015-12-01

    Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.

  13. In-situ sol-gel synthesis and thin film deposition of Cu(In,Ga)(S,Se)2 solar cells

    International Nuclear Information System (INIS)

    Full text: Nowadays chalcogenide-based solar cells, like Cu(In,Ga)Se2, are competitive in the photovoltaic market, due to its improved performances like higher efficiency (20,3%), long-time stability and excellent durability. In addition, CIGS stand out with an exceptionally high absorption coefficient (more than; 105/cm for 1.5eV) and higher energy photons. These properties make it an excellent candidate as an absorber material for large scale production of photovoltaic modules for building-integrated applications. Traditional methods of manufacture involve vacuum processes including co-evaporation and sputtering that increase production costs. With the aim to lower the expenses by using non-vacuum solution processes we propose an ‘in-situ’ sol-gel synthesis route and direct thin film deposition in the same production step. As a result, we achieved better stoichiometric control, simplicity in the procedure and cost reduction. In this work we describe a procedure to obtain CIGS absorber layer by soft chemistry technique and further deposition onto different substrates. Preparation parameters like precursors, chemical composition, solvents, thermal treatment factors (temperature, time, and atmosphere) were detailed studied. Finally, the resulting materials were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDAX), UV-VIS Spectroscopy among others.; key words: sol-gel synthesis, thin film deposition, photovoltaic modules, solar cells

  14. Cu2O-based solar cells using oxide semiconductors

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0

  15. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    Science.gov (United States)

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed. PMID:26669326

  16. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  17. Dye sensitized solar cells based on novel bipolar spiro compounds

    Energy Technology Data Exchange (ETDEWEB)

    Salbeck, Josef [Macromolecular Chemistry and Molecular Materials (mmCmm), Department of Science and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel (Germany)

    2007-07-01

    We report dye sensitized solar cells (DSSC) based on novel bipolar spiro compounds containing perylene and diphenylamino moiety. The corresponding compound has high extinction coefficient ({proportional_to}10{sup 5} M{sup -1}cm{sup -1}) and, therefore, is a potential compound for DSSCs applications. After an ultraviolet treatment of the device, the short circuit current density increases from 0.04 mA cm{sup -2} to 0.10 mA cm{sup -2} especially with t-butyl ammonium ion containing cell. In contrast, no noticeable change in current density in device containing lithium ion has been observed.

  18. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    OpenAIRE

    Rahul Bhosale; Anand Kumar; Fares AlMomani

    2016-01-01

    The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS) cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in ...

  19. Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum.

    Science.gov (United States)

    Chang, Yin-Jung; Chen, Yu-Ting

    2011-07-01

    Broadband omnidirectional antireflection (AR) coatings for solar cells optimized using simulated annealing (SA) algorithm incorporated with the solar (irradiance) spectrum at Earth's surface (AM1.57 radiation) are described. Material dispersions and reflections from the planar backside metal are considered in the rigorous electromagnetic calculations. Optimized AR coatings for bulk crystalline Si and thin-film CuIn(1-x)GaxSe(2) (CIGS) solar cells as two representative cases are presented and the effect of solar spectrum in the AR coating designs is investigated. In general, the angle-averaged reflectance of a solar-spectrum-incorporated AR design is shown to be smaller and more uniform in the spectral range with relatively stronger solar irradiance. By incorporating the transparent conductive and buffer layers as part of the AR coating in CIGS solar cells (2μm-thick CIGS layer), a single MgF(2) layer could provide an average reflectance of 8.46% for wavelengths ranging from 350 nm to 1200 nm and incident angles from 0° to 80°. PMID:21747557

  20. Development of a Greek solar map based on solar model estimations

    Science.gov (United States)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  1. Studies on organic solar cells based on small-molecules : tetraphenyldibenzoperiflanthene and fullerene C70

    OpenAIRE

    Galindo Lorente, Sergi

    2015-01-01

    This work deals with the research on organic solar cells based on small-molecules semiconductors. In particular, organic solar cells of this thesis have been used tetraphenyldibenzoperiflanthene as donor material and fullerene C70 as acceptor material. In the first part of this thesis, we focus on the influence of the density of states of the donor layer on the characteristic parameters of solar cells. Further, organic solar cells with p-i-n structure are presented, where the intrinsic lay...

  2. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  3. LiDAR-Based Solar Mapping for Distributed Solar Plant Design and Grid Integration in San Antonio, Texas

    Directory of Open Access Journals (Sweden)

    Tuan B. Le

    2016-03-01

    Full Text Available This study represents advancements in the state-of-the-art of the solar energy industry by leveraging LiDAR-based building characterization for city-wide, distributed solar photovoltaics, solar maps, highlighting the distribution of solar energy across the city of San Antonio. A methodology is implemented to systematically derive the tilt and azimuth angles of each rooftop and to quantify solar direct, diffuse, and global horizontal irradiance for hundreds of buildings in a LiDAR tile scale, by using already established methodologies that are typically only applied to a single location or building rooftop. The methodology enables the formulation of typical meteorological data, measured or forecasted time series of irradiances over distributed assets. A new concept on the subject of distributed solar plant (DSP design is also introduced, by using the building rooftop tilt and azimuth angles, to strategically optimize the use and adoption of solar incentives according to the grid age and its vulnerabilities to solar variability in the neighborhoods. The method presented here shows that on an hourly basis DSP design could provide a 5% and 9% of net load capacity support per hour in the afternoon and morning times, respectively. Our results show that standard building rooftop tilt angles in the south Texas region has significant impact on the total amount of the energy over the course of a day, though its impact on the shapes of the daily energy profile is relatively insignificant when compared to the azimuth angle. Building surfaces’ azimuth angle is the most important factor to determine the shape of daily energy profile and its peak location within a day. The methodology developed in this study can be employed to study the potential solar energy in other regions and to match the design of distributed solar plants to the capacity needs on specified distribution grids.

  4. SiO{sub 2} and Al{sub 2}O{sub 3}/SiO{sub 2} coatings for increasing emissivity of Cu(In, Ga)Se{sub 2} thin-film solar cells for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Kazunori [Japan Aerospace Exploration Agency (JAXA), Institute of Aerospace Technology, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: shimazaki.kazunori@jaxa.jp; Imaizumi, Mitsuru [Japan Aerospace Exploration Agency (JAXA), Institute of Aerospace Technology, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: imaizumi.mitsuru@jaxa.jp; Kibe, Koichi [Japan Aerospace Exploration Agency (JAXA), Institute of Aerospace Technology, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: kibe.koichi@jaxa.jp

    2008-02-29

    In this study, optical coatings were investigated as substitutes for the coverglass on flexible thin-film space solar cells. The inherent low emissivity of copper-indium-gallium-diselenide (CIGS) thin-film solar cells was increased using optical coatings for thermal balance in space. Evaporated silicon dioxide (SiO{sub 2}) and an additional aluminum oxide (Al{sub 2}O{sub 3}) coating on the CIGS solar cell increased the emissivity from 0.18 to 0.77. Higher emissivity was realized with the Al{sub 2}O{sub 3}/SiO{sub 2} double-layer coating than with the SiO{sub 2} single-layer coating. The straightforward double-layer coating gives the CIGS solar cells appropriate radiative properties for keeping the cell within a permissible temperature range in space.

  5. Space-based Observations of the Solar Irradiance

    Science.gov (United States)

    Woods, Thomas N.

    2015-08-01

    Solar photon radiation is the dominant energy input to the Earth system, and this energy determines the temperature, structure, and dynamics of the atmosphere, warms the Earth surface, and sustains life. Observations of true solar variability became possible only after attaining access to space, so the observational record of the solar irradiance for sun-climate studies extends back only about 40 years. The total solar irradiance (TSI) and solar spectral irradiance (SSI) observations will be presented along with the discussion of the solar variability during the past four decades. The solar radiation varies on all time scales ranging from minutes to hours for solar eruptive events (flares), days to months for active region evolution and solar rotation (~27 days), and years to decades over the solar activity cycle (~11 years). The amount of solar variability is highly dependent on wavelength and ranges from orders of magnitude for the X-ray to 10-60% for part of the ultraviolet to only 0.1% for the visible and infrared. The accuracy and precision of the solar irradiance measurements have steadily improved with each new generation of instrumentation and with new laboratory (pre-flight) calibration facilities.

  6. Potential for solar-powered base-load capacity

    Science.gov (United States)

    Stoll, Brady; Deinert, Mark

    2013-04-01

    In 2010 nuclear power accounted for 27% of electricity production in Japan. The March 2011 disaster at the Fukushima Daiichi power station resulted in the closure of all of Japans nuclear power plants and it remains an open question as to how many will reopen. Even before the loss of nuclear capacity there were efforts in Japan to foster the use of renewable energy, including large-scale solar power. Nuclear power plants in Japan operated beyond base load with excess energy being stored in large scale pumped hydroelectric storage systems. Here we show how coupling these storage systems to rooftop solar systems in Tokyo could compensate for the loss of nuclear power. Data from a study of rooftop space, and a 34-year data set of average daily irradiance in the Tokyo metropolitan area were used. If current generation PV systems were placed on the available rooftop space in greater Tokyo, this coupled system could provide for 20% of Toyo's nuclear capacity with a capacity factor of 0.99. Using pumped hydroelectric storage with six times this rooftop area could completely provide for TEPCO's nuclear capacity with a capacity factor of 0.98.

  7. Flexible Cu(In,Ga)Se2 solar cells fabricated using a polyimide-coated soda-lime glass substrate

    Science.gov (United States)

    Sadono, Adiyudha; Hino, Masashi; Ichikawa, Mitsuru; Yamamoto, Kenji; Kurokawa, Yasuyoshi; Konagai, Makoto; Yamada, Akira

    2015-08-01

    Flexible solar cells with a Cu(In,Ga)Se2 (CIGS) absorber layer were fabricated on a polyimide thin film using a lift-off process. Polyimide-coated soda-lime glass (SLG) was used as a substrate for fabricating CIGS solar cells before the lift-off process conducted to make the cells flexible. A conversion efficiency of 13.4% was achieved by low temperature deposition; this value is comparable to that obtained by direct deposition on a rigid glass substrate even without an external Na source. The final conversion efficiency after the lift-off process was 12.7% with some area correction due to the partial peeling-off between CIGS and Mo. Open-circuit voltage and fill factor did not change before and after the lift-off process, suggesting that the lift-off process did not give any physical damage.

  8. METSTAT - the solar radiation model used in the production of the National Solar Radiation Data Base (NSRDB)

    International Nuclear Information System (INIS)

    This paper describes selected aspects of the METSTAT (Meteorological/Statistical) solar radiation model. METSTAT was developed specifically to support the production of the National Solar Radiation Data Base for the United States. The model was used to estimate hourly values of direct normal, diffuse horizontal, and global horizontal solar radiation for those times and locations for which measured data were not available. The input parameters for METSTAT include total and opaque cloud cover, aerosol optical depth, precipitable water vapor, ozone, surface albedo, snow depth, days-since-last-snowfall, atmospheric pressure and present weather. The model employs deterministic algorithms to generate accurate monthly means for each element for each hour and statistical algorithms to simulate the statistical and stochastic characteristics of multiyear solar radiation data sets. (author)

  9. Multifunctional Solar Systems Based On Two-Stage Regeneration Absorbent Solution

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-04-01

    Full Text Available The concepts of multifunctional dehumidification solar systems, heat supply, cooling, and air conditioning based on the open absorption cycle with direct absorbent regeneration developed. The solar systems based on preliminary drainage of current of air and subsequent evaporated cooling. The solar system using evaporative coolers both types (direct and indirect. The principle of two-stage regeneration of absorbent used in the solar systems, it used as the basis of liquid and gas-liquid solar collectors. The main principle solutions are designed for the new generation of gas-liquid solar collectors. Analysis of the heat losses in the gas-liquid solar collectors, due to the mechanism of convection and radiation is made. Optimal cost of gas and liquid, as well as the basic dimensions and configuration of the working channel of the solar collector identified. Heat and mass transfer devices, belonging to the evaporative cooling system based on the interaction between the film and the gas stream and the liquid therein. Multichannel structure of the polymeric materials used to create the tip. Evaporative coolers of water and air both types (direct and indirect are used in the cooling of the solar systems. Preliminary analysis of the possibilities of multifunctional solar absorption systems made reference to problems of cooling media and air conditioning on the basis of experimental data the authors. Designed solar systems feature low power consumption and environmental friendliness.

  10. Revised solar maps of Algeria based on sunshine duration

    International Nuclear Information System (INIS)

    Highlights: • The global solar irradiation maps for Algeria are drawn. • We performed an independence test using year 1992–2002 data. • The highest intensity of the solar radiation is located around the area of Djanet. • The less intense area is located around the area of Ksar Chellala. - Abstract: Solar irradiation data is generally required in modelling a system’s thermal performance, and evaluation of long-term effects of climatological changes. In Algeria, measurements of solar irradiation have been carried out for a few locations because the measuring instruments are expensive to purchase and install. The only alternative to obtain solar irradiation data is to estimate it by use of an appropriate solar irradiation model. The present study attempted to draw global solar irradiation maps for Algeria, witch are generated for all types of sky. The incident solar radiation on a horizontal surface, on a surface tilted at the latitude angle and for a vertical plane facing east, south, west, south-east, south-west was determined using numerical models. To obtain a solar radiation map of a certain zone it is necessary to know the solar radiation of a huge number of sites spread wide across the zone. The comparison between the measured and the computed values is satisfactory; the relative error is less than 7%. The results allow to view information about 48 provinces of Algeria, and are presented in the form of an annual solar radiation map. The solar maps developed in this paper provide information about the levels of total solar radiation which can be used as a database for future investments in the solar sector in Algeria

  11. Conceptual model for marketing solar based technology to developing countries

    International Nuclear Information System (INIS)

    Developing countries are faced with large shortfalls of electric-power generation, shortages of usable indigenous fuels, and transportation bottlenecks for those fuels. The loss of revenue that is forced upon the industry due to power cuts and frequent interruptions of power supply is substantial. Renewable sources of energy have an important role to play in providing much needed power in the context of growing global concern about sustainable energy supplies and protecting the environment from the adverse effects of fossil fuel utilization. The purpose of the study is to identify the factors that influence the adoption of solar-based technology. An examination of the literature in the area of diffusion of technology has led to the identification of different variables. The possible relationships that may exist between these variables is depicted in the conceptual framework. This paper attempts to clarify the relationships between the variables that have been identified and the decision to adopt. (Author)

  12. Comparison of sensorless dimming control based on building modeling and solar power generation

    International Nuclear Information System (INIS)

    Artificial lighting in office buildings accounts for about 30% of the total building energy consumption. Lighting energy is important to reduce building energy consumption since artificial lighting typically has a relatively large energy conversion factor. Therefore, previous studies have proposed a dimming control using daylight. When applied dimming control, method based on building modeling does not need illuminance sensors. Thus, it can be applied to existing buildings that do not have illuminance sensors. However, this method does not accurately reflect real-time weather conditions. On the other hand, solar power generation from a PV (photovoltaic) panel reflects real-time weather conditions. The PV panel as the sensor improves the accuracy of dimming control by reflecting disturbance. Therefore, we compared and analyzed two types of sensorless dimming controls: those based on the building modeling and those that based on solar power generation using PV panels. In terms of energy savings, we found that a dimming control based on building modeling is more effective than that based on solar power generation by about 6%. However, dimming control based on solar power generation minimizes the inconvenience to occupants and can also react to changes in solar radiation entering the building caused by dirty window. - Highlights: • We conducted sensorless dimming control based on solar power generation. • Dimming controls using building modeling and solar power generation were compared. • The real time weather conditions can be considered by using solar power generation. • Dimming control using solar power generation minimizes inconvenience to occupants

  13. Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules

    OpenAIRE

    K. F. Poole; Singh, R.; R. Podila; G. F. Alapatt; Gupta, N

    2009-01-01

    We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV) modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quan...

  14. Effect of zinc addition on properties of cadmium sulfide layer and performance of Cu(In,Ga)Se2 solar cell

    International Nuclear Information System (INIS)

    Cd(1−x)ZnxS (CdS:Zn) thin films were grown on an indium tin oxide-coated glass substrate and Cu(In,Ga)Se2 (CIGS) surface by chemical bath deposition for solar cell applications, and their composition, and optical properties were studied to decide the optimum process conditions for buffer layer growth. The average conversion efficiency of CIGS solar panels (24-in.) with the CdS:Zn layer was 0.35% higher than that of conventional solar panels mainly because of the increased open-circuit voltage. This efficiency improvement was not due to modification of the optical properties of the buffer layer, but due to the change in the deposition rate during buffer layer growth. - Highlights: ► CdS:Zn buffer layers were fabricated for Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) panels. ► Composition of buffer layers on indium–tin–oxide (ITO) and CIGS was investigated. ► Transmittance of CdS:Zn on ITO coated glass showed 5% higher than CdS. ► Efficiency of CdS:Zn solution adopted panels showed 0.47% higher than that with CdS. ► However, it was revealed that only Cd and S ions were found at the surface of CIGS

  15. Effect of sodium addition on Cu-deficient CuIn{sub 1-x}Ga{sub x}S{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S.; Dhere, Neelkanth G. [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2009-01-15

    Chalcopyrites are important contenders among solar-cell materials due to direct band gap and very high-absorption coefficients. Copper-indium-gallium disulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of 1.5 eV for terrestrial as well as space applications. At FSEC PV Materials Laboratory, record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 thin film prepared by sulfurization. There are reports of influence of sodium on copper-indium-gallium selenide (CIGS) as well as copper-indium disulfide (CIS2) solar cells. However, this is the first of its kind approach to study the effect of sodium on CIGS2 solar cells and resulting in encouraging efficiencies. Copper-deficient CIGS2 thin films were prepared with and without the addition of sodium fluoride (NaF). Effects of addition of NaF on the microstructure and device electrical properties are presented in this work. (author)

  16. Ground-based solar astrometric measurements during the PICARD mission

    Science.gov (United States)

    Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.

    2011-11-01

    PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.

  17. Innovative Solar Receiver Micro-Design Based on Numerical Predictions

    OpenAIRE

    Capuano, Raffaele; Fend, Thomas; Hoffschmidt, Bernhard; Pitz-Paal, Robert

    2015-01-01

    Due to the continuous global increase in energy demand, a possible source of renewable energy is certainly represented by solar energy. Concentrated Solar Power (CSP) represents an excellent alternative, or add-on to existing systems for the production of energy on a large scale, like steam turbine power plants. In CSP systems, specular surfaces (heliostats) reflect the incoming sunlight, focusing it on a single or multiple focal points. In some of these systems, the Solar Power Tower plants ...

  18. Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors

    Directory of Open Access Journals (Sweden)

    Sh. Delfani

    2015-11-01

    Full Text Available In the present work, a prototype of a new type of solar collectors, which called Direct Absorption Solar Collector, was built and its thermal performance is experimentally compared with conventional flat plate solar collector under transient and steady state conditions. Different volume fractions of multi wall carbon nanotubes in water and ethylene glycol mixture (70%:30% in volume were used as working fluid of direct absorption solar collector.The transient comparison show that the efficiency of the direct absorption solar collector becomes about 7% (in average more than that of flat plate solar collector at 72l/hr flowrate. Thesteady state performance tests were performed in different flowrates from 54to 90l/hr,based on the procedure of EN 12975-2 standard.Under similar operating conditions, adirect absorption solar collector using 100ppm carbon nanotube nanofluid has the zero-loss efficiency of 23% higher than that of a flat plate collector;whereas, the zero-loss efficiency of a direct absorption solar collector using the base fluid is 4.4% lower than that of a flat plate collector. Based onthe results, the performance of a direct absorption solar collector using carbon nanotube nanofluidsis better than a flat-plate solar collector.

  19. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  20. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  1. Metastability of copper indium gallium diselenide polycrystalline thin film solar cell devices

    Science.gov (United States)

    Lee, Jinwoo

    High efficiency thin film solar cells have the potential for being a world energy solution because of their cost-effectiveness. Looking to the future of solar energy, there is the opportunity and challenge for thin film solar cells. The main theme of this research is to develop a detailed understanding of electronically active defect states and their role in limiting device performance in copper indium gallium diselenide (CIGS) solar cells. Metastability in the CIGS is a good tool to manipulate electronic defect density and thus identify its effect on the device performance. Especially, this approach keeps many device parameters constant, including the chemical composition, grain size, and interface layers. Understanding metastability is likely to lead to the improvement of CIGS solar cells. We observed systematic changes in CIGS device properties as a result of the metastable changes, such as increases in sub-bandgap defect densities and decreases in hole carrier mobilities. Metastable changes were characterized using high frequency admittance spectroscopy, drive-level capacitance profiling (DLCP), and current-voltage measurements. We found two distinctive capacitance steps in the high frequency admittance spectra that correspond to (1) the thermal activation of hole carriers into/out of acceptor defect and (2) a temperature-independent dielectric relaxation freeze-out process and an equivalent circuit analysis was employed to deduce the dielectric relaxation time. Finally, hole carrier mobility was deduced once hole carrier density was determined by DLCP method. We found that metastable defect creation in CIGS films can be made either by light-soaking or with forward bias current injection. The deep acceptor density and the hole carrier density were observed to increase in a 1:1 ratio, which seems to be consistent with the theoretical model of VCu-V Se defect complex suggested by Lany and Zunger. Metastable defect creation kinetics follows a sub-linear power law

  2. Microcontroller Based Solar tracking System for enhancing efficiency of a Photovoltaic system

    Directory of Open Access Journals (Sweden)

    Shaifali Jain,

    2014-09-01

    Full Text Available In today‟s scenario of increasing energy needs, there is a huge dependence on renewable energy sources along with the conventional sources. One of the most important renewable energy resources is the sun. However, the problem with solar power is that it is directly dependent on light intensity. To produce the maximum amount of energy, a solar panel must be perpendicular to the light source. Because the sun moves both throughout the day as well as throughout a year, a solar panel must be able to follow the sun‟s movement to produce the maximum possible power. There are a large number of methods available for solar tracking and hence maximizing the output .This paper proposes an Arduino Uno microcontroller board based solar tracking system. As compared to the conventional solar panels, the one mounted with microcontroller based tracking system will give enhanced output.

  3. Solar shading system based on daylight directing glass lamellas

    DEFF Research Database (Denmark)

    Laustsen, Jacob B.; Santos, Ines D. P.; Svendsen, Svend;

    2008-01-01

    The overheating problems in office buildings must be solved with efficient solar shadings in order to reduce the energy demand for cooling and ventilation. At the same time the solar shading should not reduce the daylight level in the building on overcast days because it would result in a lower...

  4. Investigation of Organic Solar Cells Based on Donor——A ccepter Heterojunction%Investigation of Organic Solar Cells Based onDonor——A ccepter Heterojunction

    Institute of Scientific and Technical Information of China (English)

    Gao Yinhao

    2008-01-01

    The single-l ayer structure and heterojunction structure organic solar cells based on copper phthalocyanine (CuPc),3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) and fullerene C60 were fabricated to study their photovoltaic (PV) properties. The PV performance of heterojunction structure solar cells was improved compared with the single layer structure cell.This is due to the introduction of donor-acceptor heterojunction that both expands the absorption range and offers efficient excit on dissociation site.In heterojunction structure solar cells,the PV performance of device with C60 as acceptor has highly improved because C60 has longer diffusion length o f excitons.

  5. Membrane Material-Based Rigid Solar Array Design and Thermal Simulation for Stratospheric Airships

    OpenAIRE

    Kangwen Sun; Ming Zhu; Qiang Liu

    2014-01-01

    In order to improve effective utilization of rigid solar array used in stratospheric airships here, the flexible connection design and light laminated design were introduced to rigid solar array. Based on the analysis of the design scheme, firstly, the equivalent coefficient of thermal conductivity was calculated by the theoretical formula. Subsequently, the temperature variation characteristics of the solar cell module were accurately modeled and simulated by using Computational Fluid Dynami...

  6. Linear Fresnel Reflector based Solar Radiation Concentrator for Combined Heating and Power

    Science.gov (United States)

    Chatterjee, Aveek; Bernal, Eva; Seshadri, Satya; Mayer, Oliver; Greaves, Mikal

    2011-12-01

    We have designed and realized a test rig to characterize concentrated solar-based CHP (combined heat and power) generator. Cost benefit analysis has been used to compare alternate technologies, which can cogenerate electrical and thermal power. We have summarized the experimental setup and methods to characterize a concentrated solar thermal (CST) unit. In this paper, we demonstrate the performance data of a concentrated solar thermal system.

  7. Adaptive Critic Based Neuro-Fuzzy Tracker for Improving Conversion Efficiency in PV Solar Cells

    OpenAIRE

    Halimeh Rashidi; Saeed Niazi; Jamshid Khorshidi

    2012-01-01

    The output power of photovoltaic systems is directly related to the amount of solar energy collected by the system and it is therefore necessary to track the sun’s position with high accuracy. This study proposes multi-agent adaptive critic based nero fuzzy solar tracking system dedicated to PV panels. The proposed tracker ensures the optimal conversion of solar energy into electricity by properly adjusting the PV panels according to the position of the sun. To evaluate the usefulness of the ...

  8. Photoelectrochemical solar cells based on Bi{sub 2}WO{sub 6}; Celdas solares fotoelectroquimicas basadas en Bi{sub 2}WO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Madriz, Lorean; Tata, Jose; Cuartas, Veronica; Cuellar, Alejandra; Vargas, Ronald, E-mail: lmadriz@usb.ve [Departamento de Quimica, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-04-15

    In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi{sub 2}WO{sub 6} was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO{sub 2} semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi{sub 2}WO{sub 6}-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO{sub 2} electrodes, even without sensitization. These results portray solar cells based on Bi{sub 2}WO{sub 6} as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition. (author)

  9. Wireless electricity (Power) transmission using solar based power satellite technology

    International Nuclear Information System (INIS)

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 – 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  10. Effects of solar radiation on collagen-based biomaterials

    OpenAIRE

    Alina Sionkowska; Marcin Wisniewski; Joanna Skopinska; Diego Mantovani

    2006-01-01

    The effect of solar radiation on collagen and collagen/synthetic polymer blends in the form of thin films and solutions has been studied by UV-VIS and FTIR spectroscopies. Films and solutions of collagen blended with poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) were irradiated by solar light. It was found that UV-VIS spectra, which characterize collagen, collagen/PVA, and collagen/PVP blended films, were significantly altered by solar radiation. FTIR spectra of collagen, collag...

  11. Ruthenium based redox flow battery for solar energy storage

    International Nuclear Information System (INIS)

    Research highlights: → Undivided redox flow battery employing porous graphite felt electrodes was used. → Ruthenium acetylacetonate dissolved in acetonitrile was the electrolyte. → Charge/discharge conditions were determined for both 0.02 M and 0.1 M electrolytes. → Optimum power output of 0.180 W was also determined for 0.1 M electrolyte. → 55% voltage efficiency was obtained when battery was full of electrolytes. -- Abstract: The technical performance for the operation of a stand alone redox flow battery system for solar energy storage is presented. An undivided reactor configuration has been employed along with porous graphite felt electrodes and ruthenium acetylacetonate as electrolyte in acetonitrile solvent. Limiting current densities are determined for concentrations of 0.02 M and 0.1 M ruthenium acetylacetonate. Based on these, operating conditions for 0.02 M ruthenium acetylacetonate are determined as charging current density of 7 mA/cm2, charge electrolyte superficial velocity of 0.0072 cm/s (through the porous electrodes), discharge current density of 2 mA/cm2 and discharge electrolyte superficial velocity of 0.0045 cm/s. An optimum power output of 35 mW is also obtained upon discharge at 2.1 mA/cm2. With an increase in the concentration of ruthenium species from 0.02 M to 0.1 M, the current densities and power output are higher by a factor of five approximately (at same superficial velocities) due to higher mass transport phenomenon. Moreover at 0.02 M concentration the voltage efficiency is better for battery full of electrolytes prior to charging (52.1%) in comparison to an empty battery (40.5%) due to better mass transport phenomenon. Voltage efficiencies are higher as expected at concentrations of 0.1 M ruthenium acetylacetonate (55% when battery is full of electrolytes and 48% when empty) showing that the all-ruthenium redox flow battery has some promise for future applications in solar energy storage. Some improvements for the system are

  12. SAMEX vector magnetograph: a design study for a space-based solar vector magnetograph

    International Nuclear Information System (INIS)

    This report presents the results of a pre-phase A study performed by the Marshall Space Flight Center (MSFC) for the Air Force Geophysics Laboratory (AFGL) to develop a design concept for a space-based solar vector magnetograph and hydrogen-alpha telescope. These are two of the core instruments for a proposed Air Force mission, the Solar Activities Measurement Experiments (SAMEX). This mission is designed to study the processes which give rise to activity in the solar atmosphere and to develop techniques for predicting solar activity and its effects on the terrestrial environment

  13. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating

    International Nuclear Information System (INIS)

    The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 μm thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 μm thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm2 of 5, 10, 20 and 30 μm cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells

  14. Hydrazine-Free Solution-Deposited CuIn(S,Se)2 Solar Cells by Spray Deposition of Metal Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Arnou, Panagiota; van Hest, Maikel F. A. M.; Cooper, Carl S.; Malkov, Andrei V.; Walls, John M.; Bowers, Jake W.

    2016-05-18

    Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

  15. Mathematical Modeling of a developed Central Receiver Based on Evacuated Solar Tubes

    Directory of Open Access Journals (Sweden)

    Ali Basil. H.

    2016-01-01

    Full Text Available Solar central receiver plays a considerable role in the plant output power; it is one of the most important synthesis in the solar power tower plants. Its performance directly affects the efficiency of the entire solar power generation system. In this study, a new designed receiver model based on evacuated solar tube was proposed, and the dynamic characteristics of the developed receiver were investigated. In order to optimise and evaluate the dynamic characteristics of solar power plant components, the model investigates the solar radiation heat conversion process through the developed receiver, where the energy and mass conservation equations are used to determine the working fluid temperature and state through the receiver parts, beside the calculation and analysis of the thermal losses.

  16. Ambient roll-to-roll fabrication of flexible solar cells based on small molecules

    DEFF Research Database (Denmark)

    Lin, Yuze; Dam, Henrik Friis; Andersen, Thomas Rieks;

    2013-01-01

    All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells....

  17. Atmospheric CO2 retrieved from ground-based solar spectra

    Science.gov (United States)

    Yang, Z.; Toon, G. C.; Margolis, J. S.; Wennberg, P. O.

    2002-01-01

    The column-averaged volume mixing ration of CO2 over Kitt Peak, Arizona, has been retrieved from high-resolution solar absorption spectra obtained with the fourier transform spectrometer on the McMath telescope.

  18. Magnetically confined plasma solar collector. [satellite based system in space

    Science.gov (United States)

    Walters, C. T.; Wolken, G., Jr.; Purvis, G. D., III

    1978-01-01

    The possibility of using a plasma medium for collecting solar energy in space is examined on the basis of a concept involving an orbiting magnetic bottle in which a solar-energy-absorbing plasma is confined. A basic system uses monatomic cesium as working fluid. Cesium evaporates from a source and flows into the useful volume of a magnetic bottle where it is photoionized by solar radiation. Ions and electrons lost through the loss cones are processed by a recovery system, which might be a combination of electromagnetic devices and heat engines. This study concentrates on the plasma production processes and size requirements, estimates of the magnetic field required to confine the plasma, and an estimate of the system parameters for a 10 GW solar collector using cesium.

  19. InN-Based Quantum Dot Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this STTR program is to employ nanostructured materials in advanced device designs to enhance the tolerance of solar cells to extreme conditions while...

  20. InN-Based Quantum Dot Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this STTR program is to employ nanostructured materials in an advanced device design to enhance the tolerance of solar cells to extreme environments...

  1. Window structure for passivating solar cells based on gallium arsenide

    Science.gov (United States)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  2. A Wavelet Based Approach to Solar--Terrestrial Coupling

    CERN Document Server

    Katsavrias, Ch; Preka--Papadema, P

    2016-01-01

    Transient and recurrent solar activity drive geomagnetic disturbances; these are quantified (amongst others) by DST, AE indices time-series. Transient disturbances are related to the Interplanetary Coronal Mass Ejections (ICMEs) while recurrent disturbances are related to corotating interaction regions (CIR). We study the relationship of the geomagnetic disturbances to the solar wind drivers within solar Cycle 23 where the drivers are represented by ICMEs and CIRs occurrence rate and compared to the DST and AE as follows: terms with common periodicity in both the geomagnetic disturbances and the solar drivers are, firstly, detected using continuous wavelet transform (CWT). Then, common power and phase coherence of these periodic terms are calculated from the cross-wavelet spectra (XWT) and waveletcoherence (WTC) respectively. In time-scales of about 27 days our results indicate an anti-correlation of the effects of ICMEs and CIRs on the geomagnetic disturbances. The former modulates the DST and AE time series...

  3. Formation of photovoltaic modules based on polycrystalline solar cells

    OpenAIRE

    L.A. Dobrzański; A. Drygała; A. Januszka

    2009-01-01

    Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current an...

  4. Radiative efficiency of lead iodide based perovskite solar cells

    OpenAIRE

    Kristofer Tvingstedt; Olga Malinkiewicz; Andreas Baumann; Carsten Deibel; Snaith, Henry J.; Vladimir Dyakonov; Bolink, Henk J.

    2015-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a...

  5. Effect of electrodeposition potential on composition and morphology of CIGS absorber thin film

    Indian Academy of Sciences (India)

    N D Sang; P H Quang; L T Tu; D T B Hop

    2013-08-01

    CuInGaSe (CIGS) thin films were deposited on Mo/soda-lime glass substrates by electrodeposition at different potentials ranging from −0.3 to −1.1 V vs Ag/AgCl. Cyclic voltammetry (CV) studies of unitary Cu, Ga, In and Se systems, binary Cu–Se, Ga–Se and In–Se systems and quaternary Cu–In–Ga–Se were carried out to understand the mechanism of deposition of each constituent. Concentration of the films was determined by energy dispersive spectroscopy. Structure and morphology of the films were characterized by X-ray diffraction and scanning electron microscope. The underpotential deposition mechanism of Cu–Se and In–Se phases was observed in voltammograms of binary and quaternary systems. Variation in composition with applied potentials was explained by cyclic voltammetry (CV) data. A suitable potential range from −0.8 to −1.0 V was found for obtaining films with desired and stable stoichiometry. In the post-annealing films, chalcopyrite structure starts forming in the samples deposited at −0.5 V and grows on varying the applied potential towards negative direction. By adjusting the composition of electrolyte, we obtained the desired stoichiometry of Cu(In0.7Ga0.3)Se2.

  6. A wavelet based approach to Solar-Terrestrial Coupling

    Science.gov (United States)

    Katsavrias, Ch.; Hillaris, A.; Preka-Papadema, P.

    2016-05-01

    Transient and recurrent solar activity drive geomagnetic disturbances; these are quantified (amongst others) by DST , AE indices time-series. Transient disturbances are related to the Interplanetary Coronal Mass Ejections (ICMEs) while recurrent disturbances are related to corotating interaction regions (CIR). We study the relationship of the geomagnetic disturbances to the solar wind drivers within solar cycle 23 where the drivers are represented by ICMEs and CIRs occurrence rate and compared to the DST and AE as follows: terms with common periodicity in both the geomagnetic disturbances and the solar drivers are, firstly, detected using continuous wavelet transform (CWT). Then, common power and phase coherence of these periodic terms are calculated from the cross-wavelet spectra (XWT) and wavelet-coherence (WTC) respectively. In time-scales of ≈27 days our results indicate an anti-correlation of the effects of ICMEs and CIRs on the geomagnetic disturbances. The former modulates the DST and AE time series during the cycle maximum the latter during periods of reduced solar activity. The phase relationship of these modulation is highly non-linear. Only the annual frequency component of the ICMEs is phase-locked with DST and AE. In time-scales of ≈1.3-1.7 years the CIR seem to be the dominant driver for both geomagnetic indices throughout the whole solar cycle 23.

  7. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  8. Neural network based method for conversion of solar radiation data

    International Nuclear Information System (INIS)

    Highlights: ► Generalized regression neural network is used to predict the solar radiation on tilted surfaces. ► The above network, amongst many such as multilayer perceptron, is the most successful one. ► The present neural network returns a relative mean absolute error value of 9.1%. ► The present model leads to a mean absolute error value of estimate of 14.9 Wh/m2. - Abstract: The receiving ends of the solar energy conversion systems that generate heat or electricity from radiation is usually tilted at an optimum angle to increase the solar incident on the surface. Solar irradiation data measured on horizontal surfaces is readily available for many locations where such solar energy conversion systems are installed. Various equations have been developed to convert solar irradiation data measured on horizontal surface to that on tilted one. These equations constitute the conventional approach. In this article, an alternative approach, generalized regression type of neural network, is used to predict the solar irradiation on tilted surfaces, using the minimum number of variables involved in the physical process, namely the global solar irradiation on horizontal surface, declination and hour angles. Artificial neural networks have been successfully used in recent years for optimization, prediction and modeling in energy systems as alternative to conventional modeling approaches. To show the merit of the presently developed neural network, the solar irradiation data predicted from the novel model was compared to that from the conventional approach (isotropic and anisotropic models), with strict reference to the irradiation data measured in the same location. The present neural network model was found to provide closer solar irradiation values to the measured than the conventional approach, with a mean absolute error value of 14.9 Wh/m2. The other statistical values of coefficient of determination and relative mean absolute error also indicate the advantage of

  9. Thin-Film Solar Cells on Metal Foil Substrates for Space Power

    Science.gov (United States)

    Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.

    2004-01-01

    Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved

  10. Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    N. Gupta

    2009-01-01

    Full Text Available We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quantum phenomena-based nanostructures solar cells are unlikely to play a significant role in the manufacturing of future generations of PV modules. Similar to the invention of phase shift masks (to beat the conventional diffraction limit of optical lithography clever design concepts need to be invented to take advantage of quantum-based nanostructures. Silicon-based PV manufacturing will continue to provide sustained growth of the PV industry.

  11. Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information

    International Nuclear Information System (INIS)

    Highlights: • Satellite-based, reanalysis data and measurements are combined for solar mapping. • Plant output modeling for PV and CSP results in simple expressions of solar potential. • Solar resource, solar potential are used in a GIS for determine technical solar potential. • Solar resource and potential maps of Vietnam are presented. - Abstract: The present paper presents maps of the solar resources in Vietnam and of the solar potential for concentrating solar power (CSP) and for grid-connected photovoltaic (PV) technology. The mapping of solar radiation components has been calculated from satellite-derived data combined with solar radiation derived from sunshine duration and other additional sources of information based on reanalysis for several atmospheric and meteorological parameters involved. Two scenarios have been selected for the study of the solar potential: CSP Parabolic Trough of 50 MWe and grid-connected Flat Plate PV plant of around 1 MWe. For each selected scenario plant performance simulations have been computed for developing simple expressions that allow the estimation of the solar potential from the annual solar irradiation and the latitude of every site in Vietnam. Finally, Geographic Information Systems (GIS) have been used for combining the solar potential with the land availability according each scenario to deliver the technical solar potential maps of Vietnam

  12. Trojan Tour Enabled by Solar Electric Based Mission Architecture

    Science.gov (United States)

    Smith, David B.; Klaus, K.; Behrens, J.; Bingaman, G.; Elsperman, M.; Horsewood, J.

    2013-10-01

    Introduction: A Trojan Tour and Rendezvous mission was one of the missions recommended by the most recent Planetary Science Decadal Survey. To the greatest extent possible, we will utilize this concept as a basis for re-examining the feasibility of a Solar Electric Propulsion (SEP) mission using a Boeing bus and Advanced Modular Power System (AMPS) solar power generation. The concept study for the Decadal survey concluded that s SEP mission is not viable because of low solar intensity levels. Mission Overview: With the advent of the new high power solar array technology, SEP missions to the outer planets become viable. The mission objective is 1143 Odysseus, a Trojan within the Trojan cloud, consistent with the Decadal Survey. Our mission analysis using SEP yielded a 6 year travel time. The Decadal mission concept uses REP (Radioisotope Electric Propulsion) mission objective. For comparison, the REP mission concept flight time was 8 years. For the purposes of our study, the science payload instruments, data rates, mass and power requirements are identical to the Trojan Decadal study. Our investments focus on innovative lightweight structures, advanced solar array deployment systems, high voltage power systems, and high efficiency solar cells. Summary/Conclusion: By using advanced, high power generation solar arrays, SEP becomes a viable alternative for Jupiter system missions. We show that a SEP mission reduces the flight time to the Trojans by 2.5 years. We also show that a proven commercial bus can provide the necessary pointing accuracy and stability required for the Decadal mission concept and its science instrument suite.

  13. Overview and Challenges of Thin Film Solar Electric Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  14. Influence of piezoelectric fields on InGaN based intermediate band solar cells

    Science.gov (United States)

    Tang, H.; Liu, B.; Wang, T.

    2015-01-01

    As it is practically infeasible to fabricate multiple-junction InGaN based tandem solar cells due to an intrinsic limit, intermediate-band solar cells (IBSCs) provide an alternative option for the fabrication of single-junction solar cells with their performance potentially equivalent to that of multiple-junction solar cells. InGaN quantum dots (QD) could be used for designing an IBSC structure. More importantly, it is well-known that there exist very strong piezoelectric fields in an InGaN/GaN system with a high indium composition, which becomes more pronounced for InGaN based QDs. The built-in piezoelectric fields can lead to a significant increase in the open circuit voltage and thus improved performance of solar cells, which has not yet been considered in designing III-nitride based solar cells so far. An optimized InGaN based QD-IBSC structure has been designed, combining the major advantages from the IBSC structure and the benefits due to the strong piezoelectric fields. A conversion efficiency, open-circuit voltage and short-circuit current have been calculated, and a highest conversion efficiency of 55.4% is obtained. The combination of the single-junction IBSC structure and the piezoelectric fields paves the way for the fabrication of InGaN based single-junction solar cells with ultra-high energy efficiency.

  15. Performance Evaluation of a Nanofluid (CuO-H2O Based Low Flux Solar Collector

    Directory of Open Access Journals (Sweden)

    Lal Kundan

    2013-04-01

    Full Text Available As the fossil fuels are depleting continuously, we know that solar energy harvesting is a significant potential area for new research dimensions. Sun provides us about 1.9 x 108TWh/yr on the land, of which 1.3 x 105 TWh]/yr energy is used. In order to make much use of solar energy on the earth, solar energy harvesting into more usable form (e.g. heat or electricity by using solar energy collectors is important aspect. A solar collector [1] is a device which transfers the collected solar energy to a fluid passing in contact with it. The performance of collector does not only depends upon how effective the absorber is, but also on how effective are the heat transfer and thermal properties (e.g. thermal conductivity, heat capacity of the fluid which is being used. The absorption properties of the fluids generally used in solar collectors are very poor which in turn limits the efficiency of the solar collector. So, there is a need to use energy efficient heat transfer fluids for high efficiency and performance. A relatively new attempt has been made to increase the performance of the solar collector by using nanofluids. Recently developed a new class of working fluids called Nanofluids, found to be possessing better thermal properties over the hosting fluids, can be a good option in the solar collector [5]. In our research work the CuO-water based nanofluid has been tested in the solar collector and their performance is investigated. It has been found that efficiency if the solar collector is increased by 4-6% compared to water

  16. Solar cells based on GaAs: Thermal behavior study

    Science.gov (United States)

    Giudicelli, Emmanuel; Martaj, Nadia; Bennacer, Rachid; Dollet, Alain; Perona, Arnaud; Pincemin, Sandrine; Cuminal, Yvan

    2016-03-01

    Current CPV electricity costs are still higher than those of conventional PV (thin films or silicon). This is due to additional components (tracker, Fresnel lens, optical guide…) required for CPV and to a lesser extent, to the very high price of III-V multi-junction solar cells. One way to lower CPV costs is to reduce the size of solar cells and operate at higher concentration [1]. One of the main potential limitations for the use of PV cells at very high solar concentration is cell overheating. The goal of this work is to study and better understand the thermal behavior of PV cells in high solar concentrations conditions (˜ 2000 suns). For that purpose, we have designed and prepared PV cells with platinum resistors included. Temperature measurements performed on these cells in real solar concentration conditions have allowed us to validate thermal simulations of our devices that could be used to optimize the thermal management of the cell under high concentration. At the request of the authors of the paper, an updated version of this article was published on 31 March 2016. In the original article supplied to AIP Publishing an author was omitted as well as a credit line on the last page. These errors have been corrected in the updated republished article.

  17. Solar Energy Campaign. 2008 Norwegian student-based web campaign

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Scott

    2009-07-01

    Student research campaigns (forskningskampanjer) have been an annual event in connection to Research Days (Forskningsdagene) since 2003 in Norway. The campaigns invite students from all over the country to participate in a common scientific research event, always connected to a special environmentally related theme - for example Air Quality in the Classroom (2003), Pollution along Roads (2004), Bacteria in Drinking Water (2005), and The Rain Check (2006). The year 2008, as with previous years, was overshadowed by the topic of climate change, and the specific role of humans. The research campaign theme for 2008 fit well into this focus: the potential benefits of solar energy as an alternative energy source. The campaign also was aligned with the Research Days theme of alternative energy sources and technologies. The campaign included the hands-on activity of assembling a solar panel and taking measurements with the device to determine efficiency, as well as a questionnaire to record the results and ask deeper questions regarding alternative energy and climate change. The results gained from data analysis of the campaign show that students were able to gain maximum efficient solar power from the devices they constructed, which gave them a solid understanding of solar power technology. Analysis of the campaign questionnaire in regards to the activity shows that students believe that solar energy should be better utilized as an energy source in Norway. (Also in Norwegian OR 24/2009). (Author)

  18. Bulk-heterojunction organic solar cells based on merocyanine colorants

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Nils M.; Lademann, Hans W.A.; Meerholz, Klaus [Department fuer Chemie, Universitaet zu Koen (Germany); Buerckstuemmer, Hannah; Tulyakova, Elena V.; Deppisch, Manuela; Wuerthner, Frank [Institut fuer Organische Chemie, Universitaet Wuerzburg (Germany)

    2009-07-01

    To take advantage of the full potential of organic Bulk Heterojunction (BHJ) solar cells, there is a need to explore new materials. We introduced merocyanines dyes (MCs) as a new class of electron donor materials for the application in solution-processed BHJ solar cells. MCs are traditional low-molecular colorants that are widely applied in textile coloration, for printing purposes, and nonlinear optics. Due to their structure, consisting of an electron-donating and an electron-accepting subunit, they possess high absorption coefficients which is favorable for the use in solar cells. The vast variety of the MC synthesis allows for a variation of the absorption properties in a wide range and a tuning of the solar cell absorption to the emission spectrum of the sun. Another advantage of MCs compared to some long-wavelength absorbing polymers is the relatively low HOMO-energy (down to -6.0 eV), which is beneficial for large open-circuit voltages. We tested various different MC-dyes in the application as donor compound in BHJ solar cells in combination with the soluble C{sub 60} derivative PCBM. Power conversion efficiencies up to 2.1% under standard illumination and 2.7% at reduced intensities were achieved.

  19. Technology for obtaining of solar elements based on heterostructure basis

    International Nuclear Information System (INIS)

    As it is known the level of energy sources usage reflects the level of development of civilization and was accepted by all as main factor. Currently, there are mainly oil, coal and natural gas are used as raw material in traditional energy, which leads to formation of environmental problems. They are not endless reserves of traditional energy sources and there is a danger of their extinction in the near future. For that reason, recently, the use of wind, solar, thermal waters and some other natural resources rapidly increased in many countries. The most important place among these natural resources belongs to solar energy. Thus, the amount of solar energy coming into the earth is much more than the amount of energy of oil, gas, coal and uranium reserves in the world taken together. At present the annual production of solar components exceeds 500 MW in the world. Photoelectric stations are silent and do not waste harmful products to the environment. The majority of modern solar cells are made on the basis of a single p-n junction

  20. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe2 base layers

    International Nuclear Information System (INIS)

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe2 base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe2-based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected

  1. Short-term solar irradiation forecasting based on Dynamic Harmonic Regression

    International Nuclear Information System (INIS)

    Solar power generation is a crucial research area for countries that have high dependency on fossil energy sources and is gaining prominence with the current shift to renewable sources of energy. In order to integrate the electricity generated by solar energy into the grid, solar irradiation must be reasonably well forecasted, where deviations of the forecasted value from the actual measured value involve significant costs. The present paper proposes a univariate Dynamic Harmonic Regression model set up in a State Space framework for short-term (1–24 h) solar irradiation forecasting. Time series hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation will be used to illustrate the proposed approach. This method provides a fast automatic identification and estimation procedure based on the frequency domain. Furthermore, the recursive algorithms applied offer adaptive predictions. The good forecasting performance is illustrated with solar irradiance measurements collected from ground-based weather stations located in Spain. The results show that the Dynamic Harmonic Regression achieves the lowest relative Root Mean Squared Error; about 30% and 47% for the Global and Direct irradiation components, respectively, for a forecast horizon of 24 h ahead. - Highlights: • Solar irradiation forecasts at short-term are required to operate solar power plants. • This paper assesses the Dynamic Harmonic Regression to forecast solar irradiation. • Models are evaluated using hourly GHI and DNI data collected in Spain. • The results show that forecasting accuracy is improved by using the model proposed

  2. Ga content and thickness inhomogeneity effects on Cu(In, Ga)Se2 solar modules

    Science.gov (United States)

    Zhu, Xiaobo; Cheng, Tzu-Huan; Liu, Chee Wee

    2016-07-01

    The fluctuation of Ga content and absorption layer thickness of Cu(In, Ga)Se2 (CIGS) solar modules is investigated by 3-dimensional numerical simulation. The band gap of CIGS is increased by the increasing Ga content, and the residual compressive strain. Strain effect worsens the degradation of the power conversion efficiency of CIGS module in addition to Ga fluctuation. The intracell Ga fluctuation degrades the open circuit voltage due to the minimum open circuit voltage in the parallel configuration, and also affects the short circuit current due to the Ga-dependent light absorption. The intercell Ga fluctuation leads to a more significant degradation for CIGS solar module efficiency than the intracell Ga fluctuation due to the additional degradation of the fill factor. The thickness fluctuation has a small effect on open circuit voltage, but causes strong degradation of short circuit current and fill factor, which leads to a more significant degradation on power conversion efficiency than Ga fluctuation to the same fluctuation percentage. In reality, the thickness can be tightly controlled within the fluctuation of 5% or less. [Figure not available: see fulltext.

  3. Empirically modelled Pc3 activity based on solar wind parameters

    Directory of Open Access Journals (Sweden)

    T. Raita

    2010-09-01

    Full Text Available It is known that under certain solar wind (SW/interplanetary magnetic field (IMF conditions (e.g. high SW speed, low cone angle the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock. Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through

  4. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    Science.gov (United States)

    Jyoti, Divya; Mohan, Devendra

    2016-05-01

    Dye-Sensitized solar cells based on TiO2 nanocrystal and TiO2 nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  5. Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Guang; CHEN Yan-Ling; WANG Zhan-Guo; YANG Tao; WANG Ke-Fan; GU Yong-Xian; JI Hai-Ming; XU Peng-Fei; NI Hai-Qiao; NIU Zhi-Chuan; WANG Xiao-Dong

    2011-01-01

    We report the fabrication of intermediate-band solar cells(IBSCs) based on quantum dots(QDs), which consists of a standard P-I-N structure with multilayer stacks of InAs/GaAs QDs in the I-layer. Compared with conventional GaAs single-junction solar cells, the IBSCs based on InAs/GaAs QDs show a broader photo-response spectrum (> 1330 nm), a higher short-circle current(about 53% increase) and a stronger radiation hardness. The results have important applications for realizing high efficiency solar cells with stronger radiation hardness.

  6. Dye-sensitized solar cells based on purple corn sensitizers

    Science.gov (United States)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  7. Lead sulfide quantum dot-based nanostructured solar cells

    OpenAIRE

    Jumabekov, Askhat N.

    2014-01-01

    The use of PbS quantum dots (QDs) acting as light absorbers in a range of nanostructured solar cell devices has been investigated. The impact of different QD deposition methods, of the nature and structure of different metal oxides serving as electrodes, as well as interface and surface effects on device performance has been explored. Chapter 3 describes the application of in situ grown PbS QDs as absorber layer for extremely thin absorber solar cells with the inorganic solid hole transporter...

  8. The Design of the LED Display based on Solar Energy

    OpenAIRE

    Li Pei; Bai Xuefeng; Li Hanqing

    2015-01-01

    The development of solar energy and the LED display, the superiority of the combination of them and software design of the system are discussed in this paper. Hardware design and software design are the key elements of this paper. Solar control circuit, LED display control circuit, etc are described, charge and discharge of the battery and output of the battery is controlled by STC89C52 SCM. The design of software provides driver to the related hardware circuit. The result of the experiment h...

  9. The Design of the LED Display based on Solar Energy

    Directory of Open Access Journals (Sweden)

    Li Pei

    2015-01-01

    Full Text Available The development of solar energy and the LED display, the superiority of the combination of them and software design of the system are discussed in this paper. Hardware design and software design are the key elements of this paper. Solar control circuit, LED display control circuit, etc are described, charge and discharge of the battery and output of the battery is controlled by STC89C52 SCM. The design of software provides driver to the related hardware circuit. The result of the experiment have achieved anticipated effects and met the design requirements.

  10. Solar Radiation Estimation on Building Roofs and Web-Based Solar Cadastre

    Science.gov (United States)

    Agugiaro, G.; Nex, F.; Remondino, F.; De Filippi, R.; Droghetti, S.; Furlanello, C.

    2012-07-01

    The aim of this study is the estimation of solar irradiance on building roofs in complex Alpine landscapes. Very high resolution geometric models of the building roofs are generated by means of advanced automated image matching methods. Models are combined with raster and vector data sources to estimate the incoming solar radiation hitting the roofs. The methodology takes into account for atmospheric effects, site latitude and elevation, slope and aspect of the terrain as well as the effects of shadows cast by surrounding buildings, chimneys, dormers, vegetation and terrain topography. An open source software solution has been developed and applied to a study area located in a mountainous site and containing some 1250 residential, commercial and industrial buildings. The method has been validated by data collected with a pyranometer and results made available through a prototype WebGIS platform.

  11. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    OpenAIRE

    Ooshaksaraei, P.; K. Sopian; Zulkifli, R.; Saleem H. Zaidi

    2013-01-01

    Photovoltaic (PV) panels account for a majority of the cost of photovoltaic thermal (PVT) panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum ef...

  12. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    OpenAIRE

    Jong-Min Yeom; You-Kyung Seo; Dong-Su Kim; Kyung-Soo Han

    2016-01-01

    This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE) digital elevation model (DEM) for the actual amount of...

  13. Highly Efficient InGaN-Based Solar Cells for High Intensity and High Temperature Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I program, we propose to fabricate high-efficiency and radiation hard solar cells based on InGaN material system that can cover the whole solar...

  14. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  15. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    OpenAIRE

    Aculinin A.; Smikov V.

    2008-01-01

    Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  16. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    Science.gov (United States)

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost. PMID:26390182

  17. PSO based PI controller design for a solar charger system.

    Science.gov (United States)

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713

  18. Formation of photovoltaic modules based on polycrystalline solar cells

    Directory of Open Access Journals (Sweden)

    L. A. Dobrzański

    2009-12-01

    Full Text Available Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current and voltage levels. Taking this fact into account the analysis of photovoltaic module construction was performed.Research limitations/implications: The main goal of the research is to show the practical application of solar cells. Two photovoltaic modules were assembled and their basic electric properties were analysed. It was shown that they may be successively applied as an alternative energy source.Practical implications: Photovoltaic modules are irreplaceable in areas which are far away from power network. Simply photovoltaic module can supply small device without any problem.Originality/value: The produced photovoltaic modules and photovoltaic systems confirm the utility of solar energy in every place where the sun radiation is available. Because of exhaust conventional energy sources like coal or earth gas, new renewable sources of energy (sunlight, wind are more and more often used. It brings huge ecological benefits.

  19. PSO Based PI Controller Design for a Solar Charger System

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2013-01-01

    Full Text Available Due to global energy crisis and severe environmental pollution, the photovoltaic (PV system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs.

  20. Solar spectra analysis based on the statistical moment method

    Czech Academy of Sciences Publication Activity Database

    Druckmüller, M.; Klvaňa, Miroslav; Druckmüllerová, Z.

    2007-01-01

    Roč. 31, č. 1 (2007), s. 297-307. ISSN 1845-8319. [Dynamical processes in the solar atmosphere. Hvar, 24.09.2006-29.09.2006] R&D Projects: GA ČR GA205/04/2129 Institutional research plan: CEZ:AV0Z10030501 Keywords : spectral analysis * method Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  1. Solar-based rural electrification policy design: The Renewable Energy Service Company (RESCO) model in Fiji

    Energy Technology Data Exchange (ETDEWEB)

    Dornan, M. [Resource Management in Asia-Pacific Program, The Crawford School of Economics and Government, The Australian National University, Acton ACT 2601 (Australia)

    2011-02-15

    Solar photovoltaic technologies have for some time been promoted as a cost effective means of rural electrification in developing countries. However, institutional structures resulting in poor maintenance have adversely affected the sustainability of past solar projects. In Fiji, the Renewable Energy Service Company (RESCO) program is the latest attempt to promote solar-based rural electrification in a fee-for-service model, aiming to remove the high upfront capital costs associated with solar technologies and using a public-private sector partnership for maintenance. This paper assesses the program using survey and interview data. Major flaws are identified, relating to incorrect treatment of principal-agent problems, information asymmetries, motivational problems, and resourcing of government agencies. General lessons for fee-for-service solar home system models emerge, including that incentives for stakeholders must take centre stage in designing and administering such programs, and that active government support and ownership are required to make programs sustainable. (author)

  2. 25th Anniversary Article: Rise to Power – OPV-Based Solar Parks

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Espinosa Martinez, Nieves; Hösel, Markus;

    2014-01-01

    A solar park based on polymer solar cells is described and analyzed with respect to performance, practicality, installation speed, and energy payback time. It is found that a high voltage installation where solar cells are all printed in series enables an installation rate in Watts installed per...... minute that far exceed any other PV technology in existence. The energy payback time for the practical installation of polymer solar cell foil on a wooden 250 square meter platform in its present form is 277 days when operated in Denmark and 180 days when operated in southern Spain. The installation...... and de-installation rate is above 100 m min−1 , which, with the present performance and web width, implies installation of >200 W min−1. In comparison, this also exceeds the overall manufacturing speed of the polymer solar cell foil with a width of 305 mm which is currently 1 m min−1 for complete...

  3. Membrane Material-Based Rigid Solar Array Design and Thermal Simulation for Stratospheric Airships

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2014-01-01

    Full Text Available In order to improve effective utilization of rigid solar array used in stratospheric airships here, the flexible connection design and light laminated design were introduced to rigid solar array. Based on the analysis of the design scheme, firstly, the equivalent coefficient of thermal conductivity was calculated by the theoretical formula. Subsequently, the temperature variation characteristics of the solar cell module were accurately modeled and simulated by using Computational Fluid Dynamics (CFD software. Compared to the results of test samples, the solar cell module described here guaranteed effective output as well as good heat insulating ability, effectively improving the feasibility of the stratospheric airship design. In addition, the simulation model can effectively simulate the temperature variation characteristics of the solar cell, which, therefore, provides technical support for the engineering application.

  4. Site-adaptation of satellite-based DNI and GHI time series: Overview and SolarGIS approach

    Science.gov (United States)

    Cebecauer, Tomas; Suri, Marcel

    2016-05-01

    Site adaptation is an approach of reducing uncertainty in the satellite-based longterm estimates of solar radiation by combining them with short-term high-accuracy measurements at a project site. We inventory the existing approaches and introduce the SolarGIS method that is optimized for providing bankable data for energy simulation in Concentrating Solar Power. We also indicate the achievable uncertainty of SolarGIS model outputs based on site-adaptation of projects executed in various geographical conditions.

  5. Multi-viewpoint Smartphone AR-based Learning System for Solar Movement Observations

    Directory of Open Access Journals (Sweden)

    Ke Tian

    2014-06-01

    Full Text Available Understanding solar movement (e.g., solar diurnal motion is difficult for those are beginning to learn about astronomy. Previous research has revealed that observation-based learning can help make astronomical phenomena clearer to understand for such learners. In this research, Smartphone Augmented Reality (AR technology and 3D content were used to develop a multi-viewpoint Smartphone AR-based learning system (M-VSARLS for solar movement observations that can be used in the real-world environment. The goal of this research is to assess the usefulness of the system, usability of the AR function and 3D content, and the overall effect of the system on the learner’s motivation through task-based experiments with follow-up questionnaires. The results show that the M-VSARL system is effective in improving the observational skills and learning ability of learners, and in enhancing their motivation to learn about solar movement.

  6. Predicting solar radiation based on available weather indicators

    Science.gov (United States)

    Sauer, Frank Joseph

    Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.

  7. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)

    Science.gov (United States)

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm−2, the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23412470

  8. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    Science.gov (United States)

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion. PMID:26204442

  9. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  10. Examination of Na-Doped Mo Sputtering for CIGS Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-375

    Energy Technology Data Exchange (ETDEWEB)

    Repins, I.

    2012-01-01

    This work has investigated the use of Na doped Mo (MONA) sputtering targets for use in preparing CIGS devices. The Mo:Na material is doped to about 3% Na by weight, implying that a 40 nm layer on top of the standard Mo contact contains sufficient Na to dope a 2.5 ..mu..m CIGS film. The ability to control Na doping independent of both CIGS processing conditions and adhesion is an important gain for industry and research. Manufacturers gain a route to increased manufacturability and performance, while NREL researchers gain a tightened performance distribution of devices and increased process flexibility. Our immediate partner in this work, the Climax Molybdenum Technology Center, gains validation of their product.

  11. La cigüeña en las literaturas populares francesa y española

    OpenAIRE

    Sevilla Muñoz, Julia

    2007-01-01

    Estudio de la presencia de la cigüeña en varios géneros de las literaturas populares francesa y española (fábulas, coplas, adivinanzas, refranes), con el objeto de descubrir las peculiaridades y la simbología de este animal, así como la cultura popular que ha servido de fuente de inspiración. Study of the presence of stork in several of the genres in French and Spanish popular literatures (fables, songs, riddles, proverbs) in order to show up the particular characteristics and the symbols ...

  12. Predicting amplitude of solar cycle 24 based on a new precursor method

    Directory of Open Access Journals (Sweden)

    A. Yoshida

    2010-02-01

    Full Text Available It is shown that the monthly smoothed sunspot number (SSN or its rate of decrease during the final years of a solar cycle is correlated with the amplitude of the succeeding cycle. Based on this relationship, the amplitude of solar cycle 24 is predicted to be 84.5±23.9, assuming that the monthly smoothed SSN reached its minimum in December 2008. It is further shown that the monthly SSN in the three-year period from 2006 through 2008 is well correlated with the monthly average of the intensity of the interplanetary magnetic field (IMF. This correlation indicates that the SSN in the final years of a solar cycle is a good proxy for the IMF, which is understood to reflect the magnetic field in the corona of the sun, and the IMF is expected to be smallest at the solar minimum. We believe that this finding illuminates a physical meaning underlying the well-known precursor method for forecasting the amplitude of the next solar cycle using the aa index at the solar minimum or its average value in the decaying phase of the solar cycle (e.g. Ohl, 1966, since it is known that the geomagnetic disturbance depends strongly on the intensity of the IMF. That is, the old empirical method is considered to be based on the fact that the intensity of the coronal magnetic field decreases in the late phase of a solar cycle in parallel with the SSN. It seems that the precursor method proposed by Schatten et al. (1978 and Svalgaard et al. (2005, which uses the intensity of the polar magnetic field of the sun several years before a solar minimum, is also based on the same physical phenomenon, but seen from a different angle.

  13. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)

    OpenAIRE

    Jihuai Wu; Gentian Yue; Yaoming Xiao; Jianming Lin; Miaoliang Huang; Zhang Lan; Qunwei Tang; Yunfang Huang; Leqing Fan; Shu Yin; Tsugio Sato

    2013-01-01

    Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 10...

  14. Focused Solar Ablation: A Nanosat-Based Method for Active Removal of Space Debris

    OpenAIRE

    Alexeenko, Alina A; Venkattraman, A.

    2011-01-01

    A novel concept for the active removal of space debris using solar power is proposed. Focused solar ablation is an in-space propulsion concept based on using concentrator mirrors on nanosats and using the solar power to evaporate material from the debris to produce deceleration thrust thereby providing the ∆V necessary to deorbit. An energy balance is used along with free-molecular effusion theory to estimate the thrust produced by the concept and the corresponding deorbit times for an alumin...

  15. Study of solar cells based on upgraded metallurgical grade silicon

    Science.gov (United States)

    Schlosser, V.; Kuchar, F.; Seeger, K.

    A study is presented on the applicability of diffused solar cells when cast upgraded metallurgical grade silicon (UMG-Si) is used. Cells have been prepared from differently processed UMG-Si and for comparison from high purity FZ-Si. The material was characterized by the minority carrier diffusion length, which was obtained from spectral response measurements. A two-diode equivalent circuit model was used in order to evaluate pn-junction characteristics under illumination and in the dark.

  16. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    OpenAIRE

    Olaf Mühling; Ralf Ruhmann; Arno Seeboth

    2010-01-01

    The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from...

  17. Prediction of solar cycle based on the invariant

    Institute of Scientific and Technical Information of China (English)

    LIU Shijun; YU Xiaoding; CHEN Yongyi

    2003-01-01

    A new method of predicting solar activities has been introduced in this paper. The method can predict both the occurrence time and the maximum number of sunspot at the same time. By studying the variation of sunspot, we find that the combination of the several variables was nearly invariable during the entire solar cycles, as called invariant. And just only by determining the start time of a cycle, we can predict the occurrence time of cycle's peak value accurately. Furthermore, according to observational data of the sunspot cycles, it showed that the sunspot maximum number has correlation not only with the prophase variety of the number in the cycle but also with the anaphase of the previous period. So we can introduce an equivalent regression coefficient, which can dynamically self-adapt to different cycle lengths, and effectively solve the inconsistency between the accuracy and the lead-time of the forecast. It can guarantee the satisfied accuracy and effectively increases the lead-time of the forecast. This method can predict the maximum sunspot number for solar cycle at the approximate half rise of the period. This method predicts that the occurrence time of the maximum sunspot number for cycle 24 will be in January 2011.

  18. Solar powered environmental radiation monitor with GSM based data communication

    International Nuclear Information System (INIS)

    This paper describes the development and features of a solar powered system for monitoring of environmental radiation for detection of nuclear emergency. It is essential that a system which is meant for detection of nuclear emergency must be installed in open environment so that the changes in environmental radiation level can be readily and accurately monitored. The traditional systems employ mains power which is subject to various problems like load shedding, power fluctuations, power transients and brown outs. Being powered by solar cells with battery backup, the system is free from the vagaries of mains power. The system employs GSM Modem for data communication to the central station. GSM cellular network provides more reliable data communication as compared to the dialup land line network. The system is adopted by the Indian Environmental Radiation Monitoring Network (IERMON) for deployment across India. Being developed and manufactured indigenously at low cost, a large scale monitoring network across the country is readily achievable. Under IERMON about 100 systems were manufactured and being deployed. This paper describes the design of the solar powered environmental radiation monitor deployed in IERMON network. With the help of a block diagram the various constituents of the system are explained. The features of the system are highlighted. The calibration and the performance of the system are explained in the subsequent part of the paper. (author)

  19. Observer-Based Bilinear Control of First-Order Hyperbolic PDEs: Application to the Solar Collector

    KAUST Repository

    Mechhoud, Sarra

    2015-12-18

    In this paper, we investigate the problem of bilinear control of a solar collector plant using the available boundary and solar irradiance measurements. The solar collector is described by a first-order 1D hyperbolic partial differential equation where the pump volumetric flow rate acts as the plant control input. By combining a boundary state observer and an internal energy-based control law, a nonlinear observer based feedback controller is proposed. With a feed-forward control term, the effect of the solar radiation is cancelled. Using the Lyapunov approach we prove that the proposed control guarantees the global exponential stability of both the plant and the tracking error. Simulation results are provided to illustrate the performance of the proposed method.

  20. National Solar Radiation Data Base (1961-1990). Final technical report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The 1961-1990 National Solar Radiation Data Base (NSRDB) for the United States was completed in September 1992. This was the final product of four years of work under the U.S. Department of Energy (DOE) Solar Radiation Resource Assessment Project. The NSRDB contains 30 years of hourly data for five solar radiation elements and 15 meteorological elements for 239 sites. The user`s manual (NSRDB-Volume 1, 1992) for the NSRDB provides detailed information on the structure of the data base and the products that have been produced from it. Most users of the data base will find all of the information that they need in Volume 1. Volume 2 has been written primarily for researchers who need more information about the methods employed in producing the data base. In addition to research results, we have included information on practical lessons learned from this project. Therefore, Volume 2 should be of value to anyone developing a similar data base for other regions or other countries. Most of the solar radiation data in the NSRDB and the previous SOLMET (SOLar METeorological) data base were generated by computer models. Therefore, a major part of this report is centered around the METeorological/STATistical (METSTAT) model (Section 3.0), its input data (Sections 5.0 and 6.0), its use in producing the NSRDB (Sections 4.0 and 7.0), and comparisons with the models used in producing the SOLMET data base (Section 10.0).

  1. PICARD SOL mission, a ground-based facility for long-term solar radius measurement

    Science.gov (United States)

    Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.

    2012-09-01

    For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.

  2. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances Rs changed from 0 Ω to 1 Ω, the maximum power Pm of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower series

  3. Primera cita de reproducción de cigüeñuela común Himantopus himantopus L., 1758 en Urdaibai (Bizkaia

    Directory of Open Access Journals (Sweden)

    ARIZAGA, J., AZKONA, A., CEPEDA, X., MAGUREGI, J., UNAMUNO, E., UNAMUNO, J.M.

    2012-01-01

    Full Text Available La colonización del Cantábrico por la cigüeñuela común Himantopus himantopus L., 1758 es un fenómeno reciente (se cita por primera vez en 2009 en Asturias y Cantabria. En 2012, y por primera vez para Urdaibai y la costa vasca, se constata la reproducción de cigüeñuela en la laguna de Orueta, en el municipio de Gautegiz-Arteaga (Bizkaia. En particular, una pareja fue capaz de sacar adelante 3 pollos.

  4. A power pack based on organometallic perovskite solar cell and supercapacitor.

    Science.gov (United States)

    Xu, Xiaobao; Li, Shaohui; Zhang, Hua; Shen, Yan; Zakeeruddin, Shaik M; Graetzel, Michael; Cheng, Yi-Bing; Wang, Mingkui

    2015-02-24

    We present an investigation on a power pack combining a CH3NH3PbI3-based solar cell with a polypyrrole-based supercapacitor and evaluate its performance as an energy pack. The package achieved an energy storage efficiency of 10%, which is much higher than that of other systems combining a PV cell with a supercapacitor. We find a high output voltage of 1.45 V for the device under AM 1.5G illumination when the CH3NH3PbI3-based solar cell is connected in series with a polypyrrole-based supercapacitor. This system affords continuous output of electric power by using CH3NH3PbI3-based solar cell as an energy source mitigating transients caused by light intensity fluctuations or the diurnal cycle. PMID:25611128

  5. Parameters extraction for perovskite solar cells based on Lambert W-function

    OpenAIRE

    Ge Junyu; Luo Manlin; Pan Wanli; Li Na; Peng Wei

    2016-01-01

    The behaviors of the solar cells are decided by the device parameters. Thus, it is necessary to extract these parameters to achieve the optimal working condition. Because the five-parameter model of solar cells has the implicit equation of current-voltage relationship, it is difficult to obtain the parameters with conventional methods. In this work, an optimized method is presented to extract device parameters from the actual test data of photovoltaic cell. Based on Lambert W-function, explic...

  6. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    OpenAIRE

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction solar cells and the role of dangling bond states in mediating or driving the degradation mechanism. The approach taken in this study has enabled has to examine how light induced degradation is aff...

  7. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    OpenAIRE

    Alexandre Hugo; Radu Zmeureanu

    2012-01-01

    The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS softwar...

  8. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and Statistical Results

    OpenAIRE

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2015-01-01

    SDO/EVE provides rich information of the thermodynamic processes of solar activities, particularly of solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could be potentially useful to the EUV astronomy to learn the eruptive activities on the distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greate...

  9. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    OpenAIRE

    Shengbo Ma; Hungkit Ting; Yingzhuang Ma; Lingling Zheng; Miwei Zhang; Lixin Xiao; Zhijian Chen

    2015-01-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced v...

  10. Solar cells based on dye-sensitized nanocrystalline TiO2 electrodes

    OpenAIRE

    Kay, Andreas

    1994-01-01

    This thesis presents a new type of photovoltaic solar cell based on dye-sensitized nanocrystalline titanium dioxide electrodes. In contrast to conventional solar cells, where light absorption is due to band gap excitation of the semiconductor itself, TiO2 with its wide band gap is transparent in the visible spectrum. The light is rather absorbed by a dye, e.g. a ruthenium polypyridine complex or a chlorophyll derivative, attached to the semiconductor surface. Charge separation occurs by elect...

  11. Analysis and design of solar based systems for heating and cooling of buildings

    OpenAIRE

    Shesho, Igor

    2014-01-01

    Thermal performance of the solar thermal systems are estimated using numerical methods and software since the solar processes are transitient in nature been driven by time dependent forcing functions and loads. The system components are defined with mathematical relationships that describe how components function. They are based on first principles (energy balances, mass balances, rate equations and equilibrium relationships) at one extreme or empirical curve fits to operating data from speci...

  12. Analysis of CdTe solar cells in relation to materials issues

    International Nuclear Information System (INIS)

    By now, extensive experimental research is available on thin film solar cells based on CdTe and on CIGS, and their electrical and optical behaviour is characterised by a multitude of diverse characterisation techniques. At the same time, numerical simulation programmes have matured and are available to the research community to assist in interpreting these measurements consistently. Once multiple measurements are (more or less) quantitatively described, the numerical simulation can be used to explore the effect of a variation of materials parameter (e.g. the presence or absence of a property, or variation in a range of values) to the final solar cell characteristics. Examples of such analysis for CdTe solar cells are shown. In CdTe cells, much research has been devoted to the activation treatment of the absorber, and to the technology of the back contact. Analysis of ample measurements has evidenced the crucial role of the profile of the (effective) doping density through the device. It will be illustrated how this relative simple (but hardly mastered) materials property has a far reaching influence to the cell characteristics such as roll-over and cross-over of I-V curves, also in dependence on illumination and voltage, conventional and apparent quantum efficiency, and finally fill factor and efficiency

  13. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  14. Gold nanoparticles enhanced photocurrent in nanostructure-based bulk heterojunction solar cell

    Science.gov (United States)

    Long, Gen; Ching, Levine; Saqodi, Mostafa; Xu, Huizhong

    2016-04-01

    In this paper, we report a first hand study of enhanced photocurrent observed in nanostructure-based bulk heterojunction solar cell due to introduction of Au nanoparticles. The bulk heterojunction solar cell was fabricated using chemically synthesized narrow gap, IV-VI group semiconductor nanoparticles (PbS, ~3 nm), wide gap semiconductor ZnO nanowires (~1 μm length, ~50 nm diameter), and gold nanoparticles (~20 nm), by spin-coating method in N2-filled glove box. We have demonstrated that such a bulk heterojunction solar cell can be incorporated with metal nanoparticles (Au) to enhance solar device performance. Three types of solar cell devices were studied. An enhancement in the photocurrent due to introduction of Au nanoparticles was observed, compared to solar cell device without Au nanoparticles. The power conversion efficiency was also increased, possibly due to the plasmonic effects from Au nanoparticles. The fabrication procedures can be readily extended to other nanomaterial systems. Further optimization in the fabrication would be needed to realize high-efficient, stable solar cell devices.

  15. Solar array design based on shadow analysis for increasing net energy collection in a competition vehicle

    Science.gov (United States)

    Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo; Suárez-Castañeda, Nicolás; Gil-Herrera, Ana; Barrera-Velásquez, Jorge

    2015-01-01

    Photovoltaic (PV) applications such as in the architectural, automotive, and aerospace industries face design contradictions because they are expected to produce a lot of energy but are constrained by available area, surface shape, incident irradiance, shadows, and other aspects that have a negative influence on the energy produced by the solar panel. Solar competition vehicles are some of these challenging PV applications. The design of such solar arrays needs to consider efficiency evaluation in order to optimize space; it is difficult not to install solar modules in areas impacted by shadows. A design procedure for a solar array configuration based on shadow analysis for competition vehicles is presented. The principle is that shadows in moving objects can be simulated, since the vehicle, the earth and the sun are are moving in semipredictable patterns, thus net energy collection can be forecast. The case study presented is the solar array design of a vehicle that participated in the World Solar Challenge 2013. The obtained results illustrate how the employment of the procedure gives insights on important aspects to consider and also delivers qualitative and quantitative information for decision making. In addition, the experience in competition highlights some issues to be considered, modified, or improved in further vehicle designs.

  16. Solar-thermal conversion and thermal energy storage of graphene foam-based composite

    KAUST Repository

    Zhang, Lianbin

    2016-07-11

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  17. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    Science.gov (United States)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy. PMID:27430282

  18. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  19. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    Directory of Open Access Journals (Sweden)

    Mohammad A. Halim

    2012-12-01

    Full Text Available Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  20. Carbon Nanotube-Conducting Polymer Composites Based Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Prakash; R.Somani; M.Umeno

    2007-01-01

    1 Results Combination of carbon nanotubes (CN) with polymers is important for application towards value added composites,solar cells,fuel cells etc.Especially interesting is the combination of CN with π-conjugated polymers because of the potential interaction between the highly delocalized π-electrons of the CN and the π-electrons correlated with the lattice of polymer skeleton.Efficient exciton dissociation due to electron transfer from the photoexcited polymer to CN is of interest for photovoltaic app...

  1. Seismology of solar spicules based on Hinode/SOT observations

    CERN Document Server

    Abbasvand, V; Fazel, Z

    2015-01-01

    We analyze the time series of Ca ii H-line obtained from Hinode/SOT on the solar limb. The time-distance analysis shows that the axis of spicule undergoes quasi-periodic transverse displacement. We determined the period of transverse displacement as ~40-150 s and the mean amplitude as ~ 0.1-0.5 arcsec. For the oscillation wavelength of $\\lambda$ ~ 1/0.06 arcsec ~ 11500 km, the estimated kink speed is ~ 13-83 km/s. We obtained the magnetic field strength in spicules as B_0 = 2 - 12.5 G and the energy flux as 7 - 227 J/m^-2s.

  2. Thermodynamic analysis of a solar-based multi-generation system with hydrogen production

    International Nuclear Information System (INIS)

    Thermodynamic analysis of a renewable-based multi-generation energy production system which produces a number of outputs, such as power, heating, cooling, hot water, hydrogen and oxygen is conducted. This solar-based multi-generation system consists of four main sub-systems: Rankine cycle, organic Rankine cycle, absorption cooling and heating, and hydrogen production and utilization. Exergy destruction ratios and rates, power or heat transfer rates, energy and exergy efficiencies of the system components are carried out. Some parametric studies are performed in order to examine the effects of varying operating conditions (e.g., reference temperature, direct solar radiation and receiver temperature) on the exergy efficiencies of the sub-systems as well as the whole system. The solar-based multi-generation system which has an exergy efficiency of 57.35%, is obtained to be higher than using these sub-systems separately. The evaluation of the exergy efficiency and exergy destruction for the sub-systems and the overall system show that the parabolic dish collectors have the highest exergy destruction rate among constituent parts of the solar-based multi-generation system, due to high temperature difference between the working fluid and collector receivers. -- Highlights: ► Development of a new multi-generation system for solar-based hydrogen production. ► Investigation of exergy efficiencies and destructions in each process of the system. ► Evaluation of varying operating conditions on the exergy destruction and efficiency

  3. Novel wide band gap materials for highly efficient thin film tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV's goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a

  4. Progress on Low-Temperature Pulsed Electron Deposition of CuInGaSe2 Solar Cells

    Directory of Open Access Journals (Sweden)

    Massimo Mazzer

    2016-03-01

    Full Text Available The quest for single-stage deposition of CuInGaSe2 (CIGS is an open race to replace very effective but capital intensive thin film solar cell manufacturing processes like multiple-stage coevaporation or sputtering combined with high pressure selenisation treatments. In this paper the most recent achievements of Low Temperature Pulsed Electron Deposition (LTPED, a novel single stage deposition process by which CIGS can be deposited at 250 °C, are presented and discussed. We show that selenium loss during the film deposition is not a problem with LTPED as good crystalline films are formed very close to the melting temperature of selenium. The mechanism of formation of good ohmic contacts between CIGS and Mo in the absence of any MoSe2 transition layers is also illustrated, followed by a brief summary of the measured characteristics of test solar cells grown by LTPED. The 17% efficiency target achieved by lab-scale CIGS devices without bandgap modulation, antireflection coating or K-doping is considered to be a crucial milestone along the path to the industrial scale-up of LTPED. The paper ends with a brief review of the open scientific and technological issues related to the scale-up and the possible future applications of the new technology.

  5. Central air conditioning based on adsorption and solar energy

    International Nuclear Information System (INIS)

    This paper presents the characterization and the pre-dimensioning of an adsorption chiller as part of a 20 kW air conditioning central unit for cooling a set of rooms that comprises an area of 110 m2. The system is basically made up of a cold water storage tank supplied by an activated carbon-methanol adsorption chiller, a hot water storage tank, fed by solar energy and natural gas, and a fan-coil. During an acclimatization of 8 h (9-17 h), the following parameters were obtained for dimensioning the cooling system: 504 kg of activated carbon, 180 L of methanol, 7000 L of hot water, 10,300 L of cold water with its temperature varying in the fan-coil from 1 deg. C to 14 C. Considering the mean value of the total daily irradiation in Joao Pessoa (7o8'S, 34o50'WG), and a cover of regenerating heat supplied by solar energy equivalent to 70%, the adsorption chiller's expected coefficient of performance (COP) was found to be around 0.6.

  6. Parallel-cascade-based mechanisms for heating solar coronal loops: test against observations

    CERN Document Server

    Li, Bo; Li, Xing; Xia, Li-Dong

    2014-01-01

    The heating of solar coronal loops is at the center of the problem of coronal heating. Given that the origin of the fast solar wind has been tracked down to atmospheric layers with transition region or even chromospheric temperatures, it is worthy attempting to address whether the mechanisms proposed to provide the basal heating of the solar wind apply to coronal loops as well. We extend the loop studies based on a classical parallel-cascade scenario originally proposed in the solar wind context by considering the effects of loop expansion, and perform a parametric study to directly contrast the computed loop densities and electron temperatures with those measured by TRACE and YOHKOH/SXT. This comparison yields that with the wave amplitudes observationally constrained by SUMER measurements, while the computed loops may account for a significant fraction of SXT loops, they seem too hot when compared with TRACE loops. Lowering the wave amplitudes does not solve this discrepancy, introducing magnetic twist will ...

  7. Electrical and optical characterization of the influence of chemical bath deposition time and temperature on CdS/Cu(In,Ga)Se2 junction properties in Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    The effects of varying the conditions for the chemical bath deposition (CBD) of cadmium sulfide (CdS) layers on CdS/Cu(In,Ga)Se2 (CIGS) hetero-junctions were investigated using photoluminescence (PL), electroluminescence (EL), deep level transient spectroscopy (DLTS), and red-light-illuminated current-voltage (I–V) measurements. We demonstrated that varying CBD-CdS conditions such as the temperature and time influenced the recombination pathways around the CdS/CIGS junction via the formation of different electronic defects, which eventually changed the photovoltaic conversion efficiency. As the CBD-CdS time and temperature were increased, the cell efficiency decreased. PL measurements revealed that this degradation of the cell efficiency was accompanied by increases in the defect-related recombination, which were attributed to the existence of donor defects around CdS/CIGS having an energy level of 0.65 eV below conduction band, as revealed by DLTS. Increasing distortions in the red-light-illuminated I–V characteristics suggested that the related defects might also have played a critical role in metastable changes around the CdS/CIGS junction. Because the CBD-CdS time and temperature were considered to influence the diffusion of impurities into the CIGS surface, the evolution of the efficiency, PL spectra, defect populations, and red-light-illuminated I–V characteristics observed in this work could be attributed to the diffusion of impurities during the CBD-CdS process. - Highlights: • CdS layers were grown by chemical bath deposition (CBD). • The CBD-CdS influenced the efficiency of Cu(In,Ga)Se2 (CIGS) solar cell. • It could be related to slight alteration in carrier recombination around CdS/CIGS. • Photo- and electroluminescence spectra detected those alterations in recombination. • The variation of results could be related to the changes in deep-level defects

  8. Application of Ce3+ single-doped complexes as solar spectral downshifters for enhancing photoelectric conversion efficiencies of a-Si-based solar cells

    International Nuclear Information System (INIS)

    The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3–SiO2–Gd2O3–BaO glass is studied. The photoluminescence excitation spectra in the region 360–460 nm convert effectively into photoluminescence emission spectra in the region 450–550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09–1.13 and 1.04–1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement. (paper)

  9. Energy saving using solar filters with iron base in windows; Ahorro de energia usando filtros solares con base en hierro en ventanas

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Galan, Jesus

    2003-07-01

    For the high temperature seasons, the radiation emitted by the sun later introduced through the windows, provokes a great thermal gain in the buildings causing within them an excessive warming. For the cold seasons, the exterior is at low temperature and the window is the main element through which the building losses the heat generated in the interior. The former turns out into an elevated energy consumption (mainly electricity) to obtain the conditions of human thermal comfort; this altogether with the growing energy demand that the residential, commercial and public sector experiences in Mexico, constitutes a serious problem. As a proposal for the solution to the problem of thermal discomfort generated in the interior of the buildings because of the inadequate properties of the construction materials, in this work were developed solar filers with iron base by means of which it is obtained a selective control of the solar radiation that is transmitted through the windows. These solar filters consist in thin films of FeO deposited over subtracts of lime-soda glass (the most used in our country for buildings) of 600 x 300 x 3 mm, by means of the sputtering technique added with a radio frequency and flat magnetrons, starting from a pure iron target of 127 x 254 mm and using an argon plasma. To obtain the desired oxidation degree in the iron, small samples (45 x 22 mm) were subjected to a heating process in a reducing atmosphere constituted by 50% H{sub 2} + 50% N{sub 2} for a period of time of 10 minutes at a temperature of 400 centigrade. The solar filters with the FeO base present a transmissibility of 30.2 % for the visible interval of the electromagnetic spectrum (radiation with a wave length of 380-780 nm) and of 39.9 % for the near infrared (radiation with a wave length of 780-2500 nm); while the reflectivity is of 17.5 and 19% for the visible intervals and near infrared of electromagnetic spectrum respectively. A simulation was performed by means of the

  10. Fabrication of chalcopyrite light-absorbing layers based on nanoparticle and nanowire networks

    Science.gov (United States)

    Ren, Yuhang; Luo, Paifeng; Gao, Bo; Cevher, Zehra; Sun, Chivin

    2013-03-01

    We report on a method of preparing chalcopyrite, CuInGaSe2 (CIGS) light-absorbing layers using low cost air stable ink based on semiconductor nanoparticle and nanowires. The nanoparticles and nanowires are prepared from metal salts such as metal chloride and acetate at room temperature without inert gas protection. A uniform and non-aggregation CIGS precursor layer is fabricated with the formation of nanoparticle and nanowire networks utilizing ultrasonic spaying technique. We obtain a high quality CIGS absorber by cleaning the residue salts and carbon agents at an increased temperature and through selenizing the pretreated CIGS precursors. Our results offer an opportunity for the low-cost deposition of chalcopyrite absorber materials at large scale with high throughput. This work was partially sponsored by Sun Harmonics Ltd. and by NYSTAR through the Photonics Center for Applied Technology at the City University of New York.

  11. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots

    KAUST Repository

    Ning, Zhijun

    2014-10-28

    © 2014 American Chemical Society. New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  12. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  13. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  14. Flower Pollination Algorithm based solar PV parameter estimation

    International Nuclear Information System (INIS)

    Highlights: • Flower Pollination Algorithm (FPA) is proposed for estimating the parameters of the solar modules. • The performance of the proposed extraction technique is tested using three different sources of data. • The proposed FPA provides the best performance among the other recent techniques. • It is recommended as the fastest and the most accurate optimization technique. - Abstract: Developing a highly accurate simulation technique for Photovoltaic (PV) systems prior to the installation is very important to increase the overall efficiency of using such systems. Providing a more accurate optimization algorithm to extract the optimal parameters of the PV models is therefore continuously required. Flower Pollination Algorithm (FPA) is proposed as a new optimization method to extract the optimal parameters of a single diode and a double diode models. The proposed extraction technique is tested using three different sources of data. The first source is the data reported in the previous literature, while the second source is the experimental data measured at the laboratory. The third source is the experimental data obtained from the data sheets of different types of solar modules. The FPA results are compared with the results of the previous literature to validate the performance of the proposed technique. The results prove that FPA achieves the least error between the extracted and the measured data relative to the other techniques over the entire ranges of different environmental conditions, specially at low irradiation levels. Moreover, FPA outperforms the other techniques from the point of view of both the convergence speed and the convergence time. In addition, comparison of (I–V) characteristics of the extracted parameters by FPA and that of the experimental data shows unnoticed deviation between them. That is why the Flower Pollination Algorithm is recommended as the fastest and the most accurate optimization technique for the optimal parameters

  15. Transport, Interfaces, and Modeling in Amorphous Silicon Based Solar Cells: Final Technical Report, 11 February 2002 - 30 September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, E. A.

    2008-10-01

    Results for a-Si characteristics/modeling; photocarrier drift mobilities in a-Si;H, ..mu..c-Si:H, CIGS; hole-conducting polymers as p-layer for a-Si and c-Si; IR spectra of p/i and n/i interfaces in a-Si.

  16. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  17. Gyroscopic waves in the base of the solar corona: A model and possible observational manifestations

    Science.gov (United States)

    Pisanko, Y. V.; Tritakis, V. P.; Paliatsos, A. G.

    1997-01-01

    A linear model for gyroscopic waves in the base of the solar corona is proposed. The purpose was to point out possible observational manifestations of the phenomenon. According to the model, these waves move slowly around the sun along heliolatitude circles. The fact that the red line corona is fainter on the solar side facing the apex and north-south and east-west asymmetries of the red coronal emission line could be interpreted as a possible observational manifestation of the gyroscopic wave phenomenon in the coronal base.

  18. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    OpenAIRE

    Station Md. Ibrahim; Mohammad Tayyab

    2015-01-01

    This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid ...

  19. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    OpenAIRE

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-01-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal) . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid en...

  20. Solar Energy Block-Based Residential Construction for Rural Areas in the West of China

    Directory of Open Access Journals (Sweden)

    Jizhong Shao

    2016-04-01

    Full Text Available Based on the Great Western Development Strategy and the requirement for sustainable development in the west of China, rural affordable housing, energy conservation, and environmental protection are becoming development standards in the construction field. This paper mainly explores an innovative, sustainable, residential construction method for rural areas in western China, particularly the integration of solar energy technology with modern prefabricated building techniques, formally named solar energy block-based construction. The conscious approach of using volumetric blocks provides superior adaptability and expansibility in integration with a steel structure, thereby reducing the construction time and cost. Allowing a wide variety of configurations and styles in the building layout, this approach can be customized to the end-user’s precise location and climate, making rural residential buildings much more flexible and modern. To take advantage of adequate solar energy resource in western China, the blocks are associated with active and passive solar energy technologies, thereby reducing pollution, mitigating global warming, and enhancing sustainability. Therefore, we concluded that solar energy block-based construction could bring significant benefits to the environment, economy, and society. It could also promote sustainable development in the rural regions of western China.

  1. Computational design for a wide-angle cermet-based solar selective absorber for high temperature applications

    International Nuclear Information System (INIS)

    The purpose of this study is to computationally design a wide-angle cermet-based solar selective absorber for high temperature applications by using a characteristic matrix method and a genetic algorithm. The present study investigates a solar selective absorber with tungsten–silica (W–SiO2) cermet. Multilayer structures of 1, 2, 3, and 4 layers and a wide range of metal volume fractions are optimized. The predicted radiative properties show good solar performance, i.e., thermal emittances, especially beyond 2 μm, are quite low, in contrast, solar absorptance levels are successfully high with wide angular range, so that solar photons are effectively absorbed and infrared radiative heat loss can be decreased. -- Highlights: • Electromagnetic simulation of radiative properties by characteristic matrix method. • Optimization for multilayered W–SiO2 cermet-based absorber by a Genetic Algorithm. • We propose a successfully high solar performance of solar selective absorber

  2. Real-time solar wind prediction based on SDO/AIA coronal hole data

    CERN Document Server

    Rotter, T; Temmer, M; Vrsnak, B

    2015-01-01

    We present an empirical model based on the visible area covered by coronal holes close to the central meridian in order to predict the solar wind speed at 1 AU with a lead time up to four days in advance with a 1hr time resolution. Linear prediction functions are used to relate coronal hole areas to solar wind speed. The function parameters are automatically adapted by using the information from the previous 3 Carrington Rotations. Thus the algorithm automatically reacts on the changes of the solar wind speed during different phases of the solar cycle. The adaptive algorithm has been applied to and tested on SDO/AIA-193A observations and ACE measurements during the years 2011-2013, covering 41 Carrington Rotations. The solar wind speed arrival time is delayed and needs on average 4.02 +/- 0.5 days to reach Earth. The algorithm produces good predictions for the 156 solar wind high speed streams peak amplitudes with correlation coefficients of cc~0.60. For 80% of the peaks, the predicted arrival matches within ...

  3. The Smithsonian solar constant data revisited: no evidence for a strong effect of solar activity in ground-based insolation data

    Directory of Open Access Journals (Sweden)

    G. Feulner

    2011-04-01

    Full Text Available Apparent evidence for a strong signature of solar activity in ground-based insolation data was recently reported. In particular, a strong increase of the irradiance of the direct solar beam with sunspot number as well as a decline of the brightness of the solar aureole and the measured precipitable water content of the atmosphere with solar activity were presented. The latter effect was interpreted as evidence for cosmic-ray-induced aerosol formation. Here I show that these spurious results are due to a failure to correct for seasonal variations and the effects of volcanic eruptions and local pollution in the data. After correcting for these biases, neither the atmospheric water content nor the brightness of the solar aureole show any significant change with solar activity, and the variations of the solar-beam irradiance with sunspot number are in agreement with previous estimates. Hence there is no evidence for the influence of solar activity on the climate being stronger than currently thought.

  4. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m2 mirror PV/T stage and a 15 m2 mirror heating stage, or a 1.8 m2 mirror PV/T stage and a 30 m2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  5. Energy and exergy performance investigation of transcritical CO2-based Rankine cycle powered by solar energy

    Institute of Scientific and Technical Information of China (English)

    ZHANG XinRong; LI XiaoJuan

    2012-01-01

    A comprehensive performance evaluation of a solar assisted transcritical CO2-based Rankine cycle system is made with exergy analysis method.The actual thermal data taken from the all-day experiment of the system are utilized to determine energy transfer and the exergy destructions in each component of the system.In addition,a hypothetical carbon dioxide expansion turbine is introduced,then two thermodynamic models for solar transcritical carbon dioxide Rankine cycles with a throttling valve (experiment) and with an expansion turbine have been established with exergy analysis method.The obtained results clearly show that solar collector contributes the largest share to system irreversibility and entropy generation in the all-day working state,and the exergy improvement potential of solar collector is the maximum in the working state.So this component should be the optimization design focus to improve system exergy effectiveness.For the cycle with the turbine,the energy efficiency and the entropy generation are not much higher than the cycle with throttling valve,but the exergy efficiency of the cycle with turbine is twice of the cycle with throttling valve.It provides more guidance when the transcritical CO2-based Rankine system is in a large-scale solar application.

  6. Nanothermochromics with VO2-based core-shell structures : Calculated luminous and solar optical properties

    OpenAIRE

    Li, Shuyi; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2011-01-01

    Composites including VO2-based thermochromic nanoparticles are able to combine high luminous transmittance T-lum with a significant modulation of the solar energy transmittance Delta T-sol at a "critical" temperature in the vicinity of room temperature. Thus nanothermochromics is of much interest for energy efficient fenestration and offers advantages over thermochromic VO2-based thin films. This paper presents calculations based on effective medium theory applied to dilute suspensions of cor...

  7. Impact of optical properties of front glass substrates on Cu(In,Ga)Se2 solar cells using lift-off process

    International Nuclear Information System (INIS)

    Transmittance of a front glass is one of the important factors in the development of high efficiency superstrate-type Cu(In,Ga)Se2 (CIGS) solar cells. In this study, we investigated the impact of optical properties of the front glass on the solar cell performance of the CIGS solar cells fabricated using the lift-off process. First, optical properties of quartz substrates and soda-lime glass (SLG) substrates with various thicknesses were investigated. Although optical properties of the SLG substrates depend on the thickness, those of the quartz substrates hardly depend on the thickness. Secondly, the superstrate-type CIGS solar cells were fabricated using 1-mm-thick SLG or 1-mm-thick quartz substrates. As a result, the short-circuit current density of the superstrate-type CIGS solar cell with 1-mm-thick quartz substrate was approximately 7% higher than that with 1-mm-thick SLG substrate, and its conversion efficiency was 7.1%. The external quantum efficiency of the solar cells was also improved using the quartz substrate as a front glass because transmittance and absorptance of the quartz substrate were superior to those of the SLG substrate. We therefore conclude that optical properties of the front glasses play an important role in the improvement of the superstrate-type solar cells. - Highlights: • Superstrate type Cu(In,Ga)Se2 solar cells are fabricated by lift-off process. • Various glasses are used as front glass for lift-off. • The impact of optical properties of the glasses on cell performance is investigated. • Quartz front glass gives 7% higher short-circuit current than soda-lime glass. • High transmittance is desired for front glass

  8. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  9. Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Fu, Ran; Chung, Donald; Horowitz, Kelsey; Remo, Timothy; Feldman, David; Margolis, Robert

    2015-11-07

    In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.

  10. Multi-Material Front Contact for 19% Thin Film Solar Cells

    OpenAIRE

    Joop van Deelen; Yasemin Tezsevin; Marco Barink

    2016-01-01

    The trade-off between transmittance and conductivity of the front contact material poses a bottleneck for thin film solar panels. Normally, the front contact material is a metal oxide and the optimal cell configuration and panel efficiency were determined for various band gap materials, representing Cu(In,Ga)Se2 (CIGS), CdTe and high band gap perovskites. Supplementing the metal oxide with a metallic copper grid improves the performance of the front contact and aims to increase the efficiency...

  11. Design of Three Phase Solar-Based 4.5kw Ac Power Inverter Station

    Directory of Open Access Journals (Sweden)

    Dr.J.C. Onuegbu

    2013-07-01

    Full Text Available The design model of a 4.50Kilowatt, 3-phase, 50 hertz solar-based power generating station was examined by the paper. The power station is a dual source input generating station using 8 series connected 100A, 12V batteries per phase as backup, the solar panels being the main frame. An inverter of 12Volt direct current input voltage was incorporated to supply an output of 3-phase, 220Volts and 50 hertz alternating current. A charging circuit was installed to monitor charging level and to preserve the accumulator’s life span. The paper also looked into the solar-based power station component design model. The batteries therein are back-up and the system will ensure 24-hours reliable power supply. The setup has a normally closed switching relay ready to pickup the auxiliary battery supply within a few milliseconds after the solar source voltage drops below a stipulated level. The three phase a.c. voltage was achieved using standby on-line circuit with cascaded 741-based flip-flop at the base of the transistor drivers of the 3-phase power transformer. This model circuit reduced the load on each phase winding and facilitated reliable and uninterruptible power supply. The delta-wyeconnected transformer will guarantee proper phase shift of 120 degrees that will emulate alternating current voltage similar to the conventional generator voltage.

  12. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  13. Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective

    DEFF Research Database (Denmark)

    Serrano-Luján, Lucía; Espinosa Martinez, Nieves; Larsen-Olsen, Thue Trofod;

    2015-01-01

    The effect of substituting lead with tin in perovskite-based solar cells (PSCs) has shows that lead is preferred over tin by a lower cumulative energy demand. The results, which also include end-of-life management, show that a recycling scenario that carefully handles emission of lead enables use...

  14. Polarization sensitive solar-blind detector based on a-plane AlGaN

    OpenAIRE

    Laskar, Masihhur R.; Arora, A.; Shah, A. P.; A. A. Rahman; Gokhale, M. R.; Bhattacharya, Arnab

    2011-01-01

    We report polarization-sensitive solar-blind metal-semiconductor-metal UV photodetectors based on (11-20) a-plane AlGaN. The epilayer shows anisotropic optical properties confirmed by polarization-resolved transmission and photocurrent measurements, in good agreement with band structure calculations.

  15. Pseudo Open Drain IO Standards Based Energy Efficient Solar Charge Sensor Design on 20nm FPGA

    DEFF Research Database (Denmark)

    Kalia, K; Pandey, B; Nanda, K;

    2015-01-01

    In this paper an approach is made to design Pseudo open drain IO standards Based Energy efficient solar charge sensor design on 20nm and 28nm technology. We have used LVCMOS18, POD10, POD10_DCI and POD12 I/O standard. In this design, we have taken two main parameters for analysis that are frequen...

  16. Forecasting dose-time profiles of solar particle events using a dosimetry-based forecasting methodology

    Science.gov (United States)

    Neal, John Stuart

    2001-10-01

    A dosimetery-based Bayesian methodology for forecasting astronaut radiation doses in deep space due to radiologically significant solar particle event proton fluences is developed. Three non-linear sigmoidal growth curves (Gompertz, Weibull, logistic) are used with hierarchical, non-linear, regression models to forecast solar particle event dose-time profiles from doses obtained early in the development of the event. Since there are no detailed measurements of dose versus time for actual events, surrogate dose data are provided by calculational methods. Proton fluence data are used as input to the deterministic, coupled neutron-proton space radiation computer code, BRYNTRN, for transporting protons and their reaction products (protons, neutrons, 2H, 3H, 3He, and 4He) through aluminum shielding material and water. Calculated doses and dose rates for ten historical solar particle events are used as the input data by grouping similar historical solar particle events, using asymptotic dose and maximum dose rate as the grouping criteria. These historical data are then used to lend strength to predictions of dose and dose rate-time profiles for new solar particle events. Bayesian inference techniques are used to make parameter estimates and predictive forecasts. Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior distributions. Hierarchical, non-linear regression models provide useful predictions of asymptotic dose and dose-time profiles for the November 8, 2000 and August 12, 1989 solar particle events. Predicted dose rate-time profiles are adequate for the November 8, 2000 solar particle event. Predictions of dose rate-time profiles for the August 12, 1989 solar particle event suffer due to a more complex dose rate-time profile. Forecasts provide a valuable tool to space operations planners when making recommendations concerning operations in which radiological exposure might jeopardize personal safety or mission completion. This work

  17. 77 FR 36528 - K Road Modesto Solar LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-06-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission K Road Modesto Solar LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of K Road Modesto Solar LLC's application for market-based rate authority, with...

  18. 76 FR 63614 - Agua Caliente Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-10-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Agua Caliente Solar, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of Agua Caliente Solar, LLC's application for market-based rate authority, with...

  19. 78 FR 29131 - Solar Star California XX, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Solar Star California XX, LLC; Supplemental Notice that Initial Market-Based... above-referenced proceeding, of Solar Star California XX, LLC's application for market-based...

  20. 78 FR 34371 - Centinela Solar Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-06-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Centinela Solar Energy, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Centinela Solar Energy, LLC's application for market-based...

  1. Development of III-V-based concentrator solar cells and their application in PV-modules

    International Nuclear Information System (INIS)

    Concentrators have a great potential to achieve cost reduction for solar generated electricity. In this work III-V-based concentrator solar cells for high concentration levels were fabricated. Monolithic and mechanically stacked multi-junction cells were investigated achieving efficiencies up to 33.5% at C=308 (AM1.5d, 1000 W/m2, 25 C). The cells are employed in point-focus Fresnel lens modules. All-glass hermetized modules designed for a concentration level of 120 and 500 obtained efficiencies of up to 24.8% and 21.7%, respectively. The modules were characterized under outdoor conditions at Freiburg, Germany. (orig.)

  2. Design of Three Phase Solar-Based 4.5kw Ac Power Inverter Station

    OpenAIRE

    Dr. J. C. Onuegbu

    2013-01-01

    The design model of a 4.50Kilowatt, 3-phase, 50 hertz solar-based power generating station was examined by the paper. The power station is a dual source input generating station using 8 series connected 100A, 12V batteries per phase as backup, the solar panels being the main frame. An inverter of 12Volt direct current input voltage was incorporated to supply an output of 3-phase, 220Volts and 50 hertz alternating current. A charging circuit was installed to monitor charging level and to pres...

  3. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  4. Predicting amplitude of solar cycle 24 based on a new precursor method

    OpenAIRE

    Yoshida, A.; Yamagishi, H

    2010-01-01

    It is shown that the monthly smoothed sunspot number (SSN) or its rate of decrease during the final years of a solar cycle is correlated with the amplitude of the succeeding cycle. Based on this relationship, the amplitude of solar cycle 24 is predicted to be 84.5±23.9, assuming that the monthly smoothed SSN reached its minimum in December 2008. It is further shown that the monthly SSN in the three-year period from 2006 through 2008 is well correlated with the monthly average of th...

  5. Real-time solar wind prediction based on SDO/AIA coronal hole data

    OpenAIRE

    Rotter, T.; Veronig, A. M.; Temmer, M.; Vrsnak, B.

    2015-01-01

    We present an empirical model based on the visible area covered by coronal holes close to the central meridian in order to predict the solar wind speed at 1 AU with a lead time up to four days in advance with a 1hr time resolution. Linear prediction functions are used to relate coronal hole areas to solar wind speed. The function parameters are automatically adapted by using the information from the previous 3 Carrington Rotations. Thus the algorithm automatically reacts on the changes of the...

  6. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  7. Design and Experimentation of Collector based Solar Dryer with Recirculation for Spices

    Directory of Open Access Journals (Sweden)

    Mr. Ganesh There

    2016-02-01

    Full Text Available Sun drying system is very common method of preserving agricultural product. Solar energy is used for heating of air and to dry food substance. In open sun drying food is unprotected from rain, wind-borne dirt and dust, infestation by insects, rodents and other animal. This process is practically attractive and environmentally sound. Shell life of agricultural product is improve by drying. This paper present design and construction of active solar dryer with recirculation technique. It consists of solar collector, drying chamber with netted trays and recirculation arrangement. Air is allowed through inlet and it is heated up in collector. Then it is circulated in drying chamber where it is utilize for drying. The design based on geographical location Wardha and meteorological data were obtained for proper design specification. Locally available materials were used for construction such as polyurethane glass, mild steel metal sheet, plywood sheet and insulating material.

  8. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three donor-(π-spacer)-acceptor(D-π-A) organic dyes,containing different groups(triphenylamine,di(p-tolyl)phenylamine,and 9-octylcarbazole moieties) as electron donors,were designed and synthesized.Nanocrystalline TiO2 dye-sensitized solar cells were fabricated by using these dyes.It was found that the variation of electron donors in the D-π-A dyes played an important role in modifying and tuning photophysical properties of organic dyes.Under standard global AM 1.5 solar condition,the DSSC based on the dye D2 showed the best photovoltaic performance:a short-circuit photocurrent density(Jsc) of 13.93 mA/cm2,an open-circuit photovoltage(Voc) of 0.71 V,and a fill factor(FF) of 0.679,corresponding to solar-to-electric power conversion efficiency(η) of 6.72%.

  9. Collecting, analyzing and archiving of ground based infrared solar spectra obtained from several locations

    Science.gov (United States)

    Murcray, David G.; Murcray, Frank J.; Goldman, Aaron; Mcelroy, Charles T.; Chu, William P.; Rinsland, Curtis P.; Woods, Peter; Matthews, W. A.; Johnston, P. V.

    1990-01-01

    The infrared solar spectrum as observed from the ground under high resolution contains thousands of absorption lines. The majority of these lines are due to compounds that are present in the Earth's atmosphere. Ground based infrared solar spectra contain information concerning the composition of the atmosphere at the time the spectra were obtained. The objective of this program is to record solar spectra from various ground locations, and to analyze and archive these spectra. The analysis consists of determining, for as many of the absorption lines as possible, the molecular species responsible for the absorption, and to verify that current models of infrared transmission match the observed spectra. Archiving is an important part of the program, since a number of the features in the spectra have not been identified. At some later time, when the features are identified, it will be possible to determine the amount of that compound that was present in the atmosphere at the time the spectrum was taken.

  10. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    International Nuclear Information System (INIS)

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  11. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    Science.gov (United States)

    Sönmezoğlu, Savaş; Akyürek, Cafer; Akin, Seçkin

    2012-10-01

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  12. TiO-Based Organic Hybrid Solar Cells with Mn+ Doping

    Directory of Open Access Journals (Sweden)

    Zühal Alparslan

    2011-01-01

    Full Text Available A hybrid solar cell is designed and proposed as a feasible and reasonable alternative, according to acquired efficiency with the employment of TiO2 (titanium dioxide and Mn-doped TiO2 thin films. In the scope of this work, TiO2 (titanium dioxide and Mn:TiO2 hybrid organic thin films are proposed as charge transporter layer in polymer solar cells. Poly(3-hexylthiophene:phenyl-C61-butyric acid methyl ester (P3HT: PCBM is used as active layer. When the Mn-doped TiO2 solar cells were compared with pure TiO2 cells, Mn-doped samples revealed a noteworthy efficiency enhancement with respect to undoped-TiO2-based cells. The highest conversion efficiency was obtained to be 2.44% at the ratio of 3.5% (wt/wt Mn doping.

  13. Adaptive Critic Based Neuro-Fuzzy Tracker for Improving Conversion Efficiency in PV Solar Cells

    Directory of Open Access Journals (Sweden)

    Halimeh Rashidi

    2012-08-01

    Full Text Available The output power of photovoltaic systems is directly related to the amount of solar energy collected by the system and it is therefore necessary to track the sun’s position with high accuracy. This study proposes multi-agent adaptive critic based nero fuzzy solar tracking system dedicated to PV panels. The proposed tracker ensures the optimal conversion of solar energy into electricity by properly adjusting the PV panels according to the position of the sun. To evaluate the usefulness of the proposed method, some computer simulations are performed and compared with fuzzy PD controller. Obtained results show the proposed control strategy is very robust, flexible and could be used to get the desired performance levels. The response time is also very fast. Simulation results that have been compared with fuzzy PD controller show that our method has the better control performance than fuzzy PD controller.

  14. Effects of hole-transporting layers of perovskite-based solar cells

    Science.gov (United States)

    Suzuki, Atsushi; Kida, Tomoyasu; Takagi, Tatsuru; Oku, Takeo

    2016-02-01

    Fabrication and characterization of the photovoltaic and optical properties, and microstructure of perovskite-based solar cells with lead phthalocyanine (PbPc), zinc phthalocyanine, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], and copper(I) thiocyanate as hole-transporting layers were investigated. X-ray diffraction analysis and energy-dispersive X-ray spectroscopy were used to identify surface morphologies of the crystal structure and the elemental composition. Introducing PbPc into perovskite solar cells extended the retaining period of photovoltaic activity and performance. The effects of the hole-transporting layer on incident photon-to-current efficiency were investigated. The energy diagram and photovoltaic mechanism of the perovskite solar cells with the hole-transporting layer are discussed.

  15. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.

    Science.gov (United States)

    Wu, Tsung-Ta; Hu, Fan; Huang, Jyun-Hong; Chang, Chia-ho; Lai, Chih-chung; Yen, Yu-Ting; Huang, Hou-Ying; Hong, Hwen-Fen; Wang, Zhiming M; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2014-04-01

    A nontoxic hydrogen-assisted solid Se vapor selenization process (HASVS) technique to achieve a large-area (40 × 30 cm(2)) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 7.1 to 10.8% (12.0% for active area) was demonstrated. The remarkable improvement of efficiency and fill factor comes from improved open circuit voltage (Voc) and reduced dark current due to (1) decreased interface recombination raised from the formation of a widened buried homojunction with n-type Cd(Cu) participation and (2) enhanced separation of electron and hole carriers resulting from the accumulation of Na atoms on the surface of the CIGS film. The effects of microstructural, compositional, and electrical characteristics with hydrogen-assisted Se vapor selenization, including interdiffusion of atoms and formation of buried homojunction, were examined in detail. This methodology can be also applied to CIS (CuInSe2) thin film solar cells with enhanced efficiencies from 5.3% to 8.5% (9.4% for active area) and provides a facile approach to improve quality of CIGS and stimulate the nontoxic progress in the large scale CIGS PV industry. PMID:24571825

  16. Reliability analysis of the solar array based on Fault Tree Analysis

    International Nuclear Information System (INIS)

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  17. Model predictive control for a smart solar tank based on weather and consumption forecasts

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Bacher, Peder; Perers, Bengt;

    2012-01-01

    In this work the heat dynamics of a storage tank were modelled on the basis of data and maximum likelihood methods. The resulting grey-box model was used for Economic Model Predictive Control (MPC) of the energy in the tank. The control objective was to balance the energy from a solar collector a...... storage tank to serve a smart energy system in which flexible consumers are expected to help balance fluctuating renewable energy sources like wind and solar. Through simulations, the impact of applying Economic MPC shows annual electricity cost savings up to 25-30%.......In this work the heat dynamics of a storage tank were modelled on the basis of data and maximum likelihood methods. The resulting grey-box model was used for Economic Model Predictive Control (MPC) of the energy in the tank. The control objective was to balance the energy from a solar collector and...... the heat consumption in a residential house. The storage tank provides heat in periods where there is low solar radiation and stores heat when there is surplus solar heat. The forecasts of consumption patterns were based on data obtained from meters in a group of single-family houses in Denmark. The...

  18. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Cui, Jin [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Li, Junpeng [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); Cao, Kun; Yuan, Shuai [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Cheng, Yibing [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Wang, Mingkui, E-mail: mingkui.wang@mail.hust.edu.cn [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China)

    2015-09-15

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO{sub 2} on p-type dye-sensitized solar cells. Au nanorod@SiO{sub 2} works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO{sub 2} shows overall power conversion efficiencies of about 0.2% in combination with I{sup −}/I{sub 3}{sup −} electrolyte, and 0.29% with T{sup −}/T{sub 2} electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO{sub 2} contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent.

  19. Cu2ZnSn(S,Se)4 solar cells based on chemical bath deposited precursors

    International Nuclear Information System (INIS)

    A low-cost method has been developed to fabricate Cu2ZnSn(S,Se)4 solar cells. By this method, firstly SnS, CuS, and ZnS layers are successively deposited on a molybdenum/soda lime glass (Mo/SLG) substrate by chemical bath deposition. The Cu2ZnSn(S,Se)4 thin films are obtained by annealing the precursor in a selenium atmosphere utilizing a graphite box in the furnace. The obtained Cu2ZnSn(S,Se)4 thin films show large crystalline grains. By optimizing the preparation process, Cu2ZnSn(S,Se)4 solar cells with efficiencies up to 4.5% are obtained. The results imply that the Cu2ZnSn(S,Se)4/CdS interface and the back contact may be limiting factors for solar cell efficiency. - Highlights: • A chemical bath deposition method is developed to prepare Cu2ZnSn(S,Se)4 thin films. • The Cu2ZnSn(S,Se)4 thin films show good crystallization. • Solar cells with efficiencies up to 4.5% can be prepared based on the Cu2ZnSn(S,Se)4 layer. • The limiting factors for the solar cell efficiency are analyzed

  20. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    International Nuclear Information System (INIS)

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO2 on p-type dye-sensitized solar cells. Au nanorod@SiO2 works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO2 shows overall power conversion efficiencies of about 0.2% in combination with I−/I3− electrolyte, and 0.29% with T−/T2 electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO2 contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent

  1. Ground-based Observations of the Solar Sources of Space Weather (Invited Review)

    CERN Document Server

    Veronig, Astrid M

    2016-01-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold H$\\alpha$ spectral line, which enables us to detect and study solar flares, filaments, filament eruptions, and Moreton waves. Existing H$\\alpha$ networks such as the GONG and the Global High-Resolution H$\\alpha$ Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of H$\\alpha$ flares and filaments established at Kanzelh\\"ohe Observatory (KSO; Austria) in the...

  2. Calculated thermal performance of solar collectors based on measured weather data from 2001-2010

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Andersen, Elsa;

    2015-01-01

    This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period ...... with an increase in global radiation. This means that besides increasing the thermal performance with increasing the solar radiation, the utilization of the solar radiation also becomes better.......This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period...... 1975-1990 will result in deviations of up to 39 % compared with thermal performance calculated with multi-year the measured weather data. For the newer local reference years based on the period 2001-2010 the maximum deviation becomes 25 %. The investigation further showed an increase in utilization...

  3. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices

    Directory of Open Access Journals (Sweden)

    Federico Bella

    2016-05-01

    Full Text Available Redox mediators based on cobalt complexes allowed dye-sensitized solar cells (DSCs to achieve efficiencies exceeding 14%, thus challenging the emerging class of perovskite solar cells. Unfortunately, cobalt-based electrolytes demonstrate much lower long-term stability trends if compared to the traditional iodide/triiodide redox couple. In view of the large-scale commercialization of cobalt-based DSCs, the scientific community has recently proposed various approaches and materials to increase the stability of these devices, which comprise gelling agents, crosslinked polymeric matrices and mixtures of solvents (including water. This review summarizes the most significant advances recently focused towards this direction, also suggesting some intriguing way to fabricate third-generation cobalt-based photoelectrochemical devices stable over time.

  4. A method based on neural networks for generating solar radiation map

    Directory of Open Access Journals (Sweden)

    Z. Ramedani, M. Omid, A. Keyhani

    2012-01-01

    Full Text Available Estimation of global solar radiation (GSR is important in most solar energy applications, particularly in design methods, in system characterization and in decision making for energy management. In this paper, a new methodology based on artificial neural networks (ANN for generating daily GSR data is presented. By modeling GSR in regions where historical records are available, solar potential map for other sites that GSR have not been recorded was generated. In order to examine the ANN models, meteorological data throughout the year 2008 belonging to Karaj city in Alborz province of Iran were used to develop GSR predictors. Input parameters were maximum temperature, relative sunshine duration and extraterrestrial solar radiation while the output parameter was the solar radiation. Various networks were designed and tested and the most accurate model was selected. The best network was found as one hidden layer network with 3-4-1 topology, i.e., a network having four neurons in its hidden layer. To estimate the differences between the measured and predicted values, root mean square error (RMSE, mean absolute error (MAE, mean absolute percentage error (MAPE and coefficient of determination (R2 were computed as0.66, 0.52, 4.46% and 0.978, respectively. The optimum ANN model was then used to predict GSR in other cities in the province. Data from three stations located in Hashtgerd, Taleghan and Chitgar cities were used as production set. The GSR values for production sites of Hashtgerd, Taleghan and Chigrar were calculated as 4.93, 4.35 and 5.08 kWh m-2 day-1, respectively. Finally, the predicted solar potential values in all stations were integrated and represented in the form of a map. While results are site-specific, the methodology introduced here is general and provides an inexpensive means for GSR prediction based on readily available data.

  5. A method based on neural networks for generating solar radiation map

    Energy Technology Data Exchange (ETDEWEB)

    Ramedani, Z.; Omid, M.; Keyhani, A. [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran, Islamic Republic of)

    2012-07-01

    Estimation of global solar radiation (GSR) is important in most solar energy applications, particularly in design methods, in system characterization and in decision making for energy management. In this paper, a new methodology based on artificial neural networks (ANN) for generating daily GSR data is presented. By modeling GSR in regions where historical records are available, solar potential map for other sites that GSR have not been recorded was generated. In order to examine the ANN models, meteorological data throughout the year 2008 belonging to Karaj city in Alborz province of Iran were used to develop GSR predictors. Input parameters were maximum temperature, relative sunshine duration and extraterrestrial solar radiation while the output parameter was the solar radiation. Various networks were designed and tested and the most accurate model was selected. The best network was found as one hidden layer network with 3-4-1 topology, i.e., a network having four neurons in its hidden layer. To estimate the differences between the measured and predicted values, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and coefficient of determination (R2) were computed as0.66, 0.52, 4.46% and 0.978, respectively. The optimum ANN model was then used to predict GSR in other cities in the province. Data from three stations located in Hashtgerd, Taleghan and Chitgar cities were used as production set. The GSR values for production sites of Hashtgerd, Taleghan and Chigrar were calculated as 4.93, 4.35 and 5.08 kWh m-2 day-1, respectively. Finally, the predicted solar potential values in all stations were integrated and represented in the form of a map. While results are site-specific, the methodology introduced here is general and provides an inexpensive means for GSR prediction based on readily available data.

  6. Recovery of galium and indium from liquid crystal displays and CIGS photovailtaic modules

    NARCIS (Netherlands)

    Bisselink, R.; Steeghs, W.; Brouwer, J.G.H.

    2014-01-01

    Abstract: The increasing amount of electronics, such as consumer products and green technologies (e.g. solar PV cells) increases the demand of metals such as indium and gallium. This increasing demand together with the dependency on import of these metals drive research on recycling of waste electro

  7. Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se{sub 2} solar cells on Ti foils

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Charles, E-mail: charles.rgr@gmail.com [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Noël, Sébastien; Sicardy, Olivier; Faucherand, Pascal; Grenet, Louis; Karst, Nicolas; Fournier, Hélène; Roux, Frédéric [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ducroquet, Frédérique [IMEP-LAHC, Minatec, Grenoble-INP, CNRS UMR 5130, 38016 Grenoble (France); Brioude, Arnaud [Laboratoire des Multimatériaux et Interfaces, UMR 5615, Villeurbanne (France); Perraud, Simon [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-02

    Molybdenum back contact properties are critical for Cu(In,Ga)Se{sub 2} (CIGS) solar cell performance on metallic substrates. In this work, we investigated the properties of sputter-deposited Mo bilayer back contacts on Ti foils. The morphology, electrical resistivity, optical reflectance and residual mechanical stress of the bottom Mo layer were modified by varying the working pressure during its deposition. Working pressures ranging from 0.27 Pa to 4.00 Pa were used. The top Mo layer was deposited using constant conditions at a pressure of 0.13 Pa. It was demonstrated that unlike a Mo monolayer, the use of a Mo bilayer allows controlling the mechanical stress at the Mo/CIGS interface without degrading the optical reflectance and the electrical resistance of the back contact. It was also found that the morphology of the bottom Mo layer affects the growth of the top Mo layer, resulting in a modified back contact surface morphology. This induces changes in the crystalline orientation of the CIGS layer. The resulting solar cell characteristics strongly vary as a function of the bottom Mo layer deposition pressure. A bottom Mo layer growth at 2.93 Pa allows improving the solar cell conversion efficiency by 1.5 times compared to a bottom Mo layer deposited at 0.27 Pa. Using the improved Mo bilayer back contact, a maximum solar cell efficiency of 10.0% was obtained without sodium addition nor anti-reflection coating. - Highlights: • Mo bilayer back contacts for Cu(In,Ga)Se{sub 2} solar cells were grown on Ti substrates. • The sputtering pressure of the bottom Mo layer was varied between 0.27 Pa and 4 Pa. • The top Mo layer controls the optical and electrical properties of the back contact. • The structure of the bottom Mo layer influences the morphology of the top Mo layer. • The back contact affects the CIGS texture, device series resistance and efficiency.

  8. A Review of a Successful Unsubsidized Market-Based Rural Solar Development Initiative in Laikipia District, Central Kenya

    OpenAIRE

    O. Wambuguh

    2013-01-01

    The development of renewable energy technologies (RETs) in many areas far from grid-based electricity have primarily involved solar photovoltaics (SPVs) which tap solar radiation to provide heat, light, hot water, electricity, and cooling for homes, businesses, and industry. A study on RETs took place in the Wiyumiririe Location of Laikipia District (north-central Kenya), a rich agricultural region. To explore this solar initiative in such a remote part of the country, a purposive randomized ...

  9. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    OpenAIRE

    Bat-El Cohen; Shany Gamliel; Lioz Etgar

    2014-01-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, ...

  10. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells.

    Science.gov (United States)

    Werner, Jérémie; Geissbühler, Jonas; Dabirian, Ali; Nicolay, Sylvain; Morales-Masis, Monica; Wolf, Stefaan De; Niesen, Bjoern; Ballif, Christophe

    2016-07-13

    Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition. PMID:27338079

  11. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

    Science.gov (United States)

    Lee, Ching-Ting; Lee, Hsin-Ying; Chen, Kuan-Hao

    2016-06-01

    In this study, the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si (n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/i-Si/n-Si cell and the p-SiC/i-SiGe/n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

  12. CGS based solar cells with In2S3 buffer layer deposited by CBD and coevaporation

    International Nuclear Information System (INIS)

    In this paper we investigated In2S3 as substitute for CdS, which is conventionally used as buffer layer in chalcopyrite based solar cells. In2S3 thin films were deposited by CBD and co-evaporation methods and these were employed as buffer layer in CuGaSe2 based solar cells. Previous to the device fabrication, comparative study was carried out on In2S3 thin films properties deposited from chemical bath containing thioacetamide, Indium Chloride, and sodium citrate, and In2S3 thin films prepared by co-evaporation from its constituents elements. The influence of synthesis conditions on the growth rate, optical, structural and morphological properties of the as-grown In2S3 thin films have been carried out with Spectrophotometry, X-ray diffraction and AFM microscopy techniques. Suitable conditions were found for reproducible and good quality In2S3 thin films synthesis. By depositing In2S3 thin films as buffer layers in CuGaSe2 configuration, a maximum solar cell efficiency of 6% was achieved, whilst the reference solar cell with CdS/CuGaSe2 on similar absorber exhibited 7% efficiency. (author)

  13. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  14. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  15. One-dimension-based spatially ordered architectures for solar energy conversion.

    Science.gov (United States)

    Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun

    2015-08-01

    The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications. PMID:25856797

  16. Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells.

    Science.gov (United States)

    Molina-Ontoria, Agustín; Zimmermann, Iwan; Garcia-Benito, Inés; Gratia, Paul; Roldán-Carmona, Cristina; Aghazada, Sadig; Graetzel, Michael; Nazeeruddin, Mohammad Khaja; Martín, Nazario

    2016-05-17

    New star-shaped benzotrithiophene (BTT)-based hole-transporting materials (HTM) BTT-1, BTT-2 and BTT-3 have been obtained through a facile synthetic route by crosslinking triarylamine-based donor groups with a benzotrithiophene (BTT) core. The BTT HTMs were tested on solution-processed lead trihalide perovskite-based solar cells. Power conversion efficiencies in the range of 16 % to 18.2 % were achieved under AM 1.5 sun with the three derivatives. These values are comparable to those obtained with today's most commonly used HTM spiro-OMeTAD, which point them out as promising candidates to be used as readily available and cost-effective alternatives in perovskite solar cells (PSCs). PMID:27061436

  17. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells

    Science.gov (United States)

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-01

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution

  18. The effect of an external electric field on thermally-deposited thin CdS/CdTe-based solar cells

    Science.gov (United States)

    Wan, Ke Ming; Zhang, Yu Jun; Li, Ping; Wang, Gang; Xiang, Jin; Ding, Bao Fu; Alameh, Kamal; Song, Qun Liang

    2015-11-01

    Conventional and inverted thin CdS/CdTe-based solar cells are fabricated using thermal deposition techniques, and their performance under an external electric field is investigated. Results show that both positive and negative electric fields can change the performance of the developed solar cells and that the latter recover to their initial state after switching the external electric field off. Heat treatment experiments confirm the negligible impact of the temperature on the solar cell performance. Transient photocurrent experiments show that the carrier transfer efficiency is modulated directly by an external electric field. By taking into account the CdS nanodipole, the effect of an external electric field on the solar cell performance can be well explained. The results presented in this paper open the way toward the realization of solar cells through carrier separation by an electric field provided by the CdS nanodipoles rather than the solar cell junction.

  19. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires

    International Nuclear Information System (INIS)

    Highlights: • All-solid, flexible solar textile fabricated with DSSCs is demonstrated. • DSSCs woven into a satin structure and transparent PET film are used. • Solar textile showed a high efficiency of 2.57%. -- Abstract: An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm2 at 100 mW/cm2 illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes

  20. Theoretical analysis of a novel, portable, CPC-based solar thermal collector for methanol reforming

    International Nuclear Information System (INIS)

    Highlights: • A new concentrating micro solar collector with vacuum insulation is proposed. • Optical and thermal theoretical analyses of the collector have been presented. • The collector can provide heat at 250 °C with an efficiency of approximately 70%. • The collector may be used to drive endothermic reactions such as methanol reforming. - Abstract: In this paper we propose a new solar thermal collector which is suitable for providing heat for endothermic chemical reactions. The particular reaction that is considered is hydrogen production by menthol reforming. The design presented here is based on CPC (compound parabolic concentrator) technology, which can operate without complicated (and costly) tracking systems. It consists of a small, double-sided selective surface receiver in a vacuum envelope comprised of CPC reflectors and a glass aperture cover. Heat absorbed by the receiver is transferred to the working fluid inside micro tubes where the chemical reaction is occurring. This design, to the best of our knowledge, represents the first time that a vacuum package (which creates thermal concentration) has been combined with a CPC-based optical concentrator for thermo-chemical applications. This collector design can convert over 78% of incident solar radiation into heat with a concentration ratio of 1.75, allowing for a high solar-to-fuel efficiency in chemical reactions. This study establishes both the optical and thermal models needed to predict the performance of this type of collector. The results show that the collector stagnates at very high temperatures (up to 600 °C), and can provide solar heat in the form of a small collector for a variety of portable applications – e.g. methanol reforming that requires temperatures of around 250 °C

  1. Optical modeling of a solar dish thermal concentrator based on square flat facets

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2014-01-01

    Full Text Available Solar energy may be practically utilized directly through transformation into heat, electrical or chemical energy. We present a procedure to design a square facet concentrator for laboratory-scale research on medium-temperature thermal processes. The efficient conversion of solar radiation into heat at these temperature levels requires the use of concentrating solar collectors. Large concentrating dishes generally have a reflecting surface made up of a number of individual mirror panels (facets. Optical ray tracing is used to generate a system performance model. A square facet parabolic solar concentrator with realistic specularly surface and facet positioning accuracy will deliver up to 13.604 kW of radiative power over a 250 mm radius disk (receiver diameter located in the focal plane on the focal length of 1500mmwith average concentrating ratio exceeding 1200. The Monte Carlo ray tracing method is used for analysis of the optical performance of the concentrator and to identify the set of geometric concentrator parameters that allow for flux characteristics suitable for medium and high-temperature applications. [Projekat Ministarstva nauke Republike Srbije, br. III42006: Research and development of energy and environmentally highly effective polygeneration systems based on renewable energy resources

  2. Hybrid solar cells based on semiconductor nanocrystals and poly(3-hexylthiophene)

    International Nuclear Information System (INIS)

    Semiconductor nanoparticles are promising electron acceptor materials for polymer-based bulk heterojunction solar cells. Size-dependent optical properties enable adaptation of the absorption to the solar spectrum, and the possibility to use elongated nanoparticles should be favorable for efficient electron transport. Despite these potential advantages, efficiencies reported for such hybrid solar cells are still below those of organic polymer/fullerene cells. In the presented work, CdSe nanoparticles were prepared by colloidal chemistry and their usability for hybrid solar cells in conjunction with poly(3-hexylthiophene) (P3HT) as electron donor material was studied. Systematic studies of correlations between the device performance and blend morphology are presented. Furthermore, charge separation in the donor/acceptor systems was studied in detail by electron spin resonance (ESR) and photoinduced absorption spectroscopy (PIA). The studies revealed the existence of a large amount of trap states which might be the origin of the limitations for the device efficiency. First results with colloidally prepared CuInS2 nanoparticles are presented as well.

  3. Petascale Computing for Ground-Based Solar Physics with the DKIST Data Center

    Science.gov (United States)

    Berukoff, Steven J.; Hays, Tony; Reardon, Kevin P.; Spiess, DJ; Watson, Fraser; Wiant, Scott

    2016-05-01

    When construction is complete in 2019, the Daniel K. Inouye Solar Telescope will be the most-capable large aperture, high-resolution, multi-instrument solar physics facility in the world. The telescope is designed as a four-meter off-axis Gregorian, with a rotating Coude laboratory designed to simultaneously house and support five first-light imaging and spectropolarimetric instruments. At current design, the facility and its instruments will generate data volumes of 3 PB per year, and produce 107-109 metadata elements.The DKIST Data Center is being designed to store, curate, and process this flood of information, while providing association of science data and metadata to its acquisition and processing provenance. The Data Center will produce quality-controlled calibrated data sets, and make them available freely and openly through modern search interfaces and APIs. Documented software and algorithms will also be made available through community repositories like Github for further collaboration and improvement.We discuss the current design and approach of the DKIST Data Center, describing the development cycle, early technology analysis and prototyping, and the roadmap ahead. We discuss our iterative development approach, the underappreciated challenges of calibrating ground-based solar data, the crucial integration of the Data Center within the larger Operations lifecycle, and how software and hardware support, intelligently deployed, will enable high-caliber solar physics research and community growth for the DKIST's 40-year lifespan.

  4. Tragaldabas: a muon ground-based detector for the study of the solar activity; first observations

    Science.gov (United States)

    José Blanco, Juan

    2016-04-01

    A new RPC-based cosmic ray detector, TRAGALDABAS (acronym of "TRAsGo for the AnaLysis of the nuclear matter Decay, the Atmosphere, the earth's B-field And the Solar activity") has been installed at the Univ. of Santiago de Compostela, Spain (N:42°52'34",W:8°33'37"). The detector, in its present layout, consists of three 1.8 m2 planes of three 1mm-gap glass RPCs. Each plane is readout with 120 pads with grounded guard electrodes between them to minimize the crosstalk noise. The main performances of the detectors are: an arrival time resolution of about ~300 ps, a tracking angular resolution below 3°, a detection efficiency close to 1, and a solid angle acceptance of ~5 srad. TRAGALDABAS will be able to monitor the cosmic ray low energy component strongly modulated by solar activity by mean the observation of secondary muons from the interaction between cosmic rays and atmospheric molecules. Its cadence and its angular resolution will allow to study in detail, small variations in cosmic ray anisotropy. These variations can be a key parameter to understand the effect of solar disturbances on the propagation of cosmic ray in the inner heliosphere and, maybe, provide a new tool for space weather analysis. In this work first TRAGALDABAS observations of solar events are shown

  5. Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Kronenberg, Nils M.; Lenze, Martin R.; Graf, Steven M.; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln, Luxemburger Strasse 116, 50939 Koeln (Germany); Buerckstuemmer, Hannah; Tulyakova, Elena V.; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany)

    2011-10-15

    In order to be competitive on the energy market, organic solar cells with higher efficiency are needed. To date, polymer solar cells have retained the lead with efficiencies of up to 8%. However, research on small molecule solar cells has been catching up throughout recent years and is showing similar efficiencies, however, only for more sophisticated multilayer device configurations. In this work, a simple, highly efficient, vacuum-processed small molecule solar cell based on merocyanine dyes - traditional colorants that can easily be mass-produced and purified - is presented. In the past, merocyanines have been successfully introduced in solution-processed as well as vacuum-processed devices, demonstrating efficiencies up to 4.9%. Here, further optimization of devices is achieved while keeping the same simple layer stack, ultimately leading to efficiencies beyond the 6% mark. In addition, physical properties such as the charge carrier transport and the cell performance under various light intensities are addressed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Design of DSP-based high-power digital solar array simulator

    Science.gov (United States)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  7. Research Update: Comparison of salt- and molecular-based iodine treatments of PbS nanocrystal solids for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jähnig, Fabian; Bozyigit, Deniz; Yarema, Olesya; Wood, Vanessa [Laboratory for Nanoelectronics, ETH Zurich Gloriastrasse 35, Zurich 8044 (Switzerland)

    2015-02-01

    Molecular- and salt-based chemical treatments are believed to passivate electronic trap states in nanocrystal-based semiconductors, which are considered promising for solar cells but suffer from high carrier recombination. Here, we compare the chemical, optical, and electronic properties of PbS nanocrystal-based solids treated with molecular iodine and tetrabutylammonium iodide. Surprisingly, both treatments increase—rather than decrease—the number density of trap states; however, the increase does not directly influence solar cell performance. We explain the origins of the observed impact on solar cell performance and the potential in using different chemical treatments to tune charge carrier dynamics in nanocrystal-solids.

  8. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  9. Web-Based Application for the Sizing of a Photovolatic (PV) Solar Power System

    OpenAIRE

    F.K. Ariyo; B.D. Famutimi; T.O. Olowu; S.A. Akintade; Abbas, A

    2016-01-01

    The harnessing of solar energy, especially for provision of energy for residential consumption, has been on the rise in developing countries, especially Nigeria, in recent times. Due to this reason, there is the need for a tool which makes the design of the system needed to harness this abundant energy more accurate and efficient by considering several factors including specific climate conditions of the country. This paper presents the design and development of a web-based application tha...

  10. Dye-Sensitized Solar Cells Using Mesocarbon Microbead-Based Counter Electrodes

    OpenAIRE

    Chien-Te Hsieh; Bing-Hao Yang; Wei-Yu Chen

    2012-01-01

    The dye-sensitized solar cells (DSCs) equipped with mesocarbon microbead (MCMB)-based counter electrodes were explored to examine their cell performance. Three types of nanosized additives including platinum, carbon nanotubes (CNTs), and carbon black (CB) are well dispersed and coated over microscaled MCMB powders. In the design of the counter electrodes, the MCMB graphite offers an excellent medium that allows charge transfer from the ITO substrate to the dye molecule. The active materials s...

  11. Integration of hybrid organic-based solar cells for micro-generation

    OpenAIRE

    Azzopardi, Brian

    2011-01-01

    Despite the fact that the global photovoltaic (PV) market has grown rapidly during the last two decades, driven by global climate change concerns and public policy supports of renewable energy sources, a PV system is still considered an expensive alternative energy source when compared to other sources of electricity. Emerging organic-based PV solar cells may lead to significant price reductions of a PV system. Though, in the short and medium term, the lifetime, efficiencies and reliability...

  12. PREDICTION OF SOLAR ADSORPTION REFRIGERATION SYSTEM PERFORMANCE USING ANN BASED ON GENETIC LEARNING

    OpenAIRE

    Salah. Hanini; Maamar Laidi

    2012-01-01

    An adsorptive solar refrigerator performance was modelled using artificial neural networks (ANNs). This model takes into account the adsorbent bed, condenser and the evaporator characteristics as well as the working pair (Activated carbon /methanol) properties and the climate conditions. The supervised learning of the ANN is based on a genetic algorithm (GA) supported by an elitist strategy. Input, hidden and output layers model the topology of the ANN. The weights of the synapses and the bia...

  13. SOLAR REFRIGERATION SYSTEMS BASED ON THE ABSORBER WITH INTERNAL EVAPORATIVE COOLING

    OpenAIRE

    Дорошенко, O.В.; Людницький, К.В.

    2015-01-01

    The paper presents the developed schematics for alternative refrigeration systems and air conditioning systems based on the use of heat-absorption cycle and solar energy for regeneration (recovery) of the absorbent solution. Cascade principle of construction of the drying and cooling circuits with absorbent concentration increasing on the steps of the cascade is used. The absorber with internal evaporative cooling that eliminates a separate evaporative cooler, typically comprised after the co...

  14. SOLAR MULTI-STAGE ABSORPTION REFRIGERATION SYSTEMS BASED ON FILM TYPE HEAT-MASS EXCHANGE APPARATUSES

    OpenAIRE

    Дорошенко, О.В.; Антонова, А.Р.; Людницький, К.В.

    2015-01-01

    The paper presents the developed circuit solutions for alternative refrigeration systems based on the of heat-absorption cycle and solar energy utilization for regeneration (recovery) of the absorbent solution. Cascade principle of heat-mass exchange apparatuses construction was applied, of drying and cooling loops with varying of  temperature level and increasing  of absorbent concentration on the cascade steps. Film type heat and mass transfer equipment, which is the part of the drying and ...

  15. Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.

    Science.gov (United States)

    Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing

    2016-09-14

    The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times. PMID:27524362

  16. Energetic and Exergetic Performance Analyses of Solar Dish Based CO2 Combined Cycle

    OpenAIRE

    Mukhopadhyay, Soumitra; Ghosh, Sudip

    2014-01-01

    This paper presents a conceptual configuration of a solar dish based combined cycle power plant with a topping gas turbine block and a bottoming steam turbine cycle coupled through a heat recovery steam generator (HRSG). Carbon dioxide has been considered as the working fluid for the topping cycle and it has been considered in gaseous state all through the cycle. Two-stage compression has been proposed for the carbon dioxide cycle. The conventional GT combustion chamber is replaced by a high-...

  17. Improvement of temperature-based ANN models for solar radiation estimation through exogenous data assistance

    International Nuclear Information System (INIS)

    The development of new and more precise temperature-based models for solar radiation estimation is decisive, given the immediacy and simplicity associated to their input measurements and the ubiquitous problems derived from equipment failures, maintenance and calibration, and physical and biological constraints. Further, the performance quality of empirical equations is to be questioned in a large variety of climatic contexts. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly appropriate for the modelling of non-linear processes. Nevertheless, temperature-based ANN models do not always provide accurate enough solar radiation estimations as their performance depends considerably on the specific temperature/solar radiation relationships of the studied context. This paper describes a new procedure to improve the performance accuracy of temperature-based ANN models for estimation of total solar radiation on a horizontal surface (Rs) taking advantage of ancillary data records from secondary similar stations, which work as exogenous inputs. The influence on the model performance of the number of considered ancillary stations and the corresponding number of training patterns is also analyzed. Finally, these models are compared with those relying exclusively on local temperature recordings. The proposed models provide performances with lower associated errors than those which do not consider exogenous inputs. The ancillary supply is translated into a decrease around 0.1 of RMSE in the local performance. The consideration of non-measured inputs in the simple local temperature-based models, namely extraterrestrial radiation or day of the year, entails a performance accuracy improvement around 0.1 of RMSE.

  18. Solar Energy Block-Based Residential Construction for Rural Areas in the West of China

    OpenAIRE

    Jizhong Shao; Huixian Chen; Ting Zhu

    2016-01-01

    Based on the Great Western Development Strategy and the requirement for sustainable development in the west of China, rural affordable housing, energy conservation, and environmental protection are becoming development standards in the construction field. This paper mainly explores an innovative, sustainable, residential construction method for rural areas in western China, particularly the integration of solar energy technology with modern prefabricated building techniques, formally named so...

  19. Intensification of depolymerization of polyacrylic acid solution using different approaches based on ultrasound and solar irradiation with intensification studies.

    Science.gov (United States)

    Prajapat, Amrutlal L; Gogate, Parag R

    2016-09-01

    Depolymerization of polyacrylic acid (PAA) as sodium salt has been investigated using ultrasonic and solar irradiations with process intensification studies based on combination with hydrogen peroxide (H2O2) and ozone (O3). Effect of solar intensity, ozone flow and ultrasonic power dissipation on the extent of viscosity reduction has been investigated for individual treatment approaches. The combined approaches such as US+solar, solar+O3, solar+H2O2, US+H2O2 and US+O3 have been subsequently investigated under optimum conditions and established to be more efficient as compared to individual approaches. Approach based on US (60W)+solar+H2O2 (0.01%) resulted in the maximum extent of viscosity reduction as 98.97% in 35min whereas operation of solar+H2O2 (0.01%), US (60W), H2O2 (0.3%) and solar irradiation resulted in about 98.08%, 90.13%, 8.91% and 90.77% intrinsic viscosity reduction in 60min respectively. Approach of US (60W)+solar+ozone (400mg/h flow rate) resulted in extent of viscosity reduction as 99.47% in 35min whereas only ozone (400mg/h flow rate), ozone (400mg/h flow rate)+US (60W) and ozone (400mg/h flow rate)+solar resulted in 69.04%, 98.97% and 98.51% reduction in 60min, 55min and 55min respectively. The chemical identity of the treated polymer using combined approaches was also characterized using FTIR (Fourier transform infrared) spectra and it was established that no significant structural changes were obtained during the treatment. Overall, it can be said that the combination technique based on US and solar irradiations in the presence of hydrogen peroxide is the best approach for the depolymerization of PAA solution. PMID:27150773

  20. Theoretical study of a novel solar trigeneration system based on metal hydrides

    International Nuclear Information System (INIS)

    In order to utilize the low grade heat energy efficiently, the preliminary scheme of a metal hydride based Combined Cooling, Heating and Power (CCHP) system driven by solar energy and industrial waste heat was proposed, in which both refrigeration and power generation are achieved. Following a step-by-step procedure recently developed by the authors, two pairs of metal hydrides were selected for the CCHP system. The working principle of the system was discussed in detail and further design of the configuration for CCHP was conducted. Based on the cycle mentioned above, the models of energy conversion and exergy analysis were set up. The multi-element valued method was used to assess the performance of the CCHP system in a whole sense, thus the analysis of influence factors on the system performance can be carried out. The typical climate conditions of Xi'an in 2005 were taken for discussion, and the results showed that the system performance is mainly affected by the quantity of solar radiation energy. The objective of the system's optimization is to increase the exergy efficiency of the metal hydride heat pump, based on the quantity of solar radiation energy. The comparison with two different traditional types of CCHP systems proved that the novel CCHP system is superior to the traditional CCHP systems concerning the integrated performance.

  1. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    Science.gov (United States)

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-01

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. PMID:26991031

  2. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    Energy Technology Data Exchange (ETDEWEB)

    Nema, Pragya; Rangnekar, Saroj [Energy Engineering Department, Maulana Azad National Institute of Technology , Bhopal-462007 M.P. (India); Nema, R.K. [Electrical Engineering Department, Maulana Azad National Institute of Technology, Bhopal-462007 M.P. (India)

    2010-07-01

    This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal). For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77 deg.23'and Latitude 23 deg.21' ) and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. It should reduced approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the newly developed and installed system will provide very good opportunities for telecom sector in near future.

  3. Restoration of solar and star images with phase diversity-based blind deconvolution

    Institute of Scientific and Technical Information of China (English)

    Qiang Li; Sheng Liao; Honggang Wei; Mangzuo Shen

    2007-01-01

    The images recorded by a ground-based telescope are often degraded by atmospheric turbulence and the aberration of the optical system. Phase diversity-based blind deconvolution is an effective post-processing method that can be used to overcome the turbulence-induced degradation. The method uses an ensemble of short-exposure images obtained imultaneously from multiple cameras to jointly estimate the object and the wavefront distribution on pupil. Based on signal estimation theory and optimization theory, we derive the cost function and solve the large-scale optimization problem using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. We apply the method to the urbulence degraded images generated with computer, the solar images acquired with the swedish vacuum solar telescope (SVST, 0.475m) in La Paima and the star images collected with 1.2-m telescope in Yunnan Observatory. In order to avoid edge effect in the restoration of the solar images, a modified Hanning apodized window is adopted.The star image till can be estored when the defocus distance is measured inaccurately. The restored results demonstrate that the method is efficient for removing the effect of turbulence and reconstructing the point-like or extended objects.

  4. PV-solar / Wind Hybrid Energy System for GSM/CDMA Type Mobile Telephony Base

    Directory of Open Access Journals (Sweden)

    Station Md. Ibrahim

    2015-05-01

    Full Text Available This paper presents the design of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in south India (Chennai. For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Chennai (Longitude 80ο .16’and Latitude 13ο .5’ and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. The presented system reduce approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the proposed developed and installed system will provide very good opportunities for telecom sector in near future.

  5. Theoretical study of a novel solar trigeneration system based on metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangyu; Yang, Fusheng; Bao, Zewei; Deng, Jianqiang; Serge, Nyallang N.; Zhang, Zaoxiao [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-06-15

    In order to utilize the low grade heat energy efficiently, the preliminary scheme of a metal hydride based Combined Cooling, Heating and Power (CCHP) system driven by solar energy and industrial waste heat was proposed, in which both refrigeration and power generation are achieved. Following a step-by-step procedure recently developed by the authors, two pairs of metal hydrides were selected for the CCHP system. The working principle of the system was discussed in detail and further design of the configuration for CCHP was conducted. Based on the cycle mentioned above, the models of energy conversion and exergy analysis were set up. The multi-element valued method was used to assess the performance of the CCHP system in a whole sense, thus the analysis of influence factors on the system performance can be carried out. The typical climate conditions of Xi'an in 2005 were taken for discussion, and the results showed that the system performance is mainly affected by the quantity of solar radiation energy. The objective of the system's optimization is to increase the exergy efficiency of the metal hydride heat pump, based on the quantity of solar radiation energy. The comparison with two different traditional types of CCHP systems proved that the novel CCHP system is superior to the traditional CCHP systems concerning the integrated performance. (author)

  6. PV-solar / wind hybrid energy system for GSM/CDMA type mobile telephony base station

    Directory of Open Access Journals (Sweden)

    Pragya Nema, R.K. Nema, Saroj Rangnekar

    2010-03-01

    Full Text Available This paper gives the design idea of optimized PV-Solar and Wind Hybrid Energy System for GSM/CDMA type mobile base station over conventional diesel generator for a particular site in central India (Bhopal . For this hybrid system ,the meteorological data of Solar Insolation, hourly wind speed, are taken for Bhopal-Central India (Longitude 77o.23'and Latitude 23o.21' and the pattern of load consumption of mobile base station are studied and suitably modeled for optimization of the hybrid energy system using HOMER software. The simulation and optimization result gives the best optimized sizing of wind turbine and solar array with diesel generator for particular GSM/CDMA type mobile telephony base station. This system is more cost effective and environmental friendly over the conventional diesel generator. It should reduced approximate 70%-80% fuel cost over conventional diesel generator and also reduced the emission of CO2 and other harmful gasses in environments. It is expected that the newly developed and installed system will provide very good opportunities for telecom sector in near future.

  7. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Highlights: • A novel small scale solar power plant was designed and simulated. • The system is based on evacuated solar thermal collectors and an ORC system. • An average electric efficiency of 10% was found for the ORC. • The efficiency of solar collectors was found to be high in summer (>50%). • Pay-back periods lower than 5 years were estimated, in case of public funding. - Abstract: This paper presents a dynamic simulation model of a novel prototype of a 6 kWe solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the

  8. Analyses and Simulation of V-I Characteristics for Solar Cells Based on P-N Junction

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian-bang; REN Ju; GUO Wen-ge; HOU Chao-qi

    2005-01-01

    Through theoretical analyses of the Shockley equation and the difference between a practical P-N junction and its ideal model, the mathematical models of P-N junction and solar cells had been obtained. With Matlab software, the V-I characteristics of diodes and solar cells were simulated, and a computer simulation model of the solar cells based on P-N junction was also established. Based on the simulation model, the influences of solar cell's internal resistances on open-circuit voltage and short-circuit current under certain illumination were numerically analyzed and solved. The simulation results showed that the equivalent series resistance and shunt resistance could strongly affect the V-I characteristics of solar cell, but their influence styles were different.

  9. Dye-sensitized solar cells based on porous conjugated polymer counter electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Naeimeh; Behjat, Abbas, E-mail: abehjat@yazd.ac.ir; Jafari, Fatemeh

    2014-12-31

    In this paper, we report platinum-free dye-sensitized solar cells that were fabricated using a grown porous poly-3-methyl-thiophene (P3MT) counter electrode. The growing of the porous P3MT was performed by an electrochemical deposition method. This method is easy and affordable unlike the common expensive deposition methods. The morphology of P3MT films was studied by scanning electron microscopy images. It was observed that polymer layers grown with a current density of 2 mA/cm{sup 2} have a clear porous and rough structure as compared to layers grown with a lower current density. To understand the reaction kinetics and the catalytic activities of the counter electrodes with P3MT for 3I{sup −}/I{sub 3}{sup −} redox reaction, cyclic voltammetry (CV) was performed. Based on the analysis of CV, it was shown that this layer can be used as a counter electrode for dye-sensitized solar cells. The electro deposition conditions during the growth of polymer layers such as current density, the morphology of polymer films and the duration of polymerization have a significant role in the current–voltage characterization of the fabricated solar cells. The performance of the fabricated solar cells was improved by optimization of these parameters. The highest efficiency of 2.76% was obtained by using porous P3MT in the counter electrode. - Highlights: • Poly-3-methyl-thiophene (P3MT) layers were grown using electrochemical deposition method. • By controlling the growth conditions, porous P3MT can be produced. • Grown P3MT layers can be used as counter electrodes in dye-sensitized solar cells. • The growth rate of P3MT layers plays an essential role in the cell performance.

  10. Dye-sensitized solar cells based on porous conjugated polymer counter electrodes

    International Nuclear Information System (INIS)

    In this paper, we report platinum-free dye-sensitized solar cells that were fabricated using a grown porous poly-3-methyl-thiophene (P3MT) counter electrode. The growing of the porous P3MT was performed by an electrochemical deposition method. This method is easy and affordable unlike the common expensive deposition methods. The morphology of P3MT films was studied by scanning electron microscopy images. It was observed that polymer layers grown with a current density of 2 mA/cm2 have a clear porous and rough structure as compared to layers grown with a lower current density. To understand the reaction kinetics and the catalytic activities of the counter electrodes with P3MT for 3I−/I3− redox reaction, cyclic voltammetry (CV) was performed. Based on the analysis of CV, it was shown that this layer can be used as a counter electrode for dye-sensitized solar cells. The electro deposition conditions during the growth of polymer layers such as current density, the morphology of polymer films and the duration of polymerization have a significant role in the current–voltage characterization of the fabricated solar cells. The performance of the fabricated solar cells was improved by optimization of these parameters. The highest efficiency of 2.76% was obtained by using porous P3MT in the counter electrode. - Highlights: • Poly-3-methyl-thiophene (P3MT) layers were grown using electrochemical deposition method. • By controlling the growth conditions, porous P3MT can be produced. • Grown P3MT layers can be used as counter electrodes in dye-sensitized solar cells. • The growth rate of P3MT layers plays an essential role in the cell performance

  11. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    Science.gov (United States)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-03-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  12. An assessment of radiation damage in space-based germanium detectors due to solar proton events

    International Nuclear Information System (INIS)

    Radiation effects caused by solar proton events will be a common problem for many types of sensors on missions to the inner solar system because of the long cruise phases coupled with the inverse square scaling of solar particle events. As part of a study in support of the BepiColombo mission to Mercury we have undertaken a comprehensive series of tests to assess these effects on a wide range of sensors. In this paper, we report on the measurements on a large volume coaxial Ge detector which was exposed to simulated solar proton spectra of integrated fluences 8x108, 6x109 and 6x1010protonscm-2. After each irradiation the detectors performance was accessed in terms of energy resolution, efficiency and activation. The detector was then annealed and the measurements repeated before the next irradiation. The minimum operational performance criteria were based on the resolution and efficiency requirements necessary to detect and separate specific radioisotope emission lines from a planetary regolith. Specifically that the energy resolution be restored to 5 keV FWHM at 1332 keV and the detection efficiency be degraded to no more than 10% of its pre-irradiation value. The key conclusion of this study is that even after a modest solar proton event the detector requires extensive annealing. After exposure to an event of integral fluence ∼8x108protonscm-2 this amounts to ∼1 week duration at 1000C, whereas for a fluence of ∼6x1010protonscm-2, the detector requires 3.5 months of annealing to satisfy the minimum operational performance requirements and 4.5 months to return the energy resolution to <3keV FWHM at 1332 keV. As a consequence such an instrument will require constant, planned and active management throughout its operational lifetime. The impact on spacecraft operations including resource management therefore needs careful consideration

  13. Highly efficient hybrid solar cells based on an octithiophene-gaas heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, J.; Videlot, C.; El Kassmi, A.; Fages, F. [Laboratoire des Materiaux Moleculaires et des Biomateriaux, GCOM2 CNRS UMR 6114, Faculte des Sciences de Luminy, Case 901, 163 avenue de Luminy, F-13288 Marseille Cedex 09 (France); Guglielmetti, R. [Laboratoire de Chimie et Materiaux Organiques-Modelisation, GCOM2 CNRS UMR 6114, Faculte des Sciences de Luminy, Case 901, 163 avenue de Luminy, F-13288 Marseille Cedex 09 (France)

    2005-05-01

    We report a new type of hybrid heterojunction solar cell based on rod-like octithiophene (8T) as the organic p-type semiconductor and GaAs(111) as the inorganic n-type semiconductor. By using a semitransparent gold layer as the front contact deposited onto the 8T films, solar-energy conversion efficiencies of up to 4.2 % could be obtained. The reduction in the contact resistance at the Au/8T interface induced by iodine doping is found to be a very crucial factor for the high efficiency. Furthermore, we demonstrate that hybrid solar cells can be successfully used to investigate the photovoltaic properties of organic semiconductors in detail. By means of external quantum efficiency (EQE) measurements, the influence of film morphology on the photocurrent collection length in 8T films is studied. The results show that, in hybrid solar cells using highly ordered microcrystalline 8T films, an active contribution of the organic-layer semiconductor to the total photocurrent exists. A very large photocurrent collection length of up to 100 nm has been estimated from EQE measurements, indicating that exciton diffusion is very efficient in microcrystalline 8T. On the other hand, the use of nanocrystalline 8T leads to high photocurrent losses in the organic part of the hybrid solar cell. The strong influence of the film morphology on the photocurrent collection in 8T is attributed to a reduction in the exciton diffusion length due to a high trap density in nanocrystalline 8T films. Thus, our results reveal the importance of high crystalline order for obtaining efficient photocurrent collection in 8T films. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  14. Determining the energy performance of manually controlled solar shades: A stochastic model based co-simulation analysis

    International Nuclear Information System (INIS)

    Highlights: • Driving factor for adjustment of manually controlled solar shades was determined. • A stochastic model for manual solar shades was constructed using Markov method. • Co-simulation with Energyplus was carried out in BCVTB. • External shading even manually controlled should be used prior to LOW-E windows. • Previous studies on manual solar shades may overestimate energy savings. - Abstract: Solar shading devices play a significant role in reducing building energy consumption and maintaining a comfortable indoor condition. In this paper, a typical office building with internal roller shades in hot summer and cold winter zone was selected to determine the driving factor of control behavior of manual solar shades. Solar radiation was determined as the major factor in driving solar shading adjustment based on field measurements and logit analysis and then a stochastic model for manually adjusted solar shades was constructed by using Markov method. This model was used in BCVTB for further co-simulation with Energyplus to determine the impact of the control behavior of solar shades on energy performance. The results show that manually adjusted solar shades, whatever located inside or outside, have a relatively high energy saving performance than clear-pane windows while only external shades perform better than regularly used LOW-E windows. Simulation also indicates that using an ideal assumption of solar shade adjustment as most studies do in building simulation may lead to an overestimation of energy saving by about 16–30%. There is a need to improve occupants’ actions on shades to more effectively respond to outdoor conditions in order to lower energy consumption, and this improvement can be easily achieved by using simple strategies as a guide to control manual solar shades

  15. Quality issues in the market based dissemination of solar home systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Klara [MicroEnergy International, Berlin (Germany)

    2011-07-01

    In general, Photovoltaic systems are built to last and require little maintenance. However, field studies have revealed a high number of system failures, which are linked to a lack of quality assurance. This paper depicts problems that occur with solar home systems (SHS) disseminated on a market-based approach. The research methodology is based on three pillars: A literature review covers documented projects around the world dealing with solar home system dissemination. Expert practitioners drawn together in a workshop have shared valuable experiences, while a trip to rural Tanzania has been carried out to collect personal insights from the field. To facilitate continuous sharing of challenges between different stakeholders, common quality issues are grouped into four categories according to their cause: component quality, system integration, business model and framework conditions. While the solar component and the user are often initially blamed for system failure, it shows that difficulties arise at various levels of the SHS life cycle - this paper highlights focus problems within each stage. As a root, three underlying challenges are suggested: maladjusted systems, inadequate installations and a disorganized after-sales service. A possible instrument to assure better quality in this context is the enforcement of standards also in market-based SHS sales. Microfinance institutions are assumed as an important partner, because only clients with a functioning system are willing to repay the linked loan. As most of these institutions lack technical knowledge, they can only become an agent for their clients' wish for customer protection, if an independent facility certifies the system's functionality. The given recommendation is that a sustainable approach for solar home system dissemination should not attempt to increase the affordability by developing cheaper products but by fostering income-generating activities, which facilitate paying for good quality

  16. Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique

    Directory of Open Access Journals (Sweden)

    I. M. Dharmadasa

    2014-06-01

    Full Text Available Thin film solar cells based on cadmium telluride (CdTe are complex devices which have great potential for achieving high conversion efficiencies. Lack of understanding in materials issues and device physics slows down the rapid progress of these devices. This paper combines relevant results from the literature with new results from a research programme based on electro-plated CdS and CdTe. A wide range of analytical techniques was used to investigate the materials and device structures. It has been experimentally found that n-, i- and p-type CdTe can be grown easily by electroplating. These material layers consist of nano- and micro-rod type or columnar type grains, growing normal to the substrate. Stoichiometric materials exhibit the highest crystallinity and resistivity, and layers grown closer to these conditions show n → p or p → n conversion upon heat treatment. The general trend of CdCl2 treatment is to gradually change the CdTe material’s n-type electrical property towards i-type or p-type conduction. This work also identifies a rapid structural transition of CdTe layer at 385 ± 5 °C and a slow structural transition at higher temperatures when annealed or grown at high temperature. The second transition occurs after 430 °C and requires more work to understand this gradual transition. This work also identifies the existence of two different solar cell configurations for CdS/CdTe which creates a complex situation. Finally, the paper presents the way forward with next generation CdTe-based solar cells utilising low-cost materials in their columnar nature in graded bandgap structures. These devices could absorb UV, visible and IR radiation from the solar spectrum and combine impact ionisation and impurity photovoltaic (PV effect as well as making use of IR photons from the surroundings when fully optimised.

  17. Effect of substrate temperatures on evaporated In2S3 thin film buffer layers for Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    For the realization of vacuum in-line process in the fabrication of Cu(In,Ga)Se2 (CIGS) solar cells, In2S3 thin film buffer layers for CIGS have been deposited on glasses and CIGS layers with a thickness of about 650 Å by thermal evaporation process. During the thermal evaporation, the temperature of the substrate was varied from room temperature to 500 °C by heating and the grown In2S3 films were investigated and analyzed in terms of the optimized buffer layer for CIGS solar cells. From the results of scanning electron microscope and X-ray diffraction, the In2S3 thin film deposited at a higher substrate temperature showed the larger grain size and the films have amorphous structural characteristics. Although the structural characteristics such as the atomic ratio of In to S and transmittance of the In2S3 thin films were not proportional to temperature, it was possible to obtain the large optical band gap of In2S3 films of about 3.8–3.9 eV enough to be used as the buffer layer of CIGS. - Highlights: • In2S3 films were deposited at various substrate temperatures by thermal evaporation. • The atomic ratio of In to S in the In2S3 film has the highest value at 300 °C. • The In2S3 film has a band gap of about 3.8 eV because of its amorphous structure. • The In2S3 film is expected to be used as a buffer layer by in-line vacuum process

  18. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe{sub 2} base layers

    Energy Technology Data Exchange (ETDEWEB)

    Khrypunov, G. S., E-mail: khrip@ukr.net; Sokol, E. I. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine); Yakimenko, Yu. I. [National Technical University “Kyiv Polytechnic Institute”, Research Institute of Applied Electronics (Ukraine); Meriuts, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine); Ivashuk, A. V. [National Technical University “Kyiv Polytechnic Institute”, Research Institute of Applied Electronics (Ukraine); Shelest, T. N. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2014-12-15

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe{sub 2} base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe{sub 2}-based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected.

  19. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have ...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...

  20. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    Science.gov (United States)

    Bjørk, R.; Nielsen, K. K.

    2015-10-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  1. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    CERN Document Server

    Bjørk, R

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  2. Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell

    Science.gov (United States)

    Al-Ghamdi, Ahmed A.; Gupta, R. K.; Kahol, P. K.; Wageh, S.; Al-Turki, Y. A.; El Shirbeeny, W.; Yakuphanoglu, F.

    2014-04-01

    Natural dye extracted from purple cabbage was used for fabrication of TiO2 dye-sensitized solar cells (DSSCs). The effect of light intensity on the solar efficiency of the device was investigated. It was observed that the efficiency of the DSSC increases with increasing the light intensity e.g. the efficiency of the solar cell increases from 0.013±0.002% to 0.150±0.020% by increase in light intensity from 30 to 100 mW/cm2, respectively. The solar efficiency of the natural dye used in this research was compared with commercial dye (N 719) under similar experimental conditions and observed that the natural (purple cabbage) dye has higher efficiency (0.150±0.020%) than N 719 (0.078±0.002%). It was further evaluated that the efficiency of the fabricated solar cell could improve by incorporating graphene oxide. The efficiency of the TiO2 dye-sensitized solar cell was found to increase from 0.150±0.020% to 0.361±0.009% by incorporating graphene oxide into purple cabbage dye.

  3. A comparative study on charge carrier recombination across the junction region of Cu2ZnSn(S,Se4 and Cu(In,GaSe2 thin film solar cells

    Directory of Open Access Journals (Sweden)

    Mohammad Abdul Halim

    2016-03-01

    Full Text Available A comparative study with focusing on carrier recombination properties in Cu2ZnSn(S,Se4 (CZTSSe and the CuInGaSe2 (CIGS solar cells has been carried out. For this purpose, electroluminescence (EL and also bias-dependent time resolved photoluminescence (TRPL using femtosecond (fs laser source were performed. For the similar forward current density, the EL-intensity of the CZTSSe sample was obtained significantly lower than that of the CIGS sample. Primarily, it can be attributed to the existence of excess amount of non-radiative recombination center in the CZTSSe, and/or CZTSSe/CdS interface comparing to that of CIGS sample. In case of CIGS sample, TRPL decay time was found to increase with the application of forward-bias. This can be attributed to the reduced charge separation rate resulting from the reduced electric-field at the junction. However, in CZTSSe sample, TRPL decay time has been found almost independent under the forward and reverse-bias conditions. This phenomenon indicates that the charge recombination rate strongly dominates over the charge separation rate across the junction of the CZTSSe sample. Finally, temperature dependent VOC suggests that interface related recombination in the CZTSSe solar cell structure might be one of the major factors that affect EL-intensity and also, TRPL decay curves.

  4. Development of sputtering systems for large-area deposition of CuIn1-xGaxSe1-ySy thin-film solar cells

    International Nuclear Information System (INIS)

    CuIn1-xGaxSe1-ySy (CIGS) thin-film modules are expected to become cheaper than crystalline silicon modules within 5 yr. At present, commissioning and reaching full production of thin film modules is delayed because of nonavailability of turnkey manufacturing plants. Very few universities are conducting research on development of PV plants. CIGS thin-film solar cells are being prepared routinely at Florida Solar Energy Center (FSEC) on glass and metallic foil substrates for terrestrial and space applications. Earlier, the substrate size was limited to 3x3 cm2. This article presents results of development of large-area sputtering systems for preparation of large (15.2x15.2 cm2) CIGS thin-film solar cells. The facilities have the potential of serving as a nucleus of a pilot plant for fabrication of CIGS minimodules. Initial problems of bowing of the brass diaphragm, restriction of effective water flow and consequent heating of the target material were resolved by increasing the thickness of the backing plate and redesigning the structural members. Thickness uniformity was improved by modifying the magnetic field distribution in the middle 15 cm portion of the 10.2x30.5 cm2 magnetron sputtering sources by selectively removing nickel-coated soft-iron pieces at the rear. This resulted in Mo layer thickness uniformity of ±3% over 10.2x10.2 cm2. The magnetic field was boosted at extremities to avoid precipitous ∼15% drop beyond 10.2 cm. With this, thickness uniformities of ±2.5% for Mo and ±4.5% for ZnO over 12.7x10.2 cm2 have been achieved however with a continuing drop beyond 12.7 cm width. Modifying the magnetic field to achieve better distribution by preferentially removing soft irons pieces and also boosting of the magnetic field at the ends are two new concepts introduced and successfully utilized in this study. Scaling up of the large-area uniform deposition of metallic precursor layers was a challenging task. The efforts were directed towards obtaining similar

  5. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  6. Membrane-based electrolyte sheets for facile fabrication of flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: → A new electrolyte sheet was developed for flexible dye-sensitized solar cells (DSCs). → It is composed of a porous polyethylene membranes and ionic liquid electrolytes. → The electrochemical properties of the electrolyte sheets were evaluated. → High-performance flexible DSCs with the electrolyte sheets were facilely fabricated. - Abstract: New electrolyte sheets based on porous polyethylene membranes for flexible dye-sensitized solar cells have been developed. Ionic liquid electrolytes are accommodated in commercial polyethylene membranes to form the electrolyte sheets. The morphology of membranes and iodine concentrations in ionic liquid are varied. The electrochemical measurement results show that the morphology, pore structure, and iodine concentration affect mass transport in electrolyte sheet, as well as charge transfer between platinum electrode and electrolyte sheet greatly. Based on these electrolyte sheets, lamination method instead of conventional vacuum injection of electrolyte is used to fabricate flexible dye-sensitized solar cells. Optimal device with an open-circuit voltage (Voc) of 0.63 V, a fill factor of 0.58, and a short-circuit current density (Jsc) of 6.17 mA cm-2 at an incident light intensity of 100 mW cm-2 is obtained, which yields a light-to-electricity conversion efficiency of 2.25%.

  7. Stirling engine based solar-thermal power plant with a thermo-chemical storage system

    International Nuclear Information System (INIS)

    Highlights: • The system is unaffected by climatic and seasonal variation. • Drawbacks of solar power generation are eliminated. • A constant uninterrupted output power is obtained. - Abstract: This paper describes a solar-thermal run Stirling engine based uninterrupted power generating system employing magnesium sulphate impregnated Zeolite pellets for thermal energy storage. In the proposed system, Stirling engine design is based on the average temperature difference of 480 °C, assuming the heat sink temperature equal to the ambient temperature of that place. In presence of sun, Fresnel lenses of a specially designed hybrid capsule capture solar energy and concentrate them to provide necessary heat for the operation of the engine. In absence of the sun, required heat is provided by the thermo-chemical energy stored in Zeolite pellets. Working methodologies, modelling and simulation of the proposed system along with analyses of the obtained simulated results are presented in this paper. Possible performance of the scheme at different global positions for different period of a year has also been investigated

  8. Dye-sensitized solar cells based on different nano-oxides on plastic PET substrate

    Science.gov (United States)

    Mikula, Milan; Gemeiner, Pavol; Beková, Zuzana; Dvonka, Vladimír; Búc, Dalibor

    2015-01-01

    Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and I-V loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol-gel technique is also discussed.

  9. Solar radiation measurements in forests - II. methods based on the principle of hemispherical photography

    International Nuclear Information System (INIS)

    The know-how in the field of solar radiation distribution in forests is important for basic ecological investigations and silvicultural practice. Three methods of solar radiation assessment based on hemispherical canopy photography are compared in the present article: a hemispherical photography by means of a fish-eye lens, a horizontoscope and the ALI-2000 Plant Canopy Analyzer. Experiences, improved methods and a drawing of a horizontoscope stand which was elaborated at the Chair of Silviculture are presented. Fairly good results with some limitations can be achieved with the improved stable horizontoscope in silvicultural work. Hemispherical photography is appropriate for the assessment of light conditions in all stand types and can thus be used in research work. The method has recently been undergoing intensive development. Digitalization of the entire system will speed up standardization. The ALI-2000 instrument is highly suitable for regeneration research in conditions of abundant plant vegetation, in reach sites and modified stands

  10. Schottky solar cells based on CsSnI3 thin-films

    Science.gov (United States)

    Chen, Zhuo; Wang, Jian J.; Ren, Yuhang; Yu, Chonglong; Shum, Kai

    2012-08-01

    We describe a Schottky solar cell based on the perovskite semiconductor CsSnI3 thin-film. The cell consists of a simple layer structure of indium-tin-oxide/CsSnI3/Au/Ti on glass substrate. The measured power conversion efficiency is 0.9%, which is limited by the series and shunt resistance. The influence of light intensity on open-circuit voltage and short-circuit current supports the Schottky solar cell model. Additionally, the spectrally resolved short-circuit current was measured, confirming the unintentionally doped CsSnI3 is of p-type characteristics. The CsSnI3 thin-film was synthesized by alternately depositing layers of SnCl2 and CsI on glass substrate followed by a thermal annealing process.

  11. Novel dye based photoelectrode for improvement of solar cell conversion efficiency

    International Nuclear Information System (INIS)

    We have explored the application of natural dyes extracted from beetroot in Dye sensitized solar cell (DSSC). The main pigment is betacyanin which was obtained by separation and purification from the extract. The photo electrochemical performance of the DSSC based on these dyes showed that the photo voltage and photocurrent 435 mV, 9.86 mA, respectively. The overall conversion efficiency of nano WO3 coated TiO2 dye-sensitized solar cells exhibits a higher conversion efficiency of 2.2 %. The photo electrochemical performance of beetroot extract demonstrate that betacyanin dye was the most effectual component of the sensitizer for DSSC because of the simple preparation technique, widely available and low cheap cost. (authors)

  12. Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60

    Science.gov (United States)

    Yoo, Seunghyup; Domercq, Benoit; Kippelen, Bernard

    2005-05-01

    We present studies of the current-voltage characteristics of organic solar cells based on heterojunctions of pentacene and C60 as a function of illumination intensity. The photovoltaic response at a given illumination level is parameterized and modeled using the equivalent circuit model developed for inorganic pn-junction solar cells. Reduction in shunt resistance and increase in diode reverse saturation current density are observed upon increase of the light intensity. We demonstrate that this effect can be modeled by a refined equivalent circuit model that contains an additional shunt resistance and an additional diode the properties of which are functions of the light intensity. The effects of these additional components on the overall photovoltaic performance are discussed.

  13. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.

    2015-09-21

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  14. High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers.

    Science.gov (United States)

    O'Connor, Brendan; Nothern, Denis; Pipe, Kevin P; Shtein, Max

    2010-09-13

    We propose a novel solar cell architecture consisting of multiple fiber-based photovoltaic (PV) cells. Each PV fiber element is designed to maximize the power conversion efficiency within a narrow band of the incident solar spectrum, while reflecting other spectral components through the use of optical microcavity effects and distributed Bragg reflector (DBR) coatings. Combining PV fibers with complementary absorption and reflection characteristics into volume-filling arrays enables spectrally tuned modules having an effective dispersion element intrinsic to the architecture, resulting in high external quantum efficiency over the incident spectrum. While this new reflective tandem architecture is not limited to one particular material system, here we apply the concept to organic PV (OPV) cells that use a metal-organic-metal-dielectric layer structure, and calculate the expected performance of such arrays. Using realistic material properties for organic absorbers, transport layers, metallic electrodes, and DBR coatings, 17% power conversion efficiency can be reached. PMID:21165073

  15. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    International Nuclear Information System (INIS)

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading

  16. Parameters extraction for perovskite solar cells based on Lambert W-function

    Directory of Open Access Journals (Sweden)

    Ge Junyu

    2016-01-01

    Full Text Available The behaviors of the solar cells are decided by the device parameters. Thus, it is necessary to extract these parameters to achieve the optimal working condition. Because the five-parameter model of solar cells has the implicit equation of current-voltage relationship, it is difficult to obtain the parameters with conventional methods. In this work, an optimized method is presented to extract device parameters from the actual test data of photovoltaic cell. Based on Lambert W-function, explicit formulation of the model can be deduced. The proposed technique takes suitable method of selecting sample points, which are used to calculate the values of the model parameters. By comparing with the Quasi-Newton method, the results verify accuracy and reliability of this method.

  17. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    Science.gov (United States)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  18. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    Directory of Open Access Journals (Sweden)

    Shengbo Ma

    2015-05-01

    Full Text Available In this paper, smart photovoltaic (SPV devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  19. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte

    Science.gov (United States)

    Ito, Seigo; Zakeeruddin, Shaik M.; Comte, Pascal; Liska, Paul; Kuang, Daibin; Grätzel, Michael

    2008-11-01

    Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (~6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye (Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO2 layer. The inclusion of a SiO2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO2 layer are responsible for the enhanced performance.

  20. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Xiao, Lixin, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn; Chen, Zhijian, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China)

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.